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Abstract

Today, intelligent robots are expected to play an important role in supporting humans

in their daily activities. Conventional robots such as industrial robots are primarily

designed to perform designated tasks with high speed and precision and would require

extra modifications to perform other tasks. In addition, these robots are typically

applicable only in highly controlled environments that have no or negligible uncer-

tainty and are free of human movement. Recently, there has been a growing interest

in the development of robots working closely with humans. In real environments,

where humans exist, it is essential that robots would be required to adapt to dynamic

and uncertain environments and cope with new tasks and situations in a short dura-

tion. Robot with tool use skills would be particularly useful in human society, as this

would enable the robot to expand its capabilities in performing tasks. To perform

various tasks, robots should have complex structure such as large numbers of appli-

cable sensors and degrees of freedom (DOFs). Designing robot models manually has

become difficult because of the above reasons. To address this challenge, I developed

a model in which the robot body and environment is based on experiences the robot

acquires through physical (embodied) interactions as opposed to models in which the

robot body and environment is pre-designed; that is, the robot learns sensorimotor

relationships from experience using machine learning, particularly deep learning. The

focus of this approach is embodiment. In this thesis, I focus specifically on the body

model acquired from interaction with the environment through embodiment.

Enabling robots to act intelligently is usually referred to as artificial intelligence.

Symbolic AI is based on the manipulation of symbols, an assumption defined as the

physical symbol systems hypothesis. These approaches are only valid if all possible
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situations are described. However, it is difficult to describe all possible situations in

the real world. In contrast, Brooks proposed a subsumption architecture in which

the system and environment are connected using a connection between the sensor

and motor without a description of the symbols. This approach is referred to as

embodied AI. It is hypothesized that for complex intelligence, in particular for human-

like intelligence, a human-like body is necessary for the robot to interact with the

environment. To consider the complex relationship between the sensor and motor,

machine-learning, particularly by using deep learning, has been proven effective. Deep

learning has desirable characteristics, such as the ability to obtain individual features

from data. The term deep learning refers to the use of deep neural networks (DNNs)

and recurrent neural networks (RNNs). DNNs are feed-forward neural networks,

whereas RNNs are recurrent connections.

When considering a robot body, body schema is an important concept used to

explain the body model. Body schema involves mapping between the motor and the

sensors located on the body and includes information about the size and shape of

the body. In addition, body schema is not fixed after acquisition but is, instead, a

plastic model. In particular, when humans are proficient in using a tool, they behave

as if their bodies extend to the edge of the tool that they use. The phenomenon

is referred to as tool-body assimilation. Owing to body schema, humans have the

capability of recognizing the tool tip posture, position, and motion because their

body schema is plastic with respect to their body and the tool. Hence, body schema

can connect the body and tool easily; that is, it is possible to describe the tool using

the model to extend the body schema. When a body schema is considered from an

engineering perspective, it is a multi-modal association of motion and sensors. In

my research, I added the concept of the forward/inverse model (In this study, the

forward model predicts the next state of the arm-tip position from the current state

of the joint angles, and the inverse model predicts the next state of the joint angles

from the current state of the arm-tip position). I refer to it as the body model, and

in particular, I refer to it when considering the dynamics as body dynamics.

The objective of my thesis is to propose a machine learning framework that the

robot acquires its body model from the experiences it gains through embodiment
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without pre-designed robot-environment model to adapt to dynamic and uncertain

environments and cope with new tasks and situations in a short duration. Specifically,

I focus on the acquisition and extension of the robot body model using motor babbling

through deep learning to realize dynamic motion learning for flexible-joint robots and

tool use with a tool-body assimilation model.

This thesis is organized into four chapters. Chapter 1 provides the background,

research objective, related work, and overview of the proposed approach as an intro-

duction of the current study about acquisition and extension of the robot body model

using motor babbling through deep learning.

In chapter 2, I propose a learning strategy for robots with flexible joints having

multi-DOFs in order to achieve dynamic motion tasks. In spite of there being several

potential benefits of flexible-joint robots such as exploitation of intrinsic dynamics

and passive adaptation to environmental changes with mechanical compliance, con-

trolling such robots is challenging because of their increasingly complex dynamics.

To achieve dynamic movements exploiting such benefits of flexible-joint dynamics, I

introduce a two-phase learning framework of the body dynamics of the robot using

a RNN motivated by a recent deep learning strategy consisting of pre-training and

fine-tuning. This two-phase learning methodology comprises a pre-training phase with

motor babbling and a fine-tuning phase with additional learning of dynamic motion

tasks. In the pre-training phase with motor babbling, I consider active and passive

exploratory motions in order to efficiently learn body dynamics. In the fine-tuning

phase, the learned body dynamics are adjusted for specific tasks. I demonstrate the

effectiveness of the proposed methodology in achieving dynamic tasks involving con-

strained movement requiring interactions with the environment on a simulated flexible

joint robot model as well as in hardware experiments using a PR2 robot both of which

have a seven DOF redundant arm. The results illustrate a reduction in the required

number of training iterations for task learning as well as generalization capabilities

for untrained situations with the learned body dynamics through motor babbling. In

addition, I discuss the issues regarding the trade-off between task training iterations

and the success rate of task execution. Furthermore, I discuss the small number of

exploratory motor-babbling motions for body dynamics.
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In chapter 3, I propose a tool-body assimilation model that considers grasping

during motor babbling for using tools. A robot with tool-use skills could be useful in

a human–robot symbiosis situation because this allows the robot to expand its task

performing abilities. In the existing tool-use model, the body and tool models are

separated. Therefore, the motions during tool use are expressed by each tool. To

address these issues, I adopted tool-body assimilation. In a tool-body assimilation

model, the tool model is expressed as a body with a tool. Therefore, the motions

during tool use are expressed by the body model, and the robot effectively learns

the tool functions. Almost all existing studies for robots to use tools require prede-

termined motions and tool features; the motion patterns are limited and the robots

cannot use novel tools. Some of the other past studies fully search for all available

parameters for novel tools, but this leads to massive amounts of calculations. Other

past studies approaches were mainly focused on obtaining the functions of the tools,

and showed the robot starting its motions with a tool pre-attached to the robot. This

implies that the robot would not be able to decide whether and where to grasp the

tool. In real life environments, robots would need to consider the possibilities of tool-

grasping positions, then grasp the tool. To address these issues, the robot performs

motor babbling by grasping and nongrasping the tools to learn both tool functions

and the robot’s body model. In addition, the robot grasps various parts of the tools

to learn the different tool functions from the different grasping positions. These rich

motion experiences are learned using deep learning. Tool features were self-organized

in parametric bias, modulating the body model according to the tool in use. Finally,

I designed a neural network for the robot to generate motion only from the target

image. To evaluate the model, I have the robot manipulate an object task without

any tools or with several tools of different shapes. I have the robot generate motions

after showing the initial and target states by deciding whether and where to grasp the

tool. Therefore, the robot is capable of generating the correct motion and grasping

decision when the initial and target states are provided to the robot.

In Chapter 4, the achievements of a series of both numerical and robot experi-

ments of acquisition and extension of the robot body model. Finally, reviews on the

remaining research topics and future directions conclude this thesis.
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Chapter 1

Introduction

1.1 Background

Today, intelligent robots are expected to play an important role in supporting humans

in their daily activities. Conventional robots such as industrial robots are primarily

designed to perform designated tasks with high speed and precision and would require

extra modifications to perform other tasks. In addition, these robots are typically

applicable only in highly controlled environments that have no or negligible uncer-

tainty and are free of human movement. Recently, there has been a growing interest

in the development of robots working closely with humans, e.g., for the purpose of

supporting daily living [1–3], cooperatively working with humans [4], assisting with

tasks on the International Space Station [5] and industry [6], and performing disaster

relief [7] activities. In real environments, where humans exist, it is essential that

robots would be required to adapt to dynamic and uncertain environments and cope

with new tasks and situations in a short duration. Robot with tool use skills would

be particularly useful in human society, as this would enable the robot to expand

its capabilities in performing tasks. To perform various tasks, robots should have

complex structure such as large numbers of applicable sensors and degrees of freedom

(DOFs). Designing robot models manually has become difficult because of the above

reasons. To address this challenge, I developed a model in which the robot body and

environment is based on experiences the robot acquires through physical (embodied)
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interactions as opposed to models in which the robot body and environment is pre-

designed; that is, the robot learns sensorimotor relationships from experience using

machine learning, particularly deep learning.

The focus of this approach is embodiment. In this thesis, I focus specifically on

the body model acquired from interaction with the environment through embodiment.

1.2 Artificial Intelligence for Robotics

Enabling robots to act intelligently is usually referred to as artificial intelligence.

The term Artificial Intelligence (AI) was first used by John McCarthy at the 1956

Dartmouth Artificial Intelligence conference [8]. Up until today, many researchers

have been fascinated with AI (Figure 1.1).

Figure 1.1: History of AI and my target

1.2.1 Symbolic Artificial Intelligence

Symbolic AI, also known as the classical AI approach or good old-fashioned AI (GO-

FAI) [9], is based on the manipulation of symbols, an assumption defined as the
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physical symbol systems hypothesis [10]. Symbolic AI was the dominant focus of AI

research from the 1950s until the 1980s. During this period, the concept of search and

inference was developed in applications such as chess by Deep Blue [11]. Furthermore,

a diagnosis system called ELIZA [12] was developed, as was an expert system called

MYCIN [13]. These approaches are only valid if all possible situations are described.

However, it is difficult to describe all possible situations in the real world. One of

the challenges of symbolic AI is the frame problem [14], which implies that AI has a

finite ability to process information and cannot handle all of the infinite possibilities

of the real world. Another challenge is the symbol grounding problem [15], that is,

the problem of how symbols in the symbol system can be linked with the meaning

of the real world. These problems are occured because humans try to describe the

symbol.

1.2.2 Embodied Artificial Intelligence

Brooks proposed a subsumption architecture [16] in which the system and environ-

ment are connected using a connection between the sensor and motor without a de-

scription of the symbols. He insisted that the system should not have a designed com-

plex internal representation and external (environment) model but, instead, should

use the interaction system with the environment through the body [17,18]. This ap-

proach is referred to as embodied AI, also known as the behavior-based approach [19].

At the time when subsumption architecture was originally proposed, relatively sim-

ple insect-type robots performed actions without complicated processing between

sensors and motors [16]. A more complex system, a humanoid robot, Cog, has also

been verified [20,21]. Considering the relationship between the body and intelligence,

researchers have frequently discussed how complex the body must be [22–26]. It is

hypothesized that for complex intelligence, in particular for human-like intelligence, a

human-like body is necessary for the robot to interact with the environment [22]. In

cognitive developmental robotics (CDR), robots with human-like bodies, also known

as humanoids, have been popular since the 2000s [27]. CDRs require a more con-

structive approach to understand the cognitive developmental processes and how to
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achieve them through embodiment.

To consider the complex relationship between the sensor and motor, machine-

learning, particularly by using neural networks, has been proven effective [28, 29]. A

simple perceptron was developed in 1958 as a linear separator [30]. In 1969, Marvin

Minsky and Seymmy Papert showed that it was impossible for a simple perceptron to

learn an XOR function [31]. In 1986, nonlinear separation became possible through

the development of backpropagation [32]. Training multi-layer neural networks for

multi-dimensional data is difficult because of the vanishing gradient problem, which

is the phenomenon where, as the number of layers is increased, the gradient of the

loss function becomes dramatically closer to zero before the input layer. In 2006,

Hinton et al. [33] proposed a pre-training and fine-tuning approach for deep learning

to solve the problem. Deep learning has desirable characteristics, such as the ability

to obtain individual features from data. The term deep learning refers to the use

of deep neural networks (DNNs) and recurrent neural networks (RNNs). DNNs are

feed-forward neural networks, whereas RNNs are recurrent connections. In past AI

systems, humans designed features via observation results, such as scale invariant

feature transform (SIFT) [34]. They designed models to simulate various phenom-

ena, thereby causing the results to depend heavily on human efforts. As applications

of deep learning, the performances of image, speech, and natural language recogni-

tion have been dramatically improving [35, 36]. In ILSVR2012, the results of image

recognition by deep learning were overwhelmingly superior to other methods [35].

Recently, image recognition in robots has exceeded the human recognition rate [37].

As an application of deep learning, I have focused on robotics since 2013. Using

deep learning, the design of robots within the context of their environment is devel-

oped using sensorimotor relationships from experiences the robots acquire through

physical interaction, as opposed to being pre-designed by humans. This approach

enables the application of this architecture to other robots and tasks. Even though

the current machine-learning approach requires numerous training samples and is in-

ferior with respect to the accuracy of motion, as compared to a model-based approach

and a combination of model-based and machine-learning approaches, I strongly be-

lieve it will be increasingly necessary for future developments in robotics. In the
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robot-environment model, using deep learning, the robots can discern the relation-

ship between the raw sensor information and motor and use that relationship to

generate motion [28,29].

1.3 Overview of My Approaches: Acquisition and

Extension of the Robot Body Model Using

Motor Babbling through Deep Learning

If there are redundant DOFs, there are various possibilities for the position and pos-

ture of the end-effector. By considering embodiment, even though there are redundant

multi-DOFs, it is possible to generate motion because of the restricted redundant

DOFs by embodiment restriction such as self-body collision, posture of the initial

state, and range limitation of the joint angles, angular velocities, and torque [38].

Furthermore, during search activities of the body, it was confirmed that more adap-

tive and effective motions are searched for, discovered, and chosen [39].

In related research studies investigating embodiment with robots, robots with a

relatively small number of DOFs were used, and the robots were only trained to

execute specific motions for corresponding tasks; that is, the robots had sensorimotor

only of the task motions. This means that the robots did not know how to move

their bodies or how to move in unknown situations. To overcome this challenge, it is

necessary to consider the robot body model as a whole body.

When considering a robot body, body schema is an important concept used to

explain the body model. Body schema involves mapping between the motor and the

sensors located on the body and includes information about the size and shape of the

body [40]. In addition, body schema is not fixed after acquisition but is, instead, a

plastic model. In particular, when humans are proficient in using a tool, they behave

as if their bodies extend to the edge of the tool that they use. The phenomenon is

referred to as tool-body assimilation [41, 42]. Owing to body schema, humans have

the capability of recognizing the tool tip posture, position, and motion because their

body schema is plastic with respect to their body and the tool. Hence, body schema
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can connect the body and tool easily; that is, it is possible to describe the tool using

the model to extend the body schema. When a body schema is considered from an

engineering perspective, it is a multi-modal association of motion and sensors. In my

research, I added the concept of the forward/inverse model (In this study, the forward

model predicts the next state of the arm-tip position from the current state of the

joint angles, and the inverse model predicts the next state of the joint angles from the

current state of the arm-tip position) [43] (Figure 1.2). I refer to it as the body model,

and in particular, I refer to it when considering the dynamics as body dynamics.

In my proposed system, first, the robot acquires the body model through deep

learning. Then, (1) the robot with flexible joints learns dynamic motions using the

acquired body model, and (2) the robot learns tool use via the tool-body assimilation

model with the extension of the acquired body model (Figure 1.3).

