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ABSTRACT 

The need for autonomous systems designed to play games, both strategy-based and 

physical, comes from the quest to model human behaviour under tough and 

competitive environments that require human skill at its best. In the last two decades, 

and especially after the 1996 defeat of the world chess champion by a chess-playing 

computer, physical games have been receiving greater attention. Robocup TM, i.e. 

robotic football, is a well-known example, with the participation of thousands of 

researchers all over the world. The robots created to play snooker/poollbilliards are 

placed in this context. Snooker, as well as being a game of strategy, also requires 

accurate physical manipulation skills from the player, and these two aspects qualify 

snooker as a potential game for autonomous system development research. Although 

research into playing strategy in snooker has made considerable progress using 

various artificial intelligence methods, the physical manipulation part of the game is 

not fully addressed by the robots created so far. This thesis looks at the different ball 

manipulation options snooker players use, like the shots that impart spin to the ball in 

order to accurately position the balls on the table, by trying to predict the ball 

trajectories under the action of various dynamic phenomena, such as impacts. 

A 3-degree of freedom robot, which can manipulate the snooker cue on a par with 

humans, at high velocities, using a servomotor, and position the snooker cue on the 

ball accurately with the help of a stepper drive, is designed and fabricated. Using a 

single, stationary, overhead camera and image processing techniques, the balls' 

movements on ·the snooker table are tracked to 1mm spatial accuracy. The tracking 

results are used to determine various parameters, like friction coefficients and 

coefficients of restitution, involved in the ball dynamics. Some efforts on determining 

ball spin, over a limited area, by tracking a circular pattern put on the ball's surface, 

are also presented. A thin-film force sensor has also been installed in the snooker cue, 

close to its tip, and the force measurements are used in conjunction with the camera 

tracking to arrive at some conclusions regarding the cueing dynamics. Moreover, the 

friction during the collision between two snooker balls and that between a ball and 

cushion are theoretically analysed using the principles of impact mechanics. Contrary 

to previous works, no constraints are placed on the direction of slip between bodies 

during impact. Differential equations describing the ball motion during impact are 



obtained, and then solved by the use of numerical algorithms to obtain solutions for 

the post-impact ball trajectories. Finally, the problem of ball positioning in snooker is 

introduced. The close relationship between the problem and a specialised robotic 

manipulation domain called nonprehensile manipulation, which is concerned with the 

positioning of objects without grasping them, is established. An artificial neural 

network-based model is developed for the dynamic interaction between the cue and 

the cue ball during cueing. A forward dynamics model for the ball motion is put 

forward by combining the results obtained by the camera-based tracking and the 

numerical and empirical analyses of various collisions, as mentioned earlier. Given 

the desired final ball locations on the table, optimisation is chosen as the proposed 

solution for the ball positioning by minimising the error distances on the table in order 

to obtain the required control parameters of the robot. Genetic Algorithms are used for 

this derivative-free optimisation. Experiments performed using the robot, in a 5 ft x 

6ft area of the table, indicate that the optimal solution for the robot parameters are 

able to position the cue ball to an accuracy of 100-250mm and give an object ball 

potting accuracy of over 90%. 

Keywords: game-playing robots, snooker robots, billiards robots, non-prehensile 

manipulation, impulsive manipulation, ball-tracking, spin-tracking, ball collision 

mechanics, ball trajectories, trajectory optimisation. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

1.1.1 Why Game-Playing Robots? 

Games have always been of keen interest for the science community; numerous 

examples can be quoted. One early work that is also of particular interest to this 

thesis, written in the 18th century by the famous French scientist Coriolis, is a detailed 

treatise about the physics involved with billiards [Nadler 2005]. Thus it is not 

surprising that, when engineering research started focussing on creating autonomous. 

systems, games became an obvious subject for study. In fact, developing strategies for 

board games (generally referred to as 'game playing') was one of the very first tasks 

undertaken in Artificial Intelligence (AI) [Russell and Norvig 2005]. 

Games present very tough,. competitive environments; hence, the intended 

autonomous game-playing systems have to perform well under such difficult 

circumstances, and this aspect sets a truly challenging research goal. Moreover, the 

games also present researchers with a real-world environment to tackle. Thus, the 

solutions developed to overcome the problems in game playing can possibly be 

translated directly into the other environments that humans deal with, for example an 

industrial situation. What is more, the robots/systems created to play games currently 

receive wide media attention. They have thereby become a channel through which the 

research community interacts with the general public. 

Games such as chess [Campbell et al. 2002], checkers [Foge\ and ChellapiIIa 2002], 

backgammon, Go, Othello, poker and bridge have been researched since the inception 

of AI in the early 1950s. Most of these are board games that purely challenge the 

human intellect. Thus, the line of research on these games is about strategy, planning 

and creating novel techniques that bring forth better game engines. The game 
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environment is essentially the software where the state of the game at any given time 

is stored. Most importantly, in the case of strategy games, the artificial system need 

not have any physical elements. Four decades of research on chess and on AI in 

general culminated in the victory of IBM's 'Deep Blue' over the· World Chess 

Champion, Garry Kasparov in 1997. 

In the last two decades, the focus has been shifting more toward the games that 

require a physical engagement with an opponent, the main reason being the 

availability of increasingly reliable and cheap hardware solutions. The ever-improving 

hardware capabilities of the sensors, actuators and computers along with the arrival of 

soft computing paradigms, such as neuro-fuzzy modelling, that perform better under 

uncertainties, have made the research into the physical game domains more feasible. 

All these factors have lead to the development of a number of well-performing, game­

playing robots. 

The game-playing robots have given rich insights into disciplines such as computer 

vision, controls, machine intelligence and machine learning which have lead to the 

development of a whole range of new theories and technologies. Currently, 

RoboCup ™ (The Robot World Cup Initiative) gets extensive attention, with hundreds 

ofresearchers participating from all over the world; RoboCup ™ has currently chosen 

soccer as its standard task [Asada et al. 1999]. To cite an example, Candea et at. 

[2001] state that RoboCup ™ is spearheading the research on cooperative-agent 

modelling, a general AI research topic. Research into game-playing systems develops 

solutions that transcend the domain of a particular game and thus makes the 

development of game playing systems very valuable. 

1.1.2 A Brie/Overview a/Game Playing Robots/Systems 

In the mid-late 1980s, a robot was developed in the AT &T Bell Labs to play table 

tennis (ping-pong) [Andersson 1989]. The system was equipped with two cameras to 

track the 3-D motion of the ball and a racket that was connected to a robot arm 

through an elongated rod. From 1985-1988, a system called the Snooker Machine, a 

robotic system to play snooker, was built at Bristol University, UK, and, according to 
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Ho et af. (2007), this had also received BBC televised coverage by 1988. However, 

other sports domains did not receive any attention in this regard in the 80's or, at least, 

there were no major developments reported during this time. 

In the early 1990s, robotic football research started to gain momentum following a 

paper from Prof. Alan Mackworth of the University of British Columbia in 1993, 

where the scope ofthis research was pointed out for the first time [Asada et al. 1999 [. 

Around the same time, research papers on RoboCup ™ and on robots to play other 

games, started to appear. Since then, the research and development of game-playing 

robotic systems appears to be on the increase. Numerous publications on gaming 

robots are coming out each year, and a few dedicated journals/conferences in this 

domain have arrived due to the increased volume of pUblications. For example, the 

IEEE Symposium on Computational Intelligence and Games is a conference where 

the researchers on physical/strategy-based game playing systems (except robotic 

football) present their research annually. 

A list of the current systems is exhaustive. There appears to be some form of sports­

robot-related research carried out within every research group on 

robotics/mechatronics in most universities. Some examples of the systems created to 

play games, apart from RoboCup TM, are, table tennis [Matsushima et al. 2005), air­

hockey [Park 2001), yo-yo [Jin and Zacksenhouse 2004, Hashimoto and 

Noritsugu 1996), golf [Ming and Kajitani 2003), bounce juggling [Ronsse et al. 

2006] and batting [Senoo et al. 2004]. 

1.1.3 The Game a/Snooker: An Overview 

Snooker comes under the category of games collectively known as billiards that 

include pool (there are variations like 8-ball and 9-ball) as well as carrom. These 

games are collectively known as cue sports, where a stick (called a cue) is used to 

manipulate spherical balls on a table with pockets. The player uses the cue stick to 

strike a designated ball, called the cue ball, setting it in motion (this process is known 

as cueing). The cue ball is struck in such a manner as to collide with the other balls on 

the table (called the objects balls) either to pocket them in one of the six pockets or to 
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position them at a desired spot on the table. The objective of the game is to pocket all 

the object balls, except the cue ball, in a specific order. Here, it is also interesting to 

note that snooker is a game traditionally used in physics to illustrate the frictional 

rolling motion of spherical particles on a flat surface and the collisions between 

spherical bodies. 

Top end 
Baulk end/ 
Bottom end 

White- Cue ball, R eds- 1 point each, Yellow-2 points, Green- 3, 
Brown- 4, BIue- 5, Pink- 6, Black- 7. 

Fig. 1.1. Snooker table with initial ball positions - top view 

At the start of the game of snooker, the balls are arranged as shown in Figure 1.1. The 

cue ball is placed within the half circle at the baulk end and a shot is taken (called the 

break shot). A player has to pot a red ball followed by any other colour ball, the cue 

ball is played from wherever it ends up after a shot, and the player can continue to do 

so until a ball fails to be potted, and the points are awarded as given in Figure 1.1. The 

potted colour ball is put back on the table in its designated initial position as shown in 

Figure 1.1. When a player fails to pocket a ball the turn passes on to the other player. 

When all the reds on the table have been pocketed the players then start to pot the 

colour balls in the order of increasing value. For a given arrangement of the balls as 

shown above, a frame is said to be complete when the black ball is potted and the 

player that has the most points in that frame wins the frame. A match can have a 

number of frames, and the winner is the one who wins the most number of frames. 

For a detailed description of the rules, refer to the official website of the World 

Professional Billiards & Snooker Association (WPBSA) at www.worldsnooker.com. 
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Snooker is fast becoming a popular sport, and globally there has been a resurgence of 

interest in this game in the last decade with the game reaching the Far East. 

"In the Far East, the snooker boom is developing at pace. The China Open 

staged in Beijing in 2005 was enthusiastically received by Chinese fans. A 

staggering 110 million people watched live on television as Ding Junhui beat 

Stephen Hendry in the final to elevate himself to the status of national hero. Last 

year, in 2007, the BBC generated 138 hours of snooker coverage, reaching over 

27 million viewers in the UK (45% of the population), while Eurosport® 

provided 144 hours, reaching 57 million people" [WPBSA-World Professional 

Billiards & Snooker Association, from www.worldsnooker.com. accessed on 

28.05.2008). 

The WPBSA also says that in the UK, snooker is played by 4 million adults. There are 

more than 800 snooker clubs in the UK with an average of 20 tables per club, 

according to a database of snooker clubs [Click-Snooker, 2008). There are also 

hundreds of snooker leagues held throughout the UK every year, with thousands of 

participants. A slight variation of this game, called pool, is more popular in North 

America, but the fundamentals are very similar. All this indicates that snooker is a 

sport that enjoys a very good reception from the general public. 

1.1.4 What is the Scope 0/ a Robotic System/or Snooker? 

50 years of AI research on game strategy resulted in creating a system that could beat 

the World Chess Champion. When it comes to physical games, according to Asada et 

al. [1999), RoboCupTM has set itself the following goal: 

"By the mid-21 st century (2050), a team of autonomous humanoid robots shall 

beat the human World Cup champion team under the official regulations of 

FIFA." 

When compared to humanoid soccer, snooker and billiards presents a relatively lesser 

physical challenge. By the very nature of the game, snooker does not demand a very 

fast robotic response, rather it requires a very accurate one. Hence, the computer 
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vision, decision-making, and robotic elements of the system do not need to operate in 

real-time. In addition to this, snooker only has a single agent actively present at any 

one time in the game environment, whereas in soccer multiple agents are present and 

this complicates the decision-making part of the system. Hence, a snookerlbilliards 

robot has a good potential to be the first robotic system to beat 'a human in a standard 

physical game, and this can probably be achieved well before the target of 2050 set by 

RoboCup ™ When the overview of the robotic configurations (especially the 

kinematic solutions of some of the robots) is explained later in this chapter, this 

argument becomes clearer. This aspect of snooker presents a very exciting prospect. 

Earlier, it was seen that billiards/snooker has a very popular appeal, which is on the 

rise. Therefore it is reasonable to assume that a large number of amateurs will embark 

on this sport every year (even an approximate figure was nowhere to be found). 

Currently, snooker training does not involve any technology whatsoever, and the 

coaching is carried out by professional trainers. In this context, the development of the 

robotic system elicits a proper understanding of the science behind the human skills 

and dynamics involved with this game. As the fundamental technology is understood 

and developed, a possible spin-off may be a multi-media-based dedicated training 

system for snooker that trains amateur players from the very start. Elements involving 

multimedia technology can also be developed to assist the current training processes 

in a better way to enhance the training experience. 

1.1.5 Robotic-Systems for Playing Snooker/Pool/Billiards 

This section gives a general introduction to the systems that currently play the billiard 

family games. 

1.1.5.1 Bristol University, UK 

In the mid-late 90s, Bristol University developed a robotic snooker player in its 

Advanced Manufacturing and Automation Research Centre. "The main objective was 

to demonstrate the feasibility of automating a complex task that demands a high level 

of human skill and decision making" [Shu 1994, Ho et al. 20071. They came up with 

a solution of using a PUMA 560 manipulator arm, which holds a cue launcher that in 
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turn strikes the cue ball. The manipulator arm is attached to an overhead gantry robot 

(a SKF Linear Drive System) that moves the manipulator arm over the whole table 

area. The cue is powered by a pressure-regulated pneumatic cylinder. An overhead 

camera is used to roughly locate the balls on the table and its images are used to select 

an appropriate strategy. An additional cue-mounted camera is used for visual servoing 

to accurately position the cue on the ball. The project documentation (a PhD thesis) 

addresses the automation aspects of such a system. In addition, considerable attention 

has been given to the development of an appropriate playing strategy for the robot. 

However, the system's performance, like the most critical ball-potting accuracy, is 

scarcely documented, apart from that for some special kinds of shots, like straight-line 

shots and angled shots with specific predetermined angles [Shu 1994]. The robot 

treats the various impacts that take place in snooker by using very primitive models. 

1.1.5.2 SharifUniversity, Iran 

The project makes use of an overhead XYZ prismatic gantry with a revolute end­

effector carrying a pneumatically powered cue to play pool [Alian et al. 2004]. The 

robot selects its best shot by fuzzy-based reasoning. 

1.1.5.3 Tamkang University, Taiwan 

A 5-degrees of freedom billiard robot based on an XYZ gantry is fixed to the table. 

The system uses an overhead CCD camera to image the table state. However, the way 

the system has been built, it is not possible for humans to play on it, as the heavy 

structure of the robot is rigidly attached to the sides of the table [Cheng et al. 2004]. 

1.1.5.4 Adelaide University, Australia 

A pool-playing system with a gantry arrangement using a solenoid-actuated ball 

launching system is mounted on the pool table itself [Medwell et al. 2004]. The 

system was developed as part of an undergraduate project. 
( 

1.1.5.5 MIT, USA 

A robot was created for an undergraduate project. Two research papers, whose main 

focus has been on testing a certain machine-learning algorithm on several different 

systems, are found to.have some descriptions of this robot [Moore 1991, Moore et al. 

1995]. The robot uses a motorised cue and yaw control. The researchers who 

7 



implemented the machine-learning algorithms have used the ball tracking to extract its 

trajectory for the learning algorithm. It is a very minimal robot, and is fixed by the 

side of the pool table. 

1.1.5.6 Queen's University. Canada 

Fig. 1.2. Gantry-based pool playing system [Grccnspan et 01.20081 

By far the most widely reported system in terms of genera l publicity (it was also 

featured on Discovery Channel, etc), and in terms of research output, measured by the 

number of research papers [Long et al. 2004], is a system funded by the Science and 

Engineering Research Council of Canada and named 'Deep Green'. It again uses an 

industrial gantry from which a robot manipulator carrying the cue manipulation 

element is suspended (see Figures 1.2, 1.3). A custom-designed linear actuator is used 

for the cue manipulation. An 8 ft x 4 ft pool table is used for the project. The robot is 

reported to have a spatial positioning accuracy of 0.6 mm and an accuracy of 67% is 

claimed for the straight shots [Long et 01.2004). It uses both an overhead camera and 

an eye-on-hand camera (for local imaging). Lam et al. (2006) had only given the 

angular deviation in the moving direction of the cue ball as a measure of the robot 

accuracy. In their latest publication, Greenspan et al. [20081 state that the robot has 
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pocketed runs of four consecutive balls. However, the overall performance of the 

robot in terms of its potting accuracy has not been reported in their latest work. 

Fig. 1.3. The end effector of the Queen's University robot [Greenspan et al. 20081 

1.1.5.7 University of Alberta. Canada 

PickPocket, an artificial intelligence software for computer billiards, was created 

during research wldertaken as part of a Master's degree [Smith 2006al . Tllis is, by 

far, the best strategy program developed for the machine-based decision-making for 

billiards. PickPocket was the wirmer of the sin1UJated 8-ball pool tournaments at the 

10th and J Ith Computer Olympiad competitions in 2003 and 2005 respectively. 

A few other research projects have been focussing on producing systems that can train 

amateur pool/snooker players. Jebara el al. [19971 describe a wearable computer that 

guides the players to select the easiest shot. Larsen et al. [2002J report a system that 

interacts with players using audio-visual / graphics media. Since these systems 

address some of the issues related to computer vision and strategy in snooker, they are 

also reviewed in Chapter 2. 

Today ' s mammoth computer gammg industry continues to simulate many of the 

physical games in a virtual environment. A number of programs to play 
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snookerlbilliards/pool have been produced, for example, Snooker Simulation 

[Grogono 2005]. The computer games have the game strategy element in common 

with the robotic systems, although the former deal with a rather more idealised 

environment. Hence, proper attention should be given to these game engines when 

appropriate strategies are formulated for a snooker robot. 

1.1.6 What has been achieved solar? 

A careful review of the documentations of the developed systems, also the 

publications, leads to the following conclusions. A complete kinematic solution has 

been achieved for the problem of robotic billiards, in the form of gantry-based robots 

(however alternate configurations are still possible). The systems described by 

Greenspan et af. [2008] and Ho et af. [2007] have access to most of the table area, 

thus they are capable of executing almost all possible shots that humans play on the 

table. Machine vision elements were perfected in most of the systems and all of them 

sense the static ball positions. Considerable achievements have been made in the 

strategy formulation for the best-shot selection and in the search for potential future 

shots, thus creating a shot sequence, at the planning level. 

1.2 Motivation 

The scope of a snooker robot, as described in Section 1.4.1, combined with the 

deficiencies of the current systems, as described below, provides the motivation for 

this project. The literature review and an analogy of the human snooker-playing 

techniques, combined with the comparison of other types of robotic systems in 

general, and game playing robotic systems in particular, enable us to identify the 

flaws/deficiencies of the current systems. An analogy of the human skills involved in 

this game also highlights several necessary improvements that need to be developed 

to succeed in playing this game up to the standards of humans. 
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1.2.1 Deficiencies with the Current Systems 

Many issues related to the human skills involved with snooker have not been 

addressed properly by the above-described systems. Some inherent aspects of the 

game have been left out because an ill-conceived system design could not tackle 

them. Inadequate attention has been paid to the internal system dynamics (the physics 

involved in the game) that play a major part in the success of a system of this kind. 

Alternate methodologies, apart from the traditional programming-based approach for 

shot-making, have not been explored properly. The following are found to be the 

major problems with the existing systems. 

1.2.1.1 Understanding of the System Dynamics 

All of the systems mentioned hitherto are supposed to use a programming-based 

solution to the problem of manipulation. Such solutions usually require a system 

model, based on its dynamics. However, the literature on system dynamics scarcely 

exists for snooker and billiards in general. Some early experimentation has been 

performed by researchers on billiards physics, but the comprehensive experimentation 

that is necessary to describe the ball-table dynamics is needed. Also, more accurate 

impacts models are needed to predict the ball trajectories accurately. 

1.2.1.2 Disregard for some Salient Aspects of the Game 

Snooker players achieve a great deal of variety in their game by introducing spin onto 

the ball by striking the ball at different points on its surface (see Chapter 2 for details). 

Not a single reported effort appears to exist on this very important facet of the game. 

1.2.1.3 Trajectory Solutions 

Snooker is all about controlling the ball trajectories accurately as planned. Suitable 

manipulation algorithms/schemes are needed to ensure that the decisions made by the 

strategy element are executed accordingly. This aspect has not been addressed in the 

literature. 

1.2.1.4 Alternate Methodologies for Shot Planning 

As a replacement for the traditional programming-based approach, alternate methods 

like machine learning can also be used. These methods have been successfully used in 
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other games where the system dynamics modelling was not completely possible, e.g. 

table tennis [Matsushima et al. 2003, 2005]. The machine-learning-based models, if 

used, will eliminate the need to consider the issues that are raised in Sections 1.2.1.1 

and 1.2.1.3. 

1.3 Research Novelty 

This research work claims the usage of the following novel techniques and 

methodologies: . 

• A robotic system that uses in its development a novel way of manipulation 

that closely resembles human cueing e.g., efforts to impart different types of 

spin on to the ball by the way of precise positioning of the cue on the cue ball. 

• Snooker cue instrumented with a force sensor and its testing. 

• Novel use of vision as a means of object tracking and its use to obtain the 

dynamic parameters involved in the ball motion. 

• Some preliminary efforts/ideas about the spin tracking of a snooker ball using 

a single overhead camera. 

• The first complete theoretical models to describe the collisions between two 

snooker balls, also taking into consideration various frictional interactions 

under such conditions. A similar process has also been used to describe the 

collision of the ball with a cushion. Numerical solutions have been used for 

the first time for snooker impacts. 

• For the first time, non-prehensile manipulation methodologies have been 

studied from the perspective of controlling the balls so that they proceed to 

predetennined locations have been presented in this thesis. A Genetic 

Algorithm-based optimisation procedure is used for this purpose. 

• When a dynamic model is not available for a dynamic interaction, a machine­

leaming- based approach is taken. One such method using a neural network is 

used for the cue-cue ball interaction. 
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1.5 Thesis Outline 

This dissertation continues with a more elaborate treatment of the material covered in 

this introduction. The relevant background works are reviewed in Chapter 2. Chapter 

3 outlines the research methodology and presents the overview of the proposed 

system. Methods used for the design and development are explained in Chapter 4. 

Experiments performed with a high-speed camera and a force-sensor-instrumented 

cue are described in Chapter 5. Chapter 6 deals with the development of theoretical 

models for two of the collisions encountered in snooker. Chapter 7 presents the 

overall solutions for ball trajectories and results. Chapter 8 discusses the present 

research from a critical perspective. The conclusions of the study and the future 

research directions are given in the final chapter. 
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Chapter 2 

LITERATURE REVIEW 

An autonomous snooker system will consist of a number of subsystems. Its make up 

must include both sensors and actuators, and the software that performs decision­

making. In addition, although it is closely associated with the decision-making 

element, the system must also have the knowledge about the dynamics of snooker. 

Snooker dynamics, especially the cueing dynamics, are also important from the 

system design perspective, as seen later in Chapter 5. The reviewed literature is 

broken down into four subsections: Game Strategy, Computer Vision, Manipulation 

and Snooker Dynamics. 

Section 2.1 describes the intelligence that is needed to play the game, in the form of 

decision-making to select the best shot and the aspect of looking ahead into future 

shots. A brief coverage on the machine vision issues, with reference to the snooker 

system and other relevant systems, is given in Section 2.2. Section 2.3 reviews the 

possible manipulation solutions for a snooker robot by looking at' similar 

manipulation methodologies - collectively known as nonprehensile, or grasp less, 

manipulation - where objects are manipulated by methods such as tapping and 

pushing. A compilation on the physics of snooker is presented in Section 2.4. 

2.1 Game Strategy 

Players need to have both physical skill and strategy to succeed in a game. Games like 

chess are completely based on strategy. Snooker is not all about potting a single ball, 

but also finishing a frame successfully, pocketing all the balls in the given order. To 

accomplish this task, professional snooker players always look ahead of the current 

shot, i.e. they plan multiple shots in advance. They always have an idea as to which 
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ball to target in the next shot and so on. To play the next shot successfully it is 

important to leave the cue ball in an advantageous position on the table after the 

current shot. The configuration of the snooker table also makes it possible to play 

different types of shots (either straight, spin, kick or bank shots) and yet to have the 

same table outcome (e.g. in terms of the post-shot cue ball position). In other words, ,a 

given post-shot cue ball position can frequently be achieved in a multitude of ways. 

This makes the game more exciting and affords the player more flexibility in playing, 

but in turn makes the shot exploration procedure to select the best shot more difficult. 

2.1.1 Selecting the Easiest Shot 

Given a table state, this is all about selecting a shot (thus an object ball-pocket 

combination) purely on the basis of the ease of shot that maximises the chance of 

potting the selected object ball. Usually, amateur snooker players tend to think along 

these lines. In AI terms, this is known as greedy local search, because it targets the 

next best move without thinking ahead about which ball to pocket thereafter (not 

considering an overall optimum solution). A number of researchers have applied such 

greedy algorithms to formulate a playing strategy for billiards. Lin et al. [2004] have 

applied grey decision-making theory, which deals with the uncertainty and the 

knowledge incompleteness associated with a system, for their billiard robot. Lin et al. 

consider the distance between the cue ball and the object ball and that between the 

object ball and the pocket as well as the cutting angle required to pocket the object 

ball, for each object ball-pocket combination, dco, dop and (180 0 -y) respectively, as 

depicted' in Figure 2.1. By considering a specific object ball and a given pocket, the 

analogy of Lin et al. introduces two ratios. A ratio of the lengths involved in the 

distance between the object ball and the pocket and the distance from the ball to its 

closest pocket. The second ratio involves the angles, and is defined as the fraction of 

. the cut angle to the maximum possible cut angle of 90°. 

When there are multiple object balls, Lin et al. [2004] introduce another length ratio: 

the one between the cue ball and a given object ball, and the shortest possible such 

distance amongst all the object balls. Finally, the three ratios are averaged to select an 

object ball-pocket combination to execute the shot, the shot that has the highest 
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average being the one selected. However, giving equal weights to all three factors, 

without evaluating their relative significance, in terms of the potting accuracy, is open 

to question. Relative weights for each of these factors need to be evaluated either 

through a theoretical analysis involving the shot geometry, or through a trial and error 

procedure by analysing the outcome of different shots played on the table. However, 

Lin et at. [2004] have not presented the results of the proposed idea in their paper, let 

alone compared it with other available methods. 

2.1.1.1 Geometry-based Approach 

lebara et at. 11997], in their work on aiding billiards players with wearable computers, 

resort to a strategy that assumes that the greatest difficulty presented to a player is in 

launching the cue ball in the ideal direction. The ideal launching direction is 

determined by assuming that the object ball will enter the pocket bisecting the 

entrance. It selects the best shot by calculating the maximum allowable angular 

deviation the player has (calculated by the shot geometry), which can still pot the ball, 

thereby selecting the shot which has maximum angular tolerance as the best one. This 

approach is based on the fact that the wearable computer is suppo'sed to train amateur 

billiards players, who apparently have difficulties in directing the cue ball along the 

intended, ideal direction. 

F============~'=~==========="O 
~ dop •. 
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Fig. 2.1. Geometry of a direct shot 
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For the shot parameters as depicted in Figure 2.1, Shu 119941 defines the shot­

difficulty index for potting a ball into any of the 4 corner pockets as, 

{k/dco+k2dop+k3Ir-150ol+k411J1-45°1}' k/, .. , k4 being constants. For a centre pocket, the 

index is derived as {k/deo+k2dop+k3Ir-15001+k411J1-9001}. The justification provided in 

support of this formula arrangement is that professional players prefer r closer to 150° 

than 180°, which is the angle for the in-line shot. The 150° shot has the ability to allow 

the cue ball to move to almost any region on the table, as opposed to the in-line shot 

which positions the post-shot cue ball position only along the line of impact. For the 

in-line shot, to take the cue ball away from the line of collision requires excessive 

sidespin to be imparted to the cue ball by the cue. 

2.1.1.2 Fuzzy Logic-based Approach 

Chua et at. 120021 have used fuzzy logic to select the immediate best shot. deo, dop, r 

(see Fig. 2.1) have been chosen as input parameters to the fuzzy decision-making 

element. Chua et at. also use three Gaussian membership functions for each of these 

inputs, which are denoted as easy, medium and hard in terms of difficulty. The fuzzy 

rule base consists of 27 rules, and the shot selection is based on the fuzzy outputs. 

Chua et at. 12005], in their further work, decrease the number of rules to 24, by 

automatically omitting any ball-pocket combination where both the distance between 

the cue ball to the object ball and that between the object ball and the pocket are very 

large. 

Chua et at. 120051 then use the zero-order Sugeno fuzzy model with the firing 

strength of the rules formed by the product operator. The max aggregation method is 

then used (i.e. max-prod operation) to obtain the output. Three singleton spikes are 

used as the output membership functions, which classify the shots as simple, 

intermediate and tough. Defuzzification is performed using the weighted average 

computation. Chua et at. then consider other types of shots with increasing difficulty 

e.g. the combination shot (involving two object balls), the kick shot and the bank shot. 

Whenever additional angles and distances are encountered in the complex shot 

configurations, they are modelled as fuzzy inputs, as described earlier. The algorithm 

searches within a type of shot, starting with direct shots, and if there are no shots to be 
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found, it starts searching in the shot type with the next level of difficulty, and 

continues the same procedure. 

In their latest work, Chua et at. [20071 compare the results of the fuzzy approach with 

that of Jebara et at. [19971 and Grogono [20051 both of whom use a difficulty factor 

6= dco.dop/cos2y. Chua et at. present the comparisons for consistency between the two 

methods as applied to six different ball configurations on a billiard table. They also 

pass these table configurations to regular pool players (but their level of expertise has 

not been specified anywhere), to know which shot order the players would prefer in 

each of these six game states. Moreover, the results obtained by Chua et al. show that 

the decision-making has a close correspondence to the actual play, with 91.7% of the 

decisions being similar. The other algorithms with simple formulae, like those of 

lebara and Grogono given above, also perform equally well. This seriously questions 

the necessity of this complex modelling. Alian et at. [20041 utilize the same fuzzy 

approach with only two parameters: dop and y. The justification, it is said, is because 

studie~ show that dco does not have much influence on potting [Alian et al. 20041. 

Nevertheless, no concrete evidence has been given in support of this argument. 

2.1.1.3 Lookup Tables 

In the work of creating an AI for computer billiards, Smith [2006al uses a pool 

physics simulator named Poolfiz [Leckie and Greenspan 20051 to calculate the shot 

difficulty factors. Four shot parameters are employed; in addition to the 3 factors in 

the previous section, the object ball-pocket angle 'I' is also considered (see Figure 2.1). 

This AI software for billiards, PickPocket, uses a lookup table to predetermine the 

probability of success for each feasible shot, in order to avoid costly run-time 

calculations. The shot difficulty parameters. {dco , dop, y, 'I'} are discretised, and 

sampling is used to fill in each table entry. For each set of {dco, dop, y, 'I'} a probability 

of success is assigned after simulating a shot with these parameters in the Poolfiz 

simulator for 200 times repeatedly, noting the success rates. 
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2.1.2 Cue Ball Positioning 

Experienced snooker players plan a few consecutive shots, and this is an essential 

element in winning any given frame. Hence, it is pertinent to consider the post-shot 

cue ball position (called position play), i.e. whether the cue ball will be in an 

advantageous position on the table to play the next shot and so on. If this aspect is not 

taken into consideration when executing the present shot, the player will have 

"snookered" himself for the next shot (i.e. the resulting table state will be such that the 

player cannot directly aim at any of the legal balls). If the shot is made without much 

deliberation, the cue ball may end up close to the cushions making the execution of 

the next shot difficult. In the worst-case scenario, if the post-collision cue ball motion 

is not carefully considered, after its collision with the object ball the cue ball can then 

fall into a pocket thereby awarding points to the opponent and losing the turn. The 

combined ball-table dynamics give a greater flexibility when it comes to position 

play. Figure 2.2 shows how the cue ball can be taken to diverse locations on the table 

by varying the power of the shot, and the amount and type of spin imparted onto the 

cue ball. 
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Fig. 2.2. Cue ball positioning with different types of shots 

Dussault and Landry (2006) utilise optimisation techniques for positional play in their 

automated computer billiard player Poo/Master. Here they consider potting a single 
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ball by a straight shot and taking the cue ball to a given location. Using the sliding and 

rolling equations describ·ing the motion of the ball after being hit by the cue, they 

calculate the initial linear and angular velocities (one linear velocity at a fixed 

direction and three angular velocities - four variables altogether) that are needed to 

propel the cue ball to a specified location. In order to calculate these four variables, an 

optimisation function is used, minimising the difference between the calculated final 

cue ball location and the desired location. Then they consider one ball collision to pot 

an object ball with a desired post-shot cue ball position as before. The constraint 

being that the cue ball should be present at two specific spatial points, one for 

impinging onto the object ball as required and the other being its desired final position 

when it comes to rest. Having this as the constraint, an optimization model is set up. 

Finally, the friction effects between the balls (i.e. collision-induced throw) are also 

added to the optimisation function. They use two optimisation software programs, 

Scilab and OPT ++ (both use quasi-Newtonian iterative algorithms) to perfonn the 

computations. The optimisation procedure provides the linear velocity of the cue and 

the hitting point on the cue ball, so that the required amount of spin is imparted to it. 

2.1.3 Evaluation Function and Look-Ahead/Search 

In the previous section, the importance of position play and its significance in winning 

a frame of snooker is outlined. The next question is where to leave the cue ball after 

the current shot, since, as the table is a continuous domain, there are an infinite 

number of locations on the table where the cue ball can be positioned. Thus, for any 

given location on the table, there needs to be an evaluation of the merits of that 

position. Once this evaluation is fonnulated for the whole table surface, the problem 

of finding the best spot to reposition the cue ball can be solved by searching the table 

space in order to maximise the evaluation fonnula. This will result in the fonnulation 

of an overall strategy to play the game. . 

2.1.3.1 Evaluation Function 

"An evaluation function returns an estimate of the expected utility of the game, for 

any given position in the game" [Russell and Norvig 20051. In snooker, for a given 
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state (i.e. positions) of the balls on the table, the evaluation function must be able to 

tell" how useful that state is to the player from the perspective of winning the frame. 

Evaluation functions work by calculating the features/patterns of the state. In chess, 

the possible features can be, for example, the number of pawns possessed by each 

side, and king safety. For example, the Deep Blue evaluation function uses 8,000 

different patterns [Camp bell et al. 2002J. Then each of these features is assigned a 

numerical value (using some kind of a priori knowledge of the domain) and a . 

weighted linear function is assigned, adding up all the features. 

In chess, the game states are discrete and the actions are completely deterministic. 

However, in snooker, there are an infinite number of positions on the table where the 
, 

balls can be positioned, i.e. it has a continuous nature. Also, for a cue ball-object ball 

combination, there are an infinite number of distinct shots to be considered (for 

example changing the cue ball direction by a small amount, imparting different types 

of spin). Hence the snooker domain, unlike chess, is continuous. In addition, due to 

inaccuracies in the sensing elements, such as the camera, 'noise' is introduced into the 

estimation of the state of the balls on the table, which, in turn, introduces a small 

degree of randomness into the artificial system designed to play snooker. The current 

evaluation functions for billiards/snooker are based on the number of quality shots' 

available from a given cue ball position, thus giving greater flexibility to a player. 

Smith utilises the sum of the difficulties of the total number of legal shots available 

from a given cue ball position [Smith 2006aJ as the evaluation function for that 

position. Dussault and Landry [2007J use both the total sum and the average value of 

the shot difficulty for the analysis performed in their artificial intelligence software, 

PoolMaster. 
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Fig. 2.3. Outline of the best regions for the cue ball positioning using the sum measure 

for a given ball configuration in pool [DussauIt and Landry 2007J 

Dussault and Landry [2007], in addition, create a global map of difficulty for a given 

configuration of the balls on the table, using contours, which specify the regions 

where the cue ball would be favourable to play the successive shots (see Figure 2.3). 

In their further work, Landry and Dussault [2007[ also use a pre-computed table 

where the table area is discretised as grids, and the cue ball and the object balls are 

placed in each of these grids in turn and a shot is taken, all within the simulated 

environment of Pool Master. Furthermore, for each combination of the cue ball and 

object ball positions, the shot parameters, in the form of cue velocity and the striking 

point on the cue ball, are also changed. All of the results are then stored in tabular 

format. For a given situation, to find the optimal shot parameters, before the 

optimisation routine is executed, the starting values for the routine are found from the 

closest matching values in the look-up table. Specifying a closer starting point for the 

routine drastically reduces the time taken for the optimisation. 

Smith [2006bJ also proposes to include the centredness of the balls (a ball in the 

middle of the table has the advantage of being easily pocketed in all the pockets) in 

the evaluation function. Moreover, according to Smith [2006b], the ball clusteredness 

(which is an impediment to successive potting of the balls) can also be included in the 

evaluation function to give it a more realistic value [Smith 2006bJ. In addition to 

these factors, other aspects such as the close proximity of the balls to the cushions 
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also have an influence on potting. Incorporating them in a suitable way may lead to a 

better strategy. 

2.1.3.2 Look-Ahead/Search 

Look-ahead is very important for any game that is turn-based, and look-ahead is 

accomplished by searching for possible future game states that can lead to a win. In 

pool, professional calibre 8-Ball players try to visualize the entire run of eight balls at 

the start ILeckie and Greenspan 2007). 

Chess and checkers are considered as "standard" games in the traditional analysis, and 

very successful computer chess programs have been created, culminating in Deep 

Blue's win against the world chess champion, Gary Kasparov. The strength of these 

programs depends on their power to search for the best moves, which has apparently 

been aided by today's high performance computers. For chess and checkers programs, 

the mini-max game trees are used to analyse different possible future game situations; 

the search algorithm employed is alpha-beta [Russell and·Norvig 2005). 

Contrary to chess and checkers, snooker is a game that has a continuous nature, i.e. 

there are an infinite number of shots to consider for any given state of the table. This 

makes the search difficult and necessitates the use of different techniques to search for 

the best shot. Snooker is a non-deterministic game where, even if one plays two 

identical shots, the table outComes can still be different because the physical 

parameters of the system are subject to change with time, however small they are. 

Especially, when an artificial system plays snooker, the errors involved in the sensing/ 

computer vision elements and the actuator will always introduce deviations from the 

ideal expected outcome. For this reason, and to emulate a real-world scenario, some 

computer billiards programs (these are completely deterministic), are superimposed 

with Gaussian noise on their parameters to give a more realistic experience to the 

users· [Greenspan 2005). Hence, the snooker environment has a stochastic nature. 

