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Abstract 

Currently, numerous factors, such as demographics, migration patterns, and economics, 

are leading to the critical labour shortage in low-skilled and physically demanding parts of 

agriculture. Thus, robotics can be developed for the agricultural sector to address these 

shortages. This study aims to develop an adaptive, biomimetic, and configurable modular 

robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and 

picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. 

These robotic solutions cover the entire perception–action–decision-making loop targeting the 

phenotyping of cereals and harvesting fruits in a natural environment. 

The primary contributions of this thesis are as follows. a) A high-throughput method for 

imaging field-grown wheat in three dimensions, along with an accompanying unsupervised 

measuring method for obtaining individual wheat spike data are presented. The unsupervised 

method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and 

calculates the average size of the wheat spike and total spike volume per plot. Experimental 

results reveal that the proposed algorithm can effectively identify spikes from wheat crops and 

individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and 

picking. To enable robotic harvesting, the initial perception system uses conditional generative 

adversarial networks to identify ripe fruits using synthetic data. To determine whether the 

strawberry is surrounded by obstacles, a cluster complexity-based perception system is further 

developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready 

fruit is localised using point cloud data generated by a stereo camera, the platform’s action 

system can coordinate the arm to reach/cut the stem using the passive motion paradigm 

framework, as inspired by studies on neural control of movement in the brain. Results from 

field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of 

less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination 

(searching/picking) are presented. 

Although this thesis focuses on strawberry harvesting, ongoing research is heading toward 

adapting the architecture to other crops. The agricultural food industry remains a labour-

intensive sector with a low margin, and cost- and time-efficiency business model. The concepts 

presented herein can serve as a reference for future agricultural robots that are adaptive, 

biomimetic, and configurable.  
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Chapter 1 

Introduction 

1.1 Robotics for Smart Agriculture – Why and why now 

Interlinked factors, such as changing demographics, economics, and climate, are 

increasingly driving the trend toward using robotics in smart agriculture. Further, in July 

2022, the Department for Environment Food & Rural Affairs (DEFRA, UK)-led review 

on automation in horticulture emphasised the need to accelerate/facilitate the adoption of 

artificial intelligence (AI)/Robotic harvesting technologies across horticulture. This can 

transform the ‘low-tech’ manual industry into a high-tech sector that contributes 

significantly to the gross domestic product (GDP), thus enabling food security through 

increased UK production, and minimising waste and carbon miles. The agricultural food 

industry is under severe pressure owing to the critical shortage of labour for tasks, such 

as fruit picking and packaging. Therefore, agricultural robots are being developed to both 

address the increased demand for production, and minimise production costs, and wastage, 

while ensuring environmental sustainability. 

1.1.1 Economic drivers 

An essential economic argument for using robots in agriculture is emphasising their 

potential to increase productivity and profitability through more efficient use of inputs 

[1]. For example, according to the British Summer Fruits (an industry body representing 

95 % of UK-grown berries purchased by the UK's supermarkets and retailers) [2], the 

labour costs for producing strawberries/raspberries/blackberries/blueberries were 

£40,000–70,000 per hectare in 2020. The increasing demand for sustainable and cost-
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effective growth year-round (52 w) in the UK can be satisfied only by scalability, 

workflow management, and robotic automation. In retail, "Big-shed" stakeholders, 

including Tesco, Sainsbury's, Morrison's, and Asda, are experiencing an increased 

demand due to the pandemic and Brexit. The fastest-growing sector in the UK is grocery 

online shopping, whereby Amazon Fresh, Mindful Chef (Nestle), Hello Fresh, and 

Gousto have gained popularity among consumers in recent years, which is expected to 

continue. Further, the demand for plant-based alternatives with excellent shelf life and 

provenance is growing. Most importantly, the current market climate has encouraged a 

focus on British producers and growers. The producers and growers must exploit their 

embedded robotics and automation to full capacity to meet market demands. The food 

market’s volume is expected to reach 2.9250651 trillion kg by 2027, and the food market 

is expected to grow by 3.1 % in 2023 [3]. The UK food market constitutes only 2.5 % of 

the global food market by value; therefore, the export potential for smart robotic 

harvesting technology is approximately 40 times the UK market size. Productivity growth 

is critical to the economic sustainability of the economy, essentially highlighting the 

urgency to adopt robotic manufacturing solutions coupled with farm innovation. 

1.1.2 Social drivers 

Increased robot usage in agriculture is likely to impact the social fabric of rural 

communities in the long run [1]. First, the development and application of robotics in 

agriculture are expected to eventually decrease or eliminate some employment 

opportunities with low-skill requirements. Simultaneously, it may create new job 

opportunities, such as service engineers and remote operators. Additionally, as the global 

population continues to grow, several countries urgently need to address the low 

production yield in fruit and vegetable production, as well as the efficient and intelligent 

utilisation of resources. The technophilic promise of AI and robotics is expected to 
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displace existing agricultural labour hierarchies with a radical labour market: essentially, 

highly skilled, highly trained workers may use digital agricultural technologies to increase 

productivity and efficiencies, whereas, lower-skilled workers in the fields, greenhouses, 

processing plants, and warehouses may be subject to increased employer scrutiny and 

surveillance, further rationalisation of their workplaces, and increasing expectations of 

productivity [4]. Thus, although robotics can drive automation and digitisation in 

agriculture, it may also gradually convert low-skilled jobs into high-skilled jobs over the 

long term. 

Regarding the current global workforce, optimism in the agricultural sector is 

currently lacking. The critical elements of the agricultural food industry are highly 

dependent on seasonal migrant labour to harvest crops. Recently, labour shortages were 

caused by economics and the Covid-19 pandemic, which severely affected the food and 

farming sector, whereby some fruit suppliers were forced to leave their produce rotting 

in the fields. This led agricultural practitioners to enquire about how, to what extent, and 

when can new robotic technologies and currently available automation ease the 

agricultural sector’s dependency on seasonal labour. 

However, the high production cost of fruit and vegetables might negatively impact 

affordability. Socially disadvantaged groups lack access to balanced nutrition, including 

fruits and vegetables, thus furthering inequality and the burden on the National Health 

Service. Cost-effective automation technologies can potentially improve yield and lower 

production costs, thereby enabling equal access to a balanced and nutritious diet. 

1.1.3 Ecological drivers 

Considerable research has reported that daily human activity is the cause of the rising 

global mean temperatures, which has resulted in current climatic conditions being the 

warmest in recorded history [5]–[7]. The AI for growing conditions can reduce energy, 
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which is a useful step toward achieving net zero. In particular, smart farms can effectively 

use resources and avoid waste. For example, improvements in crop handling accuracy, 

24/7 operation, and control afforded by robotics can reduce waste and increase the rate of 

production, which is currently limited by the rate and efficiency at which manual 

operators can process produced times. The European Union 2021 [8] report stated that 

approximately 2 m tons of pesticides are used globally per year. Total fatalities worldwide 

resulting from unintended pesticide poisonings are estimated at approximately 11,000 

deaths annually [9]. The automation of scouting, inspection, diagnosis, and treatment 

tasks via robots can significantly reduce the use of harmful pesticides and chemicals, thus 

improving yield and maintaining biodiversity. 

Overall, developing robotics in smart agriculture may significantly increase 

production while being resource-efficient, being environment-friendly, mitigating 

prevalent labour shortages, minimising waste and carbon emissions, and being tolerant to 

climate variations; all of these are core challenges faced by the farming industry. 

1.2 Central Contributions 

Automation in Agri-food is an extreme case for handling a diverse range of produce, 

variations in the same type of produce, changing environmental conditions, and 

manipulation tasks involved. All existing automation solutions are expertly tailored to a 

specific product; nonetheless, functional recycling of the underlying perception, 

manipulation, and decision-making frameworks for versatility, reconfigurability, 

modularity, and adaptivity in the automated harvesting and smart farming processes 

presents tremendous scope.  
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Figure 1. 1 - Robotic system developed by the thesis. The perception system provides targeted 

image-processing approaches for cereals and soft fruits, whereas the action system provides a 

solution for selectively harvested crops as cereals are typically left to the harvester. 

In this study, a robotic perception–action system was developed for agricultural 

applications. Figure 1.1 briefly illustrates the proposed robotics system comprising 

perception and action parts. In the perception system, the phenotyping of cereals based 

on 3D point clouds and the RGB image classification/localisation of soft fruits are 

discussed respectively. To enable the robot to harvest the soft fruit, the action system is 

designed to control the dual-arm and mobile base for automatic harvesting. The 

contributions can be summarised as follows. 

1. For the perception system, this thesis discussed two imaging processes, 

for wheat and strawberry. Accurate measurement of field-grown wheat traits, 

including spike number, dimension, and volume, are essential for crop 

phenotyping and yield analysis. Therefore, a high-throughput method for 

imaging field-grown wheat in three dimensions, along with an accompanying 

unsupervised measuring method for obtaining individual wheat spike data were 

presented. Images were captured using four structured light scanners on a field 

mobile platform, thereby creating dimensionally accurate sub-millimetre 

resolution 3D point clouds for a volume of 4.5 m3 in less than 10 s. An adaptive 
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k-means algorithm with dynamic perspectives was used to fit each spike's shape 

and a random sample consensus algorithm was used to measure the dimensions. 

The method generates small cuboids to fit all the wheat spikes and estimate the 

total spikes volume.  

2. In addition to cereals, conditional generative adversarial networks (GANs) 

trained using synthetic data, which was generated considering various 

environmental variances, were used. Compared with other models, this approach 

utilises the image-to-image translation technology to transform complex farm 

images into images containing only ripe strawberries; further, it eliminates the 

cumbersome manual data collection on farms and labelling. Herein, the 

recognition and localisation performance of the system was compared with 

human performance. Additionally, in real-world environments, some maturate 

strawberries are surrounded by stems and immature strawberries; to describe this 

type of situation, cluster complexity was defined. If no obstacles surround the 

target strawberry, this strawberry is classified as easy to harvest; otherwise, it is 

classified as difficult to harvest. To realise the classification of cluster 

complexity, a YOLACT-based model was developed by training the images 

from a greenhouse. This thesis compared and analysed the two models. These 

models could be integrated into our Essex agricultural robot (EAR). 

3. High variability in the canopy structure of the crop, occlusions, and 

minimising damage owing to contact impose a range of task-specific constraints 

for the robot action system. For robot manipulation actions, this study developed 

a novel neural control framework for goal-directed reaching considering various 

task constraints (e.g., gripper pose, joint limits, timing, bimanual coordination, 

and alignment of the gripper/cutter to the stem). The action system is a 
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forward/inverse model that can be used to simulate the consequences of actions 

for predictive planning and an extension to a range of tools coupled to the arm. 

4. The perception–action system was implemented on the Essex agricultural 

robot. In addition to the experiments in the laboratory setting, field trials were 

conducted with the robot in the UK’s first new vertical growing system for soft 

fruit at Tiptree, Essex, within the framework of an Innovate UK Industrial 

Strategy Challenge Fund on Transforming Food Production program (UK-China) 

through the project ‘Versatile-Configurable, Smart Indoor harvesting of 

‘Aubergine, Tomato and Strawberry’ crops (Project ID- 107460, 2021–2023). 

1.3 Organisation of This Thesis 

Developing a commercially viable automated harvesting and precision farming 

solution for an indoor, controlled environment utilising new sensors, and a data-driven 

crop management approach to maximise yield and minimise waste and emissions remains 

a challenge. Therefore, this study attempted to develop a versatile and configurable 

perception–action system for robotic harvesting. The overall framework is illustrated in 

Figure 1.2. The perception and action systems are presented separately, and then the two 

systems are integrated and detailed laboratory and field trials are given. 
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Figure 1. 2 - Overall framework of the thesis: The perception system comprises functions to 

handle wheat crop traits analysis and crop identification. Whereas the action system is integrated 

with the perception system into the Essex agricultural robot, thereby enabling the robot to harvest 

fruit automatically. 

The rest of this thesis is organised as follows. Chapter 2 presents the background on 

robotic perception–action. With developing hardware (e.g., stereo camera, Lidar, and 

light scanners) and algorithms (e.g., machine learning), the perception system has 

significantly improved in both crop identification and phenotyping. However, for the 

action system, employing robotic arms in unstructured environments is currently 

challenging, particularly for bimanual processes, such as picking a ripe strawberry with 

one hand while moving the surrounding unripe strawberries away with the other. 

Understanding the differences between current bimanual robot control approaches and 

how the human brain considers two-handed manipulations might reveal factors 

contributing to the bimanual manipulation ability gap between humans and robots [10]. 

Therefore, in addition to the works from optimal control theory (OCT), this chapter 

provides related work on impedance control based on the equilibrium point hypothesis 
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and synergy formation. Subsequently, some recently developed crop-harvesting robots 

are reviewed, and finally, the contribution of this thesis is summarised. 

Chapters 3 and 4 focus on the crop’s measurement and identification.  The hardware 

equipment and algorithms to measure or identify crops may vary with the crop. This thesis 

considered the soft fruit strawberry as the primary object for robot harvesting; nonetheless, 

it differs from some cereals in that cereals do not exhibit noticeable feature changes in 

shape and colour upon ripening. For, example, when wheat gradually matures, the volume 

of the wheat spikes increases accordingly; however, its colour does not change. These 

cereals can be harvested with large harvesters; however, yield estimates require advanced 

machine vision methods to replace manual measurements. Therefore, these two chapters 

independently study wheat dimension measurement and strawberry identification. 

In chapter 5, the action system for the robot is developed. It is a neural network 

implementation of the passive motion paradigm (PMP) based on the impedance control 

and equilibrium point hypothesis. This chapter explains and analyses the theoretical 

model of PMP and some experimental results.  

In Chapter 6, to ensure that the robot can continue harvesting ripe strawberries on 

the farm, a perception–action loop system is built. The robot should recognise ripe 

strawberries in the entire system and devise a forward plan for all detected strawberries. 

Particularly, it should decide which strawberry is suitable for harvesting by left, or right 

arm or combined with the mobile base movement. The proposed robotic perception–

action system is verified in field applications. Further improvements and open questions 

are discussed at the end of the chapter. 

Chapter 7 presents the general conclusions and some brief ideas for future work. 

Finally, as this thesis is centred on agricultural robots and graphics cannot fully 

demonstrate the performance of the proposed system, videos of some tests in 
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experimental and on-farm environments are provided in the chapter on Supplementary 

Material. 

1.3 Summary of Achievements 

The following conference papers have been published during my PhD study. 

• F. Wang, V. Mohan, A. Thompson and R. Dudley. “Dimension fitting of wheat 

spikes in dense 3D point clouds based on the adaptive k-means algorithm with 

dynamic perspectives,” 2020 IEEE International Workshop on Metrology for 

Agriculture and Forestry (MetroAgriFor), 2020, pp. 144-148. 

 

• L. Geer, D. Gu, F. Wang, V. Mohan and R. Dowling, "Novel Software 

Architecture for an Autonomous Agricultural Robotic Fruit Harvesting System," 

2022 27th International Conference on Automation and Computing (ICAC), 2022, 

pp. 1-6, DOI: 10.1109/ICAC55051.2022.9911161. 

 

The following journal papers have been published during my PhD study. 

• F. Wang, F. Li, V. Mohan, R. Dudley, D. Gu, and R. Bryant, “An unsupervised 

automatic measurement of wheat spike dimensions in dense 3D point clouds for 

field application,” Biosyst. Eng., vol. 223, pp. 103–114, 2022, DOI: 

https://doi.org/10.1016/j.biosystemseng.2021.11.022. 