Figure 1.2: Body model based on sensorimotor relationship and forward/inverse
model.
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Figure 1.3: Overview of approaches: acquisition and extension of the robot body
model using motor babbling through deep learning. After acquisition of the robot
body model, (1) the robot with flexible joints learns dynamic motion using the ac-
quired body model, and (2) the robot learns tool use via the tool-body assimilation
model with the extension of the acquired body model.
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1.3.1 Acquisition of the Robot Body Model Using Motor

Babbling

Various humanoid robots have been developed to support humans’ tasks. A hu-

man symbiotic robot, TWENDY-ONE, which was developed at Waseda University,

demonstrated a number of assistance tasks of human daily activities such as support

for standing up from a bed, moving to a wheelchair from a bed, cooking with kitchen

utensils, and navigating in a congested environment [3]. NASA’s humanoid robot,

Robotanut 2, is designed to assist astronauts in performing tasks, and has the capa-

bility of using various tools in space [5]. In a disaster-response situation, the Carnegie

Mellon University’s (CMU) humanoid robot CHIMP [7] performed various tasks such

as removing obstacles, opening doors, turning cranks, and using tools in the DARPA

Robotics Challenge [44]. Challenges in these tasks include efficient motion generation

and control, and safe interaction with humans and the workspace environment. From

this perspective, flexible-joint robots have recently attracted increasing attention with

the following potential benefits:

• Adaptability : passive adaptation to environmental changes and safe human-

robot interaction with mechanical compliance [3, 45–47]

• Dynamic motion: movement generation and control exploiting intrinsic dynam-

ics [48–52]

Adaptability can be useful for the safe interaction between a robot and the envi-

ronment. For example, adaptability with mechanical compliance can be beneficial

when there are unmodeled environmental changes for tasks having constrained move-

ment requiring interactions with the environment, such as a door-opening/closing

task. Unlike conventional high-gain controlled stiff-joint (non-flexible) robots, it is

possible to reduce the risk of damage to the robot or the environment by avoiding

excessive interactive forces in the presence of uncertainties. An additional benefit

of joint flexibility is that it can absorb the impact forces in the case of collisions

between the robot and the environment or a human. In particular, the humanoid

robot, TWENDY-ONE, is equipped with passive joints considering safe human-robot
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interaction [3]. In terms of the dynamic motion, mechanical joint flexibility can also

be useful to achieve dynamic tasks, e.g., periodic movements or repetitive movements

by exploiting intrinsic dynamics with reduced control effort [21]. In spite of these

benefits, it is difficult to control flexible-joint robots with a large number of degrees

of freedom (DOFs) because of the increasingly complex dynamics [45]. To address

this problem, several approaches have been previously proposed such as model-based

control [45, 46, 53], model-free machine learning [47, 54–57], and dynamical systems

approach (oscillators [21] and attractors [58]) (Figure 1.4).

Figure 1.4: Past study about embodied interactions with the environment. Several
approaches have been proposed such as model-based control, motion-primitives, and
model-free machine learning. My proposed approach would be robustness for dy-
namics and uncertain environment thanks to acquire body model from experiences
by robots itself through embodied interaction instead of humans’ pre-designed robot
and environment model.

With a model-based control approach, it was demonstrated that a flexible joint
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robot was able to achieve dynamic motion with passive adaptation to the environ-

ment, and was able to generate precise motion when drawing a line with a pen having

contacts between its arm and the environment [45,46]. The focus of these studies was

to avoid complex control by reducing the number of effective DOFs using contacts

with the environment, and to exploit joint flexibility and human-like soft skin. How-

ever, when tasks with increased numbers of DOFs were considered, direct application

of the simplified approaches presented in [45,46] may not be suitable. In order to fully

exploit the benefits of joint compliance, a model-based optimal control technique was

employed for a ball-throwing task on a real robot with variable stiffness actuation [53].

While this study used a highly complex variable-stiffness robot, the task was limited

within a planar two-DOF movement of the arm. Generally speaking, application of

model-based approaches would be very challenging on tasks with an increased num-

ber of DOFs and considering interactions between the robot and the environment

because of the requirement for a precise model description of the complex dynamics

of the entire system. Therefore, application of such model-based approaches on a

complex robot may become significantly difficult in a highly dynamic and uncertain

environment particularly including interactions with humans.

When the modeling of the robot and the environment is difficult, model-free

machine-learning can be an attractive approach for motion generation with adap-

tation to dynamic and uncertain environments. In [47], reinforcement learning was

used to achieve the task of sliding a switch on a highly complex tendon-driven robot

hand by finding a control policy through interaction between the environment and

the robot. However, the task was confined to the planar four-DOF movement of a

single finger within a small range. One of the difficulties of reinforcement learning is

that the number of trials would grow with the increase of the dimensionality of the

state space [59].

As I have seen above, model-based control and model-free machine-learning ap-

proaches have been shown to be effective for systems with a relatively small number of

DOFs in a simplified environment. For motion generation considering more complex

dynamics and environments, a dynamical systems approaches have been explored.
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In [21, 60], neural oscillators were used to achieve a variety of dynamic and com-

plex tasks such as drumming, hitting, throwing and crank turning exploiting natural

dynamics of the robot arm with joint compliance. In [58], as motion primitives, at-

tractors and oscillators were designed to have desirable convergence properties to the

specific point or limit cycle when the trajectories are perturbed. Typically, these

motion primitives have a single-point attractor or a single-limit cycle attractor cor-

responding to a given task, e.g., the motion primitives proposed in [58] are designed

to have a unique attractor with global convergence. Thus, it is difficult to consider

trajectories having branch structures1 (e.g., multiple goals or multiple objectives).

Furthermore, in previous studies, the structure or representation of the dynamical

systems or motion primitives was typically pre-designed by a user. For example, it

is necessary to specify whether the output of the motion primitives represent joint-

space trajectories or task-space trajectories with the knowledge of the properties of

the system (e.g., forward/inverse model [43]) and the task. Furthermore, in the pres-

ence of joint flexibility, it is not straightforward to design a controller to achieve

the desired end-effector movement, especially, in complicated situations considering

interactions with the environment. The effectiveness of the neural oscillator based

approach in [21,60] was indeed demonstrated in achieving constrained dynamic tasks

such as a crank turning with a flexible joint robot arm. However, it was necessary to

select the network parameters and oscillator arrangement by the user.

In this paper, I propose a machine learning framework to acquire motion primitives

and the forward/inverse model of the system based on a deep learning approach in

training RNNs. Specifically, I call the forward/inverse model body model, and in

particular, I refer to the body model considering dynamics as body dynamics. In

order to acquire body dynamics, I employ motor babbling, which is the self-exploring

movements of the early days of infants to acquire their own body dynamics. Motor

babbling has recently attracted much attention for motion generation in the field

of robotics. The effectiveness of motor babbling has been demonstrated in robotic

applications such as posture prediction [62], hand-eye coordination [63,64], reaching to

a static target [65,66], and drawing tasks [67–69]. In order to acquire body dynamics,

1An example of a sequence of actions with branching trajectories is discussed in [61].



12 Chapter 1. Introduction

RNNs have been employed [61, 70] by exploiting their desirable characteristics being

able to predict the next state from the past history of neurons’ states by preserving

the internal state with a recurrent connection to itself [71]. Effectiveness of the use

of an RNN in learning the sensorimotor relationship has been demonstrated, i.e, the

forward/inverse model, considering spatio-temporal aspects of the motions from the

input and output signals [70]. Furthermore, in [61], it has been demonstrated that

RNNs can learn movements with multiple objectives composed of trajectories having

branch structures exploiting such characteristics of an RNN. However, the focus of

these previous studies was to generate simple movements on a stiff-joint robot with

a relatively small number of DOFs.

In order to train an RNN with complex tasks on a flexible joint robot with a large

number of DOFs, I are motivated by the successful and effective training strategy for

DNNs consisting of pre-training and fine-tuning [33, 72]. In the pre-training phase,

parameters of each layer is initialized in order to obtain appropriate values. Then,

in the fine-tuning phase, the whole network is trained with all layers connected to

efficiently learn the target data using the result of pre-training. This method is shown

to be effective in solving issues associated with neural networks such as overfitting,

slowness of convergence, and difficulty in learning and generalizing high dimensional

data. As a result, this two-phase strategy has been demonstrated to yield much im-

proved learning performance in DNNs [33,72]. In this paper, I apply this deep learning

based two-phase approach to learning movements on a robot with complex dynamics

with an RNN consisting of pre-training of body dynamics with motor babbling and

fine-tuning with additional learning of body dynamics for a task movement.

In this paper, I propose a two-phase leaning strategy for an RNN to acquire mo-

tion primitives or body dynamics by performing motor babbling with pre-training

and fine-tuning of body dynamics for a given complex task motion on a flexible-joint

robot. I see an analogy between my proposed two-phase strategy and the learning

strategy for DNNs in that in the pre-training phase, appropriate initial parameters of

the network is learned, and then in the fine-tuning phase, efficient learning is achieved

with adjustment and reuse of the learned results in the pre-training phase. I demon-

strate the effectiveness of the proposed strategy in more complex settings, presenting
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evaluations on a simulated flexible-joint robot model and in hardware implementa-

tion on an actual PR2 robot both of which a seven-DOF redundant arm. I consider

tasks that involve dynamic interactions and constrains of the movement with the en-

vironment such as crank-turning, door-opening/closing, and drawer-opening/closing

in a three-dimensional (3D) space. I show the reduction in the number of training

iterations to perform the target task with motor babbling and generalization capa-

bilities for untrained cases with the online generation of the movement. In addition,

I discuss the relationship between the degree of motor babbling and the success rate

of the target tasks.

1.3.2 Extension of the Robot Body with Tool-body Assimi-

lation

By using tools, humans are capable of expanding their field of work and actions that

otherwise would be impossible with bare hands. Current robots, such as industrial

robots, are mainly designed to perform specialized tasks, and would require extra

modifications when the need to conduct other tasks arises. However, if robots are

capable of using tools as humans do, this could enable robots to adapt to various

activities.

To realize tool use, humanoid robots are useful for handling humans’ tools. One

of the approaches through which robots use tools is model-based control. Humans

provide preset knowledge to the robot about the setup of the scenario and usage

of tools, and using modeling approaches, it is possible for robots to achieve high

performance for tasks such as making pancakes [73] and sandwiches [74] with tools,

drawing with a multifingered hand [46], putting a file into a folder, and serving a

fried egg with a spatula [75]. However, a majority of these methods require humans

to code most of the information about the situation and environment. Thus, they

are applicable only in a highly controlled environments that have no or negligible

uncertainty.

When the modeling of the robot and the environment is difficult, model-free



14 Chapter 1. Introduction

Figure 1.5: Comparison of tool-use and tool-body assimilation models. In the existing
tool-use model, the body and tool models are separated. Therefore, the motions
during tool use are expressed by each tool. Contrastively, in a tool-body assimilation
model, the tool model is expressed as a body with a tool. Therefore, the motions
during tool use are expressed by the body model, and the robot effectively learns the
tool functions.

machine-learning can be an attractive approach for motion generation. Previous re-

search about machine learning typically involves combining it with a model-based ap-

proach. In [76], a robot autonomously learns tool functions through machine learning.

A robot is capable of acquiring a tool function using the corresponding tool. However,

this research is still only able to use a trained tool because of the necessity of pre-

designed models. In addition, the robot used in [76] can only move with pre-designed

motions. This is because the body and tool models are separated. Therefore, the

motions during tool use are expressed by each tool (existing robot tool-use method

shown in Figure 1.5).

To address these issues, I adopted tool-body assimilation, which is a recent finding

in the field of cognitive science, with the machine-learning (learning based) approach.
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Tool-body assimilation has recently gained attention in the field of robotics [29, 76–

79]. Tool-body assimilation is being applied in learning-based approaches in which a

robot’s body model is defined as a plastic model, which can be deformed based on the

tool being used (Figure 1.5). This implies that the robot would only need to gain its

body model once to be modulated and reused again during tool use. In other words,

through tool-body assimilation it is possible to use tools with only one model, i.e., a

body model, to generate motion. In addition, the body modulation parameter does

not represent the complicated methods of using a tool; it only represents the method

of modulating the original body model. Because the tool is treated as a part of the

body, I expect the robot to use tools based on the experience of moving the body.

This implies that the robot would learn to use the tool easily.

In the early days of infants, they tend to predict tool functions using dynamic

touch [80]. Dynamic touch refers to the movement of a body to acquire the char-

acteristics of an object by moving the object [81]. In [77], a method was developed

to have a robot determine tool inertia parameters using dynamic touch as the body

modulation parameter. Then, the robot used this information to correctly use the

tool to pull an object toward itself. However, pre-designed tool features, such as iner-

tial parameters, make it difficult to use this method for typical tools. In [78], object

manipulation was realized using tools through a neural network without pre-designed

tool features. The model was capable of using unknown tools and performing object

manipulation tasks with dynamic touch. The experimental results of Michaels et al.

imply that humans estimates the tool function based on the shape of tool from vision

after they has experiences of tool use [82]. In [79], which is a study inspired by [78],

robot tool-use was realized through tool-body assimilation, with image data captured

using the robot’s camera as the body modulation parameter. This allows the robot

to adapt and perform pulling tasks using tools without dynamic touch in advanced

motion. However, the motion sets used to train the model were limited, and the self-

organizing map used for extracting image features did not have strong generalization

abilities for unknown tools (Table 1.1).

To address the limitation of the motions, motor babbling has been employed.
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Table 1.1: Past study about tool-body assimilation

Previous study Motion type Recognition of tool Grasping decision

A. Stoychecv
[76]

Pre-designed
motion Tool’s color

Fixed grasping
position

K. Nabeshima et al.
[77]

Pre-designed
motion

Dynamic touch
with pre-designed model

Pre-attached to
robot hand

S. Nishide et al.
[78]

Pre-designed
motion

Dynamic touch
with neuron dynamical system

Pre-attached to
robot hand

Y. Yamaguchi et al.
[79]

Pre-designed
motion

Raw image data with SOM
(low generalization ability)

Pre-attached to
robot hand

Using motor babbling, infants learn about the relationship between their body move-

ments and changes in sensorimotor information as body schema [40]. It is believed

that the body has action-limiting influence on human cognition and tool use [83].

Without bodily constraints, there will be an infinite number of body postures during

tool use. The problem of the brain selecting a particular movement is commonly re-

ferred to as the motor equivalence problem [84]. However, in most cases, humans tend

to use tools in a similar manner. When using tools, several poses place burden on

the body to achieve the motion; thus, humans try to avoid these poses. These poses

are learned during human development. Thus, I consider that acquiring the system’

s forward/inverse model [43] through learning is a promising approach. Therefore, in

this research, the body model is used with the assumption that earned constraints

affect the motion decision.

To address the limitation of the unknown situation, deep learning such as DNN

and RNN has been employed for the generalization performance. DNN allows for

extraction of image features from image data without humans’ pre-designed features.

These image features can be reused for unknown situations. Lastly, the model enables

a robot to compute motion using only the initial state and a target image of the gen-

eration sequence. The tool-body assimilation model would be improved occasionally.