This makes it difficult.to do the search in a purely analytical way. However, the strong 

point for developing a good search algorithm for snooker is that, as opposed to games 

like chess, which alternate the turn to the opponent after every move, it is possible in 

snooker to clear the table straight away without giving a chance to the opponent, 

thereby winning the frame. 
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The Expectimax algorithm is used for the search of stochastic domains, as in the game 

of backgammon where the dice-rolling introduces uncertainty. Under such 

environments of a stochastic nature, the *-Minimax algorithm can be used to prune the 

search tree, reducing the run-time. Even then, backgammon, having a finite number of 

nodes, has discrete states, compared to snooker, that present a continuous, stochastic 

domain. Hence, for any given parent node in the search tree, in snooker, there will be 

an infinite number of children with minuscule probabilities. Smith applies 

probabilistic search to solve this problem [Smith 2007[. Every shot is classified as a 

success or a failure; a physics simulator is used to get a value for the probability of 

success. Only successful shots are expanded in the game tree. This method is a very 

crude abstraction of the game situation, because, even though not all the successes are 

equal, they are given equal value by the algorithm. 

Monte Carlo methods have also been applied to get a random sampling in the range of 

possible outcomes of a shot, and they use the *-Expectimax method to search among 

these possibilities [Leckie and Greenspan 2007]. The higher the number of samples, 

the better the performance. 

2.2 Computer Vision and Ball Tracking 

Computer vision is needed to sense the ball locations on the table and so will be the 

primary sensing element of a robotic snooker system. Snooker requires a 2-D 

visualisation process in order to extract the ball centres since the ball centres are 

always constrained to a plane parallel to the table surface at a fixed height, equal to 

the ball radius. Only the jump shots violate this condition, but they are very rare in the 

game and are outside the scope of this work. The existing systems to play 

snooker/pool use overhead-mounted cameras looking vertically downwards to 

. visualise the ball positions on the table. In addition to an overhead camera, the Bristol 

University system also consisted of an eye-in-hand visual servoing unit to compensate 

for the inaccuracies associated with the overhead camera [Shu 1994]. The Deep 

Green system [Greenspan 2006] also uses a second camera whose image plane is 
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perpendicular to the longitudinal axis of the cue. lebara et al. [1997] use a head­

mounted video camera as the vision element of their wearable computer that trains 

amateurs. All the above-mentioned configurations image the table area in order to 

locate the static ball locations, so that a decision can be made on which shot to play 

next, as elaborated in Section 2.1. In the robotic systems, the cue ball location 

together and the shot parameters are supplied to the robot controller for the robot to 

take aim and execute the shot. To establish the performance of the robot, the post shot 

static ball positions on the table are also observed. However, the literature review 

shows that there were no serious efforts to track the balls continuously. Continuous 

ball tracking can provide some useful inputs to the system, such as the velocity 

variation of a ball, possible deflections due to the spin shots, cue squirt or any other 

variations due to the table surface, like the nap of the table cloth [Williams 2002]. 

This author believes that the ball tracking can better inform of robot controller about 

the actual dynamics of the ball motion on the table. The tracking can either be 

performed whilst the robot is playing a shot, i.e. in real-time or, whilst 'off-line', it 

may be by tracking human shots. In a similar project, on developing an air-hoc key­

playing robot, Bishop and Spong [1999a, b] tracked the puck continuously on the air 

hockey table, so that their robot could effectively strike the puck. 

The primary reason for advocating ball tracking is the lack of theories to describe the . 

dynamics of snooker, especially the collisions in the presence of friction, as described 

later in this chapter. Moreover, when new theories are put forward for an aspect of 

snooker dynamics the validation can only come through an experimental procedure 

and this necessitates some form of ball tracking. In the opinion of this author, a spin­

tracking element will also be an essential part of the experimentation. 

To determine the fundamental physical parameters, such as the coefficient of 

restitution, the Bristol University project used talcum powder in certain table areas to 

track the balls, but this is not very efficient and prone to errors [Sbu 1994]. There are 

also other variations in the game, such as the drifting effect due to the natural line of 

the nap of the table cloth [Williams 2002], ball-pocket interactions etc. A visual 

tracking system enables the system to leam and adapt to any unusual behaviour found 

in the snooker dynamics. 
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2.2.1 Lighting 

As mentioned earlier, both global and local (eye-in-the-hand) cameras were used in 

the snookerlbilliards robots. However, the global vision of the table presents a number 

of technical problems. First, it necessitates a highly uniform and diffused lighting, 

because any focus sed lights would affect the image of the balls, which are highly 

reflective. The Bristol system used a monochrome camera for the global imaging, 

with tungsten halogen dichroic reflectors ISbu 1994]. The dichroic reflectors, which 

are used behind a light source, allow the visible light to go forward and pass out the 

radiated light to the rear, this helps avoid heating up of the object being viewed. 

Reflectors were kept in an 8x5 matrix above the snooker table, after considering the 

luminance map of a single source, the distances between the adjacent refl.ectors are 

chosen so as to have a null luminance trough between them. The robot on-board 

camera in the Bristol system has its own miniature lighting with an identical light 

source to the one above. The table lighting arrangements of the other robots are 

scarcely described in the literature. 

2.2.2 Camera 

To image the equal sized, coloured balls found in snooker, it is straightforward to go 

for a colour camera. However, a monochrome camera was used by Shu 11994]. 

Initially, a grey scale map for a ball with given colour was plotted. Using this map, a 

histogram of the average grey-scale of all the balls using 100 repeated trials was 

obtained and this histogram was used to distinguish the colours of the various balls. A 

classifier based on the average grey-scale value of a colour identifies a particular ball. 

A colour camera would dispense with' most of this trouble. The wearable computer 

system used a colour camera with an ROB based probabilistic colour model, with data 

clustering, to distinguish different coloured pool balls (pool has both solid-coloured 

and striped balls) lJebara et al. 1997]. 
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2.2.3 Image Processing and Feature Extraction 

Before a camera can be used to make any measurements, it must be calibrated in order 

to relate the image parameters to the real world parameters. For the stationary 

overhead cameras frequently used in the robots, there is no relative motion between 

the camera and the table, which usually represents the real-world coordinates. Camera 

calibration involves determining both the pose of the camera with respect to the scene 

(called the external/extrinsic parameters), and the internal camera parameters (also 

known as the intrinsic parameters), such as its focal length and the image 

magnification in the sensor. Generally, the lens distortion is modelled by a polynomial 

that should be added to the above-mentioned model to make the calibration complete 

IGennery 2006). There are pattern based calibration methods, where a calibration 

object with a known geometry is moved while the camera is kept stationary. A camera 

can also be calibrated by what is known as self-calibration, where the camera is 

moved in a static scene, and the rigidity of the scene provides the constraints that are 

necessary to estimate the intrinsic and extrinsic parameters of the camera IZhang 

2000). 

Once the image is corrected for its distortion, it can be used for ball identification (i.e. 

identifying the colour of the balls) and then locating the centres of the balls. Chua et 

al. 12003) used an image mask to isolate the playing area of the table with the aim of 

increasing the speed of image processing. From the colour camera input (the RGB 

image), Chua et al. used only the Rand G components for image processing (they 

state that these two components are sufficient to provide the required results). They 

then apply an intensity adjustment on these two components separately, to increase 

the contrast, before applying the Sobel operator to detect the edges which correspond 

to object boundaries. The two processed Rand G components are combined to get a 

binary edge detection image. Then, Chua et al. 12003) use the Circular Hough 

Transform to locate the ball centres. 

Long et al. 12004) have corrected for the radial distortion of the lens, before applying 

a threshold to produce a binary image. They then use a connected component 

algorithm to eliminate the noise, and to eliminate significantly small blobs to locate 

the balls. It should be noted that there are other robust filters, e.g. the median filter, to 
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cope with the noise present, even though these are computationally expensive. The 

ball centre is then located by a least square estimation, with the radius of the circle 

known a priori [Long et al. 2004[. 

Other researchers have used a probabilistic colour model to visualize and differentiate 

the table area within the general field of view [Jebara et al. 1997). They initially 

obtain a number of sample pixels of the table cloth under different lighting conditions 

(their work concerns a moving imaging system, i.e. a wearable computer) and use 

data clustering to get a plot of the RGB distribution and use Expectation 

Maximization (EM) to find a probability distribution for the colours of the pool table. 

As a new image is acquired, lebara et al. evaluate each pixel for its likelihood of 

being a part of the table, and if it is above a certain threshold value, it is labelled as the 

table. The edges of the table are also found using the EM algorithm. Then a 

probabilistic colour model is trained to recognise the pockets. Since the work is 

concerned with an 8-ball Pool game, a probabilistic colour model is also used to 

detect the balls that are both solid and striped. Denman et al. [2003]in their work 

concerned with extracting useful information from the video broadcasts of snooker, 

have used colour-based segmentation to locate the table area whilst using suitable 

masking for players; the Hough Transform is used to detect the edges. 

There are also studies that deal with self-shadows and occlusions of balls under 

natural lighting conditions. For example, D'Orazio et al. [2004) have employed a 

special operator for semicircle detection in conjunction with a neural classifier to 

identify a football within a football field. 

2.2.4 Object Tracking with High Speed lmaging 

Earlier, it was argued that the ball tracking is necessary to play the game effectively. 

Of late, object tracking has been widely used in ball sports. Hawk-Eye is one good 

example where a six-camera system is used to track the balls in cricket, tennis, 

baseball and snooker for television broadcasts [PingaJi et al. 20001. Each of Hawk­

Eye's six synchronised monochrome cameras operates at a speed of 100 frames per 

second (fps), which uses acquired data from tracking points to predict subsequent ball 
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trajectory and bounce whenever the ball motion is blocked, as in the case of leg­

before-wicket decisions in cricket [Davis 2009]. The accuracy of Hawk-Eye isi 

reported to be between 2 to 5 mm. There are also other vision- and radar-based 

tracking systems that measure the magnitude of ball spin, using the features on its 

surface, like the seams [Griffiths et al. 200S]. 

2.3 Nonprehensile Robotic Manipulation of Objects 

In Chapter I, while providing an outline of the current systems to play snooker and 

pool, their configurations have been summarized. A review of relevant manipulation 

methodologies that will be useful for a snooker robot is given in this section. The 

manipulation schemes that are collectively known as nonprehensile manipulation 

methods are considered. 

Nonprehensile Manipulation 

Nonprehensile manipulation is defined as the manipulation of an object without 

grasping it (hence also known as graspless manipulation) [Mason 1999]. Figure 2.16 

depicts a typical situation encountered in graspless manipulation where an object is 

manipulated by pushing for a sorting operation by two robots. A clear advantage of 

such a scheme is that it does not require very large robots to cover the whole 

workspace of the object. In snooker, the very nature of the game only allows for 

nonprehensile manipulation, an impulse-based manipulation to be specific, of the cue 

ball by the cue. Hence, nonprehensile manipulation methodologies will be extremely 

useful for a snooker robot. Nonprehensile manipulation was developed as a substitute 

for the pick-and-place manipulation, which has limitations because of the sizes of the 

objects that can be manipulated and the size of the workspace. 
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Fig. 2.4 An example of non prehensile manipulation (Zhu et al. 2006] 

Without graspmg the object, a nonprehensile manipulator with fewer degrees of 

freedom (OOF), uses the gravitational, centrifugal, Coriolis and frictional forces 

acting on the object as virtual motors to control more OOFs of the object. The object's 

extra motions are exhibited as rolling, slipping and free flight (Lynch and Mason 

1999]. For example, the cue-driving action, which is equivalent to a single OOF 

pusher, by changing the cue velocity, can theoretically position the cue ball on the 

table, a space with two OOF, which is one more than that of the manipulator. 

Manipulating in a higher dimensional space is essentially achieved by allowing the 

object to move relative to the robot. Many other manipulation methods such as 

throwing, batting, catching, orienting/reorienting parts, and manipulation by impulses, 

also come under this category. 

Nonprehensile manipulation presents other problems of its own, when compared to 

grasping manipulation. Grasping manipulation, as in a pick-and-place robot, requires 

a description of a path for the end effector to follow. This is accomplished by means 

of programming the individual joints accordingly, and their control is a classical 

closed-loop problem. However in nonprehensile manipulation, the object is released 

from the manipulator at a specific time and the object's control thereafter is not with 

the manipulator. After the object loses contact with the manipulator, its control is 

taken over by the virtual motors, i.e. the gravitational, frictional or its own inertial 

effects. From the perspective of the manipulator, the whole scheme is analogous to 

that of an open loop system, with no feedback control. This 'open loop' nature of 

nonprehensile manipulation requires a detailed preplanning that considers every 

aspect of the dynamics of the object motion. 
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Although there are numerous nonprehensile manipulation methods, as outlined above, 

only the ones where a force/impact is applied to an object and it is then being allowed 

to slide on a planar horizontal surface are considered here. Here the object, in its 'free' 

motion, is only under the influence of frictional and inertial forces. This type of 

problem has been analysed by many researchers. Impulsive manipulation [Huang et 

al. 1995, Partridge and Spong 2000), releasing manipulation [Zhu et al. 2006), 

tapping manipulation [Huang and Mason 2000, Han and Park 2001), multi-agent 

dynamic cooperative manipulation [Li and Payandeh 2003 a, b), pushing 

manipulation [Rezzoug and Gorce 1999) are some examples. In all these 

manipulation operations, two distinct situations may be encountered, one where an 

algebraic analysis of the object dynamics is completely possible, and others where 

this analysis is only partially possible or completely impossible. 

2.3.1 Planning the Object Motion 

As said earlier, nonprehensile manipulation requires extensive pre-planning. The type 

of manipulation under consideration consists of two dynamic phases, the robot's 

actual interaction with the object, and the 'free' motion of the object. Hence, the 

planning also consists of two phases: the inverse solutions for the 'free' motion of the 

object, and the inverse dynamics for the manipulator-object interaction. The initial 

. requirement is to get the inverse solution, i.e. determining the initial velocities, both 

linear and angular, of the object for a given requirement of object transfer, such as its 

final position and pose, as well as the desired path of the object. Secondly, the 

manipulator interaction parameters must be determined, i.e. the amount of impact and 

the suitable contact point on the object that is necessary to generate the required initial 

velocities of the object that will eventually lead to the desired final object 

configuration. Certain final object pose configurations may not be possible due the 

current pose of the object, or because of the limitations of the robot; such cases have 

to be clearly distinguished during the planning phase. The limitations are also due to 

the geometry of the object being manipulated and the environment within which the 

whole operation takes place. As a simple example, in a single DOF impact and planar 

sliding problem, the maximum reachable distance is determined by the maximum 
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power of the manipulator, the friction and geometry (e.g. the horizontal tilt) of the 

surface, and the object geometry. 

The inverse solution for the 'free' motion problem is tedious whenever the object 

motion problem is not fully, or maybe even partially, algebraically describable, 

otherwise, the inverse solution is very straightforward. For the former, one has to 

resort to some other methods. Huang et al. [1995) followed a numerical approach, and 

used the properties of displacement monotonicity with respect to the initial velocities, 

to obtain the inverse solution for a planar disk sliding on a table. To orient a triangular 

planar part on a surface, Han and Park (2001) made use of a numerical algorithm to 

obtain the inverse solution. The numerical algorithm is based on the qualitative 

motion characteristics, such as the monotonicity between parameters. However, 

Mason (1999) utilized optimisation to find the trajectories of a polygonal part after it 

has been struck, thereby establishing an inverse solution. In their work on dynamic 

cooperative manipulation, Li and Payandeh [2003a) used a quasi-Newtonian method 

as their optimisation routine. Their further work adopts. game theory and neural 

networks to overcome the uncertainties present in the environment [Li and Payandeh 

2003b). Zhu et al. (2006) utilized two iterative learning control schemes to solve the 

problem of inverse sliding for the planar objects. Matsushima et al. (2005) made use 

of inverse maps (input-output maps) and locally-weighted learning for the inverse 

problem encountered in their table tennis robot, to determine the paddle's velocity and 

its angle of hit. By observing the ball hit by the opponent as it passes a predetermined 

vertical plane on the opponent's side, this mapping also predicts where it will hit the 

table on the robot's side and predicts its velocity as well. 

The impact dynamics between the manipulator and the object are always a complex 

phenomenon that is challenging to model and control [Li and Payandeh 2003a). In 

this respect, the Routh impact model and the Newtonian model for the impacts are 

generally used. Routh's model is based on a graphical analogy of the impact 

configuration and is considered more accurate [Wang and Mason 1992). 
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2.3.2 Manipulation Limitations 

Not all the initial velocity combinations (both linear and angular) are always possible 

for a given object. These depend on the geometry of the manipulated object and the 

manipulator, material properties such as the friction between the manipulator and the . 

object, support conditions of the object, etc. For example, in snooker, for miscueing 

not to occur the cue must impinge the cue ball close to the stun point (see Section 

2.4.1), if the cue ball is struck at its periphery it will barely move, and definitely not 

along the expected direction. Spong [2001] has analysed for the reachability of an air 

hockey puck struck by a puck. The reachable velocity of the puck and its impact 

controllability are derived in terms of the friction coefficient and the coefficient of 

restitution between mallet and puck using the Routh impact model. The main 

difference between an ice-hockey puck and a snooker ball is that the puck can only 

have spin about the vertical axis, whereas a ball generally has the potential to spin in 

three dimensions. 

2.4 Snooker Dynamics 

Snooker presents a classical physics problem, and understanding it is vital for any 

artificial system to play the game. Skilled snooker players may not understand the 

dynamics in terms of physics, but having spent enough time with the game, they know 

the intricacies of the game, by way of experience. A robotic system can be designed to 

take this approach and 'learn' the game, using a machine-learning paradigm, such as 

supervised learning with neural networks, where the controller learns from the 

examples provided to it [Jang et al. 1997]. However, if a system-dynamics-based 

solution is pursued to determine the ball trajectories, the physics involved in the game 

has to be clearly understood. 

The first published analysis of billiards physics was from Coriolis in 1835 [Nadler 

2005]. Since then it has been a topic for teaching and research in physics. This section 

looks at different phenomena that are involved in snooker dynamics. They are: the 
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interaction between the cue and the cue ball (i.e. cueing), the rolling of the ball on the 

table, impact between two balls, the ball's collision with a cushion and the dynamics 

of ball spin. 

2.4.1 Cueing 

Cueing, which is the manoeuvring of the cue and then hitting onto the cue ball, is the 

sole interaction of the player with the system dynamics, and hence it is very critical 

from the player's point of view. This is a very subtle operation and involves a 

considerable amount of skill. Here, the long, slender cue imparts an impulse force 

onto the cue ball forcing it into motion; the impact is delivered, theoretically, through 

a point contact. In order to facilitate such a contact the cue has a rounded tip. 

VG 

, . b ~I_··· ~--=--_ ~ 
Fig. 2.5. A stun shot - no angular velocity imparted by the cue 

As shown in Figure 2.5, when the hit is horizontal and through the centre of the cue 

ball (this is called a stun shot), the initial velocity, VG of the ball can be determined 

from the impulse, 1, by 

I=MVG 

where M is the mass of the cue ball and I is the integral of the force between the cue 

and the ball over the time of impact. 1= f Fdl 

The amount of impulse is always difficult to calculate, because the variation of the 

impact force with time is not known. A simple solution is to measure the force using a 

transducer with the respective time stampings and then to numerically integrate the 

force over time to obtain the total impulse. If an average force Fm (this can be the 

time-average reading of the force transducer) can be defined during the time of 

. . b h h y; Fm . .1/ H .. I Impact, .1/, It can e sown tat, • G = --. owever, cuemg IS not a ways as 
M 
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simple as this and whenever the cue is not maintained horizontal or if the line of strike 

does not go through the ball centre, the ball starts to spin about its centroid (this spin 

is also known as 'English'). Depending on the position of hit on the cue ball, spin is 

called top, bottom, left or right (Figure 2.6). It is also possible to get a composition of 

two types of spin as shown below in Figure 2.6, by selecting the striking location 

appropriately. 

Top (follow) 

Top-left 

Left-l--t. 

Bottom-left 

Stun (centre) 

--+-Right 

Bottom 

(draw) 

Fig. 2.6. Types of spin with the respective striking areas on the cue ball 

2.4.1.1 A Generalised Model for Cueing 

Next, a more generalised situation of cueing is considered, where no constraint is 

imposed as to how the cue is being held while striking the ball. An analysis can be 

easily performed for this configuration without considering frictional effects due to 

the table surface and between the ball and the table ISa1azar and Sanchez-Lavega 

19901. However, de la Torre Juarez in his work on cueing considered the effect of 

friction from the table during impact Ide la Torre Juarez 19941. The presence of 

friction causes a friction impulse, and makes the analysis complex. The following is 

an abridg·ed version of the detailed analysis of de la Torre Juarez 119941, though it is a 

repetition of the published material, it is given here it as it gives a completeness to this 

review on billiards literature (only the essential equations, ~nd derivations are given 

here). 

Assuming that the time of impulse is very small, and the distance the ball travelled 

during the impulse is small and that the direction of ball velocity remains constant 

during the impulse. 
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Fig. 2.7, A general cueing situation 

F= {Fx, Fy, Fz} 
Fd-O 

y 

Using the linear impulse-momentum equation, and also the equivalent equations for 

the angular motion of the ball, and referring to Figure 2.7, 

MVx = Ix + Ilx 

MVy = Iy + l;:y 

MV, = 1,+ FN 

2/SMR2 WX = R(-IySina + fly) 

2/SMR2 Wy = R(lxsina -I,cosa - Ilx) 

2/SMR2w, = Rlyeosa 

Where, N is the normal impulse between the table and ball at contact point 0, and If 

stands for the frictional impulse along the table. w is the angular velocity of the ball 

about G, The linear velocity V corresponds to the centre of gravity G of the ball (VG= 

{Vx, Vy, V:l). w" Wy and IDz are the angular velocities about the X, Y and Z axes 

respectively, Unless the ball jumps up from the table (this is what happens in a jump 

shot), V,= 0 and FN = -I,. One notable observation from these equations is that even if 

the cue points towards the centre of the ball (as considered initially), due to the effects 

of friction from the table, there will still be some angular momentum imparted to the 

balL 

Case I: Rolling motion 

When the ball rolls, at 0, Vo = 0, and it can be derived that Vx = Rwy , Vy = -Rwx and 

using the above equations with the condition involving Jis , the sliding coefficient of 

friction between the ball and the table, I},x + I},y <Ji/ F N l 
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~(49!1' +25cos'a) IIy 
Solving the above equations, if the ball is to roll, --'-'------''-------------''-- > -I. 

(5sina - 2) 1. 

Case 11: Slipping motion 

Slipping is more complicated than rolling as the condition Vo = 0 is no longer valid. 

But now, the friction impulse is given by, 7 J= - f.l, FN (VO ). 
. V a 

The impulse-momentum equation can be expressed written In vector format as, 

- - - - -
MV 0 + M liJ A OG = I + 1[. Using this and the velocity relationships between points 0 

and G, the velocity of 0 (i.e. the sliding velocity) IS derived as, 

Vo =(1 +Ian' (/) /12( Ix 1 M - RliJy )-: f.l., I I, I1 M, 

where, Wy = _5_0 sina - 1, cos a - I[ x) and (/J is the angle V() makes with the 2mR x , 

(2 - 5sina)I 
OXZ plane and is given by, lan(/) = Y. VO is useful in deciding 

(2 - 5sina)Ix + 51, easa 

whether the ball slips or rolls after being struck. Figures 2.8 (a) and (b) illustrate the 

conditions that give rise to different types of ball motion for different values of {Ix, Iy , 

IJ, where instead of angle a, the height of the hitting point on the ball, which is 

related to R by the formula R(l+sin a), is used. 

But the motion of the ball is given described by the velocity of its centre of gravity, 

VG, and can be calculated from, Vc = Vo + wAOG. The direction of VG with the OXZ 

plane, B, is given by, 

6!1.,sin(/) +(1-5sina)-(Iy 1 I,) 
lane = --'.-'----------''--~-

6!1.,eas(/) - (1 - 5sina)(I x 1 I,) + 5easa 
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Fig. 2.8. Influence of height and impulse components on the subsequent motion of 

the cue ball [de la Torre Juarez 19941 

Slipping is the phenomenon that makes curved shots possible. Conversely, when a 

ball rolls on the table it can only move along a straight-line. 
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There is a limit for the reachable velocities for the cue ball, both linear and angular, as 

there are limitations on the cue speed (whether it is manipulated by a human or a 

robotic system), the amount of cue-cue ball friction and the geometrical constraints by 

way of the shape of the cue and the cue ball. Nevertheless, no such study substantiated 

by an experimental procedure exists in this regard. To draw a parallel to a future 

study, the work of Spong [2001 [ on the air-hockey puck striking can be used. For 

example, Spong examines the reachable velocities for the air hockey puck, which is 

relatively simple in that it only has one rotation and two linear velocity components. 

However, in snooker, there are' three linear and another three rotational velocity 

components making the analysis and experimentation very complicated. 

2.4.1.2 The Masse Shot 

Even for the shots played with English (sidespin), the trajectory of the ball is still 

rectilinear. But when the cue is highly elevated from the horizontal and kept close to 

the vertical and struck downwards on the ball powerfully, the cue ball starts to move 

along a curved pa!h (see Figure 2.9), and the shot is called a masse. Masse occurs due 

to the 'sideways spin' that makes the ball rotate about its initial frontal velocity axis 

as depicted in Figure 2.9 (or the' Aiming line' as shown in Figure 2.10). 

5(deway..:. friction 

---...... , 
"r ", , 

CenTer \in~ of 
rear f(lcc. 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
I 
1---"'; 

I '-....~ I _ 

/ c ...... 
5id~\JIJOY~ !)pln 

Rearward fric:tion 

Fig. 2.9. Factors involved in a masse shot [Walker 19831 

This shot is very useful when the cue ball is in an awkward position and no legal 

straight shots are possible. When played to a collision with a cushion, the masse shot 
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generates quite astonishing motions on the cue ball (for example see Figure 2.10). 

There have been several attempts to outline the physics of the masse shot e.g. Walker 

[1983]. However, mathematical models describing masse have not been found in the 

billiards literature. 

8 ~ -----

<> 

<> 

Fig. 2.10. A complex masse shot sinking both 15-ball and 8-ball in pool 

[Walker 1983] 

The masse shot supplies spin about two horizontal axes, X and Y, and has a negligible 

amount of sidespin (spin about the Z-axis) (see Figure 2.9), axes definitions are 

similar to that in Figure 2.7. With the cue almost vertical, the player strikes downward 

on the side of the cue ball. The horizontal part of the stroke determines the initial path 

of the ball. The sideways spin (about the X-axis) gives rise to sideways friction force 

as shown in the Figure 2.9. This friction force, which is perpendicular to the ball 

motion, makes the ball trajectory curve. The ball moves along a parabolic path until it 

starts to roll. Once the ball has stopped slipping, and starts to roll, the trajectory 

becomes linear again (see the final part of the ball trajectory in Figure 2.10). The 

trajectory of a cue ball, under the masse conditions, can be derived mathematically. 

Hopkins and Patterson [1977] have done similar work on the paths of a bowling ball, 

where they derive a mathematical description of the curved trajectory. 
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2.4.1.3 The Cue Ball Deflection ("Squirt") 

Whenever the cue is struck toward one side of the cue ball, in order to impart 

sidespin, the cue ball, in general, starts to move in a direction that is slightly different 

to the line of approach of the cue. This phenomenon is called cue squirt. Inadequate 

knowledge of cue squirt is identified to be the major problem with amateurs [Jewett 

1994[. Cue squirt happens because the ball attempts to move along the direction of the 

common normal of both bodies through the impact point. However, the action of 

friction between the cue and the cue ball usually reduces cue squirt (see Figure 2.11). 

Shepard [1997] has analysed the physics of cue squirt elaborately. This theory says 

that apart from the factors shown in Figure 2.11, i.e. the offset distance b, the 

equivalent inertia of the cue-cue tip combination (called the 'endmass') also affects 

the angle of squirt [Sbepard 1997]. Shepard's theory also predicts that the squirt 

angle a, increases with the value of the 'endmass'. The implication of the 'endmass' 

effect means that the grip of the player affects cue squirt, as the 'endmass' would be 

high if a tight wrist is maintained during cueing, and will be low for a loose wrist 

condition. The main drawback of Shepard's theory is that the friction values between 

the cue and the ball have not been used, thus the forces F and N (see Figure 2.11) are 

kept as independent parameters throughout the analysis. 

(a) 
Path of ball after 
collision (parallel to T) 

, , , , , , 

N 

N = normal force 
F = friction force 
T = total force 

F 

llnitial 
direction 
of cue 

(b) 
, 

, , a; squirt ,a' , , angle , , , , 
tan ~ ; .E " a+a+~=9o " N \ , 

Fig. 2.II.The cue ball squirt [Cross 20081 

0 
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Cross [2008) has formulated a concise theory incorporating two important parameters 

that were not considered in the work of Shepard [1997], namely, the friction 

coefficient and the coefficient of restitution between the cue and the ball. Moreover, 

Cross has experimented on the squirt phenomena using a pendulum-suspended cue 

ball, to eliminate the surface friction effects from the table. A video camera operating 

at 25 fps was used to track the cue and the ball to obtain their linear and angular 

velocities. The ball was marked with a line around its circumference that allows the 

spin measurement to be made from the camera (it should be noted that the pendulum 

suspended ball could only have sidespin). The theoretical prediction and the 

experimental values obtained by Cross are given in Figures 2.12 (a) and (b) 

respectively for the conditions of a chalked tip, an un-chalked tip, and a P800 emery 

paper attached to the cue ball. However, it must be noted that the values obtained by 

Cross cannot be used in a billiard robot as the results are not obtained for the situation 

where the cue ball rests on the table. The friction effects from the table are. generally 

expected to influence the amount of cue squirt. 
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Fig. 2.12 Theoretical predictions and experimentally obtained values of cue ball squirt 

[Cross 2008) 

2.4.2 Ball Motion against Friction on the Table 

Once the ball starts its movement on the table, it either rolls on the table or slides. 

Hence, there are two friction coefficients to be taken into consideration. In order to 
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understand the dynamics of rolling and sliding, a snooker ball that has both linear, and 

angular velocities after cueing is depicted in Figure 2.13(a). No consideration is given 

to the sidespin of the ball as it is assumed not to affect the motion. This is known as 

decoupled motion, where sidespin is considered not to affect the linear velocity, Vor 

the topspin, w, of the ball and vice versa. 

v 

(a) (b) 

Fig. 2.13. Forces acting on a moving ball 

Immediately after cueing the ball, generally, it starts to slip on the table and this 

introduces a friction force, FR , at the ball-table contact point, where FR = flFN . . But 

whenever either the spherical body (the ball) or the surface is deformable (the table 

cloth), the normal force F N, from the surface does not go through the centre of the 

sphere, see Figure 2.13(b) [Hierrezuelo and Carnero 1995]. In this case the 

horizontal component of the force F N, F ,vSinfJ acts against the motion, playing a' role 

similar to that of the fiction force. Moreover, the action of F N also introduces a torque 

in a direction opposite to that of the direction of rotation of the ball. Hence, an angular 

deceleration is also present in the ball. The relationship V = Rw is maintained 

throughout the rolling phase. An equivalent friction coefficient of fl' can be defined 

for the rolling condition of the ball. fl' is considered dependent on the nature and state 

of the surfaces in contact but n~t on the radius or the velocity of the sphere 

[Domenech et al. 1987]. It represents an arm of the pair of forces applied on the 

sphere perpendicular to the horizontal plane (Figure 2.13(b ». 

Professional snooker players, by varying the point of strike on the ball, accurately 

control Vo and Wo (initial velocities) in order to bring the ball to a desired location on 

the table. For example by imparting more top spin to the ball, the slipping phase can 

be made to stop sooner, and when bottom spin is given, the slipping will last longer. 
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This gives much more flexibility to the player rather than simply varying the linear 

velocity by a stun shot. Moreover, the amount of spin on the ball determines the 

collision dynamics (either with another ball or a cushion) and this aspect also gives 

the player a wide range of options. 

The linear deceleration during the rolling phase is given by 

The linear velocity of the ball is written in terms of its initial rolling velocity Vo as, 

V=Vo -l1,gt 

V Vo - l1,gt 
W=-= 

R R 
Its angular velocity is given by, 

The sliding friction coefficient, 11s, is usually considered a constant according to 

Coulomb's law. But Witters and Duymelinck [1986) have obtained, using a simple 

apparatus consisting of a billiard ball and table cloth, a plot for the variation of 11 with 

ball velocity, where it is observed that it increases with ball velocity asymptotically 

(but not smoothly) to 0.21, starting from 0.14. Oratton and Defrancesco 12006) 

experimented with sliding bodies on a flat surface and concluded that, whenever the 

velocity does not vary by more than a factor of two, I1s is proportional to the sliding 

velocity. In addition, they also find a logarithmic relationship between I1s and the 

sliding velocity. Some other analytical methods were also used, by analysing the 

deformation of material with few assumptions regarding the deformations, to calculate 

a theoretical value for 11, IWitters and Duymelinck 1986, Hierrezuelo and Carnero 

1995). 

When V - Rw > 0, the ball slides on the table. 

The linear deceleration of the ball due to sliding is, 

The ball will have an angular acceleration, 

tiJ = I1sMRg where I is the 2nd moment of 
J 

inertia of the ball about any axis that goes through its centre, and J = '!:.. MR' . Hence, 
5 
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riJ=SJ.1,g 
2R 

When, V - R01 < 0, which is called 'overspinning', the friction force will be in the 

same direction as velocity V. This often happens when the cue impinges on the cue 

ball at a height larger than '2 R from the table surface, or right after it impinges on an 
5 

object ball (this effect will be seen later in the chapter). Hence,· during the 

'overspinning' phase, the ball will actually be accelerating and the value of the 

acceleration is given by, 

At the same time, its angular motion will be decelerating. The angular deceleration is, 

. SJ.1,g 
01=--

2R 

Earlier, at the start of this section, the assumption of decoupled motion was stated (i.e. 

the sidespin does not affect the linear motion). However, as seen in the review of 

rolling friction, the ball always 'sinks' into the cloth and thus makes an area contact 

with the table. This clearly indicates that the point contact hypothesis that leads to the 

above assumption is usually incorrect. However, no physical analysis is found 

anywhere regarding this. If a significant amount of contact is made, the ball might 

have properties like that of a disk, which displays some interesting properties in its 

coupled linear-rotational motion IVoyenli and Eriksen 1985]. 

2.4.3 Collision between Two Balls 

Impact between two balls can be either frontal (head-on) or oblique. If the 

approaching and separating velocities lie along the line connecting the centres of the 

balls, then the impact is said to be frontal or head-on. Two-dimensional impacts are a 

general case in billiards and snooker and these are called oblique collisions, with 

frontal impact being a special case. 
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(a) Before colliding (b) After collision 

Fig. 2.14. Pre-and post-collision velocities in plan view 

Referring to the Figure 2.14, 

Conservation of momentum, V, + V 2 = V cos e 
Coefficient of restitution relation, V 2 - V, = e V cos e 

Using the two equations, VI and V2 can be easily calculated. The assumption is that 

both the balls have the same mass and the coefficient of restitution is e. According to 

this hypothesis, both the balls should move on linear paths after the collision. 

However, this does not happen in reality as is seen below. 

90° Rule 

Amateur snooker and pool players use the 90° rule to predict the cue ball path after 

the collision. It states that when the cue ball strikes an object ball with no topspin or 

bottom spin the two balls will always separate at 90° [Alciatore 20041. It is evident 

from the two equations ·above that this rule is valid only when e=l, i.e. when the 

collision is perfectly elastic. 8ayes and Scott [19621 employed a spring-loaded cue 

launcher and pool balls on a felt-covered table to examine this effect. A stroboscope 

and a camera were used to determine the subsequent ball paths and the experimental 

results showed that the separation angle was around 6r (though there is no evidence 

as to the amount of spin the ball had at the time of impact, as ballspin is known to 

affect the collision). 8ayes and Scott also tested the ball on various glass surfaces 

such as dry, wet and soapy, and found that the ball separation angle approaches 90° as 

the surface gets smoother (in soapy glass it reached 89.9°). In the light of this 

evidence, it can be said the surface friction from the table leads to unpredictable 

rebound at impact. 
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Apart from the table friction, the ball rolling also works against the 90° rule. The 

friction between colliding balls plays a part in the motion when the cue ball is rolling. 

Domenech and Casasus [1991] considered the sliding friction effect between the balls 

during the collision, hence the friction impulse, and obtained the post-collision linear 

and angular velocities accordingly. 

2.4.4 The Cushion-Ball Impact 

When the ball does not have any spin, most literature assumes that the incoming ball 

angle and the reflected angle are equal ('1';='1'0) (see Figure 2.15 for the parameters 

involved in such a collision). Alciatore [2004] says that when the approaching 

velocity, Vi, is high, '1'0 tends to be larger than 'I'i' because of the elastic forces set up 

due to high deflection of the rail (cushion), this phenomenon is called 'throwback'. 

However, it must be noted that 'I'i directly influences throwback. In addition, the 

coefficient of restitution is less than unity and the lateral friction, along the cushion 

affects the impact thereby causing the change in the deflected angle '1'0. 

vj 

Fig. 2.15. The cushion-ball impact - the plan view 

Partridge and Spong [2000] have considered the effect of friction on the puck-table 

impact for their air-hoc key-playing robot. They use the Routh impact model, which is 

based on the Poisson restitution law and is more accurate, instead of the Newtonian 

restitution law. However, they only use sidespin in their analysis (because it is a 2-D 

motion situation and does not have any vertical velocities). 
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Fig. 2.16. Effects of putting spin on the cue ball on the collisions with the rail 

The analysis for the snooker wall collisions has to include the top and bottom spin of 

the ball and, as a result, a vertical friction force will be present at the ball-cushion 

interface. A complete analysis should also incorporate the friction between the ball 

and table, as in the case of cueing. If the ball approaches the cushion with no English 

(sidespin) at an angle other than 90°, friction from the cushion gives it English. Figure 

2.16 shows how the balls launched with different sidespins, at different angles to a 

cushion, change their paths. 

Summary 

This chapter provides a review of the literature found in relation to the development 

of a snooker robot. Strategies needed for the robot are reviewed both in the context of , 

strategy games such as chess and from the perspective of snookerfbilliards robots and 

related computer games. Machine-vision-related issues for a snooker robot are 

compared by reviewing what has been implemented in the existing robots. In addition, 

after identifying that ball tracking is important for a snooker system, related 

developments have been outlined. Moreover, finding that manipulation methodologies 

have not been established for such robots, a related robotic manipulation method 

called nonprehensile manipulation has been reviewed. Finally, a comprehensive 

review of the physics of snooker is given. 
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Chapter 3 

RESEARCH METHODOLOGY AND PROPOSED SYSTEM 

OVERVIEW 

The literature review chapter shows that robotic snookerlbilliards spans different 

technical disciplines and this aspect underlines the need to adopt an interdisciplinary 

approach to make a successful system. This chapter tries to identify the critical gaps in 

the literature and sets appropriate research targets. 

Section 3.1 identifies the problem to be addressed and describes the research 

methodology to be used. Section 3.2 details the hardware features needed for the 

proposed system. The controls and the associated software of the system are also 

outlined. 