 

• F. Wang, R, Rodolfo Cuan, P. Roberts, et al. Biologically inspired robotic 

perception-action for soft fruit harvesting in vertical growing environments. 

Precision Agric 24, 1072–1096 (2023). 
 

Finally, during my PhD, I also attended the following workshop. 

Plant Feature Extraction from 3D Point Clouds Workshop, PhenomUK workshop, 

1st July 2021. (Oral presentation)  
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Chapter 2 

Background on Robotic Perception–Action for 

Crop Harvesting 

This chapter provides the necessary background and suggestions for further research 

on the current state-of-the-art perception/vision systems, action systems (motion control 

methods), and prototypes of agricultural robots. 

2.1 Crop Perception System Based on Machine Learning 

Recently, several interesting vision approaches for tackling this challenge have been 

proposed. The literature on crop recognition technology is particularly extensive. For 

apples, strawberries, and tomatoes, the obtained RGB image is typically input into the 

recognition model (classifier), and subsequently, each harvest-ready crop is identified for 

the robot to harvest. The difference is that cereals, such as barley and wheat plants, 

typically use image-based plant phenotyping to measure and analyse trait variations, 

whereas harvesting tasks are handled directly by larger harvesters. Therefore, this section 

presents the different image processing methods for fruits and cereals.  

2.1.1 Image-based classifiers 

Machine learning classifiers, including both supervised and unsupervised learning, 

have recently become a popular method. Mathematically, the dataset can be denoted as

 
1

N
i

i
D x

=
= , consisting of N examples. The difference between supervised and 

unsupervised learning is that supervised learning requires each instance to be labelled. 
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Therefore, the dataset for the supervised learning method can be denoted as  
1

,
N

i i

j i
D x y

=
= . 

Where each instance ix  is associated with a label  1,...,i

j Ly y y , and L elements exist 

corresponding to L label concepts. The classifier can provide predictions ,...,i Ny y =  y  

for a given dataset. 

 Regarding the application of crop recognition, 

various recognition algorithms, such as colour-based 

analysis, edge detection, k-means clustering, and Bayes 

classifications, have been provided and discussed (see 

[11] and the references therein). These methods use the 

obtained images as data, use feature extraction methods for pre-processing, and 

subsequently input them into the corresponding algorithms for processing. For example, 

a method based on a histogram of oriented gradients (HOG) descriptor associated with a 

support vector machine (SVM) classifier was proposed for detecting strawberries [12]. 

Furthermore, another study extracted and combined tomatoes’ shape, texture, and colour 

features to achieve accurate tomato recognition based on the SVM [13]. The SVM is 

based on the principle of structural risk, and minimisation can minimise the upper bound 

on expected risk and implement classification using a separating hyperplane determined 

by a few support vectors. Therefore, SVM is less prone to overfitting or local optimal 

solutions compared with other methods, and it can be generalised for small sample sizes  

[14]. However, the detection performance of this type of method is influenced by the 

feature extraction methods and parameter selection.  

Artificial neural network (ANN)-based (deep learning) object detection has recently 

attracted significant attention owing to its powerful learning ability and advantages in 

handling occlusion, scale transformation, and background switches [15]. Unlike in the 

traditional methods, in ANN-based methods, the input data is initially forwarded to a 

Different classifiers have varying 

advantages and disadvantages. For 

other types and sizes of data, 

choosing an appropriate model and 

pre-processing operations and 

setting the parameters are often 

complex. 
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feature extraction network, and subsequently, the resultant extracted features are 

forwarded to a classifier network [16]. Therefore, both feature extraction and 

classification can be performed by neural networks without data pre-processing. Given 

the above advantages, several ANNs have been introduced to detect fruits or vegetables 

for harvesting robots. For instance, the mask region convolutional neural network (Mask-

RCNN) [17] was introduced into the machine vision of a strawberry harvesting robot for 

fruit detection; thus, it improved universality and robustness in a non-structural 

environment [18]. Convolutional neural networks (CNNs) have also been developed to 

detect, segment, and track wine grapes [19]. Additionally, a vision system to localise 

strawberries based on the Mask-RCNN has been developed [20]; this system aims to 

avoid collisions between the gripper and fixed obstacles. However, the localisation 

algorithm still needs to optimise and adapt to suit more complex situations, such as 

occluded and unusual hanging positions of the strawberries. In addition to strawberries, a 

rich image dataset of date fruit bunches in an orchard comprising over 8,000 images of 

five date types in different pre-maturity and maturity stages has been created and tested 

[21]. Furthermore, a team at the University of Cambridge [22] initially trained Vegebot 

to recognise the harvest-ready, immature, infected lettuce, and background in the field 

using the YOLOv3 [23]. Overall, with the development of ANNs, object recognition 

performance has improved significantly over the past decade. 

2.1.2 Imaged-based plant phenotyping 

In addition to recognising crops, measuring and analysing trait variations in crops 

over various seasons is crucial, particularly for cereals. Accurate and repeatable trait 

measurement is essential for success in phenotyping applications. For example, major 

phenotypes for wheat breeding are the number of spikes, spike length/width, and volume. 

Several techniques have been explored for collecting data for quantitative studies of 
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complex traits related to growth, yield, and adaptation to biotic or abiotic stress [24]. 

Spike counting is one of the main approaches used for predicting grain yield in cereals 

[25]. To count the number of wheat spikes, a simple particle count algorithm on 

segmented 2D images was developed [26]; however, it failed to address the high crop 

density and overlapping spikes. Reducing count errors in dense, close contact spikes was 

explored [27] using an automatic spike-counting algorithm and zenithal colour 2D images 

of the crop in natural light. Algorithms, such as DeepCount and YOLOv5 [28]–[30], have 

been developed to count the number of wheat spikes in 2D images using deep 

convolutional neural networks and machine learning approaches. Achieving volumetric 

or dimensional information is challenging, particularly when captured from directly 

above or at an angle where distortions are introduced and thus, partial visibility masks the 

real size of the spike. Calibration charts can mitigate distortions and mosaicking errors; 

however, they are complex to implement for high-throughput field studies.  

Generating a 3D, digital twin of a cereal plot offers a significantly richer and more 

dimensional correct representation, thus overcoming issues of obscured and overlapping 

spikes. A digital twin can be generated by combining multiple 2D images or utilising 

more complex imaging technology, such as Lidar, time-of-flight, and structured light 

scanners [31]. Thus, the field captured data is no longer represented by a 2D RGB image 

but rather by a 3D point cloud, with format Pn (x, y, z, RGB). Algorithms used for 2D 

image analysis are no longer applicable for point clouds and alternative approaches have 

been developed using supervised neural networks to fit complex geometric primitives, 

such as CAD models of mechanical components [32], [33]. In this task of wheat 

phenotyping, there are some simple geometric primitives involved. Therefore, a more 

classical clustering algorithm can be used for segmenting the wheat and subsequently 

fitting it to spikes; thus, the process of training a supervised model can be omitted, and 
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the fitting results can be obtained faster. For instance, [34] performed wheat spike 

segmentation using two different classical methods: voxel-based and mean shift 

segmentation. Additionally, the density-based spatial clustering of applications with noise 

(DBSCAN) algorithm [35] was developed for segmentation, and least-squares curve 

fitting was used to obtain the size of the wheat spikes [36]. Although the clustering 

algorithms, such as DBSCAN, mean shift, and k-means, can be successful in 

segmentation tasks, the segmentation task can be challenging for these algorithms in 

specific complex environments, such as when wheat crops are extremely dense. 

Admittedly, using existing measurement algorithms to obtain a robust measurement result 

with less time duration and computing resources is still challenging. 

2.2 Robot Motion Control for Harvesting Actions 

Generally, two types of harvesting approaches are implemented by agricultural 

practitioners to reduce orchard labour expenses: selective and bulk harvesting [37]. Bulk 

harvesting uses large harvesters to harvest cereals or vibrating tree trunks to harvest fruit, 

whereas selective harvesting involves humans or robots selectively picking ripe crops.  

Selective harvesting is a more complex harvesting method for robotic systems 

utilising manipulators with end-effectors for picking. Therefore, industrial research has 

focused primarily on the manipulation and end-effector in robots. For instance, several 

control schemes of grippers for harvesting crops were designed in laboratory 

environments [38]–[40]; however, no field experiments were conducted to verify their 

performance on farms. Another study [41] presented the design and field testing of a 

robotic system designed to harvest apples. The harvesting system successfully picked 127 

out of a total of 150 fruits, thus achieving an overall success rate of 84 %. However, the 

picking rate of more fragile soft fruits must be improved while ensuring that the crops are 

not damaged. The cherry harvesting robot developed in Japan consists of a 4-degree-of-
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freedom (DoF) manipulator, 3D vision sensor, and end-effector [42]. Given the nature of 

the cherry tree, the team created an articulated manipulator with an axis that moves up 

and down and three axes that turn left and right. However, experiments revealed that the 

manipulation action may damage the target fruit if other fruits surround it. The end-

effector is equipped with soft rubber components; however, this is not always effective. 

One of the central issues in control movement is the DoF problem. Essentially, the same 

movement goal can be reached by an infinite number of combinations of the control 

variables. This is the well-known inverse kinematic problem of determining a vector of 

joint variables that produce the desired end-effector location. However, the inverse 

kinematics problem can be ill-posed because either no solution exists (in this case the 

target location is infeasible, i.e., out of the reachable workspace) or multiple solutions 

exist [43]. Optimal and impedance controls have played key roles in overcoming this 

problem. This section presents the development of and related work on robot motion 

control based on the two methods. 

2.2.1 Methods based on optimal control theory 

The general idea of robot motion control based on the OCT involves determining an 

optimal control scheme from a class of allowable control variables. This can be achieved 

by defining an objective function (cost function). From a mathematical perspective, it can 

be expressed as: under the constraints of the equation of motion and the allowable control 

variables, the extreme value of the objective function (minimum value of the cost function) 

is obtained. In 1985, Flash and Hogan [44] presented the objective function as the square 

of the magnitude of the jerk of the hand integrated over the entire movement. The solution 

of such a minimisation task was consistent with the spatial–temporal variances reported 

by [45]. Subsequently, an extensive literature of similar studies involving varying 

objective functions, such as integrated torque change [46], minimum object crackle [47] 
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and minimum acceleration criterion [48], emerged. Recent developments indicate that 

OCT has gradually emerged as a robust theory for interpreting a range of motor 

behaviours [49], online movement corrections [50] and structure of motor variability [51]. 

Furthermore, to compute the optimal solution of the manipulator, several inverse 

kinematics algorithms have been implemented in dedicated motion planning software 

[52].  

However, a fundamental challenge in this approach is deriving the optimal control 

signal for a nonlinear time-varying system, given a specific objective function and 

assumptions regarding the noise structure [53]. The mathematics of computing an optimal 

feedback controller is extremely complex [54]. Additionally, becoming stranded in local 

optimum is a widespread problem in optimisation algorithms. The nonlinear optimisation 

framework for inverse kinematics requires further exploration.  

2.2.2 Methods based on impedance control 

Between the mid-1960s and mid-1980s, several neuroscience studies proposed the 

equilibrium point hypothesis (EPH) [55]–[57] to explain neural control of movement. The 

basic idea of this hypothesis is that posture is not directly controlled by the brain in a 

detailed manner but rather is a biomechanical consequence of equilibrium among a large 

set of muscular and environmental forces. Several studies [58]–[62] using intact and 

spinal cord animals revealed that muscle synergies may construct motor behaviours with 

the associated force fields organised within the brain stem and spinal cord, and activated 

by descending commands from supraspinal areas. 

For mechanical manipulators, an alternative to OCT is impedance control, which 

was developed by considering the mechanics of the interaction between physical systems 

[63]. Given that manipulation is a fundamentally nonlinear problem, the distinction 
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between impedance and admittance is essential, and as the environment contains inertial 

objects, the manipulator must be an impedance.  

For the impedance control of manipulators, mathematically, the actuator is assumed 

to generate the commanded torque T  with the actuator angle,  , and a kinematic 

relationship between the actuator angle and end-point (end-effector) exists such that 

( )L =x . Designing a feedback control law that coordinates the desired relation between 

end-point force F  and position x  for implementing in an actuator is quite 

straightforward. To define the desired equilibrium position for the end-point without 

environmental forces as 0
x , a general form for the desired force–position relation is: 

( )K= −0F x x . According to the Jacobi matrix ( )J   and principle of virtual work, the 

required relation in actuator coordinates is ( ) ( )( )TJ K L = −0T x . 

The relation ( )K −0x x  does not present any linear restrictions. The relation selected 

to make the end-point stiff accomplishes Cartesian end-point position control and 

eliminates the inverse kinematics problem; only the forward kinematic equations for the 

manipulator must be computed.  

To shift the cost function in OCT to the force field in impedance control, a neural 

network implementation of the PMP [64] has been developed for robot manipulation 

based on the EPH [53], [65]. Qualitatively, the process by which the brain determines the 

distribution of work across a redundant set of joints when the end-effector is assigned the 

task of reaching a target point in space can be represented as an “internal simulation 

process” that calculates how much each joint would move if an externally induced force 

(i.e., the goal) pulls the end-effector by a small amount toward the target. The mechanism 

labelled “passive” aligns with the EPH because the brain does not explicitly specify the 

equilibrium point; instead, it contributes to the activation of “task-related” force fields. 
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[66] detailed this novel perspective of viewing motor control and summarised the 

principle of a neural network implementation of the PMP. 

Recently, PMP has been applied in different contexts, such as combining postural 

and focal synergies during whole-body reaching tasks [67], and coordination of the 

movements of the upper body of the iCub along with the paintbrush to derive motor 

commands for drawing the shapes [68], [69]. Regarding the application of the agricultural 

robot, this thesis applied the PMP for goal-directed reaching considering various task 

constraints (e.g., gripper pose, joint limits, timing, bimanual coordination, and alignment 

of the gripper/cutter to the stem). The action system is a forward/inverse model that can 

simulate the consequences of actions for predictive planning and extend to a range of 

tools coupled to the arm. 

2.3 Survey of State-of-the-art Robotic Harvesters 

With the rapid development of computer vision, artificial intelligence, and robotics 

control, several robotics systems and prototypes have been developed for crop harvesting, 

both in the research and commercial fields.  

2.3.1 Robotic harvesters in the research phase 

Some of the recent research literature regarding tomato, strawberry, sweet pepper 

and lettuce crop-harvesting robots is as follows. 

Tomato.  

A dual-arm robot was developed for harvesting tomatoes in a greenhouse [70]. 

However, the DoF of this type of double manipulator is limited; it has some restrictions 

under uncertain conditions. To improve the success rate, optimal sorting and fruit nearest 

neighbour positioning algorithms were developed for determining the position of the 

tomato fruit and estimating the grasping pose [71]. Based on the optimised picking 
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strategy, the manipulator’s harvesting success rate was 72.1 %. Additionally, 6D pose 

(3D translation + 3D rotation) estimation of maturity-classified tomatoes was developed 

to assist the robot to detect the stem accurately for the harvesting process [72]. 

 

Figure 2. 1- Tomato robotic harvesters developed in [70]–[72]. 

Strawberry.  

[73]–[75] discussed 3D location methods of the vision systems and presented an 

autonomous strawberry ‐harvesting system, which had a gripper at the end of the 

manipulator to pick strawberries. However, the gripper was not sufficiently dextrous and 

contacted/damaged the harvest-ready and immature strawberries simultaneously. In 

addition, a co-robotic harvest-aid system and its evaluation during commercial strawberry 

harvesting were developed to improve harvesting efficiency [76]. However, this system 

is designed to aid picking staff; hence, it cannot handle the autonomous harvesting of 

strawberries. 
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Figure 2. 2 - Strawberries robotic harvesters developed in [73], [74]. 