Several researchers have modeled motor babbling as an attempt to realize robot

tool use. Furthermore, tool-body assimilation approach primarily focus on obtaining

tool functions, and a robot starts its motions using a tool pre-attached to the robot
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or pre-designed grasping position of a tool. This implies that even if the robot was

able to understand the tool functions and use the tools accordingly, it would not be

able to decide whether and where to grasp the tool. In real-life environments, robots

would need to consider the possibilities of tool-grasping positions, and grasp the tool

required to achieve the target task.

In this research, I let the robot generate motion by decision whether and where

to grasp the tool based on the initial state and a target image. To realize this, motor

babbling that initiates motions with the tools not attached to the robot’s hand is

used. The robot then performs motor babbling by grasping and nongrasping the

tool to learn the robot’s body model and tool functions. In this research, grasping

means that the robot holds the tool to attach the tool to the body and once the robot

grasps the tool, whereas nongrasping means that the robot treats the tool as object

such as push and pull without attach the object to the body even though the robot

contacts it. For this purpose, I use deep learning such as DNN and RNN. In this

research, the DNN extracts the image features as tool and movement features from

the images obtained using the robot’s camera. Next, the RNN learns the relationship

between the image features, joint angles, and grasping signal data gained during the

motor babbling of the body model. Lastly, a body modulation module learns the

grasping decision, grasping positions, and tool functions from the grasping actions by

comparing the differences between the image features when grasping or nongrasping

the tools.

1.4 Research Objective

The objective of my thesis is to propose a machine learning framework that the

robot acquires its body model from the experiences it gains through embodiment

without pre-designed robot-environment model to adapt to dynamic and uncertain

environments and cope with new tasks and situations in a short duration. Specifically,

I focus on the acquisition and extension of the robot body model using motor babbling

through deep learning such as RNN and DNN to realize dynamic motion learning for

flexible-joint robots and tool use with a tool-body assimilation model.
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1.5 Thesis Organization

The rest of the thesis is organized as shown in Figure 1.6. Chapter 2 describes the

acquisition of the robot body model through motor babbling using deep learning.

This chapter proposes a two-phase strategy for robots with flexible joints having

multi-DOFs to perform dynamic motion tasks. Chapter 3 describes the extension of

the robot body model with the tool-body assimilation model considering tool-grasping

decision-making. This chapter proposes body model modulation using extra-context

nodes. Chapter 4 summarizes the thesis.

Figure 1.6: Thesis organization
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Chapter 2

Acquisition of the Robot Body

Model Using Motor Babbling

2.1 Introduction

In this chapter, I propose a learning strategy for robots with flexible joints having

multi-degrees of freedom (DOFs) in order to achieve dynamic motion tasks. In spite

of there being several potential benefits of flexible-joint robots such as exploitation of

intrinsic dynamics and passive adaptation to environmental changes with mechanical

compliance, controlling such robots is challenging because of their increasingly com-

plex dynamics. To achieve dynamic movements exploiting such benefits of flexible-

joint dynamics, I introduce a two-phase learning framework of the body dynamics of

the robot using a recurrent neural network (RNN) motivated by a recent deep learning

strategy consisting of pre-training and fine-tuning [33, 72]. This two-phase learning

methodology comprises a pre-training phase with motor babbling and a fine-tuning

phase with additional learning of dynamic motion tasks. In the pre-training phase

with motor babbling, I consider active and passive exploratory motions in order to

efficiently learn body dynamics. In the fine-tuning phase, the learned body dynam-

ics are adjusted for specific tasks. I demonstrate the effectiveness of the proposed

methodology in achieving dynamic tasks involving constrained movement requiring

interactions with the environment on a simulated flexible joint robot model as well
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as in hardware experiments using a PR2 robot both of which have a seven DOF re-

dundant arm1. The results illustrate a reduction in the required number of training

iterations for task learning as well as generalization capabilities for untrained situa-

tions with the learned body dynamics through motor babbling. In addition, I discuss

the issues regarding the trade-off between task training iterations and the success rate

of task execution. I also discuss exploratory motor babbling used to acquire body

dynamic efficiency.

2.2 Dynamics Motion Learning for a Flexible-joint

Robot with Pre-training and Fine-tuning

In this section, I present my proposed strategy for dynamic motion learning with

flexible-joint robots. Our learning strategy consists of two phases, i.e., the pre-training

phase and the fine-tuning phase, as depicted in Figure 2.1. As mentioned above, this

procedure is analogous to the successful learning strategy for DNNs.

• In the pre-training phase, the robot acquires its body dynamics with an RNN

through motor babbling. The robot performs motor babbling with two types of

motions (active and passive motions) to improve the efficiency in the learning

process of the body dynamics.

• In the fine-tuning phase, the robot performs additional learning of the move-

ment for specific tasks by adjusting the acquired body dynamics to modify the

acquired network in the pre-training phase.

The objective of this strategy is to efficiently learn the desired movements to per-

form the given tasks with the reduction of training iterations and generalization to

untrained situations with the learned body dynamics using motor babbling through

an RNN.

1An accompanied video is available at the following link:
https://youtu.be/nu54pLZCWgA



2.2. Dynamics Motion Learning for a Flexible-joint Robot with Pre-training and

Fine-tuning
21

Figure 2.1: The proposed learning framework for acquiring body dynamics in two
phases (pre-training and fine-tuning). In the pre-training phase, the robot acquires
body dynamics with an RNN through motor babbling. I consider a sequence of active
and passive motions to improve the efficiency in the learning process of the body
dynamics. Then, in the fine-tuning phase, the robot performs additional learning to
adjust acquired body dynamics to the target task. The method is analogous to the
successful learning strategy for DNNs consisting of pre-training and fine-tuning.
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2.2.1 Pre-training of Body Dynamics with Active-passive Mo-

tor Babbling

In the pre-training phase, the robot performs motor babbling with an RNN to acquire

its body dynamics. In motor babbling, I consider a sequence of active and passive

motions. As depicted in Figure 2.2, during the course of motor babbling, the type

of movement is switched from an active one into a passive one. In the active motion

phase, the robot generates joint motions with an active torque input to learn dynamic

association between the control input and the robot states. In the passive-motion

phase, the torque input is turned off, and the joint moves passively under the effect

of the inertia, gravity, and joint friction and stiffness. The purpose of this process

is to learn the intrinsic characteristics of such natural dynamics of the flexible-joint

robot.

Note that my methodology in this paper is different from explicit parameter-

identification approaches in the kinematics and dynamics models as in [85, 86]. In

the case of controlling flexible-joint robots having interactions with an unknown en-

vironment, learning dynamic parameters of the robot and the environment model

is non-trivial because it depends on the pre-designed model structure. In contrast,

an RNN learns the sensorimotor relationship through training in a data-driven man-

ner and predicts the next state having the previous states with the learned network

parameters.

To acquire body dynamics, I use the multiple timescales RNN (MTRNN), which

is a variant of an RNN [61], where MTRNN can predict the next state from the past

history of neurons’ states, as well as learn multiple sequences of data. The MTRNN

is composed of three types of neurons that have different time constants: input-

output (IO) nodes, fast-context (Cf ) nodes, and slow-context (Cs) nodes (Fig. 2.3).

The input-output (IO) nodes are associated with the sensorimotor states and control

of the robot. The fast-context (Cf ) nodes learn the small segments in the data

as primitive movements, whereas the slow-context nodes learn the sequence of the

primitives of the data. The MTRNN learns the dynamics of the sequence of the

data by combining these nodes. In addition, a specific learned motion sequence can
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be generated among the multiple learned patterns by searching the corresponding

acquired initial values of the slow-context (Cs) nodes. To train the MTRNN, I use the

back-propagation through time (BPTT) algorithm [32]. This algorithm is composed

of forward calculations and backward calculations as follows:

In the forward calculation, the output of the neurons is computed. First, the

internal value of the ith neuron at step t, ui(t), is calculated as

ui(t) = (1− 1

τi
)ui(t− 1)

+
1

τi





∑

j∈IIO

ωijxj(t− 1) +
∑

j∈ICf
,ICs

ωijCj(t− 1)





(2.1)

where τi is the time constant of the ith neuron, IIO, ICf
, and ICs

are the set of

indices for the input-output (IO), fast-context (Cf ), and slow-context (Cs) nodes,

respectively, xj(t) is the input value of the ith neuron from the jth neuron, Cj(t)

is the activate state of the ith context neuron2 from the jth context neuron, ωij is

the weight value of the ith neuron representing the connection from the jth neuron.

Then, the output yi(t) is obtained by substituting the internal value (2.1) into the

sigmoid function:

yi(t) = sigmoid (ui(t)) =
1

1 + exp(−ui(t))
. (2.2)

The next input value to the ith neuron in (2.1) is recursively calculated using the

output value in (2.2) of the previous step as

xi(t+ 1) = yi(t). (2.3)

In this paper, the output yi(t) corresponding to the joint-angle node is used as a

target joint angle of the robot. When the robot generates the motion offline to replay

the movement of the training data set, the predicted output yi(t) of the MTRNN is

2Context neurons are referred to as the neurons in the fast-context (Cf ) nodes and the slow-
context (Cs) nodes.
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used as the input xi(t + 1) in (2.3), i.e., no actual robot states are fed back to the

MTRNN as an input. In contrast, when the robot generates motion online for the

purpose of generalization, the actual robot states (joint angles and the end-effector

positions) are partially used as an input xi(t+1) to the MTRNN to predict the next

state yi(t+ 1).

In the backward calculation, the BPTT algorithm is used to minimize the squared

error E as an objective function given by

E =
∑

t

∑

i∈IO

(yi(t− 1)− Ti(t))
2 (2.4)

where Ti(t) is the teaching signal for the ith neuron at step t. In this study, the

teaching signal is given as a sequence of robot motions in motor babbling and target

tasks. Details of the specific motions for teaching signals will be described in Sections

2.4 and 3.4.

In the BPTT algorithm, the weight from the ith neuron to the jth neuron is

updated with the gradient of the training error E as:

ωij = ωij − α
∂E

∂ωij

, (2.5)

where α is the learning rate. The initial value of Csi of the ith neuron in (2.1), Csi(0),

is also updated by the BPTT algorithm:

Csi(0) = Csi(0)− α
∂E

∂Csi(0)
. (2.6)

After the network training, Csi(0) represents the association to each learned motion

sequence such that the learned motion sequence can be recovered by substituting the

obtained Csi(0) values into the MTRNN.
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Figure 2.2: Sequence of motor babbling consisting of active and passive motions.
In the active motion phase, the robot generates the torque of each joint to perform
motor babbling. In the passive motion phase, the torque input is turned off and the
resultant passive movement of the robot is exploited. The phase of motor babbling is
switched from the active mode to the passive mode during the movement at the time
step n.

2.2.2 Fine-tuning of Body Dynamics for Target Tasks with

Additional Learning

In the fine-tuning phase, the robot performs additional learning of the specific task

with the adjustment of the acquired body dynamics. In additional learning, the

learned parameters of the MTRNN (i.e., the weight values ωij and the initial values

of the context Csi) in the pre-training process will be modified for specific tasks.

Once the body dynamics have been acquired in the pre-traning phase through motor

babbling, they can be commonly used for different target tasks, i.e., there is no

need to perform motor babbling before learning each task. In the case of direct-task

learning without pre-training, the robot only learns the sensorimotor relationship for

the specific task without motor babbling. Thus, the robot may not be able to generate

appropriate motions for situations which has not been previously experienced. In

contrast, having pre-trained body dynamics with motor babbling would be beneficial

in efficient learning with different task requirements because of the generalization
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Figure 2.3: Dynamics representation with MTRNN. MTRNN can predict and gen-
erate the next state from the past history of neurons’ states. The input value is
calculated using the output values of the previous step. In this paper, joint angles,
joint velocities, joint torques, and end-effector 3D positions are used as input-output
values. MTRNN is composed of three types of neurons that have different time
constant: input-output (IO) nodes, fast-context (Cf ) nodes, and slow-context (Cs)
nodes. In fast-context (Cf ) nodes, small movement segments are acquired as motion
primitives. In slow-context (Cs) nodes, the sequence of motion primitives is acquired.
By combining the contexts, the entire motion dynamics are learned.
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ability of the learned body dynamics with MTRNN as various motion primitives.

In addition, the required learning iterations for the tasks could be reduced because

the acquired body dynamics can be adjusted and reused for different target tasks.

Although pre-training itself requires time to learn the body dynamics, the overall

training required to learn various tasks reusing the acquired body dynamics could be

more efficient than learning each task separately without pre-trained body dynamics.

2.3 Numerical Simulation Results

2.3.1 Simulated Robot Model

In numerical evaluations, I use a simulated robot model based on the structure of the

humanoid robot ACTOROID [87]. This simulated robot has a seven-DOF right arm

with flexible-joint actuation, which is implemented on the OpenHRP3 simulator [88]

(see Figure 2.4). The total length of the arm is 0.684m and the range of motion

(joint angles) is designed to be comparable to that of a human [89] (Table 2.1 and

Table 2.2). In the flexible-joint model, the joint stiffness k, viscous damping d, and

Coulomb friction coefficients c are given as k = 0.2, d = 10.0, and c = 10.0 for joints

1–4, and k = 0.2, d = 50.0, and c = 50.0 for joints 5–7, respectively (Fig. 2.4). These

parameters are chosen so that the simulated robot model has higher joint compliance

than the actual ACTOROID robot. For active motions, the motor torque command

to each joint actuator is given as

τ = Pgain(θd − θ) +Dgain(θ̇d − θ̇), (2.7)

where θ is the joint angle, θ̇ is the joint velocity, θd is the desired joint angle, θ̇d is

the desired joint velocity, and Pgain and Dgain are the PD gains. For passive motions,

the motor torque command is set to be zero.
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Figure 2.4: Simulated robot model. Left: joint configuration. Right: actual AC-
TROID robot on which the simulated robot is based.

Table 2.1: Denavit-Hartenberg parameters and joint range of motion of the simulated
robot model.

Joint Name (Arm) a [mm] α [deg] d [mm] θ [deg] qmax∗ [deg] qmin∗ [deg]

RARM SHOULDER P 0 90 171 90 180 -50
RARM SHOULDER R 0 90 0 90 140 -30
RARM SHOULDER Y 0 90 273 90 110 -80

RARM ELEBOW -9 90 0 0 145 0
RARM WRIST Y 0 -90 240 90 90 -85
RARM WRIST P 0 -90 0 -90 85 -85
RARM WRIST R 0 -90 0 0 15 -55

∗ range of motion of the joint angle
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Table 2.2: Parameter of the simulated robot model

Link Name (Arm) Mass [kg] Center of mass Moment of inertia

RARM LINK0 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK1 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK2 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK3 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK4 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK5 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]
RARM LINK6 1.0 (0.0 0.0 0.0) [ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ]

2.3.2 Procedure for Motor Babbling with Simulated Robot

Model

In performing motor babbling, first, the initial position of the arm is randomly set

within its range of motion. Then, a sequence of three random desired angles for

each joint of the arm (seven DOFs) are given at 3.0 s intervals. Then, I record

the joint angles, joint velocities, torques, and the end-effector 3D positions of the

resultant movement of the robot according to the joint torque given by (2.7) for a

9.0 s duration at a sampling interval of 0.1 s. The data from 5.5 s to 8.5 s are used

as the training data for MTRNN. As depicted in Figure 2.2, during motor babbling,

the motion is switched from the active motion in (2.7) to the passive motion at the

time step of n = 5 (0.5 s). This process is repeated 1, 2, and 150 times to generate

exploratory motions. For comparison in the evaluations reported in Section 2.3.4, I

also performed motor babbling only with active motions, i.e., no switching to passive

motions.