3.1 Research Methodology 

3.1.1 Pr(Jblem: Robotic Snooker 

It is apparent that the artificial system should be able to plan and execute shots like a 

human in order to win a game of snooker. The success of the overall system is 

decided by the individual performances of each of the major elements of which it is 

made up. For a given system, generally subsystems can be identified in a multitude of 

ways, depending on the purpose of the differentiation procedure. Here, the system is 

broken down into three major subsystems A, B, and C, as described below, to 

differentiate and identify the research goals and the targets of this work. 

Subsystem A: Shot identification 

For the current table configuration, this selects the best shot considering the 

vanous factors outlined in Section 2.1, and selects the object ball-pocket 
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combination for potting and decides the best place to leave the cue ball after the 

shot. 

Research Area: Artificial Intelligence. 

Subsystem B: Element that plans the shot 

Working out the inverse solutions for the shot that is identified by A. In order to 

achieve the targets set by A, B must make decisions regarding the launching 

direction of the cue, the cue velocity and the striking point on the cue ball. 

Therefore, B must have the knowledge of ball trajectories and the phenomena 

associated with the ball motion, such as rolling, sliding, spinning and impact 

mechanics. 

Research Areas: Mechatronics, Dynamics, Robotic nonprehensile manipulation, 

and Machine learning. 

Subsystem C: Shot execution 

This element ensures that the shot that is planned by B is executed accordingly. It 

mainly consists of the design of a suitable hardware and software configuration by 

the proper identification of the system requirements. 

Research Areas: Mechatronic system design, by appropriately integrating different 

sensors (also vision) and actuators with microcontroller and PC-based control, 

Robot inverse kinematics, and error calibration methods for the robots. 

3.1.2 Part of the problem that is addressed by this thesis 

After an extensive literature survey it was identified that issues that are related to 

Subsystem A have been extensively treated by computer scientists, and several game­

playing programs have been created. However, these programs have not been fully 

implemented on real snookerlbilliard robots to test their effectiveness and to compare 

them with human performance since the other two elements (i.e. B and C) of the 

overall solution have not yet been developed to perform on a par with humans. 

This thesis does not concentrate on the research issues related to Subsystem A. 

Therefore, throughout this work, it is always assumed that for. a given state of the 
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table, the best object ball-pocket combination and the preferred post-shot final cue 

ball location have always been supplied (i.e. they are always assumed). 

The literature review also showed that there scarcely exists any literature on the 

inverse manipulation problem, which is the concern of Subsystem B, and this 

problem remains largely unsolved for snooker dynamics. Researchers interested in 

billiard physics have developed some dynamic models for impacts In 

snookerlbilliards, but these models mostly remain incomplete. In addition, the 

parameters that affect different phases of the ball motion, such as rolling and spinning 

have not been properly measured. These parameter measurements are believed to 

require an extensive use of machine-vision-based, non-intrusive, experimental 

techniques. All-inclusive inverse trajectory solutions that are necessary for a problem 

like snooker have not been addressed by any of the researchers. Hence, there are 

multiple issues involved with Subsystem B such as computer vision, dynamics and 

robotic manipulation methodologies. The challenges related to Subsystem B will be 

the major focus of this work. 

There are two full-fledged gantry-based robots to play snooker and pool [Ho et al. 

2007, Greenspan et al. 2008]. Both robots were kinematically versatile and have the 

ability to reach any part of the table. However, the researchers in those respective 

projects have not tried to address certain issues such as accurately positioning the cue 

to play different spins on the cue ball. In the case of the Queen's University project, 

the robot is designed to have the facilities needed for visual servoing using a local 

camera mounted close to the cue [Lam 2008], but imparting spin to the ball was not 

reported in their research papers. In order to test the performance of the 

methodologies that it is proposed to develop for Subsystem B, adequate hardware 

support should be available. Otherwise, only computer simulation-based results can 

be reported for the solutions proposed for Subsystem B. To test the performances of 

the proposed trajectory algorithms, a suitable and desirable system configuration is 

identified in Section 3.2. This, in turn, makes some valuable contributions towards the 

development of an ideal Subsystem C. Therefore, issues related to some aspects of 

Subsystem C will be a second major focus of this thesis. 
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3.1.3 Solution Methods 

Nonprehensile methodologies for object trajectories reqUire a description of the 

object's trajectory, here the ball trajectory. In order to determine the ball trajectories, 

Chapter 5 addresses the issue of measuring the physical parameters that are involved 

in the ball motion. Chapter 6 describes impact mechanics and numerical modelling­

based solutions for snooker collisions, which drastically change the ball trajectories 

on the table. Chapter 7 proposes solutions based on what is known from the existing 

literature and the work of Chapters 5 and 6. An optimisation-based solution with a 

search procedure using Genetic Algorithms is investigated as a possible solution. 

3.2 Proposed System Overview 

The proposed system to play snooker (i.e. to test and validate the research goals) is 

based on the integration of sensors and actuators and is based on a mechatronic 

approach to system conceptualisation and realisation. Based on this, a synergistic 

design of the system, integrating the mechanics, electronic sensors and actuators with 

a PC, is envisaged. The shortcomings of the existing snooker/billiards systems (see 

Chapter 2 for a detailed survey), and their relative virtues were taken into account in 

order to offer a better system configuration. Some innovative ideas like force sensing 

during the cue-cue ball impact are put forward. 

3.2.1 Hardware 

Snooker is a game that involves very subtle human skills like accurate positioning and 

striking of the ball with very good control. Human limbs have superior agility and 

very good coordination and form the basis of these skills. Professional players master 

this game after thousands of hours of practice. Visual observation plays a major part 

in this. The human limbs are also superior in that they gather a feel of the force and 

impulse transfer during a shot and this a priori knowledge is used, unwittingly, for a 

given shot. All these capabilities warrant a careful system identification procedure of 

the hardware configuration for an artificial system to play snooker. 
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3.2.1.1 Precise Positioning and Controlled Manipulation of the Cue 

As seen in Figure 2.6, the hitting point of the cue on the ball alters the type of spin 

imparted to the ball, greatly affecting the subsequent ball behaviour. Hence, a 

positioning arrangement for the cue is necessary, so that it can hit the cue ball at 

different spots as required. An accuracy of I mm is proposed for the positioning 

. system that positions the cue on the ball. Humans must find it difficult to go beyond 

this accuracy on placing the cue over the cue ball. This is considering the fact that the 

white cue ball is without any guide markings showing the distance measures, and also 

that the player's eyes are generally at a distance of over a metre from the ball when 

taking aim. 

Even though the existing systems are designed to occupy the whole workspace of the 

snooker/pool table, to play all possible object ball-pocket combinations, their 

manipulators have not been used to place the cue stick on the ball very accurately. 

One reason for that is that the spin shots were not targeted in their game strategy. 

Moreover, because of the long, serial-type manipulators used, positional errors are 

bound to propagate and the accurate positioning is difficult unless a very good error 

calibration and compensation is carried out for the robot. In this project, an accurate 

X-Y positioning system is envisaged to position the cue on the ball. 

Since it is planned to use a regular unmodified cue in this project, imitating the human 

cueing by incorporating a cue bridge is very important. In snooker, the purpose of the 

cue bridge is to provide a guide through which to send the long cue on a straight line. 

Although when the cue strikes the cue ball, the duration of impact is a tiny fraction of 

a second according to Marlow [1994], the absence of a proper reinforcement, by the 

way of a cue bridge, can bend the cue at its tip. When the cue bends about its tip, the 

follow-through of the shot will not be smooth. At this juncture, it is important to note 

the significance of the follow-through in sports where impacts are involved (e.g. 

cricket, tennis, baseball). These factors underscore the need for a cue bridge as an 

essential part of the cueing process. 

The shot duration (the time from the start of the shot to until the time that the cue 

strikes the ball) is between O.2s to 0.5s for humans [Alciatore 2008[. The accurate 

and controlled cueing method that is selected must also be fast enough to produce the 
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required cue velocities as found in humans. The pneumatic cylinder-driven cue 

launchers have poorly performed in the previously developed systems. Although Shu 

[1994[ used the force control option in the pneumatic-driven cue manipulator, 

pneumatic systems are considered unreliable when it comes to the controllability of 

velocity. The pneumatic actuators will also hinder the rapid launching of the cue 

needed for very fast shots. However, humans launch the cue at very high velocities. 

The cue velocity even for a moderate shot is measured from Alciatore's [2008) high­

speed video clips at around 2m1s. Hence, a motor-driven cue launcher is proposed. 

3.2.1.2 Vision and Ball Tracking 

The current systems playing snooker/pool use machine vision cameras only to locate 

the static ball positions on the table, in order to decide the best shot available and then 

to allow the robot to reach for the current cue ball location in order to strike it. Except 

for a project at MIT, where some efforts have been made to track the ball in order to 

demonstrate the effectiveness of a certain method of machine learning, no attempts 

have been made to track the ball continuously [Moore 1991, Moore et al. 1995[. 

However, visual tracking of the balls allows the system to observe the results for a 

given shot parameter set, and these tracking results can be used to determine what is 

actually taking place on the table. For instance, some physical parameters can be 

empirically derived from the analysis of the tracking results, and in some cases, a 

look-up-table-based method based on previous observations may even prove useful. 

In summary, the tracking of balls is an essential feature, given the nature of the game. 

The vision system, as described later in this chapter, is proposed to achieve this target. 

It is proposed to mount the camera on the ceiling above the table, looking vertically 

down. As the ball motion is confined to a plane (i.e. the snooker table), a monocular 

camera is sufficient to determine the position of a ball on the table, given that the 

camera is calibrated and the spatial transformation between the camera plane and the 

table plane is known. 

3.2.1.3 Other Sensors used 

Vision is the primary sensing element of the system, as described earlier. However, 

additional sensory information is also required if higher-level reasoning about the 

system dynamics is required. This necessitates certain additional sensory information. 
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It is proposed to install a force sensor on the cue to get the tactile information about 

the cueing process. This force sensor is expected to be an equivalent of the tactile feel 

in humans. For example, the tactile feel distinguishes the shots wherein the cue is 

almost jabbed against the cue ball , as in the case of masse shots, where the cue is 

made to stop abruptly, against the smooth shots where the cue follows the cue ball 

closely even after the impulse has taken place, very smoothly, giving a better 

positional accuracy. In addition, when miscuing occurs (where adequate contact 

between the cue and the ball does not happen, the cue almost slips on the cue ball 

surface, which misguides the ball) there is not enough normal force transferred to the 

ball at the point of contact. These phenomena underscore the need for force-sensing 

and justify the inclusion of a force sensor. Importantly, the force sensor thus fitted to 

measure the force transfer from the cue to the cue ball should not alter/change the 

properties of the cue. 

3.2.1.4 Snooker table 

Fig. 3.1. The snooker table in the rnechatronics lab 

A Riley® Renaissance Type Snooker table having dimensions of lOft x Sf!, has been 

installed in the lab (see Figure 3.1). This brand is the official table of the World 

Snooker association and is used for all its professional and amateur Snooker 
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tournaments since 1992 (except in China) [WPBSA 2008). The regular tournament 

table size is 12ft x 6ft. 

3.2.2 Controls and Software 

The system is not intended to operate in real-time. The nature of the game allows for a 

certain time gap between successive shots, and thus the constraint of operating in real­

time is not strictly imposed on the proposed system. Visual Basic® 6.0 (VB) is used as 

the programming language for the main control program. 

Image processing and analysis are to be done within MA TLAB®. This is in view of 

the availability of a wide range of built-in functions for the image analysis in the 

MA TLAB® Image Processing Toolbox. The vision algorithms are to be written as M­

files in MA TLAB®. These M-files are then to be called from VB using a function 

procedure called MA TLAB® COM component, which is generally used to integrate 

MA TLAB® with other programming environments. 

It is proposed to control all other hardware from within VB. 

Summary 

This chapter identifies the research objectives of the project. The proposed research 

methodology to carry out the research is summarised as well. The envisaged hardware 

requirements of the system required in order to meet the research objectives are also 

given. The controls of the system from a PC are also briefly outlined. 
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Chapter 4 

DESIGN AND REALISATION OF THE ROBOTIC SYSTEM 

This section describes how the system is realised as per the requirements set out in the 

previous chapter. The tools and techniques used are explained and the final outcomes 

of these processes are presented as drawings and data. The first section explains the 

requirements and considerations that are taken into account to determine the unit for 

the cue manipulation. In Section 4.2, the cue positioning unit is described with 

appropriate drawings. Section 4.3 addresses the issue of machine vision, image 

processing, related issues, and the problems encountered in each of these aspects. 

4.1 The Cue Launcher 

The cue launcher has to achieve the stroke-velocity-acceleration requirements as 

needed for any given shot. Various considerations regarding the design of the cue 

launcher configuration are now described in detail. 

4.1.1 Some Considerations regarding the Snooker Cue 

Automated cueing operation is vital for the overall performance of the robot to be 

satisfactory. Although the Bristol University project had a robot with a large 

workspace, it used a pneumatic cylinder fitted with a cue tip of a regular snooker cue 

[Shu 1994). The front half of the cue was used for the Queen's Ontario pool playing 

robot [Long et al. 2004). Other researchers have used various forms of rounded heads 

replacing the regular billiard cue completely [Alian et al. 2004). However, in reality, 

it is believed that the cue in its full form, shape and mass distribution plays many 

different roles during the shot-making process. Figure 4.1 shows the picture of a 

typical snooker cue. 
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Fig. 4.1. A snooker cue 

4.1.1.1 Cue Mass 

A snooker cue usually weighs around 500g (18-21 oz). If the cue is very lightweight, 

significantly lower than the cue ball mass, even if it is manipulated with very high 

velocity the momentum and energy transfer to the ball will not be effective [MarIow 

1994[. In addition, a low cue mass generally implies a reduced stiffness. Since smooth 

follow-through is very important to cue sports, this results in lateral cue deflection 

during the impact and produces miscued shots [Williams 2002[. Moreover, to achieve 

a specific ball velocity, a particular amount of momentum has to be transferred by the 

cue to the ball. Now, with a reduced cue mass, arid to transfer the same momentum as 

before, the cue velocity has to be larger. However, the maximum possible velocity is 

limited by the prime mover, which is proposed to be a motor. In addition, the rotary to 

linear motion conversion limits the linear speeds if a rotary motor is to be used. Given 

the fact that linear motors operate at comparably lower linear speeds, the only 

available option is to go for a rotary motor, for which the problem of speed limitation 

due to the motion conversion arises. For example, the lead screws can only achieve 

maximum velocities of a few hundred millimetres per second. This may be a limiting 

factor and set a lower limit for the cue mass. 

Conversely, if the cue and the associated mass are large, the velocity of the cue can be 

small whilst still having the same momentum as before, but the cue launcher will be 

heavy and its mobility will be difficult. In addition, a comparably large mass moving 

slowly cannot make the cue ball move faster after the impulse (the energy transfer 

will be very poor). Hence, there is a compromise between the mass and the associated 

velocity of the cue. For the maximum energy transfer from the cue to the ball, it can 

be proved, mathematically, that the cue should have the same mass as the cue ball. 

However, the cue mass is generally 3 times that of the ball mass because the focus 
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here is not on achieving the maximum energy transfer, but the controllability of the 

energy transfer [Shepard 1997). The present author found it extremely difficult (or 

virtually impossible) to play fast shots with a cue where the rear half (butt) of the cue 

was removed; even for slow shots, a lack of stability was experienced by the arm. The 

design of the cue launcher strives to keep the inertia of the moving components as 

close as possible to the human cueing. The forearm essentially carries out cueing (see 

Figure 4.2). Hence, by using the typical inertial properties for this portion of the upper 

human limb, it is possible to get an estimate of the inertia involved in human cueing. 

This value must be considered when selecting the motor and the resulting inertia of 

the motorised configuration must be kept close to this value. 

In order to calculate the equivalent mass involved in human cueing, a simple 

calculation is performed. As shown in Figures 4.2(a) and (b), the arm movement 

involves a rotation of the forearm about the elbow and a linear motion of the hand 

while having a rotation about the wrist. Although there is a configuration change in 

the hand to accomplish the desired straight-line motion of the cue, this change is 

neglected and its effect on the linear inertia is ignored. Hence, in Figure 4.2(a), <p is 

assumed to remain constant during the swing of the forearm, which is denoted by 0. 

(a) (b) 

Fig. 4.2. The arm movement during the stroke 
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Table 4.1. Properties of arm segments for a 6 ft tall male subject weighing 75 kg 

[Clauser et al. 1969] 

Location of the 
Second moment 

Segment Mass! kg Length! m centre of 
ofInertial kgm2 

gravity! m 

0.109 0.0066 (about 

Forearm 1.21 0.254 (from the the frontal axis 

elbow) through COG) 

Hand 0.46 0.181 

In addition, it is also assumed that the hand moves linearly with the. cue. Now, using 

the concepts of linear and angular momentum in conjunction with the parallel axis 

theorem to calculate the second moment of inertia about different axes, and using the 

values from Table 4.1, the equivalent linear inertia involved, including the cue mass 

(i.e. 0.5 kg), in the cueing is derived as 1.13 kg. 

4.1.1.2 The Shape and Material of the Cue 

The World Snooker Association, the governing body for snooker, restricts the 

minimum cue length to 3 ft (0.914 m) also asserting that the design shall not depart 

from the traditional and generally-accepted shape and form [WPBSA 2008]. The cue 

taper aids in both easy holding for the human hands as well as providing good 

positioning abilities by being made slender at the tip. The material of the cue, i.e. 

wood with its very high damping characteristics, absorbs a great deal of energy that is 

generated due to the impact. The cue, also being very flexible, vibrates transversely 

during and immediately after the impact thus helping to absorb the energy further. 

4.1.1.3 Cue Tip 

The highly elastic cue tip (usually made out of leather or of synthetic materials 

combined with leather) is compressed during the collision between the cue and the 

cue ball. When the compressed cue tip recovers its shape the cue ball is pushed away 

from the cue. Its soft nature also ensures that it does not make a dent on the cue ball 
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surface. So, if metal parts replace the standard cue tip, as has been done in a few 

projects [Alian et al. 2004], the cue ball may not travel as fast as with the regular tip, 

for a given cueing velocity. 

4.1.2 Length a/Stroke, Velocity, and Acceleration Requirements 

This section aims to define some numerical values for the motion parameters of 

human cueing, in order to identify the requirements for the motor to be selected. 

4.1.2.1 Length of Stroke 

The length of stroke does not vary too much in snooker, because it is related to the 

player's comfort and skills. Once a player starts to alternate the length of stroke 

excessively, the 'feel' for the shot-making will be lost. Hence, some consistency can 

be assumed in the length of stroke. However, there are also other considerations, like 

the power of the shot, which plays a part in the stroke of the cue. No study exists in 

this regard. On making some measurements with different players (some reasonably 

good players, who can pot 5 balls continuously on regular basis, and amateurs) with a 

metre scale, and using some of the videos available from Alciatore [2008], it is found 

that the stroke lengths generally vary between 120-250 mm. 

4.1.2.2 Velocity 

The required velocity of the cue depends on how powerful the shot has to be. The 

equivalent cue mass (cue mass and the associated inertia of the moving upper limb) 

depends on the nature of the grip of the hand. No study exists in this regard, and the 

effects of different grips have been neglected, hence, it is assumed that here that a 

tight grip exists. Hence, the equivalent mass of the cue side is treated as a constant. 

Now, also using the principle of momentum conservation, the cue ball velocity 

depends only on the cue velocity. In pool, the fastest cue ball speed reported ever is 

15.6 mls, played by a martial arts student, and more typical break speeds are around 9 

mls [Sbepard 1997]. However, in snooker, the shots are relatively slower when 

compared with pool. Since a permanent machine vision camera for the system is not 

available already, some experiments to measure the cue velocity have been performed 

by using a NAC HSV -400 high-speed video camera. A calibrated scale is placed 
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behind the cue ball, for distance measurements along the horizontal, and cueing is 

tracked at 1,000 frames per second (fps). For very fast shots (similar to break shots), 

the cue velocity is found to be in the range of 3-4 m1s. The cue velocity from the 

proposed motor drive is expected to attain velocities of this magnitude. 

4.1.2.3 Acceleration 

Since the cue is expected to reach velocities of around 4 m1s, the cueing involves very 

high accelerations within a short duration. However, the rules of the game suggest that 

there has to be a single impulse between the cue and the cue ball, i.e. multiple impacts 

are prohibited by the rules of the game [WPBSA 2008]. This rule constricts the cue 

motion in that there cannot be any acceleration on the cue immediately after it has 

struck the cue ball. It must be noted here that the cue ball will decelerate immediately 

after the impact due to the friction from the table. Hence, if inadequate consideration 

is given to the cue motion profile at the time of impact, multiple impacts may possibly 

happen. Therefore, it is safer to have zero acceleration when the cue strikes the cue 

ball, and this feature must be available in the cue launcher. For a maximum cue 

velocity of 4 m1s to be reached from rest, for example, within 0.2 s (typical cueing 

times are given in Section 3.2.1.1), the average cue acceleration has to be 20 m/s2 

The motor should be powerful enough torque to have this amount of acceleration, 

which produces high inertial forces in the cue launcher. Besides, the motor must also 

be able to accelerate at this rate. 

4.1.3 Force Transferred 10 Ihe Ball 

When the cue strikes the ball, a large force is transferred within a very short time. The 

force calculations at the cue tip-cue ball interaction is important, as the selected motor 

must have adequate driving torque to counter this high force during impact. In 

addition, the contact force is needed to calculate the energy loss during cueing. The 

energy loss, in turn, will influence the power of the selected motor drive. Knowing the 

order of magnitude of the force is also important for the selection of a suitable force 

sensor for this application. 
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A review of the existing literature shows that the force values encountered in 

snookerlbilliards cueing are not documented anywhere. Simple experiments are 

performed together with a few calculations to estimate the force at the cue-cue ball 

interface. During the impact of the cue on the ball, the force initially increases with 

time attaining a peak value and decreasing as the ball separates completely from the 

cue. Marlow (1994) suggests a sine-squared profile for this variation, as shown in 

Figure 4.3. To any general impact, the impact-momentum equation J F.d/ = MVG 

holds. Where M, the mass of the ball, is 142 g (the tolerance in the ball mass in a 

particular ball set is to be within 3 g according to WPBSA, the governing body of 

snooker). 

0 .• 
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0 .• 
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Fig. 17. Fonn of the sine squared time dependent force profile. 

Fig. 4.3. A force vs. time prediction for the cue-ball impulse [Mar1ow 1994), Fa 

denotes the peak force 

The idea here is to calculate the contact force by estimating the momentum transferred 

to the ball together with the time taken for the collision between the cue and the cue 

ball. The literature consists of some information about the impact time variation with 

respect to other factors, such as the cue ball velocity. Marlow describes an 

experimental procedure to measure the impact time where the cue tip and the cue ball 

are separately wrapped with aluminium foil and using a capacitive-resistive circuit 

with a digital voltmeter [Marlow 1994). The circuit is closed by the aluminium foils 

coming into contact during the time of impact, then, the charge that is accumulated in 

the capacitor is used to get a value for the impact time, which is the time the circuit is 

kept closed. A similar setup used by Marlow (1994) to measure the collision time 
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between two balls is shown in Figure 4.4. The resulting impulse time for the cue--{;ue 

ball impact is given as a plot against the cue ball velocity (see Figure 4.5). 

Cue Ball 

Aluminum 
Strips 

Battery 

Fig. 18. The experimental set up to measure collision lime 
between two billiard balls. The capacitance used was 10 ~ and 
two values of resistance were used, 1000 Cl and 500 Q. 

Fig. 4.4. Measurement of collision time between two pool balls [Marlow 1994[ 
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Fig. 89. The experimental data (eight points) for 
measurements of the interaction time as a function of 
the Cue Ball velocity. The curve is 8 least squares 
fit to a vo·1f3 functional of the interaction time OD 
the incident Cue Ball velocity. 

Fig. 4.5. Time taken for the impulse vs. cue ball velocity [Marlow 1994[ 

The data available from Figure 4.5 are used in conjunction with David Alciatore's 

high-speed pool shot videos to determine the order of magnitude for the force 

involved [Alciatore 2008[. From a video captured at 1000 fps, approximate 

measurements are made manually to determine the ball velocities and impulse time 

(spatial measurements are made by comparing the image parameters to the size of the 
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ball in the image, its real size being known). For example, a 4 m/s velocity of the cue 

prior to impact results in a cue ball velocity of 6 m/s and is approximately found to 

have a I ms (associated with a ±0.5 ms tolerance) impulse time (based on visual 

estimation of the contact between the cue and ball). This time value closely agrees 

with the variation available in Figure 4.5 (a little above I ms). Now, for these 

experimental values, using the equation f F.dt = MVG· together with a triangular force 

function approximating the variation given in Figure 4.5, the peak force, Fmax, can be 

calculated. 

0.5Fmax. t!.t = MVG 

Fmax = 0.142 x 6 I (0.5 x I x 10-3
) 

= 1700 N 

Notably, 6 m/s is a fairly high cue ball speed and is considered a high-powered shot. 

In addition, a purely experimental procedure involving striking the ball with an 

impulse hammer is also performed in order to obtain the force values and to confirm 

the values obtained from the high speed videos of Alciatore (2008). A Bruel & Kjaer 

Impulse Hammer with a B&K Nexus Conditioning Amplifier is used to measure the 

force on hitting a snooker ball (see Figure 4.6). 

Fig. 4.6. Force measurements with an impact hammer 

The ball velocity is measured approximately using a stopwatch and a tape measure. 

The waveform is observed in an oscilloscope to measure the maximum force and the 
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time taken for impulse. It is also observed that the force-time variation during the 

impulse is almost as described by Marlow [1994) and shown in Figure 4.3. High­

speed shots are found not to be possible with the impulse hammer due to the difficulty 

in hitting the ball at its stun point at high speeds (a slight off centre hit is found to be 

difficult as well, since the impulse hammer tip does not have very good frictional 

properties). However, for a shot with 1.4 m/s cue ball speed (which is an average 

speed shot) the impulse time is measured as 2 ms and a peak force of 0.55 kN is 

obtained. Therefore the values obtained from two independent methods agree when it 

comes to the order of magnitude of the forces and the interaction times involved. 

These force values are considered for the selection of the motor. 

4.1.4 Power Needed/or Cueing 

The calculation of cueing power is performed from the measurements made from 

David Alciatore's high-speed videos [AIciatore 2008). As seen in Section 4.1.3, for a 

cue speed (Vc) of 4rn1s the impact time is found to be I ms and the resulting ball 

velocity (Vb) is 6 rnIs. A peak force of 1.7 kN (corresponding to a triangular variation) 

or an average force of 0.85 kN is obtained when the impulse-momentum equation is 

used. 

Cue power available, 

Energy transferred from the cue 

Ec = F. Vc 

= 0.9 x 1000x 4 

= 3.6 kW 

Ec =c Ec. /'"t 

= 3.6 x 1000 x 0.001 

= 3.6 J 

The energy of the cue ball immediately after the impact 

Energy efficiency of the cueing process 

Eb = Yz (MV/) 

= 0.5 x 0.142 x (6)2 

= 2.6 J 

= 2.6/3.6 

= 0.71 
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This indicates an almost 30% energy loss at the cueing. When other losses, like the 

power loss due to friction at the linear guides (a linear guide is needed to guide the 

cue motion) and the losses in the motor gearbox, are also considered, the energy 

needed will well exceed the value of3.6 J. For this particular shot, say the stroke is 10 

cm (this is around the least possible region, as given in Section 4.1.2.1), and assume 

that the cue is at constant acceleration from the start of the stroke, the time needed to 

reach 4 m/s can be calculated in the following manner. 

v' 
From, v' = u' + 2as , as the cue starts from rest, a = -

. 2s 

a= 42/(2 x 0.1) 

= 80 m/s2 

This is yery high as a very small stroke length is assumed (this could lead to a smaller 

power-up time) to be on the safe side when calculating the motor power. 

Now using, s = ul + ~al', with u =0, 1= rz; 
2 V~ 

J 

t = (2 X 0.1180)°5 

= 0.05 s 

Hence, the marginal energy of 3.6 J must be developed within 0.05 seconds needing a 

cue power of 72 W. However, the power rating of the selected motor must be higher 

than 72 W, as it also has to overcome various other losses, as outlined above. 

4.1.5 Mechanical Manipulation of the Cue 

Mechanical components should have an element to convert the rotational motion of 

the motor to a linear motion that drives the cue. Several options are considered. The 

human cueing operation is analogous to a linkage-based motion conversion. By 

having a two-element link and two motors to represent the elbow joint and the wrist 

joint, a linear motion can be obtained at one end of the linkage. A two-motor solution, 

although sophisticated, introduces many additional complexities such as: increased 

cost, weight, bulkiness, coordinated control of the two motors, etc, and thus is deemed 

unsuitable. 
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Other standard solutions such as wonn and wheel, belt and pulley-based linear motion 

conversion, are deemed unsuitable considering the. maximum speeds obtainable and 

the rigidity in manipulation, respectively. When discarding these alternative motion 

conversion methods, one of the obvious choices is a rack and pinion. This solution has 

the advantage of very high linear speeds that is suitable for the operation, rigidity and 

compactness - given adequately rigid support conditions. When compared to the 

linkage-based operation the linear cue displacement is also simply related to the motor 

rotation by, x=ke, where k is a constant. 

4.1.5.1 Rack, Pinion and Slider 

Factors such as the length of stroke, the allowable load of the rack (since it has to 

withstand high impact forces) and the mass involved should be in accordance with the 

mass considerations, as given in Section 4.1.1.1. For the impact forces under 

consideration, as defined in Section 4.1.3, it is not possible to select a rack that also 

complies with the mass requirement as outlined in Section 4.1.1.1. A rack from HPC 

Gears Ltd, with a length of 300 mm and a pitch of 2.0 module and a mass of 0.83 kg 

was selected. A pinion of 2.0 module, 30 mm diameter, and 0.1 kg mass is also' 

chosen. The pinion will be coupled to the motor through a gearbox, and the rack has 

the cue attached underneath it by means of a bolted holder (there are provisions for 

two holders underneath, as shown in Figure 4.7, but one is considered to be 

sufficient). The rack is bolted to two rails at both sides, which is in turn sliding on 4 

carriages, as shown in Figure 4.7. The carriages are rigidly attached to the main frame 

of the cueing device. The location of the carriages allows a maximum stroke of 170 

mm. NSK carriages and rails are selected after checking for the allowable load for an 

assumed life span of the sliding system with the appropriate loading considerations as 

set out in the NSK product selection guide. 
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, 
Carriages 

SI 

cue holder 

Fig. 4.7. The rack and slider with the cue holder bolted underneath 

The cue can be attached to the cue holder blocks (see Figure 4.7), either rigidly, by 

directly clamping the cue between the aluminium cue holders, or 'softly', by 

introducing a rubber pad between the cue and the cue holders. The latter will closely 

resemble a human palm that dampens some of the impulse, but accuracy and 

repeatability issues may arise. 

Fig. 4.8. Two views of the cue launcher- without motor 

All the components of the cueing device are fabricated out of aluminium to reduce the 

weight of the structure and for aesthetic reasons. Bolted connections are used because 

of the alignment problems that can occur with the 4-carriage system during the 

assembly stage. Two photographs of the assembled cueing device are shown in Figure 

4.8. The unit is 0.105 m x 0.160 m x 0.375 m in dimension (including the rack) and 

weighs 3.3 kg (without the motor) 
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4.1.6 The Cue Bridge 

A cue bridge (see Figure 4.9 (a)) is very important from the human perspective of 

playing snooker. The figure shows a type of hand-bridge (there are also many other 

configurations used) and Figure 4.9 (b) shows a bridge that is used where it is difficult 

to form a hand bridge. The cue bridge helps positioning the cue on the ball accurately. 

In addition, it facilitates a smooth movement of the cue with less friction. Moreover, it 

helps to achieve a smooth follow-through. 

(a) (b) 

Fig. 4.9. Arm bridge and a wooden bridge 

The bridge allows the cue to undergo transverse vibrations immediately after the 

impulse, suppressing the dynamic effects due to the impulse. A simple V bridge made 

of aluminium is used with the cueing device. As the cue is driven parallel to its axis 

and due to there being a slope of 0.375° in the cue, there is a I mm upward shift for a 

stroke length of 170 mm on the cue bridge, which is minimal. Alternatively, this can 

be taken care of suitably, by means of a vertical adjustment to the bridge. The 

configuration shown in Figure 4.10(a) is designed so that the bridge's position is 

adjustable horizontally and vertically up to 20 mm. The arrangement of the bridge 

attachment to the cue launcher is shown in Figure 4.1 O(b). 
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(a) (b) 

Fig. 4.10. Cue bridge and its attachment to the cue launcher 

A unit that supports the cue bridge and also rests on the table has also been designed 

to give stability to the front portion of the cue. Here, it must be noted that only the 

main body of the cue launcher (see Figure 4. 1 O(b)) is given structural support and its 

front part resembles a cantilevered beam. This cantilevered configuration can give rise 

to vibrations and this may in turn change the point of impact with the ball thereby 

imparting a different spin to the ball to that required from the robotic system. A 

picture of the frontal support unit, which holds the overhanging part of the cue 

launcher, is shown in Figure 4.11. The jaws that hold the cue launcher can be 

manually adjusted either in the vertical or horizontal plane according to the motion of 

the platform on which the main body of the cue launcher is mounted. 

Fig. 4.11 . Frontal support for the cue launcher 
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4. J. 7 Drive Motor for the Cue 

Both DC motors and servomotors are considered as potential candidates for the cue 

launcher unit. Considering the precise control needed for cueing, and the very 

accurate positioning abilities of servomotors, servos are deemed suitable for the cue 

manipulation operation. Both the brush type and brush less type servomotors, both DC 

and AC powered, were considered. A fler much consideration about the cost, type of 

power supply needed, encoder/tachometer availability, weight and also in accordance 

with the analysis performed in Section 4.1.4, a servo system from SureServo™ called 

the "200 W Low Lnertia System" was selected. This uses a brush less DC motor. The 

drive amplifier also consists of a built-in power supply. The motor has been fixed 

with a 10,000ppr encoder enabling very accurate feedback control. imilar models 

from other manufacturers generally only have one tenth of this resolution. The 

equivalent linear inertia of the cue driving system is estimated to be S.S kg. 

controller 
::==;:? 

Fig. 4.12. External pulse control of the servo unit 
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Servo drive parameters can be programmed by using the servo drive's built-in keypad 

with LED display or through SureServo Pro' configuration software from within a 

computer. There are three control modes available: position, velocity and torque. The 

velocity and torque can be controlled with a ± I OV analogue input signal or with the 

onboard Internal Indexer. The motor can also be controlled by the pulse and 

directional inputs from a PLC, a microcontroller or a line driver encoder. The 

controlling pulse rate can be as high as 500 kpps (kilo pulse per second). 

Ilere, the servomotor is controlled from an lensys" board through a terminal block 

called the ZIPLink kit (see Figure 4.12). The Iensys~ board 's 4 output pins are 

programmed to emulate the 4 output channels of a quadrature encoder (see Appendix 

I for the connection diagram). The pulse rate decides the speed of the launched cue. 

The microcontroller decides on the pulse rate depending on a string that it receives 

from the PC via the RS-232 port. By changing the phase sequence of pulses, the 

motor is reversed at the end of a stroke to its original position. The servo controller 

also has an electronic gear ratio setting whereby the user can scale the high-velocity 

positioning pulses coming into the drive. Using the ZIPLink kit block, it is also 

possible to obtain the encoder readings of the servo, for monitoring purposes. 

A 3: I reduction gear box from Shimpo Orives~ is fitted to the motor to increase the 

output torque at the load. The gearbox also ensures that the motor is operated at its 

rated speed. 

4.2 Cue Positioning System 

Accurate positioning of the cue on the ball is taken care of by a stepper motor stage. 

The stepper drive is an AEROTECll AT 302 2-axis linear stage, as seen in Figure 

4.13. This has been a spare unit in the mechatronics lab, and is not custom-selected 

for this application. It has a linear positioning accuracy of 2 ~m1pulse, which is more 

than adequate for the positioning purposes. In ' Auto' mode, it is controlled by the PC 

through a OB-25 parallel port. It also has a 'Manual ' mode, where a toggle switch is 

used to move the X and Y motors. Although it was initially programmed to be 
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operated from VB, since the drive itself does not have any encoder, the "Manual ' 

mode is expected to be used. Both axes have a maximum travel of 50 mm. The load 

capacity is 10 kg each for the axes. Since the vertical load from the cue launcher 

marginally exceeds this value, a new high torque motor has been fitted to the stage. 

(a) (b) 

Fig. 4.13. Two-axis AEROTECH® stepper drive and its controller 

The stepper is mounted on the bottom of the cue launcher through a bracket fabricated 

out of aluminium (see Figure 4.14). The bracket has a slot by which cue tilt angle can 

be adjusted. 

adjustment 

FigA.14. The cue launcher mounted on the stepper drive assembly 
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4.3 Camera and Vision 

When selecting a camera, it is preferable to opt for a relatively high-resolution 

camera, to minimise any compromise on the spatial accuracy issues. The snooker 

table dimensions are 3xl.5m and a spatial resolution of around lmm/pixel is targeted 

from the selected camera. In addition, as the project aims to use video for ball 

tracking, a high frame rate (higher than the regular 30 frames per second (fps) mark) 

is required. This is in keeping with the fact that the ball velocities are typically in the 

order of a few metres per second, and to track the ball at close spatial intervals, a high 

frame rate camera is needed. However, a brief product survey on high resolution 

(several megapixel), high-speed cameras showed that the camera prices increase 

exponentially with the resolution and frame rate, and for the requirements set earlier 

in this section, the cost of the camera would be around several thousand pounds. 

As a compromise, it was decided to select a high-resolution, low frame-rate camera 

with the region of interest (ROI) option that also enables high-speed capturing of 

images for partial images. It was also decided to position the camera in one half of the 

table, divided along the lateral length of the table- connecting the middle pockets -

thus not compromising on resolution but at the same time having the option of 

relatively higher frame rates. 

A colour camera is required, because the table contains balls of different colours. 

Although the coloured balls have proved to be differentiated with their intensity 

values ISbu 1994], in support of the use of monochrome camera, very uniform 

lighting conditions throughout the table are necessary to accomplish this task. If a 

colour camera is found to accurately differentiate the balls under the current lighting 

condition over the snooker table, there will be no need for uniform lighting, which is 

very costly. 

Shutter opening time, which directly influences motion blur, is also taken into account 

when choosing a camera. Exposure time must be short enough so that the ball moves 

by less than one pixel during shutter opening and subsequent sensor exposure, 

providing a crisp image. Both CCD and CMOS cameras were considered. 
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Consequently, a CMOS Firewire colour camera PL-B776F from PixeLINK® was 

selected (shown in Figure 4.15). The image intensity of the camera can be either 8 or 

IO-bit depth, and it has a resolution of2048x1536 pixels at a nominal frame rate of 12 

fps. When the RO! option is used, the camera can capture images at up to 1,000 fps. A 

spatial resolution of 1.5 mmlpixel is possible with the camera, when its field of view 

covers the table area fully. Furthermore, for this spatial resolution and for a maximum 

ball speed of 10 mls (this is a high-end ball velocity), an exposure time of 1.5 ms is 

required. The selected camera fulfils this requirement. 