Sweet pepper.  

A few robotics platforms for harvesting sweet pepper fruit in a greenhouse have been 

proposed to improve the performance in commercial greenhouses [77], [78]. However, 

the success rate of crop harvest needs to be improved compared with those of human 

workers. To prevent possible collision damage in the near-neighbour multi-target picking 

of sweet peppers by robots in densely planted complex orchards, [79] proposed an 

algorithm for recognising sweet peppers and planning a picking sequence. Although this 

study presented a method that can localise sweet peppers in a densely planted 

environment, the picking performance lacks field testing.  

 

Figure 2. 3 -  Sweet pepper harvester with its end-effector [78]. 

Lettuce and cabbage.  
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DeepLabV3+ model, a deep learning technology, was used to segment abnormal 

leaves for hydroponic lettuce sorting [80]. The Vegebot platform [15] developed a custom 

end-effector and software to harvest iceberg lettuce; however, it is  not yet suitable  for 

commercialisation. As shown below in Figure 2.4, [81] proposed a backstepping control-

based attitude control system for cutting devices to harvest cabbage. However, this 

harvester is integrated with a driver platform, which requires a human operator. 

 

Figure 2. 4 - Cabbage harvester with the driver platform and cutting device [81]. 

2.3.2 Commercially available systems 

In addition to the value of academic research, these developments present some 

commercial prospects. For example, the Shadow Robot company build next-generation 

robot hands and systems with advanced dexterity to help push the state-of-the-art in 

dexterous manipulation. The dexterous humanoid robot hands are reliable for object 

handover [82] and might be helpful in fruit harvesting. Additionally, several companies 

are already developing and producing independent modular robots or other related 

technologies to provide agricultural services. These include Octinion, an innovative R&D 

company specialised in mechatronic product development applied to biological material, 

and Thorvald, which is committed to developing autonomous modular robots that can be 
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configured for most agricultural environments. Furthermore, a new robot is being 

developed by Fieldwork Robotics, a spin-out company from Plymouth University, and it 

can enable farmers to pick over 25,000 raspberries daily. Finally, the literature on research 

and commercial agricultural robots for use in crop field operations has been reviewed [83] 

and concludes that current agricultural robotic systems still need to improve the robot's 

hand-eye coordination. 

2.4 Beyond the State-of-the-art: Essex Agricultural Robot 

 

Figure 2. 5 - Essex agricultural robot. 

As shown in Figure 2.5, the EAR comprises a mobile vehicle with two 6-degree-of-

freedom (DoF) universal robots, 3D printed gripper/cutters, and a range of sensing 

capabilities (ZED stereo camera and Lidar); further, it is powered by a rechargeable 
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lithium iron phosphate battery. Because the current technologies designed for agricultural 

robots can be improved, this thesis developed a configurable perception–action system 

and applied it to the EAR for field application. 
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Chapter 3 

Configurable Crop Perception Ⅰ: Phenotyping of 

Cereal-Wheat 

In the following two chapters, two image processing methods are presented for 

handling cereals and fruit separately. Herein, an unsupervised automatic measurement of 

wheat spike dimensions in dense 3D point clouds was proposed for cereals, such as the 

wheat plant. Regarding the fruit, supervised neural networks used to detect and localise 

the strawberries were developed. The details regarding the two image process methods 

are described as follows. 

Traditional manual measurement of wheat spikes' sizes is usually done by random 

sampling a unit square meter of the wheat field and measuring it by using a ruler. As 

shown in Figure 3.1, there are hundreds of wheat plants per unit square metre, manual 

measuring the wheat spikes’ size is a laborious task on the field. Therefore, a core 

challenge is phenotyping cereal in the field to replace the manual measurement method. 

 

Figure 3. 1 - Wheat field picture demonstrates the laborious task of measuring wheat spikes. 
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3.1 Wheat Dimensions Measurement via 3D Point Clouds 

Image-based plant phenotyping is a rapidly emerging research area that can provide 

quantitative measurement of the structural and functional properties of plants for the 

development of new plant varieties. However, the trait analysis and disease detection of 

wheat plants are primarily conducted manually by human experts using a process [84]. 

Because the manual measurement is laborious, the dimensions of wheat spikes must be 

measured using imaging methodologies instead to enable high-throughput phenotyping.  

The maturity of wheat can be evaluated only by fitting the spike size, which does 

not involve numerous complex geometric primitives. To collect the dataset, three 

different 3D imaging technologies have been compared in reference [31]: multi-stereo 

imaging, time-of-flight and structured light laser scanning to produce point clouds of a 

wheat plant in situ. In this work, the method of light scanners is used to capture the 3D 

point cloud of crops and clustering algorithms to separate spikes from wheat crops. 

Clustering algorithms, such as the DBSCAN and k-means algorithms, are well suited to 

the task; admittedly, some defects still exist when dealing with practical situations.  

The k-means algorithm can be described as: given a set of n samples  1 2, ,..., nx x x  

and a positive value k. The algorithm aims to partition these n samples into k clusters by 

minimising the distortion, which is the within-cluster sum of the distances from each 

sample to its nearest centroid. The key idea of DBSCAN is that for each sample of a 

cluster, the neighbourhood of a given radius (Eps) must contain at least a minimum 

number of neighbours (MinPts), which implies that the cardinality of the neighbourhood 

must exceed a certain threshold. One of the disadvantages of the DBSCAN is that its 

performance depends considerably on the parameters selected (Eps and MinPts), but they 

lack a theoretical basis. Therefore, the trial method is commonly used, it relies 

predominantly on experience, which results in the final parameters not necessarily being 
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optimal [85]. Instead,  the k-means algorithm has the characteristics of a single parameter, 

and its parameter k represents the cluster number.  

 

Figure 3. 2 - Results of DBSCAN and classical k-means segmentation. The DBSCAN cannot 

identify every individual spike. The classical k-means divides one spike into multiple segments. 
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To compare these two classical algorithms, Figure 3.2 demonstrates the 

segmentation results of the DBSCAN (here, MinPts is set as ten, and Eps as five) and 

classical k-means (k = 12). As the number of spikes was 12, the parameter of k-means 

was set as 12 and the trial method was used to set the relatively reasonable parameters of 

the DBSCAN. The DBSCAN algorithm divided the 12 spikes into four segments; 

essentially, DBSCAN identified only four spikes (with different colours in Figure 3.2 a), 

which is not able to cluster all individual spikes. Meanwhile, in the classical k-means 

algorithm, even when the number of clusters was set to 12, the output result was poor. 

These results illustrate that the classical clustering algorithm cannot handle complex 

environments, such as when wheat crops are considerably dense. 

3.2 Adaptive k-means Algorithm for Wheat Dimensions 

Measurement 

To address the above concerns, an adaptive k-means algorithm with dynamic 

perspectives was proposed herein. As shown in 

Figure 3.32, when wheat crops were observed from 

the side, the wheat spike and stem could be easily 

distinguished. Owing to overlapping between the 

spikes, the number of spikes could not be easily 

evaluated from the side view (Figure 3.3 a). However, the top view could be used to count 

the number of spikes (Figure 3.3 b). Similarly, for the k-means algorithm, if all of the 3D 

points are projected into the 2D top view, the point distance in the within-cluster is 

reduced and the clustering performance is improved. 

One view can reflect only the form 

of an object in one orientation, not 

the complete structural shape of the 

object. This implies that more 

information can be obtained if 

perspective to see things is 

changed. 
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a) Side views 

 

b) Top view 

Figure 3. 3 - Spikes observation with different perspectives (unit: mm). The side view clearly 

shows some wheat stalks and wheat spikes, but not necessarily the number of wheat plants. By 

contrast, the top view indicates the number of wheat spikes present; however, no stalk is visible. 

To improve segmentation performance, the above idea was introduced into the k-

means algorithm. The flowchart of the k-means algorithm with dynamic perspectives is 

shown in Figure 3.4. In particular, given a cluster consisting of points 3nN   (Figure 3.4 

a),  where n is the number of points, and three is the number of dimensions,  ix ,  iy  

and  iz  denote the x , y  and z  coordinates of the point ( )i i n . For the side view, 

the 3nN   array was transferred into an 2nN   array, which contains only the two 

dimensions of   ix  and  iz . The 2D points were inputted from the side view into the 

k-means, which outputs all point labels. Using the labels to mark all 3D points, the 

clustering result in Figure 3.4 b was achieved. To separate spikes from the wheat (Figure 
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3.4 c), Algorithm 3.1 was defined to preserve the top segments. Similarly, by transferring 

the 3D points of spikes into the top view 2nN 
 , which contains only two dimensions of  

 ix  and  iy , the segmentation result was obtained based on the top view in Figure 3.4 

d; evidently, the result was superior to those of the classical algorithms. Finally, a random 

sample consensus (RANSAC) algorithm [86] was used to fit each segment shape and 

obtain the dimensions as shown in Figure 3.4 e. 

 

Figure 3. 4 - Segmentation results based on the proposed k-means. The proposed method first 

segments the original image (a→b) to obtain the wheat spikes' part (c); next, each wheat spike is 

separated/identified (d); finally, a shape fit is performed for each wheat spike to estimate the size. 

In Algorithm 3.1 defined below, a value, which has the max value of  z , was 

defined according to the highest point of all 3D points. By extracting all the segments in 

the value space, the points belonging to spikes were obtained. In Figure 3.5, the 

highlighted area is the value space determined by the parameter  . Once this value space 

was defined, to preserve the top segments, information regarding whether the highest 

point of each segment was located in this space was required. For the first image of Figure 

3.5, owing to the small parameter value, the part of the green cluster is not located in the 



 

31 
 

highlighted area, whereas the highest point is in it. Therefore, for the small parameter, if 

the highest point of the cluster is located in its space, the cluster is considered as wheat 

spikes and retained. The second image corresponds to the most perfect parameter value, 

and this case is less frequent. For a larger parameter (the last picture), both green and 

yellow clusters' points are located somewhere in the space. To retain only the cluster of 

the wheat spikes, the decision condition must be changed to whether the lowest point of 

the cluster is located in the space. In this study, the conditional statement (with   set to 

60 mm) was set to evaluate if the highest point is located in the value space, and statistical 

filtering was used to reduce the noise. 

Algorithm 3.1: Obtaining wheat spikes 

Require: 3D points: 3nN  ; 

Initialize parameter of  ; 

Reduce the noises of 3D points; 

Obtain side view 2D points: 3 2n nN N →  

Use the k-means for segmentation based on side view;  

Obtain the point with the highest Z coordinate value: maxZ ; 

Calculate a value space of Z coordinates: 

 max max,Z Z−  

For each highest point within its segment: 

        If the highest point is located in the value space: Preserve this segment // the decision condition 

        else: continue; 

return all preserved segments. 
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Figure 3. 5 – Three different value spaces for spikes obtaining. Using Algorithm 3.1 to preserve 

the top segments, the space value need not be accurately set; ensuring that   is a small value 

(figure a and b are both the correct spaces that can output the same result). If the conditional 

statement in the algorithm is changed to evaluate whether the lowest point of each segment is 

located in this space, the   would be set to a larger value (figure c and b would be the correct 

spaces). 

As previously discussed, setting the k-means parameter to three or four for the side 

view is sufficient. Because the shape of the wheat crop is similar to a cuboid or cylinder, 

selecting the side view from the X or Y direction can achieve the same spike’s height and 

width results. Further, shape fitting for each spike is required with the number of clusters, 

that is, the number of spikes, set in advance. However, the number of wheat spikes may 

not be known in advance in the real world. Thus, the algorithm must calculate the number 

of spikes. To realise this function, an adaptive operation to self-update the appropriate 
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parameter values was added. The detail of this adaptive k-means algorithm based on 

dynamic perspectives is described in Algorithm 3.2.  

Algorithm 3.2: Adaptive k-means algorithm based on dynamic perspectives 
Obtain the wheat spikes according to Algorithm 3.1 

Set the initial parameter k   for the top view 

Obtain top view 2D points: 3 2n nN N 
 →  

repeat 

    Use the k-means for segmentation based on the top view; 

    Use RANSAC to fit each segment; 

    Evaluate the size of each segment; 

    if (there is an abnormal size) 

        k  + + ; 

        break; 

    end if 

until there is no abnormal size 

return the updated shape model. 

An initial parameter k   is required to perform the segmentation for the top view in 

the algorithm. The value of this initial parameter should be small to ensure that the 

algorithm can update it adaptively. After obtaining the initial parameter k  , the algorithm 

uses k-means to segment the spikes based on the top view and subsequently calls the 

RANSAC algorithm to fit a cuboid to each segmentation. Because the initial value k   is 

small, the fitting result is inaccurate. As shown in Figure 3.6 a, when the k   is small, 

some abnormal spike sizes are outputted (the fitting size of the purple part is significantly 

larger than that of regular wheat). Therefore, once the algorithm detects unreasonable 

results, k   is superimposed until a reasonable final result is outputted (Figure 3.6 b), 

which means that for each loop, the value of k   is added by 1. The last updated k   value 

is the number of spikes counted by the algorithm. 
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Figure 3. 6 - (a) Shape fitting result with abnormal sizes ( 3k  = ); here, two spikes are fitted by 

one cuboid. (b) Final shape-fitting result ( 4k  = ); here, each spike is properly fitted. 

The algorithm did not make any intrinsic change to the k-means algorithm; however, 

it required several iterations of any existing implementation of k-means. Therefore, the 

algorithm can call any version of the k-means. Considering the computational 

performance, Lite k-means [87] or ball k-means [88] are recommended to run the 

proposed algorithm. 

3.3 Framework of the Proposed Method for Wheat Field 

Application 

Although Algorithm 3.2 can handle the environment where multiple wheat spikes 

are grown densely better than classical algorithms, directly applying the algorithm with 

images captured over a wide area is challenging. For example, as shown in Figure 3.7, 

compared with sample wheat crops in the laboratory, the captured 3D point cloud images 

from the field have hundreds of spikes and may contain noise; thus, existing measurement 

algorithms may not be able to obtain a robust measurement result. If the algorithm is 

directly used for handling these images captured from the field, the computational 

efficiency is significantly reduced as the images contain considerable noise and multiple 
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wheat crops. In addition, noise interference makes it difficult to output ideal results 

without abnormal dimensions. 

 

Figure 3. 7 – Dense 3D point cloud images of wheat crops. The picture from the laboratory clearly 

shows each wheat plant, whereas the image scanned from the wheat field contains hundreds of 

wheat plants and a large amount of noise. 

To address the above problem, a method was proposed to extend Algorithm 3.2, as 

shown in Figure 3.8. First, the original field image was divided into a few segments and 

some stems were removed. As shown in Figure 3.8, the original image was divided into 

three segments; next, the spikes volume of each segment was individually calculated. To 

compute the volume, 3,000 small cuboids were used to fit the shape of all spikes for each 

segment thus, the volume of spikes was the sum of the volumes of all cuboids. After the 

volume calculation, some small areas were selected as sample areas (red highlighted areas 

in Figure 3.8), and then Algorithm 3.2 was used to calculate the average size of these 

areas. Overall, for images from the wheat field, the total spikes volume and average size 

of a single spike could be estimated by the proposed method. 
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Figure 3. 8 - Overall flowchart of the proposed measurement method of wheat spikes. As the plot 

contains a large amount of wheat, the original picture is split into three images for separate 

processing. Here, 3,000 small cubes are employed for each image to fit/estimate the total volume. 

