
Dynamic Bat-Control of a Redundant Ball Playing
Robot

Dennis Schüthe

Kumulative Dissertation
zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften – Dr.-Ing. –

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)
Universität Bremen

25.08.2016

Datum des Promotionskolloquiums: 02. Februar 2017

Gutachter
Prof. Dr. Udo Frese (Universität Bremen)
Prof. Dr. Axel Gräser (Universität Bremen)

Abstract

This thesis shows a control algorithm for coping with a ball batting task for an enter-
tainment robot.

The robot is a three jointed robot with a redundant degree of freedom and its name is
“Doggy”. Doggy because of its dog-like costume. Design, mechanics and electronics were
developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities
between the motor and link. Redundancy and elasticity have to be taken into account
by our developed controller and are demanding control tasks.

In this thesis we show the structure of the ball playing robot and how this structure
can be described as a model. We distinguish two models: One model that includes a
flexible bearing, the other does not.

Both models are calibrated using the toolkit Sparse Least Squares on Manifolds
(SLOM) – i. e. the parameters for the model are determined. Both calibrated models
are compared to measurements of the real system.

The model with the flexible bearing is used to implement a state estimator – based on
a Kalman filter – on a microcontroller. This ensures real time estimation of the robot
states. The estimated states are also compared with the measurements and are assessed.
The estimated states represent the measurements well.

In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-
predictive optimal controller based on the principles of a Linear Quadratic Regulator
(LQR). We aim to play a ball back to an opponent precisely. We show how this task
of playing a ball at a desired time with a desired velocity at a desired position can be
embedded into the LQR principle. We use cost functions for the task description. In
simulations, we show the functionality of the control concept, which consists of a linear
part (on a microcontroller) and a nonlinear part (PC software). The linear part uses
feedback gains which are calculated by the nonlinear part.

The concept of the ball batting controller with precalculated feedback gains is evalu-
ated on the robot. This shows successful batting motions.

The entertainment aspect has been tested on the Open Campus Day at the Univer-
sity of Bremen and is summarized here shortly. Likewise, a jointly developed audience
interaction by recognition of distinctive sounds is summarized herein.

In this thesis we answer the question, if it is possible to define a rebound task for our
robot within a controller and show the necessary steps for this.

Zusammenfassung

Diese Arbeit zeigt einen Regelalgorithmus zur Bewältigung einer Ballspielaufgabe für
einen Unterhaltungsroboter.

Der Roboter besteht aus drei Drehgelenken mit einem redundanten Freiheitsgrad und
hört auf den Namen „Doggy“ – Doggy wegen seines hundeähnlichen Kostüms. Design,
Mechanik und Elektronik wurden von uns entwickelt. DC-Motoren steuern die Zahnrie-
men getriebenen Gelenke und dies führt zu Elastizitäten zwischen Motor und Gelenk.
Redundanz und Elastizität müssen von dem entwickelten Regler berücksichtigt werden,
was eine herausfordernde Aufgabe ist.

Wir zeigen in dieser Arbeit den Aufbau des ballspielenden Roboters und wie dieser
als Modell beschrieben werden kann. Dabei unterscheiden wir zwei Modelle: Eines be-
rücksichtigt das flexible Kugellager, das andere nicht.

Beide Varianten werden mit Hilfe des Tools Sparse Least Squares on Manifolds (SLoM)
kalibriert – d. h. die Parameter für das Modell werden bestimmt. Die Kalibrierungen
werden mit Messungen des realen Systems verglichen.

Aus dem Modell mit dem flexiblen Lager wird ein Zustandsschätzer – basierend auf
einem Kalman Filter – auf einem Mikrocontroller implementiert. Dieser sorgt für Echt-
zeitschätzung der Roboterzustände. Die geschätzten Zustände werden ebenfalls mit den
Messungen verglichen und bewertet. Zustände und Messungen stimmen dabei sehr gut
überein.

Im Kernpunkt dieser Arbeit entwickeln wir einen Task Level Optimal Controller
(TLOC), ein modellprädiktiven optimaler Regler, der auf den Prinzipien eines Linear
Quadratic Regulator (LQR) beruht. Wir verfolgen das Ziel, einen Ball gezielt zum Mit-
spieler zurück zu spielen. Wir zeigen wie diese Aufgabe, einen Ball zu einer bestimmten
Zeit mit bestimmter Geschwindigkeit in einer bestimmten Position zu spielen, in das
LQR-Prinzip eingebettet werden kann. Zur Aufgabenbeschreibung nutzen wir Kosten-
funktionen. In Simulationen zeigen wir die Funktionalität des Reglerkonzepts, welches
aus einem linearen Teil (auf Mikrocontrollerebene) und einem nichtlinearen Teil (PC
Software) besteht. Der lineare Teil nutzt dafür Rückführgrößen, die vom nichtlinearen
Teil berechnet werden.

Der TLOC Algorithmus wird mit vorberechneten Rückführgrößen auf dem Roboter
evaluiert. Dies zeigt ein gelungenes Ausführen von Schlagbewegungen.

Der Unterhaltungsaspekt von Doggy wurde auf dem Open Campus Tag der Universität
Bremen getestet und wird hier kurz präsentiert. Ebenso stellen wir eine Publikumsin-
teraktion vor, bei welcher Doggy auf markante Geräusche reagiert.

Wir beantworten in dieser Arbeit die Frage, ob eine Ballrückschlag-Aufgabe für unse-
ren Roboter innerhalb eines Reglers definiert werden kann und zeigen die erforderlichen
Schritte hierfür.

Acknowledgment

This work has been supported by the Graduate School SyDe, funded by the German
Excellence Initiative within the University of Bremen’s institutional strategy.

I want to thank SyDe and especially Prof. Frese for giving me the opportunity to
work on such an interesting PhD project. I also want to thank Prof. Gräser and Dr.
Kassahun for being part of my project committee and the regularly discussions within it.
The discussions I had with Prof. Pannek were helpful and I thank him for it. Building
the robot and electronics could only be done with the help of Alexis Maldonado, Jens
Hilljegerdes, and Christoph Budelmann – they did their bit to build the big.

Special thanks to Felix Wenk for the cooperation in the calibration. We had great
discussions on the calibration and additionally for the Kalman filter implementation.

There are some people to name that had great effort of getting me this thesis done.
I thank all my friends, especially Isabella and Silvia for her help during the hard days
of my PhD and for proofreading. Moreover, there is to name Svenja and Bettina that
read through the thesis for corrections, this was very helpful. My girlfriend Verena just
for being there – it is nice to have someone who bolsters me.

Finally, I want to thank my family for their great support over the years. Without
this support, this work would never have been possible. You, my siblings and parents,
have a huge share on this work.

VII

Contents

1. Introduction 1
1.1. Contributions . 2
1.2. Outline . 2
1.3. State of the Art . 4

2. The Robotic System 7
2.1. Mechanical Structure and Sensor Integration 7
2.2. Elastic Joints . 9
2.3. Motors . 10

2.3.1. Current Limitation . 11
2.3.2. Motor Braking – Voltage limitation 12

2.4. IMU for Link Angle Estimation . 13
2.5. Camera System . 13
2.6. Electronic System . 14

3. Robotic Model 17
3.1. Kinematics . 17
3.2. Dynamics . 18

3.2.1. Motor Torque . 18
3.2.2. Motor Friction . 19

3.3. Extension for Flexible Bearing . 20

4. System Calibration and State Estimation 23
4.1. Related Work . 24

4.1.1. Calibration . 24
4.1.2. State Estimation . 24

4.2. The Calibration Procedure . 25
4.3. Extended Calibration Model . 27
4.4. State Estimation . 28

4.4.1. Kalman filter evaluation . 31
4.4.2. Elastic joint behavior in ball batting motions 34

IX

X Contents

4.5. Summary . 35

5. Task Level Optimal Control 37
5.1. Related Work . 38
5.2. Framework . 39
5.3. The Principle . 40
5.4. Ball Batting Task Implementation . 41

5.4.1. Task costs . 43
5.4.2. Soft Constraints . 44
5.4.3. Terminal costs . 46

5.5. Experiments . 46
5.5.1. TLOC with calibrated model 47
5.5.2. Deviation between plant and model 48
5.5.3. Flexible bearing included . 49
5.5.4. Experiments on the Robotic System 50

5.6. Summary . 54

6. Human-Robot Interaction 57
6.1. Ball Playing Robot . 57
6.2. Acoustic Orientation . 59

7. Conclusion 61

Publicated Work by the Author 65

References 67

A. Rotations and Transformations 73
A.1. Transformation Matrices . 73
A.2. Modified Transformations . 74
A.3. Rotations for the Extended Calibration Model 75

List of Figures

1.1. Ball playing entertainment robot Doggy. 2
1.2. Thesis Overview with descriptions of the Chapters. 3

2.1. Doggy CAD explanation. 8
2.2. Joint example and abstraction level. 9
2.3. Motor disassembly view. 11
2.4. Current limitation. 12
2.5. Working principle of the distributed control system. 14

3.1. Body one gyroscope data compared to joint velocity. 20

4.1. Sparse Least Squares on Manifolds (SLoM) calibration principle for
parameter estimation on “Doggy”. 26

4.2. Evaluation of calibrated parameters by comparing measured and pre-
dicted data. 27

4.3. Evaluation of calibrated parameters with bearing by comparing mea-
sured and predicted data. 29

4.4. Comparison of measured data and measurements computed from es-
timated Kalman filter states. 32

4.5. Estimated Kalman filter states on the microcontroller during the cal-
ibration motion. 33

4.6. Comparison of estimated states using SLoM and the Kalman filter. . . 34
4.7. Ball batting motion to check for estimated Kalman filter states. 35
4.8. Motor and Link state behavior during a motion. 36

5.1. Nonlinear optimization cycle for a given task using an LQR. 40
5.2. Task of ball hitting plugged into the cost functions. 43
5.3. Soft constraint barrier function. 45
5.4. TLOC simulation adapted to the calibrated model. 47
5.5. Comparison of model deviations from the simulated plant. 50
5.6. Comparison of deviations between plant with and without the flexible

bearing simulated. 51
5.7. Comparison of simulation and robot behavior. 52

6.1. Doggy at the Open Campus day 2015. 58
6.2. Doggy standing in front of his uninformed audience. 60

XI

List of Tables

5.1. Comparison of model deviations from the simulated plant. 49
5.2. Comparison of plant with and without the flexible bearing simulated. . 49
5.3. Comparison between robot and simulation accuracy. 54

XIII

Acronyms

ARE . algebraic Riccati equation

CAD . computer aided design

CCF . cross correlation function

COG . center of gravity

DOF . degree of freedom

EKF .Extended Kalman Filter

EOF . end-effector

GPIO .General Purpose Input Output

HRI . human-robot interaction

IC . itegrated circuit

IMU . Inertial Measurement Unit

KF .Kalman Filter

LQG .Linear Quadratic Gaussian

LQR .Linear Quadratic Regulator

MHT .Multiple-Hypothesis-Tracker

MPC .Model predictive control

pwm . pulse width modulation

RRT .Rapidly-exploring Random Trees

XV

XVI Acronyms

SLoM . Sparse Least Squares on Manifolds

TLOC .Task Level Optimal Control

UKF .Unscented Kalman Filter

WCS .world coordinate system

List of Symbols

A global notation within this thesis is to mark vectors v as bold symbols and in general
the vectors are column vectors. Matrices M are written in uppercase bold. The trans-
pose vT and the inverse M−1 is denoted by a superscript mark. A diagonal matrix can
be written as diag (v) =

v1 0 0
0 v2 0
0 0 v3

. Some symbols might be used for a different purpose,

which is explained in the text. The main usage of a symbol is given is the table below.

Notation Symbol Description

θ rad Motor link position
θm rad Motor position
θ̇ rad s−1 Motor angular link velocity
θ̇m rad s−1 Motor angular velocity
θ̈ rad s−1 Motor angular link acceleration
θ̈m rad s−1 Motor angular acceleration
ϑ Parameter vector
µfm N m Motor friction coefficient
Σ Covariance matrix
τb N m Coupling torque of the spring between motor and link
τc N m Coupling torque of the spring between motor and link
τcfb N m Coupling torque of the spring between motor and link includ-

ing the flexible bearing
τfl N m Link friction
τfm N m Motor friction
τg(q) N m Gravity Force
τm N m Motor torque link side
τms N m Motor torque motor side
τs N m Coupling torque of the spring between motor and link
ω rad s−1 Angular velocity

A State transition matrix
B Command matrix
bm N m s Motor inertia on the link side
bms N m s Motor inertia
c(q, q̇) N m Coriolis Force

XVII

XVIII List of Symbols

Notation Symbol Description

Ds N m s Spring damping matrix constant between motor and link
ds N m s Spring damping vector constant between motor and link
dsfb N m s Spring damping vector constant between motor and link, and

in the flexible bearing
fdyn(x, u) Dynamics function
fkin(x) Kinematics function
Im A Motor current
Imax A Maximum current
K Feedback gain
kmi N m s Mutual induction constant translates motor speed to torque
kpv s Translates motor velocity to a mutual induction pulse width

modulation (pwm) signal
kpwm N m V−1 Constant translates a voltage to a torque
Ks N m Spring matrix constant between motor and link
ks N m Spring vector constant between motor and link
ksfb N m Spring vector constant between motor and link, and in the

flexible bearing
kτ N m A−1 Translates motor current to torque
M (q) kg m2 Link Inertia Matrix
Mfb(qfb) kg m2 Link Inertia Matrix with flexible bearing extension
p0 PWM zero
pd m Desired position vector
P W Power
P Accumulated weight
p PWM signal for each motor, pi ∈ [−1, 1]
Q State weighting/penalizing matrix
q rad Link Position
q̇ rad s−1 Link Velocity
q̈ rad s−1 Link Acceleration
R Command weighting/penalizing matrix
rg Gear ratio between input gear (motor) and output gear (link)
Rm Ω Motor resistance

to
fromR Rotation matrix from coordinate system from to coordinate

system to
S State-command weighting/penalizing matrix

to
fromt Translation vector from coordinate system from to coordinate

system to
to

fromT Combines translation and rotation from coordinate system
from to coordinate system to

Ts s Sample Time
u Command vector

List of Symbols XIX

Notation Symbol Description

Um V Motor voltage
Umax V Maximum voltage
vd m s−1 Desired velocity vector
w World Coordinate System
x Coordinate axis – colored red
x State vector
y Coordinate axis – colored green
z Coordinate axis – colored blue
Z Stacked measurements

1
Introduction

Imagine, someone throws a ball in your direction and your task is to hit the ball back
with your head. Could you do that? For us as humans this task can be handled with
a big variance of precision, depending on our age – a child of five would probably not
know how to do it; our experiences – a football player would probably do best; and
much more. We see that it could be quite difficult for us to fulfill this task, but in most
cases we manage to do it. And we manage it because we think of the task in a global
way. We consciously not decompose the task into several steps, like predicting where
the ball will be in the future, and if the ball is close to me how should I move my head,
or should I better use my legs to step to the side? Would it be better to move with
high velocity or should I just stand still and hope the ball drops back? We do not think
about all this, we are just reacting to the task we were given. For a robot this is a lot
more difficult and mostly divided into subtasks – tracking the ball, making a prediction,
planning a trajectory of the motion to hit the ball, and so on. That is why tasks like
Ping Pong playing are used to demonstrate these algorithms – because the tasks are
very demanding. This is why we ask the question

Is it possible to define a rebound task for our robot within a controller?

This question includes that the controller decides autonomously what the best way is
to realize that task in an optimal sense, i. e. not decompose the task into trajectory
planning followed by trajectory control. The controller should be fully responsible for
the reaction of a thrown ball. To be more precise, we want the robot to fulfill the task
of being at a desired time td at a desired position pd having a desired velocity vd which
is needed to hit the ball back. The implementation should be done for an entertainment
robot called “Doggy” (see Figure 1.1) that has been built and designed by us.

1

2 Chapter 1. Introduction

Figure 1.1.: Ball playing entertainment robot Doggy.

In this thesis we show how such a demanding task can be put into an optimal con-
troller that also utilizes the robot’s redundancy and exploits it to fulfill the task. The
controller itself uses a model and controls the robot’s state. The model was identified by
a calibration which is also part of this thesis. The contributions made are given below,
followed by an outline of this thesis, and a state of the art in entertainment and ball
playing robotics.

1.1. Contributions
We contributed a Task Level Optimal Control formulation of a ball batting task on an
entertainment robot, showed its behavior in simulations and on the robot. The proposed
controller should be able to handle similar tasks. Another contribution was made by
the calibration procedure where we only use a minimalist sensor setup (encoders and
gyroscopes, Section 4). We used the identified model to implement a state estimator in
form of a Kalman filter that runs in real time on a microcontroller.

1.2. Outline
An overview about the parts described within this thesis and their relations is shown in
Figure 1.2. The colors denote chapters and the boxes are modules implemented within

1.2. Outline 3

model

TLOC (linear)

state estimator
model

TLOC
(nonlinear)

model

LQR

calibration
model

identified
parameters

sensors

state

gaincommand

Physical SystemChapter 2

Chapter 3

Chapter 4

Chapter 4

Chapter 5 Chapter 5

microcontroller

Figure 1.2.: Thesis Overview with descriptions of the Chapters.

this thesis. We will start with a description of the robotic system in Chapter 2, which
explains the mechanical system, the sensors, the camera system, and the electronic
system. This system is formalized into a model in Chapter 3. The model is essential
for the state estimator and the Task Level Optimal Control. Additionally, it is used in
the calibration to identify the model parameters for our robot (Chapter 4). Due to the
similar behavior, this chapter presents the implemented state estimator. The Task Level
Optimal Control algorithm is based on a Linear Quadratic Regulator (LQR) and uses the
identified model for model predictive control (Chapter 5). Herein the implementation
and task description is given and tested on simulations and the robot itself. Having the
entertainment aspect in mind we give an overview about an exhibition the robot was
presented at and about its ability for human-robot interaction (Chapter 6). Finally, we
conclude and give some ideas for future work (Chapter 7).

Our entry point is the state of the art of entertainment and ball playing robotics.
Related work on the specific topics – Chapters 4 and 5 – is part of the chapters.

4 Chapter 1. Introduction

1.3. State of the Art
In this section the ball playing and entertainment aspect is related to other work, i. e.
what other entertainment robots are out there and what kind of other ball playing robots
are there? How do they implement the ball playing task? Here, we only give an overview
of the classification of the overall concept.

First of all there is to name the robot “Piggy”, which is a predecessor version of
Doggy. Piggy has only two servo motors as joints, which make the ball tracking system
fixed to one view [Laue et al. 2013]. In this paper the overall concept for that robot
is explained. The whole concept slightly changed for the new version of Doggy and
the related software has been adapted. The new overview and concept of Doggy has
been published in [Schüthe 2015]. In robotics the entertainment aspect grew only slowly
within the last years. Entertainment systems to name are mostly within the artificial
pets or toy area. E. g. the Sony AIBO [Pransky 2001] – which broke the record of robots
sold in the shortest time – and the RoboSapiens [Tilden 2004]. The former is a home
entertainment robot with artificial intelligence. It simulates a dog’s behavior of walking,
playing, emotions, and learning. While the latter is a small humanoid robot, which is
used also for playing soccer [Behnke et al. 2006]. Another entertainment robot developed
by Sony is the QRIO [Ishida 2004]. This humanoid robot has played golf and conducted
an orchestra [Geppert 2004].