Once I have recorded the movement data above, the MTRNN is trained to acquire

the body dynamics. The recorded joint angles, joint velocities, torques, and the end-

effector 3D positions are used as the teaching signals in (2.4) to learn the weights

ωij and initial values of context Csi according to (2.5) and (2.6), respectively. Table

2.3 presents the specifications of the MTRNN used in this paper. Note that the

Input-Output (IO) nodes are only connected to the Input-Output (IO) nodes and
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the fast-context (Cf ) nodes, and the fast-context (Cf ) nodes are fully connected to all

the nodes, while the slow-context (Cs) nodes are only connected to the slow-context

(Cs) nodes and the fast-context (Cf ) nodes (Fig. 2.3). The size of the network was

determined by empirically finding the minimum number of nodes that can successfully

learn the motions in motor babbling and the given tasks. The network with a smaller

size was preferred in order to reduce the required learning time and improve the

generalization performance. The time constants were also empirically determined so

that the error E in (2.4) could be successfully minimized.

Table 2.3: Design of MTRNN. Each type of node has different time constants. The
structure of the MTRNN is depicted in Figure 2.3

Type of nodes Node name No. of nodes Time constant τ

Joint angle input 7 2
Input-Output (IO) Joint velocity input 7 2

Joint torque input 7 2
end-effector 3D positions input 3 2

Fast Context (Cf ) Fast context 50 5
Slow Context (Cs) Slow context 20 70

2.3.3 Target Tasks for Simulated Robot

To evaluate the effectiveness of the proposed approach to learning body dynamics,

I consider dynamic tasks having constrained movement requiring interactions with

the environment such as crank-turning and door-opening/closing tasks. Figure 2.5

depicts these two tasks in simulations. The crank-turning task (Fig. 2.5(a)) involves a

constrained periodic rotational motion. The door-opening/closing task (Fig. 2.5(b))

consists of a repetitive motion with changes in the direction of the movement.

The teaching signals for these tasks are generated in the following three steps: 1)

The end-effector of the robot arm is manually guided to passively follow the movement

of crank rotation and door-opening/closing. In crank rotation, the movement of the

crank is given at a constant angular velocity. In door-opening/closing, the angle of
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the door is given as a fifth-order polynomial interpolation between the start and the

end positions. During these manually guided movements, I obtain a sequence of joint

angles of the arm that results from the passive movement. 2) I generate the robot

movement using the recorded joint angles in step 1) as the desired joint angles, and

then I record the resultant actual joint angles and the Cartesian positions of the end-

effector during these generated motions. 3) For each task, I divide the path of the

movement into the actively controlled part and the passive movement part depending

on the nature of the task (see the specific descriptions for each task below). In the

active control part, I apply the joint torque to the robot, and in the passive control

part, I turn off the torque input and the robot follows the natural movement. The

movement data in this final step such as the joint angles, joint velocities, joint torques,

and the end-effector 3D positions are used as the teaching signals for each task.

In the crank-turning task, the robot repeatedly rotated the crank 10 times for

a duration of 48.95 s (979 steps at a sampling interval of 0.05 s). Note that for

the execution of the task, a different sampling interval was used from that of motor

babbling since my MTRNN formulation uses discrete time representation which is

independent from the actual time. Thus, the output of the MTRNN would depend

on the choice of the sampling interval even for the same parameter settings. I have

adjusted it so that the resultant velocity of the output of the MTRNN becomes similar

to that of motor babbling. The diameter of the crank was 0.3m. To turn the crank,

the robot only applied a force at the nearest and most distant positions from the

body. Between these positions, the robot followed the passive movement of the arm

and the crank without a torque input to the joints.

In the door-opening/closing task, the robot repeatedly opened and closed the door

(start: 0◦, end: 145◦) 30 times for 66.95 s (1339 steps with a sampling interval of 0.05

s). The radius of the door-opening/closing trajectory was 0.55m. To open and close

the door, the robot only applied forces at the initial point of the door-opening/closing.

Similar to the crank-turning task, the robot did not apply forces between these two

positions following the passive movement of the arm and the door without a joint

torque input.
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Figure 2.5: Tasks performed by the simulated robot model on the OpenHRP3 plat-
form. These tasks involve constrained repetitive motion having interactions with the
environments.

2.3.4 Simulation Results

2.3.4.1 Effectiveness of Motor Babbling with Active-Passive motions

To evaluate the effectiveness of using motor babbling with active and passive motions

to acquire the body dynamics with pre-training, I compared the following three cases:

1. Learn the task directly without motor babbling

2. Learn the task after 150 motor babbling motions with only active movements

3. Learn the task after 1, 2, and 150 motor babbling motions with active and

passive movements

Fig. 2.6 shows the minimum training iterations needed to perform the tasks success-

fully. Training iterations are defined as the number of iterations of BPTT required

to reduce the mean-squared error given in (2.4) between the output from the trained

RNN and the teaching signals. During the training of an RNN, the forward calculation

in (2.1) and (2.2), and backward calculation in (2.4), (2.5), and (2.6) are performed

alternately. The criterion of minimum training iterations is as follows: (a) in the case

of crank-turning, the robot successfully rotates the crank 10 times repeatedly, (b) in
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the case of door-opening/closing, the robot successfully opens and closes the door 30

times repeatedly covering the specified range of the door angles (start: 8◦, end: 138◦).

When the robot was not able to perform the tasks within 160,000 training iterations,

I defined it as failure in learning the tasks. Each experiment was conducted 10 times

using the randomly set initial values for the weights in the MTRNN. Note that the

training iterations shown in Figure 2.6 do not include the training iterations required

in motor babbling. The numbers in the bar graph in Figure 2.6 show the success rate

for learning the task. The mean and standard deviation of the training iterations are

calculated from the number of motions with successful learning. Note that the success

rate in Figure 2.6 is based on offline motion generation for the trained cases. The

generalization ability for untrained situations with online generation of the movement

will be discussed in Section 2.3.4.2.

As shown in Figure 2.6, the number of training iterations after 150 active-passive

motor babbling was reduced by 60.7% (crank-turning task) and 66.0% (door-opening/

closing task) in comparison to the case without motor babbling. I confirmed that this

difference was significant using t-test (p < 0.01). The total number of training itera-

tions including active-passive babbling (case (c), (d) and (e) in Figure 2.6) was still

smaller than that of without babbling (case (a)) and including only active babbling

(case (b)). In the case of only active motor babbling, although a reduction in the

training iterations can be observed, the success rate of task learning was notably low.

I suspect that with only active motor babbling, the robot was not able to learn the

passive component of the robot dynamics that was to be exploited during execution

of the task.

Here, I discuss the relationship between task-training iterations and the success

rate of the tasks depending on the number of exploratory motions in motor babbling

with active-passive motions. As shown in Figure 2.6, a small number of exploratory

motor-babbling motions yielded higher success rates (both 100%) compared with the

case having a large number of exploratory active-passive motions in motor babbling

(60 and 80%). However, a large number of exploratory motions in motor babbling

resulted in much smaller training iterations. This implies that there is a trade-off
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between task-training iterations and the success rate depending on the number of ex-

ploratory motions in motor babbling. Increasing explatory motions in babbling would

be beneficial in acquiring a variety of motion primitives which could be reused for a

given task. However, failure in task learning after motor babbling with a large num-

ber of explatory motions may be due to overfitting in pre-training. I have observed

excessive changes only in a small number of weights in the network in additional

task learning in such a case. Further analyses of this issue and possible improvement

would be of my future interest from a viewpoint of the acquired network properties.

2.3.4.2 Generalization Ability in Simulation

In this section, I evaluate the generalization performance of the learned motions for

tasks with novel situations. I consider changing the diameter of the crank from the

original size in the crank-turning task (Fig. 2.7 shows a crank with the diameter of

0.14m as an example). I compared the cases between the learned movement with-

out motor babbling and that with motor babbling with different numbers of active

and active-passive exploratory motions (one exploratory motion and 150 exploratory

motions).

In order to generate movements in the novel situation, the actual joint angles

and the end-effector 3D positions are used as an input x(t) to the MTRNN in (2.3).

As a result, the robot generates the movement with online state feedback according

to the output of the predicted next state from the actual current state of the robot

by the MTRNN, which is different from the offline feedforward-motion generation in

Section 2.3.4.1 (where no actual robot state is fed back to the MTRNN).

Fig. 2.8 shows the success rate for the crank-turning task execution depending

on the change in the diameter of the crank (0.18m and 0.14m) from the original

size (0.30m). The criterion of the success is that the robot is able to rotate the

crank 10 times repeatedly. Without motor babbling, the learned controller could not

be generalized for the cases of untrained situations (success rate of 0%) with online

motion generation. On the contrary, with offline motion generation, the success rate

of the learned movement without motor babbling was very high. I consider that the

trained network was likely to be over-fitted to specific training data. In contrast, with
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Figure 2.6: Simulation result of crank-turning and door-opening/closing tasks. Com-
parison of the training iterations for learning tasks (a) direct-task learning without
motor babbling, (b) task learning with 150 motor-babbling motions consisting of only
active movements, and (c) task learning with 1, 2, and 150 motor-babbling motions
consisting of active-passive movements(c, d, e), respectively. The bar graph shows
the minimum training iterations needed to perform the tasks successfully. Note that
the training iterations do not include those required for motor babbling. The average
iterations for motor babbling for each case (b-e) were (b) 27000, (c) 5800, (d) 10000
and (e) 20000. The error bar shows standard deviation of the training iterations. The
numbers in the bar graph show the success rate for learning tasks with the training
data. As the number of exploratory motions in motor babbling increased, the number
of training iterations was reduced to achieve the task. However, I observed a trade-off
between the training iterations and the success rate. As discussed in Section 2.3.4.2,
even though the success rate with the training data is high in direct task learning
without motor babbling, the learned movement could not be generalized for untrained
cases.
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motor babbling, the robot was able to successfully perform the crank-turning task for

untrained situations in online-motion generation. Although the success rate was not

remarkably high, the robot was able to perform the crank-turning task with as small

as a 0.14m crank diameter (Fig. 2.7).

Note that the evaluation results of generalization performance in the crank-turning

task is primarily reported here. In the door opening/closing task, I did not observe

significant difference in the performance even with different door sizes. This is because

the door opening/closing task is easier than the crank turning task, where the door

opening/closing task only requires repetitive movement of about quarter of an arc,

whereas the crank turning task requires full revolution of the crank for successful task

execution.

Figure 2.7: Using a crank with a smaller diameter (0.14m) to evaluate the general-
ization ability of the learned movement in the crank turning task. Left: crank with
the original diameter of 0.30m. Right: crank with a small diameter of 0.14m.

2.3.4.3 Comparison of proposed method and PD control method

In this section, I compare the learned RNN with one exploratory motion in motor

babbling with 90,000 training iterations performed in Figure 2.7 and PD control using

the motion performed as a teaching signal for the crank-turning task (see item 3) in

Section 2.3.3 regarding the generalization performance of the crank-turning tasks (the

crank with a nominal diameter of 0.3m) as follows: 1) random noise between 0 to 5◦ is
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Figure 2.8: Simulation result for the evaluation of the generalization ability of the
learned movement in the crank-turning task. The success rate of the generalization
ability depends on the variation of the crank diameter from the original position.
I compared the five cases: (a) without motor babbling, (b) one exploratory active
motion in motor babbling with minimum training iterations, (c) one exploratory
active-passive motion in motor babbling with minimum training iterations, (d) 150
exploratory active motions in motor babbling with minimum training iterations, and
(e) 150 exploratory active-passive motor babbling with minimum training iterations.

added to the measured robot joint angles of the arm during the motion, 2) Coulomb

friction (c = 2.0) is added to the crank, and 3) a constant external force (Torque

2.0Nm to the direction opposite to the direction of rotation which the robot rotates)

is added as a disturbance in the direction opposite to the direction of rotation of the

crank. The experiment with the proposed method was conducted 10 times using the

randomly set initial values for the weights in the MTRNN.

As a result, the robot could successfully achieve the given tasks in these novel

situations after motor babbling using the proposed method (the success rate of 100%

to all situations). In contrast, the PD control method could not achieve the tasks in

the novel situations. The results demonstrate the generalization capabilities of the

proposed method compared to the PD control method.
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2.4 Hardware Experiments with PR2 Robot

2.4.1 Experimental Platform: PR2

We use a PR2 [90] as a hardware platform. The right arm of the robot (seven

DOFs) was used in my experiments (see Figure 2.10). The three joints of the PR2

arm (shoulder lift, upper arm roll, and elbow flex joints) exhibit flexibility because

of its passive spring counterbalance mechanism, whose dynamical characteristics are

difficult to model. For active motion, the actuator torque input is given by the

following PD controller for each joint as:

τ = Pgain(θd − θ) +Dgain(θ̇d − θ̇). (2.8)

To perform passive motion, the joint torque input is turned off so that the resultant

arm movement follows its intrinsic passive dynamics.

2.4.2 Procedure for Motor Babbling with PR2 Robot

The robot performs motor babbling in the 3D space with the seven DOFs of the

right arm. During the babbling motions, I measured the joint angles, angle velocities,

joint torques, and end-effector 3D positions. When performing motor babbling, first,

I randomly set the initial position of the arm within its range of motion. Then, a

sequence of three random desired angles for each joint of the arm (seven DOFs) is

given at 3.0 s intervals, and I record the joint angles, joint velocities, torques, and the

end-effector 3D positions of the resultant movement of the robot at a sampling time

of 0.1 s using the output of an RNN. The data from 4.0 s to 7.0 s are used for the

teaching signals for the MTRNN. As in Figure 2.2, during motor babbling, the motion

is switched from active motion to passive motion at a time step of n = 20 (2.0 s). In

the experiment, I choose a single exploratory movement in motor babbling to achieve

a high success rate for task learning. With the obtained motion data, the MTRNN

was trained. In the hardware experiments, I used an MTRNN with the same structure

as in the numerical simulations (see Table 2.3) although the structure and properties
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of the robots are not exactly the same. The network structure, e.g., the number of

the nodes, needs to be appropriately adjusted for the given robot platform depending

on its complexity. In this paper, I choose to use the same network structure to make

the experimental conditions similar in both cases.

2.4.2.1 Target Task with Real Robot, PR2

In hardware experiments with PR2, I consider a drawer-opening/closing task. Specif-

ically, in this task, I performed a repetitive movement of continuous drawer-opening/

closing, which involves constrained movement requiring dynamic interactions with the

environment (unknown mass and friction of the drawer) and changes in the movement

directions. In order to generate teaching signals, the start and end positions of the

drawer-opening/closing movement are first specified by direct (manual) teaching with

the robot, and I obtained the corresponding joint angles of the arm at these posi-

tions. Then, the robot performs linearly interpolated movements between these joint

angles at the start and end positions, and I record the joint angles, joint velocities,

joint torques, and the Cartesian positions of the end-effector during such movements.