Next, some sample regions are extracted and the proposed algorithm is used to estimate the 

average size of the spikes in the sample regions. 

The above description involves two parameters, namely, the number of segments 

and the number of small cuboids. In this study, all of the original images were divided 

into three segments and 3,000 cuboids were employed for each segment. If the value of 

these parameters is increased, the accuracy of the calculation results may improve, along 

with an increase in calculation cost, which is undesirable. 

3.4 Experimental Analysis and Field Trials of Wheat 

Dimensions Measurement 

3.4.1 Analysis of the proposed k-means algorithm 

Before field trials, the performance of Algorithm 3.2 must be analysed as it is a core 

algorithm in the proposed method. The proposed k-means algorithm is a two-stage 
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method. In the first phase (Algorithm 3.1), the 3D point cloud image is projected into a 

2D point cloud (side view); this is a dimension reduction process. To verify if this 

dimension reduction can output good results and improve the speed of the algorithm, 

some experiments were conducted and the results are shown in Figure 3.9. 

As shown in Figure 3.9, for the same scene of the 3D point cloud, the number of 

points was adjusted by down-sampling. The algorithm was run five times to calculate the 

average results that were implemented in MATLAB R2020b based on a Core i9-9980HK 

CPU 2.40 GHz laptop. The comparison of running time between the 3D and 2D point 

clouds is presented in Table 3.1. 
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Figure 3. 9 - Results of k-means based on 3D and 2D point clouds. Note that the k-means assigns 

clusters to each point. After obtaining the output results, the different clusters’ points are 

uniformly labelled on the 3D image using different colours. 

Table 3. 1 – Comparison of running time between 3D and 2D point clouds 

Number of points  Running time of 3D point cloud Running time of 2D point cloud  

68868 1.91 s  1.67 s 

902813 9.28 s  8.69 s 

1654467 16.86 s  15.12 s 

Evidently from Table 3.1, using k-means to process 3D and 2D point cloud images, 

the results obtained were similar; however, with an increase in points, the computational 

efficiency of the 2D point cloud improved. The running time included the entire time, 

from loading the point cloud to drawing the resulting picture. Additionally, the results 

obtained using Lite k-means were compared with those of the traditional k-means; 

evidently, the Lite k-means process significantly improved the calculation speed using 

the operation mechanism of MATLAB. 

In the first phase, the parameter (k) of k-means is not expected to significantly impact 

the expected result. To verify this, Figure 3.10 shows the clustering results with different 

values of k. 

As the proposed algorithm needs to preserve only the top segments to obtain spikes, 

all of the results in Figure 3.10 can be used; however, if a small k value is selected, a 

portion of stems is considered as part of the top segments; this introduces an error in spike 



 

39 
 

height. If a bigger value of k is selected, the stem points counted may be less. However, 

a perfect parameter value that can completely remove all of the stem’s points cannot be 

guaranteed. Furthermore, as the value of k increases, the efficiency of the algorithm may 

reduce. This is discussed later. 

 

 

 
Figure 3. 10 – Clustering results with different values of k. As the value of k increases, the 

number of clusters increases incrementally. However, using Algorithm 3.1, the top clusters 

belonging to the spikes can be obtained regardless of the k. 

In the second phase (Algorithm 3.2), the 3D point cloud image is projected onto the 

2D point cloud (top view), thus reducing the point distance in the within-cluster; this is 
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important because the height of the spike is longer than the width and length in a 3D space. 

Further, it improves the ability of the algorithm to identify individual spikes. To validate 

the performance of this phase, different scenes were tested with the proposed algorithm. 

As shown in Figure 3.11, in these three scenes, some wheat crops were dense or mutually 

overlapping (highlight areas). However, evidently, from the clustering results (Figure 

3.12), the proposed method still exhibited superior robustness and feasibility compared 

with traditional algorithm results. 

  

 

Figure 3. 11 - Three different scenes where the wheat crops are dense (particularly in the 

highlighted area). 
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Figure 3. 12 – Clustering results with different scenes based on the proposed algorithm. From 

the first to the second phase, the wheat spikes are separated from the wheat plants, 

subsequently, each spike is identified. 

3.4.2 Efficiency analysis of the proposed algorithm 

To analyse the efficiency of the algorithm, the same laptop as mentioned previously 

was used to run the algorithms for different situations of the wheat crops. The algorithm 

was run five times for each of the three situations in the above figure, and the average 

time was recorded. The value of k was set as six for phase one and the max iterations of 
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the RANSAC algorithm (in phase two) as 1,000. The average running times of phase one 

and phase two are recorded in Table 3.2. 

Table 3. 2 – Average running time of the proposed algorithm 

Scene 
number 

Number of 
points  

Running time for phase one Running time for phase two  

1 166283 3.26 s  44.27 s 

2 747982 8.84 s  184.13 s 

3 902813 12.51 s  377.68 s 

As illustrated in Table 3.2, owing to the performance of Lite k-means, the k-means 

in the proposed algorithm was not computationally taxing. A comparison of Tables 3.1 

and 3.2 indicates that the different parameter values that influence the calculation time 

were evident but the changes were insignificant (in Table 3.1, k is three). In phase two, 

the algorithm operates with self-adaptive updating of the parameters and calls RANSAC 

to fit the shape of each cuboid; this part is crucial in the efficiency of the algorithm. 

Throughout the entire process, the efficiency of the algorithm in processing wheat was 

excellent. However, the running time for handling a field image with one square meter 

increased considerably. Essentially, because of the volume calculation, the calculation 

time was spent primarily in dividing all spikes into 3,000 segments, and RANSAC was 

called to fit each segment to evaluate the total volume. Therefore, the parameter k was set 

as 3,000 to conduct segmentation and then realise shape fitting. Thus, the method called 

the RANSAC 3,000 times to fit the shape of each small segment for the volume 

calculation of spikes; however, the proposed method required approximately  30–40 min 

to perform volume calculation on a standard modern laptop. 

3.4.3 3D field capture 

To analyse the field trials in detail, first, the 3D point field capture system was 

introduced. A portable and field-deployable solution that can completely image a field-

grown trial plot of dimensions 2 m × 5 m × 1 m in less than 1 s was constructed for 
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analysis with wheat identification algorithms. The platform was adjustable to 

accommodate typical weather conditions, including direct solar illumination, and be self-

powered. The solution deployed in the fields during 2020 is shown in Figure 3.13; it 

included four structured light scanners from Photoneo s.r.o., each positioned parallel to 

one side of the trial plot edge and orientated at 45° to the vertical. The arrangement 

enabled capturing the central region of the plot, neglecting only 300 mm around the edges, 

which are normally excluded from analysis in most trials. Each scanner was triggered in 

sequence to avoid interference and a region of 2 m × 2 m × 1.5 m was captured in 

approximately 5 s. The scanners were optimised to overcome bright ambient light using 

structural netting above and to the sides of the mounting frame. Additionally, the selection 

of the scanner’s exposure, laser brightness, and processing algorithms was critical. 

 

Figure 3. 13 – Field use of 3D capture system incorporating four scanners. 

The four independent scans were reconstructed into a single point cloud using a 

common reference chart placed in all scanners, as shown in Figure 3.13. This chart did 

rendered the auto-alignment function of the scanners redundant, but as chart reflectivity 

issues already produced variable results outdoors no functionality was lost in reality. 

Instead, an in-house algorithm was created to locate the reference chart within each 

Reference Chart 
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scanner point cloud and produce a translation matrix to align all four into a single virtual 

replica of the trial plot. Unlike single-point measurement systems, the final point clouds 

include information on the complete surface for all the wheat heads, detailed to the grain 

level. The final point clouds were cleaned for noise using a statistical outlier filter and the 

resolution was reduced using a sub-sampling algorithm to reduce the computational 

power needed for the next stage of processing, identifying spikes, and performing 

dimensional measurements. 

3.4.4 Comparison of manual measurement with the proposed method 

To verify the performance of the proposed method for field application, five 

different field plots captured by the platform were selected and cropped for testing. Each 

plot was approximately 1 m2 of a wheat field, and the original images used are shown in 

Figure 3.14.  
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Figure 3. 14 – Five different 3D point images from the field. Each image contains approximately 

200 wheat plants. 

For manual measurement, a sample area is typically selected in the field. The number 

and size of spikes in the sample area are measured to infer the total number and average 

size of wheat crops in the entire field. In this experiment, for each scenario, a square of 

0.25 m2 was selected as the sample area. The number of spikes was counted and the 

average size of spikes (height mh and width mw ) in the sample area was measured. The 

amount of wheat (spikes m-2) was calculated according to the following equation. 

0.25

m
m

n
num =                                                            (3.1) 

The proposed method was used to calculate the total volume aV  of all spikes and the 

average size of a single spike. Algorithm 3.2 was used to compute the height, length, and 

width ( , ,a a ah l w ) of the spike, and cuboid fitting was used to facilitate comparison with 

manual measurement. The values ah  and  
( )

2
a a

a

l w
w

+
 =  were compared with mh  and mw , 

respectively. As each tested scenario was approximately 1 m2 of a wheat field, for the 

proposed method, the total volume of spikes was divided by the volume of a single spike 

to estimate the number of spikes in each scenario, as follows. 

  
a

a

a

a

ah

V

w
num

w  
=                                                          (3.2) 
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The comparison results are recorded in Table 3.3. To compare the proposed method 

with the manual method, Eqs. 3.3–3.5 were used to estimate the error rate of each plot. 

Table 3. 3 – Comparison of results between manual measurement and the proposed method 

Plot number  Average size Number of spikes Total volume 

Manual  

mh / mw  

Proposed method 

ah / aw  

Manual  

mnum  

Proposed 
method 

anum  

aV  

1  83.4/13.5 mm 76.7/12.4 mm 212 173 2042491 mm³ 

2 71.9/15.5 mm 63.6/14.6 mm 260 202 2766830 mm³ 

3 84.2/14.2 mm 81.8/18.2 mm 200 259 7020030 mm³ 

4 82.4/15.2 mm 81.3/17.6 mm 212 207 5179640 mm³ 

5 78.3/15.0 mm 76.4/15.6 mm 228 208 3866860 mm³ 

Standard deviation 5.1/0.8 mm 7.4/2.3 mm / / / 

Error rate in the number of spikes:       1

m a

m

num num
Error

num

−
=                            (3.3)                                                

Error rate in the spike height:               2

m a

m

h h
Error

h

−
=                                     (3.4) 

Error rate in the spike width:               3

m a

m

w w
Error

w

−
=                                     (3.5) 

Table 3. 4 – Error rates of the proposed method 

Plot Number  Error1 Error2 Error3 

1 18.40% 8.03% 8.15% 

2 22.31% 11.54% 5.81% 

3 29.5% 2.85% 28.17% 

4 2.36% 1.34% 15.79% 

5 8.77% 2.43% 4% 

Average 16.27% 5.24% 12.38% 

As illustrated in Table 3.4, the three average error rates defined for the five 

experiments above were 16.27 %, 5.24 %, and 12.38 %. 
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3.5 Summary 

A high-throughput field capture platform for wheat combined with an unsupervised 

automatic measurement of wheat spikes based on an adaptive k-means algorithm with 

dynamic perspectives was proposed. This platform can handle complex environments 

where hundreds of wheat spikes are grown densely. This method provides a novel 

framework to obtain wheat spike dimensions and total volume, instead of manual 

measurement. 

These experiments helped perform a detailed analysis of the proposed k-means 

algorithm. Although k-means is an uncertain algorithm, which cannot ensure reliable 

outputs, for the proposed algorithm, the clustering result was sufficient for shape fitting. 

Additionally, the shape fitting algorithm was not the focus of this work; nonetheless, the 

cuboid fitting results for straight spikes were superior to those of curved ones. This is 

because cuboids cannot accurately fit the height of curved wheat spikes. As presented in 

Table 3.3, all of the average heights obtained by the proposed algorithm were slightly 

smaller than those measured manually. This is because as most of the tested wheat spikes 

were slightly curved, using cuboid shape fitting resulted in some errors. In addition to the 

shape fitting algorithm, owing to the spikes being more curved, the overlapping in the top 

view was distinct. This might influence the clustering result of the proposed k-means 

algorithm.  

Furthermore, the proposed method presents some issues, which can be addressed in 

future work. First, a self-adaptive k-means algorithm to update the k iteratively in 

Algorithm 3.2 was proposed for spikes counting. However, for volume calculation, the 

computational efficiency was poor. Therefore, when handling field images, the entire 

image was divided into three segments. Second, as mentioned above, the accuracy of this 

method was affected by the curvature of the spike. Five field data set results were used 
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and the average error in the number of spikes exceeded 16 %, of which two errors 

exceeded 20 %. The performance of the algorithm may decrease if this analysis is 

extended to spike dimensions assessment for other field datasets. 

Overall, the experiment results imply that the proposed method can be developed as 

a tool to evaluate the size and yield of wheat spikes, particularly for straight spikes, thus 

avoiding laborious manual measurements. As method performance can still be improved 

to handle curved wheat spikes, future work can further optimise the algorithm to handle 

the environment where the wheat spike is arched. In addition to wheat, the method can 

be extended to barley, corn, and fruit phenotyping applications. 
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Chapter 4 

Configurable Crop Perception Ⅱ: Identification 

of Soft Fruit 

In recent years, object recognition based on deep learning has gained prominence 

due to its wide range of applications. More recent developments in deep learning-based 

object detectors have been detailed and surveyed in [89]. However, its learning process 

relies on large amounts of labelled data and powerful computational resources. For 

agricultural robots, recognition is the first step, and adopting appropriate harvesting 

strategies based on recognition results is crucial. This chapter focuses on the 

corresponding models and algorithms involved in perception systems, which were 

integrated with the action system herein to guide the robot in harvesting. 

4.1 Soft Fruit Recognition Based on Conditional Generative 

Adversarial Networks 

Although crops, such as corn and wheat, can be harvested in bulk, soft fruits in the 

greenhouse, such as strawberries, still require manual picking. Therefore, to enable the 

harvesting robot for this task, mature strawberries must first be recognised and localised. 

In this section, a perception system based on conditional generative adversarial networks 

(cGANs) was proposed to identify ripe fruits using synthetic data. To apply the system to 

a strawberry greenhouse, a new factor, defined as the clustering complexity of 

strawberries, was defined. More details are presented below.  
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4.1.1 Synthetic dataset 

Although deep learning has played a pivotal role in the target recognition, data 

collection and labelling are time-consuming, particularly when dealing with complex 

environments and light conditions. Further, travel restrictions are continuously changing 

owing to COVID-19; thus, collecting a large amount of data from the field is more tedious. 

Synthetic datasets have been effectively used in research; thus, creating and using 

synthetic datasets can address these concerns [90], [91]. This study generated a synthetic 

dataset by combining fruit and background images. In particular, various background 

images were gathered from the Internet, and pictures of the farm were captured. The 

pictures with the most similar backgrounds and colours (green/brown) as those of the 

field (see Figure 4.1 a) were selected. Subsequently, crops were placed on top of the 

background. Herein, pictures of individual strawberries from a fruits dataset, namely, 

Fruits-360 dataset [92], were placed on the background image to synthesise data. Each 

strawberry was captured from its white background, and lightning variation was 

accomplished using gamma correction, a common nonlinear operation for image 

illumination. Additionally, to create irregular crop images, a bitwise-and operation was 

applied to the target crop image and binary mask. Eleven masks were used in this dataset, 

and they consisted of random lines and blobs emulating obstacles present in natural 

environments. The constructed dataset fit this objective using strawberries from Fruit-

360. Finally, the synthetic dataset contained 4,500 instances, with 900 instances for each 

fruit. The process is shown in Figure 4.1 b. According to the synthetic process, the input 

image and ground truth for model training can be obtained simultaneously (Figure 4.1 c). 

