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ABSTRACT

The need for autonomous systems designed to play games, both strategy-based and
physical, comes from the quest to model human behaviour under tough and
competitive environments that require human skill at its best. In the last two decades,
and especially after the 1996 defeat of the world chess champion by a chess-playing
computer, physical games have been receiving greater attention. RobocupTM, le.
robotic football, is a well-known example, with the participation of thousands of
researchers all over the world. The robots created to play snocker/pool/billiards are
placed in this context. Snooker, as well as being a game of strategy, also requires
_accurate physical manipulation skills from the player, and these two aspects qualify
snooker as a potential game for autonomous system development research. Although
research into playing strategy in snooker has made considerable progress using
various- artificial intelligence methods, the physical manipulation part of the game is
not fully addressed by the robots created so far. This thesis looks at the different ball
manipulation options snooker players use, like the shots that impart spin to the ball in
order to accurately position the balls on the table, by trying to predict the ball

trajectories under the action of various dynamic phenomena, such as impacts.

A 3-degree of freedom robot, which can manipulate the snooker cue on a par with
humans, at high velocities, using a servomotor, and position the snooker cue on the
ball accurately with the help of a stepper drive, is designed and fabricated. Using a
single, stationary, overhead camera and image processing techniques, the balls’
movements on the snooker table are tracked to 1mm spatial accuracy. The tracking
results are used to determine various parameters, like friction coefficients and
coefficients of restitution, involved in the ball dynamics. Some efforts on determining
ball spin, over a limited area, by tracking a circular pattern put on the ball’s surface,
are also presented. A thin-film force sensor has also been installed in the snooker cue,
close to its tip, and the force measurements are used in conjunction with the camera
tracking to arrive at some conclusions regarding the cueing dynamics. Moreover, the
friction during the collision between two snooker balls and that between a ball and -
cushion are theoretically analysed using the principles of impact mechanics. Contrary
to previous works, no constraints are placed on the direction of slip between bodies

during impact. Differential equations describing the ball motion during impact are



obtained, and then solved by the use of numerical algorithms to obtain solutions for
the post-impact ball trajectories. Finally, the problem of ball positioning in snooker 1s
introduced. The close relationship between the problem and a specialised robotic
manipulation domain called nonprehensile manipulation, which is concerned with the
positioning of objects without grasping them, is established. An artificial neural
network-based model is developed for the dynamic interaction between the cue and
the cue ball during cueing. A forward dynamics model for the ball motion is put
forward by combining the results obtained by the camera-based tracking and the
numerical and empirical analyses of various collisions, as mentioned earlier. Given
the desired final ball locations on the table, optimisation is chosen as the proposed
solution for the ball positioning by minimising the error distances on the table in order
to obtain the required control parameters of the robot. Genetic Algorithms are used for
this derivative-free optimisation. Experiments performed using the robot, in a 5 ft x
6ft area of the table, indicate that the optimal solution for the robot parameters are
able to position the cué ball to an accuracy of 100-250mm and give an object ball

potting accuracy of over 90%.

Keywords: game-playing robots, snooker robots, billiards robots, non-prehensile
manipulation, impulsive manipulation, ball-tracking, spin-tracking, ball collision

mechanics, ball trajectories, trajectory optimisation.
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Chapter 1

INTRODUCTION

1.1 Background
1.1.1  Why Game-Playing Robots?

Games have always been of keen interest for the science community; numerous
examples can be quoted. One early work that is also of particular interest to this
thesis, written in the 18" century by the famous French scientist Coriolis, is a detailed
treatise about the physics involved with billiards [Nadler 2005]. Thus it is not
surprising that, when engineering research started focussing on creating autonomous,
systems, games became an obvious subject for study. In fact, developing strategies for
board games (generally referred to as ‘game playing’) was one of the very first tasks

undertaken in Artificial Intelligence (Al) [Russell and Norvig 2005].

Games present very tough,‘ competitive environments; hence, the intended
autonomous game-playing systems have to perform well under such difficult
circumstances, and this aspect sets a truly challenging research goal. Moreover, the
games also present researchers with a real-world énvironment to tackle. Thus, the
solutions developed to overcome the problems in game playing can possibly be
translated directly into the other environments that humans deal with, for example an
industrial situation. What is more, the robots/systems created to play games currently
receive wide media attention. They have thereby become a channel through which the

research community interacts with the general public.

Games such as chess [Campbell ef al. 2002], checkers {Fogel and Chellapilla 2002],
backgammon, Go, Othello, poker and bridge have been researched since the inception
of Al in the early 1950s. Most of these are board games that purely challenge the
human intellect. Thus, the line of research on these games is about strategy, planning

and creating novel techniques that bring forth better game engines. The game



environment is essentially the software where the state of the game at any given time
is stored. Most importantly, in the case of strategy games, the artificial system need
not have any physical elements. Four decades of research on chess and on Al in
general culminated in the victory of IBM’s ‘Deep Blue’ over the- World Chess
Champion, Garry Kasparov in 1997.

In the last two decades, the focus has been shifting more toward the games that
require a physical engagement with an opponent, the main reason being the
availability of increasingly reliable and cheap hardware solutions. The ever-improving
hardware capabilities of the sensors, actuators and computers along with the arrival of
soft computing paradigms, such as neuro-fuzzy modelling, that perform better under
uncertainties, have made the research into the physical game domains more feasible.
All these factors have lead to the development of a number of well-performing, game-

playing robots.

The game-playing robots have given rich insights into disciplines such as computer
vision, controls, machine intelligence and machine learning which have lead to the
development of a whole range of new theories and technologies. Currently,
RoboCup™ (The Robot World Cup Initiative) gets extensive attention, with hundreds
of researchers participating from all over the world; RoboCupTM has;. currently chosen
soccer as its standard task [Asada et al. 1999]. To cite an example, Candea er al.
[2001] state that RoboCup'™ is spearheading the research on cooperative-agent
modelling, a general Al research topic. Research into game-playing systems develops
solutions that transcend the domain of a particular game and thus makes the

development of game playing systems very valuable.

1.1.2 A Brief Overview of Game Playing Robots/Systems

In the mid-late 1980s, a robot was developed in the AT&T Bell Labs to play table
tennis (ping-pong) [Andersson 1989]. The system was equipped with two cameras to
track the 3-D motion of the ball and a racket that was connected to a robot arm
through an elongated rod. From 1985-1988, a system called the Snooker Machine, a

robotic system to play snooker, was built at Bristol University, UK, and, according to



Ho et al. [2007], this had also received BBC televised coverage by 1988. However,
other sports domains did not receive any attention in this regard in the 80’s or, at least,

there were no major developments reported during this time.

In the early 1990s, robotic football research started to gain momentum following a
paper from Prof. Alan Mackworth of the University of British Columbia in 1993,
where the scope of this research was pointed out for the first time [Asada ef al. 1999].
Around the same time, research papers on RoboCupTM and on robots to play other
games, started to appear. Since then, the research and development of game-playing
robotic systems appears to be on the increase. Numerous publications on gaming
robots are coming out each year, and a few dedicated journals/conferences in this
domain have arrived due to the increased volume of publications. For example, the
IEEE Symposium on Com.putational Intelligence and Games is a conference where
the researchers on physical/strategy-based game playing systems (except robotic

football) present their research annually.

A list of the current systems is exhaustive. There appears to be some form of sports-
robot-related research carried out within every research group on
robotics/mechatronics in most universities. Some examples of the systems created to
play games, apart from RoboCup™, are, table tennis [Matsushima et al. 2005}, air-
hockey |[Park 2001], yo-yo [Jin and Zacksenhouse 2004, Hashimoto and
Noritsugu 1996], golf [Ming and Kajitani 2003], bounce juggling [Ronsse et al.
2006] and batting [Senoo et al. 2004].

1.1.3 The Game of Snooker. An Overview

Snooker comes under the category of games collectively known as billiards that
include pool (there are variations like 8-ball and 9-ball) as well as carrom. These
games are collectively known as cue sports, where a stick (called a cue) is used to
manipulate spherical balls on a table with pockets. The player uses the cue stick to
strike a designated ball, called the cue ball, setting it in motion (this process is known
as cueing). The cue ball is struck in such 2 manner as to collide with the other balls on

the table (called the objects balls) either to pocket them in one of the six pockets or to



position them at a desired spot on the table. The objective of the game is to pocket all
the object balls, except the cue ball, in a specific order. Here, it is also interesting to
note that snooker is a game traditionally used in physics to illustrate the frictional
rolling motion of spherical particles on a flat surface and the collisions between

spherical bodies.

Baulk end/

Top end Bottom end

White- Cue ball, Reds- 1 point each, Yellow-2 points, Green- 3,
Brown- 4, Blue- 5, Pink- 6, Black- 7.

Fig. 1.1. Snooker table with initial ball positions - top view

At the start of the game of snooker, the balls are arranged as shown in Figure 1.1. The
cue ball is placed within the half circle at the baulk end and a shot is taken (called the
break shot). A player has to pot a red ball followed by any other colour ball, the cue
ball is played from wherever it ends up after a shot, and the player can continue to do
so until a ball fails to be potted, and the points are awarded as given in Figure 1.1. The
potted colour ball is put back on the table in its designated initial position as shown in
Figure 1.1. When a player fails to pocket a ball the turn passes on to the other player.
When all the reds on the table have been pocketed the players then start to pot the
colour balls in the order of increasing value. For a given arrangement of the balls as
shown above, a frame is said to be complete when the black ball is potted and the
player that has the most points in that frame wins the frame. A match can have a
number of frames, and the winner is the one who wins the most number of frames.
For a detailed description of the rules, refer to the official website of the World

Professional Billiards & Snooker Association (WPBSA) at www.worldsnooker.com.




Snocker is fast becoming a popular sport, and globally there has been a resurgence of

interest in this game in the last decade with the game reaching the Far East.

“In the Far East, the snooker boom is developing at pace. The China Open
staged in Beijing in 2005 was enthusiastically received by Chinese fans, A
- staggering 110 million people watched live on television as Ding Junhui beat
Stephen Hendry in the final to elevate himself to the status of national hero. Last
year, in 2007, the BBC generated 138 hours of snooker coverage, reaching over
27 million viewers in the UK (45% of the population), while Eurosport®
provided 144 hours, reaching 57 million people” [WPBSA-World Professional
Billiards & Snooker Association, from www.worldsnooker.com, accessed on

28.05.2008].

The WPBSA also says that in the UK, snooker is played by 4 million adults. There are
more than 800 snooker clubs in the UK with an average of 20 tables per club,
according to a database of snooker clubs [Click-Snooker, 2008]. There are also
hundreds of snbdker leagues held throughout the UK every year, with thousands of
participants. A slight variation of this game, called pool, is more popular in North
America, but the fundamentals are very similar. All this indicates that snooker is a

sport that enjoys a very good reception from the general public.

1.1.4 What is the Scope of a Robotic System for Snooker?

50 years of Al research on game strategy resulted in creating a system that could beat
the World Chess Champion. When it ¢omes to physical games, according to Asada et
al. [1999], RoboCup™ has set itself the following goal:

“By the mid-21st century (2050), a team of autonomous humanoid robots shall
beat the human World Cup champion team under the official regulations of
FIFA.”
When compared to humanoid soccer, snooker and billiards presents a relatively lesser
physical challenge. By the very nature of the game, snooker does not demand a very

fast robotic response, rather it requires a very accurate one. Hence, the computer



vision, decision-making, and robotic elements of the system do not need to operate in
real-time. In addition to this, snooker only has a single agent actively present at any
one time in the game environment, whereas in soccer multiple agents are present and
this complicates the decision-making part of the system. Hence, a snooker/billiards
robot has a good potential to be the first robotic system to beat a human in a standard
physical game, and this can probably be achieved well before the target of 2050 set by
RoboCup™. When the overview of the robotic configurations (especially the
kinematic solutions of some of the robots) is explained later in this chapter, this

argument becomes clearer. This aspect of snooker presents a very exciting prospect.

Earlier, it was seen that billiards/snooker has a very popular appeal, which is on the
rise. Therefore it is reasonable to assume that a large number of amateurs will embark
on this sport every year {(even an approximate figure was nowhere to be found).
Currently, snooker training does not involve any technology whatsoever, and the
coaching is carried out by professional trainers. In this context, the development of the
robotic system elicits a proper understanding of the science behind the human skills
and dynamics involved with this game. As the fundamental technology is understood
and developed, a possible spin-off may be a multi-media-based dedicated training
system for snooker that trains amateur players from the very start. Elements involving
multimedia technology can also be developed to assist the current training processes

in a better way to enhance the training experience.

1.1.5 Robotic-Systems for Playing Snooker/Pool/Billiards

This section gives a general introduction to the systems that currently play the billiard

family games.

1.1.5.1 Bristol University, UK

In the mid-late 90s, Bristol University developed a robotic snooker player in its
Advanced Manufacturing and Automation Research Centre. “The main objective was
to demonstrate the feasibility of automating a complex task that demands a high level
of human skill and decision making” [Shu 1994, Ho ef al. 2007]. They came up with

a solution of using a PUMA 560 manipulator arm, which holds a cue launcher that in



turn strikes the cue ball. The manipulator arm is attached to an overhead gantry robot
(a SKF Linear Drive System) that moves the manipulator arm over the whole table
area. The cue is powered by a pressure-regulated pneumatic cylinder. An overhead
camera is used to roughly locate the balls on the table and its images are used to select
an appropriate strategy. An additional cue-mounted camera is used for visual servoing
to accurately position the cue on the ball. The project documentation (a PhD thesis)
addresses the automation aspects of such a system. In addition, considerable attention
has been given to the development of an appropriate playing strategy for the robot.
However, the system’s performance, like the most critical ball-potting accuracy, is
scarcely documented, apart from that for some special kinds of shots, like straight-line
shots and angled shots with specific predetermined angles [Shu 1994]. The robot

treats the various impacts that take place in snooker by using very primitive models.

1.1.5.2 Sharif University, Iran

The project makes use of an overhead XYZ prismatic gantry with a revolute end-
effector carrying a pneumatically powered cue to play pool [Alian et al. 2004). The

robot selects its best shot by fuzzy-based reasoning.

1.1.5.3 Tamkang University, Taiwan

A 5-degrees of freedom billiard robot based on an XYZ gantry is fixed to the table.
The system uses an overhead CCD camera to image the table state. However, the way
the system has been built, it is not possible for humans to play on it, as the heavy

structure of the robot is rigidly attached to the sides of the table [Cheng et al. 2004].

1.1.5.4 Adelaide University, Australia

A pool-playing system with a gantry arrangement using a solenoid-actuated ball
launching system is mounted on the pool table itself [Medwell ef al. 2004]. The

system was developed as part of an undergraduate project.

1.1.5.5 MIT, USA

A robot was created for an undergraduate project. Two research papers, whose main

focus has been on testing a certain machine-learning algorithm on several different
systems, are found to have some descriptions of this robot [Moore 1991, Moore ef al.

1995]. The robot uses a motorised cue and yaw control. The researchers who



implemented the machine-learning algorithms have used the ball tracking to extract its
trajectory for the learning algorithm. It is a very minimal robot, and is fixed by the

side of the pool table.

1.1.5.6 Queen’s University, Canada

Lights

Fig. 1.2. Gantry-based pool playing system [Greenspan ef al. 2008]

By far the most widely reported system in terms of general publicity (it was also
featured on Discovery Channel, etc), and in terms of research output, measured by the
number of research papers [Long ef al. 2004], is a system funded by the Science and
Engineering Research Council of Canada and named ‘Deep Green’. It again uses an
industrial gantry from which a robot manipulator carrying the cue manipulation
element is suspended (see Figures 1.2, 1.3). A custom-designed linear actuator is used
for the cue manipulation. An 8 ft x 4 ft pool table is used for the project. The robot is
reported to have a spatial positioning accuracy of 0.6 mm and an accuracy of 67% is
claimed for the straight shots [Long et al. 2004). It uses both an overhead camera and
an eye-on-hand camera (for local imaging). Lam er al. [2006] had only given the
angular deviation in the moving direction of the cue ball as a measure of the robot

accuracy. In their latest publication, Greenspan ef al. [2008] state that the robot has



pocketed runs of four consecutive balls. However, the overall performance of the

robot in terms of its potting accuracy has not been reported in their latest work.

Spherical Wrist

Pneumatic
Break Cue
Actuator

Suction Tool

Electromagnetic
Cue Actuator

Fig. 1.3. The end effector of the Queen’s University robot [Greenspan ef al. 2008)

1.1.5.7 University of Alberta, Canada

PickPocket, an artificial intelligence software for computer billiards, was created
during research undertaken as part of a Master’s degree [Smith 2006a]. This is, by
far, the best strategy program developed for the machine-based decision-making for
billiards. PickPocket was the winner of the simulated 8-ball pool tournaments at the

10th and 11th Computer Olympiad competitions in 2003 and 2005 respectively.

A few other research projects have been focussing on producing systems that can train
amateur pool/snooker players. Jebara et al. [1997] describe a wearable computer that
guides the players to select the easiest shot. Larsen er al. [2002] report a system that
interacts with players using audio-visual / graphics media. Since these systems
address some of the issues related to computer vision and strategy in snooker, they are

also reviewed in Chapter 2.

Today’s mammoth computer gaming industry continues to simulate many of the

physical games in a virtual environment. A number of programs to play



snooker/billiards/pool have been produced, for example, Snooker Simulation
[Grogono 2005]. The computer games have the game strategy element in common
with the robotic systems, although the former deal with a rather more idealised
environment. Hence, proper attention should be given to these game engines when

appropriate strategies are formulated for a snooker robot.

1.1.6 What has been achieved so far?

A careful review of the documentations of the developed systems, also the
publications, leads to the following conclusions. A complete kinematic solution has
been achieved for the problem of robotic billiards, in the form of gantry-based robots
(however alternate configurations are still possible). The systems described by
Greenspan et al. [2008] and Ho ef al. [2007] have access to most of the table area,
thus they are capable of executing almost all possible shots that humans play on the
table. Machine vision elements were perfected in most of the systems and all of them
sense the static ball positions. Considerable achievements have been made in the
strategy formulation for the best-shot selection and in the search for potential future

shots, thus creating a shot sequence, at the planning level.

1.2 Motivation

The scope of a snooker robot, as described in Section 1.4.1, combined with the
deficiencies of the current systems, as described below, provides the motivation for
this project. The literature review and an analogy of the human snooker-playing
techniques, combined with the comparison of other types of robotic systems in
general, and game playing robotic systems in particular, enable us to identify the
flaws/deficiencies of the current systems. An analogy of the human skills involved in
this game also highlights several necessary improvements that need to be developed

to succeed in playing this game up to the standards of humans.
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1.2.1 Deficiencies with the Current Systems

Many issues related to the human skills involved with snooker have not been
addressed properly by the above-described systems. Some inherent aspects of the
game have been left out because an ill-conceived system design could not tackle
them. Inadequate attention has been paid to the internal system dynamics (the physics
involved in the game) that play a major part in the success of a system of this kind.
Alternate methodologies, apart from the traditional programming-based approach for
shot-making, have not been explored properly. The following are found to be the

major problems with the existing systems.

1.2.1.1 Understanding of the System Dynamics

All of the systems mentioned hitherto are supposed to use a programming-based
solution to the problem of manipulation. Such solutions usually require a system
model, based on its dynamics. However, the literature on system dynamics scarcely
exists for snooker and billiards in general. Some early experimentation has been
performed by researchers on billiards physics, but the comprehensive experimentation
that is necessary to describe the ball-table dynamics is needed. Also, more accurate

impacts models are needed to predict the ball trajectories accurately,

1.2.1.2 Disregard for some Salient Aspects of the Game

Snooker players achicve a great deal of variety in their game by introducing spin onto
the ball by striking the ball at different points on its surface (see Chapter 2 for details).

Not a single reported effort appears to exist on this very important facet of the game.

1.2.1.3 Trajectory Solutions
Snooker is all about controlling the ball trajectories accurately as planned. Suitable

manipulation algorithms/schemes are needed to ensure that the decisions made by the
strategy element are executed accordingly. This aspect has not been addressed in the

literature.

1.2.1.4 Alternate Methodologies for Shot Planning

As a replacement for the traditional programming-based approach, alternate methods

like machine learning can also be used. These methods have been successfully used in
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other games where the system dynamics modelling was not completely possible, e.g.
table tennis [Matsushima et al. 2003, 2005]. The machine-learning-based models, if
used, will eliminate the need to consider the issues that are raised in Sections 1.2.1.1

and 1.2.1.3.

1.3 Research Novelty

This research work claims the usage of the following novel techniques and

methodologies:

s A robotic system that uses in its development a novel way of manipulation
that closely resembles human cueing e.g., efforts to impart different types of
spin on to the ball by the way of precise positioning of the cue on the cue ball.

e Snooker cue instrumented with a force sensor and its testing.