Figure 2.10 shows the drawer-opening/closing task with a length of 0.52m. To collect

the training data, I recorded two repetitions of the drawer-opening/closing movement

performed by the robot, whose total duration was 20.0 s (400 steps with a sampling

time of 0.05 s).

2.4.3 Experimental Results with PR2 Robot

2.4.3.1 Effectiveness of Motor Babbling with Active-Passive motions

The simulation results in Section 2.3.4.1 suggested that motor babbling with only

active motions was not particularly effective at acquiring the body dynamics. Thus,

to evaluate the effectiveness of motor babbling during task learning for a real robot,

I compared the following two cases:

1. Learn the task directly without motor babbling

2. Learn the task after motor babbling with active and passive motions
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Fig. 2.9 shows the minimum training iterations required to perform the drawer-

opening/closing task successfully. The criterion of the minimum training iterations

is defined such that the robot successfully opens and closes the drawer two times

repeatedly covering the specified range of drawer length (0.36 m) (Fig. 2.10). I con-

ducted the experiment five times using different initial parameters for the weights

in the MTRNN. Note that the training iterations in Figure 2.9 do not include the

training iterations in motor learning. The average number of training iterations re-

quired for motor babbling itself was 20000. In this case, the total number of training

iterations including active-passive babbling is larger than that of without babbling.

However, in terms of generalization ability, as reported below, the learned network

without babbling was not able to achieve tasks with novel situations. The numbers

in the bar graph in Figure 2.9 show the success rate when learning the task with the

training data. The mean and standard deviation of the training iterations were calcu-

lated from the number of motions with successful learning. According to the result in

Figure 2.9, the number of training iterations with active-passive motor babbling was

reduced by 51.5% when compared with the case without motor babbling. I confirmed

that this difference was significant using t-test (p < 0.01). The result demonstrates

the effectiveness of active-passive motor babbling in learning body dynamics.

2.4.3.2 Generalization Ability with PR2 Robot

In this section, I evaluate the generalization performance of the learned motions

for the drawer-opening/closing task with novel situations. I consider three novel

situations: (a) changing the number of repetitions of the drawer-opening/closing

movement increased to four from two, (b) motion generation using only end-effector

3D positions, (c) motion generation using only joint angles with added uniformly

distributed random noise in the interval of 0 and 10◦. In (a) and (b), I compared the

cases between the learned movement without motor babbling and that with active-

passive motor babbling. In (c), I compared the cases between PD control and the

learned movement with active-passive motor babbling. For each novel situation, I

generated movements as follows: In (a), I generated the longer duration of motion

to achieve four repetitions of drawer-opening/closing movement by extending time
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Figure 2.9: Experimental result with PR2 of the drawer-opening/closing task. Com-
parison of the training iterations for learning tasks 1) direct-task learning without
motor babbling, 2) task learning after active-passive motor babbling with one mo-
tion consisting of active-passive motions. The figure shows the minimum training
iterations required to perform the drawer-opening/closing task successfully. Note
that training iterations does not include the training iterations during motor bab-
bling. The average of number of training iterations for motion active-passive motor
babbling itself is 20000. The error bar shows standard deviation of the training it-
erations. The numbers in the bar graph show the success rate in the learning tasks
with offline motion generation using the training data.
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Figure 2.10: Snapshots showing task execution of drawer-opening/closing during 11.0
s to 20.0 s with PR2 after motor babbling of the active and passive motions.

evolution of the learned RNN. In (b), I generated motion by calculating Cs(0) in

(2.6) only using to the target end-effector 3D positions. In (c), I added random

noise to the training data for the input neuron in (2.3) corresponding to the joint

angles. The experiment with the proposed method was conducted five times using

the randomly set initial values for the weights in the MTRNN.

In the result of (a) without motor babbling, the robot could not achieve the task

of four repetitions of the movement, i.e., the robot could not generate the desired

motion after two times drawer-opening/closing (the success rate of 0%). In contrast,

in the result of (a) with motor babbling, the robot successfully generated the task

motion with four times of drawer-opening/closing repetitions (the success rate of

100%). The result demonstrated that the RNN with motor babbling could learn the

task movement as a cyclic motion even with only two repetitions in training.

In the result of (b) without motor babbling, the robot could not achieve the task

(the success rate of 0%). In the result of (b) with motor babbling, the robot could

successfully generate the task motion using only the partial information. Furthermore,

it was demonstrated that the robot could achieve the task in the presence of added

noise (Gaussian noise of the interval of -25 and 25mm) as well as the delay (50 time

steps) in the 3D end-effector positions (the success rate of 100% in all these cases).

In the result of (c) with motor babbling, the robot could achieve the task in the
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presence of added noise to the input neuron in the RNN (the success rate of 100%). In

contrast, the robot could not perform the task with PD control because of the added

noise. This result demonstrates the robustness of the proposed method in generating

the desired movement against noise.

2.5 Discussion about Motor Babbling

In this chapter, random motion was used as motor babbling. However, it is difficult

to apply random motion to an actual robot when the enormous number of random

motion is required to acquire body model. Motor babbling is considered to be ex-

ploratory movement [91–94]. Some motions are easy to predict, whereas others are

considerably more difficult. In this section, I discuss about exploratory form of motor

babbling to explore and learn motions that are difficult to predict, enabling body

dynamics to be acquired efficiently.

2.5.1 Exploratory Motor Babbling Using Variance Predic-

tion from RNN

2.5.1.1 Stochastic Multiple Time-scales Recurrent Neural Network

In motor babbling, there are easy-to-predict motions and those that are more difficult

to predict. If a robot has more experience of a motion, it will be easier to predict.

This means that the variance will be small. If a robot has less experience of a motion,

it will be more difficult to predict. This means that the variance will be large. The

robot can evaluate the prediction accuracy of its motion from the variance. Therefore,

to learn efficiently, the robot needs to explore and learn motions that are difficult to

predict.

To realize this, I use a Stochastic MTRNN (S-MTRNN). The S-MTRNN can

predict and generate the next state from the past history of neurons’ states, and

determine the prediction accuracy from the variance [95,96]. To train the S-MTRNN,

I use the maximum likelihood method with the steepest descent method [97]. This

algorithm is composed of forward calculations and backward calculations as follows:
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In the forward calculation, the output of the neurons is computed. First, the

internal value of the ith neuron at step t, ui(t), is calculated as

ui(t) =
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where τi is the time constant of the ith neuron, IIO, ICf
, and ICs

are the set of

indices for the input-output (IO), fast-context (Cf ), and slow-context (Cs) nodes,

respectively, xj(t) is the input value of the ith neuron from the jth neuron, Cj(t)

is the activate state of the ith context neuron from the jth context neuron, ωij is

the weight value of the ith neuron representing the connection from the jth neuron.

Then, the activation states of context neuron, output neuron, and variance neuron is

obtained by substituting the internal value (2.9) into the following activation function:

Ci(t) = tanh(ui(t)) (0≤t∧i∈ICf
), ICs

), (2.10)

yi(t) = tanh(ui(t)) (1≤t∧i∈ICf
), IIO), (2.11)

vi(t) = exp(ui(t)) (1≤t∧i∈ICf
), IV ), (2.12)

The next input value to the ith neuron in (2.9) is recursively calculated using the

output value in (2.10), (2.11) and (2.12) of the previous step as

xi(t+ 1) = yi(t). (2.13)

In this chapter, the output yi(t) corresponding to the joint-angle node is used as a

target joint angle of the robot. When the robot generates the motion offline to replay

the movement of the training data set, the predicted output yi(t) of the S-MTRNN

is used as the input xi(t+1) in (2.13), i.e., no actual robot states are fed back to the

S-MTRNN as an input.

In backward calculation, firstly, the learnable parameters of the network are de-

noted as q. The probability density function p of the teaching signal Ti(t) is defined
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as

p(Ti(t)|{x(t′)}tt′=1, q) =
1

√

2πvi(t)
exp

(

−(Ti(t)− yi(t))
2

2vi2(t)

)

(2.14)

where vi(t) is he variance state of the ith neuron at step t generated by networks.

The likelihood function Lout is defined as

Lout =
T
∏

t=1

∏

i∈IIO

p(Ti(t)|{x(t′)}tt′=1, q) (2.15)

The parameters q are optimized through the learning process in the direction

to maximize the likelihood Lout. More precisely, I use the gradient ascent method

with a momentum term as the procedure for the parameter optimization. Here, the

logarithm of the expression in (2.15) is used to facilitate the calculation.

lnLout =
T
∏

t=1

∏

i∈IIO

(

− ln (2πvi(t))

2
− (Ti(t)− yi(t))

2

2vi(t)

)

(2.16)

The network generates v as an estimate of the prediction error. The squared

error is divided by the variance; therefore, it is possible to avoid unstable learning.

Namely, if the variance is large, the influence of the prediction error will decrease. If

the variance is small, the influence of the prediction error will increase. Learning is

performed according to the maximum likelihood using the gradient descent method.

Therefore, the variance is calculated from the input signal without a teaching signal.

2.5.1.2 Learning Process of Exploratory Motor Babbling

This section describes the learning process of exploratory motor babbling. This

method is composed of two steps (Figure 2.11). First, a robot learns the random

motor babbling and its variance. The number of motor babbling motions is Nr.

Then, the basic body dynamics are acquired.

In the next step, the robot performs exploratory motor babbling by applying noise

to its joint angles based on the predicted variance acquired in the previous step. The

number of exploratory motor babbling motions with this added noise is Ne. The noise
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added to the joint angle is expressed by the following equation based on a Gaussian

distribution:

θnew = θold +
1− (v̄ − vi)√

2πσ2
exp

(

− x2

2σ2

)

, (2.17)

where θnew is new joint angle, θold is old joint angle, σ2(= 15.0) is the variance, x is

random value, v̄ is the average variance of joint angles of all sequences, and vi is the

average variance of joint angles of each sequence.

Since the variance is large in the vicinity of unpredictable motion, the noise added

to the joint angle is increased. Therefore, the robot will gain more experience of

motions that are similar to those that are difficult to predict. By doing so, the robot

acquires body dynamics with higher prediction accuracy.

2.5.2 Numerical Simulation Results

2.5.2.1 Simulated Robot Model

In numerical evaluations of exploratory motor babbling, I use a simulated robot model

based on the structure of the humanoid robot ACTOROID [87] as with section 3.3.1.

In the experiment, all joints were stiff instead of flexible joint, and only three DOFs

(joint ID 2, 4, 6 in Figure. 2.4) of the seven DOFs of the robot’s arm were used, and

the remaining four DOFs are maintained constant. For motions, the motor torque

command to each joint actuator is given by (2.7). The simulations were performed

on the Ubuntu 12.04 LTS operating system with an Intel Core i7-4790 CPU.

2.5.2.2 Procedure for Exploratory Motor Babbling

To evaluate the effectiveness of the proposed approach, the robot’s movement was

confined to two-dimensional movements on the plane of a desk with only three of the

seven DOFs in the robot’s arm. To perform motor babbling, first, the initial position

of the arm is randomly set within its range of motion. The robot performed motor

babbling for 30 steps over a period of 2.07 s. Then, I recorded the joint angles, joint

velocities, torques, and the end-effector 2D positions of the resultant movement of

the robot. The number of random motor babbling motions Nr was 15.
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Figure 2.11: Exploratory motor babbling. The proposed method is composed of two
steps. First, the robot performs random motor babbling and learns the motion and
its variance. Then, the robot performs exploratory motor babbling motion to add
noise to joint angles based on acquired variance at the first step.
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Once I have recorded the movement data above, the S-MTRNN is trained to

acquire the body dynamics and variance which was produced by adding a noise term

based on the predicted variance in the joint angle. In this research, noise was added

to all random motor babbling motions. Therefore, the number of exploratory motor

babbling motions with added noise Ne was 15. Figure 2.11 illustrates the motor

babbling, where the upper figure shows random motor babbling and the lower part

shows exploratory motor babbling.

To train motor babbling and the task described in the next section, I used the

S-MTRNN. Table 2.4 describes the construction of the S-MTRNN. Note that the

Input-Output (IO) nodes are only connected to the fast-context (Cf ) nodes, and the

fast-context (Cf ) nodes are fully connected to all the nodes including variance (V )

nodes, while the slow-context (Cs) nodes are only connected to the slow-context (Cs)

nodes and the fast-context (Cf ) nodes. The probability distribution p of the teaching

data was assumed to be 0.01.

Table 2.4: Design of S-MTRNN. Each type of node has different time constants.

Type of nodes Node name No. of nodes Time constant τ

Joint angle input 3 2
Input-Output (IO) Joint velocity input 3 2

Joint torque input 3 2
End-effector 2D positions input 2 2

Variance (V ) Variance 11 -
Fast Context (Cf ) Fast context 20 5
Slow Context (Cs) Slow context 2 70

2.5.2.3 Target Tasks for Simulated Robot

To evaluate the effectiveness of the proposed approach to learning body dynamics,

I consider dynamic tasks having constrained movement requiring interactions with

the environment such as crank-turning and door-opening/closing tasks as with sec-

tion 2.3.3.
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The crank had a diameter of 0.3m. The robot turned the crank five times. Each

rotation consisted of 240 steps over a period of 12.0 s. Thus, the total motion consisted

of 1200 steps, taking 60.0 s. The radius of the arc of the door’s trajectory was 0.55m.

The robot opened and closed the door 10 times. Each opening/closing cycle had 120

steps, and took 6.0 s. Thus, there were a total of 1200 steps over 60.0 s.

2.5.3 Experimental Results and Discussion

To evaluate the effectiveness of exploratory motor babbling, I conducted the following

experiments:

• Learn the task directly without motor babbling

• Learn the task after random babbling motions

• Learn the task after exploratory motor babbling motions

Figure 2.12 shows the number of iterations that were required to learn the tasks.

This number of iterations was needed by the robot to generate the motion of crank

turning and door opening/closing. Each experiment was performed five times with

different initial parameters for the neural network, and the figures show the mean

and variance over these repetitions. For the crank turning task, my method produced

a reduction of 87.2% in terms of learning cycles compared with random babbling. I

confirmed that this difference was significant using a t-test (p < 0.05). The mean

computation time of the learning cycle with exploratory motor babbling was 273.5 s,

whereas random motor babbling with the same number of motion patterns required

2453.0 s. Without any motor babbling, the mean computation time was 2650.2 s.

For the door opening/closing task, my method produced a reduction of almost 75.0%

when using the proposed method compared with random babbling. I confirmed that

this difference was again significant using a t-test (p < 0.05). The mean computation

time of the learning cycle with exploratory motor babbling was 535.0 s; random

motor babbling and the same number of motion patterns took 1916.3 s, and without

any motor babbling the learning cycle required 2130.7 s. In summary, Figure 2.12

indicates that exploratory motor babbling drastically decreased the learning time.
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Fig. 2.13 shows the angle of crank turning and door opening/closing after 2350

and 3540 iterations, respectively. These iteration numbers correspond to one of the

evaluated times in Figure 2.13 at which the target motions had been generated cor-

rectly with exploratory motor babbling. The joint angles of the teaching signal and

the motion learned with exploratory motor babbling are similar. In the case of crank

turning with random motor babbling and without motor babbling, the robot could

not turn the crank, and performed forward and reverse rotation repeatedly. In the

case of crank turning with random motor babbling and without motor babbling, the

angle of door opening and closing became gradually smaller. It is clear that the robot

can perform these motions correctly after a relatively small number of iterations using

exploratory motor babbling.