The human-robot interaction (HRI) and entertainment aspect is combined in the
work of [Schraft et al. 2001]. Three robots – the “Inciting”, the “Instructive”, and the
“Twiddling” – are put into a museum environment to fulfill different aspects. The first
one welcomes new visitors to the museum and memorizes them for a given time period.
The second acts as a tour guide for the visitors and guides them through the exhibition
and gives explanations on the exhibits. The last one is designed like a child with three
moods. It looks for a ball and is happy as long as it sees it. If the ball is out of focus
it changes its mood to grumpy and angry depending on the time since the last ball has
been seen. Moreover, the robots are able to interact with each other.

In connection with human ball playing interaction, there is to name the Segway-Soccer
[Argall et al. 2006]. A team of humans standing on Segways is playing against a robotic
Segway team, this eliminates most disadvantages of the robot compared to its human
opponents. Another ball playing system is the KiRo [Weigel et al. 2003], which plays
table soccer against humans. Here, the same mechanism as for the Segways is used – a
system which brings human and robot to the same level of playing.

Numerous articles can be found for table tennis ball games using different approaches
for the control. In the last few years the machine learning aspect got a lot of attention
[Matsushima et al. 2005; Mülling et al. 2013; Silva et al. 2015]. Other table tennis systems
using different control approaches are [Andersson 1989; Serra et al. 2016; Yamakawa et
al. 1989; Yang et al. 2010].

The first table tennis robot mentioned can be found in [Andersson 1986]. The reason
for the great interest is probably the variety of technical challenges that can be solved.
This experimental setup is simple and well known, so it is understood by most groups

1.3. State of the Art 5

of people. However, this is also a risk because playing table tennis is just a simple task
for humans. For our experimental setup we were also looking for a simple setup which
gets the attention of children, not technical, and technical enthusiasts.

Except for table tennis, which has the widest range, there are different robot ball play-
ers out there. A volleyball playing robot attached to the ceiling and not portable[Nakai
et al. 1998]. In the baseball major league a humanoid pitched the first ball [Lofaro et al.
2012]. A vision-system for HRI with ball playing as the interaction has been proposed
in [Yamaguchi et al. 2003]. The machine of development should kick the ball back to the
player. In [Hu et al. 2010] a robot throws a basketball into the basket. In the papers’
attached video the robot wears a costume in form of a seal. Batting a fast ball to a
desired point on a high speed motion is explained in [Senoo et al. 2006] by using a small
racket on a robot arm – baseball like. Catching flying balls is investigated in [Bäuml
et al. 2010, 2011; Deguchi et al. 2008; Riley et al. 2002] as HRI.

The most recent example of entertainment has been shown at the Eurovision Song
Contest 2016. Three KUKA robots performed a dance battle against humans during
the act “Man vs. Machine”. KUKA got an amazing feedback for the performance
and told that people are watching it over and over again [KUKA 2016]. This shows
the emotions that can be created by entertainment robots. Moreover, there are Rock
Bands made of robots, like the bands “Compressorhead” [Compressorhead 2016] and
“Z Machines” [ZMachines 2015]. Both are bands that play famous rock songs on real
instruments and also give concerts.

[Erdmann 2013] gives an overall view into the topic sport robotics based on biome-
chanics. He also presents different types of sport robots and shows their applications for
sport communities.

All these showing the challenges of object recognition, motion planning, control, get-
ting in touch by playing a game with the audience, and a lot more. The following two
examples are the most related ones, focusing on the entertainment part and making the
robot part of a group that plays ball games.

Kober et al. described the challenge of physical interaction and contact between human
and robot in theme park environments. It is mentioned that ball games – here in form
of catching and throwing – are a form of physical engagement while maintaining a save
distance between human and robot. They use a humanoid that catches balls from
participants and throws them back to them. For some participants they tested also
the juggling between human and robot with three balls. The robot is able to interact
with the person by reacting on lost balls with gestures and following the opponent with
its head [Kober et al. 2012a]. A video shows the similarity to our entertainment robot
[Kober et al. 2012b].

The most famous entertainment robot to name is RoboKeeper [KG 2016]. This system
is a robotic goalkeeper which is available for hire commercially. A lot populism is taken
to that goalkeeper and lots of videos exist where it plays against football professionals,
like Lionel Messi. The goalkeeper has also been adapted to different variants, i. e. Hockey
and Handball. The system is kept simple. A vision tracking system mounted above the
goal tracks the balls with 90 images per second. The balls color must distinguish from

6 Chapter 1. Introduction

its background. Via an image processing software the impact point can be computed to
move the keeper to that position. The challenge is the speed, because a kicked ball can
accelerate to more than 100 km/h leaving the tracking and moving only 0.3 s to react. To
make it fair for the audience, the keeper can be adjusted to one of seven difficulty levels.
This robot with its well described task of interacting with an audience and entertaining
them gets closest to our imagination of an entertainment robot. And we can see a lot of
similarities here, although the RoboKeeper is held even simpler. But it also shows that
an entertainment system does not have to be very complex to get a lot of attention.

model

TLOC (linear)

state estimator
model

TLOC
(nonlinear)

model

LQR

calibration
model

identified
parameters

sensors

state

gaincommand

Physical SystemChapter 2

Chapter 3

Chapter 4

Chapter 4

Chapter 5 Chapter 5

microcontroller
2

The Robotic System

The goal of this chapter is to understand the overall design of our robot. The idea of
the robot is to have a minimalistic system consisting of a sphere to hit a ball, a 2-degree
of freedom (DOF) workspace with an additional third axis to pan the cameras and to
rotate to the audience. This system can entertain people on events, like on the OPEN
CAMPUS day of University of Bremen in 20151.

First, let us take a look into the robotic system to understand the details that are
relevant to the controller for reference. We start with the mechanical structure and the
integration of sensors (Section 2.1). The controller deals with elastic joints which are
explained in Section 2.2. In the following section we take a look at the motors used to
drive the robot and report on some engineering problems solved in this thesis. A basic
discussion on how to estimate the link position using Inertial Measurement Units (IMUs)
is given in Section 2.4. A brief explanation on the camera system for ball detection and
prediction, which is not part of this thesis, is found in Section 2.5. The chapter concludes
with an explanation of the electronic system, where the basic structure of the control
and the reason for using a distributed system of microcontroller and computer are given.
Moreover, it illustrates the work done on electronics and software.

2.1. Mechanical Structure and Sensor Integration
The robot consists of four bodies which are connected via three revolute joints in a
kinematic chain. By definition, revolute joints turn around their z-Axis [Craig 2005;
Waldron et al. 2008]. When talking about joint positions and velocities in this thesis, I

1A video of it can be viewed on http://www.informatik.uni-bremen.de/agebv2/downloads/
videos/doggyOpenCampusDay.mp4. Note that we used a simple position controller for the move-
ments which is not part of this thesis.

7

http://www.informatik.uni-bremen.de/agebv2/downloads/videos/doggyOpenCampusDay.mp4
http://www.informatik.uni-bremen.de/agebv2/downloads/videos/doggyOpenCampusDay.mp4

8 Chapter 2. The Robotic System

base

joint 1
yaw

bo
dy

1

joint 2
pitch

body
2

joint 3
roll

bo
dy

3

IMU1

IMU2

J1

J2
J3

EOF

Figure 2.1.: Doggy’s CAD drawing marked with colors for each body. Coordinate sys-
tems are represented in color notation red x-axis, green y-axis, and blue
z-axis (left). An abstract definition of the joints and bodies is on the right.

refer to the angular positions and angular velocities. For now and throughout the thesis
all axes are color encoded with the definition: red for x-axis, green for y-axis, and blue
for z-axis.

We start with the third body – Doggy’s head, which is our end-effector (EOF) used
as a racket. The head consists of a 40 cm Styrofoam sphere and includes a mount for an
IMU. The IMU in the head is one of two IMUs used to estimate the joint’s link positions
q and velocities q̇. The IMUs coordinate system I2, as well as all other coordinate
systems are shown in Figure 2.1 together with an abstract representation of all joints
and bodies. A carbon rod is attached to the head – to basically define the radius of the
workspace – and to the third joint J3. The third joint rolls the EOF. Additionally, a
pitch joint J2 is coupled to the EOF by the second body and third joint. Joints two
and three together span with the EOF a partial hollow sphere, the robots workspace,
where all the points on this sphere are possible hit positions. The second body includes
the motor and gear for the third joint. Moreover, joints 2 and 3 have a spring attached
between the tooth wheel and a fixed part of the holding body. This counteracts the
gravity force for both joints.

The first body is the biggest and holds: (1.) A left plate with a bearing to mount joint
two, and the microcontroller circuit board where IMU I1 is put on. (2.) The right plate
with another bearing and the active part of the second joint, i. e. a tooth wheel to turn
the second body. (3.) Motors and gears for first and second joint. (4.) Servo motors

2.2. Elastic Joints 9

Motor

θm

gear ratio rg

θ

ks

ds

tooth belt

q
Link

Nm

gravity compensation
spring

N1

N2

Nl

Switch

θm

q

DC-motor

Figure 2.2.: The drive mechanism between motor and link is shown besides the abstract
joint model connecting the motor and link via a spring damper system.

for Doggy’s tail actuation. And finally, (5.) a stereo camera system. The first body is
turned by the yaw joint J1. The predefined workspace can be turned by this joint to
enlarge the workspace, as the limitations for joint three and two are different. The yaw
joint is a redundant degree of freedom, which is both a challenge and an opportunity for
optimal control. Also, this joint connects the first body with the base. The base is fixed
in the world and defines the base coordinate system. It holds the power supply and a
computer.

To move the robot, DC motors drive the links by tooth belts. This demands a deeper
look inside the dynamics, because we get elasticity into the system. Elasticity is hard
to handle in a controller and could be reduced by better mechanical design. However,
we take this as a challenge and ask: “Is it possible to deal nicely with elasticities in an
optimal controller?" The result is this tooth belt driven system to test the controller on
it.

The setting of an elastic joint is described in the next section, including the gears
between motor and link.

2.2. Elastic Joints
Let us exemplify this on the third axis as representative for the other axes. Figure 2.2
shows the setting of the second body holding the driving part of joint three. The z-Axis
points towards the rotational axis of the joint. In this case the motor axis (marked
with a blue arrow) points towards the same direction, which leads to the same turning
direction. This is the convention used in [Craig 2005] where joint axis and frame z-Axis
coincide. When looking on the axis a positive turn means left, a negative turn right in a
mathematical sense. The total gear ratio is the relation of output to input tooth number

10 Chapter 2. The Robotic System

– here in two stages:
rg = 75

14
110
14 = 42.09 (2.1)

This ratio has to be taken into account when motor and link values are compared. An
encoder on the motor measures the position (Section 2.3). The position of the motors θm
and their velocities θ̇m can be transformed to the link side by θ = rgθm and θ̇ = rgθ̇m,
respectively. This is the position before the tooth belt’s elasticity (Figure 2.2).

Let us now define the coupling between motor and link. Two scenarios we can easily
imagine. First, there is no connection between motor and link. The force that the motor
transfers to the link would be zero and vice versa. Secondly, motor and link are directly
connected on the same axis. Then the force of the motor will directly be transferred
to the link and vice versa. Moreover, the link and motor positions would be identical,
i. e. θ ≡ q. So taking a tooth belt as coupling must be something in between. And the
tighter the tooth belt is tensioned the more it acts as a direct coupling. This coupling
can be approximated by a spring damper system with spring constant ks and damping
constant ds (Figure 2.2) as described in [De Luca et al. 2008]. If the stiffness is set to
infinity, link and motor positions are equal. A stiffness of zero means no connection
between link and motor. The elasticity is a problem because it makes control more
indirect and it requires to estimate link positions q and velocities q̇ in addition to motor
positions θ and velocities θ̇. The coupling torque of this spring can be expressed as

τc = Ks (q − θ) + Ds

q̇ − θ̇

. (2.2)

The damping Ds = diag (ds) and spring Ks = diag (ks) constant matrices are of di-
agonal form holding values for each joint and thus can be presented as vectors ks =
(ks,J1 ks,J2 ks,J3)T and ds = (ds,J1 ds,J2 ds,J3)T . If no external force acts to this system the
torque is zero, which is the equilibrium of the spring.

2.3. Motors
The robot’s motion is created by brushed DC motors driving the joints through tooth
belts. In the first robot version “Piggy” servo motors were used, which had the dis-
advantage of insufficient torque. Also their teeth were broken after a while due to the
impact of the ball. In addition, the speed was very limited.

We decided to use scooter motors, as they are provided in the low cost segment and
they come with a sufficient torque. Moreover, a brushed DC motor is easier to handle
as a brushless motor, where a phase shifted signal must be provided. In the low cost
segment no sensors are provided on the motor. To control the behavior of the motors
we need sensors which tell us the position or velocity. It turned out, that the motors
could easily be equipped with sensors. Therefore, the motor’s back side was drilled to
get access to the shaft. To hold an encoder, we 3D printed an adapter which can be
fit to the motor’s back. For the coupling between motor shaft and encoder we drilled a

2.3. Motors 11

Figure 2.3.: Motor disassembly view. Tooth wheel in front. Axis extension shaft, 3D
printed plate – connects motor and encoder – and the encoder on the back.

hole into the motor shaft and inserted a smaller shaft of 3 mm that fits into the encoder.
This structure is shown in Figure 2.3.

To drive the motor a pulse width modulation (pwm) signal is used, where the voltage
is modulated within ±Umax = ±32 V. A single chip H-Bridge driver switches the power
according to the microcontroller pwm2.

2.3.1. Current Limitation
The motor current depends on the applied pwm, the motor resistance Rm , and the motor
velocity θ̇m.

Im =
Umax

p − kpvθ̇m

Rm
(2.3)

The constant value kpv translates the velocity into a pwm signal, which is the mutual
induction of the motor [Vukosavic 2013]. If in a free running motor the pwm is hold
constantly, the velocity will also be constant and produces a mutual induction pwm
which equals the constant pwm (p = kpvθ̇m) such that the motor current gets zero. We
call this mutual induction pwm that produces zero current the pwm zero p0.

p0 = kpv · θ̇m = 0.159 59θ̇m (2.4)

To obtain the parameter kpv we measure the motor speed in free running mode for
given pwm (p ∈ [−1, 1]), where a negative pwm turns the motor clockwise and a positive
value turns the motor counter clockwise (view on the motor axis, see also [Vukosavic
2013]).

2The data sheet suggests that the IC automatically limits motor current by applying reverse voltage.
However, this does not work when changing the direction of motion. Also, during the motion change
the motor becomes a generator for a short time and feeds back voltage, i. e. voltage rise. So it has
to be handled manually.

12 Chapter 2. The Robotic System

0.2

0.4

0.6

0.8

−0.2

−0.4

−0.6

−0.8

−1.0

90 180 270−90−180−270−360 θ̇/deg
s

p

p0

pmax

pmin

Figure 2.4.: Current limitation using the motor velocity θ̇ to compute the zero pwm p0
(black line). The current is limited around p0 in a range of p0 +0.2 (red line)
and p0 − 0.2 (blue line), this is equivalent to a current limitation of ±5 A.

To limit the current we only allow a change of ∆pmax around p0. We set the maximum
allowed current to Imax = 5 A to have a safety margin to the maximum the motor driver
chip accepts, i. e. 7 A.

∆pmax = ±ImaxRm

Umax
= ±5 A · 1.28 Ω

32 V = 0.2 (2.5)

We can now apply a limited pwm p to the motor computed from the pwm pset we set
such that

p̃ =

p0 + 0.2 for pset − p0 > 0.2
p0 − 0.2 for pset − p0 < −0.2
pset otherwise

(2.6)

and afterwards limiting the pwm to the maximum value of 1 (Fig. 2.4) by

p = max (1, min (−1, p̃)) . (2.7)

2.3.2. Motor Braking – Voltage limitation
When braking the motor, i. e. applying a reverse current to the direction of motion,
the energy accumulates in supply capacitors and their voltage rises. This leads to an
overvoltage fault condition caused by the fact that the motor acts as a generator when
decelerating.

2.4. IMU for Link Angle Estimation 13

To dissipate the overvoltage, we check if the motor is acting as a generator or as a
motor. We can compute the power it is producing or consuming in dependency of the
pwm and the pwm zero, i. e.

Pi = U2
max

Rm
Pmax

pi (pi − p0,i) . (2.8)

The total power the system consumes is then given by

P =

i

Pi . (2.9)

If this total power gets negative, there is more power produced than consumed and we
need to dissipate this to avoid an overvoltage condition. Therefore, if P < 0 we switch
a power dissipation resistor3 on in a duty cycle that dissipates −P .

2.4. IMU for Link Angle Estimation
By now, we are able to measure the motor positions θ. To measure the link positions q
we equipped two IMUs to the robot. One in the head and one on the first body. The
first body IMU detects motions of the first axis. The second one detects motions from
all axes. The two IMUs are needed to separate the motions for each link.

We make use of the gyroscope on each IMU to detect the angular velocity ω around
the three coordinate axes of the gyroscope. We can combine the information given by
gyroscope one (ω1) and two (ω2) to obtain the link velocities q̇. An integration of the
link velocity leads to its position. Each gyroscope has a bias ω0 which causes a drift
in the position (for details see Chapter 4). We avoid this by binding the link position
to the motor position via the dynamics function. Using only gyroscopes for link angle
estimation is also new to the field of robotics and we can show that this works in our
case.

2.5. Camera System
To hit the ball back to a specified position we need to know where the ball is relative
to the robot. In our case we want to know the ball’s coordinates relative to our world
coordinate system, which lies in the center of the robot on the ground. The detection of
the ball is only briefly discussed herein as it was a PhD thesis by Oliver Birbach [Birbach
2012].

3A solid state relay is used to switch the resistor in dependency of a given duty cycle (pwm) from the
microcontroller.

14 Chapter 2. The Robotic System

C
O

M
PU

T
ERTask

Level
Optimal
Control

Ball
Tracker

pd, vd, td

µ
C

O
N

T
R

O
LL

ER

State
Estimatoru = Kx

250 Hz
50 Hz

x

Figure 2.5.: Working principle of the distributed control system. The microcontroller
stage runs a fast acting feedback controller in a linear sense. The Computer
acts as a nonlinear optimizer of the controller.

In principle: We use a stereo camera based system with a sampling rate of 50 Hz. In
each camera image circles of given sizes – around the size of the ball – are searched. The
color of the ball does not matter. The detected circles in both images are put into a
Multiple-Hypothesis-Tracker (MHT). The MHT combines the circles from both images
into a 3D representation. Additionally, the physical model of a flying ball is provided
to the MHT and so it can compute how likely the movements of the “circles” are. In
addition, the trajectory of the hypotheses are predicted. Hypotheses with a probability
below a limit will be removed and only hypotheses with high probability survive. The
hypothesis with the highest probability is taken as the ball’s trajectory and the prediction
is used for computing the intersection point of the ball and the robots workspace.

2.6. Electronic System
The control of the motors to move the robot is organized in a two staged system. The
first stage runs on a computer, the second stage on a microcontroller. The basic idea is
to use the microcontroller for hard real time tasks, i. e. computation of the actual control
command, actuating the motors by a pwm signal, reading the motor encoders and the
IMU data. The microcontroller acts at a frequency of 250 Hz in a linear manner.