» Novel use of vision as a means of object tracking and its use to obtain the
dynamic parameters involved in the ball motion.

e Some preliminary efforts/ideas about the spin tracking of a snooker ball using
a single overhead camera.

s The first complete theoretical models to describe the collisions between two
snooker balls, also taking into consideration various frictional interactions
under such conditions. A similar process has also been used to describe the
collision of the ball with a cushion. Numerical solutions have been used for
the first time for snooker impacts.

¢ For the first time, non-prehensile manipulation methodologies have been
studied from the perspective of controlling the balls so that they proceed to
predetermined locations have been presented in this thesis. A Genetic
Algorithm-based optimisation procedure is used for this purpose.

s  When a dynamic model is not available for a dynamic interaction, a machine-
learning- based approach is taken. One such method using a neural network is

used for the cue-cue ball interaction.
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1.5 Thesis Outline

This dissertation continues with a more elaborate treatment of the material covered in
this introduction. The relevant background works are reviewed in Chapter 2. Chapter
3 outlines the research methodology and presents the overview of the proposed
system. Methods used for the design and development are explained in Chapter 4.
Experiments performed with a high-speed camera and a force-sensor-instrumented
cue are described in Chapter 5. Chapter 6 deals with the development of theoretical
models for two of the collisions encountered in snooker. Chapter 7 presents the
overall solutions for ball trajectories and results. Chapter 8 discusses the present
research from a critical perspective. The conclusions of the study and the future

research directions are given in the final chapter.
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Chapter 2

LITERATURE REVIEW

An autonomous snooker system will consist of a number of subsystems. Its makeup
must include both sensors and actuators, and the software that performs decision-
making. In addition, although it is closely associated with the decision-making
element, the system must also have the knowledge about the dynamics of snooker.
Snooker dynamics, especia[ly the cueing dynamics, are also important from the
system design perspective, as seen later in Chapter 5. The reviewed literature is
broken down into four subsections: Game Strategy, Computer Vision, Manipulation

and Snooker Dynamics.

Section 2.1 describes the intelligence that is needed to play the game, in the form of
decision-making to select the best shot and the aspect of looking ahead into future
shots. A brief coverage on the machine vision issues, with reference to the snooker
system and other relevant systems, is given in Section 2.2. Section 2.3 reviews the
possible manipulation solutions for a snooker robot by looking at similar
manipulation methodologies - collectively known as nonprehensile, or graspless,
manipulation - where objects are manipulated by methods such as tapping and

pushing. A compilation on the physics of snooker is presented in Section 2.4,

2.1 Game Strategy

Players need to have both physical skill and strategy 1o succeed in a game. Games like
chess are completely based on strategy. Snooker is not all about potting a single ball,
but also finishing a frame successfully, pocketing all the balls in the given order. To
accomplish this task, professional snooker players always look ahead of the current

shot, i.e. they plan multiple shots in advance. They always have an idea as to which
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ball to target in the next shot and so on. To play the next shot successfully it is
important to leave the cue ball in an advantageous position on the table after the
current shot. The configuration of the snooker table also makes it possible to play
different types of shots (either straight, spin, kick or bank shots) and yet to have the
same table outcome (e.g. in terms of the post-shot cue ball position). In other words,a
given post-shot cue ball position can frequently be achieved in a multitude of ways.
This makes the game more exciting and affords the player more flexibility in playing,

but in turn makes the shot exploration procedure to select the best shot more difficult.

2.1.1 Selecting the Easiest Shot

Given a table state, this is all about selecting‘a shot (thus an object ball-pocket
combination) purely on the basis of the ease of shot that maximises the chance of
potting the selected object ball. Usually, amateur snooker players tend to think along
these lines. In Al terms, this is known as greedy local search, because it targets the
next best move without thinking ahead about which ball to pocket thereafter (not
considering an overall optimum solution). A number of researchers have applied such
greedy algorithms to formulate a playing strategy for billiards. Lin er al. [2004] have
applied grey decision-making theory, which deals with the uncertainty and the
knowledge incompleteness associated with a system, for their billiard robot. Lin er al.
consider the distance between the cue ball and the object ball and that between the
object ball and the pocket as well as the cutting angle required to pocket the object
ball, for each object ball-pocket combination, d.,, ds, and (180°-y) respectively, as
depicted in Figure 2.1. By considering a specific object ball and a given pocket, the
analogy of Lin ef al. introduces two ratios. A ratio of the lengths involved in the
distance between the object ball and the pocket and the distance from the ball to its
closest pocket. The second ratio involves the angles, and is defined as the fraction of

_the cut angle to the maximum possible cut angle of 90°.

When there are multiple object balls, Lin e al. [2004] introduce another length ratio:
the one between the cue ball and a given object ball, and the shortest possible such
distance amongst all the object balls. Finally, the three ratios are averaged to select an

object ball-pocket combination to execute the shot, the shot that has the highest
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average being the one selected. However, giving equal weights to all three factors,
without evaluating their relative significance, in terms of the potting accuracy, is open
to question. Relative weights for each of these factors need to be evaluated either
through a theoretical analysis involving the shot geometry, or through a trial and error
procedure by analysing the outcome of different shots played on the table. However,
Lin et al. [2004] have not presented the results of the proposed idea in their paper, let

alone compared it with other available methods.

2.1.1.1 Geometry-based Approach

Jebara et al. [1997], in their work on aiding billiards players with wearable computers,
resort to a strategy that assumes that the greatest difficulty presented to a player is in
launching the cue ball in the ideal direction. The ideal launching direction is
determined by assuming that the object ball will enter the pocket bisecting the
entrance. It selects the best shot by calculating the maximum atlowable angular
deviation the player has (calculated by the shot geometry), which can still pot the ball,
thereby selecting the shot which has maximum angular tolerance as the best one. This
approach is based on the fact that the wearable computer is supposed to train amateur
billiards players, who apparently have difficulties in directing the cue ball along the

intended, ideal direction.

O

Ghost ball
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Fig. 2.1. Geometry of a direct shot

&
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For the shot parameters as depicted in Figure 2.1, Shu [1994] defines the shot-
-difﬁculty index for potting a ball into any of the 4 comer pockets as,
{kidootkad,ptks|y-150°+kp-45°1}, k..., ks being constants. For a centre pocket, fhe
index is derived as {k;dcotkod,,+ksly-150°+ky|w-90°}. The justification provided in
support of this formula arrangement is that professional players prefer y closer to 150°
than 180°, which is the angle for the in-line shot. The150° shot has the ability to allow
the cue ball to move to almost any region on the table, as opposed to the in-line shot
which positions the post-shot cue ball position only along the line of impact. For the
in-line shot, to take the cue ball away from the line of collision requires excessive

sidespin to be imparted to the cue ball by the cue.

2.1.1.2 Fuzzy Logic-based Appréach

Chua er al. [2002] have used fuzzy logic to select the immediate best shot. d.,, dop, ¥
(see Fig. 2.1) have been chosen as input parameters to the fuzzy decision-making
element. Chua er a/l. also use three Gaussian membership functions for each of these
inputs, which are denoted as easy, medium and hard in terms of difficulty. The fuzzy
rule base consists of 27 rules, and the shot selection is based on the fuzzy outputs.
Chua et al. [2005], in their further work, decrease the number of rules to 24, by
automatically omitting any ball-pocket combination where both the distance between
the cue ball to the object ball and that between the object ball and the pocket are very

large.

Chua ef al. [2005] then use the zero-order Sugeno fuzzy model with the firing
strength of the rules formed by the product operator. The max aggregation method is
then used (i.e. max-prod operation) to obtain the output. Three singleton spikes are
used as the output membership functions, which classify the shots as simple,
intermediate and tough. Defuzzification is performed using the weighted average
computation. Chua et al. then consider other types of shots with increasing difficulty
e.g. the combination shot (involving two object balls), the kick shot and the bank shot.
Whenever additional angles and distances are encountered in the complex shot
configurations, they are modelled as fuzzy inputs, as described earlier. The algorithm

searches within a type of shot, starting with direct shots, and if there are no shots to be
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found, it starts searching in the shot type with the next level of difficulty, and

continues the same procedure.

In their latest work, Chua et al. [2007) compare the results of the fuzzy approach with
that of Jebara et al. [1997] and Grogono [2005] both of whom use a difficulty factor
A= dco.dop/coszy. Chua et al. present tfle comparisons for consistency between the two
methods as applied to six different ball configurations on a billiard table. They also
pass these table configurations to regular pool players (but their level of expertise has
not been specified anywhere), to know which shot order the players would prefer in
each of these six game states. Moreover, the results obtained by Chua et al. show that
the decision-making has a close correspondence to the actual play, with 91.7% of the
decisions being similar. The other algorithms with simple formulae, like those of
Jebara and Grogono given above, also perform equally well. This seriously questions
the necessity of this complex modelling. Alian et al. i2004] utilize the same fuzzy
approach with only two parameters: d,, and y. The justification, it is said, is because
studies show that d., does not have much influence on potting [Alian ef al. 2004].

Nevertheless, no concrete evidence has been given in support of this argument.

2.1.1.3 Lookup Tables ‘
In the work of creating an Al for computer billiards, Smith [2006a] uses a pool

physics simulator named Poolfiz [Leckie and Greenspan 2005] to caiculate the shot
difficulty factors. Four shot parameters are employed; in addition to the 3 factors in
the previous section, the object ball-pocket angle y is also considered (see Figure 2.1).
This Al software for billiards, PickPocket, uses a lookup table to predetermine the
probability of success for each feasible shot, in order to avoid costly run-time
calculations. The shot difficulty parameters {d.., dsp, 7, w} are discretised, and
sampling is used to fill in each table entry. For each set of {d,, dqp, ¥, ¥} a probability
of success is assigned after simulating a shot with these parameters in the Poolfiz

simulator for 200 times repeatedly, noting the success rates.
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2.1.2 Cue Ball Positioning

Experienced snooker players plan a few consecutive shots, and this is an essential
element in winning any given frame. Hence, it is pertinent to consider the post-shot
cue ball position (called position play), i.e. whether the cue ball will be in an
advantageous position on the table to play the next shot and so on. If this aspect is not
taken into consideration when executing the present shot, the player will have
“snookered™ himself for the next shot (i.e. the resulting table state will be such that the
player cannot directly aim at any of the legal balls). If the shot is made without much
delibé_ration, the cue ball may end up close to the cushions making the execution of
the next shot difficult. In the worst-case scenario, if the post-collision cue ball motion
is not carefully considered, after its collision with the object ball the cue ball can then
fall into a‘pocket thereby awarding points to the opponent and losing the turn. The
combined ball-table dynamics give a greater flexibility when it comes to position
play. Figure 2.2 shows how the cue ball can be taken to diverse locations on the table

by varying the power of the shot, and the amount and type of spin imparted onto the

cue ball.
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Fig. 2.2. Cue ball positioning with different types of shots

Dussault and Landry [2006] utilise optimisation techniques for positional play in their

automated computer billiard player PoolMaster. Here they consider potting a single
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ball by a straight shot and taking the cue ball to a given location. Using the sliding and
rolling equations describing the motion of the ball after being hit by the cue, they
calculate the initial linear and angular velocities (one linear velocity at a fixed
direction and three angular velocities - four variables altogether) that are needed to
propel the cue ball to a specified location. In order to calculate these four variables, an
optimisation function is used, minimising the difference between the calculated final
cue ball location and the desired location. Then they consider one ball collision to pot
an object ball with a desired post-shot cue ball position as before. The constraint
being that the cue ball should be present at two specific spatial points, one for
impinging onto the object ball as required and the other being its desired final position
when it comes to rest. Having this as the constraint, an optimization model is set up.
Finally, the friction effects between the balls (i.e. collision-induced throw) .are also
added to the optimisation function. They use two optimisation software programs,
Scilab and OPT++ (both use quasi-Newtonian iterative algorithms) to perform the
computations. The optimisation procedure provides the linear velocity of the cue and

the hitting point on the cue ball, so that the required amount of spin is imparted to it.

2.1.3 Evaluation Function and Look-Ahead/Search

In the previous section, the importance of position play and its significance in winning
a frame of snooker is outlined. The next question is where to leave the cue ball after
the current shot, since, as the table is a continuous domain, there are an infinite
number of locations on the table where the cue ball can be positioned. Thus, for any
given location on the table, there needs to be an evaluation of the merits of that
position. Once this evaluation is formulated for the whole table surface, the problem
of finding the best spot to reposition the cue ball can be solved by searching the table
space in order to maximise the evaluation formula. This will result in the formulation

of an overall strategy to play the game.

2.1.3.1 Evaluation Function

“An evaluation function returns an estimate of the expected utility of the game, for

any given position in the game” [Russell and Norvig 2005}. In snooker, for a given
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state (i.e. positions) of the balls on the table, the evaluation function must be able to
tell how useful that state is to the player from the perspective of winning the frame.
Evaluation functions work by calculating the features/patterns of the state. In chess,
the possible features can be, for example, the number of pawns possessed by each
side, and king safety. For example, the Deep Blue evaluation function uses 8,000
different patterns [Campbell ef al. 2002]. Then each of these features is assigned a
numerical value (using some kind of a priori knowledge of the domain) and a

weighted linear function is assigned, adding up all the features.

In chess, the game states are discrete and the actions are completely deterministic.
However, in snooker, there are an infinite number of positions on the table where the
balls can be positioned, i.e. it has a continuous nature. Also, for a cue ball-object ball<
combination, there are an inﬁni}e number of distinct shots to be considered (for
example changing the cue ball direction by a small amount, imparting different types
of spin). Hence the snooker domain, unlike chess, 1s continuous. In addition, due to
inaccuracies in the sensing elements, such as the.camera, ‘noise’ is introduced into the
estimation of the state of the balls on the .table, which, in turn, introduces a small
degree of randomness into the artificial system designed to play snooker. The current
evaluation functions for billiards/snooker are based on the number of quality shots -
available from a given cue ball position, thus giving greater flexibility to a player.
Smith utilises the sum of the difficulties of the total number of legal shots available
from a given cue ball position [Smith 2006a] as the evaluation function for that
position. Dussault and Landry [2007] use both the total sum and the average value of
the shot difficulty for the analysis performed in their artificial intelligence software,

PoolMaster.
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Fig. 2.3. Outline of the best regions for the cue ball positioning using the sum measure

for a given ball configuration in poo! |Dussault and Landry 2007]

Dussault and Landry [2007], in addition, create a global map of difficulty for a given
configuration of the balls on the table, using contours, which specify the regions
where the cue ball would be favourable to play the successive shots (see Figure 2.3).
In their further work, Landry and Dussault [2007] also use a pre-computed table -
where the table area is discretised as grids, and the cue ball and the object balls are
placed in each of these grids in turn and a shot is taken, all within the simulated
environment of PoolMaster. Furthermore, for each combination of the cue ball and
object ball positions, the shot parameters, in the form of cue velocity and the striking
point on the cue ball, are also changed. All of the results are then stored in tabular
format. For a given situation, to find the optimal shot parameters, before the
optimisation routine is executed, the starting values for the routine are found from the
closest matching values in the look-up table. Specifying a closer starting point for the

routine drastically reduces the time taken for the optimisation.

Smith [2006b] also proposes to include the centredness of the balls (a ball in the
middle of the table has the advanfage of being easily pocketed in all the pockets) in
the evaluation function. Moreover, according to Smith [2006b], the ball clusteredness
(which is an impediment to successive potting of the balls) can also be included in the
evaluation function to give it a more realistic value [Smith 2006b]. In addition to

these factors, other aspects such as the close proximity of the balls to the cushions

22



also have an influence on potting. Incorporating them in a suitable way may lead to a

better strategy.

2.1.3.2 Look-Ahead/Search

Look-ahead is very important for any game that is turn-based, and look-ahead is
accomplished by searching for possible future game states that can lead to a win. In
pool, professional calibre 8-Ball players try to visualize the entire run of eight balls at

the start [Leckie and Greenspan 2007].

Chess and checkers are considered as “standard” games in the traditional analysis, and
very successful computer chess programs have been created, culminating in Deep
Blue’s win against the world chess champion, Gary Kasparov. The strength of these
programs depends on their power to search for the best moves, which has apparently
been aided by today’s high performance computers. For chess and checkers programs,
the mini-max game trees are used to analyse different possible future game situations;

the search algorithm employed is alpha-beta [Russell and Norvig 2005).

Contrary to chess and checkers, snooker is a game that has a continuous nature, i.e.
there are an infinite number of shots to consider for any given state of the table. This
makes the search difficult and necessitates the use of different techniques to search for
the best shot. Snooker is a non-deterministic game where, even if one plays two
identical shots, the table outcomes can still be different because the physical
parameters of the system are subject to change with time, however small they are.
Especially, when an artificial system plays snooker, the errors involved in the sensing/
computer vision elements and the actuator will always introduce deviations from the
ideal expected outcome. For this reason, and to emulate a real-world scenario, some
computer billiards programs (these are completely deterministic), are superimposed
with Gaussian noise on their parameters to give a more realistic experience to the
users [Greenspan 2005]. Hence, the snooker environment has a stochastic nature.
This makes it difficult to do the search in a purely analytical way. However, the strong
point for developing a good search algorithm for snooker is that, as opposed to games
like chess, which alternate the turn to the opponent after every move, it is possible in
snc;oker to clear the table straight away without giving a chance to the opponent,

thereby winning the frame.
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The Expectimax algorithm is used for the search of stochastic domains, as in the game
of backgammon where the dice-rolling introduces wuncertainty. Under such
environments of a stochastic nature, the *-Minimax algorithm can be used to prune the
search tree, reducing the run-time. Even then, backgammon, having a finite number of
nodes, has discrete states, compared to snooker, that present a continuous, stochastic
domain. Hence, for any given parent node in the search tree, in snooker, there will be
an infinite number of children with minuscule probabilities. Smith applies
probabilistic search to solve this problem [Smith 2007|. Every shot is classified as a
success or a failure; a physics simulator is used to get a value for the probability of
success. Only successful shots are expanded in the game tree. This method is a very
crude abstraction of the game situation, because, even though not all the successes are

equal, they are given equal value by the algorithm.

Monte Carlo methods have also been applied to get a random sampling in the range of
possible outcomes of a shot, and they use the *-Expectimax method to search among
these possibilities [Leckie and Greenspan 2007]. The higher the number of samples,

the better the performance.

2.2 Computer Vision and Ball Tracking

Computer vision is needed to sense the ball locations on the table and so will be the
primary sensing element of a robotic snooker system. Snooker requires a 2-D
visualisation process in order to extract the ball centres since the ball centres are
always constrained to a plane parallel to the table surface at a fixed height, equal to
the ball radius. Only the jump shots violate this condition, but they are very rare in the
game and are outside the scope of this work. The existing systems to play
snooker/pool use overhead-mounted cameras looking vertically downwards to
* visualise the ball positions on the table. In addition to an overhead camera, the Bristol
University system also consisted of an eye-in-hand visual servoing unit to compensate
for the inaccuracies associated with the overhead camera [Shu 1994]. The Deep

Green system [Greenspan 2006] also uses a second camera whose image plane is
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perpendicular to the longitudinal axis of the cue. Jebara er al. [1997] use a head-
mounted video camera as the vision element of their wearable computer that trains
amateurs. All the above-mentioned configurations image the table area in order to
locate the static ball locations, so that a decision can _bé made on which shot to play
next, as elaborated in Section 2.1. In the robotic systems, the cue ball location
together and the shot parameters are supplied to the robot controller for the robot to
take aim and execute the shot. To establish the performance of the robot, the post shot
static ball positions on the table are also observed. However, the literature review
shows that there were no serious efforts to track the balls continuously. Continuous
ball tracking can provide some useful inputs to the system, such as the velocity
variation of a ball, possible deflections due to the spin shots, cue squirt or any other
variations due to the table surface, like the nap of the table cloth [Williams 2002].
This author believes that the ball tracking can better inform of robot controller about
the actual dynamics of the ball motion on the table. The tracking can either be
performed whilst the robot is playing a shot, i.e. in real-time or, whilst ‘off-line’, it
may be by tracking human shots. In a similar proiect, on developing an air-hockey-
playing robot, Bishop and Spong [1999a, b] tracked the puck continuously on the air
hockey table, so that their robot could effectively strike the puck.

The primary reason for advocating ball tracking is the lack of theories to describe the .
dynamics of snooker, especially the collisions in the presence of friction, as described
later in this chapter. Moreover, when new theories are put forward for an aspect of
snooker dynamics the validation can only come through an experimental procedure
and this necessitates some form of ball tracking. In the opinion of this auther, a spin-

tracking element will also be an essential part of the experimentation.