Figure 2.12: Learning cycles for completing the task of crank-turning and door-
opening/closing
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Figure 2.13: Generated motions of crank-turning and door-opening/closing after 2350
and 3540 iterations (Left: crank turning, Right: door opening/closing)

2.6 Summary

In this chapter, I presented an effective two-phase strategy for learning the body dy-

namics of multi-DOF flexible-joint robots in order to achieve dynamic-motion tasks

motivated by a deep learning strategy. In the pre-training phase, the robots acquired

the body dynamics via motor babbling with active and passive movements using an

RNN. In the fine-tuning phase, the learned body dynamics were adjusted by perform-

ing additional learning of the target task. I presented the numerical results with a

simulated flexible-joint robot model and hardware experimental results using a real

PR2 robot both of which have a seven-DOF redundant arm to demonstrate the effec-

tiveness of the proposed method while performing various tasks. The results showed

that the number of training iterations for the target tasks was reduced after learning

the body dynamics with active-passive motor babbling. Furthermore, with active-

passive motor babbling, I demonstrated the generalization ability of the learned task

for untrained situations. However, I observed that the motor-babbling performance

depended on the initialization of the weights of the MTRNN. In addition, I found

that there is a trade-off between the number of training iterations and the success
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rate for task accomplishment depending on the number of exploratory motor babbling

motions. Furthermore, I employed an explorative motor babbling scheme using vari-

ance predictions from an RNN by efficiently acquiring body dynamics with a small

number of motor babbling movement.
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Chapter 3

Extension of the Robot Body

Model with Tool-body Assimilation

3.1 Introduction

In this chapter, I propose a tool-body assimilation model that considers grasping

during motor babbling for using tools. A robot with tool-use skills could be useful

in a human–robot symbiosis situation because this allows the robot to expand its

task performing abilities. Almost all existing studies for robots to use tools require

predetermined motions and tool features; the motion patterns are limited and the

robots cannot use novel tools. Some of the other past studies fully search for all

available parameters for novel tools, but this leads to massive amounts of calculations.

Other past studies approaches were mainly focused on obtaining the functions of the

tools, and showed the robot starting its motions with a tool pre-attached to the robot.

This implies that the robot would not be able to decide whether and where to grasp the

tool. In real life environments, robots would need to consider the possibilities of tool-

grasping positions, then grasp the tool. To address these issues, the robot performs

motor babbling by grasping and nongrasping the tools to learn both tool functions

and the robot’s body model. In addition, the robot grasps various parts of the tools

to learn the different tool functions from the different grasping positions. These rich

motion experiences are learned using deep learning such as a deep neural network
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(DNN) and multiple time-scale recurrent neural network (MTRNN). Tool features

were self-organized in parametric bias, modulating the body model according to the

tool in use. Finally, I designed a neural network for the robot to generate motion only

from the target image. To evaluate the model, I have the robot manipulate an object

task without any tools or with several tools of different shapes. I have the robot

generate motions after showing the initial and target states by deciding whether and

where to grasp the tool. Therefore, the robot is capable of generating the correct

motion and grasping decision when the initial and target states are provided to the

robot.

3.2 Tool-Body Assimilation Model

Considering Grasping

In this section, I present the process of a tool-body assimilation model that considers

grasping during motor babbling for using tools. Figure 3.1 shows an overview of

the model, which consists of the following four modules: a motor babbling module,

an image-feature-extraction module with the DNN, a body model module with the

MTRNN, and a body modulation module with extra-context nodes. The process

consists of three phases:

1. Acquisition of the body model using the DNN and MTRNN through motor

babbling

2. Training the body modulation module with extra-context nodes

3. Motion generation using the initial state and a target image

Figure 3.2 shows the learning process of tool-body assimilation. The robot ac-

quires training data from motor babbling, producing joint angles, grasping signal,

and image data of grasping and nongrasping motions. During this process, the robot

moves its arm with the target object and tool present. When the robot touches the

tool during motion, the robot either grasps or does not grasp the tool, to gain experi-

ence of using and not using the tool. The image data dimension is then reduced using
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the image-feature-extraction module. Next, relationship between the image features

of nongrasping motions, joint angles, and the corresponding grasping signal is learned

by the body model module as the robot’s body model. The relationship between joint

angles, image features, and corresponding grasping signal is then learned by the body

modulation module for grasping decisions, resulting in tool functions. After training,

the system is capable of generating motions when provided with the initial state and

a target image.

Figure 3.1: Tool-body assimilation model. The model consists of four modules: Motor
babbling module, image-feature-extraction module obtained through the DNN, body
model module obtained through the MTRNN, and body-model modulation module
with extra-context nodes. The model is separated into two parts: the body model
and body modulation.
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(a) Learning process of body model

(b) Learning process of body modulation

(c) Process of motion generation

Figure 3.2: Learning process of tool-body assimilation. (a) The robot learns its
body model through the DNN and MTRNN using motor babbling. The initial values
of context nodes in the MTRNN are self-organized as motions with touching (or
grasping) tool patterns. (b) The robot learns only the body modulation module
with extra-context nodes by fixing the parameters of the body model. The grasping
state and tool function are self-organized in the extra-context nodes. (c) The robot
generates motion through current state and a target image.
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3.2.1 Acquisition of Body Model through Motor Babbling

In this phase, the robot learns the relationship between the joint angles and sensors,

i.e., the image features and grasping state, to acquire its body model through mo-

tor babbling using the DNN and MTRNN (Figure 3.2-(a)). The robot performs the

motions of manipulating the tool without grasping (nongrasping motions) by consid-

ering various manipulating positions during motor babbling. Raw image data is used

to train the image-feature-extraction module using the DNN. After the training, the

image-feature-extraction module is capable of extracting image features for untrained

data. Next, the sequence of image features, joint angles, and grasping state is used

to train the body model using the MTRNN. The motion patterns with touching (or

grasping when the robot performs tool grasping) tool patterns are self-organized in

the MTRNN.

3.2.1.1 Image Feature-Extraction with DNN

DNNs are multilayered feed-forward neural networks proposed by Hinton et al. [33].

DNNs allow for highly precise speech and image recognition [35,36]. In recent years,

DNNs have gained attention in robotics studies [28,29,59,68,69,98,99]. In this study,

a sandglass-type DNN (the number of n-th layer neurons satisfy Dn > Dn+1 in the

encode layer and Dn < Dn+1 in the decode layer) is used as an auto-encoder, in which

Dn is fully connected to Dn+1, and the central hidden layer is reconstructed as the

output layer. This is achieved by training the auto-encoder to provide output values

that are equal to the input values. The output of the n-th layer hn is calculated as

follows:

hn = f(Whn−1 + b), (3.1)

where f is the activating function (the sigmoid function is used in this study), W is

the weight matrix, and b is the bias. Thus, the DNN can reduce high-dimensional

image data and extract image features without predetermined information.

In this study, I used a DNN training approach, which is based on the Hessian-free

approach proposed by Martens [100], because this method is more time efficient than

its pre-training and fine-tuning counterpart [33]. In Newton’s method, the parameters
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θ ∈ R
N of an objective function f are iteratively calculated by updating θ as θ + αp̂

for α with search vectors p̂. The primary concept of Newton’s method is that f ,

which can be locally approximated around each θ, is calculated as

f(θ + p̂) ≈ qθ(p̂) ≡ f(θ) +∇f(θ)⊤p+
1

2
p⊤Bp (3.2)

where matrix B is either the Hessian matrix H = ∇2f , or an approximation of it. In

the standard Newton’s method, qθ(p̂) is optimized by computing the N × N matrix

B, and solving the system Bp̂ = −∇f(θ)⊤. However, calculation cost is high when

N is large, even for modestly sized neural networks. Therefore, Martens used an

N -dimensional vector d and the linear conjugate gradient algorithm (CG) [100] for

optimizing quadratic objectives. This requires only matrix vector products with B.

Details about the implementation are provided in several other studies [100–102]. The

modified Newton’s method is applied by reconditioning Hessian matrix H as

B = H + λI (3.3)

where B is the damped Hessian matrix of f at θ, λ ≥ 0 is a damping parameter, and

I is the unit matrix.

3.2.1.2 Body Model Acquisition with MTRNN

The MTRNN proposed by Yamashita and Tani is a variant of an RNN [61]. RNNs

have desirable characteristics for predicting the next state from the history of a neuron

state by preserving the internal state using recurrent connection [71]. The MTRNN

is capable of learning multiple sequences of data to consider trajectories with branch

structures1, e.g., multiple goals or objectives. The MTRNN is composed of three

types of neurons that have different time constants, which determine the node firing

rates, and thus affect the manner in which the following nodes remember short- and

long-term data: input-output (IO), fast-context (Cf ), and slow-context (Cs) nodes

(Figure 2.3). The input-output (IO) nodes are associated with sensorimotor states.

1An example of a sequence of actions with branching trajectories is discussed in [61].
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The fast-context (Cf ) nodes learn small segments in the data as primitive movements,

whereas the slow-context (Cs) nodes learn the sequence of the primitives in the data.

By combining these nodes, the MTRNN learns the dynamics of the data sequence.

In addition, a specific motion and sequence can be generated by considering the

multiple learned patterns and computing the corresponding acquired initial values of

the slow-context (Cs) nodes. In this study, the Cs space is self-organized by motion

patterns with touching (or grasping) tool patterns. The back propagation through

time (BPTT) algorithm [32] is applied during the learning phase of the MTRNN. The

calculation of the algorithm is the same as with section 2.2.1.

3.2.2 Body Model Modulation Using Extra-context Nodes

In this phase, the robot acquires the grasping decision and tool function as body

model modulation through motor babbling, using the grasping and nongrasping tools

by considering various manipulating and grasping positions with transfer learning

in terms of reusing the body model [103] (Figure 3.2-(b)). Transfer learning is the

learning of a framework to apply the learned knowledge of a task to other tasks.

In addition to the input-output (IO), fast-context (Cf ), and slow-context (Cs)

nodes, the extra-context (Ce) nodes are connected to the MTRNN. The extra-context

(Ce) nodes are connected unidirectionally to themselves and to the input-output (IO),

fast-context (Cf ), and slow-context (Cf ) nodes, whereas other nodes are connected

bidirectionally (Figure 3.1).

The grasping and nongrasping data is used to train the extra-context (Ce) nodes

as body modulation modules. As modulation can be performed at any time, the robot

is allowed to start its motion without the tool being pre-attached to its hand. During

training, the weights and Cs(0) of the acquired body model module in the previous

phase are fixed, and only the weights and Ce(0) of the body modulation module are

trained. The robot performs the same motions with respect to joint angles for grasping

and nongrasping. As the robot performs the grasping or nongrasping of the tool using

the same motions, the grasping signal and image data, such as the movement of the

object and tools, are different. As a result, the body modulation module learns the
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differences caused by the grasping actions with the tool, that is, the extra context

(Ce) nodes learn body modulation timing (or grasping timing) and tool function.

Therefore, after training, the Ce(0) space that represents the grasping state and tool

function is formed. The number of the extra-context (Ce) nodes is much fewer than

that required for the body model (in this study, the number of the extra-context (Ce)

nodes is five and the body model requires 74 nodes.). The extra-context (Ce) nodes

do not represent the complicated methods of tool use, but only represent the manner

in which the original body model is modulated. Because the tool is treated as a part

of the body, I expect the robot to use tools based on the experience of moving the

body. Therefore, even if the number of tools is increased, the number of neurons of

the extra-context (Ce) nodes will be fewer than that required for the body model.

The calculation time required to learn the extra-context (Ce) nodes is shorter than

that required for the body model.

I used context nodes with finite values of time constants instead of parametric bias

(PB) nodes, which have infinite values of time constants. This method is important

and differs from a previous tool-body assimilation model [29]. Infinite values of time

constants imply that the values of PB nodes do not change during the sequence.

Therefore, PB nodes cannot represent the change from the nongrasping to grasping

state. With the tool not pre-attached to the hand, it is possible for the extra-context

(Ce) nodes to consider grasping decisions and positions during tool use. A comparison

of the proposed model with a previous tool-body assimilation model that uses PB

nodes [29] instead of extra-context (Ce) nodes is discussed in section 3.5.2. The

extra-context (Ce) nodes apply bias to the body model based on the learned grasping

state and tool features, and change the dynamics of the body model accordingly. The

value of the extra-context (Ce) nodes is calculated using the same method as that in

(2.6), while the weights from the extra-context (Ce) nodes to other nodes are updated

in the same manner as that for other weights of the MTRNN in (2.5).
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3.2.3 Motion Generation from the Initial State and Target

Image

The robot generates motion from the initial state (image, joint angles, and grasping

state) and a target image provided to the robot (Figure 3.2-(c)). As a feature of the

MTRNN, the Cs(0) of the network after training represents each learned motion in

the Cs(0) space, that is, the sequence can be recovered using appropriate Cs(0) and

initial state (image, joint angles, and grasping state) to substitute into the MTRNN

in (4) to (6). In this research, the robot determines appropriate Cs(0) and Ce(0) to

be close to the initial state and target image to associate joint angles, image features,

and grasping state. To calculate Cs(0) and Ce(0), the weights of the body model and

body modulation module are fixed. Moreover, the following equations are applied to

calculate the generation error:

E =

{

∑

i∈IO (yi(t− 1)− Ti(t))
2

t = 0, st

0 otherwise
(3.4)

where st represents the steps of the target image.

The Cs(0) and Ce(0) values are computed using (2.6) with the following conditions,

in which part of the input-output (IO) nodes can be shown. As only the error of the

first and last step is considered using (3.4), the robot associates a motion during the

initial state (image, joint angles, and grasping state) and a target image to minimize

the error. Note that the association is conducted in the internal model of the robot.

Therefore, calculation precision depends on network conditions such as a full teaching

signal and appropriate training. The calculation time is shorter than that required

to train the network because the weights of the body model and body modulation

module are fixed, and only appropriate Cs(0) and Ce(0) are computed.
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3.3 Experimental Setup

3.3.1 Simulated Robot Model

In numerical evaluations, I used a simulated robot model based on the structure

of the humanoid robot ACTOROID [87] as with section 3.3.1. In the experiment,

all joints was stiff instead of flexible joint. To evaluate the proposed method, the

movement of the robot is simplified such that it only moves on the plane of a desk

(two-dimensional movement). As at least three DOFs are required for any movement

on a two-dimensional plane, only three DOFs (joint ID 2, 4, 6 in Figure 2.4) out of

the seven DOFs of the robot’s arm were used, and the remaining four DOFs were

maintained constant. For motions, the motor torque command to each joint actuator

was given by (2.7).