Therefore, the advantage of this method is that the dataset required for training is 

automatically generated, with high efficiency and no manual labelling. Existing popular 

object detection models require customising their datasets and labelling is time-
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consuming. Moreover, current popular labelling processing software, such as [93], 

requires handling each image in front of the screen. Even if a picture takes a few seconds, 

the overall working time of thousands of pictures becomes considerably large and cannot 

be ignored. Whereas in the proposed method, all training pictures can be automatically 

generated within a few minutes, and network training can begin immediately. 

 

Figure 4. 1 - Generation process of the training dataset. (a) Some examples of background; (b) 

Obtaining the final image from the original fruit picture by applying masking and lighting 

changes; (c) Sample of the synthetic dataset. 
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4.1.2 The perception system based on the GAN 

 To use synthetic dataset for training the perception system model, the pix2pix model, 

a cGAN, was introduced [94]. The pix2pix model was 

designed to perform image-to-image translation; thus, 

it can translate an input image into a corresponding 

output image using the generator of a cGAN. As 

described in the previous section, the synthetic data generates a pair of images 

simultaneously, such as the left and right images in Figure 4.1 c. The core of the pix2pix 

model chosen for this work is to use the model's picture translation function to map the 

complex image (the left one in Figure 4.1 c) to the simple image ( the right one in Figure 

4.1 c). 

Generally, cGANs learn a mapping from an observed image x and random noise 

vector z to y,  : ,G x z y→ . The generator G is trained to produce outputs that cannot be 

distinguished from “real” images by an adversarially trained discriminator, D, which is 

trained to do as well as possible at detecting the generator’s “fakes”. The training 

procedure is illustrated in Figure 4.2. 

 

Figure 4. 2 - Training a cGAN to map a real farm picture → the picture only contains ripe 

strawberries. The discriminator learns distinguishing between fake (synthesised by the generator, 

G(x)) and real tuples (ground truth, y). Both the generator and discriminator observe the input 

image x. 

The core idea is to ensure the 

generator has a good mapping 

capability by training the cGAN. 

Thus, the generator can map the 

input image to a ground truth 

thereby fooling the discriminator. 
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The value function of a cGAN can be expressed as follows. 

( ) ( ) ( )( )( ), ,, log , log 1 , ,E EGAN x y x zG D D x y D x G x z = + −    
L ,              (4.1) 

where G attempts to minimise this value function against an adversarial D, which attempts 

to maximise it. In the pix2pix, the discriminator’s job remains unchanged; however, the 

generator is tasked with fooling the discriminator and being near the ground truth output 

in a Manhattan distance (L1) sense. This is because previous approaches have reported 

that mixing the GAN objective with a more traditional loss is beneficial [95].  

( ) ( )1 , , 1
,EL x y zG y G x z = −

 
L a.                                         (4.2) 

Therefore the final objective of pix2pix is as follows. 

( ) ( )1arg min max ,GAN L
G D

G D G+L L .                                    (4.3) 

According to the analysis work of the objective function [74], the cGAN alone 

(setting 0 =  in Eqn. 4.3) achieves sharper results but introduces visual artefacts on 

certain applications. Adding both terms together (with 100 = ) reduces these artefacts. 

According to our synthetic data, this map/translation idea was introduced into fruit 

detection; for example, in Figure 4.1 (c), the pix2pix model can map the left image into 

the right image. Because only mature strawberries need to be determined, this pix2pix 

model can make detecting crops in a complex environment simpler, regardless of the 

complexity of the background environment. The original model worked with 256 × 256 

images, and as the dimensions of the images increase, the model quality decreases. Thus, 

an improved model called Pix2pixHD [96] was introduced into our perception system to 

handle bigger images. Pix2pixHD is an improved pix2pix framework and uses a coarse-

to-fine generator, multi-scale discriminator architecture, and robust adversarial learning 

objective function. 
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Pix2pixHD decomposes the generator into two sub-networks: a global generator and 

local enhancer networks. The global generator network operates at a resolution of 1024 

× 512, whereas the local enhancer network outputs an image with a resolution that is 4 × 

the output size of the previous one. To differentiate high-resolution real and synthesised 

images, Pix2pixHD uses three discriminators ( 1 2 3, ,D D D ) with an identical network 

structure but operate at different image scales. The real and synthesised high-resolution 

images are down-sampled by a factor of 2 and 4 to create an image pyramid of 3 scales. 

Finally, to improve the GAN loss in Eq. 4.1, a feature-matching loss based on the 

discriminator was incorporated. The feature matching loss function is expressed as 

follows: 

( ) ( )
( ) ( ) ( ) ( ),

1
1

1
, , , ( , )E

T
i i

FM K k kx y
i i

G D D x y D x G x z
N=

 = −
 L ,                    (4.4) 

where 
( )i
kD  represents the feature of the i-th layer extracted by the discriminator kD ; T is 

the total number of layers; and iN  denotes the number of elements in each layer.  

The full Pix2pixHD objective combines both GAN and feature-matching losses, as 

follows: 

( ) ( )
1 2 3, ,

1,2,3 1,2,3

min max , ,GAN k FM k
G D D D

k k

G D G D
= =

  
+   

  
 L L .                       (4.5) 

The feature matching loss FML  serves only as a feature extractor and does not maximise 

the feature matching loss. 

After the map/translation work, the watershed algorithm [77] was used to estimate 

and divide the number of strawberries. The watershed segmentation algorithm is applied 

to an image's gradient rather than the image itself. It is based on the concept that regions 

are characterised by small variations in grey levels and have diminished gradient values. 

In formulating watershed segmentation, the regional minima of catchment basins 
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correlate positively  with the diminished value of the gradient corresponding to the objects 

of interest. Figure 4.3 shows that image (a) is output from the pix2pix and contains only 

ripe strawberries, which is relatively easy for the watershed segmentation algorithm to 

analyse the image's gradient and segment strawberries. Subsequently, the segment 

information (bounding box) can be applied to the original image (Figure 4.3 b→c). 

 

Figure 4. 3 - Watershed segmentation to circle each detected strawberry. (a) GAN maps the 

original image into a picture; (b) Subsequently, it applies the watershed algorithm to obtain the 

bounding boxes; (c) Finally, the bounding boxes are placed on the original image to obtain the 

final result. 

To illustrate the entire process of strawberry detection and segmentation, the overall 

architecture of the proposed perception system is illustrated in Figure 4.4. Figure 4.4 

shows that the Pix2pixHD model receives the 2D image from the stereo camera and inputs 

the translated image into the watershed algorithm for crop detection. Subsequently, the 

camera combines the 2D information and accesses the 3D point cloud to localise the crops. 
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Figure 4. 4 - Overall architecture of the perception system based on the GAN. The green arrows 

indicate image training; yellow arrows indicate the target detection process; red arrows indicate 

the acquisition of 3D information of the target; blue arrows show the activation of the action 

system. 

Additionally, the proposed system can be extended to harvest other crops by 

changing the synthetic dataset and end-effector. As shown in Figure 4.5, the strawberry 

dataset was switched to tomato for training a new perception model. This study focused 

on the strawberry application; more details regarding the performance of the model are 

discussed later.  

 

Figure 4. 5 - (a) During data synthesis, the strawberries are replaced with tomatoes; the diversity 

of training data is increased by randomly changing the illumination and rotation. (b) Example of 

tomato model predictions. 

4.1.3 Evaluation of experimental results from field trials 

The proposed perception system comprises both identification (detect the maturated 

strawberries) and localisation (see [97] for more details of the point cloud generated by 

the camera). To test the perception system’s validity and performance, actual images were 

collected from a strawberry greenhouse to evaluate the proposed perception system. First, 

several images containing different conditions and multiple strawberries were selected to 
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test the model (six example images are shown in Figure 4.6). The images in the left 

column were captured on a sunny day, whereas the images on the right were captured on 

a cloudy day. The results revealed that the proposed perception system can effectively 

detect ripe strawberries. 

 

Figure 4. 6 - Strawberry detection and localisation in natural conditions. 

After the detection, the detected regions were cropped from the original image 

(Figure 4.7(a)) and the remaining undetected sections or complete ripe strawberries were 

analysed (Figure 4.7(b)). If a strawberry was partially detected, then the undetected 

section was not considered (Figure 4.7(c)). This is because the robot is expected to 

explore that area using the information on the detected portion and better detect the entire 

target. This method can easily detect any crops that are visually undetected by the system. 
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Using this testing condition and measurements, ripe strawberries in the images selected 

can be detected. However, the system presents 81.4 blobs per image, and each image 

contains at most 30 visible strawberries. 

 

Figure 4. 7 - Performance measurement example. (a) Original image; (b) Remaining undetected 

sections after recognition; (c) Partially detected strawberry. 

Further, small blobs (noise) can be eliminated and extremely close strawberries in 

the perception system can be segmented, each using the following operations. The former 

requires a morphological operation [98] that eliminates noise. Furthermore, the watershed 

algorithm allows for counting the objects or further analysis of the separated objects (see 

[99] for the algorithm implementations in open-source libraries). The application 

comparison results of these two operations are illustrated in Figures 4.8 and 4.9, 

respectively. Although the two operations can improve the performance of the perception 

system, they cannot ensure that all ripe strawberries are accurately divided. To analyse 

this performance in particular, 50 images were captured from the farm to estimate the 

error rate in the number of strawberries. First, the perception system was used to detect 

and count ripe strawberries in each image; next, this data was compared with that of 
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manual counting. The following equation was used to estimate the error rate in the number 

of strawberries. 

m p

m

num num
Error

num

−
= ,                                          (4.6) 

where, mnum  denotes the number of ripe strawberries counted manually; and pnum  

denotes the perception system output. For all fifty testing images, Eq. (4.6) was used to 

estimate the error rate of each image, and the average error rate was calculated as 10.83 %.  

 

Figure 4. 8 - Morphological operations: (a) predictions without operations applied, and (b) 

predictions with operations applied. Purple circles indicate areas with small blobs, green circles 

represent areas where noise is eliminated, and red circles represent some correctly localised crops. 
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Figure 4. 9 - Applied watershed algorithm to blobs with an area larger than 3,000 pixels. (a) 

Predictions without the watershed algorithm; (b) Predictions with the watershed algorithm. Purple 

circles indicate blobs that the watershed method will be applied; Green circles indicate where the 

blobs cluster was correctly divided, and red ones when they were not. 

 

Figure 4. 10 - Situations where the perception system cannot accurately count strawberries. (a) 

Wrong segmentation; (b) Overlapping. 

Figure 4.10 shows situations where the perception system cannot accurately count 

all strawberries. The error rate was primarily owing to the occlusion. Occasionally, a 

single strawberry was divided into two because of stems (see highlight area Figure 4.10 

(a)). Further, the perception system could not always recognise the overlapped 

strawberries (Figure 4.10 (b)). 
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4.2 YOLACT-based Fruit Cluster Complexity Analysis 

As in real-world environments, some ripe strawberries are surrounded by stems and 

unripe strawberries; harvesting such target 

strawberries is challenging for robots. Although the 

above perception system can recognise target 

strawberries, it cannot determine the ease of 

harvesting them. The robot can benefit from 

selective picking if it can determine the complexity of picking the strawberry. For 

example, if the hardware and software of the robot are insufficient to support its selection 

of high-complexity strawberries, it can ignore this category of strawberries to reduce the 

picking damage rate.  

To allow the robot to handle strawberries with different harvesting complexities in 

a more targeted manner, this section presents another deep-learning model that was used 

to classify the cluster complexity level. First, to describe this situation, this study 

categorised complexity into three categories: easy (no occlusion), medium (little 

occlusion), and hard (significant occlusion). 

Recall that strawberry cluster 

complexity reflects the difficulty in 

harvesting when the target 

strawberry is surrounded by other 

strawberries and leaves. The more 

the obstacles, the more the 

difficulty for the manipulator to 

pick smoothly without damaging to 

the strawberry. 
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Figure 4. 11 - Strawberry clusters with different complexity levels. The more densely distributed 

and heavily overlapped the strawberries, the higher the cluster complexity. 

As shown in Figure 4.11, when a strawberry is occluded by obstacles, the difficulty 

in picking it depends on the degree of occlusion presented by its obstacles. When a 

strawberry is surrounded by obstacles, part of its pulp is covered; this can be used as a 

key feature to learn the different levels of complexity. Moreover, this feature can be 

reflected in instance segmentation. To utilise this, each strawberry must be labelled using 

image polygonal annotation [100], as shown in Figure 4.12. If the strawberry is classified 

as hard to harvest, it may contain a few small segments. With this annotation method, the 

generated labels contain categories (easy, medium, hard) and vertex positions of each 

polygon, then the labels can be used for training. Therefore, “easy, medium, hard” 

presents the complexity, and vertex positions of the polygon present the segmentation 

information. 
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Figure 4. 12 - Example of image polygonal annotation. During labelling, strawberries that are not 

covered are labelled as easy for picking. If half or more of the body of the strawberry is covered, 

it is labelled as hard for picking; otherwise, it is labelled as medium for picking. 

4.2.1 YOLACT instance segmentation method 

YOLACT [101] was selected to perform the classification function as it provides 

real-time instance segmentation. It predicts mask prototypes and per-instance mask 

coefficients in parallel, and linearly combines them to form the final instance masks. The 

YOLACT architecture is based on RetinaNet [102] using ResNet-101 + FPN. The first 

branch is the prototype generation branch, which is a semantic segmentation model, and 

is implemented based on FCN [103]. Whereas the last layer has k channels corresponding 

to k prototype masks. The second branch adds a prediction head network to the object 

detection branch to generate ( 4 c k+ + ) predictions, i.e., k mask coefficients of each 
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anchor, four coordinates, and c category confidence of the bounding box predicted by the 

object detector for each anchor. Finally, to produce instance masks, the results of the 

prototype and predicted mask coefficient branches are combined, using a linear 

combination of the former with the latter as coefficients, followed by a sigmoid 

nonlinearity to produce the final masks.  

The loss function of YOLACT is similar to that of mask R-CNN. The classification, 

box regression, and mask losses correspond to weights of 1, 1.5, and 6.125, respectively. 

Both classification and box regression losses are similarly defined as in SSD [104]. 

Whereas, the mask loss is defined as the per-pixel binary cross-entropy loss of the 

predicted and ground truth masks. 

4.2.2 Field trials based on the YOLACT instance segmentation 

The YOLACT was used in a previous study to effectively identify rumen protozoa 

in microscopic images [105] and large-scale instance segmentation of outdoor 

environments [106]. To utilise the YOLACT for identifying the harvesting complexity of 

strawberries, a strawberry dataset comprising 560 images collected by a webcam from 

the farm under different weather conditions and polygonal annotation, with labels added 

manually, was used. The YOLACT model used in this study was trained via Google 

Colab, with a batch size of 8 and iterations of 30,000. Images input into the model were 

resized to a resolution of 640 × 640. For training, 50 images were selected from the dataset, 

as shown in Figure 4.13. The YOLACT model achieved excellent results in identifying 

strawberries with different complexity levels. Overall, this sub-chapter verified that state-

of-the-art deep learning models can achieve harvesting complexity detection. Thus, they 

are integrated with an active system of harvesting robots in the following chapters. 
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Figure 4. 13 - Visualisation of the YOLACT detection results. 

