801 research outputs found

    Using a 3DOF Parallel Robot and a Spherical Bat to hit a Ping-Pong Ball

    Get PDF
    Playing the game of Ping-Pong is a challenge to human abilities since it requires developing skills, such as fast reaction capabilities, precision of movement and high speed mental responses. These processes include the utilization of seven DOF of the human arm, and translational movements through the legs, torso, and other extremities of the body, which are used for developing different game strategies or simply imposing movements that affect the ball such as spinning movements. Computationally, Ping-Pong requires a huge quantity of joints and visual information to be processed and analysed, something which really represents a challenge for a robot. In addition, in order for a robot to develop the task mechanically, it requires a large and dexterous workspace, and good dynamic capacities. Although there are commercial robots that are able to play Ping-Pong, the game is still an open task, where there are problems to be solved and simplified. All robotic Ping-Pong players cited in the bibliography used at least four DOF to hit the ball. In this paper, a spherical bat mounted on a 3-DOF parallel robot is proposed. The spherical bat is used to drive the trajectory of a Ping-Pong ball.Fil: Trasloheros, Alberto. Universidad Aeronáutica de Querétaro; MéxicoFil: Sebastián, José María. Universidad Politécnica de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Torrijos, Jesús. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Dynamic Bat-Control of a Redundant Ball Playing Robot

    Get PDF
    This thesis shows a control algorithm for coping with a ball batting task for an entertainment robot. The robot is a three jointed robot with a redundant degree of freedom and its name is Doggy . Doggy because of its dog-like costume. Design, mechanics and electronics were developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities between the motor and link. Redundancy and elasticity have to be taken into account by our developed controller and are demanding control tasks. In this thesis we show the structure of the ball playing robot and how this structure can be described as a model. We distinguish two models: One model that includes a flexible bearing, the other does not. Both models are calibrated using the toolkit Sparse Least Squares on Manifolds (SLOM) - i.e. the parameters for the model are determined. Both calibrated models are compared to measurements of the real system. The model with the flexible bearing is used to implement a state estimator - based on a Kalman filter - on a microcontroller. This ensures real time estimation of the robot states. The estimated states are also compared with the measurements and are assessed. The estimated states represent the measurements well. In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-predictive optimal controller based on the principles of a Linear Quadratic Regulator (LQR). We aim to play a ball back to an opponent precisely. We show how this task of playing a ball at a desired time with a desired velocity at a desired position can be embedded into the LQR principle. We use cost functions for the task description. In simulations, we show the functionality of the control concept, which consists of a linear part (on a microcontroller) and a nonlinear part (PC software). The linear part uses feedback gains which are calculated by the nonlinear part. The concept of the ball batting controller with precalculated feedback gains is evaluated on the robot. This shows successful batting motions. The entertainment aspect has been tested on the Open Campus Day at the University of Bremen and is summarized here shortly. Likewise, a jointly developed audience interaction by recognition of distinctive sounds is summarized herein. In this thesis we answer the question, if it is possible to define a rebound task for our robot within a controller and show the necessary steps for this

    Trajectory solutions for a game-playing robot using nonprehensile manipulation methods and machine vision

    Get PDF
    The need for autonomous systems designed to play games, both strategy-based and physical, comes from the quest to model human behaviour under tough and competitive environments that require human skill at its best. In the last two decades, and especially after the 1996 defeat of the world chess champion by a chess-playing computer, physical games have been receiving greater attention. Robocup TM, i.e. robotic football, is a well-known example, with the participation of thousands of researchers all over the world. The robots created to play snooker/pool/billiards are placed in this context. Snooker, as well as being a game of strategy, also requires accurate physical manipulation skills from the player, and these two aspects qualify snooker as a potential game for autonomous system development research. Although research into playing strategy in snooker has made considerable progress using various artificial intelligence methods, the physical manipulation part of the game is not fully addressed by the robots created so far. This thesis looks at the different ball manipulation options snooker players use, like the shots that impart spin to the ball in order to accurately position the balls on the table, by trying to predict the ball trajectories under the action of various dynamic phenomena, such as impacts. A 3-degree of freedom robot, which can manipulate the snooker cue on a par with humans, at high velocities, using a servomotor, and position the snooker cue on the ball accurately with the help of a stepper drive, is designed and fabricated. [Continues.

    PhysHOI: Physics-Based Imitation of Dynamic Human-Object Interaction

    Full text link
    Humans interact with objects all the time. Enabling a humanoid to learn human-object interaction (HOI) is a key step for future smart animation and intelligent robotics systems. However, recent progress in physics-based HOI requires carefully designed task-specific rewards, making the system unscalable and labor-intensive. This work focuses on dynamic HOI imitation: teaching humanoid dynamic interaction skills through imitating kinematic HOI demonstrations. It is quite challenging because of the complexity of the interaction between body parts and objects and the lack of dynamic HOI data. To handle the above issues, we present PhysHOI, the first physics-based whole-body HOI imitation approach without task-specific reward designs. Except for the kinematic HOI representations of humans and objects, we introduce the contact graph to model the contact relations between body parts and objects explicitly. A contact graph reward is also designed, which proved to be critical for precise HOI imitation. Based on the key designs, PhysHOI can imitate diverse HOI tasks simply yet effectively without prior knowledge. To make up for the lack of dynamic HOI scenarios in this area, we introduce the BallPlay dataset that contains eight whole-body basketball skills. We validate PhysHOI on diverse HOI tasks, including whole-body grasping and basketball skills

