
1

2

3

4

5

6

7

8

9

Word Count: 11109

 
Plagiarism Percentage
90%

sources:

86% match (publications)
Indar Sugiarto, Jörg Conradt. "A model-based approach to robot kinematics and control using

 discrete factor graphs with belief propagation", Robotics and Autonomous Systems, 2017

2% match (Internet from 18-Jun-2017)
https://linknovate.com/affiliation/tu-munich-767/all/?query=robot+arm+kinematics

1% match (Internet from 25-Dec-2017)
https://d-nb.info/1081767871/34

< 1% match (Internet from 21-Dec-2017)
http://khlee.org/papers/lee-ras16.pdf

< 1% match (Internet from 31-Aug-2017)
http://gih.diva-portal.org/smash/get/diva2:1075280/FULLTEXT01.pdf

< 1% match (Internet from 11-Dec-2017)
http://refbase.cidis.espol.edu.ec/files/victorsantos/2017/65_VictorSantos_etal2017.pdf

< 1% match (publications)
Lecture Notes in Electrical Engineering, 2016.

< 1% match (publications)
Viet Phuong Nguyen. "A new particle filter for high-dimensional state-space models based on

 intensive and extensive proposal distribution", International Journal of Knowledge Engineering and
 Soft Data Paradigms, 2010

< 1% match (publications)
C. S. Manohar. "Monte Carlo filters for identification of nonlinear structural dynamical systems",

 Sadhana, 08/2006

paper text:

javascript:openDSC(2952172220, 2909, '16514');
http://linkinghub.elsevier.com/retrieve/pii/S0921889016301300
http://linkinghub.elsevier.com/retrieve/pii/S0921889016301300
https://linknovate.com/affiliation/tu-munich-767/all/?query=robot+arm+kinematics
https://d-nb.info/1081767871/34
http://khlee.org/papers/lee-ras16.pdf
http://gih.diva-portal.org/smash/get/diva2:1075280/FULLTEXT01.pdf
http://refbase.cidis.espol.edu.ec/files/victorsantos/2017/65_VictorSantos_etal2017.pdf
http://dx.doi.org/10.1007/978-981-287-988-2
http://dx.doi.org/10.1504/IJKESDP.2010.037492
http://dx.doi.org/10.1504/IJKESDP.2010.037492
http://dx.doi.org/10.1504/IJKESDP.2010.037492
http://dx.doi.org/10.1007/BF02716784
http://dx.doi.org/10.1007/BF02716784


4

1

1

1

5

1

2

Robotics and Autonomous Systems 91 (2017) 234–246 Contents lists

 available at ScienceDirect Robotics and Autonomous Systems journal
 homepage: www.elsevier.com/locate/robot A

model-based approach to robot kinematics and control using discrete
 factor graphs with belief propagation Indar Sugiarto a,b,*,

 Jörg Conradta a

Neuroscientific System Theory, Technische Universität München,

 Germany b Department of Electrical Engineering, Petra Christian

 University, Indonesia

 highlights •

Neurally inspired factor graphs for generic kinematic modeling of robot
 platforms. • Performance evaluation on a real robot arm and an
 omnidirectional mobile robot. • Demonstration of a dynamic factor graph for
 imitation learning.

article info Article history: Received 17 March 2016 Received in revised
 form 22 November 2016 Accepted 4 January 2017 Available online 4

 February 2017 Keywords:

Model-based approach Factor graph Robot kinematics

 abstract

Much of recent researches in robotics have shifted the focus from
 traditionally-specific industrial tasks to investigations of new types of
 robots with alternative ways of controlling them. In this paper, we describe
 the development of a generic method based on factor graphs to model robot
 kinematics. We focused on the kinematics aspect of robot control because
 it provides a fast and systematic solution for the robot agent to move in a
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 dynamic environment. We developed neurally-inspired factor graph models
 that can be applied on two different robotic systems: a mobile platform and
 a robotic arm. We also demonstrated that we can extend the static model of
 the robotic arm into a dynamic model useful for imitating natural
 movements of a human hand. We tested our methods in a simulation
 environment as well as in scenarios involving real robots. The experimental
 results proved the flexibility of our proposed methods in terms of
 remodeling and learning, which enabled the modeled robot to perform
 reliably during the execution of given tasks. © 2017 Elsevier B.V.

 All rights reserved.

1. Introduction Historically, robot engineering and control inherits two
 aspects from physics: kinematics and dynamics. The dynamic aspect
 is concerned with the robot motion as a function of the applied forces and
 torques, whereas the kinematic aspect is concerned with the relation
 between the overall movement and the structure of robotic system. Both
 aspects play important but different roles for motion planning and

 coordination [1

–3]. In this paper, we focused on the kinematic aspect in order to
 evaluate the applicability of higher-level robot control and motion
 planning. The kinematic approach provides a fast and systematic solution
 for the robot agent to move in an environment with many objects; hence, it
 is favorable in an obstacle avoidance scenario

 [4

–7]. It can also be extended into a dynamic modeling be- cause once we

 have solved the kinematic tasks, we can construct

 * Correspondence to:

Department of Electrical Engineering, Petra Christian Uni- versity, Jl.
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continuous joint paths that can be followed by a dynamic controller as
 its input reference. Conventional methods in kinematics usually
 involve some fine- tuning of parameters. Especially in a simple robot
 system with frequently changing tasks, this procedure will be cumbersome.
 To address this issue, we propose to use a model-based learning. Model-
based approach attempts to model the structure of the system, and then
 based on that model, the learning mechanism chooses the most appropriate
 parameter based on the observed data. The idea is to teach the robot to
 generate motions based on human experience. Humans can easily change
 from task to task without too much effort, revealing that they have a long
 history of adapting model-based learning features. Using this perspective,
 future autonomous robots can be programmed with cognitive ca- pabilities

 based on the models that rely reliably on the information perceived by the

 robot [8]. There is much interest in biologically inspired robotics because

 almost all biological entities can move robustly and adaptively in dynamic

 environments [8

–10]. The complex motion of biological entities such as humans is
 composed of many small coordinated motion

 primitives [11

–13], which are governed by motor pattern and sensorimotor generator

 [14]. It is also believed that the brain produces the optimal policy to

 generate proper actions from the current states based on its internal model,
 and uses the model- based learning paradigm to maintain that model in a
 robust
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 man- ner [15

–17]. We followed the model-based approach and developed a robot
 control strategy based on a learned model from experimental data. Our
 model-based approach toward robot control can be optimized for
 applications that involve a custom model for each new robot configuration.
 Two types of basic robotic systems were investi- gated: a mobile robot

 platform and a robotic arm (manipulator) platform. We strive to find a unified
 control strategy based on a generic model for those robots in order to make
 it practical to be embedded into a higher level control system with cognitive
 capability. We propose to use factor graphs for implementing our ap-

 proaches and we demonstrate that they can be extended into com- plex

 settings for future autonomous robotic applications. A Factor graph could

 be an excellent tool for processing information on different levels of
 abstraction: from low-level sensory processing to reasoning with high-level
 goals based on some cognitive

 archi- tectures [18

–22]. This is possible due to factor graph’s capability in unifying

 inference mechanisms of both directed and undirected graphical
 models that have been developed in various systems. Using this framework,
 we could formulate the central problem in robotics as a coherence
 reasoning task of perception, decision- making, planning, and control. In
 this direction, the contribution of this paper can be summarized as follows.
 1. We develop neurally inspired factor graphs with a generic structure for
 kinematic modeling of different robot plat- forms. 2. We present an extension

 of a tree-structure factor graph into a chain-structure factor graph that
 exemplifies the general- ity of a factor graph for modeling a kinematic chain.

