39 research outputs found

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    A model-based approach to robot kinematics and control using discrete factor graphs with belief propagation

    Get PDF
    Much of recent researches in robotics have shifted the focus from traditionally-specific industrial tasks to investigations of new types of robots with alternative ways of controlling them. In this paper, we describe the development of a generic method based on factor graphs to model robot kinematics. We focused on the kinematics aspect of robot control because it provides a fast and systematic solution for the robot agent to move in a dynamic environment. We developed neurally-inspired factor graph models that can be applied on two different robotic systems: a mobile platform and a robotic arm. We also demonstrated that we can extend the static model of the robotic arm into a dynamic model useful for imitating natural movements of a human hand. We tested our methods in a simulation environment as well as in scenarios involving real robots. The experimental results proved the flexibility of our proposed methods in terms of remodeling and learning, which enabled the modeled robot to perform reliably during the execution of given tasks

    Multi-modal Skill Memories for Online Learning of Interactive Robot Movement Generation

    Get PDF
    Queißer J. Multi-modal Skill Memories for Online Learning of Interactive Robot Movement Generation. Bielefeld: Universität Bielefeld; 2018.Modern robotic applications pose complex requirements with respect to the adaptation of actions regarding the variability in a given task. Reinforcement learning can optimize for changing conditions, but relearning from scratch is hardly feasible due to the high number of required rollouts. This work proposes a parameterized skill that generalizes to new actions for changing task parameters. The actions are encoded by a meta-learner that provides parameters for task-specific dynamic motion primitives. Experimental evaluation shows that the utilization of parameterized skills for initialization of the optimization process leads to a more effective incremental task learning. A proposed hybrid optimization method combines a fast coarse optimization on a manifold of policy parameters with a fine-grained parameter search in the unrestricted space of actions. It is shown that the developed algorithm reduces the number of required rollouts for adaptation to new task conditions. Further, this work presents a transfer learning approach for adaptation of learned skills to new situations. Application in illustrative toy scenarios, for a 10-DOF planar arm, a humanoid robot point reaching task and parameterized drumming on a pneumatic robot validate the approach. But parameterized skills that are applied on complex robotic systems pose further challenges: the dynamics of the robot and the interaction with the environment introduce model inaccuracies. In particular, high-level skill acquisition on highly compliant robotic systems such as pneumatically driven or soft actuators is hardly feasible. Since learning of the complete dynamics model is not feasible due to the high complexity, this thesis examines two alternative approaches: First, an improvement of the low-level control based on an equilibrium model of the robot. Utilization of an equilibrium model reduces the learning complexity and this thesis evaluates its applicability for control of pneumatic and industrial light-weight robots. Second, an extension of parameterized skills to generalize for forward signals of action primitives that result in an enhanced control quality of complex robotic systems. This thesis argues for a shift in the complexity of learning the full dynamics of the robot to a lower dimensional task-related learning problem. Due to the generalization in relation to the task variability, online learning for complex robots as well as complex scenarios becomes feasible. An experimental evaluation investigates the generalization capabilities of the proposed online learning system for robot motion generation. Evaluation is performed through simulation of a compliant 2-DOF arm and scalability to a complex robotic system is demonstrated for a pneumatically driven humanoid robot with 8-DOF