To determine the fundamental physical parameters, such as the coefficient of
restitution, the Bristol University project used talcum powder in certain table areas to
track the balls, but this is not very efficient and prone to errors [Shu 1994]. There are
also other variations in the game, such as the drifting effect due to the natural line of
the nap of the table cloth [Williams 2002], ball-pocket interactions etc. A visual
tracking system enables the system to learn and adapt to any unusual behaviour found

in the snooker dynamics.
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2.2.1 Lighting

As mentioned earlier, both global and local (eye-in-the-hand) cameras were used in
the snooker/billiards robots. However, the global vision of the table presents a number
of technical problems. First, it necessitates a highly uniform and diffused lighting,
because any focussed lights would affect the image of the balls, which are highly
reflective. The Bristol system used a monochrome camera for the global imaging,
with tungsten halogen dichroic reflectors [Shu 1994]. The dichroic reflectors, which
are used behind a light source, allow the visible light to go forward and pass out the
radiated light to the rear, this helps avoid heating up of the object being viewed.
Reflectors were kept in an 8x5 matrix above the snooker table, after considering the
luminance map of a single source, the distances between the adjacent reflectors are
chosen so as to have a null luminance trough between them. The robot on-board
camera in the Bristol system has its own miniature lighting with an identical light
source to the one above. The table lighting arrangements of the other robots are

scarcely described in the literature.

-

2.2.2 Camera

To image the equal sized, coloured balls found in snooker, it is straightforward to go
for a colour camera. However, a monochrome camera was used by Shu [1994].
Initially, a grey scale map for a ball with given colour was plotted. Using this map, a
histogram of the average grey-scale of all the balls using 100 repeated trials was
obtained and this histogram was used to distinguish the colours of the various balls. A
classifier based on the average grey-scale value of a colour identifies a particular ball.
A colour camera would dispense with-most of this trouble. The wearable computer
system used a colour camera with an RGB based probabilistic colour model, with data
clustering, to distinguish different coloured pool balls (pool has both solid-coloured

and striped balls) [Jebara et al. 1997;'].
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2.2.3 Image Processing and Feature Extraction

Before a camera can be used to make any measurements, it must be calibrated in order
to relate the image parameters to the real world parameters. For the stationary
overhead cameras frequently used in the robots, there is no relative motion between
the camera and the table, which usually represents the real-world coordinates. Camera
calibration involves determining both the pose of the camera with respect to the scene
(called the external/extrinsic parameters), and the internal camera parameters (also
known as the intrinsic parameters), such as its focal length and the image
magnification in the sensor. Generally, the lens distortion is modelled by a polynomial
that should be added to the above-mentioned model to make the calibration complete
[Gennery 2006]. There are pattern based calibration methods, where a calibration
object with a known geometry is moved while the camera is kept stationary. A camera
can also be calibrated by what is known as self-calibration, where the camera is
moved in a static scene, and the rigidity of the scene provides the constraints that are
necessary to estimate the intrinsic and extrinsic parameters of the camera |Zhang

2000].

Once the image is corrected for its distortion, it can be used for ball identification (i.e.
identifying the colour of the balls) and then locating the centres of the balls. Chua e/
al. [2003] used an image mask to isolate the playing area of the table with the aim of
increasing the speed of image processing. From the colour camera input (the RGB
image), Chua ef al. used only the R and G components for image processing (they
state that these two components are sufficient to provide the required results). They
then apply an intensity adjustment on these two components separately, to increase
the contrast, before applying the Sobel operator to detect the edges which correspond
to object boundaries. The two processed R and G components are combined to get a
binary edge detection image. Then, Chua er al. [2003] use the Circular Hough

Transform to locate the ball centres.

Long ef al. |2004] have corrected for the radial distortion of the lens, before applying
a threshold to produce a binary image. They then use a connected component
algorithm to eliminate the noise, and to eliminate significantly small blobs to locate

the balls. It should be noted that there are other robust filters, e.g. the median filter, to
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cope with the noise present, even though these are computationally expensive. The
ball centre is then located by a least square estimation, with the radius of the circle

known a priori [Long et al. 2004].

Other researchers have used a probabilistic colour model to visualize and differentiate
the table area within the general field of view |Jebara ef al. 1997]. They initially
obtain a number of sample pixels of the table cloth under different lighting conditions
(their work concerns a moving imaging system, i.e. a wearable computer) and use
data clustering to get a plot of the RGB distribution and use Expectation
Maximization (EM) to find a probability distribution for the colours of the pool table.
As a new image is acquired, Jebara er al. evaluate each pixel for its likelihood of
being a part of the table, and if it is above a certain threshold value, it is labelled as the
table. The edges of the table are also found using the EM algorithm. Then a
probabilistic colour model is trained to recognise the pockets. Since the work is
concerned with an 8-ball Pool game, a probabilistic colour model is also used to
detect the balls that are both solid and striped. Denman et al. [2003]in their work
concerned with extracting useful information from the video broadcasts of snooker,
have used colour-based segmentation to locate the table area whilst using suitable

masking for players; the Hough Transform is used to detect the edges.

There are also studies that deal with self-shadows and occlusions of balls under
natural lighting conditions. For example, D’Orazio et al. |[2004] have employed a
special operator for semicircle detection in conjunction with a neural classifier to

identify a football within a football field.

2.2.4 Object Tracking with High Speed Imaging

Earlier, it was argued that the ball tracking is necessary to play the game effectively.
Of late, object tracking has been widely used in ball sports. Hawk-Eye is one good
example where a six-camera system is used to track the balls in cricket, tennis,
baseball and snooker for television broadcasts [Pingali et al. 2000]. Each of Hawk-
Eye’s six synchronised monochrome cameras operates at a speed of 100 frames per

second (fps), which uses acquired data from tracking points to predict subsequent ball
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trajectory and bounce whenever the ball motion is blocked, as in the case of leg-
before-wicket decisions in cricket [Davis 2009]. The accuracy of Hawk-Eye is
reported to be between 2 to 5 mm. There are also other vision- and radar-based
tracking systems that measure the magnitude of ball spin, using the features on its

surface, like the seams [Griffiths et al. 2005].

2.3 Nonprehensile Robotic Manipulation of Objects

In Chapter 1, while providing an outline of the current systems to play snooker and
pool, their configurations have been summarized. A review of relevant manipulation
methodologies that will be useful for a snooker robot is given in this section. The
manipulation schemes that are collectively known as nonprehensile manipulation

methods are considered.

Nonprehensile Manipulation

Nonprehensile manipulation is defined as the manipulation of an object without
grasping it (hence also known as graspless manipulation) [Mason 1999]. Figure 2.16
depicts a typical situation encountered in graspless manipulation where an object 1s
manipulated by pushing for a sorting operation by two robots. A clear advantage of
such a scheme is that it does not require very large robots to cover the whole
workspace of the object. In snooker, the very nature of the game only allows for
nonprehensile manipulation, an impulse-based manipulation to be specific, of the cue
ball by the cue. Hence, nonprehensile manipulation methodologies will be extremely
useful for a snooker robot. Nonprehensile manipulation was developed as a substitute
for the pick-and-place manipulation, which has limitations because of the sizes of the

objects that can be manipulated and the size of the workspace.
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Fig. 2.4 An example of nonprehensile manipulation {Zhu et al. 2006]

Without grasping the object, a nonprehensile manipulator with fewer degrees of
freedom (DOF), uses the gravitational, centrifugal, Coriolis and frictional forces
acting on the object as virtual motors to control more DOFs of the object. The object’s
extra motions are exhibited as rolling, slipping and free flight [Lynch and Mason
1999]. For example, the cue-driving action, which is equivalent to a single DOF
pusher, by changing the cue velocity, can theoretically position the cue ball on the
table, a space with two DOF, which is one more than that of the manipulator.
Manipulating in a higher dimensional space'is essentially achieved by allowing the
object to move relative to the robot. Many other manipulation methods such as
throwing, batting, catching, orienting/reorienting parts, and manipulation by imputlses,

also come under this category.

Nonprehensile manipulation presents other problems of its own, when compared to
grasping manipulation. Grasping manipulation, as in a pick-and-place robot, requires
a description of a path for the end effector to follow. This is accomplished by means
of programming the individual joints accordingly, and their control is a classical
closed-loop problem. However in nonprehensile manipulation, the object is released
from the manipulator at a specific time and the object’s control thereafter is not with
the manipulator. After the object loses contact with the manipulator, its control is
taken over by the virtual motors, i.e. the gravitational, frictional or its own inertial
effects. From the perspective of the manipulator, the whole scheme is analogous to
that of an open loop system, with no feedback control. This ‘open loop” nature of
nonprehensile manipulation requires a detailed preplanning that considers every

aspect of the dynamics of the object motion.
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Although there are numerous nonprehensile manipulation methods, as outlined above,
only the ones where a force/impact is applied to an object and it is then being allowed
to slide on a planar horizontal surface are considered here. Here the object, in its ‘free’
motion, is only under the influence of frictional and inertial forces. This type of
problem has been analysed by many researchers. Impulsive manipulation [Huang ef
al. 1995, Partridge and Spong 2000}, releasing manipulation [Zhu et al. 2006],
tapping manipulation [Huang and Mason 2000, Han and Park 2001], multi-agent
dynamic cooperative manipulation |[Li and Payandeh 2003 a, b], pushing
manipulation [Rezzoug and Gorce 1999] are some examples. In all these
manipulation operations, two distinct situations may be encountered, one where an
algebraic analysis of the object dynamics is completely possible, and others where

this analysis is only partially possible or completely impossible.

2.3.1 Planning the Object Motion

As said earlier, nonprehensile manipulation requires extensive pre-planning. The type
of manipulation under consideration consists of two dynamic phases, the robot’s
actual interaction with the object, and the ‘free’ motion of the object. Hence, the
planning also consists of two phases: the inverse solutions for the ‘free’ motion of the
object, and the inverse dynamics for the manipulator-object interaction. The initial
‘requirement is to get the inverse solution, i.e. determining the initial velocities, both
linear and angular, of the object for a given requirement of object transfer, such as its
final position and pose, as well as the desired path of the object. Secondly, the
manipulator interaction parameters must be determined, i.e. the amount of impact and
the suitable contact point on the object that is necessary to generate the required initial
velocities of the object that will eventually lead to the desired final object
configuration. Certain final object pose configurations may not be possible due the
current pose of the object, or because of the limitations of the robot; such cases have
to be clearly distinguished during the planning phage. The limitations are also due to
the geometry of the object being manipulated and the environment within which the
whole operation takes place. As a simple example, in a single DOF impact and planar

sliding problem, the maximum reachable distance is determined by the maximum
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power of the manipulator, the friction and geometry (e.g. the horizontal tilt) of the

surface, and the object geometry.

The inverse solution for the ‘free’ motion problem is tedious whenever the object
motion problem is not fully, or maybe even partially, algebraically ‘describable,
otherwise, the inverse solution is very straightforward. For the former, one has to
resort to some other methods. Huang ef al. [1995] followed a numerical approach, and
used the properties of displacement monotonicity with respect to the initial velocities,
to obtain the inverse solution for a planar disk sliding on a table. To orient a triangular
planar part on a surface, Han and Park [2001] made use of a numerical algorithm to
obtain the inverse solution. The numerical algorithm is based on the qualitative
motion characteristics, such as the monotonicity between parameters. However,
Mason [1999] utilized optimisation to find the trajectories of a polygonal part after it
has been struck, thereby establishing an inverse solution. In their work on dynamic
cooperative manipulation, Li and Payandeh [2003a] used a quasi-Newtonian method
as their optimisation routine. Their further work adopts game theory and neural
networks to overcome the uncertainties present in the environment [Li and Payandeh
2003b]. Zhu et al. [2006] utilized two iterative learning control schemes to solve the
problem of inverse sliding for the planar objects. Matsushima ef al. [2005] made use
of inverse maps (input-output maps) and locally-weighted learning for the inverse
problem encountered in their table tennis robot, to determine the paddle’s velocity and
its angle of hit. By observing the ball hit by the opponent as it passes a predetermined
vertical plane on the opponent’s side, this mapping also predicts where it will hit the

table on the robot’s side and predicts its velocity as well.

The impact dynamics between the manipulator and the object are always a complex
phenomenon that is challenging to model and control [Li and Payandeh 2003a]. In
this respect, the Routh impact model and the Newtonian model for the impacts are
- generally used. Routh’s model is based on a graphical analogy of the impact

configuration and is considered more accurate [Wang and Mason 1992].
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2.3.2 Manipulation Limitations

Not all the initial velocity combinations (both linear and angular) are always possible
for a given object. These depend on the geometry of the manipulated object and the
manipulator, material properties such as the friction between the manipulator and the -
object, support conditions of the object, etc. For example, in snooker, for miscueing
not to occur the cue must impinge the cue ball close to the stun point (see Section
2.4.1), if the cue ball is struck at its periphery it will barely move, and definitely not
along the expected direction, Spong [2001] has analysed for the reachability of an air
hockey puck struck by a puck. The reachable velocity of the puck and its impact
controllability are derived in terms of the friction coefficient and the coefficient of
restitution between mallet and puck using the Routh impact model. The main
difference between an ice-hockey puck and a snooker ball is that the puck can only
have spin about the vertical axis, whereas a ball generally has the potential to spin in

three dimensions.

2.4 Snooker Dynamics

Snooker presents a classical physics problem, and understanding it is vital for any
artificial system to play the game. Skilled snooker players may not understand the
dynamics in terms of physics, but having spent enough time with the game, they know
the intricacies of the game, by way of experience. A robotic system can be designed to
take this approach and ‘learn’ the game, using a machine-learning paradigm, such as
supervised learning with neural networks, where the controller learns from the
examples provided to it [Jang et al. 1997]. However, if a system-dynamics-based
solution is pursued to determine the ball trajectories, the physics involved in the game

has to be clearly understood.

The first published analysis of billiards physics was from Coriolis in 1835 [Nadler
2005]. Since then it has been a topic for teaching and research in physics. This section

looks at different phenomena that are involved in snooker dynamics. They are: the
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interaction between the cue and the cue ball (i.e. cueing), the rolling of the ball on the
table, impact between two balls, the ball’s collision with a cushion and the dynamics

of ball spin.

2.4.1 Cueing

Cueing, which is the manoeuvring of the cue and then hitting onto the cue ball, is the
sole interaction of the player with the system dynamics, and hence it is very critical
from the player’s point of view. This is a very subtle operation and involves a
considerable amount of skill. Here, the long, slender cue imparts an impulse force
onto the cue ball forcing it into motion; the impact is delivered, theoretically, through

a point contact. In order to facilitate such a contact the cue has a rounded tip.

Fig. 2.5. A stun shot - no angular velocity imparted by the cue

As shown 1n Figure 2.5, when the hit is horizontal and through the centre of the cue
ball (this is called a stun shot), the initial velocity, V¢ of the ball can be determined
from the impulse, /, by

I=MVg
where M is the mass of the cue ball and [ is the integral of the force between the cue

and the ball over the time of impact. [= Ith

The amount of impulse is always difficult to calculate, because the variation of the
impact force with time is not known. A simple solution is to measure the force using a
transducer with the respective time stampings and then to numerically integrate the

force over time to obtain the total impulse. If an average force F, (this can be the

time-average reading of the force transducer) can be defined during the time of

F oAt

m

impact, Ar, it can be shown that, V¢ = . However, cueing is not always as
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simple as this and whenever the cue is not maintained horizontal or if the line of strike
does not go through the ball centre, the ball starts to spin about its centroid (this spin
is also known as ‘English’). Depending on the position of hit on the cue ball, spin is
called top, bottom, left or right (Figure 2.6). It is also possible to get a composition of
two types of spin as shown below in Figure 2.6, by selecting the striking location

appropriately.

Top (follow) Stun (centre)

Top-left Top-right

Left Right

Bottom-left Bottom-right

Bottom
(draw)

Fig. 2.6. Types of spin with the respective striking areas on the cue ball

2.4.1.1 A Generalised Model for Cueing

Next, a more generalised situation of cueing is considered, where no constraint is
imposed as to how the cue is being held while striking the ball. An analysis can be
easily performed for this configuration without considering frictional effects due to
the table surface and between the ball and the table [Salazar and Sanchez-Lavega
1990]. However, de la Torre Juarez in his work on cueing considered the effect of
friction from the table during impact [de la Torre Juarez 1994]. The preseﬁce of
friction causes a friction impulse, and makes the analysis complex. The following is
an abridged version of the detailed analysis of de la Torre Juarez [1994], though it is a
repetition of the published material, it is given here it as it gives a completeness to this
review on billiards literature (only the essential equations, and derivations are given

here).
Assuming that the time of impulse is very small, and the distance the ball travelled

during the impulse is small and that the direction of ball velocity remains constant

during the impulse.
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F={Fy, Fy, Fz}
Fy#0

X

Fig. 2.7. A general cueing situation

Using the linear impulse-momentum equation, and also the equivalent equations for

the angular motion of the ball, and referring to Figure 2.7,

MV, = ]x+1jx
MVy=1+1,
MV:=]:+FN

2/SMR® w, = R(-1,Sina + I,)

2/5MR* w, = R(Lsina -L.cosa - Iry)

2/5SMR*w. = Rlcosa
Where, M is the normal impulse between the table and ball at contact point O, and I,
stands for the frictional impulse along the table. w is the angular velocity of the ball
about G. The linear velocity V corresponds to the centre of gravity G of the ball (V=
{Ve, V), V:}). wx, vy and o, are the angular velocities about the X, Y and Z axes
respectively. Unless the ball jumps up from the table (this is what happens in a jump
shot), V.= 0 and Fy = - I.. One notable observation from these equations is that even if
the cue points towards the centre of the ball (as considered initially), due to the effects
of friction from the table, there will still be some angular momentum imparted to the

ball.

Case [: Rolling motion
When the ball rolls, at O, Vp = 0, and it can be derived that V, = Rw, , ¥, = -Rw, and

using the above equations with the condition involving y, , the sliding coefficient of

friction between the ball and the table, 17 +17 <uFy’.
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\/(49;12 +25cos’ a ) o] I, |
(Ssina-2) I

Solving the above equations, if the ball is to roll,

Case II: Slipping motion

Slipping is more complicated than rolling as the condition Vo = 0 is no longer valid.

e L =~ V.
But now, the friction impulse is given by, [ ;= - g, Fy (=2 ).
' 0

The impulse-momentum equation can be expr.essed written in vector format as,
MVo+MaAOG=1+ -I.f . Using this and the velocity relationships between points O
- and G, the velocity of O (ie. the sliding velocity) is derived as,
Vo=(1+tan* ®@)"*(I./M-Ro,)-p |1,|/M,

where, @, _ﬁ” sina -1 cosa—1, ) and @ is the angle ¥,, makes with the

' . (2-S5sina)l, . . .
OXZ plane and is given by, tan® = . V,, 1s useful in deciding
(2=5Ssina )l +51, cosa

whether the ball slips or rolls after being struck. Figures 2.8 (a) and (b) illustrate the
conditions that give rise to different types of ball motion for different values of {/, I,
I-}, where instead of angle «a, the height of the hitting point on the ball, which is

related to R by the formula R(1+sin a), is used.

But the motion of the ball is given described by the velocity of its centre of gravity,
Vs, and can be calculated from, Z = I—/; +@AOG . The direction of Vi with the OXZ
plane, 8, is given by,

6p,sin® + (1 -Ssina)—(1,/1,)
6u.cos®@ — (1 -5sina )(1./1, )+ 5cosa

tan@ =
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Fig. 2.8. Influence of height and impulse components on the subsequent motion of

the cue ball [de la Torre Juarez 1994]

Slipping is the phenomenon that makes curved shots possible. Conversely, when a

ball rolls on the table it can only move along a straight-line.
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There is a limit for the reachable velocities for the cue ball, both linear and angular, as
there are limitations on the cue speed (whether it is manipulated by a human or a
robotic system), the amount of cue-cue ball friction and the geometrical constraints by
way of the shape of the cue and the cue ball. Nevertheless, no such study substantiated
by an experimental procedure exists in this regard. To draw a parallel to a future
study, the work of Spong [2001] on the air-hockey puck striking can be used. For
example, Spong examines the reachable velocities for the air hockey puck, which is
relatively simple in that it only has one rotation and two linear velocity components.
However, in snooker, there are three linear and another three rotational velocity

components making the analysis and experimentation very complicated.

2.4.1.2 The Massé Shot
Even for the shots played with English (sidespin), the trajectory of the ball is still

rectilinear. But when the cue is highly elevated from the horizontal and kept close to
the vertical and struck downwards on the ball powerfully, the cue ball starts to move
along a curved path (see Figure 2.9), and the shot is called a massé. Mass¢ occurs due
to the ‘sideways spin’ that makes the ball rotate about its initial frontal velocity axis

as depicted in Figure 2.9 (or the ‘Aiming line’ as shown in Figure 2.10).

Cue hits ’ [ Center line of
here { rear face

Drawlike

Fag
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~._
Initial paih ™~
~ /
. -
- ™ Simuitancous
o~ spins
'--_'_""-;}
Curved path ~= /
- \\
- -
— Cideways spin

Sideways friction Rearward friction

Fig. 2.9. Factors involved in a massé shot [Walker 1983]

This shot is very useful when the cue ball is in an awkward position and no legal

straight shots are possible. When played to a collision with a cushion, the massé shot
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generates quite astonishing motions on the cue ball (for example see Figure 2.10).
There have been several attempts to outline the physics of the massé shot e.g. Walker
[1983]. However, mathematical models describing massé have not been found in the

billiards literature.