 3. We demonstrate that our dynamic factor graph can general- ize sequential

 motion useful for imitating learning. Although the imitation learning is not
 our main contribution, in this paper we demonstrate that our model has a
 generality fea- ture that can be used conveniently to accommodate imita- tion

 learning in a system that is built based on a graphical model. This paper is

 organized as follows. In Section 2, we review the robot kinematic principle

 and its common implementations. In addition, we briefly review our factor
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 graph framework that uti- lizes population coding principles. Next, we

 introduce our model in Section 3 along with the motivation for using a model-

based ap- proach. Section 4 describes our experimental setup for harnessing

 our model in a real robotic scenario. We provide the evaluation of our
 model, followed by a thorough discussion of the obtained experimental
 results in Section 5. Finally, Section 6 summarizes the work and provides a

 glimpse of possible future extensions. 2. Review of robot kinematics
 modeling, factor graphs, and related works Kinematics has been used for
 decades by robot engineers work- ing in industry as well as scientists

 developing new ideas based on cognitive intelligence. In this spectrum, the
 study of kinematics can be classified into two aspects: analytical kinematics
 that uses well- defined formulas to solve kinematic problems, and
 computational kinematics that uses learning paradigms in a practical
 method- ology to find an approximation of the optimal solution. In this section,

 we provide a review on these aspects and how we extend them into a
 model-based approach. Also, the basic concept of factor graphs that will be
 used for kinematic modeling is presented. 2.1. Solutions to kinematics In
 the most basic form, kinematics involves mapping from the object’s internal

 states to its pose in a task space, which can be written as the following
 expression: x = F (q) (1) where F is a mapping function whose parameters

 are assumed to be known in order to relate the robot’s state (q) to the robot’s

 pose in a task space (x). The state q is a vector of joint variables; in a

 manipulator, it corresponds to the joints between links, while in a
 holonomic wheeled mobile robot, it corresponds to the angular pose of the
 wheels. The task variable x is the pose of the end- effector in a manipulator,
 or the pose of the mobile robot’s body in its own coordinate system.

 However, the expression (1) might not be directly applicable in all situation,
 for example in the case of non-holonomic robot. In addition to (1), we need
 to define the robot action in terms of its velocity, simply expressed as: ẋ

 = ∂∂Fq q˙.

It can be expressed in terms of a Jacobian matrix as: ẋ = J(q)q˙. (2) In

 order to use it in a control scenario, the inverse kinematics control
 problem is formulated, where a joint space trajectory q(t) is computed such
 that F(q(t)) = x(t) is satisfied given a trajec- tory in the task space x(t). The

 simplest solution of this inverse kinematics problem involves the joint
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 velocities as a product of a pseudoinverse of a Jacobian matrix as: q˙ =
 ˜J(q)ẋ (3) where J˜ is the pseudoinverse of a Jacobian matrix. Readers who

 are interested more on this Jacobian-based solution are referred to [6,23].

 For certain robots, the Jacobian matrix may be no longer a square matrix.
 Thus, it cannot be directly inverted and will require the computation of a
 pseudo Jacobian matrix, which is computa- tionally expensive and is subject

 to numerical instabilities. Even though Jacobian-based approaches can
 produce excel- lent performance, such analytical approaches may be impracti-

 cal in some situation. For example, in our robotic setup where the main

 controller is a simple low-power microcontroller (see Fig. 1), the analytical
 approach will be unjustified due to its high computational cost. Hence, we
 developed hardware-friendly ap- proaches that utilize some learning

 paradigms. The kinematic so- lution learned by the robot agent, can be used

 further in a more complex setting in a mimetic fashion. 2.2. From kinematics
 to model-based approach The ‘‘computational’’ kinematics attempts to solve

 the prob- lems based on an approximation paradigm applied to available

 robot data. It covers many methods developed in the domain of
 computational intelligence, such as neural

 networks [24–26], fuzzy logic [27,28], heuristic optimization [29

–31], and probabilistic rea- soning [32,33]. In this paper, we present an

 appealing approach of learning kinematic models based on a
 probabilistic reasoning with intuitive graphical embodiment. During learning
 phases, the robot agents were fed with reliable data that represent possible
 robot configura- tions in the solution space. We extended this basic learning

 mech- anism into a model-based approach which requires a predefined model

 before the model can deliberately learn the optimal policy, integrates the
 learning on the basis of past experiences and the planning for future actions

 [34].

 (a) Bayesian network rep- (b) Factor graph repre-

Fig. 1. The mobile manipulator used in our work. The omnidirectional
 mobile resentation. sentation. platform is driven by a microcontroller

 LPC2103 (single core and no floating point unit) running at 64 MHz, whereas
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 the 4-DOF robot arm is driven by a low cost SoC

Fig. 3. Transforming a Bayesian network into a factor graph. Here the
 factor graph

(Zynq-XC702 from Xilinx) running at 100 MHz.

represents a structured factorization of the conditional probability.

In our work, we are interested in exploring the model-based approach
 because it offers several major advantages, including the opportunity
 to create highly tailored models for specific scenarios and the rapid
 prototyping and comparison of many alternative models. We developed a
 generic factor graph-based kinematic model that uses data-driven learning
 approach for two different robot platforms: an omni-directional mobile robot
 and a robotic arm (i.e., a manipulator). These two robot platforms are
 integrated to produce a mobile manipulator (see Fig. 1). The kinematic
 models of these robots serve as the low level con- trol of individual motions

 known as motion primitives. Different methods for learning motion
 primitives have been developed by many other researchers using
 algorithms such as Gaussian Mixture Models and Regression (GMM/GMR)
 [35], Hidden Markov Model (HMM) [36], Locally Weighted Projection

 Regression (LWPR) [37], and Dynamic Movement Primitives (DMP) [34]. In

 our work, we turned our attention to the paradigm of programming-by-
 demonstration (PbD) which is commonly known as

 ‘‘imitation learning’’.

In this paradigm, the robot is expected to develop and improve its skill
 by exploiting statistical regularities across multi- ple demonstrations

 provided by the human teacher. Fig. 2 shows the basic principle of this
 paradigm. The most intriguing challenge in this paradigm is how the model
 generalizes the skill so that it can also be applied in different contexts [37,38].

 Skill learning itself can be developed either at a symbolic level or a
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 trajectory level. Here we are interested in the trajectory-based approach
 because it allows us to concentrate on a lower level control without having
 too much distraction from higher level skill development problems. In this
 paper, we used a regression technique similar to the GMR [35], but we

 created the model entirely in a factor graph and used its inference
 mechanism to learn the trajectory. 2.3. Discrete factor graph framework A
 factor graph is a probabilistic graph that unifies the directed and undirected
 model, and provides a convenient way for perform- ing inference in order to

 compute the marginal probabilities of variables involved in the graph. Fig.
 3(b) shows an example of a factor graph that originates from a directed
 graph (Fig. 3(a)). In such a transformation, a factor node in the factor graph
 captures the statistical relationship between variables such as their joint
 probability and/or conditional probability. A factor node fj is connected to

 the variable node Xi if and only if Xi is the argument of fj. Given a factor

 graph G = (X, F), the joint probability of all variables is a product of all
 factorization by factor nodes in the graph: p(X) = 1 ∏ Z fj(Xi) (4) j where Z =

 ∑X∏ ifi(Xi) is a

partition function that normalize probability distribution. The inference
 task in a factor graph can be performed using a message-passing
 mechanism which is called belief propagation. In a belief propagation, each
 node in the graph generates a message that will be updated consecutively
 from the previous value of the neighboring messages [39]. The messages are

 passed along the edges of the graph according to a set of message-passing
 rules. Two types of messages are transmitted within the factor graph: the
 message sent by a variable node to a factor node (denoted as µx→f (x)) and

 the message sent by a factor node to a variable node (denoted as µf →x(x)).