    Adaptive control of compliant robots with Reservoir Computing

    Get PDF
    In modern society, robots are increasingly used to handle dangerous, repetitive and/or heavy tasks with high precision. Because of the nature of the tasks, either being dangerous, high precision or simply repetitive, robots are usually constructed with high torque motors and sturdy materials, that makes them dangerous for humans to handle. In a car-manufacturing company, for example, a large cage is placed around the robot’s workspace that prevents humans from entering its vicinity. In the last few decades, efforts have been made to improve human-robot interaction. Often the movement of robots is characterized as not being smooth and clearly dividable into sub-movements. This makes their movement rather unpredictable for humans. So, there exists an opportunity to improve the motion generation of robots to enhance human-robot interaction. One interesting research direction is that of imitation learning. Here, human motions are recorded and demonstrated to the robot. Although the robot is able to reproduce such movements, it cannot be generalized to other situations. Therefore, a dynamical system approach is proposed where the recorded motions are embedded into the dynamics of the system. Shaping these nonlinear dynamics, according to recorded motions, allows for dynamical system to generalize beyond demonstration. As a result, the robot can generate motions of other situations not included in the recorded human demonstrations. In this dissertation, a Reservoir Computing approach is used to create a dynamical system in which such demonstrations are embedded. Reservoir Computing systems are Recurrent Neural Network-based approaches that are efficiently trained by considering only the training of the readout connections and retaining all other connections of such a network unchanged given their initial randomly chosen values. Although they have been used to embed periodic motions before, they were extended to embed discrete motions, or both. This work describes how such a motion pattern-generating system is built, investigates the nature of the underlying dynamics and evaluates their robustness in the face of perturbations. Additionally, a dynamical system approach to obstacle avoidance is proposed that is based on vector fields in the presence of repellers. This technique can be used to extend the motion abilities of the robot without need for changing the trained Motion Pattern Generator (MPG). Therefore, this approach can be applied in real-time on any system that generates a certain movement trajectory. Assume that the MPG system is implemented on an industrial robotic arm, similar to the ones used in a car factory. Even though the obstacle avoidance strategy presented is able to modify the generated motion of the robot’s gripper in such a way that it avoids obstacles, it does not guarantee that other parts of the robot cannot collide with a human. To prevent this, engineers have started to use advanced control algorithms that measure the amount of torque that is applied on the robot. This allows the robot to be aware of external perturbations. However, it turns out that, even with fast control loops, the adaptation to compensate for a sudden perturbation, is too slow to prevent high interaction forces. To reduce such forces, researchers started to use mechanical elements that are passively compliant (e.g., springs) and light-weight flexible materials to construct robots. Although such compliant robots are much safer and inherently energy efficient to use, their control becomes much harder. Most control approaches use model information about the robot (e.g., weight distribution and shape). However, when constructing a compliant robot it is hard to determine the dynamics of these materials. Therefore, a model-free adaptive control framework is proposed that assumes no prior knowledge about the robot. By interacting with the robot it learns an inverse robot model that is used as controller. The more it interacts, the better the control be- comes. Appropriately, this framework is called Inverse Modeling Adaptive (IMA) control framework. I have evaluated the IMA controller’s tracking ability on sev- eral tasks, investigating its model independence and stability. Furthermore, I have shown its fast learning ability and comparable performance to taskspecific designed controllers. Given both the MPG and IMA controllers, it is possible to improve the inter- actability of a compliant robot in a human-friendly environment. When the robot is to perform human-like motions for a large set of tasks, we need to demonstrate motion examples of all these tasks. However, biological research concerning the motion generation of animals and humans revealed that a limited set of motion patterns, called motion primitives, are modulated and combined to generate advanced motor/motion skills that humans and animals exhibit. Inspired by these interesting findings, I investigate if a single motion primitive indeed can be modulated to achieve a desired motion behavior. By some elementary experiments, where an MPG is controlled by an IMA controller, a proof of concept is presented. Furthermore, a general hierarchy is introduced that describes how a robot can be controlled in a biology-inspired manner. I also investigated how motion primitives can be combined to produce a desired motion. However, I was unable to get more advanced implementations to work. The results of some simple experiments are presented in the appendix. Another approach I investigated assumes that the primitives themselves are undefined. Instead, only a high-level description is given, which describes that every primitive on average should contribute equally, while still allowing for a single primitive to specialize in a part of the motion generation. Without defining the behavior of a primitive, only a set of untrained IMA controllers is used of which each will represent a single primitive. As a result of the high-level heuristic description, the task space is tiled into sub-regions in an unsupervised manner. Resulting in controllers that indeed represent a part of the motion generation. I have applied this Modular Architecture with Control Primitives (MACOP) on an inverse kinematic learning task and investigated the emerged primitives. Thanks to the tiling of the task space, it becomes possible to control redundant systems, because redundant solutions can be spread over several control primitives. Within each sub region of the task space, a specific control primitive is more accurate than in other regions allowing for the task complexity to be distributed over several less complex tasks. Finally, I extend the use of an IMA-controller, which is tracking controller, to the control of under-actuated systems. By using a sample-based planning algorithm it becomes possible to explore the system dynamics in which a path to a desired state can be planned. Afterwards, MACOP is used to incorporate feedback and to learn the necessary control commands corresponding to the planned state space trajectory, even if it contains errors. As a result, the under-actuated control of a cart pole system was achieved. Furthermore, I presented the concept of a simulation based control framework that allows the learning of the system dynamics, planning and feedback control iteratively and simultaneously

    From visuomotor control to latent space planning for robot manipulation

    Get PDF
    Deep visuomotor control is emerging as an active research area for robot manipulation. Recent advances in learning sensory and motor systems in an end-to-end manner have achieved remarkable performance across a range of complex tasks. Nevertheless, a few limitations restrict visuomotor control from being more widely adopted as the de facto choice when facing a manipulation task on a real robotic platform. First, imitation learning-based visuomotor control approaches tend to suffer from the inability to recover from an out-of-distribution state caused by compounding errors. Second, the lack of versatility in task definition limits skill generalisability. Finally, the training data acquisition process and domain transfer are often impractical. In this thesis, individual solutions are proposed to address each of these issues. In the first part, we find policy uncertainty to be an effective indicator of potential failure cases, in which the robot is stuck in out-of-distribution states. On this basis, we introduce a novel uncertainty-based approach to detect potential failure cases and a recovery strategy based on action-conditioned uncertainty predictions. Then, we propose to employ visual dynamics approximation to our model architecture to capture the motion of the robot arm instead of the static scene background, making it possible to learn versatile skill primitives. In the second part, taking inspiration from the recent progress in latent space planning, we propose a gradient-based optimisation method operating within the latent space of a deep generative model for motion planning. Our approach bypasses the traditional computational challenges encountered by established planning algorithms, and has the capability to specify novel constraints easily and handle multiple constraints simultaneously. Moreover, the training data comes from simple random motor-babbling of kinematically feasible robot states. Our real-world experiments further illustrate that our latent space planning approach can handle both open and closed-loop planning in challenging environments such as heavily cluttered or dynamic scenes. This leads to the first, to our knowledge, closed-loop motion planning algorithm that can incorporate novel custom constraints, and lays the foundation for more complex manipulation tasks

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology
    corecore