Fig. 2.10. A complex massé shot sinking both 15-ball and 8-ball in pool
[Walker 1983]

The massé shot supplies spin about two horizontal axes, X and Y, and has a negligible
amount of sidespin (spin about the Z-axis) (see Figure 2.9), axes definitions are
similar to that in Figure 2.7. With the cue almost vertical, the player strikes downward
on the side of the cue ball. The horizontal part of the stroke determines the initial path
of the ball. The sideways spin (about the X-axis) gives rise to sideways friction force
as shown in the Figure 2.9. This friction force, which is perpendicular to the ball
motion, makes the ball trajectory curve. The ball moves along a parabolic path until it
starts to roll. Once the ball has stopped slipping, and starts to roll, the trajectory
becomes linear again (see the final part of the ball trajectory in Figure 2.10). The
trajectory of a cue ball, under the massé conditions, can be derived mathematically.
Hopkins and Patterson [1977] have done similar work on the paths of a bowling ball,

where they derive a mathematical description of the curved trajectory.
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2.4.1.3 The Cue Ball Deflection {“Squirt’™)

Whenever the cue is struck toward one side of the cue ball, in order to impart
_ sidespin, the cue balil, in general, starts to move in a direction that is slightly different
to the line of approach of the cue. This phenomenon is called cue squirt. Inadequate
knowledge of cue squirt is identified to be the major problem with amateurs [Jewett
1994]. Cue squirt happens because the ball attempts to move along the direction of the
common normal of both bodies through the impact point. However, the action of
friction between the cue and the cue ball usually reduces cue squirt (see Figure 2.11).
Shepard {1997] has analysed the physics of cue squirt elaborétely. This theory says
that apart from the factors shown in Figure 2.11, ie. the offset distance b, the
equivalent inertia of the cue-cue tip combination (called the ‘endmass’) also affects
the angle of squirt [Shepard 1997]. Shepard’s theory also predicts that the squirt
angle «, increases with the value of thé ‘endmass’. The implication of the ‘endmass’
effect means that the grip of the player affects cue squirt, as the ‘endmass’ would be
high if a tight wrist is maintained during cueing, and will be low for a loose wrist
condition. The main drawback of Shepard’s theory 1s that the friction values between
the cue and the ball have not been used, thus the forces F and N (see Figure 2.11) are

kept as independent parameters throughout the analysis.

a)
( Path of ball after
coliision (parallel to T)

N = normal force iti
F = friction force T l,'}}gi'non
T = total force of cue

Fig. 2.11.The cue ball squirt [Cross 2008]|
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Cross [2008] has formulated a concise theory incorporating two important parameters
that were not considered in the work of Shepard [1997], namely, the friction
coefficient and the coefficient of restitution between the cue and the ball. Moreover,
Cross has experimented on the squirt phenomena using a pendulum-suspended cue
ball, to elirﬁinate the surface friction effects from the table. A video camera operating
at 25 fps was used to track the cue and the ball to obtain their linear and angular
velocities. The ball was marked with a line around its circumference that allows the
spin measurement to be made from the camera (it should be noted that the pendulum
suspended ball could only have sidespin). The theoretical prediction and the
experimental values obtained by Cross are given in Figures 2.12 (a) and (b)
respectively for the conditions of a chalked tip, an un-chalked tip, and a P800 emery
paper attached to the cue ball. However, it must be noted that the values obtained by
Cross cannot be used in a billiard robot as the results are not obtained for the situation
where the cue ball rests on the table. The friction effects from the table are generally

expected to influence the amount of cue squirt.
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Fig. 2.12 Theoretical predictidns and experimentally obtained values of cue ball squirt

[Cross 2008]

2.4.2 Ball Motion against Friction on the Table

Once the ball starts its movement on the table, it either rolls on the table or slides.

Hence, there are two friction coefficients to be taken into consideration. In order to
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understand the dynamics of rolling and sliding, a snooker ball that has both linear, and
angular velocities after cueing is depicted in Figure 2.13(a). No consideration is given
to the sidespin of the ball as it is assumed not to affect the motien. This is known as
ciecoupled motion, where sidespin is considered not to affect the linear velocity, V or

the topspin, w, of the ball and vice versa.

(a) (b)

Fig. 2.13. Forces acting on a moving ball

Immediately after cucing the ball, generally, it starts to slip on the table and this
introduces a friction force, £y , at the ball-table contact point, where Fr = uFy. . But
whenever either the spherical body (the ball) or the surface is deformable (the table
cloth), the normal force Fy, from the surface does not go through the centre of the
sphere, see Figure 2.13(b) [Hierrezuelo and Carnero 1995]. In this case the
horizontal component of the force Fy, Fysing acts égainst the motion, playing a role
similar to that of the fiction force. Moreover, the action of Fy also introduces a torque
in a direction opposite to that of the direction of rotation of the ball. Hence, an angular
deceleration is also present in the ball. The relationship V = Rew is maintained
throughout the rolling phase. An equivalent friction coefficient of 4, can be defined
for the rolling condition of the ball. g, is considered dependent on the nature and sta;te
of the surfaces in contact but not on the radius or the velocity of the sphere
[Domenech ef al. 1987]. It represents an arm of the pair of forces applied on the

sphere perpendicular to the horizontal plane (Figure 2.13(b)).

Professional snooker players, by varying the point of strike on the ball, accurately
control ¥y and wyp (initial velocities) in order to bring the ball to a desired location on
the table. For example by imparting more top spin to the ball, the slipping phase can

be made to stop sooner, and when bottom spin is given, the slipping will last longer.
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This gives much more flexibility to the player rather than simply varying the linear
velocity by a stun shot. Moreover, the amount of spin on the ball determines the
collision dynamics (either with another ball or a cushion) and this aspect also gives

the player a wide range of options.

The linear deceleration during the rolling phase 1s given by
V=-mg

The linear velocity of the ball is written in terms of its initial rolling velocity ¥y as,
8

Vo V-
welFo—HE
R R

Its angular velocity is given by,
The sliding fricﬁon coefficient, u;, is usually considered a constant according to
Coulomb’s law. But Witters and Duymelinck [1986] have obtained, using a simple
apparatus consisting of a billiard ball and table cloth, a plot for the variation of 4 with
ball velocity, where it is observed that it increases with ball velocity asymptotically
(but not smoothly) to 0.21, starting from 0.14. Gratton and Defrancesco [2006]
experimented with sliding bodies on a flat surface and concluded that, whenever the
velocity does not vary by more than a factor of two, y; is proportional to the sliding
velocity. In addition, they also find a logarithmic relationship between y; and the
sliding velocity. Some other analytical methods were also used, by analysing the
deformation of material with few assumptions regarding the deformations, to calculate
a theoretical value for u, [Witters and Duymelinck 1986, Hierrezuelo and Carnero

1995].
When V - Rw > 0, the ball slides on the table.

The linear deceleration of the ball due to sliding 1s,
V=-pg
The ball will have an angular acceleration,

# ‘MRg, where 7 is the 2™ moment of

. . . . 2
inertia of the ball about any axis that goes through its centre, and /= gﬂ/ﬂi’2 . Hence,
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When, V - Rw<0, which is called ‘overspinning’, the friction force will be in the

same direction as velocity V. This often happens when the cue impinges on the cue
ball at a height larger than %R from the table surface, or right after it impinges on an

object ball (this effect will be seen later in the chapter). Hence,- during the
‘overspinning’ phase, the ball will actually be accelerating and the value of the
acceleration is given by, V=ug

At the same time, its angular motion will be decelerating. The angular deceleration is,

Su.g

2R

Earlier, at the start of this section, the assumption of decoupled motion was stated (i.e.
the sidespin does not affect the linear motion). However, as seen in the review of
rolling friction, the ball always ‘sinks” into the cloth and thus makes an area contact
with the table. This clearly indicates that the point contact hypothesis that leads to the
above assumption is usually incorrect. However, no physical analysis is found
anywhere regarding this. If a significant amount of contact is made, the ball might
have properties like that of a disk, which displays some interesting properties in its

coupled linear-rotational motion [Voyenli and Eriksen 1985].

2.4.3 Collision berween Two Balls

Impact between two balls can be either frontal (head-on) or oblique. If the
approaching and separating velocities lie along the line connecting the centres of the
balls, then the impact is said to be frontal or head-on. Two-dimensional impacts are a
general case in billiards and snooker and these are called oblique collisions, with

frontal impact being a special case.
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(a) Before colliding (b) After collision

Fig. 2.14. Pre-and post-collision velocities in plan view

Referring to the Figure 2.14,
Conservation of momentum, Vi+Va2=Vcos@

Coefficient of restitution relation, V:-Vi=eV cos@

Using the two equations, ¥; and V¥, can be easily calculated. The assumption is that
both the balls have the same mass and the coefficient of restitution is e. According to
this hypothesis, both the balls should move on linear paths after the collision.

However, this does not happen in reality as is seen below,

20° Rule

Amateur snooker and pool players use the 90° rule to predict the cue ball path after
the collision. It states that when the cue ball strikes an object ball with no topspin or
bottom spin the two balls will always separate at 90° [Alciatore 2004]. It is evident
from the two equations above that this rule is valid only when e=1, i.e. when the
collision is perfectly elastic. Bayes and Scott [1962] employed a spring-loaded cue
launcher and pool balls on a felt-covered table to examine this effect. A stroboscope
and a camera were used to determine the subsequent ball paths and the experimental
results showed that the separation angle was around 67° (though there is no evidence
as to the amount of spin the ball had at the time of impact, as ballspin is known to
affect the collision). Bayes and Scott also tested the ball on various glass surfaces
such as dry, wet and soapy, and found that the ball separation angle approaches 90° as
the surface gets smoother (in soapy glass it reached 89.9°). In the light of this
evidence, it can be said the surface friction from the table leads to unpredictable

rebound at impact.
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Apart from the table friction, the ball rolling also works against the 90° rule. The
friction between colliding balls plays a part in the motion when the cue ball is rolling.
Domenech and Casasus [1991] considered the sliding friction effect between the balls
during the collision, hence the friction impulse, and obtained the post-collision linear

and angular velocities accordingly.

2.4.4 The Cushion-Ball Impact

When the ball does not have any spin, most literature assumes that the incoming ball
angle and the reflected angle are equal (yi=yw,) (see Figure 2.15 for the parameters
involved in such a collision). Alciatore [2004] says that when the approaching
velocity, Vi, is high, v, tends to be larger than y;, because of the elastic forces set up
due to high deflection of the rail (cushion), this phenomenon is called ‘throwback’.
However, it must be noted that w; directly influences throwback. In addition, the
coefficient of restitution is less than unity and the lateral friction, along the cushion

affects the impact thereby causing the change in the deflected angle .

Fig. 2.15. The cushion-ball impact - the plan view

Partridge and Spong [2000] have considered the effect of friction on the puck-table
impact for their air-hockey-playing robot. They use the Routh impact model, which is
based on the Poisson restitution law and is more accurate, instead of the Newtonian
restitution law. However, they only use sidespin in their analysis (because it is a 2-D

motion situation and does not have any vertical velocities).
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Fig. 2.16. Effects of putting spin on the cue ball on the collisions with the rail

The analysis for the snooker wall collisions has to include the top and bottom spin of
the ball and, as a result, a vertical friction force will be present at the ball-cushion
interface. A complete analysis should also incorporate the friction between the ball
and table, as in the case of cueing. If the ball approaches the cushion with no English
(sidespin) at an angle other than 90°, friction from the cushion gives it English. Figure
2.16 shows how the balls launched with different sidespins, at different angles to a

cushion, change their paths.

Summary

This chapter provides a review of the literature found in relation to the development
of a snooker robot. Strategies needed for the robot are reviewed both in the context of
strategy games such as chess and from the perspective of snooker/billiards robots and
related computer games. Machine-vision-related issues for a snooker robot are
compared by reviewing what has been implemented in the existing robots. In addition,
after identifying that ball tracking is important for a snooker system, related
developments have been outlined. Moreover, finding that manipulation methodologies
have not been established for such robots, a related robotic manipulation method
called nonprehensile manipulation has been reviewed. Finally, a comprehensive

review of the physics of snooker is given.
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Chapter 3

RESEARCH METHODOLOGY AND PROPOSED SYSTEM
OVERVIEW

The literature review chapter shows that robotic snooker/billiards spans different
technical disciplines and this aspect underlines the need to adopt an interdisciplinary
approach to make a successful system. This chapter tries to identify the critical gaps in

the literature and sets appropriate research targets.

Section 3.1 identifies the problem to be addressed and describes the research
methodology to be used. Section 3.2 details the hardware features needed for the
proposed system. The controls and the associated software of the system are also

outlined.

3.1 Research Methodology
3.1.1 Problem: Robotic Snooker

It is apparent that the artificial system should be able to plan and execute shots like a
human in order to win a game of snooker. The success of the overall system is
decided by the individual performances of each of the major elements of which it is
made up. For a given system, generally subsystems can be identified in a multitude of
ways, depending on the purpose of the differentiation procedure. Here, the system is
broken down into three major subsystems A, B, and C, as described below, to

differentiate and identify the research goals and the targets of this work.

Subsystem A: Shot identification
For the current table configuration, this selects the best shot considering the -

various factors outlined in Section 2.1, and selects the object ball-pocket
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combination for potting and decides the best place to leave the cue ball after the

shot.
Research Area: Artificial Intelligence.

Subsystem B: Element that plans the shot

Working out the inverse solutions for the shot that is identified by A. In order to
achieve the targets set by A, B must make decisions regarding the launching
dircction of the cue, the cue velocity and the striking point on the cue ball.
Therefore, B must have the knowledge of ball trajectories and the phenomena
associated with the ball motion, lsuch as rolling, sliding, spinning and impact
mechanics.

Research Areas: Mechatronics, Dynamics, Robotic nonprehensile manipulation,

and Machine learning.

Subsystem C: Shot execution
This element ensures that the shot that is planned by B is executed accordingly. It
mainly consists of the design of a suitable hardware and software configuration by
the proper identification of the system requirements. _
Research Areas: Mechatronic system design, by appropriately integrating different
sensors (also vision) and actuators with microcontroller and PC-based control,

Robot inverse kinematics, and error calibration methods for the robots.

3.1.2 Part of the problem that is addressed by this thesis

After an extensive literature survey it was identified that issues that are related to
Subsystem A have been extensively treated by computer scientists, and several game-
playing programs have been created. However, these programs have not been fully
implemented on real snooker/billiard robots to test their effectiveness and io compare
them with human performance since the other two elements (i.e. B and C) of the

overal! solution have not yet been developed to perform on a par with humans.

This thesis does not concentrate on the research issues related to Subsystem A.

Therefore, throughout this work, it is always assumed that for, a given state of the
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table, the best object ball-pocket combination and the preferred post-shot final cue

ball location have always been supplied (i.e. they are always assumed).

The literature review also showed that there scarcely exists any literature on the
inverse manipulation problem, which is the concern of Subsystem B, and this
problem remains largely unsolved for snooker dynamics. Researchers interested in
billiard physics have developed some dynamic models for impacts in
snooker/billiards, but these models mostly remain incomplete. In addition, the
parameters that affect different phases of the ball motion, such as rolling and spinning
have not been properly measured. These parameter measurements are believed to
require an extensive use of machine-vision-based, non-intrusive, experimental
techniques. All-inclusive inverse trajectory solutions that are necessary for a problem
like snooker have not been addressed by any of the researchers. Hence, there are
multiple issues involved with Subsystem B such as computer vision, dynamics and
robotic manipulation methodologies. The challenges related to Sﬁbsystem B will be

the major focus of this work.

There are two full-fledged gantry-based robots to play snooker and pool [Ho ef al.
2007, Greenspan et al. 2008]. Both robots were kinematically versatile and have the
ability to reach any part of the table. However, the researchers in those respective
projects have not tried to address certain issues such as accurately positioning the cue
to play different spins on the cue ball. In the case of the Queen’s University project,
thé robot is designed to have the facilities needed for visual servoing using a local
camera mounted close to the cue [Lam 2008], but imparting spin to the ball was not
reported in their research papers. In order to test the performance of the
methodologies that it is proposed to develop for Subsystem B, adequate hardware
support should be available. Otherwise, only computer simulation-based results can
be reported for the solutions proposed for Subsystem B. To test the performances of
the proposed trajectory algorithms, a suitable and desirable system configuration is
identified in Section 3.2. This, in turn, makes some valuable contributions towards the
development of an ideal Subsystem C. Therefore, issues related to some aspects of

Subsystem C will be a second major focus of this thesis.
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3.1.3 Solution Methods

Nonprehensile methodologies for object trajectories require a description of the
object’s trajectory, here the ball trajectory. In order to determine the ball trajectories,
Chapter 5 addresses the issue of measuring the physical parameters that are involved
in the ball motion. Chapter 6 describes impact mechanics and numerical modelling-
based solutions for snooker collisions, which drastically change the ball trajectories
on the table. Chapter 7 proposes solutions based on what is known from the existing
literature and the work of Chapters 5 and 6. An optimisation-based solution with a

search procedure using Genetic Algorithms is investigated as a possible solution.

3.2 Proposed System Overview

The proposed system to play snooker (i.e. to test and validate the research goals) is
based on the integration of sensors and actuators and is based on a mechatronic
approach to system conceptualisation and realisation. Based on this, a synergistic
design of the system, integrating the mechanics, electronic sensors and actuators with
a PC, is envisaged. The shortcomings of the existing snooker/billiards systems (see
Chapter 2 for a detailed survey), and their relative virtues were taken into account in
order to offer a better system configuration. Some innovative ideas like force sensing

during the cue-cue ball impact are put forward.

3.2.1 Hardware

Snooker is a game that involves very subtle human skills like accurate positioning and
striking of the ball with very good control. Human limbs have superior agility and
very good coordination and form the basis of these skills. Professional players master
this game after thousands of hours of practice. Visual observation plays a major part
in this. The human limbs are also superior in that they gather a feel of the force and
impulse transfer during a shot and this a priori knowledge is used, unwittingly, for a
given shot. All these capabilities warrant a careful system identification procedure of

the hardware configuration for an artificial system to play snooker.
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3.2.1.1 Precise Positioning and Controlled Manipulation of the Cue

As seen in Figure 2.6, the hitting point of the cue on the ball alters the type of spin
imparted to the ball, greatly affecting the subsequent ball behaviour. Hence, a
positioning arrangement for the cue is necessary, so that it can hit the cue ball at
different spots as required. An accuracy of 1 mm is proposed for the positioning
- system that positions the cue on the ball. Humans must find it difficult to go beyond
this accuracy on placing the cue over the cue ball. This is considering the fact that the
white cue ball is without any guide markings showing the distance measures, and also
that the player’s eyes are generally at a distance of over a metre from the ball when

tak'ing aim.

Even though the ekistiﬁg systems are designed to occupy the whole workspace of the
snooker/pool table, to play all possible object ball-pocket combinations, their
manipulators have not been used to place the cue stick on the ball very accurately.
One reason for that is that the spin shots were not targeted in their game strategy.
Moreover, because of the long, serial-type manipulators used, positional errors are
bound to propagate and the accurate positioning is difficult unless a very good error
calibration and compensation is carried out for the robot. In this project, an accurate

X-Y positioning system is envisaged to position the cue on the ball.

Since it is planned to use a regular unmodified cue in this project, imitating the human
cueing by incorporating a cue bridge is very important. In snooker, the purpose of the
cue bridge is to provide a guide through which to send the long cue on a straight line.
Although when the cue strikes the cue ball, the duration of impact is a tiny fraction of
a second according to Marlow [_1994], the absence of a proper reinforcement, by the
way of a cue bridge, can bend the cue at its tip. When the cue bends about its tip, the
follow-through of the shot will not be smooth. At this juncture, it is important to note
the significance of the follow-through in sports where impacts are iﬁvolved (e.g.
cricket,. tennis, baseball). These factors underscore the need for a cue bridge as an

essential part of the cueing process.

The shot duration (the time from the start of the shot to until the time that the cue
strikes the ball) is between 0.2s to 0.5s for humans [Alciatore 2008]. The accurate

and controlled cueing method that is selected must also be fast enough to produce the
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required cue velocities as found in humans. The pneumatic cylinder-driven cue
launchers have poorly performed in the previously developed systems. Although Shu
[1994] used the force control option in the pneumatic-driven cue manipulator,
pneumatic systems are considered unreliable when it comes to the controllability of
velocity. The pneumatic actuators will also hinder the rapid launching of the cue
needed for very fast shots. However, humans launch the cue at very high velocities.
The cue velocity even for a moderate shot is measured from Alciatore’s [2008] high-

speed video clips at around 2m/s. Hence, a motor-driven cue launcher is proposed.

3.2.1.2 Vision and Ball Tracking

The current systems playing snooker/pool use machine vision cameras only to locate
the static ball positions on the table, in order to decide the best shot available and then
to allow the robot to reach for the current cue ball location in order to strike it. Except
for a project at MIT, where some efforts have been made to track the ball in order to
demonstrate the effectiveness of a certain method of machine learning, no attempts
have been made to track the ball continuously [Moore 1991, Moore et al. 1995].
However, visual tracking of the balls allows the system to observe the results for a
given shot parameter set, and these tracking results can be used to determine what is
actually taking place on the table. For instance, some physical parameters can be
empirically derived from the analysis of the tracking results, and in some cases, a
look-up-table-based method based on previous observations may even prove useful.
In summary, the tracking of balls is an essential feature, given the nature of the game.