All other processes, i. e. the nonlinear control part of the robot, the computation of
control gains, the interaction with audience, and the ball tracking using cameras, run
on a computer with much higher computation power, but without a real time operating
system. Moreover, we have the discrepancy of the camera sampling rate (50 Hz) and the
microcontroller sampling rate of 250 Hz. Our intention was to achieve the elegance of
a combination of a fast feedback controller acting linearly on the microcontroller with
a nonlinear optimization of the controller running on the computer and updating the

2.6. Electronic System 15

linear feedback controller on a camera sampling basis (Fig. 2.5).
Finally, it should be noted that the microcontroller electronics including motor drivers,

IMU, camera synchronization, some power and encoder management was developed in
the context of this thesis. This also includes the low level software running on the
microcontroller and the computer software that interacts with the microcontroller via
USB and Ethernet.

model

TLOC (linear)

state estimator
model

TLOC
(nonlinear)

model

LQR

calibration
model

identified
parameters

sensors

state

gaincommand

Physical SystemChapter 2

Chapter 3

Chapter 4

Chapter 4

Chapter 5 Chapter 5

microcontroller
3

Robotic Model

After we have understood the robotic system, we can take the next step and put the
information into the kinematics and dynamics, which are essentially for our controller.
In the kinematics we put together the information of the coordinates to describe the
3D-position of the EOFs in the world – necessary for our controller in the description
of position and velocity differences to the desired ones. The dynamics add the elastic
joint model and motor specific characteristics. This is used for calibration and state
estimation as well as a model for our controller. In Section 3.3 we discuss an extension
of the kinematics and dynamics to deal with flexibilities in the bearing of the first joint.

3.1. Kinematics
Mostly, robots are rigid body systems connected by joints. The rigid body position
and orientation in space is called the pose. The kinematics describes the pose and its
derivatives of each body [Waldron et al. 2008]. Let us now define the kinematics for our
EOF, as this is the information we need for the batting task. Also, it is obvious that in
this case the orientation of the head is meaningless as it is a sphere. So, we define the
center of the head as position of the EOF given in the world coordinate system (WCS).
A detailed description of coordinate transformations is given in Appendix A.1.

The kinematics is the result of the coordinate transforms using the coordinate systems
defined in Chapter 2. This gives us a point in the world frame given the link positions
q, with ci = cos(qi) and si = sin(qi):

fkin(x) =

(c1s2c3 − s1s3)1010.069 mm
(s1s2c3 + c1s3)1010.069 mm

1010.069 mm c2c3 + 1013.2 mm

 . (3.1)

17

18 Chapter 3. Robotic Model

3.2. Dynamics
The dynamics describes the relation between contact force and actuation, and the resul-
tant accelerations and motion trajectories [Featherstone et al. 2008]. The dynamics is
essential for control and simulation. They contain the differential equations to describe
the acceleration of the motors θ̈ as a result of the motors torque τm. We have to take
into consideration that the torque can be before the gear ratio or afterwards. To keep it
simple, we always compute on the link side. The torque transformation from motor to
link side is τm = rgτms. We use the differential equations given in [De Luca et al. 2008]

0 = M(q)q̈ + c(q, q̇) + τg(q) + τc + τfl (3.2)
τm = diag (bm) θ̈ − τc + τfm , (3.3)

with the coupling between motor and link already defined in Equation (2.2). M (q)
and bm are link and motor inertia respectively, τfl is the link friction and τfm the motor
friction, c(q, q̇) are the Coriolis terms, and τg(q) are the gravitational terms. Also, the
motor inertia has to be transferred to the link side by bm = r2

gbms.
The gravitational terms are obsolete in our case, thanks to the springs acting against

the gravity (see Figure 2.2). In [Schüthe et al. 2016] we already mentioned that neglecting
the Coriolis and link friction gives still a good model.

The dynamics function can then be retrieved translating Equations (3.2) and (3.3)
into a state space representation of the form ẋ = fdyn(x, u) using the state of link and
motor positions and velocities

x =

q q̇ θ θ̇

, (3.4)

the input is defined as the motor torque

u = τm , (3.5)

to get the dynamics

fdyn(x, u) =

q̇
−M(q)−1τc

θ̇

diag (bm)−1 (τc + u − τfm)

. (3.6)

3.2.1. Motor Torque
The motor torque can be extracted from the basic Equation (2.3) and the fact that
torque and current are directly coupled by a factor of kτ , i. e.

τms = kτ Im . (3.7)

3.2. Dynamics 19

Let us plug Equation (2.3) into (3.7)

τms = kτ

Um

p − kpvθ̇m

Rm
(3.8)

and rewrite it to get the torque in dependency of pwm p and velocity θ̇m

τms = kτ

Rm
Umaxp − kτ kpvUmax

Rm
θ̇m . (3.9)

In the last step we need to transform the torque to the link side, i. e.

τm = rgτms (3.10)

= rgkτ

Rm
kpwm

Umaxp − r2
gkτ kpvUmax

Rm
kmi

θ̇ . (3.11)

Finally, we can write it into a matrix form to hold for our three joints.

τm = diag (kpwm) Umaxp − diag (kmi) θ̇ (3.12)

3.2.2. Motor Friction

Friction appears in several forms. There is static friction, i. e. the torque needed to start
moving which is higher than the one needed to maintain moving. Another is viscous
friction – which increases proportional to velocity, i. e. the faster the motor gets the
higher is its friction [Olsson et al. 1998].

The most interesting friction for us is the Coulomb or kinetic friction, where the
friction is constant over all velocities. We have to deal with this during the operation of
the robot, as it is mostly in motion. The other two can be neglected.

The kinetic friction is a signum function (sgn). The friction is described by

τfm = diag(µfm) sgn(θ̇) . (3.13)

This function has the disadvantage of being discontinuous which leads us to a simplifi-
cation of the friction by approximating the signum by a sigmoid function so that

τfm = 2 diag(µfm)

1
1+exp(−400θ̇1) − 0.5

1
1+exp(−400θ̇2) − 0.5

1
1+exp(−400θ̇3) − 0.5

 . (3.14)

20 Chapter 3. Robotic Model

16 17 18 19 20 21 22 23 24 25

−100

−50

0

50
ω
1
/
d
eg
/s

Time / s

16 17 18 19 20 21 22 23 24 25
−150

−100

−50

0

50

100

150

θ̇
/
d
eg
/s

Time / s

Figure 3.1.: Body one gyroscope data compared to joint velocity. Motions of pitch and
roll axes are also detected due to the elasticity in the yaw bearing. Ideally
only the red yaw motion would be detected in the gyroscope, as the IMU is
placed before the pith and roll joint. For comparability, the gyroscope data
is transformed to joint representation.

3.3. Extension for Flexible Bearing
The kinematics and dynamics described until here expect that there is no elasticity in
the bearing, i. e. the bearing is perfect. In most applications an elasticity would not even
be noticed and it could be neglected. For our robotic system we recognized a significant
elasticity in the yaw bearing which we have to consider. The elasticity we see is in the
direction of the roll and pitch axes. Both axes stimulate the bearing by their motions.
Figure 3.1 illustrates this behavior by measuring the rotational velocities of the first
body with IMU I1. If the bearing would be perfect – i. e. it only moves around its
rotational axis – the gyroscope will only detect motions of the yaw axis, as the IMU is
placed before the pith and roll joint. However, it can be seen that the robot’s motion
excides vibrations.

The flexibility in the bearing can be simulated and added to the dynamics as two extra
revolute joints placed before the yaw axis. The first bearing joint JB1 coincides with
the pitch coordinate system J2, whereas the second bearing joint JB2 coincides with the
roll coordinate system J3. Both bearing coordinate origins coincide with the origin of
the yaw coordinate system. The changes to the coordinate transformations are given in
Appendix A.2. Thus, the kinematics for the modified model is

fkin(x) =

233.4sb1cb2+1010.069{c3[s2(cb1c1−sb1sb2s1)+sb1cb2c2]−s3(cb1s1+sb1sb2c1)}
233.4sb2+1010.069[c3(sb2c2+cb2s1s2)+cb2c1s3]

233.4cb1cb2+1010.069{s3(sb1s1−cb1sb2c1)−c3[s2(sb1c1+cb1sb2s2)−cb1cb2c2]}+779.8

. (3.15)

3.3. Extension for Flexible Bearing 21

Where cbi = cos(qbi) and sbi = sin(qbi) are for the bearings coordinates one and two.
We can also model the bearing joints as a spring-damper-system like in Equation (2.2),

only with the modification that the motor positions and velocities are zero. That is the
bearing joints are of course unactuated. The bearing is coupled to the robotic system
only via the inertia. Let us define the concatenation of bearing and link positions to

qfb =

qb1 qb2 qT

T
(3.16)

and its velocities to

q̇fb =

q̇b1 q̇b2 q̇T

T
, (3.17)

then the coupling torque becomes

τcfb = diag

kb
ks

ksfb

qb

q − θ

+ diag

db
ds

dsfb

q̇b

q̇ − θ̇

, (3.18)

with the spring and damping constants added for the flexible bearing. The extended
dynamics is structurally close to the previously defined dynamics, except that for the
coupling torque in the motor only the last three vector entries are used. These entries
equal exactly the previously defined coupling torque, i. e. τcfb,3...5 ≡ τc. This leads to the
flexible bearing state vector

xfb =

qfb q̇fb θ θ̇

, (3.19)

and the flexible bearing dynamics with the extended link inertia Mfb(qfb)

ffb dyn(xfb, u) =

q̇fb
−Mfb(qfb)−1τcfb

θ̇

diag (bm)−1 (τc + u − τfm)

. (3.20)

In this new formulation it can be seen directly, that the flexible bearing only acts on
the link side and the joints recognizing a motion of the bearing by the extended link
inertia Mfb(qfb). Also the bearing is stimulated by the joints only through the extended
link inertia. Thus, a force transfer takes place in both directions.

model

TLOC (linear)

state estimator
model

TLOC
(nonlinear)

model

LQR

calibration
model

identified
parameters

sensors

state

gaincommand

Physical SystemChapter 2

Chapter 3

Chapter 4

Chapter 4

Chapter 5 Chapter 5

microcontroller 4
System Calibration and State

Estimation

Knowing the system is fundamental to work with it, i. e. having the knowledge of the
system’s behavior and its parameters to handle and predict it. Moreover, a good fitting
model is essential for our Task Level Optimal Controller (TLOC), because the compu-
tations are based on it. In the previous chapters we already got to know the physical
structure of the robot with its dynamics and kinematics, its sensors, the parameters
for flexible joints, and for the motors. In the first part of this chapter we will see how
these parameters can be calibrated offline to obtain dynamics parameters for the model.
Section 4.2 is a summary of the calibration paper [Schüthe et al. 2016]. The extension
of the flexible bearing model calibration is given in Section 4.3.

The second part of this chapter (Section 4.4) deals with the online state estimation.
The actual state x of the robot is needed for our controller, i. e. current positions and
velocities of motors (θ, θ̇) and links (q, q̇). This state is not measurable directly by
the sensors. The only state value which can be measured directly is the position of the
motors. The motor velocity can be estimated by the given motor position. To estimate
the link values we use indirect link velocity measurements of the gyroscopes. To realize
the linear acting part of the controller the state estimator has to be implemented on the
microcontroller (see Fig. 1.2 on page 3).

We start with an overview of the related work in the field of dynamics calibration and
state estimation.

23

24 Chapter 4. System Calibration and State Estimation

4.1. Related Work
The related work is split into two subsections. The first describes calibration procedures
and the second state estimation methods.

4.1.1. Calibration
Basically, there are two methods of identifying the dynamics parameters – on-line and
off-line methods – which are summarized in [Wu et al. 2010]. The on-line methods
run parallel to adapt the parameters during the process. Thus, also changes in the
system will be recognized. Adaptive control algorithms are an example for this [Slotine
et al. 1987]. Another method is the identification by neural networks, where the weights
represent the parameters and are approached in real-time [Narendra et al. 1990].

The off-line methods can be distinguished into three areas: (1.) Physical experiments:
E. g. measure inertia with its respective center of gravity (COG) and the mass of each
isolated link. (2.) Using a computer aided design (CAD) software for distances, inertias
and COGs. This is restricted to modeled parts, no physical parameters can be obtained,
like friction. (3.) Minimizing the difference of estimated data and real data by adjusting
the model parameters. We used a combination of (2.) and (3.) for dynamics calibration
[Schüthe et al. 2016].

The calibration of industrial robots is investigated in [Grotjahn et al. 2001] and [Vuong
et al. 2009]. In both works a rigid body model is assumed. Dealing with flexible joints
has been discussed in [Kurze et al. 2008; Moberg 2010], where also the friction model
was estimated.

An uncommon method to identify the stiffness of joints using bandpass filtering is
presented in [Pham et al. 2001]. But the model ignores the spring damping and identifies
each joint independently.

4.1.2. State Estimation
Many online systems are based on a Kalman Filter (KF) given in three basic forms: The
KF [Kalman 1960], the Extended Kalman Filter (EKF) [Hoshiya et al. 1984] and the
Unscented Kalman Filter (UKF) [Wan et al. 2000]. Where the KF acts only on linear
systems, the EKF is an extension to nonlinear systems by linearization, and the UKF is
a nonlinear filter method.

Using IMUs – i. e. accelerometers and gyroscopes – to estimate the flexible robots state
and use it for control has been shown in [Cheng et al. 2010; Staufer et al. 2012]. But,
the state is estimated by both sensors.

Quigley et al. presented a control algorithm using states which were estimated from
accelerometer measurements passed through an EKF. Here each couple of joints needs
at least one IMU [Quigley et al. 2010]. Estimating the link positions and velocities by
accelerometer data is done in [Luca et al. 2007].

4.2. The Calibration Procedure 25

A Kinematic Kalman filter (KKF) was presented in [Chen et al. 2014] to determine
the EOF position and velocity. An IMU accelerometer is used for link position estimate
together with a camera system which senses a 3D measurement system for getting the
ground truth. Using a stereo camera system and a gyroscope in addition to the ac-
celerometer and extend the KKF to a multidimensional filter gives the EOF position in
[Jeon et al. 2009].

After our paper has been accepted, Xinjilefu et al. published a paper where only
gyroscopes are used to estimate the joint angular velocity on a humanoids right and left
foot and knee [Xinjilefu et al. 2016]. This approach is very similar to our approach and
shows that we are at the state of the art.

4.2. The Calibration Procedure
The calibration of “Doggy” is based on the Sparse Least Squares on Manifolds (SLoM)
toolkit [Hertzberg et al. 2012]. In the published paper [Schüthe et al. 2016] we calibrated
the system using the dynamics Equation (3.6) without the flexible bearing, which we
only summarize in this section.

Finding the parameters that are best explaining the sensory data of a calibration mo-
tion is the main goal of the calibration. “I. e. we search for the parameters ϑ which
result in the least squared difference of the actual measurements [Z] and the measure-
ments predicted from the parameters [Ẑ]. Formally, we search the least-squares estimate
ϑ̂” [Schüthe et al. 2016, p.339]. The measurements are combined in the error function
F (Z, ϑ).

ϑ̂ = argmin
ϑ

1
2∥F (Z, ϑ)∥2

Σ (4.1)

We despite between time-invariant parameters ϑcalib and time-dependent state param-
eters ϑstate,n = xn. The latter are needed to formulate expected measurements in F .
Where n denotes the discrete time step. The stacked calibration parameter vector1 is

ϑcalib =

kpwm kmi bT

m µT
fm kT

s dT
s ωT

1,0 ωT
2,0

I1
J1R

T I2
EOFRT

, (4.2)

where I1
J1R and I2

EOFR are the rotation matrices from Joint one to IMU one and from end-
effector to the heads IMU. The rotation matrices are inserted to get the exact orientation
which might diverge from the CAD-model. The bias’ ωi,0 is assumed to be constant over
the calibration time. The resultant parameter vector is

ϑ =

ϑT

calib ϑT
state,n ϑT

state,n+1 · · · ϑT
state,N

. (4.3)

The SLoM framework performs the minimization and therefor needs the models structure
(Fig. 4.1), namely which measurements depend on which parameters. It is important

1Mathematically precise ϑ must be a set of parameters, but can be written as vector, iff matrices are
stacked column by column.

26 Chapter 4. System Calibration and State Estimation

ϑcalib

ϑstate,0 ϑstate,1 ϑstate,2 ϑstate,N

F1(Z, ϑ) F2(Z, ϑ) FN (Z, ϑ)

θ1 ω1,1 ω2,1 θ2 ω1,2 ω2,2 θN ω1,N ω2,N

Figure 4.1.: SLoM calibration principle for parameter estimation on “Doggy”. Error
functions (red) combine measurements (green) and parameters (blue) to
obtain the estimated parameters that best explain the measurements.

that the state parameters have influence on the current and the next error function. The
state xn+1 can be predicted from the previous state and the previous command using the
dynamics function with an uncertainty of Σ (covariance matrix). This behavior is used
to indirectly estimate the parameters of the dynamics. The measurements are needed
for the state estimation and orientation of the IMUs.

The parameters calibrated for our model were verified by taking the first state x0 =
ϑstate,0 from SLoM algorithm and predict the whole calibration motion and measure-

ments from that point on. This long term prediction is the toughest task for our model,
in its actual use in the state estimator and controller measurements continuously provide
fresh information. Whereas the prediction is only based on the provided pwm signals.
The result was compared to the measured motion from the robot and is illustrated in
our paper. The main point to be noticed is that there are large deviations in the mea-
surements for the yaw and pitch axes, especially in the body IMU ω1. Figure 4.2 shows
this behavior for the roll axis. The deviation between measured (solid) and predicted
motor positions (dashed) is due to the expected accumulation of motor velocity errors,
because the position results from the integration of the velocity, which is a well known
problem when predicting data. The motor velocity fits well to the measured velocity2.
But, when looking at the IMU measurements, we see larger deviations. The reason is
that we neglect the bearing mentioned in Section 3.3. I. e. we neglect motions of yaw and
pitch axes in the estimated measurement of ω1 [see Eqs. (22) and (23) in Schüthe et al.
2016]. The errors for the second IMU are higher when the joint changes direction very
quick – to be seen in the very beginning of the figure. Overall, the result looks much

2We can not directly measure the velocity, but compute it from the position using the sample time Ts.
θ̇ ≃ θn−θn−1

Ts
is the average velocity between two samples.

4.3. Extended Calibration Model 27

78 79 80 81 82 83 84
−40

−20

0

20

θ
/
d
eg

78 79 80 81 82 83 84

−100

0

100

θ̇
/
d
eg
/
s

78 79 80 81 82 83 84

−100

0

100

ω
2
/
d
eg
/
s

78 79 80 81 82 83 84
−40
−20

0
20
40

ω
1
/
d
eg
/
s

t / s

Figure 4.2.: Evaluation of calibrated parameters by comparing measured (solid) and pre-
dicted data (dashed). From top to bottom we have the motor position θ
and velocity θ̇, the head ω2 and body ω1 IMU. Red, green, and blue de-
note yaw, pitch, and roll for the motor, x-, y-, and z-axis for the gyroscopes
respectively.

better during motions that are not changing direction, as the influence of the bearing is
less. A change in direction of yaw and pitch axes stimulates the bearing, which oscillates
more the faster the direction change is. This can be seen quite well in the figure. Up to
the time of 80 s the motor changes moving direction very quickly, while afterwards the
direction changes are smoother and on bigger time intervals. Speaking in frequencies,
in the beginning the velocity is a high frequency signal, whereas after the 80 s point the
frequency is much lower. And the same is seen for ω1, first high frequency, then low
frequency.

To get a good result in a least-squares sense, SLoM tries to unify the unmodeled
bearing flexibility with the spring elasticity between motor and link. Thus, we expected
to get better results for the parameters when inserting the flexible bearing into our
model, which is explained in the next section.

