10,681 research outputs found

    Using Markov chains for modelling networks

    Get PDF
    The paper contains the review and the discussion on modelling communication networks with the use of queuing models and Markov chains. It shows how to take into account various characteristics of real systems - like some control mechanisms and the traffic self-similarity. There are presented two mechanisms modelled with Markov chains: the RED algorithm in TCP/IP and a self-similar traffic shaping

    Queue Dynamics With Window Flow Control

    Get PDF
    This paper develops a new model that describes the queueing process of a communication network when data sources use window flow control. The model takes into account the burstiness in sub-round-trip time (RTT) timescales and the instantaneous rate differences of a flow at different links. It is generic and independent of actual source flow control algorithms. Basic properties of the model and its relation to existing work are discussed. In particular, for a general network with multiple links, it is demonstrated that spatial interaction of oscillations allows queue instability to occur even when all flows have the same RTTs and maintain constant windows. The model is used to study the dynamics of delay-based congestion control algorithms. It is found that the ratios of RTTs are critical to the stability of such systems, and previously unknown modes of instability are identified. Packet-level simulations and testbed measurements are provided to verify the model and its predictions

    Token Bucket-based Throughput Constraining in Cross-layer Schedulers

    Full text link
    In this paper we consider upper and lower constraining users' service rates in a slotted, cross-layer scheduler context. Such schedulers often cannot guarantee these bounds, despite the usefulness in adhering to Quality of Service (QoS) requirements, aiding the admission control system or providing different levels of service to users. We approach this problem with a low-complexity algorithm that is easily integrated in any utility function-based cross-layer scheduler. The algorithm modifies the weights of the associated Network Utility Maximization problem, rather than for example applying a token bucket to the scheduler's output or adding constraints in the physical layer. We study the efficacy of the algorithm through simulations with various schedulers from literature and mixes of traffic. The metrics we consider show that we can bound the average service rate within about five slots, for most schedulers. Schedulers whose weight is very volatile are more difficult to constrain.Comment: 11 pages, 10 figures. Presented at 6th International Conference on Computer Science, Engineering and Information. Published in AIRCC http://airccse.org/csit/V9N13.htm

    TSN-FlexTest: Flexible TSN Measurement Testbed (Extended Version)

    Full text link
    Robust, reliable, and deterministic networks are essential for a variety of applications. In order to provide guaranteed communication network services, Time-Sensitive Networking (TSN) unites a set of standards for time-synchronization, flow control, enhanced reliability, and management. We design the TSN-FlexTest testbed with generic commodity hardware and open-source software components to enable flexible TSN measurements. We have conducted extensive measurements to validate the TSN-FlexTest testbed and to examine TSN characteristics. The measurements provide insights into the effects of TSN configurations, such as increasing the number of synchronization messages for the Precision Time Protocol, indicating that a measurement accuracy of 15 ns can be achieved. The TSN measurements included extensive evaluations of the Time-aware Shaper (TAS) for sets of Tactile Internet (TI) packet traffic streams. The measurements elucidate the effects of different scheduling and shaping approaches, while revealing the need for pervasive network control that synchronizes the sending nodes with the network switches. We present the first measurements of distributed TAS with synchronized senders on a commodity hardware testbed, demonstrating the same Quality-of-Service as with dedicated wires for high-priority TI streams despite a 200% over-saturation cross traffic load. The testbed is provided as an open-source project to facilitate future TSN research.Comment: 30 pages, 18 figures, 6 tables, IEEE TNSM, in print, 2024. Shorter version in print in IEEE Trans. on Network and Service Management (see related DOI below

    Statistical analysis of chemical computational systems with MULTIVESTA and ALCHEMIST

    Get PDF
    The chemical-oriented approach is an emerging paradigm for programming the behaviour of densely distributed and context-aware devices (e.g. in ecosystems of displays tailored to crowd steering, or to obtain profile-based coordinated visualization). Typically, the evolution of such systems cannot be easily predicted, thus making of paramount importance the availability of techniques and tools supporting prior-to-deployment analysis. Exact analysis techniques do not scale well when the complexity of systems grows: as a consequence, approximated techniques based on simulation assumed a relevant role. This work presents a new simulation-based distributed tool addressing the statistical analysis of such a kind of systems, which has been obtained by chaining two existing tools: MultiVeStA and Alchemist. The former is a recently proposed lightweight tool which allows to enrich existing discrete event simulators with distributed statistical analysis capabilities, while the latter is an efficient simulator for chemical-oriented computational systems. The tool is validated against a crowd steering scenario, and insights on the performance are provided by discussing how these scale distributing the analysis tasks on a multi-core architecture

    Least Upper Delay Bound for VBR Flows in Networks-on- Chip with Virtual Channels

    Get PDF
    Real-time applications such as multimedia and gaming require stringent performance guarantees, usually enforced by a tight upper bound on the maximum end-to-end delay. For FIFO multiplexed on-chip packet switched networks we consider worst-case delay bounds for Variable Bit-Rate (VBR) flows with aggregate scheduling, which schedules multiple flows as an aggregate flow. VBR Flows are characterized by a maximum transfer size, peak rate, burstiness, and average sustainable rate. Based on network calculus, we present and prove theorems to derive per-flow end-to-end Equivalent Service Curves (ESC) which are in turn used for computing Least Upper Delay Bounds (LUDBs) of individual flows. In a realistic case study we find that the end-to-end delay bound is up to 46.9% more accurate than the case without considering the traffic peak behavior. Likewise, results also show similar improvements for synthetic traffic patterns. The proposed methodology is implemented in C++ and has low run-time complexity, enabling quick evaluation for large and complex SoCs

    Extensive Analysis of a Real-Time Dense Wired Sensor Network Based on Traffic Shaping

    Get PDF
    XDense is a novel wired 2D mesh grid sensor network system for application scenarios that benefit from densely deployed sensing (e.g., thousands of sensors per square meter). It was conceived for cyber-physical systems that require real-time sensing and actuation, like active flow control on aircraft wing surfaces. XDense communication and distributed processing capabilities are designed to enable complex feature extraction within bounded time and in a responsive manner. In this article, we tackle the issue of deterministic behavior of XDense. We present a methodology that uses traffic-shaping heuristics to guarantee bounded communication delays and the fulfillment of memory requirements. We evaluate the model for varied network configurations and workload, and present a comparative performance analysis in terms of link utilization, queue size, and execution time. With the proposed traffic-shaping heuristics, we endow XDense with the capabilities required for real-time applications
    corecore