Fig. 4.15. PixeLINK® PL-B776F Firewire Camera 

AY," megapixel grade lens, H2Z0414C-MP, from computar® was chosen to be used 

with the camera. It has an adjustable focal length of 4-8 mm. The lens is selected 

based on the calculations that considered the available headspace and the table 

dimensions. This is a wide-angle lens according to industry norms (a lens that has an 

angle of view between 60° and 100°), and this lens is expected to produce high 

distortions in the captured images. A metal frame is attached to the joists of the 

mezzanine floor above the snooker table, and the camera was rigidly mounted on this 

frame. The camera was positioned above the table so as to face vertically down onto 

the table. More than half of the table is viewed by the current positioning of the 

camera (5 ft x 6 ft to be precise), covering the four pockets around the foot spot on 

that table (refer to Figure 4.16). This field of view for the camera results in a spatial 

resolution of I mm/pixel, a 33% increase compared to the camera being used to view 

the whole table. Moreover, as four pockets are covered by the camera field of view, 

the robot can be positioned to play a number of different shots, allowing it a variety of 

options. 
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4.3.1 Table illumination 

For the image-processing algorithm to deliver good results, quality images should be 

available. The image processing software cannot compensate for the missing or 

inaccurate image data from the camera. Hence, the table illumination is important. 

The values required for the table lighting, as per the rules in billiards, are shown in 

Figure 4.16 [Marlow 1994]. Moreover, it is suggested that the variations in the 

lighting between any two points on the table shall be less than 200 lumenlm2
• Two 

200 W incandescent frosted bulbs located I m above the playing surface at the Head 

Spot and Foot Spot (see Figure 4.16) are recommended to achieve the above 

conditions [Marlow 1994]. 

r-

~ D 

0 Foot Spot 
Head Spot 

~ I 
l~J 

"'- ~ .. ., 
;!!~ ~ ;p 

~ D 

~ ~ ~ 

Illumination of points A, C > 190 lumenlm2
, B > 330 lumenlm2

, D > 210 lumenlm2 

Fig. 4.16. Table illumination requirements [Marlow 1994]. 

In the present arrangement, panels of fluorescent strip lights with standard diffusers 

illuminate the table area, and the panels are situated asymmetrically above the table. 
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4.3.2 Selling up the Camera 

A calibration procedure is performed to correct for barrel-type distortion that is 

present in wide-angle lenses (see Figure 4.17 (a) and (b». The procedure is called 

intrinsic camera calibration. The camera calibration toolbox from the Computational 

Vision Group at Caltech is used in conjunction with MA TLAB® to calibrate the 

camera; for a detailed description of the procedure refer to Bouguet [2008). 

(a) (b) 

Fig. 4.17. Distorted and corrected images of 5 ft x 6 ft table area 

The toolbox also incorporates an extrinsic calibration element. The extrinsic 

calibration procedure enables real-world measurements to be made from the values 

measured in terms of pixels from images. 

Camera 

U;' C 

Ux' I 

Uy 

Image 
coordinate system 

o 
Real World 

coordinate system 

Fig. 4.18. The pinhole camera model 

x 
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The extrinsic calibration procedure provides transformation (translation and rotation) 

matrices between the real-world coordinate system and the image plane (Figure 4.18). 

These matrices allow metric measurements to be made from parameters measured in 

the image plane. The equation for the transformation between a point in the real-world 

frame XX to its corresponding image point in the camera frame XX' is 

[X'J= [Rc J* [x J + [Tc], where [R,c.J and [Tc J are the rotation and translation matrices, 

respectively [Heikkila and SilveR 1997[. 

Fig. 4.19. Extrinsic calibration pattern placement (un-distorted image) 

Here, the real-world coordinate system is selected such that it is fixed to the snooker 

table so that two of its axes lie along the two perpendicular edges of the table, and 

both Ux and Uy lie on the imaginary plane that is created by the ball centers, as 

depicted in Figure 4.19. Snooker balls have a uniform diameter of 52.4 mm; hence, 

the imaginary plane lies at 26.2 mm above table surface. Image blur, due to fast 

moving balls, is kept to a minimum by selecting the lowest possible shutter opening 

time available in the camera. Image sequences with high image blurs are not analyzed. 

This quantification is performed by counting the pixels of a moving ball and then 

comparing it with the number of pixels found in a stationary ball. 
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4.4 Cue-tip Force Sensor 

Considering the nature of the geometry of the cue-cue tip interface and the force 

transferred from the analysis performed earlier in this chapter, a thin film (0.208 mm 

thick) force sensor called Flexiforce® A201-100 was chosen. The thin film sensor, 

firmly sandwiched between the cue tip and the cue shaft, is not expected to change the 
.. 

cue characteristics mentioned earlier in this chapter. The sensor can measure loads in 

the range of 0-4400 N [Tekscan 2009[, making it suitable for measuring the forces at 

the cue tip (see Section 4.1.3). The sensor also has a response time of less than 5 Ilsec 

making it possible to measure the impulses that have an active time in the order of 

milliseconds. The sensing area is circular with a diameter of 9.53 mm. The diameter 

of the cue at its tip is around 9 mm for the Riley® snooker cue used. The sensor is 

firmly glued to the wooden part of the cue and then the cue tip is glued over the 

sensing area of the sensor (see Figure 4.20). 

Fig. 4.20. Force sensor attached to the cue 

An amplifier circuit recommended by Tekscan, Inc (Appendix I) initially conditions 

the data from the sensor. Data acquisition is performed using a National Instruments® 

(NI) 9215 sampling input module fitted with a NI USB-9162 carrier (see Figure 4.21). 

The sampling can be at up to 100 kS/s (100 kHz) from this data acquisition unit. Here 

it is operated at 10kHz, giving 20-40 data samples during the impulse, depending on 

the magnitude of the impulse. The device is controlled from the main VB program as 

described in Section 3.2.2. The data from the device is programmed to be saved in a 

text file and then retrieved by the program to do the force-time integration in order to 

80 



~ ----~-------

obtain the value of the impulse. A numerical integration scheme based on the 

trapezoidal rule is used here. The algorithm also detects the peak force measured. 

Power supply 

Fig.4.21. The force measurement setup 

4.4.1 Force Sensor Calibration 

Voltage readings out of the force sensor have to be related to the actual force by a 

calibration process. A mil® load transducer, of type U4000, is used to calibrate the 

force sensor. The load transducer has a force range of 0-1500 kgf. During the 

calibration, the cue is kept tightly in contact with the load cell through a little-used 

worn cue chalk block that ensures that the cue stays in place, preventing the lateral 

movement to the loading direction. An axial force is applied to the cue by holding it 

rigidly through a C-clamp, as shown in Figure 4.22. 

When the force readings are stabilized, the force value is read out on the indicator of 

the load cell and the corresponding voltage out of the force sensor circuit is also 

measured. Using multiple readings, a calibration curve is plotted. Tekscan, Inc [2009[ 
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obtain the value of the impulse. A numerical integration scheme based on the 

trapezoidal rule is used here. The algorithm also detects the peak force measured. 

Fig.4.21. The force measurement setup 

4.-1.1 Force Sensor Calibration 

Voltage readings out of the force sensor have to be related to the actual force by a 

calibration process. A mil® load transducer, of type U4000, is used to calibrate the 

force sensor. The load transducer has a force range of 0-1500 kgf. During the 

calibration, the cue is kept tightly in contact with the load cell through a little-used 

worn cue chalk block that ensures that the cue stays in place, preventing the lateral 

movement to the loading direction. An axial force is applied to the cue by holding it 

rigidly through a C-clamp, as shown in Figure 4.22. 

When the force readings are stabilized, the force value is read out on the indicator of 

the load cell and the corresponding voltage out of the force sensor circuit is also 

measured. Using multiple readings, a calibration curve is plotted. Tekscan, Inc [20091 
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suggests a linear variation between the output voltage of the sensor and the force 

measured for its Flexiforce® sensors, and this variation has also been experimentally 

validated by Komi et al. [20071. The plot obtained is shown in Figure 4.23. 

C-c1amp 

Fig. 4.22. Cal ibration of the force sensor using a load cell 
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Fig. 4.23. Calibration results for the force sensor 
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The dynamic forces that are present at the cue-cue ball interface during collision are 

larger than the force range given in the calibration curve. However, only a maximum 

static force of around 250 N could be applied to the cue-tip, and beyond this the cue 

started to bend and appeared to be about to break. Dynamics forces of this magnitude 

do not harm the cue as they only last, at most, for few milliseconds. However, the 

linear variation assumption is used to estimate the value of the forces that are outside 

the calibration, using the gradient of 133.3 NN obtained from Figure 4.23. Extensive 

tests from Komi et af. [2007) present the evidence for a linear variation for this type 

of force sensor. 

4.5 Overall configuration of the system 

The overall layout of the system is depicted in Figure 4.24. Some more photographs 

of the system are given in APPENDIX I. 
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Summary 

Here the specific details of the system development have been given. Then the design 

of the system is explained. The previous literature barely had any details and 

numerical values of the various parameters on which this design could be based. 

Various techniques, such as the use of relevant equations, performing some 

approximate reasoning on the data produced by other researchers have been used. 

Some 3-D drawings and the pictures of different fabricated units have also been 

provided here. 
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Chapter 5 

EXPERIMENTS ON THE DYNAMICS OF SNOOKER 

The literature review given III Chapter 2 shows that the values of many of the 

parameters related to the dynamics of snooker have not been measured 

comprehensively. In many cases these values are found only for the game of pool, for 

.example, those detailed parameters given by Marlow [1994). However, a system­

dynamics-based approach for the determination of the ball trajectories in snooker, in 

order to apply appropriate robotic manipulation strategies, calls for a mathematical 

model for the dynamics of snooker. The mathematical model, in turn, will consist of 

several parameters related to the ball motion, as described in Section 2.4. This chapter 

describes a novel, high-speed camera, tracking-based experiment to determine the 

parameters involved in snooker dynamics. In addition, experimental results from the 

force sensor that is incorporated into the cue are also provided. A number of results of 

a camera-force sensor combined measurement setup are also given in this chapter. 

Some efforts to track the ball spin within a limited area on the table using a single 

circular pattern on the ball have also been reported at the end. 

5.1 High-Speed Camera Based Results 

High-speed tracking technologies are extensively used III sports such as football, 

tennis and cricket [Pingali et al. 2000, Davis 2009). Alciatore [20041 has also used 

high speed video capture to clearly visualise the dynamics in the game of pool, where 

such videos are used to illustrate many principles found in pool in an inspiring way. 

Alciatore [2009) has also made use of infrared imaging to visualise the collision 

points. The collisions produce heat, and the associated high-temperature region is 

distinguished by the infrared imagery. However, Alciatore has not analysed any of the 

videos to extract the physical parameters involved in the dynamics of pool. Cross 

[2008), in a very recent work on billiards, has employed a video camera to measure 

86 



the ball velocity and ball spin using an overhead camera, and used this approach to 

analyse squirt dynamics in a cue ball suspended as a pendulum bob. 

-
Camera 

e· 

Fig. 5.1 . The ceiling-mounted machine-vision camera in the mechatronics lab 

The research reported in this thesis employs a machine-vision camera, as explained in 

Section 4.3. The camera is mounted overhead on the ceiling, right above the snooker 

table, looking vertically downwards (see Figure 5.1). To independently verify that the 

measurements made by the camera are accurate, prior to the actual measurements, 

some distance measurements were also made with a metre rule. For this purpose, two 

rectangular blocks, having a height of half the ball diameter, with circular white 

patterns on their top surfaces were placed at two different locations on the table. 

Circular patterns of diameter 52.4 mm (i .e. the ball diameter) were used so that the 

camera and the image-processing algorithm would treat them as balls. The distance 

between the centres of the circular patterns was obtained both from the camera and by 

using the metre rule. This method was used because it was very cumbersome to 

physically measure the centre distance between two random snooker balls due to the 

balls changing position even with the slightest touch. This procedure was repeated for 

several random positions of the blocks covering the 5 ft x 6 ft area of the table that is 

imaged by the camera. The di fferences in measurements by the two methods were 

found to be at most 2 mm, and the metre rule measurements are subject to ±O.5 mm 

error. Hence the ball centroid measurement is performed to an accuracy of ±O. 5 mm. 
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The pre-processing of the video acquired by the camera was performed usmg 

MA TLAB®. The flowchart of the algorithm is shown in Figure 5.2. The camera 

calibration procedure is described in Section 4.3.2. 

The video file is brought into Matlab® -
this will save the movie as an array. 

~ 
Split the array frame-by-frame and save 
each frame as a sequentially-numbered 

Image. 

~ 
Convert each image to greyscale, and 

replace the original one by its greyscale 
Image. 

~ 
Load the intrinsic and extrinsic 

calibration parameters. 

1 
Is the image full size? No 

(i.e. If ROI option is used + 
Concatenate the image with 

T Yes zeros in the right areas to 

U ndistort the greyscale images 
make it full size (2048xI536) 

I and save. Repeat for all the 
images of the video. 

~ 
Object detection algorithm. 

Fig. 5.2. Algorithm for the pre-processing of an image 

Two standard functions bwlabel and regionprops within the MA TLAB® Image 

Processing Toolbox were used to extract the ball from the image, and then to extract 

the ball centre in pixel values. Finally, the real-world coordinates of the ball centroid 

are obtained using the transformation matrices, Rc and Tc, as obtained from the 

extrinsic calibration procedure (refer to Section 4.3.2). The time-stamping of the 
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spatial positions of the ball centres, based on the camera frame rate of capture, enables 

the calculation of the velocities and accelerations of the balls. 

The combined repeatability of the camera and the image-processing algorithm is 

found to be 0.1 pixels, on average, when it comes to detecting the centre of the ball. 

Since the camera images the table area to a spatial resolution of 1 mm/pixel, the spatial 

repeatability of the imaging system is 0.1 mm, as far as the ball centre detection is 

concerned. The inconsistency in the ball centre detection is mainly due to noise 

problems associated with the image sensor and due the inconsistencies involved in the 

table illumination. 

Now, the following equation can be written to evaluate the ball speed, 

Ball speed = Distance travelled between successive * Camera fps (5.1) 

(in metres/second) image frames (in metres) 

Usually, the first image frame in which the ball has started moving commences the 

image sequence that is used for the tracking. When equation (5.1) is used for high 

frame-rate capture, due to the camera repeatability in the order of one tenth of a 

millimetre, changes in the tracked positions are magnified and "error speeds" are 

produced. The obtained "error speed" values were up to a maximum of 0.05 rnIs at 

200 fps camera capture rate. However, this value is relatively small when compared to 

the normal ball speed values that are encountered in snooker. 

Figure 5.3 shows the tracked cue ball positions of an extremely high-speed shot 

superimposed on the image that was captured at the start of the tracking, also shown is 

the initial cue ball location. White markers denote the successive centroids of the cue 

ball. 
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Fig. 5.3. Tracking the cue ball (4 consecutive impacts within two parallel cushions are 

shown) 

5.1.1 Friction Coefficients 

5.1.1.1 Rolling Friction 

Figure 5.4 shows the variation of the ball velocity with respect to time (the complete 

motion profile until the ball comes to rest is not shown here). As seen in Figure 5.4, 

once the impulse is delivered to the ball, the ball velocity decreases rapidly, during the 

sliding phase as described later, and then the ball starts to roll. The velocity gradient 

during the rolling phase gives the value of the deceleration due to rolling friction. 
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Fig. 5.4. Speed-time plot for the ball showing different phenomena involved from the 

video captured at 42 ·fps 

Different shots were tracked and the deceleration during the rolling phase was found 

to be very consistent between 0.124-0.126 m/s2 The rolling friction as a non­

dimensional number (in relation to the gravitational acceleration g) is evaluated as 

0.0127-0.0129. Marlow [1994) suggests a range of 0.011 to 0.024 for the game of 

pocket billiards (widely known as pool), and suggests a meim value of 0.016. Here it 

must be noted that the physical properties of the ball and table in pool and snooker are 

different. However, there is no clear reason for this excessive variation (more than 

100% of the lower value) obtained in pool using Marlow's measurements. The only 

plausible explanation is that the metre stick and stopwatch measurement method that 

was used by Marlow is very limited and excessively prone to errors due to human 

judgments. Although Williams [2002) claims that the nap of the table felt affects the 

ball motion, depending on whether its motion is toward the top cushion or away from 

it, no evidence was found in the results to substantiate this claim. 

5.1.1.2 Sliding Friction 

The ball speed-time plot given in Figure 5.4 shows that the sliding friction is much 

larger than the rolling friction. In addition, the sliding phase is also shown to 

disappear within a very short period of time, but it diminishes the ball velocity 

considerably (Figure 5.4). Another interesting observation from this plot is that, once 
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the ball has entered the rolling phase, when it collides with the cushion (wall/rail) it 

starts to slide again (note the speed gradients immediately after the cushion impacts), 

because the cushion impact breaches the V=Rw condition that is attained by the ball 

during rolling. Therefore, the ball starts to slide again. Once the condition V=Rw is 

reached, the ball again starts rolling. 

From the analysis of the speed of the tracked ball, the sliding friction coefficient was 

found to be. in the range of 1.75-2.40 m/s2 (0.178-0.245 non-dimensionally). These 

values were obtained for the ball motion along different, random directions on the 

table. Hence, the average non-dimensional value of 0.21 will be used from here 

onwards for the sliding coefficient of friction. Marlow [19941 suggests a non­

dimensional value of 0.2 for pool; Marlow calculated this value from certain 

theoretical derivations, and, in the process, also made use of the rolling coefficient 

value of 0.016, as seen in the previous section. An independent measurement was not 

performed, because only a metre rule and a stopwatch were used by Marlow. Witters 

and Duymelinck [1986) use a technique similar to the camera-based tracking reported 

in this research in that stroboscopic illumination is used to photograph a decelerating 

pool ball. They say that the sliding friction coefficient varies between 0.14 and 0.21, 

and that when the ball velocity increases from zero, the friction coefficient 

asymptotically approaches 0.21 from a value of 0.14. However, no such variation 

could be obtained from the present experiments. 

Notably, the sliding friction is 15-20 times larger than the rolling friction. Also, 

during the sliding phase, some rolling action will simultaneously take place, as the 

'ball sinking' effect is ever-prevalent at the ball-table interface. However, due to its 

comparatively small magnitude (approx. 1117), it is usually neglected and the motion 

is treated as pure sliding. 

5.1.2 Ball-Cushion Impact 

To visualise and analyse the impulse dynamics between the ball and the cushion, a 

. series of high-speed image capturing experiments, using in excess of 100fps with very 

small ROIs, was performed. The cue ball was tracked in all these experiments. 
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Generally, the ball dynamics after a cushion impulse depend on several factors. Some 

of the factors are the incident speed at which it collides with the cushion surface, the 

incidence angle with respect to the cushion surface, the amount of spin the ball has, 

the physical characteristics of the ball, the cushion and the parameters involved in the 

interaction between them, such as the coefficient of restitution or the surface friction. 

Spin on the ball changes the impact characteristics drastically. The ball spm IS 

difficult to quantify with the present experimental methodology where only the ball 

centroid is tracked by the camera. Sidespin especially changes the post-impulse cue 

ball path significantly as explained earlier [Walker 1983, Alciatore 2004[. The ball­

cushion interaction is a case of multiple impacts, both normal and tangential, the latter 

due to friction, simultaneously acting on the ball in the 3-dimensional space, one 

normal to the cushion surface and the other two perpendicular frictional impacts from 

the cushion wall. Theoretical derivations for the dynamics of general impact are not 

found in the literature. Section 6.2 will try to address this problem. 

For this reason, it was decided to conduct experiments on shots without considerable 

sidespin. Every time a shot was made, care was taken such that it was directed 

perpendicular to the cushions as much as possible. Whenever the cue ball is played. 

pe.rpendicular to the cushions, if it does not have any sidespin, it bounces back along 

the same line along which it approached the cushion. This criterion was used to ensure 

that the analysed shots did not impart a considerable sidespin on the cue ball. Figure 

5.5 (a) shows a perpendicular shot with no sidespin, and Figure 5.5 (b) shows a 

perpendicular incoming shot that apparently has some side spin, which results in the 

ball rebounding to the right side. Thus, for the rebound analysis, only the shot given in 

Figure 5.5 (a) will be used and the shot shown in Figure 5.5 (b) will be discarded. 

This procedure ensures that there is only one unknown in the form of top/back spin. 

The top/back spin of the ball is estimated by the method outlined below. 

Assuming that the ball had gone into pure rolling mode before the collision with the 

cushion (this can be determined by the speed-time plot gradients as explained in the 

previous section), the topspin of the ball can be calculated by the formula, w = ~ , 

where R is the ball radius. Thus the incident ball speed, V, is the only independent 
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variable involved and the velocity drop during the impact can, theoretically, be 

correlated to V. 

(a) (b) 

Fig. 5.5. Bounce of the cue ball from the cushion, the ball location depicts its position 

as it approached the rail (at 120 fps frame rate) 

Figure 5.6 shows the speed plot obtained for a high-speed video captured at 150fps . 

. The speed plot itself was used to determine if the ball was rolling just before it 

collided with the cushion, by evaluating the value of the gradient of the speed-time 

plot immediately before the collision. Results that were obtained for 31 such shots 

into the cushions, satisfying the conditions imposed above, are given in Figure 5.7. 
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From Figure 5.7 it can be seen that the relationship is almost linear for the incident 

velocity in the range of 0.28 - 3.5m1s (this is the typical range of ball velocities in the 

game). A best-fit straight line gives a coefficient of restitution of 0.818 for this 

velocity range. But the results have a better fit with a 2nd order polynomial of y =-

0.0877x2+ 1.131x-0.0953 in the I SI quadrant, where x is the incident velocity and y is 

the rebound velocity. Here, it must be kept in mind that these results are not valid for 

a general ball-cushion impulse but applicable only under the conditions of no sidespin 

and pure rolling motion prior to the impulse. 
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. Fig. 5.7. Variation of the rebound velocity against the incidence velocity 

Marlow [1994] reports that the coefficient of restitution is 0.55 for cushions in pool. 

Here again the results are reported without much detail about the experimental 

procedure. However, Marlow compares the results with the values suggested by 

Coriolis and concludes that they agree very closely [Marlow 1994]. The cushion 

height for snooker is 36 mm, with the ball radius being 26.2 mm, and this closely 

corresponds to the height value of 1.4 times ball radius found in pool. Thus the 

cushion and ball geometry is almost identical in pool and snooker. It is possible that, 

in order to calculate the coefficient of restitution, Marlow considered the rebound ball 

velocity at the end of the sliding phase rather than the correct one immediately after 
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the impulse, possibly due to the limitations with the experimental methods. In this 

way, from Figure 5.6, the coefficient of restitution for the shot will be around 0.63, 

but this value is without any real physical meaning. 

This stringent experimental procedure exercising a tight control over impact 

conditions will enable the estimation of some mon~ parameters in the cushion-ball 

impact, as seen in Section 6.2. This, when combined with a numerical model for the 

impulse dynamics, will permit the calculation of the ball trajectories off the bounce as 

. seen in Section 6.2. 

5.1.3 Impact between Balls 

Wallace and Schroeder [1988] in their analysis of collisions between billiard balls 

assume that the balls'are perfectly elastic (e=!). However, they neglected the effect of 

the friction between the billiard balls. By considering the friction effect from the table, 

they derive that, for the object ball (see Figure 5.8), 

5 
Vo = - vcose and 6b = t:I 

7 

and for the cue ball, 

vc=~v 2.sin2e+~ 
7 5 25 

eo 
Vo ~ 

IV 

(a) 

d LL _1[ sine.cose 1 an lAC = tan 
(.~in2 e + 'l:. ) 

5 

. Ideal cue 

ball 

direction 

deflection with 

backspin Vi 

(b) 

Fig. 5.8. Ball collision with the effect of table friction 

(5.2) 

(5.3) 
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Wallace and Schroeder also define jJ as the fractional impact parameter, and jJ=b/D, 

where D is the ball diameter and b is the separation of the ball centres in the direction 

perpendicular to the incident ball velocity V, as defined in Figure 5.8(a). Also note 

that jJ=sin8. 

Here both the predicted velocity and its direction are different to those from the 

analysis that does not account for the friction effects from the table. Physically 

speaking, the curving (see Figure 5.8) occurs because, the collision only reduces 

linear velocity and not the angular velocity, and the result is that the cue ball attains a 

sliding condition with excess topspin (called 'overspinning'). The ball initially moves 

in the ideal direction as shown in Figure 5.8(a), but the spin causes it to accelerate and 

curve forward until a rolling condition is reached IOnoda 19891. Figure 5.8(b) shows 

the effect of the pre-hit cue ball velocity on the deflected path of the cue ball. If the 

ball has some backspin (draw) prior to collision, the cue ball moves to the opposite 

side of the ideal line. 

Some tests were performed to check the effectiveness of the predictions made by 

equations (5.2) and (5.3) and these are reported in a research paper co-authored by the 

present author. The paper is provided in Appendix Ill. However, equations (5.2) and 

(5.3) do not include effects such as the friction between the balls. Moreover, the 

equations also ignore the effects of ballspin on the collision. In addition, the two 

equations do not predict the amount of ballspin after the collision. Nevertheless, 

ballspin is vital for predicting the subsequent motion of the balls after their collision. 

An all-inclusive theory of ball collisions will be presented in Section 6.1. 

5.1.3.3 Head-on Collisions 

The cue ball and the object ball were made to collide head on (b=O in Figure 5.8) to 

measure the approaching speed of the cue ball and the initial speed of the object ball 

after the collision. A red ball was used as the object ball. By separating the R 

component of the RGB image and then by processing the R component of the image, 

the successive centroids of the red ball were extracted (using a similar procedure to 

that for the cue ball). Then the speed-time plots for both the balls were plotted 

together. By observing the gradient of the speed-time plot for the cue ball prior to the 

collision of the balls, only the collisions where the cue ball was rolling before 
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colliding were considered. A similar procedure was followed for the ball-cushion 

collision as well, in Section 5.1.2. The tracking plots were used to establish that the 

cue ball had not had any sidespin before colliding with the object ball. The deciding 

criterion being that the pre- and post-collision directions of the cue ball and the 

direction of movement of the object ball must all be in a straight line. During the 

experiments, it had not been possible to obtain this condition, perfectly, all the time. 

The shots that closely satisfied this condition were the only ones considered for 

analysis (see Figure 5.9). The cue ball velocity prior to the impact was measured (the 

impact time was determined using the speed/time plot as performed for the ball­

cushion collision), together with the object ball velocity immediately after the 

impulse. 

Figure 5.9, shows the variation of the object ball velocity immediately after the 

collision against the cue ball speed immediately prior to the impact. A nominal 

restitution coefficient of 0.95 can be defined for the head-on impacts, under no­

sidespin and for the rolling condition of the cue ball, as explained above. Later, in 

Section 6.1, the effects of friction on the nominal coefficient of restitution value 

obtained above will be given. Figure 5.9 will also be used in Section 6.1 to obtain the 

values of some additional parameters. 
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5.1.4 Cue Tracking 

In order to establish the typical cue velocities for human cueing, the cue was tracked 

using the overhead camera. During the design stage, the cue velocity was measured 

approximately from the videos available from Alciatore (2008). The measurement of 

the cue velocity will also enable the estimation of the cue velocities produced by the 

cue launcher. Using the same principles that were used earlier to do the metric 

measurements on the ball motion, and whenever the cue is kept at the level of the 

centre of the ball - as horizontally as possible - the camera-based measurements can 

be used to measure the displacement of the cue as well. 

Fig. 5.10. Region of the cue that is tracked 

A Riley® standard snooker cue, that that has been in occasional use for a year was 

used for these tests. As it was not possible to capture the cue in its full shape always 

because of its large length, the cue was taped using black sticky-tape, in order to 

capture a consistent region of it. Thus, a very small bright region of length 85mm was 

exposed close to the tip of the cue (see Figure 5.10). An image-processing algorithm 

was suitably created to detect and capture the centroid of the tracked cue region. This 

algorithm was very similar to that created for the ball centre detection. A typical 

speed-time plot obtained for the cue and the cue ball motion is given in Figure 5.11. 
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In addition to the overhead camera, a PROSILICA ® EC650C,' Fiiewire, colour camera 

was used during these tests to horizontally view the cue--{,;ue ball impact as shown in 

Figure 5.12. This camera was used to locate the point along the vertical at which the 

cue hit was made. Hence, the images from the horizontal camera will give an 

indication whether the shot imparted topspinistun/bottomspin to the ball. The 

overhead camera imagery, as shown in Figure 5.12, was employed to determine the 

horizontal point of impact on the cue ball. Determination of the horizontal point of 

impact establishes if sidespin was imparted to the cue ball or not. 

Fig. 5.12. A horizontal viewing camera to locate the vertical point of cue impact on 

the ball 
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The variation between the cue ball speed and the cue speed is usually linear, as shown 

in Figure 5.13 for a large number of results. The overall coefficient of velocity 

transfer is around 1.4. Here, it must be noted that with human cueing it is not possible 

to keep the cue inclination with the horizontal constant every time a shot is played. 

However, the cue inclination with the horizontal was kept very shallow, i.e. at the 

lowest angle possible. Figure 5.13 also differentiates between the stun shots and the 

shots with considerable spin. For stun shots the velocity transfer coefficient (1.45) is 

marginally higher than the shots with off-centre hits (1.35). This phenomenon is 

explainable, because for a spin shot only a component of the cue speed is converted 

into the linear speed of the ball along the direction of motion of the cue, as also 

explained by Cross [2008] in relation to the force transfer during the impact (see 

Figure 2.11). Moreover, Figure 5.13 also reveals an important dynamic characteristic 

regarding cueing; the cue ball speed is mainly determined by the cue speed. In 

addition, this characteristic also suggests that force measurement at the collision point 

may not give any additional information for the question of robotic manipulation. 
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5.1.4.1 The Robot's Cueing Performance 

In order to compare the cueing performance of the robot with that of human cueing, a 

number of high-speed video tests measuring the cue and cue ball speed were carried 

out. The robot's cue inclination angle was kept at around 2° with the horizontal. The 

cue angle during the human cueing was also kept close to this value. Only stun shots 

were played. The results of the tests are given in Figure 5.14. The figure shows that 

the robot is performing on a par with human shots. This performance is obtained in 

spite of the differences in inertia between the two; it is calculated that the inertia value 

of the moving components of the motor-gearbox-pinion-rack combination is 5 times 

that of the estimate of 1.13 kg for humans (see Section 4.1. 7). Here, it must also be 

noted that the torque control option of the motor was not employed. Hence, it can be 

speculated that cueing dynamics solely depend both on the cue and its drive speed and 

are independent of the inertial properties of the cue-driving mechanism and the 

driving force of the cue. Thus, for a given cue only the cue speed and the hitting spot 

on the cue ball will determine the cue ball speed. This argument also eliminates the 

idea that the force sensor can provide some additional information about the dynamics 

of cueing. 
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S.2 Force Sensor-Camera Combined Experiments 

As explained in Section 4.4, the force sensor readings during the cue-cue ball impact 

were recorded into the main VB program via a National Instruments® data acquisition 

module. After a number of trials, a data acquisition rate of 10kHz was deemed 

sufficient to describe the force variation adequately. The peak force and the value of 

the impulse were identified by the VB algorithm. Using the calibration plot given in 

Figure 4.23, the measured voltage output was converted to the corresponding value of 

force (see Figure 5.15 for a typical plot). The area under the plot in Figure 5.15 

provides the magnitude of the impulse. This value is directly related to the momentum 

that is transferred to the ball; hence it is an important dynamic parameter. The order of 

the forces obtained here is ·of the same order as the ones considered in Section 4.1.3 

for the design of the cueing mechanism. However, the forces obtained with the real 

cue are around 1.5-2 times less than the values measured with the impulse hammer. 
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Fig. 5.15. A typical force sensor output (3.2m1s cue ball velocity) based on the 

calibration results given in Figure 4.23 

The high-speed camera and the force sensor were also used in conjunction with each 

other to obtain some of the dynamics of the cue-cue ball impact. 
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Figure 5.16 shows the impact durations recorded for various cue ball speeds (the best 

fit power curve is 2.67x (cue ball speedy°.4624). Slower shots tend to have larger 

durations of impact as also suggested by Marlow [1994] whose experimental results, 

in the form of a power curve of 2.16x (cue ball speedy(1/3) are also plotted in Figure 

5.16. Marlow admits the possibility of considerable errors in the speed variable in the 

experiments [Marlow 1994). These errors may be the reason for the differences 

found. 
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5.3 Measurement of the Table's Resistance to the Sidespin of the Ball 

The measurement of ball spin will make it possible to experiment on phenomena such 

as rolling, sliding and impacts that are greatly affected by friction. For example, in 

Sections 5.1.2 and 5.1.3.3 due to the inability to quantify sidespin, experiments were 

carried out ensuring that sidespin was zero, using tracking plots. However, the scope 

of this project does not include extensive spin measurements. Spin tracking usually 

involves placing a number of markers on the surface of a ball [Griffiths et al. 2005, 

Neilson et al. 2004). To capture, differentiate and determine the spatial locations of 

these patterns a considerable number of image pixels has to be dedicated to the area of 

the ball on the image. The overhead camera that is positioned to image half the table 

area scarcely satisfies this requirement; only 54x54 pixels cover the ball area under 

the current spatial resolution. Moreover, consistent spin measurements necessitate a 

uniform lighting over the table area, which is not the case here. In addition, the pattern 

should not affect the surface properties of the ball; otherwise, the measurements will 

not represent the actual dynamics that take place during normal play. 

As seen at the start of this chapter, a system-dynamics-based solution to robotic 

manipulation in snooker needs several parameters to be identified. The instantaneous 

value of sidespin of the ball is such an important quantity, as this is known to affect 

the collisions between balls and that between a ball and the cushion. It has also been 

noted in Chapter 2 that the sidespin of the ball is an independent entity and is 

dissociated from the linear velocity and topspin of the ball, leading to the assumption 

of 'decoupled' motion. In addition, it was also observed that there could be 

deficiencies in such an assumption, as the ball is known to 'sink' into the table cloth, 

highlighting the need for an elaborate theory in this regard. However, in the absence 

of such a sophisticated theory, the only available option is to use the simple current 

model of decoupled motion. The assumption that linear motion does not affect the 

rotation about the vertical, allows quantifying the instantaneous value of sidespin by a 

single parameter value. This parameter is the angular deceleration of the ball due to 

the resistance offered by the table surface to the ball rotation about the vertical. 
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In order to track the ball spin, a circular piece of black-coloured adhesive tape of 

diameter 13mm was placed on the ball surface (see Figure 5.17). 

Fig. 5.17. Circular pattern on the ball surface: an image from the overhead camera 

Unlike in the tracking of the centroid of the ball, when it comes to the tracking of the 

circular pattern on the ball the orientation of the camera has to be considered. 
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Uz' Optical 

Uz 
V axis 

\. Horizontal 
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External 
calibration 

pattern 

\ p plane through 
\ ball COG 

l' 
Table surface 

Fig. 5.18. Coordinate systems under consideration for the tracking of a pattern on the 

ball (this figure must be compared with Figure 4.18) 

When the pattern is kept on the upper hemisphere of the ball, it will appear in the 

images captured by the overhead camera, as shown in Figure 5.17. As in the tracking 

of the ball, the image-processing algorithm makes all of its spatial measurements on 

the horizontal plane that goes through the centre of the ball (Figure 5.22). As shown 

in Figure 5.22, for a pattern position P on the ball surface, the tracking algorithm 
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calculates the location of the projected line ep onto the horizontal plane that passes 

through the centre of gravity G of the ball (where e is the origin of the camera 

coordinate system as given in Figure 4.18). The projected point on the plane is 

denoted by P'. Alternatively, the image-processing algorithm can be modified to do 

the projection onto the horizontal surface that goes through P and, to do this, the 

height of the pattern from the table surface is needed. However, the height of the 

pattern from the table surface usually changes and is difficult to measure, as the ball is 

randomly placed on the table, and rotated by hand in order to spin like a top (see 

Figure 5.19). Once the ball starts to spin, the hand is taken away exposing the ball to 

the camera, which has already been triggered. Hence, the camera tracks the ball and 

the pattern. 

Fig. 5.19. Rotating the ball about the vertical 

Hence, the spatial measurements resulting from the image processing algorithm are in 

fact those of P' and must not be used directly to calculate the value of the ball spin. 

However, the coordinates of P', when combined with ball radius R, can be helpful in 

finding the x and y coordinates of P. The process of obtaining the position of P is 

shown below. 

The coordinates of e (the origin of the camera coordinate system Ux'Uy'Uz') in the 

real-world coordinate system UxUyUz attached to the external calibration pattern can 

be calculated using the equation [X'J= [Rc J* [XJ+ [Tc J (Section 4.3.2 outlines these 

concepts). The coordinates of point e (which is the origin of the Ux'Uy'Uz' system) 

in the UxUyUz axis system are, 

(5.4) 
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Both the matrices, [Rc 1 and [Tc 1 are obtained from the external camera calibration 

procedure described in Section 4.3.2. 

Let {X R' Y B' Z R} be the coordinates of the COG of the ball. Therefore, any general 

point { x, Y, Z } on the surface of the ball must satisfY the relationship: 

(5.5) 

Now, the equation of the straight-line CPP', in the UxUyUz, with the coordinates of 

P' being { X p ., Y 1", Z 1" }, is, 

X-X p' Y - YI" (5.6) 

In equation (5.6), the values of {xc, Ye' Ze } are obtained from equation (5.4); also, 

Z1,,=Z8' 

InterseCtion of the ball's surface and the line CPP' would lead to calculating the 

coordinate of P, {x I' , Y 1" Z I'}, of which x I' and YP are needed for the estimation of 

sidespin. When equations (5.5) and (5.6) are solved, there will be two possible 

coordinates for P, as the roots of a quadratic equation, and the required solutiori is 

where Z I' > Z B (i.e. where the pattern is at a higher elevation from the table than the 

ball COG). The required root is: 

Zc - Z1" 
Z I' = Z R + R --r'====:==c=~='==co:======:= 

~(xe _XI',)' + (Ye - Yp'), +(ze -ZI")' 
(5.7) 

Using (5.4) and (5.7), and also noting that Zp' = ZB' the value of Zp can be calculated. 

Then using equation (5.6), XI' and yp are estimated, using the following equation. 

(5.8) 
Xc -X p ' Ye - YP' Zc -Zp' 

A note on the ball ccntroid tracking: 
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When tracking the centroid of the ball, the ball pixels are extracted by the image­

processing program initially. Now, irrespective of the camera inclination and the 

position of the ball on the table, a circular blob will be imaged by the camera. When 

there is no illumination at all to the lower hemisphere of the ball, the circular blob will 

not be seen. The camera will image the regions in the lower hemisphere close the 

horizontal great circle, either if the camera principal axis is inclined largely to the 

vertical (this is not the case for the current setup) or when the ball is situated farther 

away from the principal axis. However, such a situation does not arise in the present 

table area, as several strip lights fitted with standard diffusers illuminate the table and 

these lights are spread out over a large area around the table. Hence, for all locations 

of the ball on the table, the actual COO of the ball, 0 will be detected as the centroid 

of the circular blob representing the ball in the image. Now the projection of CO on 

the horizontal plane going though 0 will be the point 0 itself. Therefore the 

calculations performed by equations (5.5), (5.6) and (5.7) are not necessary. 