    Robotic Ball Catching with an Eye-in-Hand Single-Camera System

    Get PDF
    In this paper, a unified control framework is proposed to realize a robotic ball catching task with only a moving single-camera (eye-in-hand) system able to catch flying, rolling, and bouncing balls in the same formalism. The thrown ball is visually tracked through a circle detection algorithm. Once the ball is recognized, the camera is forced to follow a baseline in the space so as to acquire an initial dataset of visual measurements. A first estimate of the catching point is initially provided through a linear algorithm. Then, additional visual measurements are acquired to constantly refine the current estimate by exploiting a nonlinear optimization algorithm and a more accurate ballistic model. A classic partitioned visual servoing approach is employed to control the translational and rotational components of the camera differently. Experimental results performed on an industrial robotic system prove the effectiveness of the presented solution. A motion-capture system is employed to validate the proposed estimation process via ground truth

    Tennis racket performance studies and the design of a novel test machine

    Get PDF
    The investigation was instigated by a growing concern from the International Tennis Federation (ITF) that the contribution of racket technology in the modem game of tennis might be changing the nature of the game by making it too fast. The serve was earmarked as the most critical stroke influencing the speed of the game, resulting in the decision to build a test machine, which would investigate racket performance under realistic serve conditions. In order to determine the design specifications for the machine the following studies were performed. [Continues.

    Representative testing of personal protection equipment

    Get PDF
    The purpose of the work reported within this thesis was to design and implement a series of tests which better replicate the impact conditions experienced during a game, and allow for quantitative measurements of performance of various items of personal protection equipment (PPE). The sports of cricket and taekwondo were used as case studies. The aim was to improve on existing testing protocols making them more representative of real life, an approach that has not been previously attempted in the literature and so required design of multiple items of novel equipment. A representative cricket impact test was developed utilizing a ball canon firing a cricket ball mass at an equivalent bowling velocity of 31 m/s (70 mph) and a novel, freely suspended force acquisition system with embedded accelerometers from which the transmitted force values could be derived. Throughout the testing secondary variables of coefficient of restitution (COR), deformation and contact time were measured from high speed video footage to give further insight into the impact mechanics of the three tested leg guards. Contact times were in the range of 3 ms - 4 ms, COR between 0.38 - 0.50 and deformation between 45 mm - 52 mm. These results were compared against other benchmark tests to establish how close the representative test was to an actual human related ball-pad impact and to estimate human tolerance levels to impact. A rig to mimic a human on human kicking impact in taekwondo was designed to measure performance of the piece of body protection equipment used in training and competition, commonly referred to as a hogu. Primarily a mechanical simulator was designed to replicate the speed and mass of a human leg impacting during a roundhouse kick. A force acquisition system was manufactured, capable of integrating with the kicking robot functioning, with a human torso sized and shaped anvil, using a similar accelerometer based system of force measurement as that introduced in the cricket testing. This test was then used to measure performance levels of nine off-the-shelf hogus and protective training pads. Using transmitted peak force and time to peak force (TTPF) as indicators of protection, these values were found to range from between 0.5 kN 7.5 kN and 9 ms - 23 ms across the pads indicating a major difference in the protection provided

    State and prospects of development of team interaction of robots on the example of competitions of the world tournament "Robocup"

    Get PDF
    Today, effective group work management is one of the main problems of mechatronics. As the development of generalized algorithms and principles of management is at an early level, the scientific community has formed several model tasks, one of which reads as follows: "By the middle of the XXI century the winner of the last world championship”. As part of the wording, the world's first RoboCup competition was launched in 1996 to promote research in the field of robot design and artificial intelligence. The main task of the article is to analyze and highlight the current state of algorithms for command control of robots on the example of the RoboCup world tournament. The article describes the general schemes of team interaction in the divisions of the tournament, the hardware characteristics of the agents, the history, chronological development and the current state of the rules of the divisions. Based on the analysis, a comparative table of basic technical parameters of RoboCup leagues and approaches used for team management is formed. The conclusion concerning the most actual directions of researches of methods of group interaction is made

    Motion planning and control methods for nonprehensile manipulation and multi-contact locomotion tasks

    Get PDF
    Many existing works in the robotic literature deal with the problem of nonprehensile dynamic manipulation. However, a unified control framework does not exist so far. One of the ambitious goals of this Thesis is to contribute to identify planning and control frameworks solving classes of nonprehensile dynamic manipulation tasks, dealing with the non linearity of their dynamic models and, consequently, with the inherited design complexity. Besides, while passing through a number of connections between dynamic nonprehensile manipulation and legged locomotion, the Thesis presents novel methods for generating walking motions in multi-contact situations
    corecore