4.3. Extended Calibration Model
To include the flexible bearing into our model it takes some modifications, already shown
for the dynamics in Section 3.3 (Eq. (3.20)). This modification also changes the gyro-
scopes error and measurement functions [i. e. Eqs. (22)–(29) in Schüthe et al. 2016].

Let us start with Equation (22) and rewrite the error of the bodies gyroscope to

Fgyro1,n = I1ω̂1,n − I1ω1,n , (4.4)

28 Chapter 4. System Calibration and State Estimation

where n denotes the discrete time step. The measurement estimation is

I1ω̂1,n = I1
J1R

J1
q̇Rq̇ + J1

q̇b
Rq̇b

+ ω1,0 . (4.5)

The matrices J1
q̇R and J1

q̇b
R are the transforms of link velocities for links q̇ and bearings

q̇b to velocities acting at coordinate system J1. For the second equation, we redefine
(26) of the paper to

I1ω̂2,n = I2
EOFR

EOF

q̇Rq̇ + EOF
q̇b

Rq̇b

+ ω2,0 . (4.6)

In this case, the error function remains the same and just computes the difference be-
tween estimated measurement and the current measurement, i. e.

Fgyro2,n = I2ω̂2 − I2ω2,n . (4.7)

The rotations are given in detail in Appendix A.3.
With these few modifications we are now able to calibrate the dynamics parameters

with flexible bearing using the algorithm presented before. We expected the model to
be more accurate than the model of the previous section without the bearing. However,
it turned out to be worse. The model still fits the motors behavior, but the predicted
measurement is not as close as before (Figure 4.3). This is especially true for the pitch
joint. But why is it worse? The SLoM algorithm just searches for the parameters that
best explain the measurements. That also includes divergence if the measurements are
not fitting the model. By including the flexible bearing we might give some degrees of
freedom to SLoM that might overfit the model, i. e. the effects could fit either to the
bearings spring or the joints spring and motor friction. However, there might be some
elasticities in the link included after the flexible bearing that are now packed into the
springs of bearing and joints. Including these flexible links into our model would cause
an increase of the state space that is unmanageable. But we are going to see in the next
section that it is possible to estimate the state using this model.

4.4. State Estimation
For the used controller the state as defined in Equation (3.4) (no flexible bearing) or
in Equation (3.19) (with flexible bearing) needs to be known. But, we are not able to
measure the state vector directly, except for motor positions θ. So, we have to estimate
the state given our measurements. This problem is similar to the calibration problem
and we will see some equations herein. The idea is that θ and θ̇ are well observable
from the motor encoder. The same holds for q̇, which is observable from the gyroscope
and hence the short-term behavior of q. For the long-term behavior we employ the
assumption, that q − θ is on average close to 0. The gravity terms are compensated by
the springs and the acceleration torques cancel out.

We make use of the KF [Kalman 1960] which Kalman presented already in the 60’s.

4.4. State Estimation 29

63 64 65 66 67 68 69 70
−50

0

50

θ
/
d
eg

63 64 65 66 67 68 69 70

−100

0

100

200

θ̇
/
d
eg
/s

63 64 65 66 67 68 69 70
−200

0

200

ω
2
/
d
eg
/s

63 64 65 66 67 68 69 70
−50

0

50

ω
1
/
d
eg
/s

t / s

(a) Joint 2 (pitch) predicted motions.

78 79 80 81 82 83 84
−50

0

50

θ
/
d
eg

78 79 80 81 82 83 84
−200

0

200

θ̇
/
d
eg
/s

78 79 80 81 82 83 84
−200

0

200

ω
2
/
d
eg
/s

78 79 80 81 82 83 84
−50

0

50

ω
1
/
d
eg
/s

t / s

(b) Joint 3 (roll) predicted motions.

Figure 4.3.: Evaluation of calibrated parameters with bearing by comparing measured
(solid) and predicted data (dashed). From top to bottom we have the motor
positions θ and velocities θ̇, the head ω2 and body ω1 IMU. Red, green,
and blue denote yaw, pitch, and roll for the motor, x-, y-, and z-axis for the
gyroscopes respectively.

30 Chapter 4. System Calibration and State Estimation

This filter is a linear filter and assumes a linear system. As mentioned before, there also
exists the EKF and the UKF for nonlinear systems. Due to computation limitations on
the microcontroller, we use the traditional KF and simplify the model.

This filter operates in two steps. The first step predicts the estimated state x̂n|n−1 for
the next discrete time step n given the measurements of the current time step n − 1.
The same step is done for the covariance matrix Σn|n−1, which includes the state process
covariance Σx. Both make use of the state transition matrix A. Thus, we know the
state and its covariance for the next time step.

x̂n|n−1 = Ax̂n−1|n−1 (4.8)
Σn|n−1 = AΣn−1|n−1A

T + Σx (4.9)

It follows the update step, where state and covariance are updated given the current
measurement Zn =

θT

meas,n
I1ωT

1,n
I2ωT

2,n

T
. To compute state and covariance, the

innovation yn is needed. I. e. the difference of estimated measurement and real measure-
ment

yn = Zn − Ẑn , (4.10)

with the estimated measure

Ẑn =

θ̂

T

n
I1ω̂T

1,n
I2ω̂T

2,n

T
. (4.11)

The estimated measures are already known from the previous section. The estimated
state for our current time step is then given by

Kn = Σn|n−1H
T
n

HnΣn|n−1H

T
n + Σmeas

−1
, (4.12)

x̂n|n = x̂n|n−1 + Knyn , (4.13)
Σn|n = (I − KnHn) Σn|n−1 . (4.14)

Where H maps states to measurements and K is the Kalman gain matrix. The mea-
surement covariance Σmeas denotes the sensors noise. These equations are more detailed
in [Kalman 1960], but needed for the filter implementation, to get our state estimate
x̂n|n on each sample time.

To obtain the state using the linear KF, we made some assumptions that simplify
our dynamics and makes it easier for linearization. First, we neglect the input of our
dynamics and treat it as noise. I. e. the covariance Σx increases for components having
the command in it. The second simplification is to neglect the coupling between link
and motor τc on the motor dynamics, as the motor velocity can be well estimated by the
measured position. And the motor friction can be neglected due to the same argument
– velocity is the estimation given by the position. We do the last simplification on
the link side, assuming the flexible bearing link inertia Mfb(qfb) to be constant, i. e.
M0 = Mfb(0). The covariance Σx also increases for components that use the link

4.4. State Estimation 31

inertia. Thus, the dynamics for the flexible bearing is

ffb dyn(xfb, u) =

q̇fb
−M−1

0 τcfb
θ̇
0

 =

 0 I 0 0
−M−1

0 ksfb −M−1
0 dsfb M−1

0 ksfb M−1
0 dsfb

0 0 0 I
0 0 0 0

Ac

xfb . (4.15)

Where Ac is the continuous state transition matrix, which needs to be discretized to
fit for the sample time Ts.

A = I + TsAc (4.16)

Only the matrix H is missing yet to compute the estimated state. Basically, this
matrix is a concatenation of Equation (20) from the paper and Equations (4.5) and (4.6).
The rotation matrices are given by the predicted state, i. e. to

fromRn = to
fromR(x̂n|n−1).

Afterwards, we build the derivative of the concatenation at step n with respect to the
state x. The resultant matrix is

Hn =

0 0 0 I 0

0 I1
J1R

J1
q̇b

Rn
I1
J1R

J1
q̇Rn 0 0

0 I2
EOFR EOF

q̇b
Rn

I2
EOFR EOF

q̇Rn 0 0

(4.17)

This implementation has been done on the microcontroller to estimate the state using
the flexible bearing modification. We explicitly use this to estimate the bearing positions,
too, because the bearing positions influence the camera orientation. This needs to be
known for the ball tracking algorithm. To estimate the state on each sample, i. e. running
the prediction and the update, the microcontroller needs approximately 1.52 ms3.

4.4.1. Kalman filter evaluation
For the evaluation we use the same data set that we used for the calibration. We compare
it to the measurements and to the states that were found by SLoM with the full model
during the calibration process. Here, I just want to pick the two examples of Figure 4.3.
In Figure 4.4 we can see that the state transformed to the measurements fits much better
to the data then the prediction. There is no drift in the motor positions θ. Moreover,
the measurements of the IMU placed on the first body are much more coincident than
during the prediction. Both are the result of the measurements going continuously into
the estimator. But, we want to see if there is drift on the link position q as result of the
integration of the gyroscopes bias’.

3We measured the time by toggling a General Purpose Input Output (GPIO) pin to on, when the
computation of the filter starts, and off when it has been finished.

32 Chapter 4. System Calibration and State Estimation

63 64 65 66 67 68 69 70

−30
−15

0
15
30

θ
/
d
eg

63 64 65 66 67 68 69 70

−150
−75

0
75

150

θ̇
/
d
eg
/s

63 64 65 66 67 68 69 70

−150
−75

0
75

150

ω
2
/
d
eg
/s

63 64 65 66 67 68 69 70
−40

−20

0

20

ω
1
/
d
eg
/s

t / s

(a) Joint 2 (pitch) measurements and estimated measurements.

78 79 80 81 82 83 84

−20

0

20

θ
/
d
eg

78 79 80 81 82 83 84

−100

0

100

θ̇
/
d
eg
/s

78 79 80 81 82 83 84

−100

0

100

ω
2
/
d
eg
/s

78 79 80 81 82 83 84
−40

−20

0

20

40

ω
1
/
d
eg
/s

t / s

(b) Joint 3 (roll) measurements and estimated measurements.

Figure 4.4.: Comparison of measured data (solid) and measurements computed from
estimated Kalman filter states (dashed). From top to bottom we have the
motor positions θ and velocities θ̇, the head ω2 and body ω1 IMU. Red,
green, and blue denote yaw, pitch, and roll for the motor, x-, y-, and z-axis
for the gyroscopes respectively.

4.4. State Estimation 33

20 30 40 50 60 70 80 90 100 110

−50

0

50

q
/
d
eg

20 30 40 50 60 70 80 90 100 110

−150
−75

0
75

150

q̇
/
d
eg
/
s

20 30 40 50 60 70 80 90 100 110

−50

0

50

θ
/
d
eg

20 30 40 50 60 70 80 90 100 110

−150

−75

0

75

150

θ̇
/
d
eg
/
s

20 30 40 50 60 70 80 90 100 110
−1

0

1

q
fb
/
d
eg

20 30 40 50 60 70 80 90 100 110
−40

−20

0

20

40

q̇
fb
/
d
eg
/
s

t / s

Figure 4.5.: Estimated Kalman filter states on the microcontroller during the calibration
motion. From top to bottom we have the motor positions θ and velocities θ̇,
the link positions q and velocities q̇, and bearing positions qb and velocities
q̇b. Red, green, and blue denote yaw, pitch, and roll axis respectively.

34 Chapter 4. System Calibration and State Estimation

50 100
0

0.005

0.01

t / s

q f
b
,1
/d

eg

50 100
0

0.005

0.01

t / s

q f
b
,2
/d

eg

50 100
0

0.01

0.02

t / s

q 1
/d

eg

50 100
0

0.05

t / s

q 2
/d

eg

50 100
0

0.02

0.04

t / s

q 3
/d

eg

50 100
0

0.1

0.2

t / s

q̇ f
b
,1
/d

eg
/s

50 100
0

0.1

0.2

t / s
q̇ f
b
,2
/d

eg
/s

50 100
0

0.05

t / s

q̇ 1
/d

eg
/s

50 100
0

0.1

0.2

t / s

q̇ 2
/d

eg
/s

50 100
0

0.1

0.2

t / s

q̇ 3
/d

eg
/s

50 100
0

1

2
x 10

−4

t / s

θ
1
/d

eg

50 100
0

0.5

1
x 10

−4

t / s

θ
2
/d

eg

50 100
0

1

2
x 10

−4

t / s

θ
3
/d

eg

50 100
0

0.05

0.1

t / s

θ̇
1
/d

eg
/s

50 100
0

0.05

0.1

t / s

θ̇
2
/d

eg
/s

50 100
0

0.05

0.1

t / s

θ̇
3
/d

eg
/s

Figure 4.6.: Comparison of estimated states using the offline SLoM calibration and the
online running Kalman filter. It is shown the difference of |xSLoM − xKF|.

Figure 4.5 shows the estimated KF states. In the plot for the link positions there is no
drift compared to the motor positions. This is because the joint elasticity links motor
and link positions via τcfb (Equation (4.15)). The bearings positions are within a range
of ±1◦. During fast motions the deviation to zero increases and faster oscillations are
seen compared to motions with limited velocity between 20–53 s.

Unfortunately, in this experiment no ground truth4 is available, instead we compare
the estimated KF states to the estimated SLoM states (Figure 4.6). The comparison to
the SLoM states shows only small differences (positions < 0.041◦; velocities < 0.2 ◦ s−1).
These differences are due to the fact that SLoM has the knowledge about the whole data
set 0 . . . N and can optimize it in several steps. Whereas the KF updates are only based
on the data of the actual time n, so its knowledge of the measurements is very limited.
But, this experiment validates the approximations we made in the KF.

4.4.2. Elastic joint behavior in ball batting motions
We saw that the KF does its job and estimates the state accurately. In this section
we run the KF on an example motion inspired by the example of intended ball playing
presented in [Schüthe et al. 2015]. Therefore, positions of batting the ball were manually
passed to the position controller on the microcontroller to check the states given by the
KF. During this movements the link positions and bearing positions were still coupled to
the motors position or zero respectively. The overall motion shows the sportive character
of the system (Figure 4.7). Let us now get another perspective on the data and see the

4Ground truth is an accurate measurement of the same data, here the states.

4.5. Summary 35

5 10 15 20 25 30 35 40
−100

0

100

q
/
d
eg

10 20 30 40
−2

−1

0

1

q
fb
/
d
eg

5 10 15 20 25 30 35 40
−200

0

200

q̇
/
d
eg
/s

10 20 30 40
−40

−20

0

20

40

q̇
fb
/
d
eg
/s

t / s

5 10 15 20 25 30 35 40
−100

0

100

θ
/
d
eg

5 10 15 20 25 30 35 40
−200

0

200

θ̇
/
d
eg
/s

t / s

Figure 4.7.: Ball batting motion to check for estimated Kalman filter states. Red, green,
and blue denote yaw, pitch, and roll axis respectively.

behavior between motor and link side for positions and velocities.
Due to the flexible joint, the motor and link diverge from another and the link follows

the motor. Figure 4.8 shows these characteristics. The flexibility is especially visible in
the velocities. The link oscillates around the straighter motor velocity. Moreover, we
should note that the decision for dynamics with flexible joint was the right choice. One
can neglect the flexibility if the spring stiffness of the coupling is quite stiff. But here
we have a system where the flexibility has to be taken into account, as motor and link
positions differ in position and velocity significantly. If we neglect the joint flexibility
for our batting task, this would lead to a ball trajectory discrepancy that does not hit
the ball back to the opponent as desired.

4.5. Summary
The robotic system we presented in the previous chapters was calibrated to get the
dynamics parameters and the sensor parameters (i. e. the rotation matrices). A model
that predicts the robot’s behavior and the measured data has been presented for the two
dynamics – with and without the flexible bearing. Surprisingly, the result for the flexible
bearing was not as good as the result without the bearing. This is due to deviations in
the model and an overfitting of the model. We managed to include the flexible bearing,
but may not include some flexibilities caused by the structure after the first joint, which
could lead to this effect.

36 Chapter 4. System Calibration and State Estimation

21.5 22 22.5 23
−40

−20

0

20

40

60

q
an

d
θ
/
d
eg

21.5 22 22.5 23
−200

−100

0

100

200

q̇
an

d
θ̇
/
d
eg
/s

t / s

q1 q2 q3 θ1 θ2 θ3

Figure 4.8.: Motor and Link state behavior during a motion.

Based on the dynamics parameters and the flexible bearing model we implemented a
Kalman Filter on a microcontroller to estimate the state in real-time. The computation
time for the state estimate is about 1.52 ms and within the range of the sample time
Ts = 4 ms. We have also shown that the estimated state has only small deviations from
the measurements and also nearly coincides with the calibrated states of the calibration
motion, as no ground truth was available for the comparison. Moreover, a ball batting
motion was taken to display that link and motor positions are not drifting away from
each other, which would be expected normally for integrating gyroscope data. This holds
also for the flexible bearing, which persists close to zero.

We explained that using the flexible joint model is necessary as link and motor posi-
tions are significantly different. Additionally, the bearing position could be estimated,
which will be essential to provide the camera pose to the ball tracker in the future.

Most notably, we have shown that it is possible to estimate the link positions and
velocities using gyroscope data only and, moreover, not having a gyroscope on every
link. This, by our knowledge, has not been investigated before. When gyroscopes are
used, they are used together with the accelerometers.

model

TLOC (linear)

state estimator
model

TLOC
(nonlinear)

model

LQR

calibration
model

identified
parameters

sensors

state

gaincommand

Physical SystemChapter 2

Chapter 3

Chapter 4

Chapter 4

Chapter 5 Chapter 5

microcontroller
5

Task Level Optimal Control

Now we come to the heart of this work — the controller. We aim to answer the question:

Is it possible to define a rebound task for our robot within a controller?

All the work presented until here was investigated to identify the model of the robot
needed for the controller and the state estimator. The controller itself is a Task Level
Optimal Controller which aim is to control a task, i. e. not controlling the positions
given by a trajectory planner. It has the ability to decide which movement is the best
for a given situation and thus can directly react to disturbances. Moreover, the name of
the controller states that it is optimal. For our task of ball playing that should give a
batting motion which is nice and elegant due to its optimality. Having the task defined
and controlled by the controller allows to overcome a trajectory planner and having the
plant controlled more directly. In addition, we will see that by defining the task the
controller is able to actively use the redundancy of the robot to reach the tasks goal.
The implementation of the controller is based on the Linear Quadratic Regulator (LQR)
algorithm as a framework (Section 5.2).

Afterwards, we describe the generic principle of our controller in Section 5.3. Sec-
tion 5.4 gives a more detailed view into our specific ball batting controller – the task
definition in form of costs. We should mention that the controller has been developed
parallel to the robot, i. e. using simulations. Both sections summarize the published pa-
pers [Schüthe et al. 2014] and [Schüthe et al. 2015]. In the experimental Section 5.5 we
show the controllers’ behavior in simulations and in a simplified way on the real robot,
to close the gap between simulation and real world.

But we want to start with some related work in the context of optimal control and
put our controller into that context.

37

38 Chapter 5. Task Level Optimal Control

5.1. Related Work
In [Goretkin et al. 2013] an LQR with finite horizon using Rapidly-exploring Random
Trees (RRT)* is used for optimal planning. This is similar to our first approach, where
the time stops after the goal has been fulfilled. Mostly, the optimal solution to a control
problem is computed, i. e. the input to the plant, [Perez et al. 2012] also computes the
control gain explicitly. However, it is not used to control the plant. Another option
was presented by [Reist et al. 2010], where the feedback gain of stabilized trajectories is
stored in a look up table. All these gains lead to a predefined goal using LQR-Trees.

The iterative refinement using nonlinear dynamics and optimal control is investigated
in the iterative LQR [Weiwei Li et al. 2004]. A trajectory gives the linearization points,
while the trajectory is optimized by the LQR. This offline mechanism computes the
control commands and refines the goal updates given by a tracker. The same method
was enhanced to the iterative Linear Quadratic Gaussian (LQG) in [W. Li et al. 2007].