 These messages are computed according to the following equations: µx→f

 (x) = ∏ µh →x( x) h n(x)\{f }   µf →x (x) = ∑ f (x) ∏ µy→f (y)  {x} y n(f )\{x}

 (5) (6) where ∑ {x}

 is the ‘‘not-sum’’

or summary indicating that the marginal probability over a set of
 variables is calculated without including the specific variable x in that
 set. For example using Fig. 3(b), since f5 is a function of three variables C ,
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 D, and E , then the ‘‘summary for C ’’ is denoted by ∑ f5 (C , D, E ) = ∑ ∑ f5 (C ,

 D, E ). {C } D E Fig. 2. The

 conceptual principle of programming by demonstration. The

symbol n(x) means ‘‘neighbor of x’’, and the expression h  n(x) \ {f }

 denotes a region that covers a set of nodes x without including f . The
 message-passing is started on every leaf-node by com- puting and

 propagating messages to its neighbors. The message propagation
 continues until all nodes receive the messages in both directions:

 bi(Xi) = ∏ µf (Xi)→(Xi)(Xi) (7) n(Xi ) bF(Xi) = fF(Xi)∏µXi→f(Xi)(Xi) (8) n(F) where bi(Xi) refers to the ‘‘belief’’

over a set of variable nodes Xi, and

 bF (Xi) refers to the ‘‘belief’’

over a factor node F (with internal function fF ) that is connected to Xi. In

 this circumstance, Xi refers to a region in the graph; whereas x refers

 to individual variable node within that region as expressed in (5) and (6).
 The consistency of the belief propagation is established when the
 propagated messages to the variable agree in terms of the marginal of the
 factor over the corresponding variable:

 bF(Xi) = bi(Xi). (9)

In the termination step, the posterior probability of a variable p(x) can
 be computed as the product of all messages directed toward x. This
 means that since the message passed on any given edge is equal to the
 product of all but one of these messages, p(x) can be computed as the
 product of the two messages that were passed (in the opposite direction)
 over any single edge incident on x. The reasoning mechanism of a factor
 graph relies on its infer- ence procedure to obtain the posterior probability of

 certain nodes. This inference procedure does not require external
 computation other than the belief propagation itself. 2.4. Related works Our
 previous work used factor graphs to model an omnidirec- tional mobile robot
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 in a simulation environment [40]. In this paper, we describe an extension of

 such models to work with a real robot as well as to work with a different
 robot platform. Our approach has some similarities to the Bayesian network
 setting proposed by Sturm et al. [32]. In their approach, the con- nectivity of

 the rigid parts that constitute the object is modeled, including the
 articulation model of the individual link; thus, it is only applicable to a
 manipulator type robot. In contrast, our approach offers a more generic
 solution that can be applied to another type of robots, such as mobile
 robots. Another biomimetic approach for solving an inverse kinematics
 problem was proposed by Artemiadis [33]. Although their method was

 inspired by human’s upper limb model, it was not a complete probabilistic

 graphical model since they used the Bayesian net- work only for describing

 the dependencies among the human joint angles, and then used an
 objective function in standard Jacobian inverse kinematics to finally solve
 the problem. Regarding our dynamic factor graph, it can be considered as a
 heuristic approach similar to the iterative method. The basic idea of the
 iterative method is to approach the final state from a starting state by
 continuously examining the optimality expressed by the reduced cost
 function during each step. An action-sequence approach depends on the
 initial posture, and it attempts to exploit the geometrical property of the kine-

 matic chain. One particular example is known as cyclic coordinate descent

 (CCD) [41]. The CCD method iteratively minimizes errors by evaluating one

 joint variable at a time, starting from the end effector inward toward the
 manipulator base until a convergence point is obtained. The difference of
 this CCD method to ours is that, CCD can only provide a feasible posture if
 manipulator constraints for restricting motions are incorporated. Whereas
 in our method, the robot constraints can be learned from data. Our dynamic
 factor graph will be used extensively for imitation learning. Although there
 is no consensus on which method per- forms the best when dealing with

 generalization problems at the trajectory level, most practical PbDs are
 usually performed using either statistical modeling (such as GMM and HMM)
 or dynamic- system-based modeling (such as DMP). In its original method,
 GMR tries to find the robot’s joints trajectory by solving (3) using Lagrange

 optimization iteratively that will give the final solution: q˙

 = (Wq + JT WxJ)−1(Wqϵq + JT Wxϵx)
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where W is the normalized sum of covariance matrices with re- spect to

 robot’s joints q and the end effector’s pose x, whereas ϵq and ϵx are

 discrepancies of the current joints and pose trajectories to the desired
 ones. Here, ϵq = qd(t) − q(t

− 1) and ϵx = xd(t) − x(t − 1), where the desired trajectories qd and xd

can be estimated continuously by regression technique. Using this
 formulation, the joint trajectories that will be followed by the robot are
 computed as q(t) = q(t − 1) + q(˙t). Our factor graph model offers an

 alternative solution to this trajectory generalization by utilizing filtering-and-
smoothing through forward –backward message-passing operation in belief

 propagation on factor graphs (i.e., similar to the Baum –Welch algorithm

 used in the hidden Markov model [42]). 3. Robot kinematics modeling in

 factor graphs In this section, we describe our method for developing robot
 models along with its parameter learning mechanism. 3.1. Neurally inspired
 factor graphs In order to use a factor graph in a real technical system, espe-

 cially using digital hardware, its parameters need to be discretized. In this

 framework, a discrete variable X is a measurable function X : Ω → S from the

 finite/countable sample space Ω to another measurable finite state space S .

 Thus, learning the parameters is basically a task of approximating a
 probability mass function (PMF). In our work, we used the expectation
 maximization algo- rithm (EM) for learning the parameter of a network. In the

 belief propagation for EM, the network will propagate messages iteratively
 during which the network’s parameters are regularly updated. Each iteration

 consists of two steps: the expec- tation update for the log likelihood given the

 old parameters and the observed data, and the maximization procedure to
 update the parameters. Normally, the expectation update of the log
 likelihood is computed as follows: E [log p(X)|Y, θ ] = ∑ p (X| Y, θ ) log p(X| θ ) x

 [ ( ) ] =E log

∏ 1 ∏f(Xi) |Y,θ Z . i a

Here f denotes an internal function of a factor node in a factor graph
 and X i = x indicates a specific variable configuration (i.e. state) for this
 function. Hence, f (X i = x) corresponds to a single parameter of that
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 function. The maximization step is performed by setting the partial
 derivative with respect to f (X i = x) equal to zero that leads to the following
 final update step: f t+1(X i = x) = f t (X i = x) · p(X i = x | Y i, θ ) i p(X i = x) .

 Fig. 4. (a) The

Gaussian tuning curves in a homogeneous population comprised of 21
 neurons. (b) The measured activation levels from all neurons are
 combined to produce the overall probability distribution. The

EM update rule above was derived under the assumption that the
 partition function Z would only be subject to small changes during an
 update. The discretization of continuous values in our factor graphs uses a
 population coding technique [43]. This method was inspired by the idea of

 message encoding from a population of neurons in the central nervous
 system. Such a neuron population will react in synchrony after the stimulus

 [44,45] to produce a resemblance to a certain multinomial distribution. The

 precision of the population can scale exponentially with the number of
 neurons [46,47]. In our work, we used Gaussian tuning curves for the popula-

 tion coding. The combined activation levels from all neurons then shapes the

 overall distribution of the corresponding population. Fig. 4 shows the tuning
 curves and the resulting population code. To determine how many neurons
 are needed to properly encode a value, we use Bayesian Information
 Criterion (BIC) metric that is computed using the following formula: B = −L +

 ρ(Nn) 2 log( Np ) where B is the BIC score that will be computed iteratively for

 all possible Nn -number of neurons in a population, L is the log- likelihood of

 our model, Np is the number of points in the D- dimensional training dataset,

 ρ(Nn) is the impact factor introduced by the selected number of neurons Nn

 that will be computed as:

ρ(Nn) = (Nn − 1) + Nn 

(D + 0.5  D  (D + 1)). In our experiment, we found that the minimum
 number of neurons Nn to produce a satisfactory result is

 12
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[40]. Having the minimum number of neurons, however, is not enough
 in order to produce accurate results. If the distribution of the values is
 not uniform, then the tuning curves should be ad- justed to fit the distribution

 of the data. In our work, we employed a self-organizing-map (SOM)
 technique to fine tune the curves so that they could cover the data
 distribution properly. 3.2. Kinematic model of a mobile robot The first part of
 our hybrid robotic system shown in Fig. 1 is the mobile platform. It is a three
 wheels omni-directional mobile robot (see Fig. 5(a)). To perform the robot
 motion, we have to control the velocity of each wheel. The robot velocity in
 the world coordinate system is determined by the robot’s wheels velocity

 using the following relations:

 vw = Gvr where vr = Kq˙ = [cos α and G = sin α 0 3 √ −3 √ 3 3 1 1  31 3 1 3L − sin α cos α 0 3L 0] 0 1
 (10)  0 −2 q˙ (11) 31  3L (12) (a) The NST-Omnibot. (b) Bayesian network. (c) Factor graph.