Similar to the previous architecture of the GAN-based perception system, the trained 

model was switched to YOLACT, and the updated perception system framework is 

shown in the figure below. 
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Figure 4. 14 - Overall architecture of the perception system based on the YOLACT. 

4.3 Conclusions and Research Directions 

This chapter described the development of a perception system for identifying and 

classifying strawberries. The proposed system uses cGAN (pix2pixHD) trained on 

synthetically generated data, which incorporated a range of variance in lighting conditions 

and occlusions as observed in real-world conditions, thus eliminating the need for manual 

collection and labelling. Such synthetic data can be generated for a range of other crops 

as well, hence enabling configurability.  

However, the detection of strawberries was insufficient for harvesting by robots. 

Thus, another harvesting complexity-based model was developed to help the robot 

discriminate between strawberries that are hard and easy to harvest. Unlike the 

pix2pixHD model, the YOLACT model was selected to determine three complexity 

levels (i.e., easy, medium, and hard). Although this model can further guide the robot to 

recognise strawberries that are difficult to harvest, manual labelling is necessary for the 

training data. 

Overall, both pix2pixHD and YOLACT have unique advantages. First, if the robot 

needs to harvest crops without needing cluster complexity, pix2pixHD can be easily 
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implemented as a perception system without numerous manual operations. When crops 

that are fragile and distributed in different cluster complexity need to be harvested, 

models such as YOLACT with instance segmentation function can be effective for 

classifying the complexity levels. The contribution of this work is not the use of YOLACT, 

but the introduction of cluster complexity into object recognition, which allows deep 

learning models to determine the cluster complexity of objects. 

This chapter leaves some interesting ideas for future extensions:  

1) Several crop clusters face cluster complexity problems, similar to strawberries. 

Thus, the proposed approach can be considered not only for soft fruits but also for various 

cross-industry applications.  

2) In the fruit industry, pests and diseases severely affect the yield of fruits. 

Therefore, identifying rotten strawberries is crucial in commercial farming. Furthermore, 

the robot may occasionally pick rotten strawberries that are not fit for consumption. Thus, 

the perception system should have a more advanced classification ability to determine 

strawberries that are suitable for picking and selling. 

3) Although deep learning-based target detection can identify and locate strawberries 

well, the method cannot accurately determine the ripeness of strawberries. Therefore, 

hyperspectral imaging-based strawberry ripeness monitoring can be a direction for future 

work. 
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Chapter 5 

Configurable Action: Task-Specific and adaptive 

motion control architecture for robotic 

harvesting 

Soft fruits are typically selectively picked manually, as shown in Figure 5.1, as they 

are small, easily broken, and difficult to pass to traditional machines. However, workers 

do not prefer this kind of seasonal labour owing to low job skills and tedious work; thus, 

intelligent agricultural robots are expected to replace this type of work. 

 

Figure 5. 1- Scenery where staff picks strawberries on the farm. 
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The action of “reaching” is fundamental for agricultural robots to realise the 

harvesting process. In particular, moving the end-effector accurately toward the fruit and 

motion planning must be addressed. As discussed in Chapter 2, to shift the cost function 

to the force field, this study used a neural network implementation of the passive motion 

paradigm (PMP) based on impedance control and equilibrium point hypothesis for 

addressing motor control and synergy formation in agricultural robots. 

5.1 Passive Motion Paradigm for Goal-directed Reaching 

From the perspective of neural control of movement, a PMP network should be 

considered a “body schema” or an “internal model” that interfaces higher cognitive levels 

(reasoning and planning) with lower control levels, related to actuators and body 

dynamics. It is not a controller in the strict sense and thus it is not concerned with 

dynamics and actuators [65]. 

5.1.1 Artificial neural network for the internal model of the body 

For robot manipulation actions, a novel neural control framework was proposed for 

goal-directed reaching while considering a range of task constraints. The architecture 

particularly enables a) swift learning of the internal model of the arm/body and extension 

to the range of coupled tools; b) runtime incorporation of various task constraints (i.e., 

end-effector pose, joint limits, tool orientation, motion trajectory, and approach toward 

the target); c) temporal synchronisation and bimanual coordination for harvesting with 

two hands; and d) forward simulation of the consequences of action to support goal-

directed reasoning. Figure 5.2 shows the block diagram summarising the design of the 

ANN-based controller from data generation to goal-directed reaching with the Essex 

agricultural robot. The robot comprises two 6-DoF universal robot 3 (UR3 arm), an ultra-

lightweight, compact collaborative industrial robot, and a stereo camera, all housed on a 
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Husky mobile base. In this work, dual-armed strawberry harvesting is the main task, so it 

is possible to add task constraints of joint rotation and end-effector pose to achieve 

collision-free and efficient harvesting motion planning for arms. 

 

Figure 5. 2 - Artificial neural network based controller begins with the babbling movements of 

the robot to generate data (top left) which is used to train the backpropagation network (top 

left). From the connectivity matrix, the Jacobians can be computed (bottom right and Eq. 5.2). 

The bottom left picture shows the arm reaching the target (XG). 

The PMP computation steps are summarised below. a) Data generation through 

robot babbling movements. The training data for the ANN was obtained through 

sensorimotor exploration/babbling. In the arms workspace, the UR3's joint rotation 

readings and set of corresponding end-effector coordinates were saved into two files 

based on the forward kinematic analysis. The training set comprised 10,000 points in the 

workspace of the arm and corresponding joint angles. 

b) Design of the neural controller. Once the training data was obtained, as shown in 

Figure 5.3, a standard backpropagation network with two hidden layers was used to learn 
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the mapping ( )f Q=X . Here,  iq=Q  denotes the input vector (of joint angles of the 

UR3 arm),  kx=X  denotes the output vector (representing the 3D position/orientation 

of the end-effector)  jz=Z , and  ly=Y  denotes the output of the first and second 

hidden layer units of the neural network respectively. Eq. 5.1 expresses the mapping, 

where  ij  are connection weights from the input layer to the first hidden layer,  jlo  

are the connection weights between two hidden layers,  lkw=W  are the connection 

weights from the second hidden layer to the output layer,  jh=H  are the net inputs to 

the neurons of the first hidden layer and  lp=P  are net inputs to the second hidden 

layer. Neurons of the two hidden layers fire using the hyperbolic tangent function; the 

output layer neurons are linear. 
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X Q .                          (5.1)  

Concerning the use of external objects as tools, the same procedure can be applied 

to the data (i.e., end-effector motion and the corresponding consequence on the tool 

effector) acquired by imitating the teacher's demonstration [68], [107] thus constraining 

the domain of random exploration. 
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Figure 5. 3 - Backpropagation neural network. The input is the angles of the six joints, whereas 

the output is the 3D coordinate point of the end-effector. The network is trained to approximate 

the kinematic transformation and used to evaluate the Jacobian matrix. 

The Jacobians encoding the geometric relationship between the respective motor 

spaces (joint space-end effector space of the UR3 arm) can be extracted from the learning 

weights of the neural network using the chain rule, as follows (Eq. 5.2).  

( ) ( )k
lk l jl j ijl j

i

x
J w g p o g h

q





 = =    .                                   (5.2) 

c) PMP network and goal-directed reaching. Once the ANN was trained, the PMP 

network was generated for goal-directed reaching/control of the arm. The network shown 

in Figure 5.2 represents the kinematic chain of a single arm. Here, two motor spaces, i.e., 

hand space with two nodes (representing force (pink) and position of the hand (blue)) and 

arm joint space with two nodes (representing torque (pink) and rotation of the various 

joints (blue)), are present. The pair of force–displacement nodes is called a work unit 

(WU) because the scalar work ( force displacement ) is the structural invariant across 
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different motor spaces. The network can be animated by attaching force fields to one or 

more body parts/ effectors in a goal-oriented fashion. Animation is analogous to the 

coordination of a marionette with attached strings (that represent the attractor dynamics 

of the force field induced by the intended goal i.e. the strawberry). While reaching is the 

simplest case with a fixed point attractor (at the target), the body schema can be animated 

with moving point attractors to produce diverse spatiotemporal trajectories, as shown for 

drawing [68], tool use [107], [108]. The computational model can be summarised as 

follows. 

Let q  denote the set of all the DoFs that characterise the UR3 arm. Subsequently, 

the kinematic transformation ( )f=x q  can be expressed as: J= x q   where J  is the 

Jacobian matrix of the transformation extracted from the trained ANN. Next, the PMP 

animation in the simplest case for a serial kinematic chain involves the following steps. 

(1) Generate a target-centred, virtual force field in the extrinsic space: 

 ( )ext GK= −F x x ,                 (5.3) 

where Gx  denotes the strawberry to reach and extK  is the virtual stiffness of the attractive 

field in the extrinsic space. extK  determines the shape and intensity of the force field. In 

the simplest case, K is proportional to an identity matrix and this corresponds to an 

isotropic field, converging to the target along straight flowlines. 

(2) Map the force field from the extrinsic space into the virtual torque field in 

the intrinsic space: 

TJ=T F .                                                                 (5.4) 

(3) Relax the arm configuration to the applied field: 

intA= q T ,                                                               (5.5) 
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where intA  denotes the virtual admittance matrix in the intrinsic space. The modulation 

of this matrix affects the relative contributions of the different joints to the overall 

reaching movement. 

(4) Map the arm movement into the extrinsic workspace: 

J= x q .                                                          (5.6) 

(5) Integrate over time until equilibrium: 

( )
0

t

t
t J d= x q .                                                   (5.7) 

The fifth step is integration, which provides a trajectory with the equilibrium 

configuration ( )tx  defining the final position of the robot in the extrinsic space. All the 

computations in the above loop are “well-posed” and the relaxation mechanism does not 

require any cost function to be specified to solve the indeterminacy related to the excess 

DOFs (the redundancy problem). Time can be explicitly controlled by inserting a time-

varying gain ( )t  in the nonlinear dynamics of the relaxation process (Eqs. 5.3–5.6). To 

achieve this, the technique originally proposed in [109] for content addressable memories 

can be extended in the context of goal-directed reaching for robots and used [110].  

This can be implemented by substituting the relaxation Eq. (5.5) with Eq. (5.8), as 

follows:  

int( )t A=   q T ,                                                            (5.8)  

where a possible form of time-varying gain is the following that uses a minimum-jerk 

generator with duration t.  

( )
1

t



 =

−
,                                                                (5.9) 

where 

5 4 3( ) 6( / ) 15( / ) 10( / )t t t t   = − + .                                    (5.10) 
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In general, a time base generator (TBG) can be used as a computational tool for 

synchronising multiple relaxations in composite PMP networks, essentially coordinating 

the relaxation of movements of two arms, or even the movements of two robots.  

 For a simple reaching task with an arm, at the end of the animation process, four 

sets of trajectories are obtained as a function of time: 1) sequence of joint angles given 

by the positioning node in the joint space (arm); 2) resulting consequence i.e. the sequence 

of end-effector position given by the positioning node in end-effector space; 3) sequence 

of torques at the different joints (arm and waist), given by the force node in the joint space; 

4) resulting consequence i.e. the sequence of forces applied by the end-effector given by 

the force node in the end-effector space. The time-varying gain is considered a temporal 

pressure that becomes stronger as the deadline approaches and diverges afterward. 

Further details of the mathematical model for terminal attractor dynamics applied to goal-

directed reaching in robots can be found in [110]. 

Simultaneously, a range of internal and external constraints can be integrated at 

runtime based on the requirements of the task that needs to be performed as force fields 

defined either in the extrinsic space or in the intrinsic space.  

5.1.2 Spatial planning for bimanual manipulation 

This study focused on developing a perception–action decision system for the dual-

arm mobile robot harvesting strawberries in the greenhouse. Therefore, for this 

application, the basic PMP sub-network (Figure 5.2) was repeated for the right and left 

arms. The bimanual coordination task of reaching two objects simultaneously is shown 

in Figure 5.4. The network shown in Figure 5.4 (a) represents the kinematic chain of the 

dual arm. In normal conditions, all the participating joints were considered equally 

compliant. Here, the admittance intA  is an identity matrix (for UR3, it is a 6 6  identity 

matrix). However, by locally modulating individual values, the degree of participation of 
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each joint in the coordinated movement can be varied while maintaining the solution at 

the end-effector space. Here, a specific constraint for the shoulder joint of each arm was 

applied to avoid arms collision. This is because when the first joint (shoulder) of the 

robotic arm rotates, the upper and lower arms exhibit large movements. Decreasing the 

degree of participation of the shoulder is an effective way to avoid collisions. 

 

Figure 5. 4 - (a) Dual-arm passive motion paradigm network model for fruit harvesting; (b) 

Example of planned motion trajectory based on given strawberries’ positions. 

Similar to a reaching task with one arm, the planned trajectories for a bimanual 

coordination task are illustrated in Figure 5.4 (b) at the end of the animation process. 

5.2 Analysis of the Action System 

5.2.1 Accuracy analysis 

To verify the action system, an example of results when PMP is provided with a 

target to reach is presented below. Figure 5.5 shows the harvest process of strawberries 

in the laboratory. Figure 5.6 (a) shows the transition from the initial position to the end-

effector's final target position. Similarly, Figure 5.6 (b) shows the sequence of arm joint 

angles in all DoF from its initial position to its final position for the end-effector to reach 
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the target. The results were as expected, within a few millimetres of the target set. A key 

observation was the smoothness of the curves in the figures reflecting the framework's 

natural no-jerk behaviour. Finally, in Figure 5.6 (c), the graph shows the system's time 

pressure to finish arm movement in the set number of iterations (i.e., 1000). Figure 5.7 

illustrates the simulation results from the MATLAB. In this simulation process, 200 target 

points (black) were randomly generated in the arms working space. Then the PMP 

calculated the arm's joint angles with the end-effector's corresponding position (green 

point). The target points, therefore, have an average error of 2.8853 mm compared to the 

positions of the end-effector; here, some black dots are not visible as they are covered by 

green dots. 

 

Figure 5. 5 - Test of the action system in a lab setting: (a) arm reaches the target position, (b) 

gripper cuts the stem of the target strawberry, and (c) gripper remains closed until it goes to the 

specified position. 

 

Figure 5. 6 - a) Sequence of end effector position from an initial position (-151, 116, 593) to the 

target (124, 158, 727) as a function of time; b) Sequence of joint angles in all the DoF of the 

arm from an initial state to the final state (when the end effector reaches the goal); (c) Time-

varying gain signal. 
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Figure 5. 7 - Target reaching accuracy for 200 points in the workspace. The black points are the 

target locations and the green points are the results given by the PMP. Some of the targets are 

completely covered by the green points; hence, they cannot be displayed. 

5.2.2 Harvesting speed analysis 

Joint acceleration and speed of the leading axis are the key parameters for the 

execution time. To illustrate one arm harvesting 

time, the acceleration and speed were first set to 4 

rad/sˆ2 and 4 rad/s, respectively. Note that when the 

gripper opened or closed, a delay of 0.8 s was added 

in the execution of the program. Thus, the average time of the entire execution process of 

single strawberry harvesting (i.e., strawberry detection, mobile base movement, arm 

movement,  and placing strawberry) was approximately 11 s, as shown in Figure 5.8. In 

this figure, despite the recognition results of the perception system, a timer is present in 

the upper right corner to count the running time of the system, whereas the lower left 

"You cannot have the best of both 

worlds."  