Now for measuring the sidespin of the ball, when the overhead camera tracks a single 

pattern P put on the ball on its top hemisphere, as depicted in Figure 5.20, the value of 

the ball sidespin can be calculated as follows: 

Uy 

Ux 

Fig. 5.20. A circular pattern on the ball for spin-tracking 

Referring to Figure 5.20, let the tracked coordinates of the pattern P, estimated from 

equation (5.8) in the i'h image frame be [xp(i), yp(i)]. With [xG(i), YaCi)] denoting the 

coordinates of the ball centroid, sidespin is given by, 

(5.9) 
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Since the ball IS at a stationary position, for every i, YG(i)= Yc;(i + \) and 

Xc; (i)= Xc; (i + I). 

For sidespin measurements, the ball was spun by hand like a top, as shown in Figure 

5.19, such that it does not move laterally on the table. As long as the ball does not 

move horizontally, it can only spin about the vertical (i.e. it can only have sidespin); 

this 'zero horizontal movement of the ball' criterion is used to select the right image 

sequences in order to analyse the variation of sidespin. In addition, the ball was 

rotated such that the pattern will be in the view of the camera throughout its motion. 

Moreover, the ball was also kept very close to the optical axis of the camera (Figures 

4.17,5.18) on the table, in order to prevent the inaccuracies that originate from the 

inclination of tbe line of sight to the optical axis and the associated problems of there 

being no illumination on the lower hemisphere of the ball. Ideally, the tracked pattern 

in the image must make a circular orbit around the centre of the ball. 

The captured image appears as seen in Figure 5.17. After an initial image thresholding 

procedure, in each binary image, the pattern centroid was detected by the MA TLAS® 

Image Processing Toolbox functions bwlabel and regionprops. Then, the zero' 

intensity (black coloured) pixels of the pattern were eliminated from the ball area by 

using another function called imfill. Now the ball would look as though it had no 

pattern on it. The centroid of the ball was detected from the 'filled' image. When the 

continuously-tracked coordinates of the ball and the pattern were superimposed on the 

first image of.the sequence, the plot obtained is similar to Figure 5.21. It should be 

noted that the tracked path of the pattern, instead of being around the centre of the 

ball, is rather shifted towards the lower-left hand corner of the image, as shown in 

Figure 5.21. When the individual grey-scale images in the sequence were examined 

with the naked eye, an extra glare was found to occur on the pattern as it approached 

the upper-right hand side of the image shown in Figure 5.21. However, due to a strip 

light source (a fluorescent lamp) located right above the table area, on the upper-right 

side of Figure 5.19, there was extra light reflection (and associated illumination) on 

the black-coloured pattern when it was at that side of the ball centre. 
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Fig. 5.21. Tracking a spinning ball- grey scale image (multiple complete rotations of 

the ball captured at 180fps) 

Equation (5.9) was used to calculate the sidespin of the ball. An angular speed-time 

plot for this ball-tracking is shown in Figure 5.22. The waviness in the scatter of 

points is due to the effect of orbit shift as described earlier. As seen in Figure 5.22, for 

the angular velocity variation, the period of oscillation increases with time, also, the 

fluctuation decreases. These two effects are due to the progressive reduction of the 

ball velocity with time, so that the ball takes a longer time to complete a rotation as 

time elapses. A best-fit straight line gives an average angular deceleration of 21.8 

rad/s2 for the spinning ball. The ball was tracked several times and the deceleration of 

the ball was found to be in the range of22 rad/s2
, which is almost 3.5 rotations/s2 
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Fig. 5.22. Sidespin (angular speed) vs. time plot for a ball spinning from a stationary 

position 
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5.4 A Theory of 3-Dimensional Spin Tracking Using a Single Pattern 

A single circular pattern is also intended to be used to track the spin here, as in 

Section 5.3 (see Figure 5.21). Since the cue ball will be moving on the table, unlike 

the situation described in Section 5.3, a requirement to track the ball spin is that the 

pattern must not disappear for the first few frames after cueing (i.e. the pattern must 

be on the upper hemisphere of the ball in order to be captured by the camera). Hence, 

this method can only be applied to track the ball spin within a limited area on the 

table. However, this procedure is expected to be very useful in determining the cueing 

dynamics, where only 'the . initial spin of the ball, immediately after cueing, is of 

interest. 

Ux 

Uy 

Vy' 

Fig. 5.23 Tracking topspin and sidespin 

Figure 5.23 depicts a typical scenario of ball motion. Initially, the ball is at G and the 

pattern centroid is depicted as P on the ball. For the next image frame, let the ball be 

at G' and the new position of the pattern be Q. Both P and Q denote the vertical 

projections of the pattern positions on the ball (i.e. the coordinates of P and Q are 

those obtained from equation (5.8)). GG' is the direction of the ball motion, which is 

at e to the Ux axis. Unless the cue inclination is very high, which produces a curving 

effect on the ball, e remains a constant for a shot when all of its image frames are 

considered. Axis system Vx'Vy' is selected as it has G as its origin, and Vx' is along 

the direction of the ball velocity V. The absolute movement of the pattern from P to Q 
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is due to the contribution of the ball's linear speed, sidespin and topspin V, W
S and wT 

respectively. When the pattern's movement relative to the centroid of the ball is 

considered, the effect of Von the positional change of the pattern need not be taken 

into account. Also, throughout this chapter V can be estimated from the length GG'. 

Here, the movement of the pattern relative to the ball centroid is used to estimate the 

instantaneous values of sidespin and topspin, wS and w T
, respectively. 

Figure 5.24 shows the relative movement of the pattern to that of the ball centroid, 

hence both G and G' are now represented by the same point in the figure. Only a part 

of the ball is shown in Figure 5.25. 

Vy' Uy 

G, 

Ux 

Fig. 5.24 Movement of the pattern relative to ball centroid (spatial locations and 

velocities are projected onto the horizontal plane that goes through the centre of ball) 

In Figure 5.24, the movement from P to Q is caused by two velocity components: 0" 
due to sidespin wS

, and VT from topspin WT. 0" will always be parallel to the plane 

shown in the figure. VT in the figure is the horizontal component of velocity acting on 

the pattern due to topspin wT (also see Figure 5.25). 0" is perpendicular in direction to 

the line GP and its direction is determined by the direction of W S (i.e. whether it is 

right spin or left spin). VT is parallel to the Vx' axis and its direction is decided by the 

sign of w T (Topspin is considered positive, while bottom spin is treated as negative). 
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The shorter the length of PQ, the more accurate the motion of the pattern described by 

the forgoing model. Conversely, if PQ is long, the distance covered due to wS will not 

be on a straight line along the direction of j? as shown in Figure 5.24, but will rather 

be described by a circular arc having G as its centre. The length of PQ can be 

minimised by increasing the frame rate of the camera (fps). The length of PQ is 

greatly exaggerated with respect to the ball size in Figure 5.24, for the purposes of 

clarity. 

Let G and P belong to the image frame i and say G' and Q are on the image frame 

i+ I. Also using the notation that was used in Equation (5.9), i.e. treating Q as P(i+ 1 ),. 

angles 0, {3, A in Figure 5.24 are determined by, 

()( .) _,(YG(i+I)-YG(i)J 
I =tan 

Xc; (i + 1)- Xc (i) 
(5.10) 

(5.11) 

(5.12) 

It must be noted that in equations (5.10), (5.11), and (5.12), all X and y coordinates are 

the ones obtained from equation (5.8). 

Taking LIt as the time elapsed between frames i and i+ 1, i.e. LIt =._1_, from the 
fPs 

velocity vectors shown in Figure 5.25, resolving the distances along the Vy' axis, 

VI (i)Llt cos p(i) = PQ(i)sin A(i). 

Also, VS(i)=wS(i)c;P(i). Note the length segment denoted as GP in Figure 5.25 as 

well. Now, 

s (.) PQ(i)sin A(i) jj w 1 ps 
GP(i)cos p(i) 

(5.13) 

where, 

(5.14) 

and, 

PQ(i) = ~{[xp(i + 1)- xG(i + 1)]- h,(i)- xG(i)D' + {[YAi + 1)- YG(i + 1)]- [yP(i)- YG(i)]}' . 

(5.15) 
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Considering the 3-dimensional position of point P on the ball, as shown in Figure 

5.25, it can be easily shown that, VT (i)= «,r (i)[hp (i)- RJ, where hp is the height of the 

pattern on the ball from the table plane, and R is the ball radius. With reference to 

Figure 5.25, it can also be shown that, hp(i)=R+~R' -[GP(i)]' . 

GP 

R 

p 

Vy' 

Vx' 
Table 

...... ::J plane 

Fig. 5.25. Velocity of the ball due to topspin 

From the velocity vectors shown in Figure 5.25, resolving along the Vx' axis, 

[V T (i)- VS (i)sin f3(i)jdt = PQ(i)cos A(i) and, when combined with the above two 

equations, this becomes, 

01' (i) = PQ(i)cos A(i) * jps + VS (i) sill f3(i) 
~R' - [GP(i)]' 

Also making use of equation (5.13), this can be further simplified to, 

llJT (i) = [COsA(i)+sillA(i)tanf3(i)] PQ(i) * jps (5.16) 
~ R' - [GP(i)]' 

Equations (5.13) and (5.16) will be used in Chapter 7 to estimate the sidespin and the 

topspin of the ball immediately after cueing, in order to establish an empirical model 

for the cueing dynamics. 
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Summary 

High-speed video capture using a single machine-vision camera was found to give 

good results in determining the dynamics involved in snooker. The rolling and sliding 

coefficients of frictions have been found. In relation to the collisions found in snooker 

some experiments were carried out under controlled experimental conditions, which 

enables the calculation of the parameter values that influence the impact dynamics in 

the next chapter. The snooker cue was also tracked using the overhead camera and by 

using this, human and robot cueing performances were compared. The cue-embedded 

force sensor was also used to measure the forces present during cueing. The cue 

tracking and the force sensor results were used to conclude that force sensor readings 

are redundant when it comes to the robot's decision-making about a specific shot and 
r. 

that only the speed of the cue launcher is important. Using a single circular pattern, 

the ball sidespin was tracked to determine the resistance of the table to sidespin. 

However, it was found that inconsistent illumination conditions over the table area 

affect the algorithms that are used for spin tracking. A model for determining topspin 

and sides pins after the cueing using only a single circular pattern is also presented. 
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Chapter 6 

ANAL YSIS OF COLLISIONS AND BALL TRAJECTORIES 

It was emphasized in Chapter 2 that potting accuracy and the positional play of the 

cue ball are the two primary skills that professional players rely on. Both these 

phenomena involve estimating the ball trajectories. According to the literature review, 

the trajectories of a ball can be described analytically, but no complete models exist 

for the collisions that are encountered in snooker and pool. In this chapter, two types 

of collisions, one between two snooker balls and the other between a ball and a 

cushion, are analysed using the principles of impact mechanics. This model-based 

information will, ultimately, lead to a more intelligent decision-making in the robotic 

snooker playing system. Understanding derived from this study will also add to the 

wider knowledge base in snooker and frictional impacts. In Section 6.1, an analysis of 

the post-collision trajectories of two balls is presented. Section 6.2 provides a 

theoretical analysis to obtain the trajectories after a ball-cushion impact. 

6.1 Frictional Collisions between the Balls 

Here, the problem involves the cue ball, C, obliquely impinging onto another object 

ball 0 (see Figure 6.1). Both the cue and object balls are of equal mass and radius. 

Traditionally, the ball collisions are analyzed without incorporating the effect of 

friction, and the object ball is supposed to move along the line connecting the ball 

centres at the instant of impact [Wailace and Schroeder 1988[. However, when a 

ball is spinning and colliding into another, as shown in Figure 6.1, in addition to the 

normal forces that are usually set up between them, frictional forces are also 

introduced. These forces drastically change the ball trajectories. This effect is called 

throw in billiards. Few researchers have considered this effect to derive a solution for 

the collision problem and to obtain the amount of throw, which is the deviation from 

the ideal direction without any friction [Marlow 1994, Alciatore 2008[. 
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x 

o 

Vo I 

c ~wSo 

Fig.6.1. Oblique impact of spheres (direction of wTo is given by the right hand grip 

rule) 

In snooker/billiards, the balls are also rolling on a frictional surface (i.e. the table). In , , 
such cases, frictional forces from the surface upon which they move also act on the 

balls Ide la Torre Juarez 1994], Marlow 11994] also acknowledges the effect of 

surface friction on the impact between the balls, but has not obtained any solutions 

along these lines. In a very recent paper, Domenech 120081 has tried to address the 

issue of surface friction influencing the impact between balls. However, Domenech 

assumes that the slip is uni-directional throughout the impact. This assumption may 

be true for very low friction bodies. However, the approach that is taken in the current 

work provides a generic solution that can be applicable for any spheres irrespective of 

their friction coefficients. The generic procedure as provided in this section can lead 

to the identification of conditions under which the assumption of uni-dire~tional slip 

can be used. 

In the following analysis, initially a general solution will be derived for the problem 

of two identical balls colliding obliquely and, at the end, the values applicable for 

snooker will be substituted. In Figure 6.1, it is important to note that ball C does not 

spin about its frontal axis (about the direction of Vo), this condition is only prevalent 

during a masse shot and is not normally encountered in billiards. 

When two spheres collide, they are generally treated as deformable bodies; hence the 

contact between them is made over a region rather than at a point. The contact area 

between the spheres during impact is usually estimated through the Hertz theory. 

Researchers have also used various Finite Element Analysis techniques to analyse the 

118 



contact area between the spheres [Zhang and Vu-Quoc 2002). However, to calculate 

the deformation at the interface of the spheres, a number of material properties such as 

the Poisson ratio and Young's modulus are needed. In the absence of such material 

properties for snooker balls, a point contact is assumed between the balls during 

impact. In addition, snooker balls are quite rigid and when the Young's moduli of the 

spheres are high, i.e. the spheres are less deformable, the Hertz theory predicts a small 

deformation. The assumption of a point contact has also been used by other 

researchers like Domenech (2008). 

6.1.1 General Equations of Motion 

In Figure 6.2, for sphere C, for the linear motion along X, Y and Z directions, 

(6.1 a) 

(6.1b) 

(6.1c) 

z 

aJ, 

Y aJ,. 

FRS B R.x 

Fig. 6.2. The forces acting on the balls during the impact 

During collision, at any time instant t, consider a time period of LIt. Now, let ilP 

denote the impulse due to the action of a general force F over ilt. Also the 
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accumulated total impact up to time t is denoted as P (also assuming that the impact 

started at t=0), now, it can be written that, 

(6.2a) 

and, 

(6.2b) 

For sphere C, at time t during the collision, consider an increment LIt in time, from the 

equations in (6.1) and (6.2) 

L1P, + L1Pxc = M [.i:~ (t + Llt)-.i:~ (t)] (6.3a) 

(6.3b) 

(6.3c) 

In equation (6.3c), it should be noted that the impact component due to the mass of 

the ball Mg is absent. According to de la Torre Juarez [1994], in the limit Llt->O, the 

non-diverging forces, such as the weight Mg, will have a negligible contribution and 

thus will not influence the increase in momentum. A simple calculation also confirms 

this fact. When, say, 1 m/s speed was transferred from the cue ball to the object ball 

(this is a typical average speed), the collision time was measured to be 300 flS, by the 

set-up given in Figure 4.4 [Marlow 1994). For a ball mass of around 140 g, the 

average impulse force would be 470 N, whereas the weight of the ball is only 1.4 N. 

The moment of impulse and the angular momentum about the centre of mass for the 

ball C about X, Y and Z directions, are given by, 

( 
\n 2MR2 [ . ] L1P2 + L1P;' JK = -- cv; (t + LIt) - co; (t) 

5 

2MR2 [ . ] - L1P, R = -- cv~ {t + Llt}- cv;' (t) 
5 

(6.4a) 

(6.4b) 

(6.4c) 
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Similarly for ball 0, 

- LIP, + LlPxO = M [ig (t + Ll/)- ig(t)] (6.Sa) 

(6.Sb) 

(6.Sc) 

(6.6a) 

(6.6b) 

(6.6c) 

These equations are adequate to describe the change in the motion of the balls due to 

the impact. 

6.i.2 impacl Dynamics 

At the contact point between the spheres, i.e. at A, let the relative speed of ball C to 

that of ball 0 be s(t) at an angle <P(I) with the X-axis (the relative velocity vector will 

lie on the XZ plane). The instantaneous value of the normal impulse P[(which will be 

the accumulated value of all LIP['s until time I) is always positive within the interval 

of impact. In addition, P[monotonously increases with time, thus, in this analysis it is 

taken as an independent variable instead of the usual variable of time 1 [Stronge 

2000]. Slipping velocities along the X and Z axes respectively, 

i A = i~ - i~ = s(p, )cos(<p(p, )) 

i A = z~' - i~ = s(p, )sin(<P(P,)) 

The normal component of relative velocity, 

(6.7a) 

(6.7b) 

(6.7c) 
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For the nominal slipping speeds to be along the positive X and Z axes, when the balls 

are sliding on each other at their contact point A, from the Amontons-Coulomb law, 

~ = -PM cos(tP(p, ))LIP, (6.8a) 

LIP, = -!lbh sin(tP(P, ))LIP, (6.8b) 

where !lbb is the coefficient of sliding friction between the spheres. 

Since ball 0 is moving on the plane, to satisfy the condition ig (I + L.11)- ig (I) = 0, and 

from (6.Sc), 

(6.9) 

Similarly, for ball 0, at B slip s' and its direction tP' with the X axis (s' will on the 

XY plane), for the ball to slide, and also using (6.9), 

LlPxo = -!l., cos(tP')LIP:! = !lbb!l, sin(tP(P, ))cos(tP'(p, ))LIP, (6.IOa) 

(6. I Ob) 

Here !l., is the sliding friction coefficient between the ball and the table, measured to 

be 0.21 in Chapter 5. Sliding speeds are: 

X B = x~ = s' (p, )cos(tP' (p, )) (6.lla) 

. (6.llb) 

From now onwards the independent variable PI is omitted in the equations in order to 

keep them compact. 

Notably depending on the value of iA(as given in equation (6.7b», some of the 

impulses in the equation sets (6.3), (6.4), (6.5) or (6.6) will be zero. 

If i A is negative, the cue ball will have more downward velocity (along the Z axis) at 

the contact point A, and the frictional impulse L.1P2 between the balls will be acting on 

the balls in the directions as shown in Figure 6.2 (i.e. L.1P2 >0). [fball C is to remain on 

the table, from equation (6.3c), LlP2 + LIP:; <0. These two conditions can be satisfied 

only when LIP~' <0, and apparently it is impossible to satisfy this condition as the table 

cannot apply a 'negative' reaction on the ball. Thus, LIP:; =0, which in turn allows us 
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to say that the associated frictional impulses are also absent, i.e. L1Px
c =0 and L1P; =0. 

Here, ball C will lift up from the table, like a cue ball in a 'jump' shot, however small 

the lift is. However, it is assumed that during the time of the impulse it remains at the 

same spatial location, just above the table, without altering the configuration given in 

Figure 6.2. This assumption is reasonable since the time of impulse between two balls 

is very small and is in the range of 0.3 ms [Marlow 1994). Conversely, if i A is 

Positive then L1Po =0 L1po =0 and L1Po =0 , N' x y' 

6.1.2.1 Conditions for Rolling 

When rolling occurs, slip speed s (or s' for the sliding on the table), becomes zero. At 

this instance the relative motion between bodies stops at their contact point along the 

common tangent. Neglecting the effects of. static friction, the frictional forces are 

assumed zero. 

I) When s=O, which is a common occurrence depending on the initial conditions, as 

shall be seen shortly, where both the spheres will be rolling on each other at their 

contact point A. 

L1~ = L1P, =0, that also follows L1PJ} = L1Px
o 

= L1P: = 0 

2) When s '=0, L1P;J = L1P: = 0 , and the sphere 0 will roll on the plane without sliding. 

6.1.2.2 Coefficient of Restitution 

According to Stronge [2000), the energetic coefficient of restitution e, is independent 

of friction and the process of slip. e2 is the negative of the ratio of the work done by 

the impulse force during the phase restitution to that during the compression phase. 

When p!, P/ denote the accumulated impulse at the termination of the impulse,' and 

at the termination of the compression, respectively, it is possible to show that the 

work done is 

(6.12a) 
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2 Pt e = --'-'-------

This can be rearranged as 

(6.12b) 

The tennination of compression occurs when the normal component of relative 

velocity becomes zero, i.e., 

(6.12c) 

6.1.3 Velocity Relationships 

The velocity of any point on a sphere's surface can be written in vector notation as, 

V = Vc; + {,jAR 

At A, 

·C ·c R C ·c ·c R C ·0 ·0 ROd' o ·0 R 0 
xA=Xc - {i}z,ZA=ZC+ {i}x'xA=xC + {i}zan ZA=ZG- OJx 

At 8, 

6.1.4 Solution/or the ball velocities 

(6.13a) 

(6. 13 b) 

Sets of equations in sections 6.1.1, 6.1.2 and 6.1.3 allow the calculation of the 

increments in the centroid velocities of balls C and 0, {Lli6, .... , Llcv;} and 

{LliZ , .... , Llcv~)} respectively, as given in equation sets (6.3), (6.4), (6.5) and (6.6). 

For example, for Lli6, 

from equations (6.3a), (6.8a) and with the assumption that LIP;: =0, 

(6.14a) 

<P can also be expressed In tenns of the centroid velocities of the balls using 

equations (6.7a), (6.7b) and (6. I 2a), as 
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·c R C ·0 R 0 

~ _r.===========x~G=-===w=,~-=x~G~,=-===w~'===========7= COSov = 
1(. C RC. 0 R 0)' (. C RC. 0 R 0 )' V Xc; - 0): - Xc - (Vz + zG + OJx - zG + W z 

Now (6. 13 a) becomes, 

This can be expressed as a differential equation, 

= 
·c c·() 0 

~hb -r~=========x~G~-==R=w=,~-=x~G~·=-=R==w~,==========~= 
M (xc _Rwc _·0 _Rwo)' +(z'-: +Rwc _zo + Rwo)' G z x(, 1 (, x G z 

(6.14b) 

(6.14c) 

Deriving similar expressions for the other 11 components of the centroid velocities of 

. both balls will result in 12, simultaneous, nonlinear, differential equations. Exact 

solutions are not available. A numerical solution is possible. For, example for the 

problem of rotating spheres colliding with each other (like a mid-air collision ), Kane 

and Levinson [1987) have used a numerical scheme to obtain the variation of the 

sliding velocities, etc during the time of impact, for both the spheres. When it comes 

to robotic nonprehensile manipulation, Li and Payandeh [2003) modelled the 

. trajectory and orientation of a polygonal, flat plate using numerical simulations. In 

order to perform a numerical operation, equation (6.13c) must be written in numerical 

form as: 

(.C) (.c) 
XCi n+! - Xc; n 

~bb = 
M 

(xi;). - R(w;). - (xg). - R(w7 ). L1P 
[(x~;). - R(w;). - (xg). - R{w7)n j + [(z~). + R{w;). - (zg)n + R{w7)n j { 

(6.1Sa) 

The work done during an increment of L1P{ can also be calculated numerically, using 

equation (6.12 a), 

(w) -(W) = !JP [(yJn+1 +(YAU 
Y n+1 Y n I 2 (6.16) 
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6.1.4.1 Initial Conditions 

WhenPFO, 

For ball C, (xg), = Vo sin (), (yg), = Vo cos (), (in = 0, (cv;), = -CV6 cos () , 

( c) r· (c) s CVy I =CVo sme, Wz I =mo ' 

For ball 0, (xg), =0, (yg), =0, (ig), =0, (cv~), =0, (w~), =0, (cv~), =0. 

Also, s(O)=I~(Vo sin()-Rcvg)' +(Rcv~ cos(), I and s'(o)=lvo -Rcv~l. 

6.1.4.2 Numerical Algorithm 

The numerical scheme is written in MA TLAB® programming language. The values of 

vo, w6·, wo' , () are the inputs to the scheme. The smaller the value of the increment in 

impulse P, , i.e. ,:jP" in (6.ISa), the more accurate the results will be. The aim is to 

find the centroid velocities of the balls at the final accumulated impulse value p/ . 

The code initially starts by calculating the increments in the centroid velocities of both 

balls by using equation (6.1Sa) and II other simultaneous equations as explained in 

Section 6.1.4. Using these and equations (6.13a) and (6.13b) the new slip velocities 

are calculated. The code is designed to incorporate the necessary modifications, as 

given in Section 6.1.2.1, when a rolling condition is reached at either of the sliding 

contacts. 

Again p/ cannot be found analytically and has to be obtained numerically using the 

equations (6.17a) and (6.17b). Initially P/ is calculated, from (6.17b), when the 

relative speed in the normal direction becomes zero in the numerical scheme i.e. 

Y A (P/)= O. Until then, the work done is calculated in the scheme using equation 

(6.16), this enables calculating the total work from the normal impulse, Wy(P/) and 

then using (6.12b) the total work at the termination of impulse Wy(p/) can be 

estimated. The numerical algorithm is stopped when W = Wy (p/). 

For snooker balls, M=O.1406 kg and R=26.2 mm. 
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Note: In order to assume a reasonable value for 9 J to start the numerical scheme, an 

approximate value for p/ can be taken as (I + e )MYo cos e, the value of the impulse 

had the ball 0 been a solid wall and, say approximately for N iterations, 

(I + e )MYo cos e . 
9 J = . Clearly the values of PJc and p/ will decide the actual number 

N 

of iterations that have taken place in the scheme. 

6. I .4.3 The values of /lob and e 

The values for these parameters presented in the literature are vague with only 

Marlow [1994] reporting about them. Marlow predicts a value of 0.06 for f/bb for well­

polished balls. Furthermore, when the balls have any other substance, such as chalk, 

on their surface, according to Marlow the value may be as high as 0.2. Also, quite 

contradictorily, a variation of f/bb in the form of f.ibb =9.95IxIO-3 +O.I08e- Lo88
., is 

also put forward by Marlow [1994], where s denotes the slip speed between the balls. 

The experimental process in obtaining the aforesaid variation did not seem 

sufficiently reliable. According to Marlow e:O:O.92. It is believed that the high-speed 

camera measurements described in Chapter 5 are far superior to the techniques used 

by Marlow, and therefore these results are used for the calculations and simulations 

performed. In addition, the adhesive properties between the balls could lead to the 

phenomenon of stick [Thronton and Ning 1998]. Stick between the balls is neglected 

considering the polished nature of the ball suface. Therefore only the effects of the 

sliding friction is assumed to be present at the contact point of the spheres. In 

addition, the coefficient of restitution between the balls is assumed a constant and its 

minor variations with the impact velocity of the balls, as explored by researchers such 

as Zhang and Vu-Quoc [2002], are neglected. 

The experimental plot shown in Figure 5.12 is used in conjunction with these 

numerical simulations to obtain the values of the coefficient of restitution and the 

value of sliding friction. The fundamental idea is to replicate the experimental results 

by numerical simulations, by using two random numerical values for the above 
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parameters by a trial-and-error procedure. The plot in Figure 5.12 was obtained under 

, l' Vo the conditions of () = 0', Wo = 0 and Wo = -. For each of the incident speed values 
R 

Vo given in Figure 5.12, the value of the centroid velocity of the object ball at the 

termination of impact jig (p/) was found numerically for e in the range 0.7 to 1.0 and 

Jibb between 0 and 0.2, both in 0.01 increments. For given values of Jibb and e, the 

RMS value of all the errors between the experimental and the numerically obtained 

values for each of the incident velocities given in Figure 5.12 was obtained. The 

values of Jibb=O.05 and e=0.89 were found to have the least RMS value. The 

agreement of these values with Marlow's [1994] values of 0.06 and 0.92 should be 

noted. The experimental plot of Figure 5.12 is replicated with the predictions from the 

numerical scheme in Figure 6.3. 

2.5 

• Measured 

• Numerical 

" 

o 
0.5 

" ' 
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• It 

."" 

Cue ball speed (m/s) 
2 2.5 

Fig.6.3. Experimental results and numerical predictions for Jibb=0.05 and e=0.89 and 

under the conditions of () = 0', w~ = 0 and w~' = Vo 
R 

6.1. 5 Parabolic Path Subsequent to lmpac:l 

When the ball shown in Figure 6.4 spins about its velocity axis (here it has a spin 

component of cv, about its centroid velocity, which in this case is V), irrespective of 

the other two spin components, the ball will move along a curved path. This is called 
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masse in billiards. Curved shots can be made by elevating the cue when striking the 

ball. Curved ball trajectories are also produced due to frictional percussions during the 

impact between two balls or that between a ball and a cushion. The 2nd type is of 

interest here. However, the derivation given in this section is, essentially, applicable 

for any general curved shot. 

, 
IV, , 

-----1----
o IV) 

Fig.6.4 A ball that spins about its frontal velocity axis 

When the numerical scheme that is described in Section 6.1.4.2 is executed, it is 

found that generally both the cue ball and the object ball would have spin about their 

frontal velocity axes. Here the example of the object ball 0 is used to derive, with' 

appropriate symbols, the description of the trajectory of the ball under masse 

conditions. 

The effect of table friction will generally impart a spin about the velocity axis of the 

object ball, as in a spinning bullet. This will curve the path of ball 0 immediately after 

the termination of impact, making the final direction of movement different to that at 

the termination of impulse. Its effect will be very prominent for high values of Ilhb' In 

mathematical terms, at the termination of impact, when n=N, i.e. the final step of the 

numerical algorithm, this condition for curving is .created when, 

(6.17) 

Where PN denotes the direction of movement of the centre of gravity of the ball 0 

(i.e. the direction of its velocity), given by tan P N = r~ jN , and <!>' being its slipping 
Xc N 

direction on the table. It should be noted that any person will only observe fJ and not 

<!> " at any time during the motion of the ball. 
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The subsequent curved path of the ball can be shown to describe a parabola, 

conveniently in the X'Y' coordinate system, which is rotated from the XY axes by 'I' 

(see Figure 6,5), Where, 

. 1 
tan 'I' = 

tan (jJ' N 
(6.18) 

and C/J' N is obtained from the numerical algorithm explained earlier. Most of the 

following equations used below are taken from the det[!iled analysis of Hopkins and 

Patterson [1977], where they analyze the curved path of a bowling ball, and modified 

accordingly. 

X' 

Y X 

Y' 

Fig. 6.5. Curved path of 0 (the object ball) 

(y'_~ ')=_[ Yv' ](X'-X ')' 
v (Xv')' v 

(6.19) 

Where, 

Xv'= vx,(O)Vy.(O) , Yv'= (Vy.(O))' ,and the initial centroid velocities of the ball along 
p,g 2p,g 

X' and Y' are denoted by Vx-(O) and Vy,(O). When substituted with the parameters 

used in this analysis, the following can be written, 

(6.20a) 
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(6.20b) 

The sliding can be shown to stop at time T" given by, Ts = 2s' N , when the ball is at S 
7 j.1.,g 

(see Figure 6.5) or the coordinate (X/,Y, ') in the X'Y' system (where S'N is the slip 

velocity of 0 on the table at the termination of impact, obtained at the Nth iteration of 

the numerical scheme). It is also possible to show, also using the expression in (6.18), 

that, 

Ys'can be calculated using equations (6.21) and (6.19). 

The velocities along X' and Y' at the termination of slip (at S), 

Xs '= Vx'(O) = (xg L COS'f/ + (yg)N sin'f/ 

. , (.0). (.0) . 2S'N 
Ys = Vy'(O) - j.l,gT, = - XG N Sln'f/ + V'G N COS'f/ - -7-

The final velocity at the end of sliding is, 

At an angle of Os with respect to the XY coordinates, given by 

(6.21 ) 

(6.22a) 

(6.22b) 

(6.22c) 

(6.22d) 

Equations (6.22 a-d) completely define the post-slip motion of the ball, except its 

sidespin. The sidespin of the ball immediately after impact is also estimated using the 

numerical algorithm. Section 7.1.1.2 explains how to obtain the value of sidespin at 

the end of slipping process. 

If the velocity and spin conditions, while the ball is still under the slipping process, 

are to be estimated (i.e. well before the ball reaches S) then the following set of 

equations will be useful. In Section 7.1.1.3, a similar situation arises. 
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Slip velocities along X and Y: Sx = Vx - Rwy and Sy = Vy + Rwx (these are 

equivalent to equations (6.13b)) 

Slip velocities along X and Y in tenus of its initial conditions: 

(,0) 7 rh' d (.0) 7 . rh' 
Sx = XB N -'2Ii.,glcos'V N an Sy =\YB N -'2Ii.,gISln'V N 

Time-dependant coordinates of the ball in X'Y' system: x'= vx.(o)t y'= Vy,(O)/- Ii,g (' 
2 

6.1.6 Motion of the Airborne Ball 

In Section 6.1.2, it was explained that when Z A < 0 (i.e. the relative velocity of sphere 

C relative to sphere 0 along the Z axis is in downward direction), the cue ball is not in 

contact with the table but is airborne instead; when i: A > 0, the object ball will, 

instead, behave in this manner. The implication is, when i: A < 0 , the cue ball will have 

a net upward velocity (along the Z axis referring to Figure 6.2) at the end of the 

percussion, and the value of this velocity can be obtained from the numerical 

algorithm. Using the numeric value of the initial velocity of the airborne ball and its 

direction, the trajectory of that ball during its flight can be estimated. The following 

analysis of airborne trajectory is carried out for the motion of the cue ball. A similar 

procedure can be carried out for the object ball as well. 

Figure 6.6 shows the vertical and the horizontal velocity components at the start ofthe 

cue ball flight for collision speeds 'of I m1s and 4 m/s under the conditions of pure 

rolling and no sidespin. 
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Fig.6.6. Vertical (a) and horizontal (b) components of cue ball velocity at the end of 

impact for initial cue ball speeds of 1 and 4 m/s (it was assumed to be rolling prior to 

impact and no sidespin) 

It can be understood from Figure 6.6 that the vertical velocity is significant when 

compared to the horizontal component only for head-on collisions (around 8=0). For 

high values of 8, the trajectory of the cue ball in the air will be more like that shown 

in the first drawing in Figure 6.7. The lift will be very low when compared to the 

horizontal range of the ball, which can be easily estimated using the theory of 

projectiles. The ball will land on the table with a very shallow angle to the horizontal, 

'grazing' the table. As illustrated in Figure 6.7, a frictional percussion of f.l,P occurs, 

where P denotes the normal percussion from the table surface, which will be very 

small as the vertical lift itself is comparably small. As the value of f.l, is also known to 

be 0.21 from Chapter 5, the effects of f.l,P on the subsequent linear and angular 

velocities of the cue ball will be neglected. However, during the flight of the ball there 

will be no changes in either the horizontal velocity of the ball or in its spin. Thus, the 

cue ball will land on the table at a distance of 2 (i~; )N t~~)N]' + [(0)N f is , from the 
g 

collision location along the direction of lan -1 [Yxi J: l The distances covered for the 
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cue ball with rolling velocities of I, 2, 3 and 4 m/s are shown in Fig. 6.8. For a very 

high velocity of 4 rn/s, the maximum distance obtained is 60 mm. 

Fig.6.7. Cue ball trajectories in the air 

For lower values of B, the ball can be considered as it lifts up vertically (neglecting the 

horizontal component) and then falls down to the same spot where it collided with the 

object ball. The impulse from table will be P along the vertical and will have no effect 

either on the horizontal velocity of the cue ball nor on its spins about any of the three 

axes, as the moment of impulse created by P will be zero about all three axes. 

Effectively, the cue ball in its motion has a time delay whereby its dynamics are put 

on hold for a time of 2 (zg )N , that is the time taken for the ball to come down again. 
g 
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Fig.6.8. Horizontal distance covered by the cue ball during its flight 

As soon as either of these types of motion, as given in Figure 6.7, is completed, the 

subsequent curved trajectory of the cue ball is calculated in the same manner as that 

for the object ball, since all its initial conditions are known at that instance. 
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6.1.7 Results 

The numerical results obtained in conjunction with equations (6.22 a-d), for the 

motion of cue ball and object ball, generate the plots given in Figures 6.9, 6.10, 6.11 

and 6.12, for an incoming cue ball speed of 2 m1s (equations (6.22 a-d) were also used 

to estimate the effects due to masse). When X, and Ys (these are the corresponding 

values of Xs' and Ys' in the XY coordinate system) were estimated, the effects of ball 

flight described in Section 6.1.6 were also included. Notably, when the cut angle () 

changes, the XY coordinate system will also be rotating about C (see Figure 6.1). 

Hence the plots do not have the initial cue ball movement direction as their reference. 

In Figure 6.5, the values of X, and \(1+). (i.e. (}s) for the object ball are the only 

parameters that affect the predictions of Wallace and Schroeder [1988), as described 

in Sections 2.3.3 and 5.1.3 respectively. Therefore, these two parameters influence the 

ball-potting accuracy of the robotic system. Their variations, with the ball cutting 

angle () and the type of spin the cue ball has, are illustrated in Figures 6.9(a) and 

6.1 O(b) for a cue ball speed of 2 m1s. The maximum deviation from the prediction of 

the 90° rule for the object ball motion occurs when the pre-collision cue ball has 

sidespin, as seen from Figures 6.9(a) and 6.10(b). When calculating the Ys value for 

the object ball, its centre C's shift of 2R along the Y-axis from the origin C was also 

incorporated (see Figure 6.1). 
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Fig.6.9. For the object ball, the distances at which the slip stops, Xs and Ys, against () 

for four different shots with Vo=2 m1s (roTo = kVoIR, 0/0= m VoiR) 
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Fig.6.10. For the object ball, the exit velocity and its direction after the termination of 

slip, Vs and Os, against 0 for four different shots with Vo=2 m1s (WTo = kVofR, wSo= 

mVofR) 
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Fig.6.11. For the cue ball, the distances at which the slip stops, X, and Y" against 0 for 

four different shots with Vo=2 m1s (WTo = kVofR, olo= mVofR) 
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Fig. 6.12. For the cue ball, the exit velocity and its direction after the termination of 

slip, Vs and 8s, against 8 for four different shots with Vo=2 mls (roTo = kVol R, roS IF 

m VoIR) 

Notably, whenever the cue ball has backspin (given by roTo<O) before the collision, its 

post collision motion is directed back towards the side from which it approached the 

object ball. This effect is clearly shown in Figures 6.II(b) and 6.l2(b), as Ys<O and 

1800 <8+8s<360° (the addition of 8 and 8s only signifies the reversal in the direction 

of motion of the cue ball, also see Figures 6.1 and 6.5). This condition is satisfied for 

the case of 8<35° for the shot with backspin (k=-I) shown in Figure 6.12(b). This 

phenomenon is also depicted in Figure 2.2, where a power shot with backspin is 

shown to draw back and collide into a cushion resulting in the cue ball finally ending 

up on the side of the table from which it started. 