Fig. 5. The NST-Omnibot: a three-wheels omni-directional mobile robot
 developed at the research group ‘‘Neuroscientific System Theory’’ (NST) in

 Technische Uni- versität München. (a) It has three independent DC-motors with

 an internal PID controller and a potentiometer as an odometric sensor. (b) A
 Bayesian network model for the kinematics of the mobile robot. (c) The
 factor graph version of the model in (b).

 where vw

is the robot velocity in the world coordinate system, vr is the robot

 velocity in the robot-self coordinate system, q˙ is the vector of the
 wheels’ velocities, and G is the coordinate transformation matrix which takes

 robot poses α as its argument. Readers who are interested in deriving K and

 G for such a mobile platform are referred to [1]. Computing kinematics using

 the above formulas has at least two drawbacks. First, it relies heavily on
 deterministic sensor val- ues, which in reality will be easily disturbed by

 noises; hence, it is only good for simulations. Second, during the real
 implementation, the robot motion will be affected by some physical
 uncertainty such as internal electromechanical traction as well as friction
 be- tween the wheel and the floor that introduces a drift due to wheel slip. In

 order to take such physical uncertainty into consideration, Eqs.
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 (10

)–(12) should be modified such that: v w

 = ζLGvr vr = ζMKq˙ (13) where ζL

is an accumulated time-dependent factor related with
 electromechanical characteristics of the motor and ζM is an accu-

 mulated constant factor related with wheel’s slip. Our factor graph offers a

 comprehensive way to model (13). Thus, it does not only overcome
 standard kinematic limitations, but also make it more adaptive to
 environmental changes. If we consider formula (11) and (13) respectively, we

 can easily un- derstand that each wheel contributes independently to the

 global robot motion. We captured this insight into our robot model that can
 be trained to map the Cartesian robot motion into the velocity of the three
 wheels of the robot. The robot shown in Fig. 5(a) can receive wheel driving
 commands as integer values within range

[−500, 500] rpm, which will be used by the internal PID controller of the
 robot’s motor to drive the wheel. First, we built a model that captures

 this kinematic relation as a Bayesian network shown in Fig. 5(b). Then we
 transformed the model into a factor graph shown in Fig. 5(c).

 veloAcisteiteso,fansoedteosf{nMo1d·e·s·
{MẊ3r},Ẏshr,oṘwr}nrinepFriegs.e5n(tct)hreeprroebsoetnvtewlohceiteyl

in the robot coordinate system, and a set of nodes

 {Ẋw,Ẏw,Ṙw}

Fig. 6. An inverse kinematics model as a result of decoupling the
 network shown in Fig. 5c by exploiting independences given the
 observed variables.
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 µM1 , µX˙w , µY˙w , and µR˙w are messages representing ‘‘beliefs’’ about variable’s

values propagating through the network. Thin arrows indicate the flow
 of messages during belief propagation to produce final output at the
 ‘‘root’’ node (M1). Fig. 7. (a) The robotic arm on top of the mobile robot along

 with its joint’s labels. (b) A Bayesian network model for the kinematics of the

 robotic arm. Here,

θ1, θ2, θ3

are the joints of the robot; X, Y is the Cartesian position of the actuator
 relative to the robotic arm base, and α is the actuator pose. (c) The

 factor graph version of (b).

represent the robot velocity in the world coordinate system. We can
 decouple the network into three separate models because it satisfies a
 constrained condition due to the independence between scope variables of
 the factor. This will result in similar models for both forward and inverse
 kinematics but with different scopes of the factor nodes as shown in Fig. 6.
 After designing the model structure, the next step is to deter- mine the

 parameters of the model by learning them from data. To generate data for
 our model, we followed the idea of motor babbling [6]. Motor babbling is a

 process of repeatedly performing a random motor command for a short
 duration in which the robot continuously observes its motion; i.e., the robot
 relates its internal states with its environment. 3.3. Kinematic model of a
 manipulator The second part of our hybrid robotic system shown in Fig. 1 is
 the robotic arm. Each servo of the robotic arm shown in Fig. 7(a) has its
 own PID controller. Here, we developed the kinematic model of the robotic
 arm using the same method as the model for the mobile robot and modified
 the variables accordingly. The resulting model is depicted in Fig. 7(c). This
 kinematic model basically performs a mapping function from the joint space
 to the task space, and it considers only the likelihood problem instead of
 the posterior problem (i.e., there is no direct link between joint variables (θ

 s)), which implies that the model does not involve the interlink-dynamic

 between robot’s joints. For our robot shown in Fig. 7(a), there will be two

 solutions for the inverse kinematics with the input value X , Y , and α
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 referred to as the

‘‘elbow-up’’ and ‘‘elbow-down’’ configurations. One practical solution
 for our robot is to constrain the value of θ2 to be always in the ‘‘elbow-

 down’’

position. This is the most efficient solution for the robot because in
 most circumstances the arm will always be in a curved- down position.
 This is also true because the second orientation of the gripper will be
 determined solely by the pose of the mobile base. With this constraint, we
 can use the same network shown in Fig. 7(c) to perform the inverse
 kinematics. 3.4. Kinematic chain using dynamic factor graph A factor graph
 is a flexible tool that can be used also for handling dynamic situations. In
 addition to static networks that exploit full constrained robot configuration,
 we proposed an extension for solving the inverse kinematics problem using
 a dynamic factor graph. This extension is based on a mimetic approach that
 comes from an interpretation of how a human arm usually moves during the
 task of reaching and placing an object. When a human moves his hand to
 grasp an object, he first makes some initial posture estimations of his hand
 and later adjusts his forearm and upper arm until the object is reached. With
 this insight, we developed a graphical model for the robot kinematics using
 a Markov chain model shown in Fig. 8. The state of the robot cannot be
 measured directly and the robot must maintain its own ‘‘beliefs’’ about itself

 and its environment. In belief propagation setting, those beliefs, which are
 represented by (9), can be computed as posterior proba- bility distribution

 over state variables conditioned on the available data. The belief over a
 state variable x at step k conditioned on all past measurements y1 :k and all

 past controls u1 :k is expressed as: b( xk) = p( xk | y1 :k, u1 :k).

 (14)

We assume that the states are complete; i.e. the knowledge of past
 states, measurements, or control inputs does not carry additional
 information that are relevant with the determination of the current state. It
 means that we can remove the current measurement yt from Eq. (14) which
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 yields:

ỹk =

p(yk | xk, y1:k−1, u1:k) = p(yk | xk).

 (15) Hence, Eq. (14) can be re-written as: b˜(xk) =

p(xk | y1:k, u1:k) = ηp (yk | xk)p(xk | y1:k−1, u1 :k).

 (16) Eq. (16)

has a recursive form where the term p( xk y1 :k−

 1, u1

:k) is | actually the prior belief similar to Eq. (14) before incorporating

 the new measurement yk. The recursive form of the belief distribution

 now becomes: b(

 xk) = η · ỹk · b˜(xk) (17) where η

is the normalizer constant that follows the probabilistic law enforcing
 that the maximum value is 1. This will be applied to the network shown
 in Fig. 8. It is carried out by iterating between the forward and backward
 phases until convergence as described below. The forward phase is started
 by sending the desired actuator’s pose (Z value) and the current actuator’s

 joints (fθ1 value) to node θ1. This node then produces a message that

 contains the prior belief about θ1, given the desired pose, to node θ2. Node

 θ2 then produces a message to θ3 incorporating all prior beliefs about θ1

 and θ2 given the desired actuator’s pose. The backward phase begins by

 generating a message from node θ3, which will be propagated and

 modulated toward θ2 and θ1. The posterior beliefs about

θ1, θ2, and θ3
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are obtained by multiplying the incoming messages to the
 corresponding node. These will become the new estimated joint values
 that will re-enter the network through

 fθ1, fθ2, and fθ3. The

network iterates until all joint values converge into steady values. The
 overall process for computing the posterior belief of each joint is
 shown in Algorithm 1. Here, lines

 3–8 are computed using (16), whereas lines 9

–11 are computed using the updated belief (17). The Kullback –Leibler

 divergence (DKL) is used to measure the divergence level of the newly

 learned parameters using the standard formula:

 DKL(bθn  θn) = ∑bθn(i)ln bθθnn((ii))

i where i = neuron index in the population code.