Describing a task to be controlled is mentioned in [Hegyi et al. 2005], where a Model
Predictive Controller (MPCs) is used to control the task of having the best traffic flow
on a freeway. This is investigated by making an optimal choice between limitations of
speed and ramp metering for freeway. A task-level robot learning algorithm is presented
in [Aboaf et al. 1988], the robot learns how to throw a ball. This learning is further
investigated to juggling in [Aboaf et al. 1989]. Defining a cost function that gives a task
based control – in this case a positioning – is shown in [Lenz et al. 2009; Somani et al.
2015]. Here it is used for positioning using a least-square minimization with respect to
geometric and kinematic constraints to find the waypoints of a trajectory. Other task
specifications are investigated in [De Schutter et al. 2007; Decre et al. 2009] in a general
sense. They allow a general task objective function and support inequality constraints in
the specification of the task. The command is found by solving a least-squares problem
w.r.t. to the constraints. The task is described by the constraints. This is shown on a
laser tracing example using a 7 DOF manipulator. An extension up to a specification
language and a controller using expression graphs is presented in [Aertbeliën et al. 2014].
The solver translates a specification into a numerical representation which is solved using
a quadratic optimization problem including constraints.

Constraints can be equality or inequality constraints, where an equality constraint –
such as x ≥ 0 – is either inactive (x ≥ 0) or active otherwise (x < 0) and then forcing
x = 0. This optimization leads to an infinite number of decision variables [Scokaert
et al. 1998]. Instead we are using soft constraints, i. e. putting the “constraints” into the
cost functional leading to a fixed computation time of the LQR algorithm. Moreover,
the hard constraints are relaxed as shown for state limitations in [Zeilinger et al. 2014].
Modification of the controller to suboptimal control by the most possible reduction of
the horizon to use constraints was investigated in [Johansen et al. 2002]. We need a
defined horizon length to get the batting point visible for the controller. Constraining
the input command by saturation using quadratic programming was shown in [Mare
et al. 2007]. This is done in a similar way in [Goebel 2005], where a saturation function
is computed for an LQR using optimal control principle.

5.2. Framework 39

5.2. Framework

Our controller used to fulfill the ball batting task is based on the optimal control frame-
work, precisely the Linear Quadratic Regulator principle. This is a well-known controller
and can be found in several literature. We describe the principle briefly in this section
and refer to [Anderson et al. 2007].

The continuous general optimal control problem can be formulated as follows. Given
the initial state x(t0) and the system ẋ = fdyn(x, u), we want to find the optimal control
u⋆(t) that minimizes the cost functional for the horizon length T

V = costt0+T (x(t0 + T)) +
t0+T

t0

cost(x(τ), u(τ), τ)dτ . (5.1)

The LQR is based on this principle, too, where the system has to be linear and the
cost quadratic. The LQR can be used for continuous and discrete systems. For the
discrete LQR the optimal control u⋆

n can be found in deterministic time, by solving the
Riccati equation. This is the controller we used for our system as basic framework. An
explanation on how the transformation from nonlinear continuous time system to the
linear discrete system is done, can be read in our papers. Additionally, the transforma-
tion for the costs to the quadratic costs can be found in there. The result is the linear
discrete system

xn+1 = Anxn + Bnu (5.2)

and the quadratic cost functional

J = xT
n0+NQNxn0+N +

n0+N

k=n0

uT
k Rkuk + 2uT

k Skxk + xT
k Qkxk . (5.3)

Where A is the state transmission matrix, B denotes the input matrix, Q ⪰ 0, S ⪰ 0,
and R ≻ 0 are cost weights for states, state-command, and commands respectively,
which have to be positive semidefinite and positive definite. Minimizing the discrete
cost with respect to the command results in the recursive computable feedback gain

Kn = −

Rn + BT

n Pn+1Bn

−1
Sn + BT

n Pn+1An

, (5.4)

that is used to compute the current optimal control

u⋆
n = Knxn . (5.5)

In the equation P denotes the accumulated weight solution of the discrete algebraic
Riccati equation (ARE).

40 Chapter 5. Task Level Optimal Control

td,pd,vd

Predictio
n / Lineariza

tion

td

LQR / Dynamic Programming

x(t0)

K̄(t0 . . . 2Tup)

Ā(t),B̄(t),
Q̄(t),R(t),S̄(t)

K̄(t)

t0

System
and tim

e t

t0 + T

Figure 5.1.: Nonlinear optimization cycle for a given task using an LQR. The black line
represents the microcontroller part and its time. The blue and light brown
represent the PC part.

5.3. The Principle
The overall concept of the distributed controller was already explained in Section 2.6 on
page 14. The nonlinear refinement and optimization runs on the PC, whereas the linear
optimal control runs on the microcontroller. Let us take a look into these iterations.

The concept shown in Figure 5.1 consists of two steps made in one iteration cycle. At
a given time t0 our camera system does an update and triggers the microcontroller (black
centered line) to pass the actual state x(t0) to the computer. This state is used to predict
the robot’s behavior xp,n and up,n on each sample time n for the given horizon length
T using the calibrated model. Based on this prediction the nonlinear system dynamics
(Eq. (3.3)) are linearized and discretized to provide the state transition matrix Ān and
the input matrix B̄n. The bar denotes an affine extension1 needed to represent the
explicit linearization of the system around xp,n and up,n. For a detailed explanation see
[Schüthe et al. 2015]. This step is mainly done to take advantage of the LQR principle.

Simultaneously, the cost function is updated based on the prediction. The task is
defined in this cost function and is computed for each time step n for the horizon length.
The cost is mostly given in a nonlinear way. Thus, the costs have to be linearized, too.
As seen in Equation (5.3) the cost has to be quadratic. Therefore, the cost has to be
quadratized after the linearization to get the linear weighting matrices (Q̄n, S̄n, and
Rn) [for details see Schüthe et al. 2015].

Now we reached the end of the light brown arrow in Figure 5.1 having all information
to run the dynamic programming part for the LQR (blue line). This part computes the
optimal feedback gain K̄n (Eq. (5.4)).

Note that we explicitly compute the gain matrix and not the optimal commands, which
1The affine extended state is x̄ = (x

1) and so the matrices have to fit into this extension, too.

5.4. Ball Batting Task Implementation 41

is a main contribution. Because normally an optimal feedback controller computes the
optimal command for the actual step only, applies it to the plant and starts over for the
next step. The disadvantage is that it must have the result computed in one sample time
Ts, which is challenging with dimensional growth of the system. In feedforward control
it is done differently. Here, the optimal commands are computed for a given set of times
and applied to the plant. However, this method has no chance to adapt to disturbances
on the plant.

We implemented a combination of both and apply the feedback gain. This is illustrated
in the figure at the end of the blue arrow by transferring the feedback gains to the
microcontroller. We do not need to transfer all gains from actual time to the end of the
horizon length, because we update in the camera step size Tup. To have a safety margin
if the microcontroller misses the camera trigger we transfer gains at least for 2Tup. Then
the controller on the microcontroller is simply a linear feedback controller computing
the command on each sample with un = K̄nx̄n (Eq. (5.5)).

Let us recapitulate this, as this is an essential part of the controller. The computed
gains for the prediction are transferred to the microcontroller – we could say the feed-
forward gains. But, on the microcontroller the feedforwarded gains are used to compute
the actual control command – feedback control. Thus, the controller can act linearly
on disturbances, while nonlinear changes due to model discrepancies are handled on ev-
ery camera update. Then the nonlinear iteration on the PC is triggered to adapt the
prediction and the gains – again this is a feedback control.

This step of retriggering the nonlinear iteration closes the loop. Here it should be men-
tioned that the predicted commands are the result of the previously calculated feedback
gains and the predicted states of the actual iteration using Equation (5.5).

The iteration process is summarized in Pseudo Code 1. This illustrates how the com-
putation is done on every camera update and I like to highlight line 7 and 14. The
former “throws” the old gains from the last iteration, that have been processed on the
microcontroller already, away and appends the same number to the end using the last
gain K̄N−1 entry Nup times. This needs to be done to have always the same number of
feedback gains stored as they are needed to compute the predicted commands. The lat-
ter, line 14, transfers the needed feedforward gains to the microcontroller. Additionally,
I like to point out line 10. This is the computation of the desired position pd and velocity
vd given a valid ball trajectory, which is computed by the ball tracker. The desired time
td is when the valid trajectory intersects with the robot’s workspace. A concept of how
to compute this is given in [Hammer 2011]. These parameters are needed for the ball
hitting task which is part of the cost function which we are going to see in the next
section now.

5.4. Ball Batting Task Implementation
The principle we discussed in the previous section is now applied to our task. The task
we are going to implement for the robot is to hit a recognized ball back to an opponent

42 Chapter 5. Task Level Optimal Control

Pseudo Code 1: Nonlinear iteration description in the view of the PC.
1 set n = 0
2 get initial state x0 = x(0) from microcontroller
3 Set K̄n...N−1 = 0
4 initialize Ān...N , B̄n...N around linearization points x0 and u = 0
5 while ∞ do
6 reset n = 0
7 remove first Nup elements of K̄ and append Nup times K̄N−1, i. e.

K̄n...N =

K̄Nup...N−1 K̄

(1)
N−1 K̄

(2)
N−1 · · · K̄

(Nup)
N−1

8 wait for camera update
9 get current state x0 = x(t) from microcontroller

10 compute desired head center nd = td−t
Ts

, vd, pd from ball trajectory (not part of
this thesis)

11 predict system behavior Ān...N , B̄n...N , x̄p,n...N , up,n...N−1

12 quadratize cost Q̄n...N , R̄n...N−1, S̄n...N−1 for x̄p,n...N , up,n...N−1

13 compute gains K̄n...N−1

14 transfer gain matrices K̄n...2Nup to microcontroller
15 end

player. Therefore, we need to compute the velocity vd and position pd that hits the ball
back to an opponent. This is done in the ball tracker and also delivers a desired time td.
Thus, the task is to be at time td with the EOFs coordinate system at position pd having
the velocity vd.

But, we must have in mind that there are other tasks to be fulfilled, which are not
obvious on the first view. These are: Know what to do after hitting the ball! ; Know your
limitations! ; and Take care about elasticity!

The task is put into the general optimal control cost function (Eq. (5.1)). We al-
ready mentioned that the costs have to be quadratic for the LQR (Eq. (5.3)). How the
linearization and quadratization is fulfilled is explained in [Schüthe et al. 2015]. Here,
we only want to show what the cost is made of in general. Therefore, have a look at
Figure 5.2 where the cost functions are defined (as in [Schüthe et al. 2015]). It can be
seen that the cost consists of three parts:

1. Costs that define the main task (above the blue box)

2. Costs that enforce constraints (below the blue box).

3. A terminal cost, which applies to the end of the horizon

The formulas for the costs are given in Figure 5.2 and are explained in the following.

5.4. Ball Batting Task Implementation 43

J = costt0+T (x(t0 + T)) +
t0+T∫

t0

cost(x(τ), u(τ), τ) dτ

terminal cost

vibration reduction
costvib(x, t) = wvib

(
q̇(t) − θ̇(t)

)2

desired Cartesian position
costp(x, t) = wp (fkin(q(td)) − pd)2

desired Cartesian velocity
costv(x, t) = wv (fvel(x(td)) − vd)2

return to initial position
costr(x, t) = wprq2(t) + wvrq̇2(t)

motor torque
costτ (u, t) = uT (t)wuu(t)

state constraints
costlim(x, t) = hT

lim(x, t)wlimhlim(x, t)
hlim(x, t) =

[
diag(qlim)−1 (q(t) − qc)

]γx

input constraints
costulim(u, t) = hT

ulim(u, t)wuαhulim(u, t)
hulim(u, t) =

(
diag(ulim)−1u(t)

)γu

damping
costdmp(u, t) = wuδ (u(t) − up(t))2

Figure 5.2.: Task of ball hitting plugged into the cost functions. As it can be seen, that
also includes subtasks which have to be taken into account. Below the blue
box all “constraints” are set. Above the costs to fulfill the main task is
shown.

5.4.1. Task costs
The task itself splits into the following three parts that are above the blue box:

Wait and Hit

This part consists of the batting task to be fulfilled at time td and the costs for return
to initial position, i. e. zero for link positions and velocities.

The wait part is the standard case, if there is no valid ball trajectory and the set of
td, pd, vd is empty. The return to initial position is active for all times steps n = 0 . . . N
with the weights wpr and wvr. This part denotes to stay or go back to the links zeros
positions and velocities.

If there is a valid trajectory the hit part with desired Cartesian position pd and desired
Cartesian velocity vd at time td gets active. Then the return to initial position costs
are only active for times t larger than the desired time added by a time margin tm,
i. e. costr(x, t ≥ td + tm). This guarantees no conflict between the hit task and the
return/wait task. If both would be active or the return starts right after the desired

44 Chapter 5. Task Level Optimal Control

time, the controller must find a compromise between the two costs. As the goal is to
minimize the cost, the controller would decide the middle position/velocity between the
two tasks, as this is the lowest cost.

Now, we have to hit the ball at desired Cartesian position. This is done by penalizing
the difference between the desired Cartesian position pd and the state transformed into
a Cartesian representation using our kinematics function (3.1). The weight wp is cho-
sen very high to be accurate and because this cost is only active at the one time-step
td. The same holds for the desired Cartesian velocity vd, where the difference to the
Cartesian velocity is penalized. The function fvel(x) is just the time derivative of the
kinematics (3.1), i. e.

fvel(x) = ∂fkin(x)
∂t

= ∂fkin(x)
∂q

q̇ . (5.6)

The weighting factor wv was chosen factor 10 smaller according to wp, because if a
position error occurs it would have more impact on the precision than a velocity error.

Motor Torque

The cost for the motor torque penalizes all torques greater than zero. In other words, the
controller should fulfill the batting task with as little torque, i. e. equivalent to motor
current, as possible. But, we carefully have to choose the weight wu. A weight in
the dimension of wv would tell the controller to do nearly nothing, because it is more
expensive to generate a torque than moving to the desired position. In contrast a weight
close to zero would tell the controller that it could do whatever it wants as long as the
batting works, i. e. a torque of infinity would be allowed.

Vibration Reduction

The vibration reduction is only needed to reduce oscillations in the spring. In experi-
ments we found out, that the controller oscillates as a result of the elasticity between
link and motor. By inserting the vibration reduction we achieved a smoother result and
the oscillations reduced to an acceptable level. This can be handled by penalizing the
deviation of link and motor velocity by a weight of wvib.

This is how the task of hitting the ball is defined using the cost functions. To provide
the controller with information on its underlying physical robotic system, we insert soft
constraints.

5.4.2. Soft Constraints
We call it soft constraints, because they are acting as a barrier in the costs and could be
violated. In contrast to equality or inequality constraints they have no hard limitations.
So in the real physical world we always have to check if such limits are exceeded and
act on that situations. But the advantage is a deterministic computation time of the

5.4. Ball Batting Task Implementation 45

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80−20−40−60 q2/deg

costlim(q2)

γx=1

γx=4
γx=8

qc−qlim qc+qlim

qc

Figure 5.3.: Soft constraint barrier function for the example of the pitch joint. Shown
for different parameters. We use γx = 8

.

feedback gains. Moreover, this has the nice effect that the controller gets to know its
physical limitations in form of costs and considers these in the optimal feedback gain
computation. In the following we are going to explain two physical constraints for the
state and the input, and a damping cost function that was additionally inserted due to
input constraints.

State Constraints

In the state constraints we emphasize the physical limits of the joints, i. e. joint posi-
tions limitations qlim. We penalize a deviation from the center between minimum and
maximum joint limitation qc. Figure 5.3 illustrates this behavior for the pitch joint.
E. g. if the joint angle gets closer to its limits, the cost increases rapidly such that the
controller would not like to move further in that direction. This has the nice effect, that
the redundancy of the robot is used actively by the controller when positions are close to
their limits or the desired position lays outside the limits. The latter one could happen
if a desired position pd is passed which is only reachable by turning the yaw joint and
use the pitch joint instead of turning the roll joint over its limits – we will see this in
the experiments section. The parameter γx is chosen high to have a steep barrier (cf.
Fig. 5.3), we use γx = 8.

Input Constraints

The input constraints describe the limitations to the commanded torque. This is equiv-
alent to the commanded current and so to the commanded pwm. The maximum torque
can be computed from Equations (2.6) and (3.7). The maximum pwm we can set is
always pmax = p0 ± 0.2 independently from the motor velocity. We can plug this into

46 Chapter 5. Task Level Optimal Control

(3.7) where p is replaced by pmax. Then the zero pwm is replaced by Equation (2.4).
Following the steps of Equations (3.7)–(3.12) we get the limiting motor torque

τm,lim = ±0.2kpwmUmax . (5.7)

The factor α increases the cost in total, where γu just gives the form of the barrier
(smooth or hard).

Moreover, the linearization of the nonlinear input constraints makes the controller os-
cillate over the nonlinear iteration. Therefore, we inserted a damping term that counters
this phenomenon.

Damping

The damping penalizes a change of the command over two consecutive iterations. This
is similar to the Levenberg-Marquardt method [Press et al. 2002]. It helps convergence
by reducing the command change on each iteration. This can be imagined like this: If
there is no change limitation and the command gets close to the barrier, the linearization
creates a line having a high gradient. The linearized controller thinks that putting a bit
less command will lower the cost a lot. So the result is a change to a command far away
from the last. The allowed change factor is limited by δ.

5.4.3. Terminal costs
Our terminal costs are a look ahead for the controller. We define that the controller
should move to its initial state eventually, i. e. all velocities and positions are going to
be zero. So it could do whatever it wants in this last step as everything afterwards is
not recognized in the costs. So this cost is more like: Have in mind to go back at the
end. The cost itself is the same as for return to initial position.

5.5. Experiments
Let us now have a look at how the controller presented in [Schüthe et al. 2014, 2015]
behaves on the calibrated model and on the robotic system given in Chapter 2. This
section is divided into four subsections where we get closer to the real system in every
subsection. We start with the simulation presented in [Schüthe et al. 2015] and adapt
it to the new model to see if the algorithm still works. Afterwards, we do some tests on
the simulation and leave out some information on the model used in the Task Level Op-
timal Control (TLOC) to test its robustness towards model deviations. In the following
subsection the control gains found previously are applied to the simulated plant with
the flexible bearing. And finally, we show the feedback gain applied on the hardware.

Before we start I give some information about the settings. Due to comparability
reasons we use the model without the bearing, i. e. Equation (3.6) with the parameters
denoted in [Schüthe et al. 2016]. When we speak in the following of a “model”, it is

5.5. Experiments 47

0 2 4 6 8 10 12 14
−40

−20

0

20

40

q
/
d
eg

0 2 4 6 8 10 12 14

−100

0

100

q̇
/
d
eg
/s

0 2 4 6 8 10 12 14
−40

−20

0

20

40

τ
m
/
N
m

t / s

Figure 5.4.: TLOC simulation adapted to the calibrated model. Red, green, blue denote
yaw, pitch and roll joint respectively. The gray dashed lines are randomly
chosen hit points where position pd and vd have to be reached.

the model that is part of the optimization in the controller. Whereas the “plant” is the
simulated behavior of the robot using also Equation (3.6), but running the simulation
using an ODE-solver to have a “time-continuous” simulation. Moreover, the plant has
the implemented current limitation discussed in Section 2.3.

5.5.1. TLOC with calibrated model
In this experiment we run our TLOC in a loop for about 14 s choosing random times
where a ball should be hit. This includes randomly chosen positions pd and velocities
vd at that time. When the robot has returned to its initial position a new goal has been
chosen. The desired time is taken in the interval td = [0.3 s, 0.7 s].