The vision system, as described later in this chapter, ts proposed to achieve this target.

It is proposed to mount the camera on the ceiling above the table, looking vertically
down. As the ball motion is confined to a plane (i.e. the snooker table), a monocular
camera is sufficient to determine the position of a ball on the table, given that the
camera is calibrated and the spatial transformation between the camera plane and the

table plane is known.

3.2.1.3 Other Sensors used

Vision is the primary sensing element of the system, as described earlier. However,
additional sensory information is also required if higher-level reasoning about the

system dynamics is required. This necessitates certain additional sensory information.
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It is proposed to install a force sensor on the cue to get the tactile information about
the cueing process. This force sensor is expected to be an equivalent of the tactile feel
in humans. For example, the tactile feel distinguishes the shots wherein the cue is
almost jabbed against the cue ball, as in the case of massé shots, where the cue is
made to stop abruptly, against the smooth shots where the cue follows the cue ball
closely even after the impulse has taken place, very smoothly, giving a better
positional accuracy. In addition, when miscuing occurs (where adequate contact
between the cue and the ball does not happen, the cue almost slips on the cue ball
surface, which misguides the ball) there is not enough normal force transferred to the
ball at the point of contact. These phenomena underscore the need for force-sensing
and justify the inclusion of a force sensor. Importantly, the force sensor thus fitted to
measure the force transfer from the cue to the cue ball should not alter/change the

properties of the cue.

3.2.1.4 Snooker table

Fig. 3.1. The snooker table in the mechatronics lab

(=

A Riley® Renaissance Type Snooker table having dimensions of 10ft x 5ft, has been
installed in the lab (see Figure 3.1). This brand is the official table of the World

Snooker association and is used for all its professional and amateur Snooker

w
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tournaments since 1992 (except in China) [WPBSA 2008]. The regular tournament
table size is 12ft x 6ft.

3.2.2 Controls and Software

The system is not intended to operate in real-time. The nature of the game allows for a
certain time gap between successive shots, and thus the constraint of operating in real-
time is not strictly imposed on the proposed system. Visual Basic® 6.0 (VB) is used as

the programming language for the main control program.

Image processing and analysis are to be done within MATLAB®. This is in view of
the availab‘ility of a wide range of built-in functions for the image analysis in the
MATLAB® Image Processing Toolbox. The vision algorithms are to be written as M-
files in MATLAB®. These M-files are then to be called from VB using a function
procedure called MATLAB® COM component, which is generally used to integrate

MATLAB® with other programming environments.

It is proposed to control all other hardware from within VB.

Summary

This chapter identifies the research objectives of the project. The proposed research
methodology to carry out the research is summarised as well. The envisaged hardware
requirements of the system required in order to meet the research objectives are also

given. The controls of the system from a PC are also briefly outlined.
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Chapter 4

DESIGN AND REALISATION OF THE ROBOTIC SYSTEM

This section describes how the system is realised as per the requirements set out in the
previous chapter. The tools and techniques used are explained and the final outcomes
of these processes are presented as drawings and data. The first section explains the
requirements and considerations that are taken into account to determine the unit for
the cue manipulation. In Section 4.2, the cue positioning unit is described with

appropriate drawings. Section 4.3 addresses the issue of machine vision, image

processing, related issues, and the problems encountered in each of these aspects.

4.1 The Cue Launcher

The cue launcher has to achieve the stroke-velocity-acceleration requirements as
needed for any given shot. Various considerations regarding the design of the cue

launcher configuration are now described in detail.

4.1.1 Some Considerations regarding the Snooker Cue

Automated cueing operation is vital for the overall performance of the robot to be
satisfactory. Although the Bristol University project had a robot with a large
workspace, it used a pneumatic cylinder fitted with a cue tip of a regular snooker cue
[Shu 1994]. The front half of the cue was used for the Queen’s Ontario pool playing
robot [Long ef al, 2004]. Other researchers have used various forms of rounded heads
re'placing the regular bilhiard cue completely [Alian ef al. 2004]. However, in reality,
it is believed that the cue in its full form, shape and mass distribution plays many
different roles during the shot-making process. Figure 4.1 shows the picture of a

typical snooker cue.
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ferrule

Fig. 4.1. A snooker cue

4.1.1.1 Cue Mass
A snooker cue usually weighs around 500g (18-21 oz). If the cue is very lightweight,

significantly lower than the cue ball mass, even if it is manipulated with very high
velocity the momentum and energy transfer to the ball will not be effective [Marlow
1994]. In addition, a low cue mass generally implies a reduced stiffness. Since smooth
follow-through is very important to cue sports, this results in lateral cue deflection
during the impact and produces miscued shots [Williams 2002]. Moreover, to achieve
a specific ball velocity, a particular amount of momentum has to be transferred by the
cue to the ball. Now, with a reduced cue mass, and to transfer the same momentum as
before, the cue velocity has to be larger. However, the maximum possible velocity is
limited by the prime mover, which is proposed to be a motor. In addition, the rotary to
linear motion conversion limits the linear speeds if a rotary motor is to be used. Given
the fact that linear motors operate at comparably lower linear speeds, the only
available option is to go for a rotary motor, for which the problem of speed limitation
due to the motion conversion arises. For example, the lead screws can only achieve
maximum velocities of a few hundred millimetres per second. This may be a limiting

factor and set a lower limit for the cue mass.

Conversely, if the cue and the associated mass are large, the velocity of the cue can be
small whilst still having the same momentum as before, but the cue launcher will be
heavy and its mobility will be difficult. In addition, a comparably large mass moving
slowly cannot make the cue ball move faster after the impulse (the energy transfer
will be very poor). Hence, there is a compromise between the mass and the associated
velocity of the cue. For the maximum energy transfer from the cue to the ball, it can
be proved, mathematically, that the cue should have the same mass as t};e cue ball.

However, the cue mass is generally 3 times that of the ball mass because the focus
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here is not on achieving the maximum energy transfer, but the controllability of the
energy transfer [Shepard 1997]. The present author found it extremely difficult (or
virtually impossible) to play fast shots with a cue where the rear half (butt) of the cue
was removed; even for slow shots, a lack of stability was experienced by the arm. The
design of the cue launcher strives to keep the inertia of the moving components as
close as possible to the human cueing. The forearm essentially carries out cueing (see
Figure 4.2). Hence, by using the typical inertial properties for this portion of the upper
human limb, it is possible to get an estimate of the inertia involved in human cueing.
This value must be considered when selecting the motor and the resulting inertia of

the motorised configuration must be kept close to this value.

In order to calculate the equivalent mass involved in human cueing, a simple
calculation is performed. As shown in Figures 4.2(a) and (b), the arm movement
involves a rotation of the forearm about the elbow and a linear motion of the hand
while having a rotation about the wrist. Although there is a configuration change in
the hand to accomplish the desired straight-line motion of the cue, this change is
neglected and its effect on the linear inertia is ignored. Hence, in Figure 4.2(a), ¢ is

assumed to remain constant during the swing of the forearm, which is denoted by 8.

(b)

Fig. 4.2. The arm movement during the stroke



Table 4.1. Propertiés of arm segments for a 6 ft tall male subject weighing 75 kg
[Clauser ef al. 1969]

Location of the
Second moment
Segment Mass/ kg Length/ m centre of 2
_ of Inertia/ kgm
gravity/ m

0.109 0.0066 (about

Forearm 1.21 0.254 (from the the frontal axis
elbow) through COQG)

Hand 0.46 0.181

In addition, it is also assumed that the hand moves linearly with the cue. Now, using
the concepts of linear and angular momentum in conjunction with the parallel axis
theorem to calculate the second moment of inertia about different axes, and using the
values from Table 4.1, the equivalent linear inertia involved, including the cue mass

(i.e. 0.5 kg), in the cueing is derived as 1.13 kg.

4.1.1.2 The Shape and Material of the Cue

The World Snooker Association, the governing body for snooker, restricts the
minimum cue length to 3 ft (0.914 m) also asserting that the design shall not depart
from the traditional and generally-accepted shape and form [WPBSA 2008]. The cue
taper aids in both easy holding for the human hands as well as providing good
positioning abilities by being made slender at the tip. The material of the cue, i.e.
wood with its very high damping characteristics, absorbs a great deal of energy that 1s
generated due to the impact. The cue, also being very flexible, vibrates transversely

during and immediately after the impact thus helping to absorb the energy further.

4.1.1.3 Cue Tip

The highly elastic cue tip (usually made out of leather or of synthetic materials

combined with leather) is compressed during the collision between the cue and the
cue ball. When the compressed cue tip recovers its shape the cue ball is pushed away

from the cue. Its soft nature also ensures that it does not make a dent on the cue ball
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surface. So, if metal parts replace the standard cue tip, as has been done in a few
projects {Alian et al. 2004], the cue ball may not travel as fast as with the regular tip,

for a given cueing velocity.

4.1.2 Length of Stroke, Velocity, and Acceleration Requirements

This section aims to define some numerical values for the motion parameters of

human cueing, in order to identify the requirements for the motor to be selected.

4.1.2.1 Length of Stroke

The length of stroke does not vary too much in snooker, because it is related to the

player’s comfort and skills. Once a player starts to alternate the length of stroke
excessively, the “feel’ for the shot-making will be lost. Hence, some consistency can
be assumed in the length of stroke. However, there are also other considerations, like
the power of the shot, which plays a part in the stroke of the cue. No study exists in
this regard. On making some measurements with different players (some reasonably
good players, who can pot 5 balls continuously on regular basis, and amateurs) with a
metre scale, and using some of the videos available from Alciatore [2008], it 1s found

that the stroke lengths generally vary between 120-250 mm.

4.1.2.2 Velocity

The required velocity of the cue depends on how powerful the shot has to be. The
equivalent cue mass (cue mass and the associated inertia of the moving upper limb)
depends on the nature of the grip of the hand. No study exists in this regard, and the
effects of different grips have been neglected, hence, it is assumed that here that a
tight grip exists. Hence, the equivalent mass of the cue side is treated as a constant.
Now, also using the principle of momentum conservation, the cue ball velocity
depends only on the cue velocity. In pool, the fastest cue ball speed reported ever is
15.6 m/s, played by a martial arts student, and more typical break speeds are around 9
m/s [Shepard 1997). However, in snooker, the shots are relatively slower when
compared with pool. Since a permanent machine vision camera for thé system is not
available already, some experiments to measure the cue velocity have been performed

by using a NAC HSV-400 high-speed video camera. A calibrated scale is placed
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behind the cue ball, for distance measurements along the horizontal, and cueing is
tracked at 1,000 frames per second (fps). For very fast shots (similar to break shots),
the cue velocity is found to be in the range of 3-4 m/s. The cue velocity from the

proposed motor drive is expected to attain velocities of this magnitude.

4.1.2.3 Acceleration

Since the cue is expected to reach velocities of around 4 m/s, the cueing involves very
high accelerations within a short duration. However, the rules of the game suggest that
there has to be a single impulse between the cue and the cue ball, i.e. multiple impacts
are prohibited by the rules of the game [WPBSA 2008]. This rule constricts the cue
motion in that there cannot be any acceleration on the cue immediately after it has
struck the cue ball. It must be noted here that the cue ball will decelerate immediately
after the impact due to the friction from the table. Hence, if inadequate consideration
is given to the cue motion profile at the time of impact, muitiple impacts may possibly
happen. Therefore, it is safer to have zero acceleration when the cue strikes the cue
ball, and this feature must be available in the cue launcher. For a maximum cue
velocity of 4 m/s to be reached from rest, for example, within 0.2 s (typical cueing
times are given in Section 3.2.1.1), the average cue acceleration has to be 20 m/s’.
The motor should be powerful enough torque to have this amount of acceleration,
which produces high inertial forces in the cue launcher. Besides, the motor must also

be able to accelerate at this rate.

4.1.3 Force Transferred to the Ball

When the cue strikes the ball, a large force is transferred within a very short time. The
force calculations at the cue tip-cue ball interaction is important, as the selected motor
must have adequate driving torque to counter this high force during impact. In
addition, the contact force is needed to calculate the energy loss during cueing. The
energy loss, in turn, will influence the power of the selected motor drive. Knowing the
order of magnitude of the force is also important for the selection of a suitable force

sensor for this application.
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A review of the existing literature shows that the force values encountered In
snooker/billiards cueing are not documented anywhere. Simple experiments are
performed together with a few calculations to estimate the force at the cue-cue ball
interface. During the impact of the cue on the ball, the force initially increases with
time attaining a peak value and decreasing as the ball separates completely from the

cue. Marlow [1994] suggests a sine-squared profile for this variation, as shown in
Figure 4.3. To any general impact, the impact-momentum equation IF.dt=MVc;
holds. Where M, the mass of the ball, is 142 g (the tolerance in the ball mass in a

particular ball set is to be within 3 g according to WPBSA, the governing body of

snooker).
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Fig. 17. Form of the sine squared time dependent force profile.

Fig. 4.3. A force vs. time prediction for the cue-ball impulse [Marlow 1994], F¢

denotes the peak force

The idea here is to calculate the contact force by estimating the momentum transferred
to the ball together with the time taken for the collision between the cue and the cue
ball. The literature consists of some information about the impact time variation with
respect to other factors, such as the cue ball velocity. Marlow describes an
experimental procedure to measure the impact time where the cue tip and the cue ball
are separately wrapped with aluminium foil and using a capacitive-resistive circuit
with a digital voltmeter [Marlow 1994]. The circuit is closed by the aluminium foils
coming into contact during the time of impact, then, the charge that 1s accumulated in
the capacitor is used to get a value for the impact time, which is the time the circuit is

kept closed. A similar setup used by Marlow [1994] to measure the collision time
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between two balls is shown in Figure 4.4. The resulting impulse time for the cue—ue

ball impact is given as a plot against the cue ball velocity (see Figure 4.5).
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Fig. 18. The experimental set up to measure coliision lime
between two billiard balls. The capacitance used was 10 pF and
two values of resistance were used, 1000 Q and 500 Q.

Fig. 4.4. Measurement of collision time between two pool balls [Marlow 1994]
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Fig. 89. The experimental data (cight points) for
measurements of the interaction time as a function of
the Cue Ball velocity. The curve is a least squares
fitto a vyl functional of the interaction time on
the incident Cue Ball velocity.

Fig. 4.5. Time taken for the impulse vs. cue ball velocity [Marlow 1994|

The data available from Figure 4.5 are used in conjunction with David Alciatore’s
high-speed pool shot videos to determine the order of magnitude for the force
involved [Alciatore 2008]. From a video captured at 1000 fps, approximate
measurements are made manually to determine the ball velocities and impulse time

(spatial measurements are made by comparing the image parameters to the size of the
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ball in the image, its real size being known). For example, a 4 m/s velocity of the cue
prior to impact results in a cue ball velocity of 6 m/s and is approximately found to
have a 1 ms (associated with a £0.5 ms tolerance) impulse time (based on visual
estimation of the contact between the cue and ball). This time value closely agrees

with the variation available in Figure 4.5 (a little above 1 ms). Now, for these

experimental values, using the equation IF .dt = MVG - together with a triangular force

function approximating the variation given in Figure 4.5, the peak force, 'Fmax, can be
calculated.
0.5Fmax. At = MVs
Fmax =0.142x6/(0.5x 1x 10?)
=1700 N
Notably, 6 m/s 1s a fairly high cue ball speed and is considered a high-powered shot.

In addition, a purely experimental procedure involving striking the ball with an
impulse hammer is also performed in order to obtain the force values and to confirm
the values obtained from the high speed videos of Alciatore [2008]. A Bruel & Kjaer
Impulse Hammer with a B&K Nexus Conditioning Amplifier is used to measure the

force on hitting a snooker ball (see Figure 4.6).

Fig. 4.6. Force measurements with an impact hammer

The ball velocity is measured approximately using a stopwatch and a tape measure.

The waveform is observed in an oscilloscope to measure the maximum force and the
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time taken for impulse. It is also observed that the force-time variation during the
impulse is almost as described by Marlow [1994] and shown in Figure 4.3. High-
speed shots are found not to be possible with the impulse hammer due to the difficulty
in hitting the ball at its stun point at high speeds (a slight off centre hit is found to be
difficult as well, since the impulse hammer tip does not have very good frictional
properties). However, for a shot with 1.4 m/s cue ball speed (which is an average
speed shot) the impulse time is measured as 2 ms and a peak force of 0.55 kN is
obtained. Therefore the values obtained from two independent methods agree when it
comes to the order of magnitude of the forces and the interaction times involved.

These force values are considered for the selection of the motor.

4.1.4 Power Needed for Cueing

The calculation of cueing power is performed from the measurements made from
David Alciatore’s high-speed videos [Alciatore 2008]. As seen in Section 4.1.3, for a
cue speed (V) of 4m/s the impact time is found to be 1ms and the resulting ball
velocity (V) is 6 m/s. A peak force of 1.7 kN (corresponding to a triangular variation)

or an average force of 0.85 kN is obtained when the impulse-momentum equation is

used.
Cue power available, - E, =FV,
=0.9x 1000x 4
= 3.6 kW
Energy transferred from the cue E. =E. At
=3.6 x 1000 x 0.001
=3.61]

The energy of the cue ball immediately after the impact
Ey =% (MVY)
=0.5x0.142 x (6)°
=261
Energy efficiency of the cueing process =2.6/3.6
=0.71
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This indicates an almost 30% energy loss at the cueing. When other losses, like the
power loss due to friction at the linear guides (a linear guide is needed to guide the
cue motion) and the losses in the motor gearbox, are also considered, the energy
needed will well exceed the value of 3.6 J. For this particular shot, say the stroke is 10
cm (this is around the least possible region, as given in Section 4.1.2.1), and assume
that the cue is at constant acceleration from the start of the stroke, the time needed to

reach 4 m/s can be calculated in the following manner.

2

v
From,v? =u? + 2as, as the cue starts from rest, a= =
‘ s

a= 442 x0.1)
=80 m/s*
This is very high as a very small stroke length is assumed (this could lead to a smaller

power-up time) to be on the safe side when calculating the motor power.
. 1 3 . _ 2S
Now using, s = uf + Eat , With u =0, r=_|—
a

t=(2x0.1/80)*
=0.05s
Hence, the marginal energy of 3.6 J must be developed within 0.05 seconds needing a
cue power of 72 W. However, the power rating of the selected motor must be higher

than 72 W, as it also has to overcome various other losses, as outlined above.

4.1.5 Mechanical Manipulation of the Cue

Mechanical components should have an element to convert the rotational motion of
the motor to a linear motion that drives the cue. Several options are considered. The
human cueing operation is analogous to a linkage-based motion conversion. By
having a two-element link and two motors to represent the elbow joint and the wrist
joint, a linear motion can be obtained at one end of the linkage. A two-motor solution,
although sophisticated, introduces many additional complexities such as: increased
cost, weight, bulkiness, coordinated control of the two motors, etc, and thus is deemed

unsuitable.
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Other standard solutions such as worm and wheel, belt and pulley-based linear motion
conversion, are deemed unsuitable considering the maximum speeds obtainable and
the rigidity in manipulation, respectively. When discarding these alternative motion
conversion methods, one of the obvious choices is a rack and pinion. This solution has
the advantage of very high linear speeds that is suitable for the operation, rigidity and
compactness - given adequately rigid support conditions. When compared to the
linkage-based operation the linear cue displacement is also simply related to the motor

rotation by, x=kf}, where k is a constant,

4.1.5.1 Rack, Pinion and Slider

Factors such as the length of str(;ke, the allowable load of the rack (since it has to
withstand high impact forces) and the mass involved should be in accordance with the
mass considerations, as given in Section 4.1.1.1. For the impact forces under
consideration, as defined in Section 4.1.3, it is not possible to select a rack that also
complies with the mass requirement as outlined in Section 4.1.1.1. A rack from HPC
Gears Ltd, with a length of 300 mm and a pitch of 2.0 module and a mass of 0.83 kg
was selected. A pinion of 2.0 module, 30 mm diameter, and 0.1 kg mass is also
chosen. The pinion will be coupled to the motor through a gearbox, and the rack has
the cue attached underneath it by means of a bolted holder (there are provisions for
two holdérs underneath, as shown in Figure 4.7, but one is considered to be
sufficient). The rack 1s bolted to two rails at both sides, which is in turn sliding on 4
carriages, as shown in Figure 4.7. The carriages are rigidly attached to the main frame
of the cueing device. The location of the carriages allows a maximum stroke of 170
mm. NSK carriages and rails are selected after checking for the allowable load for an
assumed life span of the sliding system with the appropriate loading considerations as

set out in the NSK product selection guide.
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cue holder

Fig. 4.7. The rack and slider with the cue holder bolted underneath

The cue can be attached to the cue holder blocks (see Figure 4.7), either rigidly, by
directly clamping the cue between the aluminium cue holders, or ‘softly’, by
introducing a rubber pad between the cue and the cue holders. The latter will closely
resemble a human palm that dampens some of the impulse, but accuracy and

repeatability issues may arise.