Speed and accuracy are often 

issues that cannot be combined 

perfectly. 
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corner shows the real-time 3D coordinates of each strawberry. When the acceleration and 

speed were increased to 20 rad/sˆ2 and 20 rad/s, respectively, the average time of the 

execution process of three strawberries harvesting was approximately 19 s, as shown in 

Figure 5.9. 

 

Figure 5. 8 - Single strawberry harvesting with low speed. (a) Strawberry detection and mobile 

base movement; (b) Arm movement; (c) Gripper working; (d) Placing strawberries. 

 

Figure 5. 9 - Three strawberry harvesting with high speed. (a) Strawberry detection and mobile 

base movement; (b) First strawberry harvesting; (c) Second strawberry harvesting; (d) Placing 

the last strawberry. 
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If the speed is greater than 20 rad/s, the robotic arm may vibrate, thus affecting the 

regular operation of the robot. Evidently from the above high-speed testing, the speed of 

the robot was close to that of a human picker (3.5–5.0 s for searching and picking one 

strawberry).  However, in the field, the average time may be influenced by the uneven 

ground and distribution of strawberries. Figure 5.10 illustrates the harvesting speed on 

the farm with medium speed (i.e., the acceleration and speed are set to 15 rad/sˆ2 and 15 

rad/s, respectively). As shown in Figure 5.10, a single robot arm takes approximately 14 

s (including the movement time of the mobile base) to pick two strawberries in a row on 

the farm. 

 

Figure 5. 10 - Strawberry harvesting with medium speed on the farm. A single arm spends 

approximately 14 s (including the time of mobile base movement) to pick two strawberries. 

5.3 Results from Field Trials 

To demonstrate the working of the proposed robotic action system in real-world 

environments, field experiments were conducted in 2021–2022 in the vertical greenhouse 

in Tiptree Essex, UK. As shown in Figure 5.11, strawberries were grown in a vertical 

system such that the strawberry table-tops could be raised up or lowered. This field trial 
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round focused on whether the robotic action system can pick low-harvesting complexity 

strawberries. More details regarding the robotic perception–action system for bimanual 

manipulation are discussed in the next chapter.  

 

Figure 5. 11 - Layout of the vertical greenhouse. The strawberry table tops can be raised or 

lowered, thus providing a passable aisle for robots and staff. 

During harvesting, the perception system first obtains the 3D information of the 

target strawberry. Subsequently, the mobile base determines whether it must move 

horizontally according to the distance to the strawberry. Finally, the action system calls 

the PMP for harvesting. In detail, the gripper cuts the stem of the strawberry, as shown in 

Figure 5.12, as follows. Once the robot acquires the central location of the strawberry, the 
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perception system estimates the cutting point based on the bounding box. Next, it opens 

its gripper and advances to the point. Thus, damage to the strawberry is avoided by cutting 

only the stem; meanwhile, once the gripper is open, the area to cut the stem is sufficient, 

even if the strawberry’s stem is curved. Figure 5.12 (b) illustrates the geometric 

relationship between the bounding box (the blue box in the figure) and the cutting point. 

Once a strawberry is detected, two corner points are defined, and the cutting point is 

readily estimated based on the two points. The perception system calculates the top centre 

of the detected strawberry first in 2D pixels and then converts it to a 3D point based on 

the point cloud. When the top centre of the strawberry’s location is finalised, the expected 

cutting point is estimated as 2 cm above the top centre of the strawberry. Figure 5.12 (c) 

shows an example of the gripper cutting the stem of a strawberry. 

 

Figure 5. 12 - (a) Gripper/cutter of the robot; (b) Geometric relationship between the bounding 

box and cutting point; (c) Reaching and cutting a target in the field. 
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In the field experiment, the robot attempted 35 pickings, of which 11 were failed. 

Thus, it exhibited a successful picking rate of 68.57 %; success and failure cases are 

shown in Figure 5.13. One of the main reasons for failure was the short size of the blade 

in the gripper, which could not cut the stem accurately, thus resulting in pulling or fruit 

falling. Additionally, the position error (i.e., calibration of the camera, coordinates 

transformation between camera and arm base) was another factor that led to inaccurate 

picking. In order to improve position errors as much as possible, the camera is first fixed 

to the robot to ensure a stable position relationship between the camera and the robot arm. 

A calibration algorithm is then used to transfer the coordinates from the camera to the 

arm base, which will be introduced in the next chapter. 

Additionally, the harvesting performance depends on whether the target strawberry 

is surrounded by obstacles (immature berries) or whether its stems are entangled.  To 

tackle this, the fruit cluster complexity analysis was introduced in Chapter 4.2. Generally, 

because each cluster’s complexity is uncertain and random, realising the autonomous 

harvesting of the greenhouse is still a challenge for the robot. The next chapter addresses 

this challenge based on field experiments. 
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Figure 5. 13 – Field trials. (a) Success case; (b) Failure case: cannot cut the stem(“pulling”); (c) 

Failure case: position error. 

5.4 Summary 

This chapter presented a biologically inspired action system for robotic soft fruit 

harvesting, and a PMP for goal-directed reaching with a mean error of less than 3 mm in 

the laboratory. This framework was field-tested in a state-of-the-art vertical growing 

system at Wilkin and Sons, Tiptree, Essex. The action system is a forward/reverse model 

that can be used to simulate the consequences of predictive planning and to extend a series 

of tools coupled with the arm. Compared with the conventional optimisation control 
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method, this method can effectively solve the DoF problem and realise the high-precision 

movement of robotic arms. The results illustrated the overall performance of the action 

system and the smooth harvesting process. 

However, given the substantial variance in the structure of the canopy, the 

integration of cluster complexity analysis and bimanual coordination is crucial for the 

robot to harvest strawberries automatically. In addition to the identification and 

localisation of the strawberry, this features assigns a complexity level to every identified 

strawberry. Thus, the complexity level enables planning the strategy for picking, such as 

reaching with single-arm, body movement, and two-handed coordination (decluttering 

the obstacle with one hand and picking with the other one). Thus far, the cluster 

complexity analysis and PMP-based action system have been developed separately; the 

next chapter integrates them into a dual-arm robot architecture for strawberry harvesting 

in the field. 
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Chapter 6 

Integration: Perception-Action-Decision Making 

Loop Targeting Harvesting of Fruits 

Recently, robots have been widely used in industries. However, farms are typically 

unstructured environments; thus, robots are not easily commercialised in agriculture. This 

chapter focuses on integrating all the previous sub-systems into the Essex agricultural 

robot and working toward field applications. The robot constructs an action plan based 

on the current scene, which helps the robot decide which strawberry can be picked by 

which arm, how much the mobile base must move, and whether the strawberry can be 

picked successfully without damage according to the complexity level. Herein, the system 

was extended to a dual-arm mobile robot and its harvesting performance in the vertical 

greenhouse was verified. 

6.1 How Acting Can Make the Robot See Better 

As humans, our visual environments comprise multiple objects in everyday life. 

However, we are constrained in the number of actions we can simultaneously perform 

owing to limited effector systems. To survive in such environments, we must be able to 

select stimuli for actions that are of prime relevance to our behavioural goal [111]. 

Similarly, for a robot with a more limited function of vision and motion, reasonably 

cooperating with the perception–action system is essential to perform basic tasks. In 

particular, in this study, the interaction of perception and action in harvesting robots was 

observed. 
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In Figure 6.1 a, the robot obtains the goal information from its perception system; 

its arm reaches the goal at awkward angles, and thus, may damage the target. However, 

if the robot can combine the mobile base and arm movement, the situation changes. As 

shown in Figure 6.1 b, the robot moves a short distance to ensure the perception system 

can detect the goal in front of it. Subsequently, the arm can reach the target smoothly and 

the gripper can cut the stem in the horizontal direction. 

 

Figure 6. 1 – (a) Reaching a target without the mobile base movement (joint angles look slightly 

complex). (b) Reaching a target with the mobile base movement (the joint angles do not require 

significant rotation). 
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Essentially, a better perspective can be obtained by adjusting the position and pose. 

However, with a clear behavioural goal, the goal can be reached with a series of simple 

movements. To illustrate the robot perception–action system, the overview of the system 

architecture, comprising the user interface, perception system, navigation (mobile base), 

and robotic arm control, is shown in Figure 6.2.  

 

Figure 6. 2 - Overview of the Robotic system architecture. The perception system, action system, 

and navigation system communicate with each other to transfer data. Each system can be opened 

individually in the user interface or the entire system can be run with one click. 

The proposed system was applied to the Essex agricultural robot, as shown in Figure 

6.3a, for laboratory and field experiments. To simplify the use of the system, the user 

interface provides several selections to initialise the robot, launch the perception system, 

navigation, and harvest strawberries via both/single arms. 

Some positional errors and failure cases were observed in the last season's field 

experiments (action system testing in the previous chapter). Therefore, through several 

trials on the farm, the camera position was fixed to an optimal position with a good 

perspective (Figure 6.3 b). In addition, the structure of the gripper was slightly modified 

to ensure the stem was cut properly. As shown in Figure 6.3 c, to avoid the “pulling” 
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cases, a rod was placed to block the fruit stem in the cutting area. More details regarding 

how the integrated system works are introduced in the rest of the chapter. 

 

Figure 6. 3 - (a) Essex robot working in the field; (b) Optimal camera position; (c) Updated 

structure of the gripper. 

6.2 Strawberry Allocator: A Forward Action Planner for 

Bimanual Manipulation 

6.2.1 Coordinate transformation 

To provide a harvesting/action plan for the dual-arm mobile robot, the perception 

system must provide the 3D coordinate (x, y, z) and complexity level that can be used to 

execute this plan. Therefore, the YOLACT-based (see chapter 4.2) detector was selected 

as the main model to detect and classify the strawberries. The localisation process was 

realised using a stereo camera. Figure 6.4 shows an example of collecting the 2D and 3D 

data simultaneously from the farm using the stereo camera.  
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Figure 6. 4 - Obtaining 2D and 3D information for the dataset using a stereo camera. 

Furthermore, to decrease the positional error, an algorithm based on the least-squares 

fitting [74] was selected to determine the optimal solution of rotation matrix R and 

translation vector for coordinate transformation (Figure 6.5). 

 

Figure 6. 5 - Illustration of coordinate transformation. 

Mathematically, when the stereo camera acquires the 3D coordinate of a strawberry 

camP  it should be transferred to the arm base coordinate system for inverse kinematic 

using the following equation. 

arm camP RP t= + .                                                        (6.1) 

To determine the optimal rotation and translation, the point data  

1 2, ,..., n

cam cam cam camP P P =  P  and corresponding data 1 2, ,..., n

arm arm arm armP P P =  P  was 
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collected; subsequently, the solution was computed by minimising the least squares error 

of the datasets, as follows. 

2

1

n
i i

cam arm

i

err RP t P
=

= + − .                                       (6.2) 

First, the centroids of both datasets were calculated as follows. 
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Next, singular value decomposition (SVD) [112] was used to determine the optimal 

rotation, as follows. 
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.                 (6.4) 

Finally, translation was obtained, as follows. 

arm camt centroid R centroid= −  .                                          (6.5) 

6.2.2 Strawberry allocator 

Once the 3D coordinates and complexity levels of the detected strawberries are 

acquired, the robot must decide which arm is 

suitable for harvesting, and how much the mobile 

base must move. Figure 6.6 illustrates this process 

by showing four strawberries ready for harvesting.  

When multiple harvest-ready 

strawberries are in view, are they 

picked at random or in a specific 

order? Which strawberries can be 

picked with one hand, and which 

ones require both hands? 
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Figure 6. 6 - Working space for the left and right arms. The space is divided based on the Y-axis 

of the coordinate system, and the camera is located at the origin of the Y-axis, with the left hand 

on the positive half-axis and the right hand on the negative half-axis. 

Once the perception system detected the four berries, the output result is as follows: 

( )

( )

( )

( )

1 1 1

2 2 3

3 3 3

4 4 4

1:  left, , , ,  easy

2 :  left, , , ,  easy

3:  right, , , ,  easy

4 :  right, , , ,  easy

berry x y z

berry x y z

berry x y z

berry x y z









 

The left/right information is obtained based on the coordinate value ( ), ,i i ix y z . When 

the strawberry is in the middle of the working space, the coordinate 
iy  value fed back by 

the stereo camera is zero. When the strawberry is distributed on the left/right side, the 

value is increased/decreased. To arrange the harvesting sequence, the working space is 

divided into two areas, for the left and right arms separately. When the robot moves in 

the direction from left to right in the above figure, each arm first harvests the left-most 

strawberry in its working area. Conversely, the robot can be set to harvest strawberries 

from right to left as the robot moves from right to left. By using this picking strategy, 

collisions between the arms can be avoided and efficiency maintained. That is, as shown 

in Figure 6.6, the left arm first harvests berry 1, and the right arm harvests berry 3. Next, 
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the mobile base moves a short distance and harvests the remaining two berries (see Figure 

6.7).  

 

Figure 6. 7 - Harvesting the remaining two strawberries in combination with the moving base 

movement. 

The robot needs to move only in the horizontal direction because the strawberries 

are all distributed on one side. To calculate the distance the robot must move, its 

movement was set such that at least one strawberry was in front of one of the robotic arms 

for harvesting. For example, when the robot moved in the direction shown in Figure 6.7, 

the distance of the movement ensured that berry 2 was in front of the left robotic arm for 

harvesting. This is expressed as follows. 

( )

( )

( )

( )

2 2 3 2 3

2

4 4 4 4 4 4

2 :  left, , , ,  easy 2 :  left, , , ,  easy

4 :  right, , , ,  easy 4 :  right, , , ,  easy

berry x y z berry x a z
s a y

berry x y z berry x y z

  
→ = − → 

  

, 

where s  denotes the displacement that the robot must be moved. Before the robot moves, 

the coordinate Y value of berry 2 is 
2y . When the strawberry is located in front of the left 

arm, its coordinate value becomes a. Hence, the moving distance must be calculated 

according to the constant value a. This method is advantageous because if a strawberry is 

always in front of one arm to harvest, each joint does not need considerable rotation; thus, 

collisions between components can be easily avoided. 

In addition to the above information for the action sequence, the complex level is 

another factor. In the above example, all strawberries are assumed to be easy to harvest. 
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This implies that these berries can be successfully harvested by one of the robot arms with 

mobile base movement. However, if the complexity of harvesting a strawberry is 

“medium”, it may not be successfully harvested in one attempt. Here, the robot can 

attempt to harvest it multiple times by adjusting the wrist angle of the arm. In addition, 

for the strawberry with a “hard” complexity level, which is the most challenging situation 

where even a human may require using both hands to pick this type of strawberry.  Hence, 

the robot can ignore these types of strawberries and focus on the "easy" and "medium" 

complexity ones. Generally, the key idea of the berry allocator is constructing a harvest 

plan with the shared and conflicting resources (body/mobile base). This plan can adjust 

the action strategy based on the clustering complexity. 

6.2.3 Experimental results in the laboratory setting 

A simple experiment was demonstrated in the laboratory to verify the feasibility of 

the strawberry allocator. Herein, a few “easy” strawberries that could be harvested 

successfully in one attempt were considered. Therefore, the feedback of the perception 

system resembled that shown in Figure 6.8. This screenshot indicates that the perception 

system can classify each detected strawberry’s cluster complexity. Furthermore, the 3D 

coordinates information and picking sequence by which arm were recorded as the 

harvesting plan. 
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Figure 6. 8 – Perception system display interface in the lab setting. 

The first test involved harvesting all strawberries with one arm. As shown in Figure 

6.9, the process of the robot harvesting using a single arm was recorded from the robot's 

perspective. Figure 6.9a shows that the left arm reaches and cuts the first strawberry. 