In our first runs we experienced an oscillation of the commanded torque. This could be
managed by increasing the parameter to penalize vibration wvib = 50 s rad−2. Moreover,
it turned out that the command limitation does not work well enough. A commanded
torque of hundreds of N m could be seen. An adaptation in α = 500 gives a solution.
These are the only parameters we had to adapt compared to the parameters used in
[Schüthe et al. 2015].

Figure 5.4 shows the adapted simulation with desired hit positions and velocities
given at the desired gray dashed line. We put this recorded motion in a video2 for
better visualization. In the overall time eight goals where given to the controller. Note

2http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
schuetheThesisTLOCSimulation.mp4

http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheThesisTLOCSimulation.mp4
http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheThesisTLOCSimulation.mp4

48 Chapter 5. Task Level Optimal Control

that the limitation of the torque has changed by Equation (5.7). The positions where
reached with a mean deviation of ∆p̄d = (0.0043 0.0031 0.0032)T m and the velocities with a
deviation of ∆v̄d = (0.1221 0.0350 0.0664)T m s−1. Which is accurate enough to hit the ball
to the desired position. The highest deviation is in the x direction where the audience
is located, this lead to a shorter ball trajectory after the hit. From the view of the
audience this means a catch of the ball at height of the knee and not the chest. So it
can be handled by the audience. But this deviation has another aspect I would like to
highlight.

Finding the perfect parameters for the TLOC is nearly impossible. It is always about
finding a compromise for cost weightings. Have a look at the first, the fourth and the
latter two hits. At these motions the torque limit is slightly exceeded for the pitch
joint (green). This leads to a higher deviation, because on the hardware and also our
simulated plant the current is limited. Thus, the plant can not accelerate as fast as the
TLOC computed. So the parameters have to be well tuned, and we thought that the
parameters set for the TLOC are a good compromise.

Another aspect of the TLOC is the usage of redundancy iff the position can not be
reached by just using the pitch and roll joint. Such motions are clearly given at time
3.796 s and 8.496 s. The desired goal is not reachable for the controller with only the
pitch and roll joint. It recognizes this by the joint limitations implemented as barrier
function in the costs. It reacts as expected and moves the yaw joint. Thus, the joint
limits are not exceeded.

By now our plant acts according to the model (except that the former denotes contin-
uous time simulation). In the next subsection we are going to see what happens when
the model and the plant differ.

5.5.2. Deviation between plant and model
To control our robot we are using a model based controller, i. e. the model has to be
known very precisely. But what happens if the model differs from the plant? We tested
this by changing the model and leaving the plant as it is. Here, we change the model
to get the “worst case” of control, i. e. the damping constant ds = 0 for every joint.
Moreover, the friction in the model was set to be zero. We tested these settings on
the same desired goal (pd = (0.00 0.00 2.0233)T m and vd = (1.7629 1.7629 0.00)T m s−1) and
summarized the results in Table 5.1. Each motion is given in Figure 5.5. The best result
was achieved by including damping and friction into the model. This was expected,
as the plant and the model only differs in the fact that the one is continuous and the
other discrete. Depending on the sample time, also differences can occur here, but it
should be the closest model describing the plant behavior. Also we see that neglecting
the damping is the worst case. We set the damping for the test to zero, i. e. there is no
damping. But found out that this leads to a big difference between model and plant,
and to the highest deviation to the best model (including damping and friction).

It turned out that neglecting the friction is not a big problem. It is not that accurate
reaching its desired goal, but still close to the best solution. However, it is a problem to

5.5. Experiments 49

Table 5.1.: Comparison of model deviations from the simulated plant. The desired posi-
tion is pd = (0.00 0.00 2.0233)T m and the velocity vd = (1.7629 1.7629 0.00)T m s−1

have to be reached at td = 0.6 s.

damping friction p(td) / m v(td) / m s−1

no no

0.0041 0.0295 2.0228

T
1.6079 1.5226 −0.0510

T

no yes

0.0055 0.0250 2.0229

T
1.6384 1.5354 −0.0469

T

yes no

−0.0034 −0.0042 2.0233

T
1.6605 1.6458 0.0124

T

yes yes

−0.0011 −0.0023 2.0233

T
1.7112 1.7008 0.0059

T

Table 5.2.: Comparison of plant with and without the flexible bearing simulated.
The desired position is pd = (0.00 0.00 2.0233)T m and the velocity vd =
(1.7629 1.7629 0.00)T m s−1 have to be reached at td = 0.6 s.

bearing in plant p(td) / m v(td) / m s−1

not simulated

−0.0011 −0.0023 2.0233

T
1.7112 1.7008 0.0059

T

simulated

−0.0218 −0.0094 2.0230

T
1.5557 1.6203 0.0487

T

return to the initial position. We can see that the joint positions converge much slower
than with friction included in the model.

The key message of this subsection is that a difference of the model to the plant leads
to deviations in the task and desired goal. Moreover, the worst case is to be unaware of
the damping. Whereas a divergence in the friction has less impact.

5.5.3. Flexible bearing included
Until now the plant had the same DOF as the model, i. e. no flexible bearing. Now we
change the plant to have the flexible bearing included (see Eq. (3.20)), while the model
remains unaware of the flexible bearing. The result is given in Figure 5.6 and Table 5.2.

Again, the desired goal is pd = (0.00 0.00 2.0233)T m, vd = (1.7629 1.7629 0.00)T m s−1 and
td = 0.6 s. Including the bearing into the plant leads to a deviation in the reached
position and velocity which is acceptable if a loss of accuracy is tolerated. For the
position the accuracy is in a tolerance which is acceptable. The accuracy of the velocity
is worse than the one for the position. But having the task in mind of playing a ball
back to the audience, the tolerance on the accuracy can be enlarged.

Let us assume a ball game between two humans. Where one person throws the ball
and the other has to hit the ball back with its head. We all can imagine that the ball
will not always be returned exactly to the opponents position. Hence, we tolerate this
divergence for now.

50 Chapter 5. Task Level Optimal Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(a) Damping and friction modeled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(b) Damping modeled, friction not modeled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(c) Damping not modeled, friction modeled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(d) Damping and friction not modeled.

Figure 5.5.: Comparison of model deviations from the simulated plant. The desired posi-
tion is pd = (0.00 0.00 2.0233)T m and the velocity vd = (1.7629 1.7629 0.00)T m s−1

have to be reached at td = 0.6 s. Red, green, and blue denote yaw, pitch,
and roll axis respectively.

But how can this divergence be explained? Let us have a look into the motions,
explicitly to the torque of the pitch joint. This is at around 0.4 s increasing more than
without the bearing in the plant. And again we have a problem where the current
limitation results in a limitation of the acceleration and so the goal speed can not be
met.

5.5.4. Experiments on the Robotic System
In this subsection the experiment differs in the implementation of nonlinear iterations.
We had to find a way to test the TLOC principle in an easy way, because the nonlinear
iterations would take too much time to implement. The implementation we used in
the simulations would not work without a revised version on the microcontroller and
PC due to delays in the communication and computation. It was already mentioned in
this chapter that we expect the feedback gains to be computed and transferred to the

5.5. Experiments 51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(a) Plant without the flexible bearing.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

q
/
d
eg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−50

0

50

100

q̇
/
d
eg
/
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

τ
m
/
N
m

t / s

(b) Plant simulates the flexible bearing.

Figure 5.6.: Comparison of deviations between plant with and without the flexible bear-
ing simulated. The desired position is pd = (0.00 0.00 2.0233)T m and the
velocity vd = (1.7629 1.7629 0.00)T m s−1 have to be reached at td = 0.6 s. Red,
green, and blue denote yaw, pitch, and roll axis respectively.

microcontroller in zero time for our simulations, i. e. faster than the sample time on the
microcontroller (4 ms). It would have taken to much time to implement the nonlinear
iterations considering the timing behavior of transmission and computation, this could
not be fulfilled in this thesis.

Therefore, we adapt the code given in Pseudo Code 1 to an open loop code 2. Here
we just compute the gains by iterating the TLOC four times starting every time from
the time t0 and use the model without the flexible bearing to predict the new states and
commands. The feedback gains found are hard coded on the microcontroller for testing.
Looking at the code we see a difference in the iterations. Now, we start in every iteration
with the initial state x0 = 0. The feedback gains coded to the microcontroller are just
for the hit motion, afterwards we switch back to position control3.

For this task we decided to use the easiest motion we could imagine, i. e. batting a
ball towards our front (in x-direction). Our goal is to be at the desired time td = 0.5 s
at the position pd = (0.00 0.00 2.0233)T m with a velocity of vd = (1.7629 0.00 0.00)T m s−1.

What must be the motion to hit a ball to the front standing upright? Let us assume
that we as human should do the task of hitting the ball with our forehead. We would go
back, accelerate and hit the ball. This is easy to imagine. Let’s see what the robot does
(cf. Fig. 5.7b). It starts its motion by swinging back the head (green line). The motor
starts and the link follows, as described by the coupling τc. Then it turns direction to
accelerates, seen in the pwm signal and the increase of velocity. Basically the motion
that we expected.

But let’s have a closer look by comparing the robot with our plant simulations (cf.
Fig. 5.7a). We see a deviating motion compared to the simulated motion with (dashed)

3Using either a P-controller or an infinite horizon LQR we implemented within this thesis to test if it
is stable and does not oscillate.

52 Chapter 5. Task Level Optimal Control

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

2

q
1
/
d
eg

0 0.1 0.2 0.3 0.4 0.5

−2

0

2

q̇
1
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
2
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

100

q̇
2
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

q
3
/
d
eg

t / s
0 0.1 0.2 0.3 0.4 0.5

−4

−2

0

2

4

q̇
3
/
d
eg
/
s

t / s

(a) No compensation.

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

q̇
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

θ
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

θ̇
/
d
eg
/
s

t / s
0 0.2 0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p

t / s

(b) No compensation.

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

q
1
/
d
eg

0 0.1 0.2 0.3 0.4 0.5

−10

0

10

20

q̇
1
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
2
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

100

q̇
2
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

q
3
/
d
eg

t / s
0 0.1 0.2 0.3 0.4 0.5

−4

−2

0

2

4

q̇
3
/
d
eg
/
s

t / s

(c) Compensating static friction.

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

q̇
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

θ
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

θ̇
/
d
eg
/
s

t / s
0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

p

t / s

(d) Compensating static friction.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

q
1
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−5

0

5

q̇
1
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
2
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

100

q̇
2
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

q
3
/
d
eg

t / s
0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q̇
3
/
d
eg
/
s

t / s

(e) Compensating static and Coulomb friction.

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

q
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

q̇
/
d
eg
/
s

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

θ
/
d
eg

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

θ̇
/
d
eg
/
s

t / s
0 0.2 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

t / s

(f) Compensating static and Coulomb friction.

Figure 5.7.: Comparison of simulation (dashed with, dotted without flexible bearing)
and robot (solid) behavior. The desired position pd = (0.00 0.00 2.0233)T m
and velocity vd = (1.7629 0.00 0.00)T m s−1 have to be reached at td = 0.5 s
(marked). Red, green, and blue denote yaw, pitch, and roll axis respec-
tively. On the right the robot states with pwm. The controller sets the pwm
(dashed), which is current limited (solid).

5.5. Experiments 53

Pseudo Code 2: Nonlinear iteration description in the view of the PC.
1 set n = 0
2 set initial state x0 = 0
3 Set K̄n...N−1 = 0
4 initialize Ān...N , B̄n...N around linearization points x0 and u = 0
5 while k = 0 to 3 do
6 reset n = 0
7 predict system behavior Ān...N , B̄n...N , x̄p,n...N , up,n...N−1

8 quadratize cost Q̄n...N , R̄n...N−1, S̄n...N−1 for x̄p,n...N , up,n...N−1

9 compute gains K̄n...N−1
10 end
11 compute Nd =

td
Ts

12 set gain matrices K̄n...Nd to microcontroller

and without (dotted) the flexible bearing. The principle motion is the same: moving
backwards and accelerate to the front. But the amount of velocity which is met by the
simulations is not reached. Note that the simulations both are only minimal deviating
from the desired goal (cf. Table 5.3).

One possible reason might be the static friction. In the calibration we assumed to have
no static friction and also neglect this in the model, as our aim is to control the robot in
motion, where no static friction is active. Therefore, we checked if by compensating the
static friction, the robot behaves better (cf. Fig. 5.7c and 5.7d). We see no big difference
to the one before. The velocity is getting slightly better. The motion itself keeps its
behavior as desired.

Another reason might be an inaccurate calibration of the Coulomb friction. Thus, we
adapted the program in a manner, that Coulomb and static friction are compensated on
the pitch axis – because this is the axis of interest in this example. The Coulomb friction
is linearly compensated in dependency of the motors velocity. Low velocity coincides
with a high compensation, high velocity leads to a lower compensation. The result shows
Figure 5.7e and 5.7f. Now we get closer to the desired velocity. Thus, we could say that
the friction might be modeled inaccurate. The friction is maybe not a sigmoid function
as expected and the static friction should better be included in the model.

I also want to add another reason that could cause the divergence. In Figures 5.7b, 5.7d
and 5.7f have a look at the pwm which should be set (dashed) and the one which is set
(solid) after current limitation. Both lines coincide until the point where the controller
wants to accelerate to reach the desired velocity. The controller knows the limitations
by the limiting torque computed with Equation (5.7). However, the gains compute a
pwm higher than the limit. One reason therefor is that the gains are computed based on
a linearization/quadratization at the predicted states. If the actual states are far away
from that, this is not valid anymore. We saw in the previous subsections that if the

54 Chapter 5. Task Level Optimal Control

Table 5.3.: Comparison between robot and simulation accuracy. The desired position is
pd = (0.00 0.00 2.0233)T m and the velocity vd = (1.7629 0.00 0.00)T m s−1 have to
be reached at td = 0.5 s.

robot

robot static
friction
compen-
sated

robot static
and
Coulomb
friction
compen-
sated

simulation
plant with
bearing

simulation
plant
without
bearing

p(td) / m

0.0167
0.0131
2.0230

0.0180
−0.0130
2.0230

0.0235
−0.0097
2.0229

−0.0254
0.0000
2.0230

0.0010
−0.0001
2.0233

v(td) / m s−1

1.2708
0.0832

−0.0219

1.3080
0.0316

−0.0233

1.3902
−0.0270
−0.0341

1.7539
0.0004
0.0379

1.7546
0.0006

−0.0017

model deviates from the plant, the deviations in the desired goal are increasing. At this
point we have to review and say that our model from the previous chapter might not be
accurate enough to control the robot precisely. But we can show that the principle of
TLOC works on the robot – the motion is just the one we expected to be and coincides
with the simulations overall behavior.

This is much better to visualize in a motion video4 than in figures. This shows sim-
ulation and real behavior side by side. The motions are only shown from the starting
to the desired time in slow motion. Here, we can see that the intention of the motion is
realized on the robot. However, the precision of the model is unequaled in the desired
goal.

5.6. Summary
This chapter briefly described the TLOC principle as a summary of the papers [Schüthe
et al. 2014, 2015]. The controller is operating in a linear (microcontroller) and a nonlinear
(PC) stage to fulfill the task of being at position pd with velocity vd at the desired time
td. The contribution made is the development of the Task Level Optimal Control which
computes feedback gains for the linear stage to run a fast control for the task of hitting
balls. The nonlinear stage is called on every camera update to improve the motion
and recompute new gains that fit to the new criteria given by the current state. This
implementation has been tested in a simulation run.

4http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
schuetheThesisMotionExamples.mp4

http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheThesisMotionExamples.mp4
http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheThesisMotionExamples.mp4

5.6. Summary 55

We have shown the impact of model deviations and the difference of the control having
a model neglecting the flexible bearing, but using a plant with and without the flexible
bearing.

Finally, we showed a reduced experiment on the real robot that, for implementation
reasons, worked without the nonlinear iterations. So there is just the linear acting
feedback controller with optimal gains computed in the beginning. It could be shown
that the intention of motion is met, but the accuracy in desired position and velocity
insufficiently. This has mainly to do with an improper modeling of the friction. Moreover,
it must be considered that there are other effects that are not modeled, e. g. a play in the
coupling spring. But it could be shown that the overall principle of the TLOC works.

6
Human-Robot Interaction

Let us now take a look at the human-robot interaction (HRI) of “Doggy”. We are going
to do this in two sections. The first describes the game tested and showed on the Open
Campus day of the University of Bremen in July 2015. We briefly discuss the setting
and the overall audience reaction. The second illustrates an implementation of acoustic
sound recognition to interact with the audience, which was a master thesis supervised
by me.

6.1. Ball Playing Robot
The entertainment aspect has been demonstrated on the Open Campus day at the
University of Bremen in 2015 (Fig. 6.1). We presented Doggy for the first time having
its new interior, i. e. the newest version described in Chapter 2. As we finished the
robot only a few weeks before the open campus day, a P-controller was implemented
on the microcontroller to regulate the motor positions. The communication to the PC
was handled by USB. To make the robot play the ball game its predecessor “Piggy” did
[Laue et al. 2013], we had to adapt the PC software and calibrate the stereo camera
system1, both with the existing code of Piggy.

The setting was chosen in an outdoor environment at the campus. The cameras had to
deal with changing light conditions and with an audience of all ages. The nice thing with
our entertainment robot is that it is self-explanatory. If one person throws a ball others
get the game’s intention immediately. Children are enthusiastic to play with Doggy,
perhaps caused by its “fluffy” costume. The costume helps to attract both technophile
and non-technophile people. Thus, the demonstrator addressed all sorts of people.

1Both parts were fulfilled within this thesis.

57

58 Chapter 6. Human-Robot Interaction

Figure 6.1.: Doggy at the Open Campus day 2015.

On the campus the robot was placed next to a sidewalk. A crowd was building around
it for the most time. First, the new visitors were just looking. But by passing them a
ball they get involved very fast and easily. For those who want to have more information
about the behavior and the implementation of the game, three members of our group
were happy to answer their questions and showed them the ball tracker on a screen in
real-time.

For the game we recognized a great amount of ball hits, when the trajectory was
towards the intersection of the robot’s workspace. Also children from the age 5 could
take part of the game and managed to throw the ball precise enough to make Doggy hit
it. Children under that age often did not have the power to throw the ball that high
and far (at least 3 m, best is between 6 m and 10 m).

Problems we had on that day, were recognition problems and connection problems.
The USB connection broke several times. A reset handled this problem. Another prob-
lem were trees, because their leaves were sometimes recognized as valid trajectories,
leading to a motion of the robot. In the meantime we had to fix the head, as one person
threw to fast and destroyed the Styrofoam head. We fixed that with tape. Therefore,
we replaced the broken sphere by a new one that was entirely fixed with aluminum tape
inside and outside in a honeycomb structure afterwards.

Overall, we could say that this was a successful test of the hard- and software and
showed that the interior of plexiglass can hold the forces and impacts that happened
during the game. The robot ran for 7 hours. A summarizing video is shown on the
working groups website2.

But, it showed the need of hitting the ball precisely. Most balls were hit back randomly
and delayed the game due to getting the balls back. A play back of the balls would
simplify the setting a lot.

2http://www.informatik.uni-bremen.de/agebv2/downloads/videos/doggyOpenCampusDay.mp4

http://www.informatik.uni-bremen.de/agebv2/downloads/videos/doggyOpenCampusDay.mp4

6.2. Acoustic Orientation 59

6.2. Acoustic Orientation
Playing ball games is the main task of our entertainment robot, therefore it has to be
agile. But for entertainment, it needs more than just the capability to hit balls back to
the audience. The robot must interact with the audience to be an accepted opponent.
One interaction method is a human-like reaction to sound, i. e. turning towards the sound
source.