Fig. 4.8. Two views of the cue launcher- without motor

All the components of the cueing device are fabricated out of aluminium to reduce the
weight of the structure and for aesthetic reasons. Bolted connections are used because
of the alignment problems that can occur with the 4-carriage system during the
assembly stage. Two photographs of the assembled cueing device are shown in Figure
4.8. The unit is 0.105 m x 0.160 m x 0.375 m in dimension (including the rack) and
weighs 3.3 kg (without the motor)
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4.1.6 The Cue Bridge

A cue bridge (see Figure 4.9 (a)) is very important from the human perspective of
playing snooker. The figure shows a type of hand-bridge (there are also many other
configurations used) and Figure 4.9 (b) shows a bridge that is used where it is difficult
to form a hand bridge. The cue bridge helps positioning the cue on the ball accurately.

In addition, it facilitates a smooth movement of the cue with less friction. Moreover, it

helps to achieve a smooth follow-through.

(b)

Fig. 4.9. Arm bridge and a wooden bridge

The bridge allows the cue to undergo transverse vibrations immediately after the
impulse, suppressing the dynamic effects due to the impulse. A simple V bridge made
of aluminium is used with the cueing device. As the cue is driven parallel to its axis
and due to there being a slope of 0.375° in the cue, there is a | mm upward shift for a
stroke length of 170 mm on the cue bridge, which is minimal. Alternatively, this can
be taken care of suitably, by means of a vertical adjustment to the bridge. The
configuration shown in Figure 4.10(a) is designed so that the bridge’s position is
adjustable horizontally and vertically up to 20 mm. The arrangement of the bridge

attachment to the cue launcher is shown in Figure 4.10(b).
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(a) (b)
Fig. 4.10. Cue bridge and its attachment to the cue launcher

A unit that supports the cue bridge and also rests on the table has also been designed
to give stability to the front portion of the cue. Here, it must be noted that only the
main body of the cue launcher (see Figure 4.10(b)) is given structural support and its
front part resembles a cantilevered beam. This cantilevered configuration can give rise
to vibrations and this may in turn change the point of impact with the ball thereby
imparting a different spin to the ball to that required from the robotic system. A
picture of the frontal support unit, which holds the overhanging part of the cue
launcher, is shown in Figure 4.11. The jaws that hold the cue launcher can be
manually adjusted either in the vertical or horizontal plane according to the motion of

the platform on which the main body of the cue launcher is mounted.

Fig. 4.11. Frontal support for the cue launcher
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4.1.7 Drive Motor for the Cue

Both DC motors and servomotors are considered as potential candidates for the cue
launcher unit. Considering the precise control needed for cueing, and the very
accurate positioning abilities of servomotors, servos are deemed suitable for the cue
manipulation operation. Both the brush type and brushless type servomotors, both DC
and AC powered, were considered. After much consideration about the cost, type of
power supply needed, encoder/tachometer availability, weight and also in accordance
with the analysis performed in Section 4.1.4, a servo system from SureServo™ called
the “200 W Low Inertia System™ was selected. This uses a brushless DC motor. The
drive amplifier also consists of a built-in power supply. The motor has been fixed
with a 10,000ppr encoder enabling very accurate feedback control. Similar models
from other manufacturers generally only have one tenth of this resolution. The

equivalent linear inertia of the cue driving system is estimated to be 5.5 kg.

ZIPLink

Fig. 4.12. External pulse control of the servo unit



Servo drive parameters can be programmed by using the servo drive’s built-in keypad
with LED display or through SureServo Pro® configuration software from within a
computer. There are three control modes available: position, velocity and torque. The
velocity and torque can be controlled with a £10V analogue input signal or with the
onboard Internal Indexer. The motor can also be controlled by the pulse and
directional inputs from a PLC, a microcontroller or a line driver encoder. The

controlling pulse rate can be as high as 500 kpps (kilo pulse per second).

Here, the servomotor is controlled from an If:nsys"‘J board through a terminal block
called the ZIPLink kit (see Figure 4.12). The Iensys@ board’s 4 output pins are
programmed to emulate the 4 output channels of a quadrature encoder (see Appendix
I for the connection diagram). The pulse rate decides the speed of the launched cue.
The microcontroller decides on the pulse rate depending on a string that it receives
from the PC via the RS-232 port. By changing the phase sequence of pulses, the
motor is reversed at the end of a stroke to its original position. The servo controller
also has an electronic gear ratio setting whereby the user can scale the high-velocity
positioning pulses coming into the drive. Using the ZIPLink kit block, it is also

possible to obtain the encoder readings of the servo, for monitoring purposes.

A 3:1 reduction gear box from Shimpo Drives” is fitted to the motor to increase the
output torque at the load. The gearbox also ensures that the motor is operated at its

rated speed.

4.2 Cue Positioning System

Accurate positioning of the cue on the ball is taken care of by a stepper motor stage.
The stepper drive is an AEROTECH" ATS302 2-axis linear stage, as seen in Figure
4.13. This has been a spare unit in the mechatronics lab, and is not custom-selected
for this application. It has a linear positioning accuracy of 2 um/pulse, which is more
than adequate for the positioning purposes. In ‘Auto’ mode, it is controlled by the PC
through a DB-25 parallel port. It also has a *‘Manual’ mode, where a toggle switch is

used to move the X and Y motors. Although it was initially programmed to be
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operated from VB, since the drive itself does not have any encoder, the *“Manual’
mode is expected to be used. Both axes have a maximum travel of 50 mm. The load
capacity is 10 kg each for the axes. Since the vertical load from the cue launcher

marginally exceeds this value, a new high torque motor has been fitted to the stage.

(b)
Fig. 4.13. Two-axis AEROTEC H* stepper drive and its controller

The stepper is mounted on the bottom of the cue launcher through a bracket fabricated
out of aluminium (see Figure 4.14). The bracket has a slot by which cue tilt angle can

be adjusted.

Slots for
tilt

. | adjustment

Fig.4.14. The cue launcher mounted on the stepper drive assembly
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4.3 Camera and Vision

When selecting a camera, it is preferable to opt for a relatively high-resolution
camera, to minimise any compromise on the spatial accuracy issues. The snooker
table dimensions are 3x1.5m and a spatial resolution of around Imm/pixel is targeted
from the selected cameré. In addition, as the project aims to use video for ball
tracking, a high frame rate (higher than the regular 30 frames per second (fps) mark)
is required. This is in keeping with the fact that the ball velocities are typically in the
order of a few metres per second, and to track the ball at close spatial intervals, a high
frame rate camera is needed. However, a brief product survey on high resolution
(several megapixel), high-speed cameras showed that the camera prices increase
exponentially with the resolution and frame rate, and for the requirements set earlier

in this section, the cost of the camera would be around several thousand pounds.

As a compromise, it was decided to select a high-resolution, low frame-rate camera
with the region of interest (ROI) option that also enables high-speed capturing of
images for partial images. It was also decided to position the camera in one half of the
table, divided along the lateral length of the table- connecting the middle pockets -
thus not compromising on resolution but at the same time having the option of

relatively higher frame rates.

A colour camera is required, because the table contains balls of different colours.
Although the coloured balls have proved to be differentiated with their intensity
values [Shu 1994], in support of the use of monochrome camera, very uniform
lighting conditions throughout the table are necessary to accomplish this task. If a
colour camera is found to accurately differentiate the balls under the current lighting
condition over the snooker table, there will be no need for uniform lighting, which is

very costly.

Shutter opening time, which directly influences motion blur, is also taken into account
when choosing a camera. Exposure time must be short enough so that the ball moves
by less than one pixel during shutter opening and subsequent sensor exposure,

providing a crisp image. Both CCD and CMOS cameras were considered.
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Consequently, a CMOS Firewire colour camera PL-B776F from PixeLINK® was
selected (shown in Figure 4.15). The image intensity of the camera can be either 8 or
10-bit depth, and it has a resolution of 2048x1536 pixels at a nominal frame rate of 12
fps. When the ROI option is used, the camera can capture images at up to 1,000 fps. A
spatial resolution of 1.5 mm/pixel is possible with the camera, when its field of view
covers the table area fully. Furthermore, for this spatial resolution and for a maximum
ball speed of 10 m/s (this 1s a high-end ball velocity), an exposure time of 1.5 ms is

required. The selected camera fulfils this requirement.

Fig. 4.15. PixeLINK® PL-B776F Firewire Camera

A 2" megapixel grade lens, H2Z20414C-MP, from computar® was chosen to be used
with the camera. It has an adjustable focal length of 4-8 mm. The lens is selected
based on the calculations that considered the available headspace and the table
. dimensions. This is a wide-angle lens according to industry norms (a lens that has an
angle of view between 60° and 100°), and this lens is expected to produce high
distortions in the captured images. A metal frame is attached to the joists of the
mezzanine floor above the snooker table, and the camera was rigidly mounted on this
frame. The camera was positioned above the table so as to face vertically down onto
the table. More than half of the table is viewed by the current positioning of the
camera (5 ft x 6 ft to be precise), covering the four pockets around the foot spot on
that table (refer to Figure 4.16). This field of view for the camera results in a spatial
resolution of 1 mm/pixel, a 33% increase compared to the camera being used to view
the whole table. Moreover, as four pockets are covered by the camera field of view,
the robot can be positioned to play a number of different shots, allowing it a variety of

options.
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4.3.1 Table illumination

For the image-processing algorithm to deliver good results, quality images should be
available. The image processing software cannot compensate for the missing or

inaccurate image data from the camera. Hence, the table illumination is important.

The values required for the table lighting, as per the rules in billiards, are shown in
Figure 4.16 [Marlow 1994]. Moreover, it is suggested that the variations in the
lighting between any two points on the table shall be less than 200 lumen/m?®. Two
200 W incandescent frosted bulbs located 1 m above the playing surface at the Head
Spot and Foot Spot (see Figure 4.16) are recommended to achieve the above

conditions [Marlow 1994].

j ' ") 1 1y
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Faot Spot Head Spot J
1A N / \ 3
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8 .
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L L] ’ d

[llumination of points A, C > 190 lumen/m?, B > 330 lumen/m?, D > 210 lumen/m?

Fig. 4.16. Table illumination requirements [Marlow 1994].

In the present arrangement, panels of fluorescent strip lights with standard diffusers

illuminate the table area, and the panels are situated asymmetrically above the table.
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4.3.2 Setting up the Camera

A calibration procedure is performed to correct for barrel-type distortion that is
present in wide-angle lenses (see Figure 4.17 (a) and (b)). The procedure is called
intrinsic camera calibration. The camera calibration toolbox from the Computational
Vision Group at Caltech is used in conjunction with MATLAB® to calibrate the

camera; for a detailed description of the procedure refer to Bouguet [2008].

(a) (b
Fig. 4.17. Distorted and corrected images of 5 ft x 6 ft table area

The toolbox also incorporates an extrinsic calibration element. The extrinsic
calibration procedure enables real-world measurements to be made from the values

measured in terms of pixels from images.

Uy
I Camera
A coordinate system

H . vl v C
Cl
-
X
(7]
Real World
Image coordinate system

coordinate system

Fig. 4.18. The pinhole camera model
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The extrinsic calibration procedure provides transformation (translation and rotation)
matrices between the real-world coordinate system and the image plane (Figure 4.18).
These matrices allow metric measurements to be made from parameters'measured in
the image plane. The equation for the transformation between a point in the real-world
frame XX to its corresponding image point in the camera frame XX 1is

[x1=[R.]*[x]+[T.], where [R.] and [T;.] are the rotation and translation matrices,

respectively [Heikkila and Silven 1997].

Fig. 4.19. Extrinsic calibration pattern placement (un-distorted image)

Here, the real-world coordinate system is selécted such that it is fixed to the snooker
table so that two of its axes lie along the two perpendicular edges of the table, and
both Ux and Uy lie on the imaginary plane that is created by the ball centers, as
depicted in Figure 4.19. Snooker balls have a uniform diameter of 52.4 mm; hence,
the imaginary plane lies at 26.2 mm above table surface. Image blur, due to fast
moving balls, is kept to a minimum by selecting the lowest possible shutter opening
time available in the camera. Image sequences with high image blurs are not analyzed.
This quantification s performed by counting the pixels of a moving béll and then

comparing it with the number of pixels found in a stationary ball.
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4.4 Cue-tip Force Sensor

Considering the nature of the geometry of the cue-cue tip interface and the force
transferred from the analysis performed earlier in this chapter, a thin film (0.208 mm
thick) force sensor called Flexiforce® A201-100 was chosen. The thin film sensor,
firmly sandwiched between the cue tip and the cue shaft, is not expected to change the
cue chafﬁcteristics mentioned earlier in this chapter. The sensor can measure loads in
the range of 0-4400 N [Tekscan 2009], making it suitable for measuring the forces at
the cue tip (see Section 4.1.3). The sensor also has a response time of less than 5 usec
making it pbssible to measure the impulses that have an active time in the order of
milliseconds. The sensing area is circular with a diameter of 9.53 mm. The diameter
of the cue at its tip is around 9 mm for the Riley® snooker cue used. The sensor is
firmly glued to the wooden part of the cue and then the cue tip is glued over the

sensing area of the sensor (see Figure 4.20).

Fig. 4.20. Force sensor attached to the cue

An amplifier circuit recommended by Tekscan, Inc (Appendix I} initially conditions
the data from the sensor. Data acquisition is performed using a National Instruments®
(NI) 9215 sampling input module fitted with a NI USB-9162 carrier (see Figure 4.21).
The sampling can be at up to 100 kS/s (100 kHz) from this data acquisition unit. Here
it is operated at 10 kHz, giving 20-40 data samples during the impulse, depending on
the magnitude of the impulse. The device is controlled from the main VB program as
described in Section 3.2.2. The data from the device is programmed to be saved in a

text file and then retrieved by the program to do the force-time integration in order to
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obtain the value of the impulse. A numerical integration scheme based on the

trapezoidal rule is used here. The algorithm also detects the peak force measured.
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Fig.4.21. The force measurement setup

4.4.1 Force Sensor Calibration

Voltage readings out of the force sensor have to be related to the actual force by a
calibration process. A mil® load transducer, of type U4000, is used to calibrate the
force sensor. The load transducer has a force range of 0-1500 kgf. During the
calibration, the cue is kept tightly in contact with the load cell through a little-used
worn cue chalk block that ensures that the cue stays in place, preventing the lateral

movement to the loading direction. An axial force is applied to the cue by holding it

rigidly through a C-clamp, as shown in Figure 4.22.
When the force readings are stabilized, the force value is read out on the indicator of

the load cell and the corresponding voltage out of the force sensor circuit is also

measured. Using multiple readings, a calibration curve 1s plotted. Tekscan, Inc [2009]
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Voltage readings out of the force sensor have to be related to the actual force by a
calibration process. A mil” load transducer, of type U4000, is used to calibrate the
force sensor. The load transducer has a force range of 0-1500 kgf. During the
calibration, the cue is kept tightly in contact with the load cell through a little-used
worn cue chalk block that ensures that the cue stays in place, preventing the lateral
movement to the loading direction. An axial force is applied to the cue by holding it

rigidly through a C-clamp, as shown in Figure 4.22.
When the force readings are stabilized, the force value is read out on the indicator of

the load cell and the corresponding voltage out of the force sensor circuit is also

measured. Using multiple readings, a calibration curve is plotted. Tekscan, Inc [2009]
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suggests a linear variation between the output voltage of the sensor and the force

& . ALk ® i VA% ,
measured for its Flexiforce™ sensors, and this variation has also been experimentally

validated by Komi et al. [2007]. The plot obtained is shown in Figure 4.23.
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Fig. 4.23. Calibration results for the force sensor



The dynamic forces that are present at the cue-cue ball interface during collision are
larger than the force range given in the calibration curve. However, only a maximum
static force of around 250 N could be applied to the cue-tip, and beyond this the cue
started to bend and appeared to be about to break. Dynamics forces of this magnitude
do not harm the cue as they only last, at most, for few milliseconds. However, the
linear variation assumption is used to estimate the value of the forces that are outside
the calibration, using the gradient of 133.3 N/V obtained from Figure 4.23. Extensive
tests from Komi e/ al. [2007] present the evidence for a linear variation for this type

of force sensor.

4.5 Overall configuration of the system

The overall layout of the system is depicted in Figure 4.24. Some more photographs
of the system are given in APPENDIX L.
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Summary

Here the specific details of the system development have been given. Then the design
of the system is explained. The previous literature barely had any details and
numerical values of the various paraineters on which this design could be based.
Various techniques, such as the use of relevant equations, performing some
approximate reasoning on the data produced by other researchers have been used.
Some 3-D drawings and the pictures of different fabricated units have also been

provided here.
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Chapter 5

EXPERIMENTS ON THE DYNAMICS OF SNOOKER

The literature review given in Chapter 2 shows that the values of many of the
parameters related to the dynamics of snooker have not been measured
comprehensively. In many cases these values are found only for the game of pool, for
example, those detailed parameters given by Marlow [1994]. However, a system-
dynamics-based approach for the determination of the ball trajectories in snooker, in
order to apply appropriate robotic manipuiation strategies, calls for a mathematical
model for the dynamics of snooker. The mathematical model, in turn, will consist of
several parameters related to the ball motion, as described in Section 2.4. This chapter
describes a novel, high-speed camera, tracking-based experiment to determine the
parameters involved in snooker dynamics. In addition, experimental results from the
force sensor that is incorporated into the cue are also provided. A number of results of
a camera-force sensor combined measurement setup are also given in this chapter.
Some efforts to track the ball spin within a limited area on the table using a single

circular pattern on the ball have also been reported at the end.

5.1 High-Speed Camera Based Results

High-speed tracking technologies are extensively used in sports such as football,
tennis and cricket [Pingali er al. 2000, Davis 2009]. Alc;iatore |2004] has also used
high speed video capture to clearly visualise the dynamics in the game of pool, where
such videos are used to illustrate many principles found in pool in an inspiring way.
Alciatore [2009] has also made use of infrared imaging to visualise the collision
points. The collisions produce heat,‘ and the associated high-temperature region is
distinguished by the infrared imagery. However, Alciatore has not analysed any of the
videos to extract the physical parameters involved in the dynamics of pool. Cross

[2008], in a very recent work on billiards, has employed a video camera to measure

86



the ball velocity and ball spin using an overhead camera, and used this approach to

analyse squirt dynamics in a cue ball suspended as a pendulum bob.

Fig. 5.1. The ceiling-mounted machine-vision camera in the mechatronics lab

The research reported in this thesis employs a machine-vision camera, as explained in
Section 4.3. The camera is mounted overhead on the ceiling, right above the snooker
table, looking vertically downwards (see Figure 5.1). To independently verify that the
measurements made by the camera are accurate, prior to the actual measurements,
some distance measurements were also made with a metre rule. For this purpose, two
rectangular blocks, having a height of half the ball diameter, with circular white
patterns on their top surfaces were placed at two different locations on the table.
Circular patterns of diameter 52.4 mm (i.e. the ball diameter) were used so that the
camera and the image-processing algorithm would treat them as balls. The distance
between the centres of the circular patterns was obtained both from the camera and by
using the metre rule. This method was used because it was very cumbersome to
physically measure the centre distance between two random snooker balls due to the
balls changing position even with the slightest touch. This procedure was repeated for
several random positions of the blocks covering the 5 ft x 6 ft area of the table that is
imaged by the camera. The differences in measurements by the two methods were
found to be at most 2 mm, and the metre rule measurements are subject to £0.5 mm

error. Hence the ball centroid measurement is performed to an accuracy of £0.5 mm.
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The pre-processing of the video acquired by the camera was performed using
MATLAB®. The flowchart of the algorithm is shown in Figure 5.2. The camera

calibration procedure is described in Section 4.3.2.

Start
b
The video file is brought into Matlab® —
this will save the movie as an array.

v

Split the array frame-by-frame and save

each frame as a sequentially-numbered
image.

r
Convert each image to greyscale, and -
replace the original one by its greyscale
image. ’

¥

Load the intrinsic and extrinsic
. calibration parameters.

No

Is the image full size?
(i.e. If ROI option is used

v

Concatenate the image with
zeros in the right areas to
make it full size (2048x1536)

( Undistort the greyscale images\
and save. Repeat for all the |
images of the video.

v
Object detection algorithm.

3

y,

Fig. 5.2. Algorithm for the pre-processing of an image

Two standard functions bwlabel and regionprops within the MATLAB® Image
Processing Toolbox were used to extract the ball from the image, and then to extract
the ball centre in pixel values. Finally, the real-world coordinates of the ball centroid
are obtained using the transformation matrices, Rc and 7Tc¢, as obtained from the

extrinsic calibration procedure (refer to Section 4.3.2). The time-stamping of the
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spatial positions of the ball centres, based on the camera frame rate of capture, enables

the calculation of the velocities and accelerations of the balls.