3.3.2 Evaluation Task

To evaluate the effectiveness of the proposed model, I use an object manipulation

task, which is commonly used in tool-body assimilation studies [29, 42, 76–79]. The

robot conducts motions in the presence of a target object, which is 0.08 m in diameter,

and a tool object (the robot’s hand and I-, T-, L-, reverse L-, J-, “|−”, and C-shaped

tools; Figure 3.3) on a table. The L- and reverse L-shaped tools are treated as

unknown tools, which are considerably similar to the learned tools (I- and T-shaped

tools), and the J-, “|−”, and C-shaped tools, which have several dissimilarities with

the learned tools, are used only for evaluation, and not for training. There is friction

between the target object, tool object, and table.

3.3.3 Procedure of Motor Babbling

To perform motor babbling for teaching data, the initial position of the arm and

object, and several desired joint angles are provided for simplicity in result analysis.

First, the initial positions of the arm and objects are set. The target object has

four initial locations (Figure 3.4-(a)). Next, a sequence of three desired joint angles

(Figure 3.4-(b) to (d)) are provided as key poses for each joint of the arm (three
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Figure 3.3: Tools used in experiment. I- and T-shaped tools are used as training
data. The L- and reverse L-shaped tools are untrained tools considerably similar to
the learned tools, and J-, “|−”, and C-shaped tools have several dissimilarities with
the learned tools.
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DOFs) for a 6.0 s duration, that is, the robot performs motion slowly from the four

initial locations, (a), to (b) → (c) → (d). The first desired joint angle has four arm

poses for touching the tool, indicating that the robot is able to grasp the tool, and

the grasping positions are determined by the first key pose (Figure 3.4-(b)). In the

second key pose, the robot stretches the arm to maximize its reach while swinging

its arm to the left or right (Figure 3.4-(c)). In the third set of key poses, the robot

performs either the swinging or the pulling motion (Figure 3.4-(d)). Depending on the

combination of the key poses, tools, and object positions, the robot either succeeds

or fails to pull the object toward itself, and learns these different outcomes as tool

functions. The robot performs 128 motion sets per tool ((a)four initial locations, (b)

four first sets of key poses, (c) two second sets of key poses, (d) two third sets of key

poses, and considering grasping and nongrasping, that is, 4 × 4 × 2 × 2 × 2 motion

sets). In a set of 64 motions, the robot grasps the tool upon touching it, that is,

the tool is attached to the body and once the robot grasps the tool, the robot never

releases it; whereas in the other set of 64 motions, the robot treats the tool as object

such as push and pull without attach the object to the body even though the robot

contacts it. Additionally, the robot performs motions for the I- and T-shaped tools.

As a result, the total number of motion sets for the teaching data is 256.

During motor babbling, the robot obtains the teaching data used during training.

The acquired data is composed of joint angle, image, and grasping signal sequential

data as follows:

1. Joint angle data: The motor data of the three movable DOFs is recorded for 30

steps during the 6.0 s of motor babbling (sampling interval is 0.2 s). This data

is then scaled to [0.1, 0.9] to be used as the teaching data in the MTRNN.

2. Image data: Image data is acquired using a camera set affixed above the robot.

This camera has a field of vision that is sufficient for capturing the task area

(the desk). Similar to the joint angle data, the image data is recorded for 30

steps. This image data (320 × 240 pixels) is then reduced to 32 × 24 pixels

(minimum size to distinguish the object) to reduce the calculation cost in this

experiment, and the image features are extracted through the DNN. This results
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in a 15-dimension image feature data, scaled to [0.1, 0.9].

3. Grasping signal: A grasping signal scaled to [0.4, 0.6] is also recorded during

motor babbling. The range of grasping signal is decided not to change too large

to train stability. When the robot does not grasp the tool, the signal remains

low (0.4), whereas it increases (0.6) after the tool is grasped. The signal is a

command from the robot.

These data are then input into the DNN and MTRNN to train the body model

and body modulation modules. Table 3.1 presents the specifications of the DNN used

in this study. Note that the n-th and n+1-th layer neurons are fully connected. Table

3.2 presents the specifications of the MTRNN used in this study. Note that the input-

output (IO) nodes are connected only to themselves and the fast-context (Cf ) nodes.

Furthermore, the fast-context (Cf ) nodes are fully connected to all nodes, whereas

the slow-context (Cs) nodes are only connected to themselves and the fast-context

(Cf ) nodes. Moreover, the extra-context (Ce) nodes are connected unidirectionally

to themselves and the input-output (IO), fast-context (Cf ), and slow-context (Cf ),

nodes (Figure 2.3).

Table 3.1: Design of DNN

Dimensions of IO Nodes 768
Number of Hidden Layers 11

Dimensions of Hidden Nodes 500-250-100-50-25-15-25-50-100-250-500
Number of Training Data 7680

3.4 Numerical Simulation Results

In this section, the internal representations of the robot body model and body modu-

lation modules are described. The observation results show the formation of clusters

depending on different states of the data. For example, different clusters are formed

depending on the grasping positions, grasping state, and tool functions. This infor-

mation is not clearly defined in the data, that is, there are no labels; therefore, if
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Figure 3.4: Initial position of the arm and object, and first, second, and third sets of
key poses (example with T-shaped tool. The motion with I-shaped tool is the same as
that with T-shaped tool.). The robot performs motion from four initial locations, (a),
to (b) → (c) → (d), i.e., 128 motion sets per tool ((a)four initial locations, (b) four
first sets of key poses, (c) two second sets of key poses, (d) two third sets of key poses,
and considering grasping and nongrasping, that is, 4× 4× 2× 2× 2 motion sets). In
a set of 64 motions, the robot grasps the tool upon touching it, whereas in the other
set of 64 motions, the robot pushes the tool away upon contact. Additionally, the
robot performs motions for the I- and T-shaped tools. As a result, the total number
of motion sets for teaching data is 256.
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Table 3.2: Design of MTRNN. Each type of node has different time constants. The
structure of the MTRNN is depicted in Figure 2.3

Type of nodes Node name No. of nodes Time constant τ

Joint angle input 3 2
Input-output (IO) Image feature input 15 2

Grasping state input 1 2
Fast Context (Cf ) Fast context 50 5
Slow Context (Cs) Slow context 5 20
Extra Context (Ce) Extra context 5 20

clusters are formed, it can be said that the robot is able to understand different data

features. These data features can be reused later for unknown situations.
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Table 3.3: Representation of main components of PCA

Target of analysis PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Body model
module (Cs(0)) Grasping position Motion Motion - - - - - -

Body modulation
module (Ce(0)) Grasping state

Mix of
information Tool function

Grasping state
and

tool function - - - - -

Image feature
extraction (DNN)

Grasping position
and

motion Motion

Grasping position
and

motion Motion Motion

Grasping state
and

grasping position
Grasping
position

Motion
and

tool function

Motion
and

tool function
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3.4.1 Grasping Positions of Tools

3.4.1.1 Representation of Grasping Positions on the Initial Values of Slow

Context (Cs) Nodes of Body Model

To evaluate the representation of grasping positions on body model, I have the robot

recognize the grasping position only from the provided initial state (image, joint

angles, and grasping state) and target image in which the robot’s arm contacts the

tool to calculate (3.4) (st = 8) for trained and untrained tools and grasping positions.

Figure 3.5-(a) shows the plots of the principal component analysis (PCA) of Cs(0)

of the body model with trained and untrained tools and grasping positions. In this

experimental setting, the grasping position depends on the first set of key poses

(Figure 3.4). Clusters are formed for the trained and untrained tools and grasping

positions. Clustered grasping positions are relative to the grasping positions. This

implies that when the value of PC1 is large, the robot grasps the bottom of the tool.

Therefore, the robot is said to be able to recognize the grasping positions.

Figure 3.5-(b) shows the plots of the PCA of the DNN with image extraction.

Table 3.3 shows the representation of the main components of the PCA. To focus

on grasping positions, PC1 and PC3 are plotted in Figure 3.5-(b). The grasping

positions for trained data appear to be clustered. When the grasping position is

the same with the different tool, image data would be similar and it appears that

image features are also similar; however, those for untrained data are mixed. In

addition, the clustered grasping positions are irregularly located compared to those

in Figure 3.5-(a). The DNN composed of feed-forward neural network is trained with

only image data, whereas the body model is trained with time series images, joint

angles, and grasping state using RNN with recurrent connection. Thus, I believe

that time-continuous images and joint angles using neural networks with recurrent

connection is necessary for well-clustered grasping positions.
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Figure 3.5: Representation of grasping position in PCA of (a) Cs(0) of body model
and (b) DNN with image extraction.
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3.4.1.2 Relationship between the Object Position and Grasping Position

of Tool

To evaluate the relationship between the object position and grasping position of the

tool, I have the robot recognize the grasping position from the provided initial state

(image, joint angles, and grasping state) and target image in the case of two different

object positions (the object is close to and away from the robot) with trained and

untrained tools (Figure 3.6) to calculate (3.4) (st = 30), and then generate motion

using the calculated Cs(0) and Ce(0). The translucent image shows the initial state,

and the clear image shows the target image in Figure 3.6. The image is used for

describing the setup, and not for motion generation. To prevent determining the

grasping position directly from the target image, it is shown without the tool. As a

result, the robot grasps the top of the tool when the object position is close to the

robot, whereas it grasps the bottom of the tool even though untrained tool.
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Figure 3.6: Relationship between the object position and grasping position of tool. Translucent image shows initial
state and clear image shows the target image. The image is used for describing the setup, and not for motion
generation.
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3.4.2 Representation of Grasping State on Initial Values of

Extra-Context (Ce) Nodes of Body Modulation

To evaluate the representation of grasping state on body modulation, I have the robot

recognize the grasping state only from the provided initial state (image, joint angles,

and grasping state) and target image to calculate (3.4) (st = 30). Figure 3.7-(a)

shows the plots of the PCA of Ce(0) of body modulation. To focus on the grasping

state, PC1 and PC4 are plotted in Figure 3.7-(a) (Table 3.3). The clusters of grasping

and nongrasping data are formed for the trained and untrained tools. This implies

that the robot can recognize the grasping state from the target image. A few of the

plots are incorrectly recognized in Figure 3.7-(a). In the cases, the nongrasping plot

is in the grasping cluster. This is because the given target image appears to be a

grasping image (the robot’s arm touches tool without grasping). Therefore, the robot

recognizes this as a grasping tool, even though it does not actually grasp the tool.

I did not provide any labels such as grasping and nongrasping during training. It

is important how robots define grasping, and not how I define it. In other cases,

the grasping plot is in the nongrasping cluster. This is because the object position

after motion is almost the same for the given target image and generated motion.

Therefore, it appears that PC1 includes the object position. The result shows that

the robot can decide not to grasp the tool to move the object to the target position,

even though the robot grasps the tool in the provided target image. Thus, the robot

is said to be able to decide the grasping state.

Figure 3.7-(b) shows the plots of the PCA of the DNN with image extraction. To

focus on the grasping state, PC1 and PC6 are plotted in Figure 3.7-(b) (Table 3.3).

To compare with the PCA of Ce(0) of body modulation, the grasping state is not

clustered for trained and untrained data. The DNN composed of feed-forward neural

network is trained with only image data, whereas the extra-context (Ce) nodes are

trained with a continuous image, joint angles, and the grasping state using RNN with

recurrent connection. Therefore, the robot is able to recognize the grasping state

easily with MTRNN, to compare with only the DNN.
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Figure 3.7: Representation of grasping state in PCA of (a) Ce(0) of body modulation
module and (b) DNN with image extraction.
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3.4.3 Representation of Body Modulation on Slow-Context

(Cs) Nodes of Body Model

To evaluate the body modulation in the body model by the body modulation module,

I have the robot recognize grasping state only from the provided initial state (image,

joint angles, and grasping state) and target image to calculate (3.4) (st = 30), and

then generate motion using the calculated Cs(0) and Ce(0). Figure 3.8 shows the

plots of the PCA of Cs of the body model with time steps. For better visibility,

two motions are shown in Figure 3.8. To focus on body modulation, PC2 and PC3

are plotted in Figure 3.8 (Table 3.3). In Figure 3.8, the grasping and nongrasping

motions branch off after contact between the robot hand and tool (approximately 8

steps) in each motion. Therefore, it can be said that the robot modulates the body

after grasping the tool.

3.4.4 Representation of Tool Function on Initial Values of

Extra-Context (Ce) Nodes of Body Modulation

To evaluate the representation of tool function on body modulation, I have the robot

recognize tool function only from the provided initial state (image, joint angles, and

grasping state) and target image to calculate (3.4) (st = 30), and then generate

motion using the calculated Cs(0) and Ce(0). Figure 3.9-(a) shows the plots of the

PCA of Ce(0) of body modulation. To focus on tool function, PC3 and PC4 are

plotted in Figure 3.9-(a) (Table 3.3). Figure 3.9-(a)-(left) includes the failed motion

of pulling and swinging (see Figure 3.4) the object. This indicates that the robot

performed pulling and swinging motions; however, it could not move the object to

the correct position (the object is away from the tool). In this case, the tool function

is not clustered. The failed motions are removed from Figure 3.9-(a)-(left), and

Figure 3.9-(a)-(right) is composed of the successful motions of pulling and swinging

the object. Thus, the tool functions are clustered. This result includes the untrained

tool in addition to the trained tool. Tool function is not only recognized by the joint

angles as pulling or swinging, but also by the object position. From the above, the

robot can be said to recognize the tool functions.
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Figure 3.8: Representation of body modulation by body modulation module in PCA
of time steps Cs of body model. Two motions are selected for better visibility.
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Figure 3.9-(b) shows the plots of the PCA of the DNN with image extraction.

To focus on tool function, PC8 and PC9 are plotted in Figure 3.9-(b) (Table 3.3).

After removing the failed motions from Figure 3.9-(b)-(left), Figure 3.9-(b)-(right)

is composed of the successful motions of pulling and swinging the object. Even

though fail motion is included in Figure 3.9-(b)-(left), it seems that the clusters of

pulling and swinging motion are almost formed. Therefore, PC8 and PC9 almost

represent motion, that is, when the motion is the same with the different tool, image

data would be similar and it appears that image features are also similar, that is,

the object is ignored. When the contribution ratios in Figure 3.9-(b) are compared

with those in Figure 3.9-(a), the contribution ratios of the DNN are comparatively

smaller than those of the body model module. The body model modules are trained

with continuous images, joint angles, and grasping state. Therefore, the robot can

recognize the tool function easily with MTRNN, to compare with only the DNN.

To evaluate the ease in movement according to tool shape, the success rate of

each motion (pulling or swinging) with each tool is calculated to count the number of

motions in which the object was successfully moved in Figure 3.9-(a). The number of

the each motion with each tool is 32 ((a)4× (b)4× (c)2× (d)1(pulling or swinging)

(Figure 3.10). The success rate of motion is higher for tools with protrusions on the

left side than for those without it, such as the I- and L-shaped tools. These tools are

more helpful for swinging an object close to the robot. The protrusion on the left side

is required to perform the pulling function successfully. The C-shaped tool is longer

than other tools, as a result, it is suitable for pulling an object close to the robot.