In [Bartsch 2014] we implemented a sound localization using stereo microphones on
Doggy to react to sound like a human would do, i. e. by turning its view to the sound
source. The localization is based on a frequency learning filter – to limiting the am-
plitudes of frequencies which are heard always – and adaptation to the environmental
noise level. This is important as the robot’s purpose is to provide entertainment at
arbitrary places with groups of people and noisy things happening in the environment.
The approaches are inspired by human behavior. The implementation was tested under
laboratory conditions with specified sounds as well as with an audience to show that the
localization helps a robot to interact with humans.

The direction of the sound source in two-dimensional space can be estimated using a
stereo microphone. A standard algorithm for this is triangulation [Sasaki et al. 2006], but
only if the source is in the far-field, i. e. the distance to the sound source is greater than
the distance d between the microphones – for angle errors less than 5◦, the source should
be at least ten times the distance d. This approximation works for us, as the distance to
throw a ball is at least 3 m. Using the time delay ∆t between the microphones, we are
able to compute the angle between the robot’s x axis and the source, using the speed of
sound c.

α = π

2 − arccos

∆tc

d

(6.1)

We use a cross correlation function (CCF) to detect the time delay between left and
right microphone. For more details see [Bartsch 2014].

The implementation of the sound localization is done on the PC. After a sound is
detected the robot turns towards the estimated angle using the first joint (yaw).

Doggy’s new feature was tested in two different student classes (cf. Fig. 6.2). The
students were only told to attract the robot’s attention by making sounds. They tested
the sounds which were interesting in their mind. The result was filmed from two perspec-
tives, towards the robot and from the robot’s view3. During these experiments, Doggy
regularly turned to the sound source, iff the sound was louder than the environmental
noise. As reference we used our impression, if we would have been turned to that sound.
In most cases Doggy’s motion and our impression were equal. However, speech was a
problem for our detector, in many cases, the robot turned only if a hard vowel was in
the word. The students have been enthusiastic about the robot’s reaction and were also
astonished during the first move. And when the first sound was detectable for Doggy

3http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
schuetheDoggyNoiseLocalization.mp4

http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheDoggyNoiseLocalization.mp4
http://www.informatik.uni-bremen.de/agebv2/downloads/videos/schuetheDoggyNoiseLocalization.mp4

60 Chapter 6. Human-Robot Interaction

Figure 6.2.: Doggy standing in front of his uninformed audience.

and it turns toward that source, we had the attention of the whole class which was the
aim of this work.

7
Conclusion

We started with the question: “Is it possible to define a rebound task for our robot within
a controller?”. We can now answer this question with yes. We showed in Chapter 5
that it is possible in simulation and on the robot. The Task Level Optimal Control
(TLOC) principle works, which uses an optimal controller (LQR), the task is put into
cost functions to give the controller the freedom of how to fulfill this task. The batting
motion has been seen on the robot and compared to the simulation, which led to a good
result. The overall intention of the motion is also met on the robot using the feedback
gains for the whole task precomputed by simulation iterations. It could be shown that
this implementation decides the best way of fulfilling the task – we could say optimally
decides based on the optimality criterion of the controller. Moreover, the soft limitations
we implemented as cost functions lead the controller to know the physical system and
thus it was able to actively use redundancy to fulfill a task. This is nice and elegant.
Torque limits could be met using this strategy, too.

A challenge that this controller brings with it, is the determination of parameters to
describe the task, mostly these are weighting parameters. Finding a set of parameters
that on one hand fulfills the task with highest accuracy, but on the other hand should ful-
fill the soft constraints, is very difficult – or impossible. Finding those parameters might
be handled by an optimization problem, where the goal is to minimize the difference
between desired goal and achieved goal. Moreover, we could say that the task should be
fulfilled with an allowed accuracy and the optimization should find the parameters for
it.

However, if we think of our rebound task, the accuracy needed to fulfill the task needs
to be tested in the future. Moreover, it might be more accurate after implementation of
the nonlinear iteration process. This includes following steps: (1.) Reading the actual
state and time of the microcontroller. (2.) Based on that time we have to predict the
states and commands. (3.) Knowing the computation time (which is deterministic) for

61

62 Chapter 7. Conclusion

the feedback gains and the delay time for transmitting the gains to the microcontroller,
we must transmit only the most current gains which become active at the microcontroller,
i. e. do not transmit feedback gains from the past.

Another idea I had was the redefinition of the task. The task should not be to reach
a desired position with the robot, but to reach a desired position with the ball that
was played. Therefore, the state has to be enhanced by the position and velocity of
the ball, i. e. the ball trajectory dynamics known from physics. This leads to a new
state space with two decoupled dynamics – the robot and ball dynamics. Generally, the
dynamics are decoupled, except for the batting, where both dynamics influence each
other. This is the point where the robot has the ability to change the ball’s trajectory
to meet the desired goal. The desired goal position of the ball would be implemented
as cost function that needs to be minimized. And by defining the impact the head has
on the ball within the costs. This implementation would be more elegant as a global
task definition, because the computation of where to hit the ball and how is put into the
controller and solved in an optimal way. However, one needs to take care about those
balls that can not be hit at all (not intersection with the robot’s workspace). It might
be able to put this into a cost function, too.

In our calibration (Chapter 4) we found two models. One describing the behavior of
the robot without the flexible bearing of the yaw axis and one with the flexible bearing.
Both models were using gyroscopes as link velocity and position estimator which is also
a contribution of our work. We showed that this works by implementing a Kalman filter
on the microcontroller using the model with flexible bearing of the yaw axis included.
The states found fit the measured data well. Especially, we showed a combination of
sensors to estimate link and motor positions and velocities, that has rarely been used
and investigated before. But it turned out that this combination has a high accuracy of
correctly estimate the state. However, the calibrated model we used in the prediction is
not precise enough and should be improved. But how can the model be further improved
to fit better than both of the models identified?

One idea that comes into mind is to split the calibration into several subcalibrations.
E. g. by calibrating the motor parameters first, without knowing the system at all. An-
other idea is to include the stereo camera into this calibration process. If the stereo
camera system is already calibrated, we can accurately measure Cartesian distances of
specific points in the left and right image. If we put a marker on Doggy’s head in such a
way that the camera is able to see this marker, we could measure the link position using
the cameras and compare this to the estimated link position given by the gyroscopes.
This could improve the calibration.

Another idea is to redefine the models given in Chapter 3 which describe the system
denoted in Chapter 2. During the calibration procedure and throughout experiments we
found some behaviors that were not included in our models, i. e. the dynamics. Some of
them have been fixed already before the calibration, e. g. that screws were loosened by
the vibrations leading to a play when the motor changes direction. Or that the tooth
wheels were not tightened fast enough on the shaft, which leads to the same phenomenon.
But there are some things we have not changed and changing these might improve the

63

robot. First of all the bearing of the yaw axis should be replaced by a more stiff bearing
to overcome the flexibility at that point. Which would lead to better measurements.
Another point of improvement is given in the tooth belt of the pitch axis. Here, only
one wheel is used to tighten the tooth belt. Thus, the tooth belt could not be tightened
fast enough and leads to a play. Additionally, there could be elasticity in the links. But,
to implement this into the dynamics would rapidly increasing the state space, which
could hardly be handled. Especially if the system should operate in real time.

Finally, I want to summarize this work again. We have contributed a TLOC for a
ball batting task on an entertainment robot [Schüthe et al. 2014, 2015]. The controller
runs in two stages, one at a frequency of 250 Hz on a microcontroller (linear stage) and
the other at 50 Hz on the PC as a nonlinear stage. Another contribution was made by
the calibration procedure where we use only the encoder data of the motors and the
gyroscopes of the Inertial Measurement Units (IMUs) to estimate the link velocities and
positions [Schüthe et al. 2016]. We enhanced this work by a flexible bearing model and a
Kalman filter that estimates the robot’s states in real time. Based on these models and
the states estimated on the microcontroller, we were able to implement a ball hitting
motion using our TLOC. We showed that this model based controller is able to handle
the task of hitting balls (in principle). This includes a model that is well reflecting the
robotic system.

In my opinion we have successfully build an entertainment robot that can withstand
the forces acting during the bat motion, interacts with the audience – and I hope some
more interactions, like people recognition with cameras, will follow; and is able to play
a ball game which is a demanding task. I think finding the most accurate model takes a
lot of time, since the acrylic glass construction caused unwanted problems. We found a
model that handles most phenomena – not all – and is precise enough to build a Linear
Quadratic Regulator (LQR) and our TLOC algorithm on it. Furthermore, the TLOC
fulfills the desired task on the robot and it looks very dynamic and sporty, more like a
human than a robot. We are more than)satisfied with how the robot’s motion turned
out.

Publicated Work by the Author

Schüthe, Dennis (2015). “Dynamic Rebound Control and Human Robot Interaction of a
Ball Playing Robot”. In: Formal Modeling and Verification of Cyber-Physical Systems.
Ed. by Rolf Drechsler and Ulrich Kühne. Vol. 1. 1st International Summer School
on Methods and Tools for the Design of Digital Systems, Bremen, Germ. Not peer-
reviewed
My share is 100%.
Give an overall discription of the work. Springer Vieweg, pp. 299–301.

Schüthe, Dennis and Frese, Udo (2014). “Task Level Optimal Control of a Simulated Ball
Batting Robot”. In: ICINCO 2014 – 11th International Conference on Informatics in
Control, Automation and Robotics. Ed. by Joaquim Filipe et al. Vol. 2.
My share is 90%.
I implemented the proposed simulation of the Task Level Optimal Controller and did the
experiments. This work was presented by me in Vienna, Austria. SCITEPRESS, pp. 45–
56. doi: 10.5220/0005026100450056.

– (2015). “Optimal Control with State and Command Limits for a Simulated Ball Bat-
ting Task”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE.
My share is 90%.
I implemented the proposed simulation of the Task Level Optimal Controller, added the
limitations of torque and joint angles to the TLOC. Implemented the simulation of ball
hitting tasks. This work was presented by me in Hamburg, Germany., pp. 3988–3994. doi:
10.1109/IROS.2015.7353939.

Schüthe, Dennis, Wenk, Felix, and Frese, Udo (2016). “Dynamics Calibration of a Redun-
dant Flexible Joint Robot based on Gyroscopes and Encoders”. In: 13th International
Conference on Informatics in Control, Automation and Robotics (ICINCO 2016). Ed.
by Oleg Gusikhin, Dimitri Peaucelle, and Kurosh Madani. Vol. 1.
My share is 70%.
The calibration program has been devolped by me using the toolkit SLOM. The calibration
was also done by me. The debugging has been done together with Felix Wenk. The work
was presented by me in Lisbon, Portugal. SCITEPRESS, pp. 335–346. doi: 10.5220/
0005976603350346.

65

http://dx.doi.org/10.5220/0005026100450056
http://dx.doi.org/10.1109/IROS.2015.7353939
http://dx.doi.org/10.5220/0005976603350346
http://dx.doi.org/10.5220/0005976603350346

References

Aboaf, E. W., Atkeson, C. G., and Reinkensmeyer, D. J. (Apr. 1988). “Task-level robot
learning”. In: Robotics and Automation, 1988. Proceedings., 1988 IEEE International
Conference on, 1309–1310 vol.2. doi: 10.1109/ROBOT.1988.12245.

Aboaf, E. W., Drucker, S. M., and Atkeson, C. G. (May 1989). “Task-level robot learning:
juggling a tennis ball more accurately”. In: Robotics and Automation, 1989. Proceed-
ings., 1989 IEEE International Conference on, 1290–1295 vol.3. doi: 10.1109/ROBOT.
1989.100158.

Aertbeliën, E. and Schutter, J. De (Sept. 2014). “eTaSL/eTC: A constraint-based
task specification language and robot controller using expression graphs”. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1540–
1546. doi: 10.1109/IROS.2014.6942760.

Anderson, Brian DO and Moore, John B (2007). Optimal Control: Linear Quadratic
Methods. Courier Corporation.

Andersson, R. L. (1986). “Living in a Dynamic World”. In: Proceedings of 1986 ACM Fall
Joint Computer Conference. ACM ’86. Dallas, Texas, USA: IEEE Computer Society
Press, pp. 97–104.

– (Feb. 1989). “Aggressive trajectory generator for a robot ping-pong player”. In: IEEE
Control Systems Magazine 9.2, pp. 15–21. doi: 10.1109/37.16766.

Argall, Brenna et al. (2006). “The First Segway Soccer Experience: Towards Peer-to-peer
Human-robot Teams”. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference
on Human-robot Interaction. HRI ’06. Salt Lake City, Utah, USA: ACM, pp. 321–322.
doi: 10.1145/1121241.1121296.

Bartsch, Michel (2014). „Sound of Interest. Ein Ballspielroboter hört stereo“. Magister-
arb. University Bremen.

Bäuml, B., Wimböck, T., and Hirzinger, G. (Oct. 2010). “Kinematically optimal catching
a flying ball with a hand-arm-system”. In: Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pp. 2592–2599. doi: 10.1109/IROS.
2010.5651175.

Bäuml, B. et al. (May 2011). “Catching flying balls and preparing coffee: Humanoid
Rollin’Justin performs dynamic and sensitive tasks”. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 3443–3444. doi: 10 . 1109 /
ICRA.2011.5980073.

Behnke, Sven, Müller, Jürgen, and Schreiber, Michael (2006). “RoboCup 2005: Robot
Soccer World Cup IX”. In: ed. by Ansgar Bredenfeld et al. Berlin, Heidelberg: Springer

67

http://dx.doi.org/10.1109/ROBOT.1988.12245
http://dx.doi.org/10.1109/ROBOT.1989.100158
http://dx.doi.org/10.1109/ROBOT.1989.100158
http://dx.doi.org/10.1109/IROS.2014.6942760
http://dx.doi.org/10.1109/37.16766
http://dx.doi.org/10.1145/1121241.1121296
http://dx.doi.org/10.1109/IROS.2010.5651175
http://dx.doi.org/10.1109/IROS.2010.5651175
http://dx.doi.org/10.1109/ICRA.2011.5980073
http://dx.doi.org/10.1109/ICRA.2011.5980073

68 References

Berlin Heidelberg. Chap. Playing Soccer with RoboSapien, pp. 36–48. doi: 10.1007/
11780519_4.

Birbach, O. (2012). “Tracking and Calibration for a Ball Catching Humanoid Robot”.
doctoral thesis. Universität Bremen; www.uni-bremen.de.

Chen, W. and Tomizuka, M. (Apr. 2014). “Direct Joint Space State Estimation in Robots
With Multiple Elastic Joints”. In: IEEE/ASME Transactions on Mechatronics 19.2,
pp. 697–706. doi: 10.1109/TMECH.2013.2255308.

Cheng, P. and Oelmann, B. (Feb. 2010). “Joint-Angle Measurement Using Accelerom-
eters and Gyroscopes — A Survey”. In: IEEE Transactions on Instrumentation and
Measurement 59.2, pp. 404–414. doi: 10.1109/TIM.2009.2024367.

Compressorhead (Aug. 23, 2016). url: https://compressorhead.rocks/ (visited on
08/23/2016).

Craig, John J. (2005). Introduction to robotics: mechanics and control. 3. ed., interna-
tional ed. Pearson education international. Upper Saddle River, NJ [u.a.]: Pearson,
Prentice Hall.

De Luca, Alessandro and Book, Wayne (2008). “Robots with Flexible Elements”. In:
Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama Khatib. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 287–319. doi: 10.1007/978- 3- 540-
30301-5_14.

De Schutter, Joris et al. (2007). “Constraint-based Task Specification and Esti-
mation for Sensor-Based Robot Systems in the Presence of Geometric Uncer-
tainty”. In: The International Journal of Robotics Research 26.5, pp. 433–455. doi:
10.1177/027836490707809107.

Decre, W. et al. (May 2009). “Extending iTaSC to support inequality constraints and
non-instantaneous task specification”. In: Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on, pp. 964–971. doi: 10.1109/ROBOT.2009.5152477.

Deguchi, K., Sakurai, H., and Ushida, S. (Sept. 2008). “A goal oriented just-in-time visual
servoing for ball catching robot arm”. In: 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3034–3039. doi: 10.1109/IROS.2008.4650615.

Erdmann, Wlodzimierz S (2013). “Problems of sport biomechanics and robotics”. In:
International Journal of Advanced Robotic Systems 10.

Featherstone, Roy and Orin, David E. (2008). “Dynamics”. In: ed. by Bruno Siciliano
and Oussama Khatib. Springer Berlin Heidelberg, pp. 35–65.

Geppert, Linda (2004). “Qrio, the robot that could”. In: Ieee Spectrum 41.5, pp. 34–37.
Goebel, R. (May 2005). “Stabilizing a linear system with Saturation Through optimal

control”. In: IEEE Transactions on Automatic Control 50.5, pp. 650–655.
Goretkin, G. et al. (May 2013). “Optimal sampling-based planning for linear-quadratic

kinodynamic systems”. In: Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pp. 2429–2436. doi: 10.1109/ICRA.2013.6630907.

Grotjahn, M., Daemi, M., and Heimann, B. (2001). “Friction and rigid body identifica-
tion of robot dynamics”. In: International Journal of Solids and Structures 38.10–13,
pp. 1889–1902. doi: http://dx.doi.org/10.1016/S0020-7683(00)00141-4.

http://dx.doi.org/10.1007/11780519_4
http://dx.doi.org/10.1007/11780519_4
http://dx.doi.org/10.1109/TMECH.2013.2255308
http://dx.doi.org/10.1109/TIM.2009.2024367
https://compressorhead.rocks/
http://dx.doi.org/10.1007/978-3-540-30301-5_14
http://dx.doi.org/10.1007/978-3-540-30301-5_14
http://dx.doi.org/10.1177/027836490707809107
http://dx.doi.org/10.1109/ROBOT.2009.5152477
http://dx.doi.org/10.1109/IROS.2008.4650615
http://dx.doi.org/10.1109/ICRA.2013.6630907
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(00)00141-4

References 69

Hammer, Tobias (Sep. 2011). „Aufbau, Ansteuerung und Simulation eines interaktiven
Ballspielroboters“. Magisterarb. Universität Bremen.

Hegyi, Andreas, De Schutter, Bart, and Hellendoorn, Hans (June 2005). “Model predic-
tive control for optimal coordination of ramp metering and variable speed limits”. en.
In: Transportation Research Part C: Emerging Technologies 13.3, pp. 185–209.

Hertzberg, Christoph, Wagner, René, and Frese, Udo (2012). “Tutorial on Quick and
Easy Model Fitting Using the SLoM Framework”. In: Spatial Cognition VIII. Ed. by
Cyrill Stachniss, Kerstin Schill, and David Uttal. Vol. 7463. Lecture Notes in Computer
Science. Springer-Verlag Berlin Heidelberg, pp. 128–142.

Hoshiya, Masaru and Saito, Etsuro (1984). “Structural Identification by Extended
Kalman Filter”. In: Journal of Engineering Mechanics 110.12, pp. 1757–1770. doi:
10.1061/(ASCE)0733-9399(1984)110:12(1757).

Hu, Jwu-Sheng et al. (2010). “A ball-throwing robot with visual feedback”. In: Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 2511–
2512. doi: 10.1109/IROS.2010.5649335.