Figure 6.13 shows the time taken for the cue ball slip on the table to terminate for 

different 8 's. However, the airborne time of the cue ball for the three cases with roTo = 

VoiR (k=l) is not included in these plots and only the time that the cue ball was in 

contact with the table is given in Figure 6.13. This plot, as explained in Section 

7.1.1.3, is useful in estimating the sidespin of the ball after the termination of slip. 

When roTo = VoiR it can be seen from Figure 6.13 that the time taken for slip remains 

almost the same irrespective of sidespin on the cue ball. 
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Fig. 6.13 The time taken for the cue ball's slip to terminate on the table, T" versus () 

for four different shots with Vo=2 mls (WTo = kVoIR, wSo= m VoiR) 

6.1. 7.1 Process of Slip 

The numerical algorithm explained in Section 6.1.4.2 also computes the slip speeds 

and the slip directions between the balls and those between the ball and the table, for 

each increment of LlPI. When the slip speeds and their directions are plotted against 

the respective impulse values at the ball-ball interface, the shapes of the plots 

typically resemble the one given in Figure 6.14, which is obtained for the conditions 

of Vo=3 m/s, ()=45°, wSo = VoiR and wTo = VoiR. In Figure 6.14, (/J' remains a constant 

while the maximum change in the value of (/J is 0.6 % of its starting value. Hence, for 

all practical purposes <P and (/J' can be considered constants. This suggests that the 

analysis performed by Domenech [2008) is complete and accurate, as far as billiard 

ball collisions are considered. However, Domenech has not explicitly set out the 

justifications for this assumption of constant slip directions, which is only true for 

very small values of the friction coefficient between the balls (i.e. flbb), hence usable 

for billiard ball collisions where flbb is 0.05. For example when flbb is increased to a 

large value, say 0.4, the value of <P changes drastically with PI. Figure 6.15 shows 

that, for the same collisions as given in Figure 6.14, the value of <P can change 

between zero and 2n radians. For such a case, the assumption made by Domenech 

[2008) wi 11 not be val id. 

138 



5 c--------------------------------, 

4.5 p---------------
4 

0.5 

O~~~~~~~~~~~~~ 

o 0.05 0.1 0.15 0.2 0.25 0.3 
Impulse PI (N .5) 

Fig. 6.14 With ,ubb = O.OS, slip-impulse curves for Vo=3 mls, 8=4So, wSo = VoiR and 

WTo = VoiR 

(s and (/J are for the slip between the balls, imd s' and (/J' are for the slip at the table­

object ball contact point) 

7 

'" 6 

5 

x 

x 

s' 
2 

x 

x CP' 

s 
o 

o 0.05 0.1 0.15 0.2 0.25 0.3 
Impulse PI (N.s) 

Fig. 6.IS With ,ubb = 0.4, the slip-impulse curves for Vo=3 rn/s, 8=4So, WS 
0 = VoiR and 

WTo = VoiR 

139 



6.2 Ball Collisions with the Cushion 

A player often uses cushion impacts to achieve planned trajectories. Cushion impacts 

give a great deal of variation to the game. When combined with the effects of ball 

spin, the ball-cushion impacts change the ball trajectories dramatically, and give the 

player a greater flexibility in his game strategy (see Figure 2.2). 

So far bounces of the ball off the cushion are analysed incorporating the coefficient of 

restitution between the ball and cushion as the only influencing parameter. In this 

analysis, the ball velocity normal to the cushion is considered as the sole variable. 

According to the current level of theory, referring to Figure 6.14, once the ball 

bounces off the cushion, it will have a velocity of ee Vosina normal to the cushion, and 

a velocity Vocosa along the cushion respectively, where ee is the coefficient of 

restitution between the ball and cushion. This simple analysis does not consider the 

effects of ball spin and the effect of friction during the impact, and is purely treated as 

a two dimensional phenomenon (the plane of analysis is as given in Figure 6.16). 

c o 
:E 
'" ;::l 
U 

a 

Fig. 6.16. Billiard ball prior to collision with a cushion 

Spin on the ball, both sidespin wSo and topspin wTo as shown in Figure 6.16, affects 

both the rebound speed and rebound angle, p, of the ball. The latter two quantities are 
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vital to estimate the trajectory of the ball. Even though Marlow 11994) has tried to 

address these issues, the way the analysis was performed involved unnecessary 

parameters like the impact time between the cushion and ball for which the values 

were not known. Other assumptions, such as taking sliding directions as constant, do 

not seem correct (it is shown later that these actually change during the time impact). 

Marlow's analysis is not, most importantly, complete so that any comparison of the 

results is impossible. 

The billiards cushion is made out of pure gum rubber that has good rebound 

properties. The cross section of a typical billiard cushion is shown in Figure 6.15. 

Usually, a slope is provided in the cushion such that its contact point on the ball is 

always above the horizontal great circle of the ball, in order to prevent the ball from 

leaping up in the air after impact. Here, the cushion is assumed not to change its shape 

during the impact with the ball, i.e. it is treated as a' rigid part. This assumption may 

not be valid at higher ball speeds, as the normal ball velocity at I (see Figure 6.17), 

will try to lift up the tip of the cushion. Also, the ball and cushion are assumed to have 

a point contact, which again may not be true at larger ball speeds, as the ball will start 

to 'sink' more into the rubber cushion. 

Ft 
z 

Y...,. 
Z' 

Cushion 
h 

Fe 

FJ~ C 

Fig. 6.17. The forces acting on the ball during the collision - a side view along the 

cushion at the table level 
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In Figure 6. I 7, the height of the contact point at the rail is h. In both snooker and pool 

h=7 R/5, where R is ball radius. At the contact point with the cushion, the common 

normal line Z' makes an angle ofe with the Y-axis, thus, sine = 3.. 
5 

z 

. w 
Y~ y 

( 

Fig. 6.18. The forces on the ball during impact (a part of the cushion is shown) 

The analysis here follows the same steps taken when analysing the ball-ball collisions. 

Hence, only important steps are shown and wherever similarities are found, the 

corresponding sections under Section 6.1 are referred. 

6.2.1 General Equations of Motion 

Referring to Figure 6.18, the impulse-momentum relationships 

Llp J + L1Pc = ML1X . x x G (6.23a) 

(6.23b) 

(6.23c) 
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In equation (6.23c) it should also be noted that due to the physical sloped shape of the 

cushion, the vertical motion of the ball is constrained. Hence, MG = o. Equation 

(6.23c) is rearranged as, 

LlPc =LlPI sinB-LlP;,cosB (6.23d) 

Similarly, for the rotational motion of the ball about the X-axis, the following 

equation can be derived, with angular velocity being denoted by w, 

2MR' 
where, the moment of inertia of the ball, 1=--. The above equation can be 

5 

written as: 

I c 2MR 
LlPy' + ,1Py = -5- ,1liJx (6.24a) 

Similarly about the Y and Z axes: 

I . c 2MR 
LIP smB-LIP =--,1liJ 

x x 5 y 
(6.24b) 

I 2MR 
-LIP cosB=--,1liJ 

x 5' 
(6.24c) 

6.2.2 Impacl Dynamics al Localions I and C 

At the contact point with the cushion, I, the slip will take place on the XV' plane (i.e. 

the tangential plane), also noting that the axis Y' is in the YZ plane. Let the slip speed 

of the ball at I, be S(I) at an angle <P(I) from the X-axis. 

The slipping velocities along the X and Y' axes are given by, respectively, 

XI = S(PI )cOS(<1J(PI)) 

Y'I = S(PI )sin(<1J(PI )) 

However, Y'I can also be written as, 

(6.2Sa) 

(6.2Sb) 

(6.26) 

Using the Amontons-Coulomb law of friction, for s > 0, also noting that the friction 

forces/impulses are opposite to the direction of sliding, the friction impulses along X 

and Y' are 
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!JP; = -f.1 .. cos(<t>(p{ ))!JP{ 

!JP;' = -f.1w sin(<t>(P{ ))!JP{ 

where, f.1 .. is the coefficient of friction between the ball and the cushion. 

(6.27a) 

(6.27b) 

From (6.23d) and (6.27b), the normal reaction from the table surface to the ball is 

given by, 

(6.28) 

Using the earlier argument, for the impact at C, the instantaneous impulse value Pc 

should be chosen as the independent variable. But equation (6.28) shows that the 

value of Pc directly depends on the value of PI. Hence, also for the impact at C, PI is 

considered as the independent variable. This makes it possible to have PI as the 

independent variable for all the impulse forces involved in this analysis. 

For the impact at C, the slip takes place on the XY plane. Let s' be the slip speed, and 

([J' be the direction of slip measured from the X-axis. Now, the components along the 

X and Y directions are, 

Xc = s'(p{ )cos(<t>'(p{)) 

Ye = s'(p, )sin(<t>'(P,)) 

(6.29a) 

(6.29b) 

Hereafter let us omit the independent variable PI from all equations for the sake of 

simplicity. When s'> 0, the expressions for the impulse forces along X and Y 

directions, also using equation (6.28), are 

AnC . "" AD LlI-y = -Ps SIn 'V LlI c 

Where f.1., is the coefficient of friction between the ball and table surface. 

6.2.2.1 Conditions for Rolling 

(6.30a) 

(6.30b) 

I) When s=O, the ball will be rolling on the cushion at , neglecting the effects of stick, 

(6.37a) 

2) When s '=0, the ball will roll on the table surface, and neglecting stick, 
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(6.37b) 

In Section 5.1.1.2, that the average value of J1.s was found to be 0.21. 

6.2.2.2 Coefficient of Restitution 

Work done at I, along the axis Z', is 

t+dI P,+i1P, 

LlWz', = f F[.i'[ dt = f i'[ dP[ 
, P, 

Its numerical form is, 

(w.,) -(W,) =LlP [(.i'[t+l + (.i'[tl 
z I n+l Z J n J 2 (6,38a) 

The coefficient of restitution is given by, 

Rearranging the equation, 

(6.38b) 

The termination of compression occurs when the normal component of relative , 

velocity becomes zero, i.e" 

i'[ (Pt)=O (6.38c) 

6.2.3 Velocity Relationships 

The velocity of any point on a sphere's surface can be expressed in vector notation as 

V=VG + wAR 

The slip velocities at I are, 

and at C, 

(6.39a) 

(6.39b) 
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6. 2.4 Solution to the Ball Velocity 

(6.40a) 

(6.40b) 

As in Section 6.1.4, the increments in centroid velocities of the ball can be calculated 

in terms of the instantaneous values of centroid velocities. For example, the 

expression for L1Xc; can be written as: 

(6.4la) 

() Y·(·+wR 
and, tan (/)' n = . I x 

Xc; - OJyR 

For the other 5 components ofthe centroid velocity, similar expressions to (6.4la) can 

be written. 

6.2.4.1 Initial Conditions 

s(O) = l~~o cos a + R(w~' cos a sin e - w5 cos e)]' + [- Vo sin a sin e - RW6 sin a l' I 

The numerical algorithm follows the same steps as those for a ball-ball collision (see 

Section 6.1.4.2). 
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6.2.5 Results 

6.2.5.1 Estimating e. and u", 

The experimental plot in Figure 5.7 was used to calculate the values of the coefficient 

of restitution e" and the sliding friction coefficient between the ball and cushion liw. It 

is known that O<ee:S1. The results exhibited in Figure 5.7 are obtained under the 

conditions of a = 90', mg = 0 and m~' = VD • Under these conditions, for each of the 
R 

experimentally-obtained incident speed values (i.e. Vo) in the speed range of Vo<I.5 

m/s, in Figure 5.7, the numerical algorithm was run for values of ee and liw starting 

from 0 and increasing to I in increments of 0.01, and the rebound speed Yc;(p!) was 

obtained. Higher speeds were not considered, as the assumption of a rigid cushion 

may not then be applicable. The values of ee and liw that minimise the RMS value of 

all errors between the experimental and numerically-predicted rebound speeds should 

be the actual value for the coefficient of restitution between the cushion and ball. 

Calculations showed that ee=0.98 and I1w=0.14. 

3.5 

• 
3 • Experimental •• 

• • • *. :fi 2.5 • Numerical • • 
E • • • ~ 

-0 
<U 2 

, 
<U • Cl. 
'" • -0 1.5 • c: 
:> • 0 

-'" • <U 
~ • 

0.5 .' . ' 
0 

0 2 3 4 
Incident speed (m/s) 

Fig. 6.19. Rebound speed versus incident velocity for ee=0.98 and I1w=0.14 

Numerically-obtained rebound speed values for ee=O.98 are plotted in Figure 6.19 

together with the experimentally-obtained values. As seen in Figure 6.19, the 
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numerically-obtained values of incident speed deviate from the experimentally­

obtained values for speeds Vo>2.5 m/s. This is, quite possibly, the velocity limit at 

which the rigid body assumption for the cushion would be valid. V 0=2.5 m1s is a 

considerably high speed as far as snooker is concerned. For oblique shots, only the 

ones for which the normal component of the incident velocity of less than 2.5m1s, 

would be analysed using the numerical algorithm. 

6.2.5.2 Ball trajectories 
The outputs from the numerical algorithm show that, in most cases, the ball has some 

spin about its velocity axis at the termination of impact, causing it to curve. Under 

such conditions, the equations derived in Section 6.1.5 can be used to determine the 

parameters of the curved path and the exit conditions of the ball. The results obtained 

for a ball speed of 1 m1s and 5 different spin conditions are given in Figures 6.20 and 

6.21. Xs and Ys are measured with respect to the coordinate system OXY as shown in 

Figure 6.18. 
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Fig.6.20. Distances at which the slip stops, X, and Y" against a for four different shots 

with Vo=1 m1s (a/o= kVoIR,alo= mVoIR) 
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For the cases where alo=-VoIR (i.e. m=-l in the plots), from Figures 6.20(a) and 

6.21 (b), it can be seen that for 0>70° the value of X, becomes negative and the 

direction of its exit velocity, Os, is below 270°. The implication is that, with reference 

to Figure 6.22, the ball bounces back to the same side from which it approacbed the 

cushion. This effect has been described by Walker [19831 for billiards, and by Cross 

120051 in a general context for the bounce of a ball. Cross [20051 also presents some 

experimental values for a tennis ball bouncing on a rough surface. 
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Fig.6.2l. Exit velocity and its direction at the termination of slip, V, and 0" against a 

for five different shots with Vo= l rn/s (roTa = kVoIR, roSo= m VoiR) 

Fig. 6.22. Ball bouncing back to the same side under left spin conditions 

149 



6.2.5.3 A note on the process of slip 

As stated at the beginning of Section 6.2, the slip directions have been assumed to be 

unchanged from the values at the onset of impulse by Marlow [1994]. The numerical 

algorithm was also programmed to calculate the directions of slip and slip speeds for 

every increment of LIP, using equation sets (39) and (40). A plot against the 

instantaneous impulse value is shown in Figure 6.23. The change in slip direction as 

indicated by the plot suggests that the assumption of uni-directional slip is wrong. 

5 
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Fig. 6.23. Slip-impulse curves for Vo=2 mls, a=45°, roso = 2 VoiR and roTo = 1.5 VoiR 

(s and 1> are for the slip at the cushion, and s' and 1>' are for the slip at the table) 
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Summary 

Using the principles of impact mechanics, the ball-ball collision was analysed. After 

obtaining the differential equations describing balls dynamics during the period of 

impact, they are solved numerically. When combined with two experimental plots 

from Chapter 5, the numerical solutions provide the values of the friction present 

between the balls and their coefficient of restitution. Numerical algorithms provide 

post-impact velocities and the spins of the balls for a given collision condition 

consisting of different ball speeds, directions and ball spins. For the first time, the 

object ball is showri with the application of masse-type spin, which resulis in a curved 

trajectory. A description of the masse shot trajectory is presented, suitably adapted 

from an earlier work on the curving effects of bowling balls. The second part of the 

chapter presents the same set of analyses for a ball-cushion collision. For both cases, 

the slip curves during impact are provided and by using these curves some 

assumptions adopted by earlier researchers are either validated or disproved. 
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Chapter 7 

MANIPULATION PROBLEM: DEFINITION, SOLUTIONS AND 

RESULTS 

This chapter focuses on the main question addressed by this thesis: how to position 

the balls at desired locations on the table. First of all, the manipulation problem is 

defined within the context of the background information from the previous chapters. 

The performance of the robotic system is evaluated. Also, an empirical model, using 

neural networks, for the cueing dynamics is obtained. Section 7.2 outlines the genetic 

algorithm-based optimisation procedure that is suggested as the solution for the 

manipulation problem. The last part provides the relevant experimental results. 

7.1 Manipulation problem definition and background information 

The artificial intelligence part of the system always makes decisions regarding which 

object ball has to be played next, the pocket in which the object ball must to be potted 

and where to leave the cue ball in order to make the next shot according to the overall 

game plan (this is discussed in Section 2.1). Thus, for a given initial cue ball location, 

Cl , as depicted in Figure 7.1 (only a part of the table is shown there) the decision to 

play the ball 0 1 into the pocket PI and then to leave the cue ball in or very close to the 

desired ball location CD has already been taken by the decision-making system. These 

results are assumed to be readily available. Now it is up to the robot dynamics planner 

to plan and execute the shot so that the trajectories are achieved accordingly. This 

planning phase is discussed in this section. The initial parameters of the ball motion 

are, VD, wTo, wSo, e, namely, the velocity, top and side spins imparted to the ball, and 

the direction along which the ball moves. These parameters of the ball motion can be 

varied by the controllable parameters of the robot as will be seen later in this section. 
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Fig. 7. I. A typical ball trajectory in snooker 

The velocity of the cue determines the cue ball speed Vn. In Section 2.4.1 it was 

described that the hitting point on the ball and the cue velocity determines the type 

and amount of spin imparted to the cue ball. In summary, the cue velocity and the 

hitting point stand out as two important variables. The third one is the cue swivel 

angle Bc (this is slightly different to B due to cue squirt, as described in section 

2.4.1.3). In the robot, the cue velocity is determined by the speed of the servomotor. 

The cue positioning on the ball is performed by the stepper motor unit, as described in 

Section 4.2. 

7.1.1 Ball Trajectories on the Table 

Here the important ball motion characteristics are briefly outlined. 

7.1.1.1 Straight-line ball motion 

The essential equations to describe the ball's straight-line movement are given In 

Section 2.4.2, describing its sliding and rolling motion. Parameters needed for the 

equations are estimated in Section 5. I. I. 
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7.1.1.2 Estimating sidespin of the ball 

Sidespin does not affect the free motion of the ball on the table, and its value is not 

influenced by the linear speed of the ball (the assumption of decoupled motion). 

However, sidespin plays a vital part in determining the dynamics of impacts, as seen 

in Sections 6.1 and 6.2. This underlines the need to estimate the amount of sidespin on 

the ball at any time during its motion, as the ball on its path can encounter another ball 

or a cushion at any instant. The following formula describes the instantaneous value 

of sidespin at time I for its initial value of OJi, , 

T( ) T . OJ t:::; lUO - DJ,I , 

T ( ) T . OJ t:::; mo + Wrl , 

T 
T OJ for OJo > 0 and I ,;; _._0 

OJ, 

T 

for OJ~' < 0 and I';; OJo 
OJ, 

(4Sa) 

(45b) 

m, is the resistance of the table to the sidespin of the ball, which is measured as 22 

rad/s2 in Section 5.3. It should also be noted that clockwise rotation of the ball (i.e. 

right-spin), as seen when looking down on the table, is taken as positive. Once OJT (i) 

becomes zero, it stays at that value unless the ball collides with a ball or a cushion 

where it attains a new value. OJ~' is the value of sidespin immediately after cueing or 

the one immediately after an impact, in which case it is estimated from the numerical 

schemes described in Sections 6.1 and 6.2. 

7.1.1.2 Dynamics of the Ball Collisions 

When the dynamics prior to the collisions are provided, the algorithms presented in 

Sections 6.1 and 6.2 form the basis for the estimation of the post-collision velocities 

and the ball's trajectory changes during the collisions. 

7.1.1.3 Collisions under Masse Conditions 

Cue ball collisions, either with another ball or with a cushion, can also occur during 

the curved phase of the ball motion shown by segments CGE or 0,0 (see Figure 7.1). 

Under such situations, the incoming conditions of the ball (its speed, direction of 

movement, frontal and top spins and its sidespin) have to be estimated using the 

equations given towards the end of Section 6.1.5. 
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7.1.2 Robot Manipulation Parameters and their Constraints 

Currently, the robot swivel angle, Bc , has to be adjusted manually, thus it does not 

have any constraints imposed on it. Generally, in the presence of cue squirt, the 

direction along which the ball travels after the cueing, B, will differ from Bc by a 

certain amouni, as discussed in Section 2.4.1.3. But Bc directly influences B and hence 

it is one of the manipulation parameters. However, for a given cue ball-object ball 

combination, for the former to impinge on the latter, B can be shown to lie within 

specific limits. 

=-:7 (0",=" ========== 

y 

Fig. 7.2. Constraints on the cue ball's direction of movement 

Let Cl'" [xc, yc) and 0 1'" [xo, Yol, be in the table coordinates XY that are defined for 

the imaging purposes (Figure 4.18). The inclination of OIC I with respect to the X-axis 

can be obtained from, 

Yo - Ye 

Xo -Xc 
(7.1 ) 

The cue ball trajectory when it brushes past the object ball sets a lower limit for B. 

Right at the moment the cue ball grazes against the object ball on its right side, the 

cue ball is at Co on the table (see Figure 7.2). For the right-angled triangle CICOO I, as 

the radii of the cue ball and the object ball are equal, 
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· /3 2R 
Sin = ---,:===c:======-

J(xQ -Xc)' +(yo - Ye)' 
(7.2) 

Now, the minimum possible value for 8 for collision to take place is: 

Using a similar procedure, it could also be proved that: 

Hence the possible values for B are given by: 

Om-/3:5.0:5.0m+/3 (7.3) 

Thus, the robot swivel angle, Bc, must also be kept within specific limits defined by 

the expression in (7.3) for the cue ball to impinge on the object ball. 

Cue 
ball 

Cue . vc. 
~I~ -,--- -----

IIF! -Y'l..---

Table Z 

frameX~Y 
X'o 

Fig. 7.3. Manipulation parameters of the robot and the initial cue ball motion 

The other manipulation parameters of the robot are its linear velocity Vco with which 

it drives the cue and the cue impact location on the ball. Referring to Figure 7.3, let 0 

be the point on the ball where the cue should impinge on the ball to obtain the stun 

condition for a given position of the robot frame (essentially the stepper platform 

location). Hence, 0 will lie on the horizontal great circle <if the cue ball. Let the 

coordinate system X' 0 y' oZ' 0 be such that 0 is its origin and OG lies along the Zo axis 

(G is the ball centroid). X'o and Y'o are aligned to the horizontal and the vertical 

respectively. X' 0 Y' oZ' 0 essentially represents the stepper drive's coordinate system, 

where X' 0 and Y' 0 lie along the drive's positioning directions. Any movement Xo and 
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Yo of the stepper will result in the driving line of the cue being shifted so as to go 

through point, say A, on the X' 0 Y' 0 plane that has coordinates [x '0, y'o] (refer to 

Figure 7.3). Since the horizontal inclination of the cue, 'If. is known as 6.5°, the impact 

point on the ball can be calculated in the following manner. Now let X'Y'Z' be a 

coordinate system having the ball COG as its origin, which is shifted from the 

X' 0 Y' oZ' 0 system by a distance R along the Zo axis. 

The equation of the straight-line along which the cue moves, in the X'Y'Z' system, is, 

x'=x'o, and, z'+R= (y'-y'o) 
tan 'If 

(7.4) 

Alciatore [2004) recommends that the radius of the cue-tip should ideally be the 

radius of a nickel (a U.S. coin). The pre-shaped cue-tip that was used here was IOmm 

in radius, which is very close to the size suggested by Alciatore. When the cue tip 

touches the ball denoting the ball radius by R and the cue-tip radius by r, the Z' 

coordinate of the centre of the sphere representing the cue-tip surface can shown to be 

the solution of the following quadratic equation: 

(7.5) 

There will be two values for z~, and the negative root is the relevant one. Now, 

substituting for z' using equation (7.4), the coordinates of the centre of the cue-tip 

surface can be worked out, let them be [x;., y;. , z~]. Let the coordinates of the contact 

point between the cue tip and the ball be [x~, y~. , z~ ]. They are the solutions of the 

. following set of equations, 

[x~l-~[x~l Ye - Yr , R+r', 
Zc Zr 

(7.6) 

Therefore, the impact location, which affects the spin imparted to the ball (WTo and 

a/o), the ball velocity (Vo), and the amount of cue squirt, denoted by a in Figure 7.3, 

is essentially a function of the stepper movement x '0 and Y '0. 

There are constraints on each of the robot parameters. For the robot, the following 

limit is set, 
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Vco:;; 2.2m/s (7.6) 

Vco is programmed to be as high as 2.75 mls, but due to vibrations and the associated 

problems with the robot's repeatability it was not taken above 2.2 mls. This 

maximum cue velocity produces ball speeds close to 3 mls, which is high enough to 

do the tests over the half-table area. 

According to Alciatore (2004], for mis-cueing not to occur, 

~(x'c)' + (y'J' :;; R 
2 

(7.7) 

Coriolis suggested that the limit is O.7R (Nadler 2005(. x'o, and,y'o, (and in turn x'c 

and Y'c) are not constrained by the robot's dynamics, but are to be rounded off to the 

nearest millimetre. 

Equations (7.3), (7.6) and (7.7) define the constraints for the control parameters of the 

robot, Vco , x'o, y'o and Bc· 

7.1.3 Cueing Dynamics a/the Robot 

So far, a dynamic model for the ball motion on the table has been presented (as 

summarised in Section 7.1.1). A complete control of the robotic components (both the 

servo and the stepper drive) has also been established as described in Chapter 4. Now, 

the final task is to establish a model for the interaction between the robot and its 

environment (here the ball-table dynamics). The interaction is cueing, and a model is 

developed for this process here. For a tapping-based positioning robot, Huang and 

Mason (2000) have used Routh's method of analysing two-dimensional impacts with 

friction, between the tapper and the planar part that is being positioned. In their study, 

an analytical solution is possible as both their tapper and the tapped object are rigid 

objects for which a theoretical analysis is a straightforward possibility. However, in 

the case of the cue and the ball colliding, the cue-tip, which is both soft and 

deformable, is present at the collision interface. The presence of the cue tip 

complicates the dynamics at the interface. 

158 



Before the cueing dynamics of the robot can be determined, the performance of the 

cue launcher system has to be evaluated for its consistency. 

7.1.3.1 Performance of the Robot 

The servomotor-based cuemg element IS controlled through an Iensys® 

microcontroller board that is programmed to send pulses at a constant rate to the servo 

controller. When the pulse rate is at its highest, the linear striking velocity of the cue 

reaches 2.75 m/s, a typical maximum cue velocity found in a normal game of snooker 

(some speed measurements on typical human cueing are shown in Figure 5.16). The 

rate at which the pulses are sent out from the microcontroller is selected by a string 

consisting of a 3 digit number appended with a 'p' from the PC through its serial port 

to the serial interface of the microcontroller. This 3-digit string, which ranges 

from'OOI 'to'200', selects the intended pulse rate. String '001 'corresponds to a cue 

velocity of2.75 mls and '200' achieves a cue velocity 0.3 m/so However, the velocity 

interval of 0.3-2.75 mls is not divided into equal velocity intervals by the 200 strings 

explained above, but they do approximately divide the velocity range. However, all 

intermediate velocities are calculable using the values of the pulse widths used (the 

pulse widths are in the range of tens to hundreds of nanoseconds). This amount of 

resolution of the cue velocity· can position the cue ball, theoretically, to a 15mm 

spatial accuracy on the table, but the repeatability characteristics of the robot, as 

described later, will also have an effect on the positioning accuracy. 

For a given string sent from the PC, the driving signal of the servo shouldresemble a 

step input as far as the cue velocity is concerned, as the pulses are sent at a constant 

rate from the time t=0, which should theoretically ensure that the cue is moved at a 

constant speed from t=0. However, when the cue was tracked from the overhead 

camera and its speed was measured, the cue speed profiles were more like the plots 

shown in Figure 7.4. At lower cue speeds, the resulting cue speed almost follows the 

step-type input of pulses. However, for medium- to high-speed pulses, after an initial 

acceleration (which is due to the high friction present between the slides and linear 

guides) there is usually an overshoot in the velocity before it settles at the intended 

striking velocity (Figure 7.4). The settling time was also found to change with the 

intended velocities of the cue, the higher the desired velocity the higher the overshoot 

and settling time (or the cue travel distance in Figure 7.4). He~ce, the ball was always 
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placed on the table at a distance of around 11 Omm, from the cue tip, in order to obtain 

consistent and stabilised strikes (1lOmm is greater than the settling distance for the 

maximum possible cue velocity as depicted in Figure 7.4). 
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Fig. 7.4. The velocity variation of the cue against its travel for different control input 

codes for the servo driver 

7.1.3.2 Repeatability of the Robot 

To make consistent measurements with the robot and to compare and contrast the 

results that are obtained under different conditions, the robot's performance should be 

steady, i.e. it should be repeatable. The undesired dynamics of the mechanical setup, 

such as vibrations and inconsistencies in the electromechanical components, such as 

the servo used, can introduce inconsistencies into the system dynamics. Tests for 

repeatability also ensure that the electronics of the system, as in the case of sending 

pulses, also work steadily. 

For these tests, the cue ball was kept at a particular position on the table and after each 

shot it was replaced back to that same spot on the table. In order to do this, two steel 

blocks were placed creating a wedge-shaped gap within which the cue ball was placed 
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repeatedly not touching the blocks (camera measurements have shown that the cue 

ball thus placed was within a tolerance of 0.2 mm). The cue was shot at a constant 

speed repeatedly for 10 times and each time the cue ball motion was tracked. Results 

were obtained for 3 sets of cue speeds: high, medium and low speed shots, with 

velocity codes of '90p', '150p' and '190p' respectively. No object ball was introduced 

on the table. The reason is that, unlike the cue ball, it was very difficult to place the 

object ball on the same spot on the table accurately, as any guide blocks cannot be 

introduced into the playing area into which the cue ball is shot. However, to introduce 

similar conditions to those present in ball-ball collisions, it was made sure that the cue 

ball collided with the cushion. The high-speed shot for code '90p', makes the ball 

collide 3 times with the cushions (the shots were taken almost across the table) and 

the ball travels for 3.5 m on the table. The ball under intermediate speed collides twice 

with cushions and has a total length of travel of around 2.4 m, and the low speeds 

shots make the ball have a single cushion collision with a 0.95 m distance of overall 

ball movement. 
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Fig. 7.5. Positioning results for 3 different speed shots around their respective mean 

values 
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The XY (i.e. the table coordinates) positioning results for the balls, when compared 

with the respective overall average of X and Y values for each individual shot, are 

plotted in Figure 7.5. For the single wall impact, low-speed shot, the positioning was 

done within ± 15 mm. Whereas for the high-speed shot, with 3 successive wall 

impacts, the ball was positioned within ± 150 mm, which is approximately 3 times the 

ball diameter on each side of the mean. The reason for this deviation is that higher cue 

speeds lead to larger vibration amplitudes in the cue launcher. This vibration in turn 
\ 

affects the consistent hitting of the cue on the ball, and alters the hitting point. 

Although very small, this change will vary the amount of spin imparted to the ball, 

and this error propagates and becomes very large ,as the ball travels over longer 

distances and makes more collisions with the cushion. In a game of snooker, players 

mostly make use of the type of shot that is shown in Figure 7.1, the type of shots that 

consist of a cue ball-object ball collision and a cue ball-cushion collision. At other 

times, only a single collision between the cue ball and an object ball is employed. 

Players do use very complicated shots only in the absence of such simpler shots. 

Hence, the positioning repeatability of ±50 mm for the intermediate speed shot, which 

encounters two collisions and travels over a considerable length of 2.4 m, can be 

assumed for the robot as well. In summary, the repeatability of the robot is assumed to 

be equal to twice the ball diameter. 

7.1.3.3 Cueing Dynamics 

The cueing model proposed by de la Torre Juarez [19941 incorporates all of the 

effecls that are present during cueing (see Section 2.4.1.1). The principal drawback 

with this model is in the determination of the impulse forces, especially in estimating 

the friction impulses between the cue and the cue ball. Even if the friction coefficient 

between the cue-tip and the ball is assumed to be known, leading to the calculation of 

the friction percussions, the directions of these percussions are difficult to determine 

due to the high deformability of the cue tip. This difficulty in the application of a 

theoretical model results in an experimentation-dependant approach. 

For different cue offsets and cue speeds (Vco, x '0 and y'o, as shown in Figure 7.3), the 

ball's motion was tracked by the overhead camera. In order to evaluate the initial ball 

spins, a single black pattern, such as the one used in Section 5.3, was kept upwards 
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facing the overhead camera. The theory presented in Section 5.4 was planned to be 

used to eval uate topspin and sidespin. This approach provides a mean to the 

determination of cueing dynamics as it happens in the real world. 

The robot was initially set to stun conditions by adjusting the stepper drives in order 

to have x '0=0 and y 'o=O. Five shots of different speeds at approximately 0.5 m/s 

intervals (in the range of 0.5 m/s to 2.S m/s) were executed for the same ball position, 

by replacing the ball back to the initial position after each shot. Also, the cue was 

chalked well after each shot. For each shot the ball was placed such that the black 

pattern was within the view of the overhead camera and the ball motion was recorded 

at ISO fps (Figure 7.6). This very high-speed tracking introduces 'error ball speeds' of 

up to 0.05 m/s (sub-pixel level errors are magnified due to the filler resolution of 

time). Then y 'O was varied from -12 mm to 12 mm in increments of 2 mm and for 

each y 'O, x 'o was varied from zero to 12 mm also in 2 mm increments. For each 

combination ofx 'o and y 'O, 5 shots were played. Only right spin shots were played. As 

the cueing dynamics have a symmetry about the x '0=0 line, the results obtained for 

right spins of the ball can be easily translated to left spins as well. 

Fig. 7.6. Testing for the cueing dynamics, the pattern and the ball are tracked 

The initial ball speed was measured as described in Chapter 5. Additionally, for the 

first few tracked points, an LMS error line was fit to obtain the direction of the ball 

movement as well . This direction was compared to the direction value obtained for 
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stun shots to obtain the deviation in the ball movement due to cue squirt. To calculate 

the initial ball spins, when calculations were performed according to the theory 

presented in Section 5.4, the values obtained for a/o and alo were found to be totally 

unreasonable. For example, for shots with the slightest right-spin and zero topspin, the 

algorithm was found to give very large values for both top and right spins. This is 

possibly due to the drifting effect in the pattern-tracking that was found in Section 5.3 , 

which was identified as a problem with the uneven lighting conditions present over 

the table area. This problem of estimating the initial ball spins is tackled in a different 

way in the coming sections. 
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Fig. 7.7. Variation of the cue ball speed Vo against x '0 and y '0 (measured in 2mm 

increments), for a cue speed corresponding to velocity control string ' 70p' (cue speed 

- 2.0 mls) 

Figure 7.7 shows the variation of Vo with x 'o andy 'o for a cue velocity corresponding 

to the ' 70p' string sent to the servo drive. For such a constant cue speed, the cue ball's 

speed variation roughly resembles a dome having its apex around the point 

corresponding to a stun shot (i.e. x '0= y '0=0). Hence, the velocity transfer from the cue 

to the ball degrades as the cue is hit further away from the ' stun' point (this should be 

compared with Figure 5.16). Cue squirt (a as shown in Figure 7.3) measurements for 

the same cue speed are shown in Figure 7.8. A maximum squirt value of around 2.50 
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has been obtained. According to Figure 7.8, the squirt values almost remain the same 

when x 'o is kept constant and y'o is changed. Hence, a general conclusion is that the 

squirt increases with x '0, and does not depend greatly on the value of y '0, which is 

easy to understand intuitively, and also after the experimental work of Cross [2008] , 

which suggests that squirt values for a chalked cue tip can go up to 10°. However, 

Cross' measurements were performed on a cue ball hung by a string. When the cue 

ball is on the table the resultant force of the normal and friction force components 

(denoted by T in Figure 2.11) at the cue-cue ball interface will be countered by the 

friction force at the cue ball-table interface, reducing the amount of squirt. Also, the 

amount of squirt depends on the properties of the cue shaft. Cross 12008J also 

concludes that thinner cue shafts can lead to reduced cue squirt because of their high 

flexibility rather than due to their reduced mass. 

.. ' .. ' " , . ", 

·····T :., . ...... , 

.. ' 

.... 

, . 

y 'O (mm) 

.' ,.' 

.... 

'" .. , 
.. ' 

,.' 

o 

f" " X)rl'0;o '" : . 

.. ' 

". 

• "':-

"':.~' ", 

'" ··1····· 
" , : 

"', .. ' 

' .. 

" '. 

-. 
~ .... 

. ~ 
. :',i 

10 

6 x'O (mm) 

Fig. 7.8. Cue squirt values, a, against x 'o and y 'o (in 2mm increments), for a cue speed 

corresponding to velocity control string '70p' 

These experimental results for cue ball speed and cue squirt have to be generalised so 

that for any given values of Veo. x 'o and y 'o (also satisfying the constraints of 

equations (7.6) and (7.7)), the values of Vo and a can be estimated. This generalisation 

of the dynamics can be performed in several ways. For example in a table tennis 
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robot, to generate an appropriate paddle movement according to the incoming 

conditions of the ball, an input-output map has been used [Matsushima et al. 2005, 

Miyazaki et al. 2006). For this table tennis robot, empirically-obtained results are 

used to create the input-output maps of the dynamics, which essentially map out the 

outgoing ball conditions against respective incoming ball conditions for different 

paddle speeds and inclinations, and store them permanently in the memory of the 

controller of the robot. When a query is put forward, a Locally Weighted Learning 

(LWL) algorithm performs local interpolations, on the stored data, around the query 

point [Miyazaki et al. 2006f. However, the L WL method is memory expensive, as the 

complete set of empirical data has to be always retained in the system memory for 

retrieval. Artificial Neural Networks (ANNs) are also used in similar situations. For 

example Ming et af. [2006) use an ANN to derive the forward dynamics model of a 

golf swing robot. An advantage with ANNs is that once their training phase is over, 

the experimental data can be discarded, hence they are memory efficient. 

Here, a neural network solution is proposed. ANNs consist of several artificial 

neurons (see Figure 7.9) that are arranged in different layers. A neuron j in the k'h 

layer of the network is connected to all neurons in the (k-l )'h layer as well as in the 

(k+ 1 )'h layer, but does not have any connectivity to any other neurons in its own layer. 

Sum Activation 
function function 

Fig. 7.9. An artificial neuron 

0' 
I .. 
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In a neuron as shown in Figure 7.9, the summation function is calculated by, 

, " '0'-1 h 'k .. h Th .. net,. = L... W Ji i , were W ji are nown as connectIOn welg ts. e actIvatIOn 
j 

function can be expressed as OJ = f~et J ). A wide range of functions can be used for 

f, the activation function. Even within a network, different activation functions can be 

used for each of its layers. 