 Algorithm 1 Overall Posterior Belief Inference

Fig. 8. (a) A Markov chain network for modeling inverse kinematics.
 Here, variable Z represents the pose of the robot actuator (i.e., the
 gripper) that can be decomposed into X , Y and α. (b) The factor graph

 version where each factor represents the conditional distribution associated
 with an edge in the model (a). The factors

 fθ1 , fθ2 , and fθ3 are the estimated actuator’s joints. 1: Initialization: fθn ← θn 2: Initiate iteration Process-
1: Forward Phase 3: Compute b˜fθ1 from Z and fθ1 4: Compute b˜fθ2 from Z, fθ2 , and b˜fθ1 5: Compute
 b˜fθ3 from Z, fθ3 , and b˜fθ2 Process-2: Backward Phase 6: Compute b˜bθ3 from Z and fθ3 7: Compute
 b˜bθ2 from Z, fθ2 and b˜bθ3 8: Compute b˜bθ1 from Z, fθ1 and b˜bθ2 Process-3: Update Beliefs 9:
 Compute bθ1 from Z and b˜bθ1 10: Compute bθ2 from Z, b˜fθ1 and b˜bθ3 11: Compute bθ3 from Z and
 b˜fθ3 Process-4: Evaluate Convergence 12: for all θ do 13: Compute KL-divergence DKL(θ) 14: if DKL(θ) <
 Dthreshold then 15: θn = bθn 16: Stop iteration; 17: else 18: Repeat from Process-1; 19: end if 20: end for
 return Θ
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4. Experimental results 4.1. Mobile robot model performance We
 evaluated our mobile robot model performance in a sim- ulation

 environment and in a real experiment using the NST- Omnibot, which is a

 three wheels omni-directional mobile robot (see Fig. 5(a)). 4.1.1. Evaluation
 in a simulation environment It is interesting to study robot behaviors based
 on our factor graph model in a simulation environment because we have full
 control on noises that are artificially generated and introduced to the model.
 Hence, this simulation model might reveal important information such as
 how robust the model operates in the presence of noise. We are also
 interested to see the effect of the Gaussian tuning curves in our population
 codes for discretizing continuous values. The challenge of using Gaussian
 distributions for tuning curves in a population code is how to properly
 define the vari- ance values of such distributions. For this purpose, we

 generated simulation data based on the robot kinematics model expressed
 in Eq. (11). During the simulation, we generated commands for robot wheels

 and computed the resulting robot velocities. This

 ‘‘motor babbling’’

strategy was repeated several times until we collected enough data.
 Afterward, we fed the collected data to the network shown in Fig. 5(c)
 and let the network performed the inference. Fig. 9(a) shows the generated
 random commands for the wheel- 1 (shown in red plot), as well as the
 estimated motor commands (shown in blue plot) from the inference result
 by the factor graph model shown in Fig. 6. This example result shows that
 the pre- dicted commands were quite close to the originally generated

 commands. When we generated the dataset, we also introduced some levels
 of white noise in order to evaluate the robustness of our model in the
 presence of noise. In our experiment, the decreasing rate in the
 performance of the inverse kinematics model was slightly higher than that
 of the forward kinematics model. With the presence of noise up to 15%, the
 performance was still good and acceptable. With additional noises of more
 than 15%, the performance became deteriorated. This information told us
 that in a real subsequent implementation, the model was capable of
 handling a Gaussian noise with zero mean and a variance of 1.38. Beyond
 that, our model might not be able to produce correct control signals for the
 robot. We were also interested in investigating the influence of the variable’s
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 cardinality (i.e., the number of neurons in the population code) to the

 performance of the system. After we re-run the inference with several
 cardinalities, we found that it was sufficient to use 15 states for variables
 cardinality. The result is depicted in Fig. 9(b), which shows the correlation
 between the original/generated motor commands and their cor- responding

 estimation. We can see that there is a slight variance along the ideally

 diagonal line (measured as normalized root- mean-squared error or
 NRMSE). The diagonal line is a baseline result that was computed
 deterministically using (10)–(

 12) with- out

any learning mechanism. The graph shown in Fig. 9(b) was produced
 by using 15 states for variables’ cardinality. This variance could be

 reduced by increasing the number of neurons in the population codes. For
 example, by using 50 states for variable’s cardinality, much higher precision

 result was produced (shown in Fig. 9(c)). Nevertheless, the linearity of the
 curve was maintained well within the valid input range. In general, similar
 results were obtained for the other wheels of the robot. 4.1.2. Experiment on
 NST-Omnibot We evaluated our model further in a real scenario. We
 performed an experiment by using a real robot NST-Omnibot (Fig. 5(a)). In
 this experiment, we used a camera tracking system to localize the robot
 position in a planar space and to calculate its moving speed. The camera
 tracking system provided information about the position of the robot in the
 world coordinate system. We needed to transform this absolute position
 value of the robot into

Fig. 9. Plot of estimated motor commands given the original wheels
 commands in the inverse kinematics case: (a) plotted in time
 sequence, (b) presented as a correlation plot for 15 states in variable’s

 cardinality, and (c) also as a correlation plot for 50 states in variables’

 cardinality. In (b) and (c), the baseline result were obtained by using exact

 formula (10)–( 12) on artificially-generated simulation data. (For

 interpretation of the references to color in this figure legend, the reader is
 referred to the web version of this article.) the
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robot velocity value. Fig. 10 shows how the robot generated the data
 and recorded the trajectory. In the transformation, the data were
 filtered to reduce the noise in the camera recording data. Filtering was done
 on the data that conveyed information about the pose (position and
 orientation) of the robot. From our previous experiment using simulation
 data, we knew that it is better for our model to have streams of input data
 with noise’s variance (by assuming it is a Gaussian noise) less than 1.38%.

 After filtering, the Cartesian velocities as well as the rotational velocity of
 the robot were calculated. The commands were changed every two seconds
 during the experiment to give us enough sampling points where the filter’s

 delay could be neglected. Fig. 11 shows the data preparation from the

 camera tracking sys- tem. The coordinate transformation matrix expressed in

 (12) was used to obtain the robot velocity in the robot-self coordinate sys-

 tem. Within its coordinate system, the velocity of the robot can

Fig. 10. The robot velocity data was generated using a motor babbling
 scenario. Fig. 11. Preparing the data before feeding them into the
 network. The raw data from the camera tracking system was very noisy. In
 order to reduce the noise effect so that its variance fell below 1.38, the data
 went through the filtering process using FIR filters. FIR filters were used
 because of their linear phase characteristic and their simple architecture for
 hardware implementation.

be mapped properly into the velocity of the wheels. During one iteration
 that lasted for two seconds, only 50% of the data portion in the middle
 of the period was considered because both ends of the data-stream within
 that period contained a transitional fluctuation between successive
 iterations. Fig. 12 shows this process. After pre-processing data, we fed
 them into the network shown in Fig. 5 for the inverse kinematics inference
 (i.e., computing the robot’s command given the desired velocity (Ẋ , Ẏ , Ṙ)).

 The result is depicted in Fig. 13, which was produced by using 15 states for
 the population codes. It shows a similar result, as expected, to the
 simulation version shown in Fig. 9(b). However, the variance is a bit larger
 (shown as higher NRMSE) due to various left-over noises and uncertainties
 in the experiment. 4.2. Manipulator model performance As in the previous
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 kinematic model of the mobile robot, we evaluate our manipulator model
 based on the inference mech- anism in the inverse kinematic model. For our

 robot shown in Fig. 7(a), the value of θ2 was constrained in the

 ‘‘elbow-down’’

position. This is a preferable solution for the robot because in most
 situations, especially in a pick-and-place scenario, the arm will

Fig. 12. The camera tracking system provides information about the
 robot’s pose in the world coordinate system. In order to work with our

 model, the data needed to be transformed into the robot-self coordinate
 system. Fig. 13. Plot of generated motor commands given the desired robot
 velocities in the inverse kinematic case: (a) plotted in time sequence, (b)
 presented in a correlation plot.

almost always be in a curved-down position. In such a scenario, the
 second orientation of the gripper will be determined solely by the pose
 of the mobile base (see Fig. 1). With this constraint, we could use the
 network shown in Fig. 7(c) to perform the inverse kinematics.

(a) Using fully constrained model of Fig. 7(c). (b) Using Markov chain
 model of Fig. 8(b). Fig. 14. The

inverse kinematics results for θ1. For the other joints, the results were

 very similar.