Subsequently, the mobile base moves a negligible distance (Figure 6.9b) and harvests the 

second strawberry (Figure 6.9c). Next, the mobile base moves again for the harvesting 

the remaining strawberries (Figure 6.9d). In this test, as the robot moved from left to right, 

the robotic arm needed to pick only the leftmost strawberry one by one. 
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Figure 6. 9 - Demonstration of the single-arm harvesting process in the laboratory. 

As the robot moves, a single arm can complete the harvesting task; however, the 

efficiency of this harvesting is not as high as that of double-arm harvesting. Figure 6.10 

demonstrates the harvesting process by the robot using both arms. In this experiment, the 

mobile base still moved from left to right according to the robot's perspective. Initially, 

the robot harvested two strawberries located in the left-most working space of each arm 

(Figure 6.10a). Subsequently, the mobile base moved closer till one strawberry was in 

front of the left arm (Figure 6.10b), and the two arms harvested the strawberries located 

in the left-most working space again (Figure 6.10c). Finally, the robot moved and 

harvested the remaining strawberries (Figure 6.10d). All the laboratory and field 

demonstrations of this thesis were saved as media files and can be found in the 

Supplementary Materials of the thesis.  
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Figure 6. 10 – Demonstration of the dual-arm harvesting process in the laboratory. (a) shows that 

the robot detects six strawberries and the arms try to pick them from left to right within its own 

working space; (b) shows that after the first round of picking, the robot moves forward a short 

distance for the second round of picking (c); (d) shows the robot attempting to pick the remaining 

strawberries. 

6.3 Verifying Robotic Perception–action in Field Application 

The field experiments were conducted in the year 2022 in the vertical greenhouse in 

Tiptree Essex. Unlike the previous round of field experiments (Chapter 5.3), this 

experiment tested the performance of the integrated system based on the strawberry 

allocator in farm harvesting. First, the robot based on the integrated system was tested by 

harvesting “easy,” “medium,” and “hard” strawberries separately; the harvesting results 

of a single attempt are recorded in Table 6.1. Evidently from the testing, all easy cases 

were successfully harvested in a single attempt; however, in two cases, the target 
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strawberries were dropped after cutting. Although the most of “medium” ones were 

harvested successfully, in some cases, the robotic arms simultaneously picked ripe and 

unripe strawberries. However, a few “medium” strawberries and the most of “hard” 

strawberries that were harvested failed in single attempt harvesting. When the robot was 

allowed to harvest the “hard” strawberries in two or three attempts, the gripper still cut or 

damaged some unripe strawberries. Figure 6.11 illustrates the failure cases in the field 

trials.  

Table 6. 1 - Harvesting strawberries success rate with different complexity levels 

Complexity level Success Failure  Success rate (%) 

Easy 21  2 91.3 

Medium 19  6 76 

Hard 3  11 21.43 
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Figure 6. 11 – Failure cases in field test: (a) “Hard” target with obstacles, the gripper only cut the 

leaf; (b) “Medium” target surrounded by one unripe berry; (c) Target dropped after harvesting. 

The robotic arms were not expected to harvest successfully in this challenging 

environment with plenty of obstacles (i.e., stems, raw strawberries, and leaves), 

particularly in only a single attempt. Because the perception system can sort out the hard-

to-pick strawberries, the robot can ignore the sub-type (“hard”) strawberries and focus on 

continuously harvesting other strawberries, thus minimising damage to unripe 

strawberries. However, the “easy” or “medium” strawberries cannot be always harvested 

successfully in a single attempt. Figure 6.12 shows an example that demonstrates the 
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robot's ability to improve the harvesting process by moving the mobile base to adjust its 

position after failing in the first attempt. 

 

Figure 6. 12 - Cutting a strawberry by adjusting the mobile base. Because the perception system 

is always updating the coordinates of the strawberry, when the robot attempts to pick but fails, 

the action system adjusts the pose according to the real-time coordinates of the strawberry and 

attempts to pick again. 

As shown above, although the robot occasionally could not harvest a strawberry with 

low harvesting complexity in the first attempt, the perception system continued updating 

the 3D information of the target. Therefore, the location of the target changed slightly. 

Consequently, the mobile base moved a small distance back and forth to accommodate 

the change in target pose and attempted to reach again.  

In the above field experiments, the proposed robotics system demonstrated good 

performance in strawberry picking. Currently, the system can perform strawberry 

harvesting tasks with low cluster complexity. Even if the model ignores strawberries that 
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are heavily complex to harvest, a human–robot collaboration system can be used for 

strawberry picking to reduce manual labour. 

6.4 Directions and Guidelines for Improvement 

Harvesting ripe strawberries in commercial greenhouses using robots presents 

considerable room for improvement. Existing challenges include analysis of strawberry 

ripeness, dual-arm collaboration for strawberry harvesting in the cluster, and efficient 

harvesting with a low damage rate. The proof-of-concept experiments herein provided 

some research outcomes for adapting the proposed architecture to other fruit. Cluster 

complexity-based detection and forward action plan can be applied in the perception 

system to harvest other crops. This can allow harvesters to adopt more targeted action 

strategies based on the difficulty of harvesting. In this study, the harvesting complexity 

was classified by the occlusion degree and the dataset was labelled according to the 

authors’ judgment. This may result in classification errors; for example, the perception 

system occasionally confused some “medium” and “hard” strawberries. In future work, a 

more quantitative method can be developed to classify the harvesting complexity to assist 

in data labelling. 

 Evidently from the field trials, although the damage rate could be reduced using a 

gripper with a blade to cut the stem, some failure cases were observed. First, a few 

strawberries were dropped after the gripper cut the stem; this can be avoided by adjusting 

the size of the blade and gripper. However, the main failure cases were caused by 

occlusion because of the presence of some leaves, stems, and unripe strawberries; this 

presents challenges for a single gripper to complete the harvesting. To harvest the 

strawberry with a high level of complexity, dual-arm collaboration with different grippers 

can be used. Essentially, the action system can be extended to control two hands for 

harvesting strawberries in the cluster, similar to humans.  



 

103 
 

Overall, the field-evaluated robotics platform can aid the further development of 

agricultural robotics systems for other crops. 

6.5 Conclusions and Open Questions 

This chapter presented a dual-arm robotics system that demonstrated an automated 

approach for harvesting strawberries. The proposed system comprised a cluster 

complexity-based perception and a berry allocator harvesting strategy was integrated with 

the action system. The efficiency of the system was verified in a vertical growing system 

in England. 

The perception system aimed to determine the harvesting complexity of ripe 

strawberries; this can help the harvesters adopt different action strategies to handle 

strawberries with different complexity levels. Another contribution of the system was 

proposing a berry allocator to help the dual-arm robot harvest strawberries reasonably 

with shared and conflicting resources. Furthermore, the action system was developed 

based on the PMP for stem-directed cutting with a 3D-printed gripper, which avoided 

directly touching the strawberry to reduce the damage rate. The field experimental results 

revealed that the proposed architecture can simultaneously pick low complexity level 

strawberries with two hands and avoid damaging the high complexity level strawberries. 

The concepts allow some future extensions and further work, as follows. 

1) Harvesting high complexity level of strawberries. Although using the robotics arm 

to precisely harvest ripe strawberries with considerable occlusion is challenging, this 

chapter introduced the idea of constructing harvesting strategies based on the clustering 

complexity. Thus, dual-arm collaboration with different grippers has considerable 

potential for future research.  



 

104 
 

2) Configurability to other crops. In addition to strawberry harvesting, other fruit 

harvesting robots also face cluster complex problems. The proposed approach can be 

considered for soft fruit and various cross-industry applications.  

3) Diagnosing diseases by combining mobile robots and drones. This study focused 

on strawberry harvesting; however, in the fruit industry, pests and diseases severely affect 

the yield of fruits. Thus, diagnosis and pest/disease treatment using innovations in mobile 

robots and drones can increase fruits and vegetable production.   
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Chapter 7 

General Conclusions and Future Work 

This chapter summarises the contributions of this thesis and closes with future 

extensions and possible research directions. 

7.1 Summary and Extension  

This study presented an adaptive, biomimetic, and configurable robot for smart 

farms, with a focus on the perception–action system for cereal/soft fruit 

phenotyping/identification and harvesting tasks. First, the application of machine vision 

phenotyping of the wheat plant was investigated. Further, recognition technology and 

robotic control for harvesting strawberries, a common soft fruit, were investigated in a 

commercial greenhouse. The results are as follows. 

First, an adaptive k-means algorithm with dynamic perspectives was developed to 

separate the wheat spikes, remove stems, and obtain spikes. To realise field application, 

the method randomly selected some areas as sample areas and called the algorithm to 

calculate the average spike size. Furthermore, the algorithm segmented all the spikes as 

thousands of small segments and used cuboids to fit each segment and estimate the total 

volume of all spikes. However, the fitting errors increased when this method was 

extended to wheat spikes that were curved and overlapping. Therefore, future work is 

expected to optimise the algorithm further to handle the environment where the wheat 

spike is arched. Although the proposed method is based on the classical clustering 

algorithm, which can omit the training process with fewer computing resources, it does 
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not imply that the deep-learning models cannot handle this problem. Contrary, further 

work can develop a robust deep-learning model to address the issues opened up by the 

current work. 

Second, to detect ripe strawberries, a cGAN model was trained on synthetically 

generated data, which included various lighting conditions and occlusions as observed in 

real-world conditions. This approach alleviated the difficulty in collecting and labelling 

data during the pandemic. However, after one round of field experiments, the distribution 

of obstacles was found to affect the difficulty in strawberry harvesting. Therefore, a 

YOLACT-based fruit cluster complexity model was proposed to guide the robot to 

determine whether a strawberry was easy to harvest. 

Further work can attempt to identify overripe strawberries, which is crucial for 

commercial farms. Strawberries are susceptible to numerous diseases in the growing 

chain, and these can be divided primarily into two categories: infectious and physiological 

diseases. These diseases can affect the strawberry leaves, fruits, or flowers [113]. Deep-

learning models for detecting strawberry diseases have been developed recently [114]. 

Therefore, in future, efforts to layer a dataset of healthy fruits with pictures of "rot" of 

similar shape and size, and then apply occlusion filters to these images to synthesise 

"rotten" fruits pictures can be made. This new data can be used to simulate the presence 

of diseases on strawberries by randomly placing "rot" occlusion images (which are other 

darker-coloured objects and fruits) and retraining the perceptual system, which justifies 

the use of flexible hypothetical data for real-world situations. The figure 7.1 illustrates 

only one type of rot (strawberries typically develop black or white regions when they rot 

or get infected with bacteria). 

Furthermore, future work can aim to automate scouting, diagnosis, and pest/disease 

treatment using innovations in swarm robotics, drones, and AI that are generalisable for 
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producing more expansive fruit. Further directions for future works can also be 

considered. Given the previous studies on wheat plants, phenotypic analysis, fruit 

counting, and weight estimation can be extended to soft fruit for yield analysis. 

 

Figure 7. 1 - Example of the rotten strawberry recognition. The left side presents some original 

images, and the right side shows the corresponding post-detection images. 

Third, to move the end-effector accurately toward the fruit, an action system based 

on a neural network implementation of the PMP was developed for the robotic arms. The 

results illustrated goal-directed reaching and exhibited a mean error of less than 3 mm in 

the laboratory. Further, the action system was integrated with the perception system for 

field-tested in a state-of-the-art vertical growing system. According to the field testing, 

when the robot utilised the shared and conflicting resources (arms/mobile base) properly, 

the harvesting efficiency and success rate increased. Therefore, a strawberry allocator was 

proposed to construct a forward harvesting plan that can help the robot determine the 

harvesting sequence of all detected strawberries using one arm. The second round of field 

experiments verified the integrated action–perception system; this implies that the robot 



 

108 
 

not only knows the harvesting complexity of strawberries but also can harvest the 

strawberries by coordinating the arms and mobile base. 

7.2 Possible Research Direction 

Future work can further exploit the dual-arm coordination for strawberry picking 

with high harvesting complexity level. For example, removing the obstacles (i.e., stems, 

leaves, and unripe strawberries) with one hand and picking the target strawberry with the 

other hand. This also requires developing a more dexterous gripper that does not damage 

any strawberries in the harvesting process. Additionally, the current system estimates the 

stem position based on the bounding box of the detected strawberry. It can be further 

improved using the 6D pose estimation method. In addition to robots enabling 

autonomous harvesting on farms, the future research direction may be summarised as 

follow.  

Scouting. 

The flowers, leaves, and flesh of the fruit are susceptible to disease during growth. 

These features of diseases are diverse and complex. The number of fruits counted and the 

analysis of diseases on the seed, leaves, flowers, and flesh would therefore be a branch of 

future research. In addition, fruit maturity, quantitative, and phenotypic analyses are 

useful for yield prediction. 

Monitoring. 

In smart agriculture, intelligent monitoring and control systems have become a 

research highlight. For example, the control of temperature, humidity, energy 

consumption, and the oxygen content of nutrient solutions in greenhouses can effectively 

improve crop yields. This monitoring system could involve the internet of things, sensor 

fusion, and intelligent decision-making, among many other technologies that could be the 

subject of further research. 
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Transport and packaging. 

In an integrated intelligent farming plant, the handling and packaging of fruit and 

vegetables can also be carried out by robots and automatic sorting systems. From the 

literature [115], it is clear that although researchers have focused on individual aspects of 

processing and packaging, there is a need for a more holistic approach to system analysis 

while understanding the scope of the entire operations. Therefore, a scheduling system 

can be built to ensure that multiple robots can be operated and transported in an orderly 

and efficient manner.  

Safety and Collaboration. 

Safety is a very important factor for human-robot collaboration. It includes collision 

avoidance between robotic arms and avoidance between robots and operators. These can 

be implemented in software by developing appropriate algorithms for avoidance, but also 

require the development of appropriate hardware such as sensors to improve safety. 

The general research direction can focus on efficiently deploying intelligent mobile 

robots, manipulators, and unmanned aerial vehicles collaboratively for automating 

complex and labour-intensive tasks to ensure yield and quality of crop production. The 

figure below illustrates one example vision of future work: developing a fleet of adaptive 

and cost-effective collaborative robots operating in a smart farm and adaptively 

configured to automate/learn a range of harvesting tasks (i.e., weeding, picking, 

packaging, scouting, and crop intelligence/protection). Modular hardware/software 

architecture can allow new functionality to be added cumulatively. Further, the focus is 

also on novel workflows for human–robot collaboration, safety/trust, explainability, and 

intuitive user interfaces for robotics fleet operation/visualisation of the farm data. 
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Figure 7. 2 - Vision for future work. In this example, cost-effectiveness can be achieved using 

low-cost robotic arms with better payload and repeat accuracy, low-cost/low-power embedded 

processing hardware, and 3D-printed end-effectors/tools.  

Finally, this study expects that advanced robotics, AI, and computer vision will bring 

much-needed versatility to smart farming. Smart farms are revolutionising farming and 

food production, and will significantly transform the food we eat and how we produce it.  
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Supplementary Material 

The media files demonstrating the findings of this study's perception and action 

system is availabel： 

https://youtube.com/playlist?list=PL2ukSjWhuNP9balDtgh_U51ds1oXPjn0d 

In the meantime, the corresponding media file can be found in the author's published 

literature: 

https://doi.org/10.1007/s11119-023-10000-4 

  

https://youtube.com/playlist?list=PL2ukSjWhuNP9balDtgh_U51ds1oXPjn0d
https://doi.org/10.1007/s11119-023-10000-4
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