Two backpropagation feedforward neural networks are trained to predict the cue ball 

speed, Vo, and cue squirt, et, separately for a given set of a cue velocity of Vco, and cue 

offsets of x '0 and y'o. Feedforward networks are one of the most widely used models 

of ANNs, where the output of each node (also known as a neuron) propagates from 

the input side (left) to the output side (right) unanimously [Jang et al. 1997J, as 

shown in Figure 7.10. An error minimisation process usually trains the connection 

weights, wJ" where for each neuron the Least Mean Square (LMS) error between the 

desired output '0 and the actual output Dj is estimated as E =.!. L (T, - 0,.)' . In order 
2 I 

to minimise the LMS error rapidly, an iterative error reduction of the gradient descent 

method (this is known as backpropagation, hence the name of the network) with an 

added momentum term IS carried out ID the following fashion, 

LlwJ, (m + I) = 7] :::.. + pw~, (m) where 7] . IS the learning rate, P IS the momentum 
J, 

coefficient, and m is the index of iteration. 
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Xo --
Yo --
Vco --

Fig. 7.10. A backpropagation feedforward neural network for predicting the value of 

Vo 

Since the input data are of dimension 3, the input layer (the one on the extreme left in 

Figure 7.10) will have 3 nodes. The output of the network is essentially Vo, so the 

output layer has a single node. The network can have any number of hidden layers 

(the intermediate layers) with any number of nodes. No standard procedure exists that 

defines the exact number of layers and nodes to be used in the hidden layers for a 

given problem. Selecting the hidden layer configuration is a trial and error process, 

repeatedly evaluating the performance of the network. The neural netwo~ks are built 

in the Matlab® Neural Network Toolbox, which makes the processes of creating and 

training a network relatively simple. The prediction of the output value for any given 

input to the network is straightforward and performed with a simple command line 

option. The network uses the hyperbolic tangent function as the activation function 

(i.e. fJ for its hidden layer and uses a linear activation function in its output layer 

[Demuth and Beale 2001). When a set of empirical data is given to the network, the 

Toolbox sets aside some of the data for validation purposes and trains the network 

with the remaining data. A 3-5-1 neuron network was found to give good results in 

predicting both Vo and (.(. The performance of the network trained for Vo is shown in 

Figure 7.11, which also shows the curve for the validation process carried out in 

parallel with the training scheme. A trained network is stored in a MAT file format of 
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Matlab<l> and can be called by a single-line command from within any M-file. The two 

networks now represent the forward dynamic models for Vo and a. 
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Fig. 7.11 Performance of the network for Voduring its training phase 

Estimating % and olQ 

Since the spin estimation using the pattern tracking did not provide reliable results, an 

alternative way had to be found to estimate roTo and roso. Researchers have often used 

the assumption of the cue tip gripping the cue ball during their impact [Cross 2008, 

Shepard 2001, Alciutore 2004). This is largely owing to the fact the cue tip is well 

chalked before each shot, hence it has good frictional properties, and it is also flexible, 

hence it can easily deform as necessitated by the cue-cue ball interface dynamics. 

Being flexible and rough on its surface, the cue tip is assumed to grip the ball surface 

as soon as the cue and the cue ball come into contact. To provide the evidence for the 

instant gripping, Cross [2008J has performed a number of high-speed video-based 

observations on a cue striking a glass surface, and the movement of the cue tip at the 

interface. In fact, these high-speed camera-based measurements do show that the cue 

tip grips onto the glass surface immediately after both come into contact. 
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The assumption of instantaneous gripping as soon as the cue-tip touches the cue ball 

makes it reasonable to assume that the force transfer from the cue to the ball is in the 

direction of cue movement. Referring to Figure 7.3, the force component on the ball 

due to the cue striking will be only a resolved component of it (0.113 times the force, 

as sin\'Fsin6.5°=0.113), which will give rise to a normal force at C. The friction force 

acting on the ball is even less, as the normal force at C is further multiplied by Ji" 

estimated to be 0.21 in Section 5.1.1.2. When estimated, the friction force will only be 

2% of the cue force. Moreover, it should also be noted here that de la Torre Juarez 

(1994) also suggests that when the cue is held. almost horizontal, the frictional 

impulses from the table are negligible. The assumption of negligible frictional force 

between the ball and the table (and hence friction percussion) provides a means to 

estimate w TO and W
S o. 

In the absence of friction forces, the effective value of the linear impulse transferred 

to the ball is Pc = MYo. The coordinates of the cue hitting point were found to be 

[x~ , y~, , z~ 1 in Section 7.1.2. As the cue impulse of Pc is the only impulse that is 

assumed to act on the ball, the following expressions for the initial values of sidespin 

and topspin can be written, denoting the moment of inertia of the ball by I (I = 

2MR2/5), 

{))5' = x~ Pc = 5x~Vo (7.8) 
I 2R' 

{))b = y~Pc = 5y~,Vo (7.9) 
I 2R' 

Nominally, right spin and topspin are treated as positive quantities according to the 

convention used in Figure 7.3. 

7.1.4 Model/or the Forward Dynamics 

Figure 7.12 summarises the different elements involved in the forward dynamics of 

the ball for the situation shown in Figure 7.1. 
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Controllable parameters of the robot 
Vco, x '0, y '0 and Bc 

~ 
Cueing Dynamics 
(Section 7.1.3.3) 

.. 
Ball sliding, rolling and sidespin 

dependent dynamics 
(Section 7.1.1) 

+ 
Ball-ball collisions 

(Section 6.1) 

~ 
Ball sliding, rolling and sidespin 

dependent dynamics 
(Section 7.1.1) 

.. 
Ball-cushion collisions 

(Section 6.2) 

~ 
Ball sliding, rolling and sides pin 

dependent dynamics 
(Section 7.1.1) 

~ 

Final cue and object ball positions 
[xc, ,Ye,] and [xoc ,Yo,.] 

Fig. 7.12. Forward dynamics model 
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7. 1.5 Definition of the Manipulation Problem 

With reference to Figure 7.1, for a given cue ball location (Cl), targeted object ball 

(0 1) and pocket (P I) combination, and to attain a certain desired final cue ball location 

(CD), the task is to determine the initial required parameters of the ball motion, given 

by VD, wTo, wSo, B, and thereby establish the robot' s manipulation parameters Veo, x '0, 

y 'o and Bc · 

There can be other additional constraints such as other balls very close to the general 

area of trajectories that limit the possible ball trajectories, and hence the solution 

space, further. These constraints also have to be suitably tackled by the methodology 

that is used to obtain the solutions. However, the objective here is to obtain a solution 

for the fundamental manipulation problem defined ahove that is also depicted in 

Figure 7.1. Once a solution methodology is ohtained, additional complexities such as 

additional balls in the vicinity can be treated as extended problems. 

7.2 Manipulation Solutions 

Now for all the interactions encountered in a regular shot, a form of descriptor for its 

dynamics is established. The solution for the positioning task (this also includes the 

potting of the object ball), set out in Section 7.1.4, is essentially an inverse one in 

nature. But some of the descriptors of dynamics are not explicitly expressed by 

equations, for exan1ple, the numerical solutions for the collisions and the empirical 

model derived for cueing. This complexity prevents one from obtaining the inverse 

solutions analytically. On top of this, there may arise situations where, due to the 

properties inherent to the dynamics of the system, an inverse solution does not exist. 

For example the object ball may not be able to be taken to Co as required by the 

strategy-plarming element, for any combination of manipulation parameters Bc , x '0, 

y'O and Veo, so an option would be to take it to a position very close to Co, for 

instance to CF (Figure 7.1). Hence, the direct inverse solution based approach is ruled 

out. For positioning flat objects (axi-syrnmetric and polygonal ones) on a plane with 

the action of sliding friction , Huang et al. [19951 and Han and Park (2001) use inverse 
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numerical algorithms. However, the dynamics are very complicated in snooker and 

this approach cannot be used. 

For a given positioning task, instead of finding a direct inverse solution, the 

manipulation space can also be searched by using the forward dynamics models. A 

possible solution can be found by trying to reduce the error in positioning, using a 

forward motion model of the object, whilst satisfying any possible constraints on the 

object motion. Various methodologies have been used in this regard. The major types 

of solutions used by various researchers are nonlinear optimisation [Mason 1999, Li 

and Payandeh 2003b, Lynch and Black 2001[, iterative learning control [Zhu et al. 

2006] and machine learning [Matsushima et al. 2005]. 

7.2.1 An Optimisation-based Solution 

Here an optimisation-based approach is proposed to position the balls on the table. 

The optimisation function will have to be a composition of spatial errors between the 

actual positions where the balls will end up, and the desired ball locations. The 

conditions to ensure that the object ball is potted are also a part of the problem. This is 

generally known as nonlinearly constrained optimisation, and can be defined as [Jang 

et al. 1997[, referring to Figure 7.1, 

For q E 91' and also subject to conditions in equations (7.2), (7.6) and (7.7), 

Minimise F(q) ~ (xc
D 

- xc, )2 + (Ye
D 

- Ye,)' 

Subject to [K(ql],o;[L] where, q ~ [vco,x'o .y'o A] (7.10) 

The matrix condition [K(q l]" [L] consists of two elements. This constraint ensures that 

the object ball is potted by imposing conditions that the trajectory segment OIOF 

should go up to the pocket PI (or go past it) and that the minimum distance between 

the line segment and the centre of P 1 must be less than 55 mm (for the ball to fall into 

the pocket). To use analytical-method-based optimisation, F(q l has to be 

differentiable with respect to the robot's controllable variables q. Obtaining the 
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derivatives (i.e. the gradients) of F(q) is not possible considering the difficulty in 

expressing the forward dynamics of the ball algebraically, in terms of q, as described 

earlier in this section. A numerical-based routine is still possible. Under similar 

conditions, a quasi-Newtonian method has been used by Li and Payandeh [2003al for 

planar sliding objects and by Lynch and Black [2001) for a batting manipulator. In 

addition, many of the modem soft-computing methods such as Simulated Annealing, 

Genetic Algorithms, and Downhill Simplex Search are used for derivative-free 

optimisation [Jang et al. 1997). Here Genetic Algorithms (GAs) are to be used. 

7.2.1.1 Genetic Algorithms 

GAs encode each point in the parameter space (or state-space, here denoted by q) 

into a binary bit string called a chromosome, and also associate each point with a 

fitness value, which is related to the optimisation evaluated at that point. For example, 

a state point q = [2.0m/s, 5rad, 4mm, 8 mm I of the robot can be represented by the 

following chromosome: 

0010010101001000 

GAs usually keep'a set of points (chromosomes), instead of a single point, as a 

population, and this population is evolved continuously to a better overall fitness 

value. For each generation, a new population is constructed using genetic operations 

like selection, crossover and mutation. This evolution procedure is such that the 

chromosomes with better fitness values survive through to the next generation, and is 

based on Darwinian models of evolution [Jang et al. 1997). The initial population is 

usually selected randomly. 

Selection 

After evaluation, a new population has to be created from the current popUlation. The 

selection operation determines which chromosomes (also called parents) participate in 

the production of offspring for the next generation. In order to do this, parents are 

selected for mating with a selection probability proportional to their fitness values. 
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Crossover 

By crossover, it is generally hoped that good features of the current generation will be 

retained in the successive generations, exploiting the current population's potential. 

Crossover is performed on selected pairs of parents with a probability equal to a given 

crossover rate. Figure 7.13 shows a single point crossover, where a crossover point on 

the parent chromosomes is selected at random and the chromosomes are interchanged 

at this point. 

• 

a) I1 I1 10 I1 ~ 10 I dl I1 10 I1 ~ I1 
• ~ 

b) I1 ~l I1 ~ fl I1 I d)11 ~ I1 10 ~ 10 I 
• 

C,.(}s.wwel' Poilll 

Fig. 7.13. Crossover operation with parents a and b and children c and d 

Mutation 

In case the current population does not have all the encoded information needed to 

solve the given optimisation problem, the crossover operator cannot lead to a 

satisfactory solution. On the other hand, a mutation operator that spontaneously 

generates new chromosomes can tackle this situation. The mutation operator is 

designed such that it flips a bit in the chromosome with a probability equal to a very 

low given mutation rate (Figure 7.14). The mutation rate is usually kept very low so 

that the good chromosomes obtained from the crossover operation are not lost. 

Fig. 7.14. Mutation operation 

There are also various different modifications to the general process described above 

such as elitism, where certain best individuals from the current lot are passed on to the 

next generation without applying any of the above evolutionary processes. 

The evolution process is repeated and the solution with best fitness for the 

optimisation is finally obtained. 
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7.2.2 Implementation o/the GA-Based Optimisation 

The OA-based optimisation is performed in the Matlab® Optimization Toolbox. The 

model describing the forward dynamics for the ball trajectory configuration shown in 

Figure 7.1 is programmed as an M-file function having q as its input. The numerical 

impact models of the ball-ball and the ball-cushion collisions (they themselves are M­

file-based functions as described in Chapter 6) are called from within the forward 

dynamics M-file. The trained neural network for the cueing, the data of which are 

saved as a MAT file in Madab®, is also used in the process. The straight-lines 

representing the cushions have also been mathematically established in the table 

coordinate system XY, using the overhead camera by placing the cue ball right next to 

the cushions. Similarly, the pocket centres have also been obtained. Also, various 

motions like straight-line sliding, rolling and curved motion profiles after collisions 

have been programmed. The instantaneous value of sides pin is also estimated before 

each collision. The constraints set out in equation (7.10) are also coded into the M­

file. 

The initial cue ball location is determined using the overhead camera as described in 

Chapter 5. A red ball is used as the object ball and its position on the table is 

established by processing the R component of the ROB colour image sequences 

obtained by the camera. These two parameters are embedded in the code. The desired 

final cue ball location is also specified. The M-file is then called from the 

Optimization Toolbox using its function handle and executed to deliver the best value 

for q. Also, various plots for the optimisation process can be readily obtained from 

the Toolbox. 

176 



7.3 Results 

7. 3.1 Tests on the Fonl'ard Dynamics Model 

Initially, the validity of the forward dynamics model that was developed in this thesis 

was tested. If this was found to work well then the optimisation-based routine could 

be used to find the robot parameters for a given trajectory requirement set by the 

strategy subsystem. Initially the cue ball was placed before the robot and both the 

robot and the cue ball were adjusted to obtain stun conditions. The cue inclination was 

kept constantly at 6.5 0 with the horizontal. A shot was made (a stun shot) and the 

direction of movement of the ball, e, was determined from the tracking performed by 

the camera. This procedure essentially establishes the orientation of the cue, Bc, and if 

the robot has a swivel control unit (a motor-encoder combination) this process will 

not be needed. 

Fig. 7.15. The configuration of the system before a shot was taken 

Now the steppers were activated to place the cue on the ball at a given location (x '0 

and y'o). The frontal support was also manually adjusted according to the stepper 
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movement (Figure 7.15) and the front end of the cue holder was clamped. A velocity 

string was sent from the PC to activate the servo (with a velocity Veo) and the 

overhead camera was triggered simultaneously to start tracking the motion of the balls 

(the camera was operated at 20fps because its ROI is a relatively large area). A typical 

tracked trajectory of the balls is given in Figure 7.16 (only the region of the table 

within the ROl settings is shown) where the cue ball also collides with the cushion 

once. The tracking algorithm provides the successive ball locations by processing 

every frame of the captured video. Hence, the [mal cue ball location and the equation 

for the final line of movement for the object ball can be determined in the table 

coordinate system XY. 

Fig. 7.16. A typical cue ball-object ball trajectory 

ow the initial cue ball location, [xc, ye], object ball location, [xa, yo], the cue shift 

from the stun location (x '0 , y 'o) as set by the stepper drive, the cue orientation, Bc, and 

its velocity Veo are passed to the forward dynamics model to predict the final cue ball 

location and the final line of travel of the object ball. The line of the final object ball 

motion was also considered, as the camera can only view the top-half table area and 

the final object ball location could not always be obtained, as it may be outside the 

camera RO!. However, the final line of travel for the object ball determines the 

pot1ing accuracy. Although it also has to go up to the pocket to fall in, this condition 

can basically be ensured by increasing the cue ball velocity. 
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Fig. 7.17. Model predicted and experimentally obtained trajectories 

Figure 7.17 shows the plot containing the spatial positions of the model-predicted and 

the camera-tracked values for the balls. The plot was obtained for a Vco corresponding 

to the '140p' string, x 'o = 6 mm and y'o = -6 mm. The predicted plots only have the 

initial ball positions, their fmal locations and the locations where the masse effect 

stops (the masse type trajectory of the ball is usually encountered after every 

collision). The cue inclination was 63.8° with the X-axis (measured by tracking a stun 

shot). It can be seen that the object ball is aimed at a random direction and it is not 

potted. The object ball can only be tracked up to a Y value of 1500 mm: at this 

distance the camera's field of view ends. The cue ball, in this case, was positioned to 

within 47rnm of the predicted spot (this value is less than the ball diameter). For the 

object ball, to quantify the potting accuracy, the shortest distance between the actual 

path and the predicted path are evaluated at the location where the prediction curve 

meets the cushion (point C as shown in Figure 7.17). The cushion-predicted ball path 
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intersection was selected as a reasonable location for evaluation, as all the pockets are 

located along the cushions in snooker. For the shot shown above in Figure 7.17, the 

deviation between the two points at the cushion was found to be around 15 mm. As 

set out under the optimisation problem definition, this value can be up to 55 mm for 

snooker pockets for the ball to be pocketed, given that the final ball movement has 

adequate angles with the cushion for the ball not to be blocked by the cushion corners 

close to the pockets. Hence, for this shot the model prediction worked very 

satisfactorily. 
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Fig. 7.18. Model-predicted and experimentally-obtained ball trajectories with the stun 

line (onJy a part of the prediction for the object ball is shown) 

Figure 7.18 shows the same shot as in Figure 7.17, but more focussed onto the region 

of the observed ball trajectories, also showing the stun line, which is also the line of 

action of the cue (However, even this resolution is not enough to visualise the effects 

of cue squirt). 
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More than twenty shots were predicted and then experimentally evaluated (see 

Appendix II for some more results). Most of the time the object ball wall path was 

found to be within SOmm of its predicted value, which is quite acceptable in terms of 

the potting accuracy for the ball-pocket size configuration in snooker. Two attempts in 

the set had higher values, suggesting non-potting. This is probably due to the 

occasional inconsistencies in cueing, like a slight miscue, possibly due to vibration­

induced effects in the robot. Also the repeatability characteristics of the robot, as 

evaluated in Section 7.1.3.2, could have had an influence over these inconsistencies. 

When it came to the positioning of the cue ball, positional error values in the range of 

100-200mm were normally found. 

With reference to Figure 7.1, if the next ball that is planned to be potted (02) is 

considerably far away (say, 7S0-1000 mm) from the intended (ideal) cue ball position 

(CD), the positioning accuracy of 100-2S0mm will not greatly affect the next shot, as 

the angle of shot direction will not change drastically. However, if the next object ball 

is close to the planned cue ball location, this level of positioning accuracy can be a 

major concern, to the extent that the pre-planned object ball-pocket combination may 

not be possible anymore. A possible solution for this problem is to modify the 

strategy-planning element (the AI part) of the system so that this positioning error is 

taken into consideration when planning the shot sequence. Furthermore, the location 

of other balls in the vicinity of the intended cue ball location may also have an effect 

on the outcomes of potting the next ball in view of the trajectory errors. 

Since the shots were played in a half table area, errors can be higher when the whole 

area of the table is used, as the shot lengths can be longer. The potting accuracy is still 

within acceptable limits, when the errors obtained for the half table area are doubled 

and compared with the potting requirements in snooker. However, the cue ball 

positioning errors did occasionally reach values considerably higher than O.S m. This 

could be attributed to the occasional high amplitude vibrations found when the robot 

was clamped insufficiently to its front support. The front support is shown in Figure 

7.IS. 
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7.3.2 Optimisation Algorithm Testing 

As explained in Section 7.2, the coded M-file representing the forward ball dynamics 

is called from the Matlab® Optimization Toolbox. The M-file is also provided with 

the initial positions of the cue ball and the object ball; the left-side middle pocket is 

targeted in this experiment and its location is included in the M-file. A function 

tolerance value is used as the stopping criteria for the algorithm, where if the change 

in the optimised function value between two iterations is found to be less than the 

tolerance value set, the optimisation is terminated. The Toolbox is usually found to 

output the optimised values ofec , x'o, y'O and Vco in 3-4 minutes for a function (F in 

equation 7.10) tolerance of 25x 1 0-6 This function tolerance is equivalent to a circular 

area of 5 mm radius around the desired cue ball location CD. A value of 5 mm was 

deemed sufficient, as even this level of accuracy is not possible from the robot (for a 

function tolerance of 10-6
, which is equivalent to positioning the cue ball within 1 

mm, the optimisation time goes up to 40 min). Occasionally, multiple optimal values 

were also given, suggesting a multiple number of possibilities to obtain the specified 

positional results (for example the one with or without a cushion-cue ball impact). 

The Optimization Toolbox also has the option of plotting various parameters during 

its search for the optimum solution. For example, Figure 7.19 is the plot of the 

variation of the average distance between members in a population plotted against 

successive generations during the search. The average distance is larger at the start of 

the search because the chromosomes are initiated throughout the search space and 

hence are spread out. Then, progressively, they all converge towards the optimum 

value; hence the final distance value is zero. 
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Fig. 7.19. Average distance between individuals in a population given for successive 

generations 

For a 0c obtained from the GA-based optimisation it is not always possible to set the 

cue launcher-mount accurately at that specific angle, since the table mount is very 

heavy and repositioning is found to be very cumbersome. In order to experiment with 

the results provided by the optimisation algorithm, the cue launcher was kept at a 

position for which the cue orientation 0c was known, and this value was embedded in 

the code. Now the optimisation problem is of reduced dimensions (i.e. 3). The cue 

ball was placed on the table so that a stun shot could be executed by the robot. The 

object ball was kept at a place where it seemed that it had chances to be potted for the 

set cue orientation and cue ball position (the trajectory results for the object ball 

obtained in Section 6.1 were consulted in this regard). A target post-shot cue ball 

location was also provided to the algorithm. 

For the following values of Bc = 0.515 rad, [xc, ye] = [698 mm, 562 mm], [xo,yo] = 

[869 mm, 681 mm], and a desired cue ball location of [XCD ' Ye
D 

] =[1250 mm, 0 mm], 

the optimisation routine predicted the following parameters for the robot: V co 

corresponding to string '73p', x'a = -11 mm and y'a = 0 (x'a and y'a were 

approximated to the nearest millimetre). 
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The shot that was executed for the above results obtained from the GA optimisation is 

shown in Figure 7.20 (the pocket is not seen in the figure as it disappeared altogether 

once the image was undistorted). The ball was potted and the cue ball ended up at 110 

mm from its desired location, [xc. ' Ye. ). The cue ball-cushion collision did not take 

place. 

Fig. 7.20. Tracking results of the executed optimal shot 

For the above results, the computer program representing the forward dynamics 

model was also executed and the intermediate slipping-rolling motion transition 

locations were also estimated as described earlier in this section. They are plotted 

together with the experimental values in Figure 7.21. These results make it possible to 

conclude that the above optimisation routine works well for this problem. 

184 



7000 

<> C. ball-predicted 

6000 • O. ball-predicted 

A C. ball-tracked 

5000 X O. ball-tracked 

:I: cushion 
4000 • pocket 

- Cushion line 

>" 2000 

~~.XXXXXXXXXXX~ • 
~ 

1000 

o . . • 
6 0 800 1000 1200 400 1/ P o 

- 1000 - ) 

-2000 
X(mrn) 

Fig. 7.2 1. Model predictions with experimental values for the optimal shot 

Summary 

In this chapter, the manipulation problem is defined with its appropriate background 

information and the relevant information needed from the earlier chapters is 

highlighted. A cueing model is established by combining experimental data with 

neural nets. An optimisation solution with a Genetic Algorithm search is suggested, 

programmed and fmally tested for the positioning manipulation problem. The potting 

accuracy (this was estimated by calculating the prediction error at the cushion, as 

most of the shots were directed at random directions) was found to be very 

satisfactory over the half table area where the experiments were performed. Generally, 

a cue ball positioning accuracy in the range of 100-250 mm was also found. 
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Chapter 8 

OVERALL DISCUSSION 

This chapter discusses the relative merits/demerits of the developed system, 

approaches and methodologies. 

8.1 System Design 

The overall performance of the designed robotic system was found to be satisfactory 

as far as the scope of this project is concerned. The system has produced a wide-range 

of useful data that would be necessary for the design of an 'ultimate' robotic billiard/ 

snooker system, which was made possible by the very design of the system. However, 

when it comes to the overall design of a system that could move around the table (or 

over the table as in the case of gantry-based systems) a great deal of consideration 

must be given to the rack-and-pinion-based cue manipulation solution. A servomotor­

driven rack and pinion solution has performed satisfactorily in closely controlling the 

cue velocity and in manipulating the cue like a human, unlike the pneumatic powered 

cues used in some other projects. However, the rotary to linear motion conversion is 

observed to produce very high moments in the system necessitating a very rigid 

reinforcement structure. This heavy structure, in turn, makes the system very heavy to 

move around the table. When the motor is actuated to drive the cue forward, the 

whole cue launcher sways on the vertical plane that contains the cue. This at times 

was found to lead to mis-hits, thus imparting a different spin to the ball, to that 

required from the system. This swaying motion is due to an active couple in the said 

vertical plane. The couple originates from the rotary to linear motion conversion at the 

gears. A frontal support for the cue launcher as seen in Fig. 7.15 minimised the sway, 

however, whenever the cue launcher was not adequately clamped, mis-hits were 

observed. 

Recent videos of the Queen's University system also show that a shortened cue driven 

by a custom made linear actuator produces reasonably good ball speeds [Deep Green 
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2009). As established in Section 5.1.4.1, the initial cue ball speed was only influenced 

by the cue velocity and not by the inertia coupled to the driving side of the cue. Also, 

considering the high flexibility of the cue, this raises doubts on whether the whole cue 

is taking part in the momentum transfer to the ball or whether only the frontal part of 

it actively drives the ball (Cross (2008) also makes an assumption to this effect when 

formulating a theoretical model for the cue squirt dynamics). If only a considerable 

front portion of the cue is found to actively participate in the momentum transfer (this 

can be proved only after extensive tests with shortened cues and then comparing their 

performances with the full-length ones), the cue may possibly be shortened, which 

again simplifies the cue-launcher configuration and makes it more compact. Hence, a 

shortened cue and a linear cue-driving configuration (without using a linear-rotary 

motion conversion) may prove to be more suited to a full-scale snooker robot capable 

of carrying the cue launcher easily around the table. 

The stepper-based positioning system has lead to the manipulation of the cue ball with 

different types of spins, in order to take it to different regions on the table, and this is 

the first reported effort in that direction. Such a positioning system can also be 

replaced for its functionality by an eye-in-hand camera system and the employment of 

the visual servoing technique to precisely position the cue before striking the ball. 

Visual servoing may not be essential if a rigorous calibration procedure is performed 

'on the robot, whereby the robot's position within the workspace (here the table area) 

can be accurately determined from the robot's joint encoder readings. However, 

robots having multiple serial links are often prone to positioning errors and require a 

visual servoing-based fine positioning arrangement. 

The current system did not have a tilting facility to alter cue angles, and the cue 

inclination was kept constant at 6.5° to the horizontal. A fully-fledged robot will need 

this capability to deal with the balls that lie very close to the cushions as this situation 

requires a steep cue angle to the horizontal in order to make contact with the ball. 

To improve the testing facilities with the current system (for a complete table testing 

procedure), a swivel actuator unit (a motor encoder combination) should be added to 

the robot. Without a swivel control unit the potting accuracy of the robot had to be 
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estimated at the cushion intersection of the object ball path, as it was cumbersome to 

manually and accurately set a swivel angle calculated by the forward dynamics model. 

8.2 Computer Vision and Related Issues 

The uneven lighting conditions present over the table area did not greatly affect the 

detection of the ball centres accurately, as the camera measurements were shown.to be 

accurate and validated by physical measurements. This has enabled the extensive 

testing and reporting of the parameters found in the dynamics of snooker for the first 

time by a reliable methodology (the reported work in the American Journal of Physics 

is given in Appendix Ill). However, the efforts on the tracking of ball spin did not 

provide very reliable results. The existing fluorescent lighting over the table was 

found to produce excessive glare on the balls, leading to inconsistent detection of the 

pattern as it changed its position during the ball movement. The table resistance to the 

ball rotation about the vertical was measured by tracking the ball spin and this 

important value has been used in the forward model of the ball motion. However, 

three-dimensional spin-tracking is essential in establishing the cueing dynamics, as 

the existing models do not provide useful results. Thus an in-situ testing procedure is 

required. 

The theories proposed in this thesis in relation to the impact dynamics of collisions 

also need an accurate spin-tracking element to enable their validation by the 

determination of ball spins prior to and after the impact. 

8.3 Modelling of Collisions and other Dynamics 

The model for the ball-cushion collision presented in this thesis is the first of its kind 

to perform a 3-dimensional analysis of the collision and predict the post-impact 

velocities and spin. Nevertheless, a further improvement to this model by a possible 

Finite Element Modelling of the area contact prevailing during the collision will make 

its predictions more accurate. When performing an analysis of the ball-cushion 

collision, a point contact was assumed between the cushion and the ball throughout 
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the time of impact. On the other hand, the high-speed motion-capture of the ball­

cushion impulse performed by Alciatore [2008] and others reveals that the ball, in 

fact, deforms the cushion and makes contact over an area. 

The assumption of decoupled motion (that between sidespin and the linear motion 

parameters like linear velocity and topspin) is based on the postulation of a point 

contact between the ball and the table. This assumption is obviously not the case in 

actuality, as the ball makes contact over an area on its surface; an evidence for the 

area contact is the presence of rolling friction, which cannot exist under the 

supposition of a point contact, as explained in Chapter 5. A detailed analysis on the 

influence of the area contact condition on ball motion will lead to a better 

understanding of the mechanics of rolling and sliding. 

8.4 Manipulation Methods 

This thesis explores the ways in which a snooker cue ball imparted with different 

spins can position itself and an object ball at different spatial positions on the table . 

. For the first time, the connection between the standard, established, nonprehensile 

manipulation methodologies and the problem of spatial positioning present in snooker 

has been identified, and a relevant solution method has been proposed based on 

optimisation. Since the gradient-based optimisation methods cannot be used for this 

problem, a' soft-computing based approach involving a Genetic Algorithm is 

employed. This optimisation procedure is found to take 3-4 minutes to converge to the 

optimal solution. Although this time is acceptable considering the slow nature of the 

game, some alternative optimisation procedures can also be considered. For example, 

Lynch and Black [2001] use a quasi-Newtonian nonlinear optimisation method for a 

single degree of freedom puck-juggler. According to Lynch and Black, this algorithm 

takes a few milliseconds to arrive at the optimal solution. Even though quasi­

Newtonian nonlinear optimisation is a function-based method, and there are 

differences between the current problem and the one of Lynch and Black in terms of 

the estimation of the gradient of the optimisation function, a possibility for 

improvements in time is highlighted by the millisecond-level calculations reported by 

Lynch and Black. 
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Nonprehensile manipulation solutions are very useful in solving the problem of ball 

positioning in snooker. It is a programming or semi-programming-based approach 

where the knowledge about the dynamics of the object that is being manipulated is 

exploited to inform the robot on manipulation. There are alternatives to this approach. 

One such method is machine learning where an explicit knowledge about the system's 

dynamics is not given to the robot controller. Of late, machine-learning techniques are 

. increasingly used in modem game-playing systems. An element of machine learning 

was used in establishing an Artificial Neural Network for the prediction of the cueing 

dynamics. An overall approach from a machine leaming perspective should be able to 

correlate the final ball positions on the table with the robot control parameters, and 

should not involve the intermediate motion parameters like velocities and ball spins in 

its formulation. For example, Moore [1991[ and Moore et al. [1995) implemented a 

memory-based learning scheme on the MIT robot. By only concentrating on the stun 

shots, and by changing the cue speed and the robot's swivel angle (a facility to impart 

different types of spin was not available in the robot), Moore et al. used 8 features, 

consisting of different length segments and various included angles of a ball s 

trajectory. All 8 features are stored in the robot's memory and when the robot is 

presented with a new situation, local function approximating techniques are used to 

find a solution. However, no efforts were made to position the cue ball. Moreover, the 

manipulation by imparting spin adds an additional complexity to the problem. With 

these additional complexities, the feature space could well be double the size of the 

feature space used by Moore et al. [1995). To establish a strong correlation between 

the features and the solution space parameters (defined as q in Chapter 7), hundreds or 
, 

possibly thousands of experiments may be required. This can only be performed on a 

fully automated system like the Queen's University robot [Deep Green 2009) and is 

not feasible with the experimental setup used in the present project, as it takes a 

longer time io move the system from place to place. Nevertheless, a breakdown of the 

overall problem into small sub-problems may prove to work with the present setup. 

For example, as performed for cueing, individual machine-learning-based models can 

be trained for the ball-ball collisions and the ball-cushion collisions with the aid of 

spin tracking. 
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8.5 Ball positioning performance 

Experiments on ball positioning were performed within a table area of 5ft x 6ft. 

Within this area of the table, an object ball potting accuracy of more than 90% was 

obtained. In addition, the ball was positioned to an accuracy within the range of 100-

250mm, in general. These are the first reported research efforts on the post-shot 

positioning of the cue ball. In its early stages of development, the Deep Green system 

was claimed to have 67% potting accuracy [Long et al. 2004J J; Deep Green plays on 

a pool table of size 4 ft x 8ft. However, the Deep Green research has not reported on 

the issues related to the cue ball positioning. In their latest publication, Greenspan et 

al. [2008J state that the robot has pocketed runs of four consecutive balls, but no 

quantitative figure is given for the ball potting accuracy. Here some facts concerning 

the pocket and the ball sizes in pool and snooker must also be considered. In snooker, 

all six pockets are 90 mm in size and the ball diameter is 52.5. If the mid-pocket entry 

is considered to be ideal for a object ball in snooker, the margin of maximum 

allowable error for a flawless entry (not touching the pockets) is around 19 mm, on 

either side of the ideal line of entry. However the way the cushion near the pocket 

entrance is shaped allows up to a 45 mm deviation for the corner pockets and a 55mm 

for the middle pockets, in snooker. Pool balls are 52.5 mm in diameter. In pool, the 

four corner pockets are 114-117 mm in size while the middle pockets measure 127-

130 mm [WPBA 2009J. This leaves a robot with the margin of error of 28.5 mm for 

the corner pockets and 35 mm for the middle pockets, for a non contact-entry of the 

object ball; thus, the maximum possible values can also be expected to be larger than 

those in snooker. The preceding comparison underlines the fact that the ball potting is 

difficult in snooker. Another implication is, if the same robot is employed to play both 

the games, it will have a higher potting accuracy in pool when compared to that in 

snooker. 

The performance of the current robot must be evaluated in light of other facts 

concerning the robot and the forward dynamics model for the ball motion. The robot's 

repeatability in ball positioning was found to be around ±50 mm and this, in turn, will 

unquestionably affect the positioning accuracy of the robot. In addition, a very basic 

model was· utilized to estimate the initial values of sidespin and topspin of the ball 

immediately after cueing, using assumptions such as negligible friction from the table. 
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Hence, the forward model itself is not perfect. Suggestions have been made earlier in 

this chapter as to the improvements to the robot configuration that could possibly 

further reduce the vibration and the associated mishit problems. In addition, other 

suggestions in relation to spin tracking will lead to a more accurate model of cueing 

that is critically important for the success of a snooker robot. 
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Chapter 9 

CONCLUSIONS AND FURTHER WORK 

9.1 Conclusions 

This thesis presents solution methodologies for the problem of manipulating snooker 

balls to achieve positional play. The following main research novelties have been 

achieved to present an overall solution to the problem. 

9.1.1 Machine Vision 

The capabilities of the overhead camera have been fully exploited, for the first time, 

to obtain the values of various physical parameters using accurate tracking at higher 

spatial and temporal resolutions. A broad range of tests on the dynamics of snooker 

has been performed and a journal paper based on these tests is accepted for 

publication in the American Journal of Physics. Some original efforts on ballspin 

tracking have been reported, and a ball with sidespin has been tracked using a single 

pattern. Furthermore, in relation to the tests on snooker dynamics, a thin film force 

sensor has been fixed to the snooker cue, so as not to affect its dynamics. Experiments 

with the force sensor and the overhead camera that tracks both the cue and the cue 

ball, have shown that the cue ball velocity is predominantly influenced by the cue 

velocity, regardless of the inertia driving the cue. 

9.1.2 Analysis a/Collisions in Snooker 

An all-inclusive analysis of ball-ball collisions, incorporating all frictional effects, has 

been carried out without making any assumptions about the slip patterns at the impact 

point. Numerical analysis performed on the differential equations for the balls' 

motion, shows for the first time that the masse type spin will be imparted on the 

object ball due to the frictional forces at the collision point, and that the object ball 

will curve in its forward motion. A similar analysis has also been presented for the 

ball-cushion collision with the final solution being realised using numerical analysis. 
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9.1.3 Manipulation Methodologies 

Using the results obtained from the high-speed camera and the numerical simulations 

of impacts, in conjunction with an empirical model of cueing, a forward model for the 

ball motion is put forward. A Genetic-Algorithm-based, gradient-free, optimisation 

procedure achieves a potting accuracy of over 90% and a cue ball positioning 

accuracy in the range of 100-250mm within a table area of 5 ft x 6 ft. The efforts on 

the cue ball positioning and the use of nonprehensile manipulation methods for this 

task are the first of their kind. 

9.2 Recommendations for Further Work 

The spin-tracking element has to be perfected, usmg very controlled lighting 

conditions, so that accurate spin transfer characteristics from the cueing operation can 

be determined. The present author believes that establishing the cueing dynamics 

accurately is crucial to the success of the project of creating a fully automatic snooker 

system, an aspect that has, hitherto, not been addressed in the literature in much detail. 

The theory on estimating sides pin and topspin of the ball over a limited area on the 

table by using a single overhead camera and a single circular pattern on the ball can 

be used. For the ball-cushion collision, the effects on the two making a surface contact 

must be investigated using Finite Element Models in order to achieve a better 

understanding of its dynamics. A spin-tracker will also validate the results of the 

collision models presented in this thesis. 

The optimisation problem can possibly be reformulated giving lesser weight to the 

solutions where multiple impacts that may give rise to additional uncertainties will be 

present. For example, a forward solution with only a cue ball-object ball impact 

should be given an advantage over a solution where the cue ball makes an additional 

impact with the cushion before positioning itself to the desired location. 
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APPENDIX I: HARDWARE DETAILS 

CONTROL OF SureServo™ SERVOMOTOR BY EXTERNAL PULSES 
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GENERAL PROGRAMMING BOARD 
(IENSYS® BOARD INCORPOARATED WITH A PlC 18F458 
MICROCONTROLLER) 

J7 J6 
Port CID Hi Port CID Le 

", O! 