In the experiment, we sent joints’ angle to the robot and mea- sured the

 gripper pose. In the collected dataset, those joints’ angles were referred

 to as the reference points. After several experiments, also using

 ‘‘motor babbling’’

javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18380');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18380');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18364');
javascript:openDSC(557934046, 37, '18380');
javascript:openDSC(557934046, 37, '18380');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '17592');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '18383');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17608');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '17602');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');
javascript:openDSC(557934046, 37, '18397');


1

1

1

scenario, we fed the collected data to the network and let the network
 learned the parameters for its factor nodes using MLE. Once the
 network completed the training phase, we performed reasoning by sending
 desired gripper poses to the network and ask the network to estimate the
 corresponding joints’ angles. Fig. 14 shows the result of the inverse

 kinematics of the robotic arm using our two models: the fully constrained
 model and the Markov chain model. The results were quite similar with
 reference points with a small variance along the line due to the varying
 number of states used in the discretization of the variables. Fig. 14(a) was
 produced using the fully constrained model (see Fig. 7(c)). In this graph,
 Result-1 was produced by using 50 states for variables’ cardinality, whereas

 Result-2 as produced by using 30 states for variables’ cardinality. The

 accuracy of Result-1 as measured in NRMSE is 2.9%, which is quite similar
 to the accuracy in Fig. 9(c) that was produced by the model with the same
 number of states. The accuracy of Result-2 was measured at 5.7%, which
 clearly indicates that Result-1 has a better approximation than Result-2.
 Lowering variables’ cardinality down to 15 yielded wider variance as shown in

 the graph. For the Markov chain model (see Fig. 8(a)), we found that the
 results were better than the fully constrained model even though they used
 a lower number of states. However, they were more sensitive to variance
 values of the tuning curves that effected the overall variation on the
 inference results. Fig. 14(b) depicts the inference result of the Markov chain
 model using only 25 states. The accuracy of this model is quantified using
 NRMSE and it was calculated at 3.3%. This result is quite similar to Result-1
 in Fig. 14(a) with the difference in NRMSE value at about 0.4%, but with half
 number of neurons.

(a) Result in simulation. (b) Result using NST-Omnibot.

Fig. 15. (a) The inference result of kinematic models in a simulation
 environment. The outputs of the inverse kinematics network shown in
 Fig. 8(b) were sent to the forward kinematics network shown in Fig. 7(c). The
 blue line is the trajectory for the robot to follow and the red dots connected
 by the green line is the resulting trajectory. (b) The experiment was
 conducted using the real robot. (For interpreta- tion of the references to color

javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '17633');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '17633');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '18401');
javascript:openDSC(557934046, 37, '17633');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');
javascript:openDSC(557934046, 37, '17617');


1

1

1

 in this figure legend, the reader is referred to the web version of this article.)

From this experiment, we were interested to test further the
 performance of the Markov chain model in a complete scenario. We
 created a simple task in which the robot followed a rectangular trajectory.
 We tested the network by using both simulation data and the real robotic
 arm. The rectangular trajectory occupied a pla- nar space within the range

 [10, 30] cm on both directions (X and Y), sampled every 0. 5 cm with the

 actuator orientation kept constant at 0◦. In the simulation environment,
 those sampled points were fed into the inverse kinematics network, and the
 computed

 fθ1 , fθ2 , as well as fθ3

were fed into the forward kinematics network shown in Fig. 7(c). Using
 the real robot, the same process was repeated for calculating the
 inverse kinematics, but the resulting

 fθ1 , fθ2 , and fθ3

were sent directly to the robot. Fig. 15 shows the results of this
 experiment. The result demonstrates that the model was able to
 reproduce the rectangular trajectory, although the shape was a bit distorted
 especially near the corner paths. However, this impreciseness is merely due
 to technical problems and noises in the robot hardware for data
 communication. The test depicted in Fig. 15 demonstrates an inverse
 kinematics control based on a learned model. We extended this model-
based inverse kinematics solution to an imitation (or PbD) scenario. In order
 to use the PbD paradigm for generating the skill, we needed to provide
 several demonstrations from which the trajectory of the movement could be
 learned. Each demonstration trajectory was fed into the network and the
 parameter of the network was updated accordingly. As an example for a
 complex trajectory, we ‘‘guided’’ the robotic arm to pick up an object from

 one position and then place it on another position. This scenario is depicted
 in Fig. 17. In the scenario shown in Fig. 17, we simplified the task by
 excluding the grasping task during the demonstrations (i.e., the object was
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 manually placed at the gripper). The left side in Fig. 16 shows the
 trajectories recorded during the training. The right side in Fig. 16 shows the
 trajectory result from the regression network over several demonstrations
 for each joint of the robotic arm. It shows only a snapshot of the teaching of
 the robot where we held the robotic arm and then extended and retracted
 the arm to create a trajectory. We can see from the picture that the paths
 were con- strained at both ends of the motion. These represent regularities

 that the model can extract and exploit to produce a new skill for another
 task (e.g., by using a scaling procedure). After several demonstrations, we
 performed the regression on the trajectories. The estimated trajectory was
 then sent to the robot’s controller. The snapshots of this run after learning

 the trajectory is depicted in Fig. 18. Although this was a simple scenario, it
 demonstrated one important aspect: the dynamic factor graph model
 (shown in Fig. 8) can be extended into a regression model to perform the
 imitation learning. It also demonstrated that the model can generalize over
 the variations in joint angles. This was done by projecting the collected
 trajectories onto a latent space and by estimating the resulting trajectory in
 a regression fashion. 5. Discussion In the previous section, we described
 our experiments on factor graphs to model different abstraction levels for
 two types of fun- damental robotic systems: a mobile robot and a robotic arm

 (i.e., a manipulator). The models represent the kinematic aspect of the
 robots. The first model is a generic one that represents an N-to- N mapping
 network for transforming the expected robot velocity to/from each wheel
 velocity. It can be used for both forward and in- verse kinematics

 computation. We tested the network in a scenario where a top-head camera
 tracking system was used for acquiring the robot position. The inverse
 kinematics model then predicted the expected wheel velocity given the
 robot velocity. The results show that the model produced good results (see
 Figs. 9 and 13). The first model presents one important remark: it can be
 used to learn any mapping function without deriving its exact mathemati- cal

 formulas. This approach confers benefits on us especially when working

 with a high order dynamic system or in a dynamic envi- ronment. Hence, our

 model can be used in a more complex scenario that extends the basic
 functionality of the mobile platform, such as in a synchronous localization
 and mapping (SLAM) scenario. As a generic model, our first factor graph
 model, which was initially developed for the mobile robot, is also applicable
 for the robotic arm. The physical constraint of our robot made it possible to
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 produce a satisfactory result because it could be modeled in a fully
 constrained configuration. Conceptually, the other solution could also be
 computed but it would not be beneficial to our robot. We also presented the
 second model which was based on a mimetic approach. Basically, the
 second model represents a dy- namic network. To our knowledge, the factor

 graph itself does not have the capability to deal with the dynamic behavior
 of the system. Hence, we extended the static model into a dynamic one by
 unrolling it several time steps and used the powerful inference mechanism
 of the factor graph to perform queries on the network (e.g., filtering and
 smoothing). We applied the second model on the robot to follow a simple
 trajectory (see Fig. 15). The result showed that it was quite reliable in a
 simulation environment, where the noise level was maintained low and there
 was no jittery effect on the data communication of the robot. When we
 applied the model on a real robotic arm, we observed degradation in the
 quality of the result though the rect- angular shape that the robot had to

 follow can be obviously seen. At this point, it can be seen that the model
 has a limitation, such

 (a) θ1 demonstrations. (c) θ2 demonstrations. (b) Estimated θ1 trajectory. (d) Estimated θ2 trajectory. (e) θ3

demonstrations. (f) Estimated θ3 trajectory. Fig. 16. Learning robot

 trajectory from several demonstrations for each joint of the robotic arm

 (θ1, θ2, and θ3

correspond to the joints of the robotic arm shown in Fig. 7(a)).