Ishida, T. (Oct. 2004). “Development of a small biped entertainment robot QRIO”.
In: Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium
Micro-Nanomechatronics for Information-Based Society, 2004. Proceedings of the 2004
International Symposium on, pp. 23–28. doi: 10.1109/MHS.2004.1421265.

Jeon, Soo, Tomizuka, Masayoshi, and Katou, Tetsuaki (2009). “Kinematic Kalman filter
(KKF) for robot end-effector sensing”. In: Journal of dynamic systems, measurement,
and control 131.2, p. 021010.

Johansen, Tor A., Petersen, Idar, and Slupphaug, Olav (2002). “Explicit sub-optimal
linear quadratic regulation with state and input constraints”. In: Automatica 38.7,
pp. 1099–1111.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction prob-
lems”. In: Journal of basic Engineering 82.1, pp. 35–45.

KG, 4attention GmbH & Co. (Aug. 23, 2016). Robokeeper website. url: http : / /
robokeeper.com/ (visited on 08/23/2016).

Kober, J., Glisson, M., and Mistry, M. (Nov. 2012a). “Playing catch and juggling with
a humanoid robot”. In: 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012), pp. 875–881. doi: 10.1109/HUMANOIDS.2012.6651623.

– (Nov. 2012b). Playing catch and juggling with a humanoid robot. Ed. by DisneyRe-
searchHub. url: https://youtu.be/83eGcht7IiI (visited on 08/23/2016).

KUKA (May 2016). KUKA robots won the hearts of Eurovision audiences. url: http://
www.kuka-robotics.com/en/pressevents/news/NN_20160525_KUKA_Eurovisio.
htm (visited on 08/23/2016).

Kurze, Matthias et al. (2008). “Modellbasierte Regelung von Robotern mit elastischen
Gelenken ohne abtriebsseitige Sensorik”. PhD thesis. Technische Universität München.

Laue, Tim et al. (2013). “An Entertainment Robot for Playing Interactive Ball Games”.
In: RoboCup 2013: Robot Soccer World Cup XVII. Lecture Notes in Artificial Intelli-
gence. to appear. Springer.

http://dx.doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)
http://dx.doi.org/10.1109/IROS.2010.5649335
http://dx.doi.org/10.1109/MHS.2004.1421265
http://robokeeper.com/
http://robokeeper.com/
http://dx.doi.org/10.1109/HUMANOIDS.2012.6651623
https://youtu.be/83eGcht7IiI
http://www.kuka-robotics.com/en/pressevents/news/NN_20160525_KUKA_Eurovisio.htm
http://www.kuka-robotics.com/en/pressevents/news/NN_20160525_KUKA_Eurovisio.htm
http://www.kuka-robotics.com/en/pressevents/news/NN_20160525_KUKA_Eurovisio.htm

70 References

Lenz, C. et al. (Oct. 2009). “Constraint task-based control in industrial settings”. In: 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3058–
3063. doi: 10.1109/IROS.2009.5354631.

Li, W. and Todorov, E. (2007). “Iterative linearization methods for approximately opti-
mal control and estimation of non-linear stochastic system”. In: International Journal
of Control 80.9, pp. 1439–1453. doi: 10.1080/00207170701364913.

Li, Weiwei and Todorov, Emanuel (2004). “Iterative linear quadratic regulator design
for nonlinear biological movement systems.” In: ICINCO (1), pp. 222–229.

Lofaro, D. M., Sun, C., and Oh, P. (Nov. 2012). “Humanoid pitching at a Major League
Baseball game: Challenges, approach, implementation and lessons learned”. In: 2012
12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012),
pp. 423–428. doi: 10.1109/HUMANOIDS.2012.6651554.

Luca, A. De, Schroder, D., and Thummel, M. (Apr. 2007). “An Acceleration-based State
Observer for Robot Manipulators with Elastic Joints”. In: Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 3817–3823. doi: 10.1109/
ROBOT.2007.364064.

Mare, José B. and Doná, José A. De (2007). “Solution of the input-constrained LQR
problem using dynamic programming”. In: Systems & Control Letters 56.5, pp. 342–
348.

Matsushima, M. et al. (Aug. 2005). “A Learning Approach to Robotic Table Tennis”. In:
IEEE Transactions on Robotics 21.4, pp. 767–771. doi: 10.1109/TRO.2005.844689.

Moberg, Stig (2010). “Modeling and Control of Flexible Manipulators”. PhD thesis.
Linköping University, Automatic Control, p. 101.

Mülling, Katharina et al. (2013). “Learning to select and generalize striking movements in
robot table tennis”. In: The International Journal of Robotics Research 32.3, pp. 263–
279.

Nakai, H. et al. (1998). “A volleyball playing robot”. In: Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference on. Vol. 2, 1083–1089 vol.2.
doi: 10.1109/ROBOT.1998.677234.

Narendra, K. S. and Parthasarathy, K. (Mar. 1990). “Identification and control of dy-
namical systems using neural networks”. In: IEEE Transactions on Neural Networks
1.1, pp. 4–27. doi: 10.1109/72.80202.

Olsson, H. et al. (1998). “Friction Models and Friction Compensation”. In: European
Journal of Control 4.3, pp. 176–195. doi: http://dx.doi.org/10.1016/S0947-
3580(98)70113-X.

Perez, A. et al. (May 2012). “LQR-RRT*: Optimal sampling-based motion planning with
automatically derived extension heuristics”. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on, pp. 2537–2542. doi: 10.1109/ICRA.2012.
6225177.

Pham, M. T., Gautier, M., and Poignet, P. (2001). “Identification of joint stiffness with
bandpass filtering”. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on. Vol. 3, 2867–2872 vol.3. doi: 10.1109/ROBOT.2001.
933056.

http://dx.doi.org/10.1109/IROS.2009.5354631
http://dx.doi.org/10.1080/00207170701364913
http://dx.doi.org/10.1109/HUMANOIDS.2012.6651554
http://dx.doi.org/10.1109/ROBOT.2007.364064
http://dx.doi.org/10.1109/ROBOT.2007.364064
http://dx.doi.org/10.1109/TRO.2005.844689
http://dx.doi.org/10.1109/ROBOT.1998.677234
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/http://dx.doi.org/10.1016/S0947-3580(98)70113-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0947-3580(98)70113-X
http://dx.doi.org/10.1109/ICRA.2012.6225177
http://dx.doi.org/10.1109/ICRA.2012.6225177
http://dx.doi.org/10.1109/ROBOT.2001.933056
http://dx.doi.org/10.1109/ROBOT.2001.933056

References 71

Pransky, Joanne (2001). “AIBO – the No. 1 selling service robot”. In: Industrial Robot:
An International Journal 28.1, pp. 24–26. doi: 10.1108/01439910110380406.

Press, William H et al. (2002). Numerical Recipes in C++: The Art of Scientific Com-
puting (2nd edn). Cambridge UP.

Quigley, M. et al. (Oct. 2010). “Low-cost accelerometers for robotic manipulator per-
ception”. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pp. 6168–6174. doi: 10.1109/IROS.2010.5649804.

Reist, P. and Tedrake, R. (2010). “Simulation-based LQR-trees with input and state con-
straints”. In: Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pp. 5504–5510. doi: 10.1109/ROBOT.2010.5509893.

Riley, Marcia and Atkeson, Christopher G. (2002). “Robot Catching: Towards Engaging
Human-Humanoid Interaction”. In: Autonomous Robots 12.1, pp. 119–128. doi: 10.
1023/A:1013223328496.

Sasaki, Yoko, Kagami, Satoshi, and Mizoguchi, Hiroshi (2006). “Multiple sound source
mapping for a mobile robot by self-motion triangulation”. In: Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, pp. 380–385.

Schraft, Rolf Dieter et al. (2001). “A mobile robot platform for assistance and en-
tertainment”. In: Industrial Robot: An International Journal 28.1, pp. 29–35. doi:
10.1108/01439910110380424.

Scokaert, P.O.M. and Rawlings, J.B. (Aug. 1998). “Constrained linear quadratic regu-
lation”. In: Automatic Control, IEEE Transactions on 43.8, pp. 1163–1169.

Senoo, T., Namiki, A., and Ishikawa, M. (2006). “Ball control in high-speed batting
motion using hybrid trajectory generator”. In: Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, pp. 1762–1767. doi: 10.
1109/ROBOT.2006.1641961.

Serra, Diana et al. (2016). “An Optimal Trajectory Planner for a Robotic Batting Task:
The Table Tennis Example”. In: 13th International Conference on Informatics in Con-
trol, Automation and Robotics (ICINCO 2016). Ed. by Oleg Gusikhin, Dimitri Peau-
celle, and Kurosh Madani. Vol. 2. SCITEPRESS, pp. 90–101.

Silva, R., Melo, F. S., and Veloso, M. (Sept. 2015). “Towards table tennis with a quadro-
tor autonomous learning robot and onboard vision”. In: Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pp. 649–655. doi: 10.1109/
IROS.2015.7353441.

Slotine, Jean-Jacques E. and Li, Weiping (1987). “On the Adaptive Control of Robot
Manipulators”. In: The International Journal of Robotics Research 6.3, pp. 49–59.
doi: 10.1177/027836498700600303.

Somani, N. et al. (Sept. 2015). “Constraint-based task programming with CAD se-
mantics: From intuitive specification to real-time control”. In: Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 2854–2859. doi:
10.1109/IROS.2015.7353770.

Staufer, Peter and Gattringer, Hubert (2012). “State estimation on flexible robots using
accelerometers and angular rate sensors”. In: Mechatronics 22.8, pp. 1043–1049. doi:
http://dx.doi.org/10.1016/j.mechatronics.2012.08.009.

http://dx.doi.org/10.1108/01439910110380406
http://dx.doi.org/10.1109/IROS.2010.5649804
http://dx.doi.org/10.1109/ROBOT.2010.5509893
http://dx.doi.org/10.1023/A:1013223328496
http://dx.doi.org/10.1023/A:1013223328496
http://dx.doi.org/10.1108/01439910110380424
http://dx.doi.org/10.1109/ROBOT.2006.1641961
http://dx.doi.org/10.1109/ROBOT.2006.1641961
http://dx.doi.org/10.1109/IROS.2015.7353441
http://dx.doi.org/10.1109/IROS.2015.7353441
http://dx.doi.org/10.1177/027836498700600303
http://dx.doi.org/10.1109/IROS.2015.7353770
http://dx.doi.org/http://dx.doi.org/10.1016/j.mechatronics.2012.08.009

72 References

Tilden, Mark W (2004). “Neuromorphic robot humanoid to step into the market”. In:
The Neuromorphic Engineer 1.1, p. 12.

Vukosavic, Slobodan N. (2013). Electrical machines. Power Electronics and Power Sys-
tems. New York, NY [u.a.]: Springer.

Vuong, Ngoc Dung and Ang Jr, Marcelo H (2009). “Dynamic model identification for
industrial robots”. In: Acta Polytechnica Hungarica 6.5, pp. 51–68.

Waldron, Kenneth and Schmiedeler, James (2008). “Kinematics”. In: ed. by Bruno Si-
ciliano and Oussama Khatib. Springer Berlin Heidelberg, pp. 9–33.

Wan, E. A. and Merwe, R. Van Der (2000). “The unscented Kalman filter for nonlinear
estimation”. In: Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153–158. doi: 10.1109/ASSPCC.
2000.882463.

Weigel, Thilo and Nebel, Bernhard (2003). “RoboCup 2002: Robot Soccer World Cup
VI”. In: ed. by Gal A. Kaminka, Pedro U. Lima, and Raúl Rojas. Berlin, Heidel-
berg: Springer Berlin Heidelberg. Chap. KiRo – An Autonomous Table Soccer Player,
pp. 384–392. doi: 10.1007/978-3-540-45135-8_34.

Wu, Jun, Wang, Jinsong, and You, Zheng (2010). “An overview of dynamic parameter
identification of robots”. In: Robotics and Computer-Integrated Manufacturing 26.5,
pp. 414–419. doi: http://dx.doi.org/10.1016/j.rcim.2010.03.013.

Xinjilefu, X., Feng, S., and Atkeson, C. G. (May 2016). “A distributed MEMS gyro
network for joint velocity estimation”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1879–1884. doi: 10.1109/ICRA.2016.7487334.

Yamaguchi, N. and Mizoguchi, H. (July 2003). “Robot vision to recognize both face and
object for human-robot ball playing”. In: Advanced Intelligent Mechatronics, 2003.
AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on. Vol. 2, 999–
1004 vol.2. doi: 10.1109/AIM.2003.1225478.

Yamakawa, Takeshi et al. (1989). “Applications of Fuzzy Logic Control to Industry
Fuzzy controlled robot arm playing two-dimensional ping-pong game”. In: Fuzzy Sets
and Systems 32.2, pp. 149–159. doi: http://dx.doi.org/10.1016/0165-0114(89)
90251-0.

Yang, P. et al. (Dec. 2010). “Control system design for a 5-DOF table tennis robot”. In:
Control Automation Robotics Vision (ICARCV), 2010 11th International Conference
on, pp. 1731–1735. doi: 10.1109/ICARCV.2010.5707252.

Zeilinger, M.N., Morari, M., and Jones, C.N. (May 2014). “Soft Constrained Model
Predictive Control With Robust Stability Guarantees”. In: Automatic Control, IEEE
Transactions on 59.5, pp. 1190–1202. doi: 10.1109/TAC.2014.2304371.

ZMachines (Jan. 2015). The Official Authentic Page of Z Machines : A Robotic Rock
Band. url: https://www.facebook.com/ZMachines/info/?entry_point=page_
nav_about_item&tab=page_info (visited on 08/23/2016).

http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1007/978-3-540-45135-8_34
http://dx.doi.org/http://dx.doi.org/10.1016/j.rcim.2010.03.013
http://dx.doi.org/10.1109/ICRA.2016.7487334
http://dx.doi.org/10.1109/AIM.2003.1225478
http://dx.doi.org/http://dx.doi.org/10.1016/0165-0114(89)90251-0
http://dx.doi.org/http://dx.doi.org/10.1016/0165-0114(89)90251-0
http://dx.doi.org/10.1109/ICARCV.2010.5707252
http://dx.doi.org/10.1109/TAC.2014.2304371
https://www.facebook.com/ZMachines/info/?entry_point=page_nav_about_item&tab=page_info
https://www.facebook.com/ZMachines/info/?entry_point=page_nav_about_item&tab=page_info

A
Rotations and Transformations

A.1. Transformation Matrices

A transformation is given by

to
fromT =

to

fromR to
fromt

0 1

. (A.1)

The translation is defined by the vector to
fromt and the rotation is to

fromR. A position vector
iv is made affine by adding a fourth row with value one such that iṽ =

vx vy vz 1

T

to transform this vector to a new system. For more details the book of Craig (2005) is
recommended on how to define transformations.

We start at the EOF coordinate frame and move iteratively to the world coordinate
system (WCS):

w
EOFT = J1

wT −1 J1′

J1T
−1 J2

J1T
−1 J2′

J2T
−1 J3

J2T
−1 J3′

J3T
−1 EOF

J3T
−1 (A.2)

= w
J1T

J1
J1′T J1

J2T
J2

J2′T J2
J3T

J3
J3′T J3

EOFT . (A.3)

The −1 denotes the inverse matrix. With

w
J1T =

1 0 0 0 mm
0 1 0 0 mm
0 0 1 779.8 mm
0 0 0 1

 , (A.4)

73

74 Appendix A. Rotations and Transformations

J1
J2T =

1 0 0 0 mm
0 0 1 −171.4 mm
0 −1 0 233.4 mm
0 0 0 1

 , (A.5)

J2
J3T =

0 0 −1 54.9 mm
0 1 0 0 mm
1 0 0 171.4 mm
0 0 0 1

 , (A.6)

J3
EOFT =

0 1 0 0 mm
0 0 −1 −1010.069 mm

−1 0 0 54.9 mm
0 0 0 1

 . (A.7)

The i′

iT are the joints rotations as defined over their z-axis,

i′

iT =

cos(qi) sin(qi) 0 0
− sin(qi) cos(qi) 0 0

0 0 1 0
0 0 0 1

 . (A.8)

Where i denotes the coordinate frame of joint i before and after i′ the rotation of angle
qi. The inverse of this rotation equals its transpose, because of the orthogonality.

Plugging the transformations into Equation A.3 results to the kinematics

f̃kin(q) = w
EOFT

0
0
0

 =

(c1s2c3 − s1s3)1010.069 mm
(s1s2c3 + c1s3)1010.069 mm

1010.069 mm c2c3 + 1013.2 mm
1

 . (A.9)

A.2. Modified Transformations

Inserting two joints for the bearing leads to a new transformation from WCS to end-
effector (EOF), where only the transformation w

J1R changes.

w
JB1T =

1 0 0 0 mm
0 0 1 0 mm
0 −1 0 779.8 mm
0 0 0 1

 (A.10)

A.3. Rotations for the Extended Calibration Model 75

JB1
JB2T =

0 0 −1 0 mm
0 1 0 0 mm
1 0 0 0 mm
0 0 0 1

 (A.11)

JB2
J1T =

0 1 0 0 mm
0 0 −1 0 mm

−1 0 0 0 mm
0 0 0 1

 (A.12)

(A.13)

A.3. Rotations for the Extended Calibration Model

J1
q̇R =

0 0 0
0 0 0
1 0 0

 (A.14)

J1
q̇fb

R =

s1cb2 −c1
c1cb2 s1
sb2 0

 (A.15)

EOF
q̇R =

−s2 0 −1
−c2s3 c3 0
c2c3 s3 0

 (A.16)

EOF
q̇fb

R =

cb2s1c2 − sb2s2 −c1c2
cb2c1c3 − cb2s1s2s3 − sb2c2s3 s1c3 + c1s2s3
cb2c1s3 + cb2s1s2c3 − sb2c2c3 s1s3 − c1s2c3

 (A.17)

	1 Introduction
	1.1 Contributions
	1.2 Outline
	1.3 State of the Art

	2 The Robotic System
	2.1 Mechanical Structure and Sensor Integration
	2.2 Elastic Joints
	2.3 Motors
	2.3.1 Current Limitation
	2.3.2 Motor Braking – Voltage limitation

	2.4 IMU for Link Angle Estimation
	2.5 Camera System
	2.6 Electronic System

	3 Robotic Model
	3.1 Kinematics
	3.2 Dynamics
	3.2.1 Motor Torque
	3.2.2 Motor Friction

	3.3 Extension for Flexible Bearing

	4 System Calibration and State Estimation
	4.1 Related Work
	4.1.1 Calibration
	4.1.2 State Estimation

	4.2 The Calibration Procedure
	4.3 Extended Calibration Model
	4.4 State Estimation
	4.4.1 Kalman filter evaluation
	4.4.2 Elastic joint behavior in ball batting motions

	4.5 Summary

	5 Task Level Optimal Control
	5.1 Related Work
	5.2 Framework
	5.3 The Principle
	5.4 Ball Batting Task Implementation
	5.4.1 Task costs
	5.4.2 Soft Constraints
	5.4.3 Terminal costs

	5.5 Experiments
	5.5.1 TLOC with calibrated model
	5.5.2 Deviation between plant and model
	5.5.3 Flexible bearing included
	5.5.4 Experiments on the Robotic System

	5.6 Summary

	6 Human-Robot Interaction
	6.1 Ball Playing Robot
	6.2 Acoustic Orientation

	7 Conclusion
	Publicated Work by the Author
	References
	A Rotations and Transformations
	A.1 Transformation Matrices
	A.2 Modified Transformations
	A.3 Rotations for the Extended Calibration Model