J2 D "I Jl0 t DC Jac<: " , 
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DJI2,i
p'c

i " 
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RS232 ~ D"r Jll I" 
J3 0 ICD 

It ill 

J4 J5 
Port 8 Analogue 

J1 - RS232 
Socket 

J8 1 NC 
2 TXD 

CAN BU5 3 RXD 
4 DSR 
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Power 6 DTR 

7 CTS 
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9 NC 
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J2 -DC Powsr In 
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Inner 9-25V de 
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J12 - JUMPERS [default] 

1 CTS Disconnect - removal allows use at RC4 [absent - no CTS handshake] 

2 RX Disconnect - removal allows use at RC7 [fltted - RSZ32 active) 
3 RB5 - allows use at pan when IC D not in use [absent -ICD in use} 

4 RB6 - allows use of pan when ICD nol in use [absent -ICD in use} 

5 RB7 - allows use of pan when ICD not in use [absent -ICD in use} 
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PIXELlNK CAMERA PL-B776 

Specification!! 

Colour / Mono 

Resolution 

Frame Rate at Full Resolution 

Sensor Type 

Shutter Type 

Lens Format 

Pixel Pitch 

Sensor Diagonal 

Bit Depth 

Power Consumption (Watts) 

Variable ROI 

Right-angle Capable 

Interface (Fire Wire) 

Camera Features via FireWire 

Trigger Options 

General Purpose Outputs 

Image Quality Measures 

Responsivity (Peak) 

Dynamic Range 

FPN 

PRNU 

Read Noise 

- - --~~~~~~~~~~~~~~-

Colour 

2048 x 1536 

12 

CMOS 

Rolling 

C 112" 

3.2 flm 

8.19mm 

8 or 10 

3.2W 

Yes 

Yes 

6 pins x 2 

Hardware - Optically Isolated 5-12V 
@ 4-llmA, Software and Free 
Running 
2 Optically Isolated - Maximum 40V 
Differential. Maximum 15mA 

1.8DN/(nJ/cm2) 

60 dB 

< 1% 

< 1% 

< I DN 
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Camera Calibration Results 

The values of intrinsic parameters generated for the current camera setup are given 

below. Refer to http://wWw.vision.caltech.edulbouguetj/calib doel or Heikkila and 

Silven [1997], for an explanation of the concepts. 

Intrinsic Parameters: 

Focal length in pixels,fe = [[e(J )fe(2)] = [1798.6, 1797.8] 

Principal point coordinates, ee= [ee(J) ee(2)] = [1070.4, 738.9] 

Skew coefficient defining the angle between the x and y pixel axes, alpha e = 0 

Image distortion coefficients (radial and tangential coefficients), 

kc = [-0.3363, 0.1408, 0.0006, 0.0012, 0]. 

Extrinsic parameters: 

[

0.009334 0.999954 

Rc = 0.999825 -0.009371 

0.016227 0.002186 

0.002338] [- 559.7484581 
0.016206 ,Tc= -613.678549 

- 0.999866 1710.132676 

Where the values of elements of Te are in mm and the camera coordinate frame and 

the world frame OXYZ are related by the equation, 

XXc = Rc * XX + Te 
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FlexiForce® FORCE SENSOR 

Specifications 

Thickness 

Length 203 mm 

Width 14mm 

Connector 3-pin male connector 

Linearity error <±3% 

Repeatability <±2.5% 

Hysteresis <4.5% 

Drift <5% 

Response time < 5 Ils 

Operating Temperature -9 QC to 60 QC 

Force range 0-440 N* 

Temperature sensitivity Output variance up to 0.36% per QC 

* To measure above 440 N apply a lower drive and reduce the resistance of the 
feedback resistor (l kQ minimum; see driving circuit) 
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Driving Circuit 

R "" r 

VOIr! = -VT ,. (R,f R .) 
-9V 

CC=f,,=CXi£:=" "====-5- Mep 5001 

.9V -t 5 

+ 

• • Supply Voltages should be constant 
• •• Reference Resistance RF Is lkQ to 100kQ 
• Sensor Resistance Rs at no load Is > 5MQ 
• Max recommended f;urrent is 2.SmA 

Typical Response Curve 

5.0 

L 

/ 
,/ 4.0 

VDU! (V) / 
V 3.0 

2.0 

1/ 
1.0 

1/ 
o 20 40 60 80 100 

Force (Ibs) 
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Some Pic/ures of/he Robo/ic Sys/em 
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APPENDIX ll: BALL POSITIONING RESULTS 

Here some of the shots that were executed to test the validity of the forward dynamics 

model are given. 

Vc: ' lOOp' ,x '0 = 8 rnrn,y 'o = -6 mm, Bc = 29.5°. 

7000 1 -----;======:::::;---, 

6000 

5000 

4000 

1000 

<> C. ball-predicted 
• O. ball-predicted 
• C. ba ll- tracked 
X O.ball-tracked 
x cushion 
• pocket 

- Cushion line 

O*----r~-~---r_--~ 

1000 2000 3000 4 0 

-1000 

-2000..1..----------------' 
X(rrun) 

Cue ball positioning error: 83 mm. A cue ball-cushion collision is predicted by the 

dynamics model, whereas no such collision occurred in the shot. 

Error in the object ball path (estimated at the cushion intersection of the predicted 

path): 12 mm. 
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Vc: ' lOOp' ,x'o=O mm,y'o= -IOmrn,Bc=29.5°. 

7000 ~------------------------------~ 

6000 

5000 

4000 

3000 
~ 

S 
5, 
>-
2000 

1000 

-1000 

o C. ball-predicted 

• O. ball-predicted 

• C. ball-tracked 
X O.ball-tracked 

x cushion 

• pocket 

500 1000 1500 2000 2500 3 0 

-2000 ........ ----------------------------------' 
X (mm) 

Cue ball positioning error: 248 mm. A cue ball-cushion collision is predicted by the 

dynamics model, whereas no such collision occurred in the shot. 

Error in the object ball path (estimated at tbe cushion intersection of the predicted 

path): lOO mm. 
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Vc: ' 140p' ,x 'o = 0 mm,y'O = -10 mm, 8c = 29.5°. 

7000 

6000 

5000 

4000 

).QOO 

1 
~ 
2000 

1000 

0 C. ball-predicted 

• O. ball-predicted 

• C. ball- tracked 
X O.ball-tracked 

x cushion 

• pocket 

O +----,----.--~r_--_; 

500 1000 1500 

-1000 

-2000 -L-_____________ ---l 

X (mm) 

Cue ball positioning error: 303 mm. A cue ball-cushion collision is predicted by the 

dynamics model , whereas no such collision occurred in the shot. 

Error in the object ball path (estimated at the cushion intersection of the predicted 

path): 29 mm. 
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Vc: '160p' ,x 'o = 0 mm,y 'O = 0 mm, Bc = 29.5°. 

7000 

6000 

5000 

4000 

3000 

I 
>-

2000 

1000 

0 

• 
• 
x 
x 

• 

C. ball-predicted 
a. ball-predicted 
C. ball-tracked 
a.ball-tracked 

cushion 
pocket 

O +-------~------~----~~----~ 
500 1000 1500 

-1000 

-2000 ..L... ____________________________ ~ 

X (mm) 

Cue ball positioning error: 74 mm. A cue ball-cushion collision is predicted by the 

dynamics model, whereas no such collision occurred in the shot. 

Error in the object ball path (estimated at the cushion intersection of the predicted 

path): 22 mm. 
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Vc: ' lOOp' , x 'o = 0 mm,y'O = 10 mm, Bc = 63.8°. 

1 9000 T---------------------------~ 

8000 

7000 

6000 

5000 

!!-OOO 
§ 
~ 

5"000 0 C. ball-predicted 

• O. ball-predicted 
A C. ball-tracked 

2000 x O.ball-tracked 
x cushion 

• pocket 
1000 

O +-----~~--~----~----~--~ 

1000 2000 3000 4000 5 0 

-1000 

-2000 -'----------------------------------' 
X (rrun) 

Cue ball positioning error could not be obtained as top spin was imparted to the cue 

ball in this case, and this took the cue ball further away at the direction of the object 

ball and eventually disappeared from the field of view. However the angle at which 

the cue ball was travelling coincided with the one that was predicted by the model 

indicating that it could end somewhere close to the predicted position. Error in the 

object ball path (estimated at the cushion intersection of the predicted path): 15 mm. 
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Vc: ' lOOp' , x 'o = 6 mm, y 'o = -6 mm, Bc = 63.8°. 

7000 ~-------------------------------, 

6000 

5000 

4000 

3000 
E 
E 
~ 

>-
2000 

1000 

o C. baJl.predicted 

• o. ball-predicted 
• C. baJl.tracked 
X o. ball-tracked 
x clBhion 

• pocket 
+ Series7 

- Linear (Series7) 

o +-------.-------.-----+-.-----~ 

500 1000 1500 2 0 

- 1000 

-2000 .J......------------.....",X,..,(mrn~):----------------' 

Cue ball positioning error: 930rnm. 

Object ball deviation (estimated at a distance of 2 m from the ball-ball collision 

location): around 160 mm. The object ball will not be potted for the distance of 2m 

from the collision location .. 

Such a large variation in both the positioning parameters suggests that a mishit may 

have happened due to jerk-induced vibration in the system, this especially happens 

whenever the front part of the robot was not properly clamped to the cue rest that sits 

on the table. 
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Application of high-speed imaging to determine the dynamics of billiards 
s. Malhavan,"' M. R. Jackson.b

' and R. M. Parkin') 
MecllOtronics Research Group. Wo/fson School of Mechanical alld ManufacturillR Engineering. 
Loughhorough Universi/)" Loughborough LEII 3UZ. UniIed Killgdom 

(Received 19 December 2008; accepted 2 June 2009) 

In spite of interest in the dynamics of the billiards family of games (for example, pool and snooker). 
experiments using present-day inexpensive and easily accessible cameras have not been reported. 
Wc use a single high-speed camera and image processing techniques to track the trajectory of 
snooker balls to I mm accuracy. Successive ball positions arc used to measure the dynamical 
parameters involved in snooker. Values for the rolling and the sliding coefficicnlS of friction were 
found. The cushion-ball impact was studied for impacts perpendicular to the cushion. The separation 
angles and separation velocities after an oblique collision wcre measured and compared with 
predicted values. Our measurement technique is a simple, reliable, fast. and nonintrusive method, 
which can be used 10 test the numerous theories for the dynamics of billiards. The addition of a spin 
tracking clement would further broaden its capabilities. © 2009 America/l Anocimiu/I of Physics Tellcl!ers. 

[DOl: 10.111911.3157159] 

I. INTRODUCTION 

Pool and snooker arc popular billiard games. Billiard 
games involve very subtle physics and have been of interest 
10 the physics community for over 200 years. The first ex­
tensive treatment of billiards was by Coriolis in 1835. 1 Other 
works, such as those of Wallace and Schroeder,2 Sal azar and 
Sanchez-Lavcga,3 and de la Torre Juarez,4 address the dy­
namics of billiard,<;, There have been both theory and experi­
mental works:; on the dynamics. 

Special apparatus have been used for the measurements in 
most instances. For example, glass and textured black for­
mica was used to replace the tablc-fc,;lt in studying the colli­
sions between billiard balls?·5 Tracking techniques such as 
spreading talcum powder on the surface of the table have 
also been employed. Many of these techniques affect the 
dynamics that is being studied. Although 8ayes and SCOLl5 

used a Polaroid camera and a stroboscope to track the balls, 
they did not base their results on this setup probably due to 
the poor accuracy of the cameras in the I 960s. As recent as 
1994, rudimentary techniques were still used to estimate the 
physical parameters in billiard dynamics. For example, 
Marlow6 lIsed a meter Slick and a stop watch to measure 
friction coefficients. 

Today's technologies allow the high resolution tracking of 
object~. High-speed tracking technologi~s are ext~nsi\'eJ~ 
used III sports such as football, tcnllls, and cnckel.· 
Alciatore9 used high-speed video capture to visualize the dy­
namics in the game of pool. Alciatore 1o also used infrared 
imaging 10 visualize the collision points. However, he did not 
analyze the images 10 extract the physical parameters in­
\'olved in the dynamics. Cross ll employed a video camera 10 
measure the ball velocity and ball spin using an overhead 
camera and anaiyzed squirt dynamics in a cue ball suspended 
as a pendulum boh. Researchers 'involved in robotic billiards 
h,lve also used overhead cameras to iOC:IIC the static ball 
positions on the table. 12

-
15 

In this paper we use high-speed camera based tracking to 
measure the characteristics of the interactions between the 
cue ball, table, and object ball. Accurate spatial and temporal 
tracking of the ball and the use of speed-time plot of the balls 
allow us to distinguish the different phases of ball dynamics, 
such as sliding, rolling, and impulses. The accurate detection 
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of the changes in the phases of the ball motion allows us to 
measure the parameters more accurately than has been done. 
The use of speed-time plots also allows us 10 measure the 
effects of special collision between two balls, such as "over­
spinning," which has only been qualitatively described in the 
literature. 

11. EXPERIMENTAL SETUP 

A Riley Renaissance type snooker table with dimensions 
of 10 X 5 ft 2 was installed in our laboratory (see Fig. I). This 
brand is the official table of the World Snooker Association 
and has been used for its professional snooker tournaments 
since 1992. 

The tables used in pool and snooker are almost identical, 
except that the pool table has larger pockets compared to the 
size of a pool ball. At the start of a game there are 21 eolored 
balls worth various points and a white cue ball at predefined 
places Oil the table. 

A machine vision camera was mounted on the ceiling, 
right above the snooker table, looking vertically downward 
(Fig. I). A single camera is sufficient to capture the dynamics 
because the dynamics is confined to the table surface. The 
col or camera is PixeLlNK PL-B776F with 3.15 X 10· pixel 
resolution. The camera is connected to a host personal com­
puter via FIREW[RE. For the region of interest optiqn the cam­
era is capable of capturing up to 1000 frames per second 
(fps). This feature of the camera was used whenever it was 
necessary to analyze the dynamics at finer temporal resolu­
tions. The camera is fitted with a wide-angle lens to capture 
the whole table from the limited available heads pace be­
tween the snooker table and the ceiling. The table area is 
imaged to a I mm spatial resolution with the current setup of 
the camera. 

To verify that the measurements made by the camera are 
accurate, some distance measurements were also made with 
a meter Slick. For this purpose two rectangular bloeks with a 
height of the ball radius and with circular while patterns on 
their top surfaces were placed at two locations on the table. 
Circular patterns of diameter of 52.4 mm (the ball diameter) 
were used so that the camera and the image processing algo­
rithm would treat them as balls. The distance between their 
centers was obtained using the camera and the meter stick. 
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(al (bl 

FIg Snoo~er table and ceiling-lt\ounteJ machine \i~ion camera in the 
mCl.:h,ltronll;~ hlboralory. Note the he.ld'pacc and the ... enil.:ul nlllont of the 
(;unera to look perpendicularly dOWfl 31 thl" table 

We u~cd this method becau\c Il was very cumbcr~ome 10 
phYllically measure the ccntcr dl~tance between two .... nooker 
balJc.. becaw.e the ball .... change position with the <,lighIC'\1 
touch. Thi~ procedure was repeated for ~evcral random posi­
tions of the blocks 31mo\1 covering the whole imaged area of 
the table. The differences in the measurements by the two 
method .... were found to be al mOM 2 mm, validating Lhe re­
\ulb from the imagmg .... yMcrn. The video and Image han­
dling and the image proces'\ing were perfonned u~ing \'IAT­

LAB. 

A. Melhods 

Before measurements could be made on the images rrom a 
camera. (WO calibrations were done. The intrinsic camera 
calibration was perfonned to correct for the lelh distortion 
that IS pre,en! in wide-angle len,es [sce Fig. 2(a)]. The cam­
era calibration loolOOx from the Computational Vision Group 
m Caltech was used in conjunction with 'IATLAB to calibrate 
the camera; for a detailed dCl)cnption of the procedure. sce 
Ref. 16. 

The \1ATl.AB toolbox abo incorporate~ an cxtrin~ic cali­
bration clement. The extrin~ic c::llibration procedure enable~ 
metric l1leasurcmcnr... to be made frol11 the ,,:alue\ given III 

tenn~ of pixcls. Thb procedure provides the tranl)lmion and 
rotation matrices that relate the real world coordlllale system 
to the Image plane bee Fig. 3). The equation for the trans­
formation between a POint 111 the world frame x:\.';: to lIS cor­
re\ponding image poml 111 the camera rame x'y'z' is ;c' 

=Rc·x+Tc. where Rt and Tt.: are the rotation and translation 
maLriccl). rcspccthcly.11 

A real world coordmate sYMcm waS selected such thal it 
wa, fixed to the snooker tablc so thal t wo of its axes lie along 
the two perpendIcular edge, of the table and both, and y lie 
on the imagmary plane that is created by the ball centers [see 
Fig. 2(blj. which is 26.2 mm above the table surface. The 

(al (bl 

FI, . .2 (al D.,toned and (hJ corTCCted .maBe~ 01 the hal( table (note I.hoe 
barrel dl),t~lrtlon due 10 lhe ""idc·an~le len!» ~ilh the checkerbuar"d paUem. 
hlr extrin\lc camera calibration. placet! on the lahle. 
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)1 
c.m~ 

C' 
Ix 'r .,. 

hg. 3 The pinholc camcra model \ho .... , h(l"" a reill ~orld pomt X j, pn ... 
}CCled a!> X' on Ihe camera imagc plane IW. Ihrtlugh Ihe opw,;al center C (11 

the Ic", Aho note hn .... the camcra fmme .-c'.,,'.:' I~ filf.cd 10 the optical ceOler 
of the len~ 

ex.pcJiment~ werr..: pctformcu III half of the table areCl to ob· 
tain bcucr "'pawl( resolution from the camera. The Image blur 
duc 10 fa,t mO"II1£ balls W3!) mlOimll.cd by M!lecting the 
iowe" po~~ible camera ,hutter opening lime. Image ~e­
quence~ with high image blur; were not analyzed. Quantifi­
callon \\-J .. done by cQunling the number of pixcl!'! in a blur 
and thcll comp::mng it with the number of pixch. found 10 a 
stationary ball . 

B. Image processing 

An Image processing program wa~ written to execute Ihe 
rollowing operation!). The video wa~ captured and thcn ... plil 
into image frames. The Images were then convened iOlo gray 
scale images. Each of these gray scale images were then 
transformed to binary image~ using an appropriale Ihreshold 
value of thc image intensity. A treatment of these concept .. 
can be found III tCAtbooks on difital image processing such 
as that of GOIlLalcl. and Wood~. I Then the image procc~sing 
program to extract Ihe ball centroid \.\a\ exccutcd. Two func­
tion ... from the \1ATLAB Image Proces~ ing Toolbox called bll'­
label and regioflprops \.\ere u~cd to cx.tractlhe ball from the 
imagc, (hu ... delcnnining its ccntroid in pix.cls. The real world 
coordinates of the ball ccntroid are obtained uliing the tranl)­
fonnalton malricc" Rc and Tc from the extrin~ic calibration 
procedure. The lime stamping of thc ... e values based 011 the 
camera frame rule enable~ u .. to calcul~He the velOCities and 
accclerations of the ball. 

tu . RES LTS AND DISC SS ION 

The tracked cue ball is shown wilh its initial poo;ition 011 

the ~nooJ..er table in Fig. 4. The spatial separation belwecn 
the success ive tracked centroids indicates the variation in the 
ball's velocity. 

II1II 
t,~-··>::: :;:.:.;.::::::.;::: .::.:' .'.' .... .::::.- -~. 
\ ..... . 

Hi! 4 Thc tr.M.:kcd I,:ue ball f'O!'iliun, (lhe ctlltroUJ of the ball i\ ,h()\\.n by 
lhe "hlle markef"'li) are <;uperimpo.-.ed on lhc Image at the .. tart {'If the track­
ing, al'>O "Ihowing lhe initial cue ball location {((lOf coru;ccuU\·e Impac.:h ""jth 
two parnllc1 cu\hlon~ are ~hown). 

M.uholvan. Jad.,on. and Parkin 789 



w s v 

Fig. 5. The ball rolling on the table. It shows the forces that are acting on the 
ball while it is rolling. Note the reaction force from the table S, which is a 
t'ombined effect of the "regular" nonnal reaction from the table and, most 
imponantly. due to of the table-felt under the weight of the moving baIL The 
horizontal component of S, S ~in {3, deccleralt!s the balL 

A. 8all motion against surface friction on the table 

When there is no relative velocity between the ball and the 
table at their contact point. the ball is said to roll on the table. 
During the rolling the linear and angular velocities of the 
ball, V and n, respectively, satisfy the relation V= RH, with 
R the ball radius. Because the table-felt is defonnablc and the 
ball is rigid. the table surface deforms when the ball is in 
motion' as shown in Fig. 5. Hence the ball makes contact 
with the table over aT'! extended area. According to Ref. 19 
this deformation is independent of V. The table cloth defor­
mation results in a nOlmal reaction force S from the table .;It 
an angle f3 with the vel1ical, inclined from the moving direc­
tion of the hall as shown in Fig. 5. For an extensive treatment 
of this defOlmation, see Refs. 19 and 20. 

According to Fig. 5, the reaction force S has a horizontal 
component equal to S sin {3, which opposes the ball motion. 
Generally the reaction force S does not go through the cen­
troid of the ball, and hence there is a torque acting in the 
opposite direction to that of the angular velocity n, rcsuhing 
in angular deceleration. The rolling friction coefficient does 
not change with the ball's velocity and is a constant because 
it depcnds only on the surface propcrties of the table-felt and 
the geometry and mass ('If the hall. 19 

Figure 6 shows the variation in the ball's velocity with 
respect to time. Once the impulse is delivered to the ball, the 

2.:' 

0.:' 

-- - --- -- -- -- - ------, 
Slicillg IDue 

\/ Rolling motion 

·V~. . . 
'1 :ru ~~ 
i /' rudtiO~ i '/ ... . . 

o·'---.-~-.--~.----.~--~--~ 

o 0.5 L:' 3 

Fig. 6. The speed-time plot for the ball showing all the different phenomena 
involved from the video r.:aplun:d at 42 fp~ (the completr.: motion profile 
until the hall comes In the re.~~ is not shown here). 
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ball's velocity decreases rapidly during what is known as the 
sliding phase. and then the ball starts (0 roll. Reference 3 
showed that the ball starts (0 roll immediately only when the 
ball is hit horizontally at a height of 7R/5 from the table 
surface. In Fig. 6 the velocity gradient during the rolling 
phase gives the value of the deceleration due to rolling fric­
tion. Different shots were tracked and the deceleration during 
the rolling phase was found to be 0.124-0.126 m/s 2• Th~ 
rolling friction coeffiCient, which is usually expressed as a 
fraction of the graVitational acceleration 9.81 m/s2. is 
0.0127-0.0129. Mariow· suggested a range of 0.011-0.024 
for pocket billiards (pool) and a mean value of 0.016. Al­
though the physical properties of the ball and table are dif­
ferent in pool and snooker, there is no obvious reason for this 
excessive variation (more than 100% of the lower value) 
obtained in pool with Marlow's measurements. The only 
plausible explanation is that the meter stick and SlOp watch 
measurement method used by Mm'low is pronc to error. Al­
though Williams21 claimed that the nap of the table-felt af­
fects the ball motion, depending on whether its motion is 
toward the top cushion or away from it, we did not find any 
evidence to support this claim. 

When there is a relative velocity between the ball and the 
table at their point of contact. the ball is said to slip on the 
table. In the sliding phase V:;:;Rf!. For a theoretical treatment 
of all the possible cases of ball motion immediately after the 
cue impact, sec Ref. 3. The friction that exists during the 
sliding motion (the sliding coefficient of friction) usually de­
pends on the sliding velocity of the ball. The ball speed-time 
plot given in Fig. 6 shows that the sliding friction is much 
larger than the rolling friction, disappears within a very short 
time interval, and quickly diminishes with the velocity. An­
other interesting observation from this plot is that after the 
ball has started its rolling motion, it starts (0 slide again (note 
the speed gradients immediately after the impacts) when it 
collides with the cushion (table wall/rail) because the cush­
ion impact violates the V:;:;RO: ro1ling condition. Once V 
:;:;Rf! is reached again, the ball goes into the pure rolling 
mode. 

From the analysis of the speed of the tracked ball, the' 
sliding friction coefficient was found to be in the range of 
1.75-2.40 mls' (0.178-0.245 in dimensionlcss units). 
These values were obtained ror the ball motion along random 
directions on the table. Marlow6 calculated a dimensionless 
value of 0.2 for pool using the rolling coefficient value of 
0.016. An independent measurement was not perfonned be­
cause only a meter stick and a stop watch were available. 
Willers and Duymelinck22 used stroboscopic illumination to 
photograph a decelerating pool (not snooker) ball. They 
found that when the ball velocity increases from zero, the 
friction coefficient approaches 0.21 from a value of 0.14. 
Such a variation could not be verified from our experiments. 

The sliding friction is 15-20 times larger than the rolling 
friction. Also, during the sliding phase some rolling action 
will simultaneously take place. as the displacement effect. 
shown in Fig. 5, is always present at the ball-table interface. 
Due to its comparatively small magnitude (approximately 
5%), it is usually neglected, and the motion is treated as pure 
sliding. 

B. Ball-cushion interaction 

To visualize and analyze the impulse dynamics between 
the ball and the cushion, high-speed image capturing experi-
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(a) (b) 

Fig. 7. Bounce of the cue ball uff the mil. The ball location depict!> its 
p{l~ititln as it appmached the rail. The frame rate is 120 fps, and an imagi­
nary continuous ..... hite line show:. the approximate location of the cushion. 

':1CJ1{S wilh ~ 100 fps for small regions of interest were per­
formed. The Impulse of the cue QuI! on the cushion depends 
on factors such as the speed at which it collides with the 
cushion surface, the incident angle with respect to the cush­
ion surface, the amount of spin of the ball. the physical char­
~ctcriSlics of the ball and the cushion, and the parameters 
Illvolvcd in the interaction between the bull and the cushion 
such as the coefficient of restitution and the surface friction. 

Spin on the ball changes the impact characteristics drasti­
i.:all'y. Ball spin is difflcult to quantify with our experimental 
sctup and met~odology. Sidespin changes the postimpulse 
cue ball path significantly; the interested reader is directed to 
Ref. 23 or Ref. 9. The ball-cushion interaction is a case of 
multiple impacts, both nOlmal and tangential, the latter due 
to the force of friction, with onc component nonnal to the 
~ushion surface, and the other two perpel,ldicular frictional 
Impacts from the cushion wall. Derivations of the dynamics 
for general impact are not available. 

For this reason wc conducted experiments on shots with­
out considerable sidespin. Care was taken so that a shot was 
d.irected perpendicular to the rails (cushions) as much as pos­
sible. Whenever the cue ball is played perpendicular to the 
rails. if it does not have any sidespin and should bounce back 
along the same path along which it approached the rail. This 
criterion was used to ensure that the shots did not impal1 a 
considerable sides pin on the cue ball. Figure 7(a) shows a 
perpendicular shot with no sidespin, and Fig. 7(b) shows a 
perpendicular incoming shot that apparently has some side­
spin, which result.s in the ball rebounding to the right side. 
For the rehound analysis the shot shown in Fig. 7(b) was not 
used. and only the one shown in Fig. 7(a) was used. The 
no-sidespin condition ensures that there is only one unknown 
in the form of toplback spin. 
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Fig. 8. The tracked results for a ball-cushion imputse (at 150 fps). 
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If wc assume that the ball had gone into pure rolling mode 
before the impact, we can determine the top spin of the ball 
~rom fl; VI R. ~hus t~c incident ball velocity V is the only 
mdependent vanable Involved. and the velocity drop during 
the impact can be corrclated with V. 

Figur~ 8 shows the velocity plot obtained from a high­
speed video captured at 150 fps. The velocity plot was used 
to detennine if the ball was rolling just before it hit the 
CUShion., The gradient of the speed-time plot was used to 
determine this. as shown in Fig. 8. Results that were obtained 
f?r 31 such s~ots ~nto the rails, almost satisfying the condi­
tions of 110-Sldespll1 and that of pure rolling. are given in 
Fig. 9. 

From Fig. 9 we see that the relation between the rebound 
~nd incident speeds is almost linear for the incident velocity 
In Ihe range of 0.28-3.5 rn!s (the typical range of ball veloci­
ties in the game). A best fit straight line for the rebound­
incident speed data gives a coefficient of restitution of 0.818 
for this velocity range. The results are more closely fit by the 
second-order polynomial y;-O.0877x2+ 1.13Ix-0.0953. 
where x is the incident velocity and r is the rebound velocitv. 
These result~ arc not valid for a general ball-cushion impul~e 
but arc applicable only under the conditions of no-sidcspin 
and pure rolling motion prior to the impulse. We belicve that 
the ideal variation between the rebound and incident speeds 
should be linear and the redui.:tion in the coefflcient of resti­
tution at higher incident speeds is due to cushion deforma­
tion. The gradient of the plot at lower incident speeds is 
around 0.910. and this value shall be valid under the assump~ 
tion of a rigid cushion. 

Marlow6 reported that the coefficient of restitution for rails 
in a billiard table is 0.55 but did not give much detail about 
the experimental procedure. He compared his results with the 
values suggested by Coriolis l and concluded that they agree 
closely.6 The cushion height for snooker is 36 mm, with the 
ball radius equal to 26 mm, which is close to the height of 
lA times ball radius found in poot. Thus the cushion and 
ball geometry is almost identical in pool and snooker. It is 
possible that Marlow considered the rebound ball velocity at 
the end of the sliding phase rather than the correct one im­
mediately after the impulse. Then the coefficient of restitu­
lion for the shot could be 0.63, but this result has no physical 
meaning. 
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Fig. 9. The variation in the rebound velocity versus the incidence velocity. 
.<\t tower incident velocities the variation is atmost linear. II{)we\'cr, at 
higher incident velocities the rebound velocities tend to !evd uff, quite 
possibly as the cushion is not rigid at higher incident speeds. 
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Fig. 10. The effect of table friction on the cue ball path for an oblique 
collision (from Ref. 2). (a) The parameters involved in an oblique collision. 
(b) The cue bull path for different precollision cue ball speeds under rolling 
conditions. 

C. Impact between balls 

If the approaching and separating velocities of two balls 
lie along the line connecting the centers of the balls, then the 
impact is said to be frontal or head-on. Impacts occur in two 
dimensions in billiards as oblique collisions, and the frontal 
impact is a special case. 

Amateur billiards players use the 90° rulc~),10 to visualize 
the postcollision trajectories of the colliding balls. Tt states 
that the balls will separate al 90° after an oblique collision 
(see Fig. 10 for the predicted ideal directions of travels). It is 
also assumed that the cue ball will immediately stop after a 
frontal collision. In snooker the cue ball and all object balls 
have the same mass. It can be easily shown by momentum 
conservation that the 90° rule only holds when the coefficient 
of restitution between the balls is one (that is, the balls are 
purely clastic). The angular velocity of the cue ball (in the 
form of the side/top spin) when it collides with the object 
ball also affects the postcollision velocities and the directions 
of separation for the balls. The friction present between the 
collidin~ balls has also been shown to affect the postcollision 
motion. 4 Bayes and SCOll

s employed a spring loaded cue 
launcher and two pool balls on a felt-covered table to exam­
ine this effect. They used a stroboscope and a camera to 
determine the subsequent ball paths and found that the angle 
was around 67°. There is no data on how much spin the ball 
had at the time of impact, which is known to affect the col­
lision dynamics. They also tested the ball on various glass 
surfaces and found that the collision angle approaches 90° as 
the surface becomes smoother (in soapy gla<;.'i it reached 
89.9°). Thus table friction creates some unpredictable behav­
ior in the ball collision. 

The tracked results for the cue ball and an object ball 
collision arc shown in Fig. 11. We sce that the temporal 
resolution of the tracking is sufficient to capture the deflec­
tions in its postimpact trajectory. The reason for the curva­
ture in the path of the cue ball is that it starts to slip imme­
diately after the impact [a similar slipping phenomenon was 

Fig. 11. Tracking results for a collision between the cue ball and an object 
hall at 45 fps. 
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also observed in the ball collision with a cushion; sec Fig. 
10(a)]. Figure IO(b) gives an idea of how this behavior is 
influenced by the incident velocity of the cue ball. Similarly, 
the object ball also starts 10 slip immediately after the im­
pact. Once the slipping phase has stopped. both balls go into 
rolling motion, and the curved path of the cue ball is then 
directed along the tangent line to the curve. Reference 2 
analyzed this phenomenon and showed that the velocities for 
the postcollision and postsliding phases of the object ball are 
(sec their notation in Fig. 10) 

5 
Vo= 7V cos 0, 

Bo= B, 

and for the cue ball is 

V 'V /9 . 2 B ' C=7 \5'S111 +25" 

B -t' -if ';00,",0] 
c - an ( ')' $in~ o+~ 

(I) 

(2) 

They defined /3=b/ D as the fractional impact parameter, 
where D is the ball diameter and h is the separation of the 
ball centers in the direction perpendicular to the incident ball 
velocity V. Also note that .8=sin O. 

Plots of angles On' Of. and On+ Or versus the impact param­
eter are shown in Fig. 12. The experimental values agree 
with the theoretical predictions in most instances, but 00 de­
viates more from its theoretical value at high fractional im­
pact values. The reason is unknown, and wc do not know if 
factors such as spin affect collisions for very oblique colli­
sions. A possible explanation is that al high values of /J, an 
excessive amount of sidespin is imparted to the object ball, 
which changes its path from what is derived in Ref. 2. This 
phenomenon also raises questions about whether sidespin af­
fects its speed or direction of travel. 

In billiards sidespin is considered to be independent of the 
linear speed of the bali because it is assumed that the ball 
makes a point contact with the table. If both. the contacting 
surfaces are extremely rigid, this assumption would be valid. 
For billiards the rigid table-top is covered by a soft felt. Thus 
a considerably rigid billiard ball sinks into the felt, making 
contact over il finite region of the ball's surface. Hence we 
suspect that the ball exhibits disklike properties. For a flat 
disk, sueh as an ice-hockey puck, its linear motion and its 
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Fig. 12. Theoretical and mea~ured deflection ang!e.~ for the cue and object 
balls versus the fractional impact parameter /1 The symbols •.• , and • 
represent (/(' Bm and 0(+ 00 , respectively. ConLinuous line~ ~how the respec­
tive predictions. 
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Fig. ! 3. A typit<ll ~peed variation ir. the cue b<.tll and object ball near impact. 
[\ sh(iws how both the cue ball and the object hall .~tart to ~lip on the table 
immediately after thdr collbion. The cue ball speed plot also !'>how~ how the 
cue ball is ucceleratcd after the imp:lcl. 

rotation (it only has a side-rotation, which is analogous to the 
sidespin of the ball) arc always couplcd?5 That is, the rota­
tional motion and linear mOl ion of a disk will cnd at exactly 
the same time?5 Thus there arc some characteristics of the 
diskJikc motion found in billiard ball motion. Onc observa­
tion that supports this claim is that wc never scc the ball 
continue to rotate about the vertical axis (that is. sidespin) 
after its linear motion is stopped. The coupling of linear and 
rotational motions is readily apparent in the game of pool 
where the balls have a number or other paltem painted on 
their surface. 

Wallace and Schroeder2 did not experimentally validate 
the velocity relations found in Eqs. (I) and (2) because their' 
tracking method could record only the positions and not the 
time stampings. We use the velocity pints for both colliding 
balls to validate these equations. As shown in Fig. 13, the 
incident velocity is measured right at impact. The gradient, 
typical for the pure rolling motion. as discussed. was used as 
the criteria for detecting the time at which the ball starts to 
roll (or stops slipping). The detected times arc shown with 
their respective velocity symbols in Fig. 13. We observe that 
the cue ball accelerates right after the collision. This accel­
eration occurs because the collision greatly reduces only the 
linear velocity and not the angular velocity, and thus th~ cue 
ball goes into a sliding condition with excess top spin (over­
spinning). This excess top spin is then convel1ed into linear 
velocity by the action of the sliding force. which in this case 
acts in the same direction as the ball velocity. increasing the 
latter. 

The results are given in Tahle I for five such shots involv­
ing impacts. The maximum error between the theory and the 

measurements is found to be around 10%. We do not know 
whether Ihis error is also induced by the effect of sidcspin on 
the collision between two balls. The sidespin of the ball was 
not taken into consideration in Ref. 2. There is reason to 
believe that the friction between the cue ball and the object 
ball will introduce tangential force components at the colli­
sion point, which would impart a sides pin onto the object 
ball. even though the values of these tangential force com­
ponents may be small. 

During impulse there will be a relative velocity between 
the cue ball and object ball along the vertical due to the 
angular velocity (top spin) in the natural roll of the cue ball 
prior to the impact. This relative velocity will introduce a 
tangential friction force during the time of impulse on the 
cue ball as well as on the object ball. This force will induce 
a spin on the cue ball about its frontal velocity axis. produc­
ing an effect equivalent to a massc shot (a shot played with 
an elevated cue stick). For a masse shot a ball is known to 
move along a curved path instead of on a straight line. This 
correction should also be added 10 the prediction in Ref. 2. 
These observations and the evidence presented in Fig. 12 and 
Table J should motivate a new theory for the collision be­
twecn two balls. which involves the frictional forces between 
the balls that arc present during the impulse. 

IV, CONCLUSIONS 

High-speed video capture using a single machine vision 
camera was found to give good results in determining the 
dynamics involved in snooker. The rolling coefficient of fric­
tion was found to be between 0.124 and 0.126 m/s2• The 
sliding friction value is in the range of 1.75-2.40 m/s l . 

One-dimensional ball-cushion collisions were also analyzed. 
and the mean coefficient or restitution was detcrmined. Both 
frontal and oblique collisions between the balls were ana­
Iyzed. Predictions of separation angles and velocities were 
tested experimentally and close agreement was found. 

Some experiments could not be performed. Onc such ex­
periment would look at the general impacl of the ball with 
the cushion. The inability to perform such experiments is 
mainly due to the difficulty of determining the amount of 
spin on the ball using the camera. To track the ball spin in 
football and golf, researchers have used marked panems on 
the bnll surface. Some interferometer based techniques have 
also been used for this purpuse. 

Tahle I. The po~timraet .'peeu theoretic<ll prediction~ (Ref. 2) <lnt! t~e measured values from hall tracking. V is 
the incoming cue ball speed, () is the cut angte for ohlique collision. V" and 0" <lre the postcollision and posts tip 
direction of travel and speed for the object bait. and Vr and Or are the po.,tcoltision and postslip direction of 
travel and speed of the cue ball. 

v 0 Measured V,. Me:lsured V" Theoretical V,. Theoretical V" Error in V, Error in V" 
(m/!,) (.) (mls) (mJ,) (mJ,) (mM (%) (%) 

1.539 33.83 0.8t6 0.836 0.932 0.913 12.4 8,43 

1.032 26.36 0.520 0.629 0.529 0.660 1.70 4.70 

U64 40.52 0.925 0.700 0.934 0.740 0.964 5,40 

1.731 46.50 1.275 0.787 1.301 0.851 2.00 7.52 

0.942 18.05 0.365 0.581 0.388 0.640 5.93 9.22 
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