as missing active controllers, for the stability of the robotic arm.
 Nevertheless, our experiment was proposed to give an intuitive
 example of how to use a factor graph in such a complex scenario. The
 rectangular trajectory was given to the robot and the in- verse kinematics

 model of the robot inferred it to produce the robot’s joints configuration. We

 extended this experiment into a mimetic task in which we taught the robot
 by means of several demonstrations, and the robot tried to estimate a
 generalized tra- jectory. Using the regression capability of the factor graph

 network, the robot was able to acquire a new skill from the generalized
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 trajectories. The demonstration of this imitation fashion (Figs. 17 and 18),
 proved that the dynamic factor graph can be extended into a regression
 model to perform the imitation learning. In general, the factor graph models
 basically provided a means to build motion primitives that could be used to
 build a more complex robotic system. This is similar to the complex motion
 of biological entities, such as humans, where motion is composed of

Fig. 17. Guiding the robotic arm to follow a trajectory. Fig. 18. Robotic
 arm executes the trajectory it learned before.

many small coordinated motion primitives. We provided an exam- ple of

 how to use these motion primitives in an imitation scenario.
 Conceptually, the robot can be taught with any possible task, but it requires
 a slight modification on the robot model if the task has several constraints
 that need to be addressed simultaneously. Finally, there are two advance
 topics that are not yet explored in this paper. The first is regarding the
 generalization of a new skill. Once a robot has learned the skill (i.e., the
 generalized trajectory of the given task), it can use the standard scaling
 procedure to apply different contexts such as different start and goal
 positions. However, this scaling mechanism is a static procedure and will
 not take into account the transitional dynamic between two successive
 learned skills [13]. A better way to accommodate the dynamic behavior of

 skills is by using the dynamic imitation paradigm [34]. We believe that our

 dynamic factor graph model is suited for this paradigm. The second is
 regarding the unified model of the mobile ma- nipulator shown in Fig. 1 that

 combines both robotic platforms. Developing a unified factor graph model
 for such a hybrid mobile manipulator is very challenging since it involves
 cyclic networks that entail more examination and further exploration. It is
 well- known that such cyclic networks are ill-posed and there is no
 consensus on how to achieve convergences in such networks

 [48

–50]. Furthermore, such a model for the mobile manipulator should
 consider the scenario and/or the terrain where the robot will be used,

javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '17641');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '17641');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '18487');
javascript:openDSC(557934046, 37, '17641');
javascript:openDSC(557934046, 37, '17641');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18501');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');


 and apply appropriate mechanism for autonomous localization such as
 SLAM. Together, the development of a dynamic imitation learning using
 factor graphs as well as the integration of SLAM algorithm into a unified
 generic model for the hybrid robot require a deep and thorough discussion.
 Hence, we take the liberty for addressing these two advance topics in our
 future work. 6. Conclusion This paper presents our work on a model-based
 approach using biologically plausible factor graphs that can be used to
 build two different kinematic models for robots in a generic fashion. We
 proposed to use the model-based approach because we argued that it can
 be used to create efficient tailored models in robotic sce- narios that

 incorporate rapid prototyping through learning mech- anisms. The learning

 phase in our proposed method produced an uncomplicated solution by
 exploring the valid solution space. This was accomplished by feeding
 reliable data from robot experiments that represented all possible robot
 configurations. This model- based learning enhanced robot’s movement

 reliability because it represented a mechanism that was always physically
 correct. Our model-based approach to robot’s kinematics and control can be

 optimized for applications that involve custom models for each new robot
 configuration. We demonstrated that our method is a generic one that can
 be extended into more complex setups for any conceptually autonomous
 robotic application. Our factor graph networks worked very well with two
 fundamental robot models, and exemplified the flexibility and generality of a
 dynamic factor graph. We also demonstrated that our method is applicable
 for mimetic scenarios that embody our understanding of natural movements
 of humans body. Hence, in this paper, we have laid a foundation of a
 method that can be extended further with online learning mechanisms to
 produce a more adaptive intelligent sys- tem for addressing future challenges

 in the robotic domain. Acknowledgments This work was supported by
 DAAD (Deutscher Akademis- cher Austauschdienst e.V.) under the grant

 A/10/76323 and by NST (Neuroscientific System Theory) at Technische

 Universität München. References [1] J. Craig, Introduction To Robotics: Mechanics and Control, third ed.,
 Prentice Hall, 2004. [2] Z. Zhu, J. Li, Z. Gan, H. Zhang, Kinematic and dynamic modelling for real-time
 control of Tau parallel robot, Mech. Mach. Theory 40 (9) (2005) 1051–1067. [3] Z. Bi, S. Lang, Kinematic
 and dynamic models of a tripod system with a passive leg, IEEE/ASME Trans. Mechatronics 11 (1) (2006)
 108–111. [4] R. Williams, J. Wu, Dynamic obstacle avoidance for an omnidirectional mobile robot, J. Robot.
 (2010). [5] F. Matsuno, K. Suenaga, Experimental study on control of redundant 3-D snake robot based on
 a kinematic model, in: Adaptive Motion of Animals and Machines, Springer Tokyo, 2006. [6] A. D’Souza, S.

javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');
javascript:openDSC(557934046, 37, '18507');


 Vijayakumar, S. Schaal, Learning inverse kinematics, in: IEEE International Conference on Intelligent
 Robots and Systems, IEEE/RSJ, Maui, Hawaii, USA, 2001, pp. 298–303. [7] S. Dubowsky, E.
 Papadopoulos, The kinematics, dynamics, and control of free- flying and free-floating space robotic
 systems, IEEE Trans. Robot. Autom. 9 (5) (1993) 531–543. [8] S. Schaal, Is imitation learning the route to
 humanoid robots? Trends Cogn. Sci. 3 (1999) 233–242. [9] M. Lungarella, G. Metta, R. Pfeifer, G. Sandini,
 Developmental robotics: A survey, Connect. Sci. 15 (4) (2003) 151–190. [10] M. Spenko, G. Haynes, J.
 Saunders, M. Cutkosky, A. Rizzi, R. Full, D. Koditschek, Biologically inspired climbing with a hexapedal
 robot, J. Field Robot. 25 (4–5) (2008) 223–242. [11] F. Mussa-Ivaldi, E. Bizzi, Motor learning through the
 combination of primitives, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355 (1404) (2000) 1755–1769. [12]
 E. Bizzi, V. Cheung, A. d’Avella, P. Saltiel, M. Tresch, Combining modules for movement, Brain Res. Rev.
 57 (1) (2008) 125–133. [13] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical
 movement primitives: learning attractor models for motor behaviors, Neural Comput. 25 (2) (2013) 328–373.
 [14] H. Burgess, M. Granato, Modulation of locomotor activity in larval zebrafish during light adaptation, J.
 Exp. Biol. 210 (14) (2007) 2526–2539. [15] M. Ito, Mechanisms of motor learning in the cerebellum, Brain
 Res. 886 (1–2) (2000) 237–245. [16] M. McDannald, Y. Takahashi, N. Lopatina, B. Pietras, J. Jones, G.
 Schoenbaum, Model-based learning and the contribution of the orbitofrontal cortex to the model-free world,
 Eur. J. Neurosci. 35 (7) (2012) 991–996. [17] S. Lee, S. Shimojo, J. O’Doherty, Neural computations
 underlying arbitra- tion between model-based and model-free learning, Neuron 81 (3) (2014) 687–699. [18]
 H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, F. Kschischang, The factor graph approach to model-
based signal processing, Proc. IEEE 95 (6) (2007) 1295–1322. [19] M. Toussaint, C. Goerick, A bayesian
 view on motor control and planning, in: From Motor Learning To Interaction Learning in Robots, Springer,
 Berlin, 2010. [20] C. Bishop, Model-based machine learning, Phil. Trans. R. Soc. A 371 (0120222) (2013).
 [21] O. Sener, A. Saxena, rCRF: Recursive belief estimation over CRFs in RGB-D activity videos, in:
 Robotics Science and Systems (RSS), 2015. [22] A. Saxena, A. Jain, O. Sener, A. Jami, D. Misra, H.
 Koppula, Robo brain: Large- scale knowledge engine for robots, in: International Symposium on Robotics
 Research, ISRR, 2015. [23] B. Siciliano, Kinematic control of redundant robot manipulators: A tutorial, J.
 Intell. Robot. Syst. 3 (3) (1990) 201–212. [24] E. Oyama, A. Agah, K. MacDorman, T. Maeda, S. Tachi, A
 modular neural network architecture for inverse kinematics model learning, Neurocomputing 38–40 (2001)
 797–805. [25] R. Köker, C. Öz, T. Cakar, H. Ekiz, A study of neural network based inverse kinematics
 solution for a three-joint robot, Robot. Auton. Syst. 49 (3–4) (2004) 227–234, Patterns and Autonomous
 Control. [26] A. Ghasemi, M. Eghtesad, M. Farid, Neural network solution for forward kine- matics problem
 of cable robots, J. Intell. Robot. Syst. 60 (2) (2010) 201–215. [27] S.-W. Kim, J.J. Lee, M. Sugisaka, Inverse
 kinematics solution based on fuzzy logic for redundant manipulators, in: IEEE/RSJ International Conference
 on Intelligent Robots and Systems ’93, IROS’93, vol. 2, 1993, pp. 904–910. [28] J. Jih-Gau, Fuzzy neural
 network approaches for robotic gait synthesis, IEEE Trans. Syst. Man Cybern. B 30 (4) (2000) 594–601.
 [29] U. Beyer, F. Śmieja, A heuristic approach to the inverse differential kinematics problem, Int. J. Intell.
 Robot. Syst. 18 (4) (1997) 309–327. [30] M. Ayyildiz, K. Cetinkaya, Comparison of four different heuristic
 optimization algorithms for the inverse kinematics solution of a real 4-dof serial robot manipulator, Neural
 Comput. Appl. (2015) 1–12. [31] N. Rokbani, A. Casals, A. Alimi, IK-FA, a new heuristic inverse kinematics
 solver using firefly algorithm, in: A.T. Azar, S. Vaidyanathan (Eds.), Computational In- telligence
 Applications in Modeling and Control, in: Studies in Computational Intelligence, vol. 575, Springer
 International Publishing, 2015, pp. 369–395. [32] J. Sturm, C. Stachniss, W. Burgard, A probabilistic
 framework for learning kinematic models of articulated objects, J. Artif. Intell. Res. 41 (2011) 477–526. [33]
 P. Artemiadis, P. Katsiaris, K. Kyriakopoulos, A biomimetic approach to inverse kinematics for a redundant
 robot arm, Auton. Robots 29 (3–4) (2010) 293–308. [34] E. Rückert, G. Neumann, M. Toussaint, W. Maass,
 Learned graphical models for probabilistic planning provide a new class of movement primitives, Frontiers