The combined repeatability of the camera and the image-processing algorithm is
found to be 0.1 pixels, on average, when it comes to detecting the centre of the ball.
Since the camera images the table area to a spatial resolution of 1mm/pixel, the spatial
repeatability of the imaging system is 0.1mm, as far as the ball centre detection is
concerned. The inconsistency in the ball centre detection is mainly due to noise
problems associated with the image sensor and due the inconsistencies involved in the

table illumination,
Now, the following equation can be written to evaluate the ball speed,

Ball Speed = Distance travelled between successive ¥ Camera {ps (5.1)

(in metres/second) image frames (in metres)

Usually, the first image frame in which the ball has started moving commences the
image sequence that is used for the tracking. When equation (5.1) is used for high
frame-rate capture, due to the camera repeatability in the order of one tenth of a
millimetre, changes in the tracked positions are magnified and “error speeds” are
produced. The obtained “error speed” values were up to a maximum of 0.05 m/s at
200 fps camera capture rate. However, this value is relatively small when compared to

the normal ball speed values that are encountered in snooker.

Figure 5.3 shows the tracked cue ball positions of an extremely high-speed shot
superimposed on the image that was captured at the start of the tracking, also shown is
the initial cue ball location. White markers denote the successive centroids of the cue

ball.
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Fig. 5.3. Tracking the cue ball (4 consecutive impacts within two parallel cushions are

shown)

3.1.1 Friction Coefficients

5.1.1.1 Rolling Friction

Figure 5.4 shows the variation of the ball velocity with respect to time (the complete
motion profile until the ball comes to rest is not shown here). As seen in Figure 5.4,
once the impulse is delivered to the ball, the ball velocity decreases rapidly, during the
sliding phase as described later, and then the ball starts to roll. The velocity gradient

during the rolling phase gives the value of the deceleration due to rolling friction.
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Fig. 5.4. Speed-time plot for the ball showing different phenomena involved from the
video captured at 42-fps

Different shots were tracked and the deceleration during the rolling phase was found
to be very consistent between 0.124-0.126 m/s’. The rolling friction as a non-
dimensional number (in relation to the gravitational acceleration g) is evaluated as
0.0127-0.0129. Marlow [1994] suggests a range of 0.011 to 0.024 for the game of
pocket billiards (widely known as pool), and suggests a mean value of 0.016. Here it
must be noted that the physical properties of the ball and table in pool and snooker are
different. However, there is no clear reason for this excessive variation (more than
100% of the lower value) obtained in pool using Marlow’s measurements. The only
plausible explanation is that the metre stick and stopwatch measurement method that
was used by Marlow is very limited and excessively prone to errors due to human
judgments. Although Williams {2002] claims that the nap of the table felt affects the
ball motion, depending on whether its motion is toward the top cushion or away from

it, no evidence was found in the results to substantiate this claim.

5.1.1.2 Sliding Friction

The ball spe¢d-time plot given in Figure 5.4 shows that the sliding friction is much
larger than the rolling friction. In addition, the sliding phase 1s also shown to
disappear within a very short period of time, but it diminishes the ball velocity

considerably (Figure 5.4). Another interesting observation from this plot is that, once
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the ball has entered the rolling phase, when it collides with the cushion (wall/rail) it
starts to slide again (note the speed gradients immediately after the cushion impacts),
because the cushion impact breaches the ¥=Rw condition that is attained by the ball
during rolling. Therefore, the ball starts to slide again. Once the condition V=Rw is

reached, the ball again starts rolling.

From the analysis of the speed of the tracked ball, the sliding friction coefficient was
found to be.in the range of 1.75-2.40 m/s* (0.178-0.245 non-dimensionally). These
values were obtained for the ball motion along different, random directions on the
table. Hence, the average non-dimensional value of 0.21 will be used from here
onwards for the sliding coefficient of friction. Marlow [1994] suggests a non-
dimensional value of 0.2 for pool; Marlow calculated this value from certain
theoretical derivations, and, in the process, also made use of the rolling coefficient
value of 0.016, as seen in the previous section. An independent measurement was not
performed, because only a metre rule and a stopwatch were used by Marlow. Witters
and Duymelinck [1986] use a technique similar to the camera-based tracking reported
in this research in that stroboscopic illumination is used to photograph a decelerating
pool ball. They say that the sliding friction coefficient varies between 0.14 and 0.21,
and that when the ball velocity increases from zero, the friction coefficient
asymptotically approaches 0.21 from a value of 0.14: However, no such variation

could be obtained from the present experiments.

Notably, the sliding friction is 15-20 times larger than the rolling friction. Also,
during the sliding phase, some rolling action will simultaneously take place, as the
‘ball sinking’ effect is ever-prevalent at the ball-table interface. However, due to its
comparatively small magnitude (approx. 1/17), it is usually neglected and the motion

is treated as pure sliding.

5.1.2 Ball-Cushion Impact

To visualise and analyse the impulse dynamics between the ball and the cushion, a
_series of high-speed image capturing experiments, using in excess of 100fps with very

small ROIs, was performed. The cue ball was tracked in all these experiments.
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Generally, the ball dynamics after a cushion impulse depend on several factors. Some
of the factors are the incident speed at which it collides with the cushion surface, the
incidence angle with respect to the cushion surface, the amount of spin the ball has,
the physical characteristics of the ball, the cushion and the parameters involved in the

interaction between them, such as the coefficient of restitution or the surface friction.

Spin on the ball changes the impact characteristics drastically. The ball spin is
difficult to quantify with the present experimental methodology where only the ball
centroid is tracked by the camera. Sidespin especially cﬁanges the post-impulse cue
ball path significantly as explained earlier [Walker 1983, Alciatore 2004]. The ball-
. cushion interaction is a case of multiple impacts, both normal and tangential, the latter
due to friction, simultaneously acting on the ball in the 3-dimensional space, one
normal to the cushion surface and the other two perpendicular frictional impacts from
the cushion wall. Theoretical derivations for the dynamics of general impact are not

found in the literature. Section 6.2 will try to address this problem.

For this reason, it was decided to conduct experiments on shots without considerable
sidespin. Every time a shot was made, care was taken such that it was directed
perpendicular to the cushions as much as possible. Whenever the cue ball is played
perpendicular to the cushions, if it does not have any sidespin, it bounces back along
the same line along which it approached the cushion. This criterion was used to ensure
that the analysed shots did not impart a considerable sidespin on the cue ball. Figure
5.5 (a) shows a perpendicular shot with no sidespin, and Figure 5.5 (b) shows a
perpendicular incoming shot that apparently has some side spin, which results in the
ball rebounding to the right side. Thus, for the rebound analysis, only the shot given in
Figure 5.5 (a) will be used and the shot shown in Figure 5.5 (b) will be discarded.
This procedure ensures that there is only one unknown in the form of top/back spin.

The top/back spin of the ball is estimated by the method outlined below.

Assuming that the ball had gone into pure rolling mode before the collision with the

cushion (this can be determined by the speed-time plot gradients as explained in the
previous section), the topspin of the ball can be calculated by the formula, @ = KR—,

where R is the ball radius. Thus the incident ball speed, V, is the only independent
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variable involved and the velocity drop during the impact can, theoretically, be

correlated to V.

(a) (b)

Fig. 5.5. Bounce of the cue ball from the cushion, the ball location depicts its position

as it approached the rail (at 120 fps frame rate)

Figure 5.6 shows the speed plot obtained for a high-speed video captured at 150fps.
The speed plot itself was used to determine if the ball was rolling just before it
collided with the cushion, by evaluating the value of the gradient of the speed-time
plot immediately before the collision. Results that were obtained for 31 such shots

into the cushions, satisfying the conditions imposed above, are given in Figure 5.7.

1.2
Region of

pure rolling Speed loss
at impact

/N

e
oo

TITrrrrJrrr

Cue ball speed (m/s)
<
[

0.4 F Incident W
[ speed Instance of
02 .
impact
0 oL i ' A L i i i 1 n n i i 1 A i i i
0 0.2 0.4 0.6 0.8
Time (s)

Fig. 5.6. Results based on tracking for a ball-cushion impulse (at 150 fps)
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From Figure 5.7 it can be seen that the relationship is almost linear for the incident
velocity in the range of 0.28 — 3.5m/s (this is the typical range of ball velocities in the
game). A best-fit straight line gives a coefﬁciént of restitution of 0.818 for this
velocity range. But the results have a better fit with a 2nd order polynomial of y =-
0.0877x*+1.131x-0.0953 in the 1% quadrant, where x is the incident velocity and y is
the rebound velocity. Here, it must be kept in mind that these results are not valid for
a general ball-cushion impulse but applicable only under the conditions of no sidespin

and pure rolling motion prior to the impulse.
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-Fig. 5.7. Variation of the rebound velocity against the incidence velocity

Marlow [1994] reports that the coefficient of restitution is 0.55 for cushions in pool.
Here again the results are reported without much detail about the experimental
procedure. However, Marlow compares the results with the values suggested by
Coriolis and concludes that they agree very closely [Marlow 1994]. The cushion
height for snooker is 36 mm, with the ball radius being 26.2 mm, and this closely
cotresponds to the height value of 1.4 times ball radius found in pooi. Thus the
cushion and ball geometry is almost identical in pool and snooker. It is possible that,
in order to calculate the coefficient of restitution, Marlow considered the rebound ball

velocity at the end of the sliding phase rather than the correct one immediately after
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the impulse, possibly due to the limitations with the experimental methods. In this
way, from Figure 5.6, the coefficient of restitution for the shot will be around 0.63,

but this value is without any real physical meaning.

This stringent experimental procedure exercising a tight control over impact
conditions will enable the estimation of some more parameters in the cushion-ball
impact, as seen in Section 6.2. This, when combined with a numerical model for the
impulse dynamics, will permit the calculation of the ball trajectories off the bounce as

" seen in Section 6.2.

5.1.3 Impact between Balls

Wallace and Schroeder [1988] in their analysis of collisions between billiard balls
assume that the balls are perfectly elastic (e=1). However, they neglected the effect of
the friction between the billiard balls. By considering the friction effect from the table,

they derive that, for the object ball (see Figure 5.8),

Vo:%Vcosg andfo=0 (5.2)

and for the cue ball,

Ve gsin29+i and & =tan™ _sinf.cos6 (5.3)
7 Vs 7T s -

(sin® 6’+§)

“Ideal cue
ball
direction
Cue ball

y  deflection with

backspin | Vi

(a) ‘ (b)
Fig. 5.8. Ball collision with the effect of table friction
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Wallace and Schroeder also define § as the fractional impact parameter, and f=6/D,
where D is the ball diameter and b is the separation of the ball centres in the direction
perpendicular to the incident ball velocity V, as defined in Figure 5.8(a). Also note
that f=sind.

Here both the predicted velocity and its direction are different to those from the
analysis that does not account for the friction effects from the table. Physically
speaking, the curving (see Figure 5.8) occurs because, the collision only reduces
linear velocity and not the angular velocity, and the result is that the cue ball attains a
sliding condition with excess topspin (called ‘overspinning’). The ball initially moves
in the ideal direction as shown in Figure 5.8(a), but the spin causes it to accelerate and
curve forward until a rolling condition is reached [Onoda 1989]. Figure 5.8(b) shows
the effect of the pre-hit cue ball velocity on the deflected path of the cue ball. If the -
ball has some backspin (draw) prior to collision, the cue ball moves to the opposite

side of the ideal line.

Some tests were performed to check the effectiveness of the predictions made by
equations (5.2) and (5.3) and these are reported in a research paper co-authored by the
present author. The paper is provided in Appendix III. However, equations (5.2) and
(5.3) do not include effects such as the friction between the balls. Moreover, the
equations also ignore the effects of ballspin on the collision. In addition, the two
equations do not predict the amount of ballspin after the collision. Nevertheless,
ballspin is vital for predicting the subsequent motion of the balls after their collision.

An all-inclusive theory of ball collisions will be presented in Section 6.1.

5.1.3.3 Head-on Collisions
The cue ball and the object ball were made to collide head on (b=0 in Figure 5.8) to

measure the approaching speed of the cue ball and the initial speed of the object ball
after the collision. A red ball was used as the object ball. By separating the R
component of the RGB image and then by processing the R component of the image,
the successive centroids of the red ball were extracted (using a similar procedure to
that for the cue ball). Then the speed-time plots for both the balls were plotted
together. By observing the gradient of the speed-time plot for the cue ball prior to the

collision of the balls, only the collisions where the cue ball was rolling before
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colliding were considered. A similar procedure was followed for the ball-cushion
collision as well, in Section 5.1.2. The tracking plots were used to establish that the
cue ball had not had any sidespin before colliding with the object ball. The deciding
criterion being that the pre- and post-collision directions of the cue ball and the
direction of movement of the object ball must all be in a straight line. During the
experiments, it had not been possible to obtain this condition, perfectly, all the time.
The shots that closely satisfied this condition were the only ones considered for
analysis (see Figure 5.9). The cue ball velocity prior to the impact was measured (the
impact time was determined using the speed/time plot as performed for the ball-
cushion collision), together with the object ball velocity immediately after the

impulse.

Figure 5.9, shows the variation of the object ball velocity immediately after the
collision against the cue ball speed immediately prior to the ilﬁpact. A nominal
restitution coefficient of 0.95 can be defined for the head-on impacts, under no-
sidespin and for the rolling condition of the cue ball, as explained above. Later, in
Section 6.1, the effects of friction on the nominal coefficient of restitution value
obtained above will be given. Figure 5.9 will also be used in Section 6.1 to obtain the

values of some additional parameters.
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Fig. 5.9. Object ball speed against cue ball speed for stun shots
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3.1.4 Cue Tracking

In order to establish the typical cue velocities for human cueing, the cue was tracked
using the overhead camera. During the design stage, the cue velocity was measured
approximately from the videos available from Alciatore [2008]. The measurement of
the cue velocity will also enable the estimation of the cue velocities produced by the
cue launcher. Using the same principles that were used earlier to do the metric
measurements on the ball motion, and whenever the cue is kept at the level of the
centre of the ball - as horizontally as possible - the camera-based measurements can

be used to measure the displacement of the cue as well.

. ~+—— (Cue ball

Cue arca

-« thatis
+#
[ tracked

Taped

part of
the cue \

Fig. 5.10. Region of the cue that is tracked

A RiIey® standard snooker cue, tﬁat that has been in occasional use for a year was
used for these tests. As it was not possible to capture the cue in its full shape always
because of its large length, the cue was taped using black -sticky-tape, in order to
capture a consistent region of it. Thus, a very small bright region of length §5mm was
exposed close to the tip of the cue (see Figure 5.10). An image-processing algorithm
was suitably created to detect and capture the centroid of the tracked cue region. This
algorithm was very similar to that created for the ball centre detection. A typical

speed-time plot obtained for the cue and the cue ball motion is given in Figure 5.11.
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Fig. 5.11. A combined speed-time plot for the cue-cue ball impact (120fps video

resolution)

In addition to the overhead camera, a PROSILICA® EC650C,'Fir‘elwire, colour camera
was used during these tests to horizontally view the cue—cue ball impact as shown in
Figure 5.12. This camera was used to locate the point along the vertical at which the
cue hit was made. Hence, the images from the horizontal camera will give an
indication whether the shot imparted topspin/stun/bottomspin to the ball. The
overhead camera imagery, as shown in Figure 5.12, was employed to determine the
horizontal point of impact on the cue ball. Determination of the horizontal point of

impact establishes if sidespin was imparted to the cue ball or not.

Fig. 5.12. A horizontal viewing camera to locate the vertical point of cue impact on

the ball
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The variation between the cue ball speed and the cue spéed is usually linear, as shown
in Figure 5.13 for a large number of results. The overall coefficient of velocity
transfer is around 1.4. Here, it must be noted that with human cueing it is not possible
to keep the cue inclination with the horizontal constant every time a shot is played.
However, the cue inclination with the horizontal was kept very shallow, i.e. at the
lowest angle possible. Figure 5.13 also differentiates between the stun shots and the
shots with considerable spin. For stun shots the velocity transfer coefficient (1.45) is
marginally higher than the shots with off-centre hits (1.35). This phenomenon is
explainable, because for a spin shot only a component of the cue speed is converted
into the linear speed of the ball along the direction of motion of the cue, as also
explained by Cross [2008] in relation to the force transfer during the impact (see
Figure 2.11). Moreover, Figure 5.13 also reveals an important dynamic characteristic
regarding cueing; the cue ball speed is mainly determined by the cue speed. In
addition, this characteristic also suggests that force measurement at the collision point

may not give any additional information for the question of robotic manipulation.
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Fig. 5.13. Initial cue ball speed against cue speed at the time of impact for human

shots
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5.1.4.1 The Robot’s Cueing Performance

In order to compare the cueing performance of the robot with that of human cueing, a
number of high-speed video tests measuring the cue and cue ball speed were carried
out. The robot’s cue inclination angle was kept at around 2° with the horizontal. The
cue angle during the human cueing was also kept close to this value. Only stun shots
were played. The results of the tests are given in Figure 5.14. The figure shows that
the robot is performing on a par with human shots. This performance is obtained in
spite of the differences in inertia between the two; it is calculated that the inertia value
of the moving components of the motor-gearbox-pinion-rack combination is 5 times
that of the estimate of 1.13 kg for humans (see Section 4.1.7). Here, it must also be
noted that the torque control option of the motor was not employed. Hence, it can be
speculated that cueing dynamics solely depend both on the cue and its drive speed and
" are independent of the inertial properties of the cue-driving mechanism and the
driving force of the cue. Thus, for a given cue only the cue speed and the hitting spot
on the cue ball will determine the cue ball speed. This argument also eliminates the
idea that the force sensor can provide some additional information about the dynamics

of cueing.
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Fig. 5.14. Cue speed cue ball speed variation for human and robot cueing

102



5.2 Force Sensor-Camera Combined Experiments

As explained in Section 4.4, the force sensor readings during the cue-cue ball impact
were recorded into the main VB program via a National Instruments® data acquisition
module. After a number of trials, a data acquisition rate of 10 kHz was deemed
sufficient to describe the force variation adequately. The peak force and the value of
the impulse were identified by the VB algorithm. Using the calibration plot given in
Figure 4.23, the measured voltage output was converted to the corresponding value of
force (see Figure 5.15 for a typical plot). The area under the plot in Figure 5.15
provides the magnitude of the impulse. This value is directly related to the momentum
that is transferred to the ball; hence it is an important dynamic parameter. The order of
the forces obtained here is-of the same order as the ones considered in Section 4.1.3
for the design of the cueing mechanism. However, the forces obtained with the real

cue are around 1.5~2 times less than the values measured with the impulse hammer.

Restitution

/zhase

Compression

[ phase
400 | : \

& [ Impulse
3
5
49

300 3 duration\

Peak force

1.5 2 2.5 3 3.5
Time {ms)

Fig. 5.15. A typical force sensor output (3.2m/s cue ball velocity) based on the

calibration results given in Figure 4.23

The high-speed camera and the force sensor were also used in conjunction with each

other to obtain some of the dynamics of the cue-cue ball impact.
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Fig. 5.16. Impact duration versus cue ball velocity

Figure 5.16 shows the impact durations recorded for various cue ball speeds (the best

fit power curve is 2.67x (cue ball speed)'o'4624). Slower shots tend to have larger

durations of impact as also suggested by Marlow [1994] whose experimental results,
in the form of a power curve of 2.16x (cue ball speed) ! are also plotted in Figure
5.16. Marlow admits the possibility of considerable errors in the speed variable in the
experiments [Marlow 1994]. These errors may be the reason for the differences

found.
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5.3 Measurement of the Table’s Resistance to the Sidespin of the Ball

The measurement of ball spin will make it possible to experiment on phenomena such
as rolling, sliding and impacts that are greatly affected by friction. For example, in
Sections 5.1.2 and 5.1.3.3 due to the inability to quantify sidespin, experiments were
carried out ensuring that sidespin was zero, using tracking plots. However, the scope
of this project does not include extensive spin measurements. Spin tracking usually
involves placing a number of markers on the surface of a ball |Griffiths ef al. 2005,
Neilson ef al. 2004]. To capture, differentiate and determine the spatial locations of
* these patterns a considerable number of image pixels has to be dedicated to the area of
the ball on the image. The overhead camera that is positioned to image half the table
area scarcely satisfies this requirement; only 54x54 pixels cover the ball area under
the current spatial resolution. Moreover, consistent spin measurements necessifate a
uniform lighting over the table area, which is not the case here. In addition, the pattern
should not affect the surface properties of the ball; otherwise, the measurements will

not represent the actual dynamics that take place during normal play.