Figure 3.11 shows the plots of the PCA of the center of gravity of Ce(0) of the

body modulation of each tool. The larger values on the PC3 axis and smaller values

on the PC4 axis represent the T-shaped tool, whereas the smaller values on the PC3

axis and larger values on the PC4 axis represent the I-shaped tool. Therefore, the

C-shaped tool with a small protrusion is plotted at the smaller values on the PC3 axis

and larger values on the PC4 axis. Based on this, the robot can be said to recognize

tool functions.



78 Chapter 3. Extension of the Robot Body Model with Tool-body Assimilation

Figure 3.9: Representation of tool function for pulling and swinging in PCA of (a)
Ce(0) of body modulation model and (b) DNN with image extraction. The per-
centages of axes are contribution ratios to the total amount of information of an
eigenvalue. The left figure includes the failed motions of pulling and swinging the ob-
ject. This indicates that the robot performed pulling or swinging motions; however,
it could not move the object correctly. The right figure comprises of the successful
motions of pulling and swinging the object.
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Figure 3.10: Success rate of each tool for pulling and swinging in Figure 3.9-(a). The
success rate is calculated to count the number of motions in which the object was
successfully moved.
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Figure 3.11: Representation of all tool functions in PCA of the center of gravity of
Ce(0) of body modulation of each tool. The larger value on the PC3 axis and smaller
values on the PC4 axis represent the T-shaped tool, whereas the smaller values on
the PC3 axis and larger values on the PC4 axis represent the I-shaped tool.
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3.4.5 Motion Generation

To evaluate the performance, I have the robot generate motion only from the pro-

vided initial state (image, joint angles, and grasping state) and target image to cal-

culate (3.4) (st = 30) and then generate motion using the calculated Cs(0) and

Ce(0). For the evaluation, the robot recognizes the trained grasping motions with

trained and untrained tools (Figures 3.3 and 3.4). This implies that 64 motions

((a)4 × (b)4 × (c)2 × (d)2 in Figure 3.4) are tested for each tool. I evaluated the

performance of the proposed system by counting the number of tasks in which the

object was successfully moved to a position within n times of the object’s diameter

d (d = 8cm) from the target position in the visible area (32× 24 pixels). Figure 3.12

shows the relationships between the success rate and d. The success rate within d was

approximately 20–35%; however, the rate within 2d was more than 50% even when

the robot used the untrained tools. The success rate appears to be low for precise

control. This is because the object size is 1 to 2 pixels in the image, that is, the object

size is considerably smaller than the robot size. In addition, in this experiment, the

robot attempts to perform motion to close to the target image, considering the robot

posture in addition to the position of target object. There is no difference between

the trained and untrained tools with respect to success rate because the DNN could

extract good image features, such as tool shape, as a generalization, and the RNN

could acquire a good sensorimotor relationship.

Regarding the evaluation of the generalization ability of the DNN, Figure 3.13

shows the original images and recovered images to substitute the image using the

trained DNN. The images of the tools and the target object were recovered. Moreover,

even with unknown tools, it was possible to recover the shape of the tools.

3.5 Discussion

3.5.1 Comparison with Self-organizing Map

In previous studies, self-organizing map (SOM) has been used for the extraction of

features [78,104]. Arie et al. proved that SOM is the high compatibility with MTRNN.
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Figure 3.12: Success rates of manipulating objects (Test with unknown tool). The
success rate is calculated such that the object position is within n times of object’s
diameter d (d = 8cm) from the target position in the visible area (32× 24 pixels).

SOM is an unsupervised learning neural network proposed by Kohonen [105]. It is

composed of input and output neurons. The neurons in the output layers are two-

dimensionally arranged and possess weight vectors, w. The weight vectors are set to

have the same dimensions (I) as the input vector, v. The image features are defined

by the following formula:

pi =
exp

{

− ∥wi−v∥2

σ

}

∑

j∈N exp
{

− ∥wj−v∥2

σ

}

, (3.5)

where N is the dimension of the SOM and i ∈ I.

It is possible to reduce the dimensionality of data by using an SOM. However,

if there are many motion patterns for the robot, it is difficult to extract features

using an SOM. Therefore, I used an auto-encoder with the DNN for the extraction

of features.
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Figure 3.13: Original images and recovered images using the trained DNN
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3.5.1.1 Extraction of Image Features by Self-organizing Map

In previous studies, SOM has commonly been used as an image feature extraction

method [78, 104, 106, 107]. To compare image features extraction by DNN, image

features were also extracted by SOM. Figure 3.14 shows a visualization of the refer-

ence vectors of the SOM. Reference vectors are the visualization of image features.

Reference vectors represent the patterns that are extracted from the input data. The

characteristics of reference vectors are that the units that are mapped close to each

other will have close resemblances to each other. In addition, each input data is

classified to the locations of the reference vectors that are similar to the data. The

dimensions of this SOM were 5× 5. The results show that the difference between the

bare hand and tools is not learned accurately and that the motion patterns are not

learned accurately. I changed the dimensions of SOM to 10×10. However, the motion

patterns were not learned accurately after increasing the SOM dimension. Even if

feature extraction is done well by increasing the dimension, it is difficult to learn by

RNN because of the greater dimension. When more tools are introduced, the various

tool conditions were included in each vector, causing the tool feature classification

to fail. When only a few tools are used, it is possible to learn the image features

accurately with SOM. This is shown in Figure 3.15 where image features of the bare

hand and T-shaped tool were extracted by SOM.

3.5.1.2 Extraction of Image Features by DNN

Original images were recovered by substituting the image features extracted by DNN

(Figure 3.16). The image of the bare hand and tools were accurately recovered.

In addition, the position of the target object was recovered. Moreover, even with

unknown tools it was possible to recover the shapes of the unknown tools.

In the case of the SOM, extracted features of the target object were unclear;

therefore, it was difficult to recover the position of the object accurately. DNN does

not use classifications, but instead makes use of auto-encoders that are trained to

produce the same output as the input data. With this, it is possible to reduce the
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Figure 3.14: Reference vector of SOM
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Figure 3.15: Reference vector of SOM (bare hand and T-shaped tool only)
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dimensionality of large numbers of high-dimensional data followed by high reproduc-

tion performance. In addition, there is no need to fine tune the parameter settings

with DNN. Thus, if there are large amounts of training data, the DNN is superior to

the SOM in the extraction of image features.

3.5.2 Comparison with Tool-body Assimilation Model Using

PB nodes

The tool-body assimilation model with the MTRNN and PB [29] instead of extra-

context (Ce) nodes was tested to determine whether the model is capable of learning

different grasping decisions. Each experiment was conducted three times using the

randomly set initial values of the weights and context in the MTRNN. Next, the

average values were calculated. Here, the MTRNN acted as the body model, while

PB learned the different grasping decisions. The training of the body modulation

module failed because the grasping signal error remained high (Figure 3.17). This

is because PB, with infinite values of time constants, can provide only a constant

modulation effect to the body. It is difficult to express the transition between two

grasping states (nongrasping to grasping).

3.6 Summary

In this chapter, I proposed a tool-body assimilation model that considers grasping

using deep learning. Previous tool-body assimilation models [29] required the robot

to have the tool pre-attached to its hand before the motion started. This leads to

problems in which the robot cannot make decisions about grasping state (grasping or

nongrasping) and positions. This is because grasping is not the only option for using

tools, and tool functions change depending on the grasping positions. To overcome

these issues, in this study, the robot started its motions without the tool being pre-

attached. The robot then performed motor babbling by grasping and nongrasping the

tool in the process to learn its body model and tool functions. Next, the robot grasped

different parts of the tool, learning the different tool functions of the different grasping
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Figure 3.16: Original images and recovered images using the trained DNN (with PB)]
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Figure 3.17: Training error for acquisition of body model with extra-context Ce nodes
and PB nodes

positions. To encode the change in the body model after grasping, a body modulation

module was attached to the body model. Instead of the PB nodes with infinite values

of time constants (state does not change), which were used in previous models, context

nodes with finite values of time constants (state is capable of changing) were used so

that the nodes could provide different modulation effects to the body during motion.

After training the tool-body assimilation model, the system was evaluated using a

robotics simulator. Furthermore, the generalization performances of tool types and

grasping positions were evaluated. During the evaluations, the robot was shown the

initial states and target images, that is, the robot considered the required motions,

grasping decisions, and grasping positions to reproduce the target images. Thus,

the system exhibited generalization abilities with respect to tool types and grasping

positions.
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Chapter 4

Conclusion

4.1 Overall Summary of the Current Research

This paper proposes a machine learning framework for the acquisition and extension

of a robot body model using motor babbling through deep learning such as RNN and

DNN. Existing robots include industry-standard robots used for speed, precision, and

cost-effectiveness, and simple robots having a small number of DOFs. The future

wave of robots will have a large number of DOFs, various sensors, and flexible joints

used for complex tasks considering dynamic motion and safety, and will require the

means for accommodating dynamic environments. This research demonstrates the

effectiveness of such robots.

For the acquisition of the robot body model, I propose a two-phase learning strat-

egy for robots with flexible joints having multi-DOFs to accomplish dynamic motion

tasks. The two-phase learning methodology comprises body dynamics of the robot,

including a pre-training phase with motor babbling and a fine-tuning phase with

incremental learning of task motions. In the pre-training phase, I employ an RNN

considering active and passive exploratory motions to ensure that the robot efficiently

learns body dynamics. In the fine-tuning phase, the learned body dynamics are ad-

justed for specific tasks. The proposed method is analogous to the successful learning

strategy for DNNs consisting of pre-training and fine-tuning. In the pre-training
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phase of DNNs, the parameters of each layer are initialized to obtain the appropri-

ate values. Then, in the fine-tuning phase of DNNs, the whole network is trained

with all layers connected to efficiently learn the target data using the results of the

pre-training phase. I demonstrate the effectiveness of the proposed methodology on

a simulated flexible joint robot model as well as in hardware experiments using a

PR2 robot both of which have a seven DOF redundant arm for dynamic tasks such

as crank-turning, door-opening/closing, and drawer-opening/closing involving con-

strained movement requiring interactions with the environment. The results show a

reduction in the required number of training iterations for task and generalization

capabilities for untrained situations with the learned body dynamics through motor

babbling. In addition, I discuss issues regarding the trade-off between task training it-

erations and the success rate of task execution. Furthermore, I discuss the explorative

motor babbling to acquire body dynamics with a small number of motor babbling

movement.

For the extension of the robot body model, I propose a tool-body assimilation

model with regard to grasping during motor babbling for using tools. The robot

performs motor babbling using nongrasping and grasping tools required to learn both

the body model and tool functions. In addition, the robot grasps various parts of the

tools to learn the different tool functions associated with different grasping positions.

These motion experiences are learned using a DNN and RNN. Tool features were

self-organized in extra-context nodes, and the body model was modulated according

to the tool in use. Finally, I designed a neural network for the robot to generate

motion only from a target image. To evaluate the model, I had the robot manipulate

an object task without any tools or with several tools of different shapes. Moreover,

I had the robot generate motions after demonstrating the initial and target states

by deciding whether and where to grasp the tool. Through this, the robot showed

its ability to generate the correct motion and grasping decisions when the initial and

target states were provided to the robot.

The robot demonstrated the following abilities:

• Performing dynamic motions and complex tasks such as contacting the envi-

ronment using a large number of DOFs and flexible joints
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• Adapting to dynamic and uncertain real environments with highly generalized

abilities because of the approach without pre-designed models through deep

learning

• Coping with new tasks and situations in a short duration using the robot body

model through motor babbling

4.2 Future Works

This research demonstrated the effectiveness of motions with sensors using motor

babbling. However, humans can acquire a body model with a multi-modal information

involving tactile sensation, natural language, and audio through motor babbling.

The machine learning framework proposed in this work eliminates the need for a pre-

designed robot and environment models; that is, the robot acquires its model through

its experiences. It is possible to apply the approach not only for motion but also other

modes with integration.

In previous research regarding feature extraction, it was necessary to design the

features of each mode by humans. Using deep learning, the internal representation

of data is autonomously structured as features from the large amount of data, and

accurate results are acquired independent of human-designed features. However, in

research using machine learning, such as deep learning, the structure of the network

is determined by trial and error. I believe it would be also possible to acquire the

structure of the network in training. By doing so, even when new data is added, it

would be possible to acquire a suitable network structure by online learning.

Furthermore, in previous studies, features of each modal were acquired, and then

combined. However, the features of each modal were not always suitable features when

combined with other modals. For example, let me consider the case of a reaching task

using the arm of the robot and a camera. In this task, the important factor is the

relationship between the desk and the object, and even if the original background

is changed, there should be no problem. Thus, it is important to extract features

considering multiple modals.
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To combine all the above ideas, the robot adapts to the internal and external

models through interaction with the environment at all times.
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What is Embodiment Informatics?

Embodiment Informatics means the object with the body, composed of sensors and

motors, permanently adapts to its internal and environmental models through inter-

action with the environment. In other words, the internal and environmental models

are monitored from the acquired data through the body, and if there is a discrepancy

between the prediction by the constructed model and the actual result, the inter-

nal and environmental models will be reconstructed. For example, as the situation

changes, the acquired data also changes, so the internal and environmental model

also changes. Furthermore, when the body changes, the influence on the environment

changes, so the internal and environmental models are reconstructed and adapted.

In the field of AI, so far, data pertaining to a specific target is collected first, and

the design of the internal representation and features suitable for that data are es-

tablished next. In the robotics field as well, there is target to be solved before, and

the view point is how to describe those dynamic models. Therefore, it is necessary

for humans to design feature quantities and models for each task. This is possible in

an environment where modeling can be accomplished such as chess and Go, where all

conditions are known, such that the industrial robot has a constructed environment

that prevents inconsistencies with the model. However, as long as humans continue

designing models, unexpected situations cannot be dealt with by the robot. Going

forward, the ability of a robot to accommodate dynamic and uncertain environments,

such as those involving human interaction, will be required. It is important not to

set data or tasks targeted by humans in advance but to acquire and update models

themselves from time to time with acquired data from the interaction of the body of

the robot with the environment.
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As an example, I demonstrated the results of applying this concept to humanoid

robots in this thesis. The robots performed acquisition and extension of the body

model using motor babbling through deep learning. Through this approach, the

robots successfully produced internal and environmental models through interacting

with the environment independent of pre-designed models. By performing motor

babbling, the robot could learn the relationship between the motors and sensors as the

internal model as well as learning how the environment changed as the environment

model.　By establishing the robot body model, that is, dynamic motion learning for a

flexible-joint robot, after establishing the body model with motor bubbling, the body

model is adjusted according to the task. Consequently, it was possible to perform

dynamic tasks including contact with the environment using a multi-DOFs flexible-

joint robot, which has been considered difficult in the field robot research so far. This

indicates that robots are capable of dealing with dynamic situations. Furthermore,

the extension of the established robot body model, that is, the tool-body assimilation

model considering grasping, enabled the robot to use tools by modulating its body

model. This indicates the ability of the robot to accommodate a modified body.

This thesis employed a humanoid having a complex body to demonstrate the

capabilities of the proposed approach. This approach could be applied to simpler

structures as well. In the case of a device comprising a microphone and a speaker,

it would possible to acquire environmental information with a microphone and the

corresponding output information with a speaker.
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