 Comput. Neurosci. 6 (97) (2013). [35] S. Calinon, F. Guenter, A. Billard, On learning, representing, and
 generalizing a task in a humanoid robot, IEEE Trans. Syst. Man Cybern. B 37 (2) (2007) 286– 298. [36] J.
 Aleotti, S. Caselli, Robust trajectory learning and approximation for robot programming by demonstrations,
 Robot. Auton. Syst. 54 (5) (2006) 409–413. [37] S. Schaal, Dynamic movement primitives - A framework for
 motor control in humans and humanoid robotics, in: Adaptive Motion of Animals and Ma- chines, Springer
 Tokyo, 2006. [38] K. Mülling, J. Kober, O. Krömer, J. Peters, Learning to select and generalize striking
 movements in robot table tennis, Int. J. Robot. Res. 32 (3) (2013) 280–298. [39] F. Kschischang, B. Frey,
 H.-A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Trans. Inf. Theory 47 (2) (2001) 498–
519. [40] I. Sugiarto, J. Conradt, Discrete belief propagation network using population coding and factor
 graph for kinematic control of a mobile robot, in: IEEE International Conference on Computational
 Intelligence and Cybernetics, CY- BERNETICSCOM, Yogyakarta, Indonesia, 2013, pp. 136–140. [41] T. Li-
Chun, C. Chih, A combined optimization method for solving the inverse kinematics problem of mechanical
 manipulators, IEEE Trans. Robot. Autom. 7 (4) (1991) 489–499. [42] Z. Ghahramani, An introduction to
 hidden markov models and bayesian net- works, Int. J. Pattern Recognit. Artif. Intell. 15 (1) (2001) 9–42.
 [43] I. Sugiarto, P. Maier, J. Conradt, Reasoning With Discrete Factor Graph, in: IEEE International
 Conference on Robotics, Biomimetics, and Intelligent Computa- tional Systems, ROBIONETICS, IEEE,
 2013, pp. 170–175. [44] W. Gerstner, W. Kistler, Spiking Neuron Models: Single Neurons, Populations,
 Plasticity, Cambridge University Press, 2002. [45] S. Wu, S. Amari, H. Nakahara, Population coding and
 decoding in a neural field: a computational study, Neural Comput. 14 (5) (2002) 999–1026. [46] A. Mathis,
 A. Herz, M. Stemmler, Resolution of nested neuronal representations can be exponential in the number of
 neurons, Phys. Rev. Lett. 109 (2012) 018103. [47] A. Deneve, P. Latham, A. Pouget, Efficient computation
 and cue integration with noisy population codes, Nature Neurosci. 4 (8) (2001) 826–831. [48] A. Ihler, W.J.
 Fischer III, A. Willsky, Loopy belief propagation: convergence and effects of message errors, J. Mach.
 Learn. Res. 6 (2005) 905–936. [49] C. Yanover, Y. Weiss, Finding the M most probable configurations
 using loopy belief propagation, in: Advances in Neural Information Processing Systems 16, MIT Press,
 2004, pp. 289–296. [50] J. Mooij, H. Kappen, Sufficient conditions for convergence of loopy belief
 propagation, in: The Twenty-First Conference on Uncertainty in Artificial Intelligence, UAI2005, Edinburg,
 Scotland, 2005. Indar Sugiarto is a lecturer in the Department of Electrical Engineering at Petra Christian
 University. He holds B.Sc. in Electrical Engineering from Institut Teknologi Sepuluh Nopember, Indonesia,
 M.Sc. degrees in Information and Automation Engineering from Universität Bremen, Ger- many, and Ph.D.
 in Electrical and Computer Engineer- ing from Technische Universität München, Germany. His main
 research interests are computational intelligence, bayesian machine learning, reconfigurable computing,
 and robotics. Jörg Conradt is a Junior Professor at the Technische Universität München in the Faculty of
 Electrical Engi- neering and Information Technology, Institute of Au- tomation and Control Engineering. The
 laboratory is af- filiated with TUM’s Competence Center on NeuroEngi- neering and the Munich Bernstein
 Center for Computa- tional Neuroscience. He holds an M.S. degree in Com- puter Science/Robotics from
 the University of Southern California, a Diploma in Computer Engineering from TU Berlin and a Ph.D. in
 Physics/Neuroscience from ETH Zurich. His research group on Neuroscientific System The-
 ory(http://www.nst.ei.tum.de) investigates key principles by which information processing in brains works,
 and applies those to real-world interacting technical systems. I. Sugiarto, J. Conradt / Robotics and
 Autonomous Systems 91 (2017) 234–246 235 236 I. Sugiarto, J. Conradt / Robotics and Autonomous
 Systems 91 (2017) 234–246 I. Sugiarto, J. Conradt / Robotics and Autonomous Systems 91 (2017) 234–
246 237 238 I. Sugiarto, J. Conradt / Robotics and Autonomous Systems 91 (2017) 234–246 I. Sugiarto, J.
 Conradt / Robotics and Autonomous Systems 91 (2017) 234–246 239 240 I. Sugiarto, J. Conradt / Robotics
 and Autonomous Systems 91 (2017) 234–246 I. Sugiarto, J. Conradt / Robotics and Autonomous Systems
 91 (2017) 234–246 241 242 I. Sugiarto, J. Conradt / Robotics and Autonomous Systems 91 (2017) 234–



246 I. Sugiarto, J. Conradt / Robotics and Autonomous Systems 91 (2017) 234–246 243 244 I. Sugiarto, J.
 Conradt / Robotics and Autonomous Systems 91 (2017) 234–246 I. Sugiarto, J. Conradt / Robotics and
 Autonomous Systems 91 (2017) 234–246 245 246 I. Sugiarto, J. Conradt / Robotics and Autonomous
 Systems 91 (2017) 234–246


	Local Disk
	Plagiarism Checking Service