As seen at the start of this chapter, a system-dynamics-based solution to robotic
manipulation in snooker needs several parameters to be identified. The instantaneous
value of sidespin of the ball is such an important quantity, as this is known to affect
the collisions between balls and that between a ball and the cushion. It has also been
noted in Chapter 2 that the sidespin of the ball is an independent entity and is
dissociated from the linear velocity and topspin of the ball, leading to the assumption
of ‘decoupled” motion. In addition, it was also observed that there could be
deficiencies in such an assumption, as the ball is known to ‘sink’ into the table cloth,
highlighting the need for an elaborate theory in this regard. However, in the absence
of such a sophisticated theory, the only available option is to use the simple current
model of decoupled motion. The assumption that linear motion does not affect the
rotation about the vertical, allows quantifying the instantaneous value of sidespin by a
single parameter value. This parameter is the angular deceleration of the ball due to

the resistance offered by the table surface to the ball rotation about the vertical.
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In order to track the ball spin, a circular piece of black-coloured adhesive tape of

diameter 13mm was placed on the ball surface (see Figure 5.17).

Fig. 5.17. Circular pattern on the ball surface: an image from the overhead camera

Unlike in the tracking of the centroid of the ball, when it comes to the tracking of the

circular pattern on the ball the orientation of the camera has to be considered.

Camera
e Ux’
Uy’
Uz’ Optical
/ axis
Uz ‘\ ‘ Horizontal
P plane through
ball COG

ol P
N7

External  T,ple surface
calibration

pattern

Fig. 5.18. Coordinate systems under consideration for the tracking of a pattern on the
ball (this figure must be compared with Figure 4.18)

When the pattern is kept on the upper hemisphere of the ball, it will appear in the

images captured by the overhead camera, as shown in Figure 5.17. As in the tracking

of the ball, the image-processing algorithm makes all of its spatial measurements on

the horizontal plane that goes through the centre of the ball (Figure 5.22). As shown

in Figure 5.22, for a pattern position P on the ball surface, the tracking algorithm
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calculates the location of the projected line CP onto the horizontal plane that passes
through the centre of gravity G of the ball (where C is the origin of the camera
coordinate system as given in Figure 4.18). The projected point on the plane is
denoted by P’. Alternatively, the image-processing algorithm can be modified to do
the projection onto the horizontal surface that goes through P and, to do this, the
height of the pattern from the table surface is needed. However, the height of the
pattern from the table surface usually changes and is difficult to measure, as the ball is
randomly placed on the table, and rotated by hand in order to spin like a top (see
Figure 5.19). Once the ball starts to spin, the hand is taken away exposing the ball to
the camera, which has already been triggered. Hence, the camera tracks the ball and

the pattern.

Fig. 5.19. Rotating the ball about the vertical

Hence, the spatial measurements resulting from the image processing algorithm are in
fact those of P’ and must not be used directly to calculate the value of the ball spin.
However, the coordinates of P’, when combined with ball radius R, can be helpful in
finding the x and y coordinates of P. The process of obtaining the position of P is

shown below.

The coordinates of C (the origin of the camera coordinate system Ux’Uy’Uz’) in the
real-world coordinate system UxUyUz attached to the external calibration pattern can
be calculated using the equation [X*]=[R.}*[X]+[T,] (Section 4.3.2 outlines these
concepts). The coordinates of point C (which is the origin of. the Ux’Uy’Uz’ system)
in the UxUyUz axis system are, |

ve (=R T[] (5.4)

¢
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Both the matrices, [R.] and [T,.] are obtained from the external camera calibration

procedure described in Section 4.3.2.

Let {x;,v;,25} be the coordinates of the COG of the ball. Therefore, any general
point { x, y, z } on the surface of the ball must satisfy the relationship:

(c-xp) + =2 ) + (e~ 2,) =R (5.5)
Now, the equation of the straight-line CPP’, in the UxUyUz, with the coordinates of

P’ being { xp., ¥, 20 }, 18,

X=Xp _ Y=Yp _ Z—2p (5.6)

Yo —Xp Yo T Vpo Ze T Ip
In equation (5.6), the values of { x.,y.,z. } are obtained from equation (5.4); also,

Zp=zg.

Intersection of the ball’s surface and the line CPP” would lead to calculating the
coordinate of P, { x,,y,,z,}, of which x,and y, are needed for the estimation of
sidespin. When equations (5.5) and (5.6) are solved, there will be two possible
coordinates for P, as the roots of a quadratic equation, and the required solution is
where z, >z, (i.e. where the pattern is at a higher elevation from the table than the
ball COG). The required root is:

Zpo o Zp

(57)
\[(xc _xP')z +(J’C _}’P')z +(zc '_ZP')

Zp=zy + R

2

Using (5.4) and (5.7), and also noting that z,. = z,, the value of z, can be calculated.

Then using equation (5.6), x, and y, are estimated, using the following equation.

Xp=Xp _Yp=Yp _Zp=Zp (5.8)
Xe =Xp Yo~ Vp EZc T Ep -

A note on the ball centroid tracking:
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When tracking the centroid of the ball, the ball pixels are extracted by the image-
processing program initially. Now, irrespective of the camera inclination and the
position of the ball on the table, a circular blob will be imaged by the camera. When
there is no illumination at all to the lower hemisphere of the ball, the circular blob will
not be seen. The camera will image the regions in the lower hemisphere close the
horizontal great circle, either if the camera principal axis is inclined largely to the
vertical (this is not the case for the current setup) or when the ball is situated farther
away from the principal axis. However, such a situation does not arise in the present
. table area, as several strip lights fitted with standard diffusers illuminate the table and
these lights are spread out over a large area around the table. Hence, for all locations
of the ball on the table, the actual COG of the ball, G will be detected as the centroid
of the circular blob representing the ball in the image. Now the projection of CG on

the horizontal plane going though G will be the point G itself. Therefore the

calculations performed by equations (5.5), (5.6) and (5.7) are not necessary.

Now for measuring the sidespin of the ball, when the overhead camera tracks a single
pattern P put on the ball on its top hemisphere, as depicted in Figure 5.20, the value of

the ball sidespin can be calculated as follows:

N

Ux

Fig. 5.20. A circular pattern on the ball for spin-tracking

Referring to Figure 5.20, let the tracked coordinates of the pattern P, estimated from
equation (5.8) in the ™ image frame be [xp(f), yp(D)]. With [xs(i), v5())] denoting the
coordinates of the ball centroid, sidespin is given by,

m“(f):{tan-‘[y”(” -y li+ l)}—tan'f{M”* fos (5.9)

xpli+1)-x5(i+1) xp (1) - x5 (0)
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Since the ball is at a stationary position, for every i, y;(i))=y,(i+1) and

x ()= xg (i +1).

For sidespin measurements, the ball was spun by hand like a top, as shown in Figure
5.19, such that it does not move laterally on the table. As long as the ball does not
move horizontally, it can only spin about the vertical (i.e. it can only have sidespin);
this ‘zero horizontal movement of the ball’ criterion is used to select the right image
sequences in order to analyse the variation of sidespin. In addition, the ball was
rotated such that the pattern will be in the view of the camera throughout its motion.
Moreover, the ball was also kept very close to the optical axis of the camera (Figures
4.17, 5.18) on the table, in order to prevent the inaccuracies that originate from the
inclination of the line of sight to the optical axis and the associated problems of there
being no illumination on the lower hemisphere of the ball. Ideally, the tracked pattern

in the image must make a circular orbit around the centre of the ball.

The captured image appears as seen in Figure 5.17. After an initial image thresholding
procedure, in each binary image, the pattern centroid was detected by the MATLAB®
Image Processing Toolbox functions bwlabel and regionprops. Then, the zero’
intensity (black coloured) pixels of the pattern were eliminated from the ball area by
using another function called imfi/l. Now the ball would look as though it had no
pattern on it. The centroid of the ball was detected from the ‘filled’ image. When the
continuously-tracked coordinates of the ball and the pattern were superimposed on the
first image of .the sequence, the plot obtained is similar to Figure 5.21. It should be
noted that the tracked path of the pattern, instead of being around the centre of the
ball, is rather shifted towards the lower-left hand corner of the image, as shown in
Figure 5.21. When the individual grey-scale images in the sequence were examined
with the naked eye, an extra glare was found to occur on the pattern as it approached
the upper-right hand side of the image shown in Figure 5.21. However, due to a strip
light source (a fluorescent lamp) located right above the table area, on the upper-right
side of Figure 5.19, there was extra light reflection (and associated illumination) on

the black-coloured pattern when it was at that side of the ball centre.
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Fig. 5.21. Tracking a spinning ball — grey scale image (multiple complete rotations of

the ball captured at 180fps)

Equation (5.9) was used to calculate the sidespin of the ball. An angular speed-time
plot for this ball-tracking is shown in Figure 5.22. The waviness in the scatter of
points is due to the effect of orbit shift as described earlier. As seen in Figure 5.22, for
the angular velocity variation, the period of oscillation increases with time, also, the
fluctuation decreases. These two effects are due to the progressive reduction of the
ball velocity with time, so that the ball takes a longer time to complete a rotation as
time elapses. A best-fit straight line gives an average angular deceleration of 21.8
rad/s® for the spinning ball. The ball was tracked several times and the dcceleration of

the ball was found to be in the range of 22 rad/s®, which is almost 3.5 rotations/s.
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Fig. 5.22. Sidespin (angular speed) vs. time plot for a ball spinning from a stationary

position
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5.4 A Theory of 3-Dimensional Spin Tracking Using a Single Pattern

A single circular pattern is also intended to be used to track the spin here, as in
Section 5.3 (see Figure 5.21). Since the cue ball will be moving on the table, unlike
the situation described in Section 5.3, a requirement to track the ball spin is that the
pattern must not disappear for the first few frames after cueing (i.e. the pattern must
be on the upper hemisphere of the ball in order to be captured by the camera). Hence,
this method can only be applied to track the ball spin within a limited area on the
table. However, this procedure is expected to be very useful in determining the cueing
dynamics, where only ‘the -initial spin of the ball, immediately after cueing, is of

interest.

Ux Vx'

Fig. 5.23 Tracking topspin and sidespin

Figure 5.23 depicts a typical scenario of ball motion. Initially, the ball is at G and the
pattern centroid is depicted as P on the ball. For the next image frame, let the ball be
at G’ and the new position of the pattern be Q. Both P and Q denote the vertical
projections of the pattern positions on the ball (i.e. the coordinates of P and Q are
those obtained from equation (5.8)). GG’ is the direction of the ball motion, which is
at & to the Ux axis. Unless the cue inclination is very high, which produces a curving
effect on the ball, § remains a constant for a shot when all of its image frames are
considered. Axis system Vx'Vy’ is selected as it has G as its origin, and Vx’ is along

the direction of the ball velocity ¥. The absolute movement of the pattern from P to Q
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is due to the contribution of the ball’s linear speed, sidespin and topspin ¥, »° and &
respectively. When the pattern’s movement relative to the centroid of the ball is
considered, the effect of ¥ on the positional change of the pattern need not be taken
into account. Also, throughout this chapter V can be estimated from the length GG’.
Here, the movement of the pattern relative to the ball centroid is used to estimate the

instantaneous values of sidespin and topspin, @° and o', respectively.

Figure 5.24 shows the relative movement of the pattern to that of the ball centroid,
hence both G and G’ are now represented by the same point in the figure. Only a part

of the ball is shown in Figure 5.25.

Ux

Fig. 5.24 Movement of the pattern relative to ball centroid (spatial locations and

velocities are projected onto the horizontal plane that goes through the centre of ball)

In Figure 5.24, the movement from P to Q is caused by two velocity components: 14
due to sidespin @®, and ¥7 from topspin w’. ¥° will always be parallel to the plane
shown in the figure. V7 in the figure is the horizontal component of velocity acting on
the pattern due to topspin @’ (also see Figure 5.25). V*° is perpendicular in direction to
the line GP and its direction is determined by the direction of @’ (i.e. whether it is
right spin or left spin). " is parallel to the Vx’ axis and its direction is decided by the

sign of . (Topspin is considered positive, while bottom spin is treated as negative).
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The shorter the length of PQ, the more accurate the motion of the pattern described by
the forgoing model. Conversely, if PQ is long, the distance covered due to w® will not
be on a straight line along the direction of V¥ as shown in Figure 5.24, but will rather
be described by a circular arc having G as its centre. The length of PQ can be
minimised by increasing the frame rate of the camera (fps). The length of PQ is
greatly exaggerated with respect to the ball size in Figure 5.24, for the purposes of

clarity.

Let G and P belong to the image frame / and say G’ and Q are on the image frame
i+1. Also using the notation that was used in Equation (5.9), i.e. treating Q as P(i+1),.

angles 8, f, A in Figure 5.24 are determined by,

N ' 26 (i+|)_}’c(i)
9(1)_ (xc; (i+1)-xg (‘)] 19

pli}=1tan "[MJ—GG) (5.11)

x.f’(j) x(,-(i)
Ve s 12D =y -1 )=y ON  pry o0
Ali)=1a { o) x, (;)]} B -6() (5.12)

l
o i+ 1) = 2 G+ 1))

It must be noted that in equations (5.10), (5.11), and (5.12), all x and y coordinates are

the ones obtained from equatton (5.8).

Taking At as the time clapsed between frames i and i+1, ie A =’fL, from the
ps

velocity vectors shown in Figure 5.25, resolving the distances along the Vy’ axis,
V(i) cos Bli) = PO(i)sin A(7).
Also, V*(i)= " (i)GP(;). Note the length segment denoted as GP in Figure 5.25 as

well. Now, _
-G 61
where,

GPE) =, ()= x6 O + {5 ()= yo () (5.149)
and,

POE) =Alxp G+ 1)~ x6 (i + D= [ep ()= 26 OF + 0 G4 1)= 6 G+ D)= [0 -y O

(5.15)
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Considering the 3-dimensional position of point P on the ball, as shown in Figure
5.25, it can be easily shown that, V7 {i)= &" (i), (i)- R], where A, is the height of the

pattern on the ball from the table plane, and R is the ball radius. With reference to

Figure 5.25, it can also be shown that, h,{i)= R +R* -[GP()] .

Fig. 5.25. Velocity of the ball due to topspin

From the velocity vectors shown in Figure 5.25, resolving along the Vx’ axis,
[VT ()= V5 ()sin ﬂ(i)]At = PO(i)cos A(i) and, when combined with the above two
equations, this becomes,

o™ (7)= POi)cos /1(:') * fps+ VS (i)sin B(i)
JR —[aP()]

Also rﬂaking use of equation (5.13), this can be further simpiified to,
' POU)* fos

VR - [GPE)Y

’ w" (V) = [cos A1)+ sin 2(})tan B(i)) (5.16)

Equations (5.13) and (5.16) will be used in Chapter 7 to estimate the sidespin and the
topspin of the ball immediately after cueing, in order to establish an empirical model

for the cueing dynamics.
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Summary

High-speed video capture using a single machine-vision camera was found to give
good results in determining the dynamics involved in snooker. The rolling and sliding
coefficients of frictions have been found. In relation to the collisions found in snooker
some experiments were carried out under controlled experimental conditions, which
enables the calculation of the parameter values that influence the impact dynamics in
the next chapter. The snooker cue was also tracked using the overhead camera and by
using this, human and robot cueing performances were compared. The cue-embedded
force sensor was also used to measure the forces present during cueing. The cue
tracking and the force sensor results were used to conclude that force sensor readings
are redundant when it comes to the robot’s decision-making about a specific shot and
that only the speed of the cue launcher is important. Usi;ig a single circular pattern,
the ball sidespin was tracked to determine the resistance of the table to sidespin.
However, it was found that inconsistent illumination conditions over the table area
affect the algorithms that are used for spin tracking. A model for determining topspin

and sidespins after the cueing using only a single circular pattern is also presented.
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Chapter 6

ANALYSIS OF COLLISIONS AND BALL TRAJECTORIES

It was emphasized in Chapter 2 that potting accuracy and the positional play of the
cue ball are the two primary skills that professional players rely on. Both these
phenomena involve estimating the ball trajectories. According to the literature review,
the trajectories of a ball can be described analytically, but no complete models exist
for the collisions that are encountered in snooker and pool. In this chapter, two types
of collisions, one between two snooker balls and the other between a ball and a
cushion, are analysed using the principles of impact mechanics. This model-based
information will, ultimately, lead to a more intelligent decision-making in the robotic
snooker playing system. Understanding derived from this study will also add to the
wider knowledge base in snooker and frictional impacts. In Section 6.1, an analysis of
the post-collision trajectories of two balls is presented. Section 6.2 provides a

theoretical analysis to obtain the trajectories afier a ball-cushion impact.
6.1 Frictional Collisions between the Balls

Here, the problem involves the cue ball, C, obliquely impinging onto another object
ball O (see Figure 6.1). Both the cue and object balls are of equal mass and radius.
Traditionally, the ball collisions are analyzed without incorporating the effect of
friction, and the object ball is supposed to move along the line connecting the ball
centres at the instant of impact [Wallace and Schroeder 1988]. However, when a
ball is spinning and colliding into another, as shown in Figure 6.1, in addition to the
normal forces that are usually set up between them, frictional forces are also
introduced. These forces drastically change the ball trajectories. This effect is called
throw in billiards. Few researchers have considered this effect to derive a solution for
the collision problem and to obtain the amount of throw, which is the deviation from

the ideal direction without any friction [Marlow 1994, Alciatore 2008|.
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Fig.6.1. Oblique impact of spheres (direction of 'y is given by the right hand grip

rule)

In snooker/billiards, the balls are also rolli\ng on a frictional surface (i.e. the table). In
such cases, frictional forces from the surface upon which they move also act on the
balls [de la Torre Juarez 1994]. Marlow [1994] also acknowledges the effect of
surface friction on the impact between the balls, but has not obtained any solutions
along these lines. In a very recent paper, Domenech [2008] has tried to address the
issue of surface friction influencing the impact between balls. However, Domenech
assumes that the slip is uni-directional throughout the impact. This assumption may
be true for very low friction bodies. However, the approach that is taken in the current
work provides a generic solution that can be applicable for any spheres irrespective of
their friction coefficients. The generic procedure as provided in this section can lead
to the identification of conditions under which the assumption of uni-directional slip

can be used.

In the following analysis, initially a general solution will be derived for the problem
of two identical balls colliding obliquely and, at the end, the values applicable for
snooker will be substituted. In Figure 6.1, it is important to note that ball C does not
spin about its frontal axis (about the direction of V), this condition is only prevalent

during a mass€ shot and is not normally encountered in billiards. .

When two spheres collide, they are generally treated as deformable bodies; hence the
contact between them is made over a region rather than at a point. The contact area
between the spheres during impact is usually estimated through the Hertz theory.

Researchers have also used various Finite Element -Analysis techniques to analyse the
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contact area between the spheres [Zhang and Vu-Quoc 2002]. However, to calculate
the deformation at the interface of the spheres, a number of material properties such as
the Poisson ratio ffmd Young’s modulus are needed. In the absence of such matenal
properties for snooker balls, a point contact is assumed between the balls during
impact. In addition, snooker balls are quite rigid and when the Young’s moduli of the
spheres are high, i.e. the spheres are less deformable, the Hertz theory predicts a small
deformation. The assumption of a point contact has also been used by other

researchers like Domenech [2008].

6.1.1 General Equations of Motion

In Figure 6.2, for spheré C, for the linear motton along X, Y and Z directions,

F,+ Fy = M (6.1a)

F 4+ F§, =M 5 | (6.1b)

Fy+FS —mg=M:z5 ' (6.1¢c)
74

Fig. 6.2. The forces acting on the balls during the impact

During collision, at any time instant ¢, consider a time period of 4r. Now, let AP

denote the impulse due to the action of a general force F over Ai. Also the
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accumulated total impact up to time t is denoted as P (also assuming that the impact

started at r=0), now, it can be writien that,

I+
ap= [F.d ' (6.2a)
and,
P=>4P= j F.dt : (6.2b)
4]

For sphere C, at time ¢ during the collision, consider an increment A in time, from the

equations in (6.1) and (6.2)

AP, + APS = M |35 (0 + Ar) - x§ (:)] (6.3a)
- 4P, + 4PS = M{FE( + an)- )] | (6.3b)
AP, + APS = M 25+ ar)- 25 ()] (6.3c)

In equation (6.3c), it should be noted that the impact component due to the mass of
the ball Mg is absent. According to de la Torre Juarez [1994], in the limit 4¢—0, the
non-diverging forces, such as the weight Mg, will have a negligible contribution and
thus will not influence the increase in momentum. A simple calculation also confirms
this fact. When, say, 1m/s speed was transferred from the cue ball to the object ball
(this is a typical average speed), the collision time was measured to be 300 ps, by the
set-up given in Figure 4.4 [Marlow 1994]. For a ball mass of around 140 g, the
average impulse force would be 470 N, whereas the weight of the ball is only 1.4 N.

The moment of impulse and the angular momentum about the centre of mass for the

ball C about X, Y and Z directions, are given by,

(AP_, +AP] )R = —2M5—Rj [wf (t+ Ar)- a)f (t)] (6.4a)
_APSR= 2‘“’?2 € (t+ 41) - € (1) (6.4b)
_APR= 2""? i [ (¢ + a0)- € ()] (6.4¢)
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Similarly for ball O,

-AP, + AP = M xg(z+m)-5cg(z)] (6.5a)
ap, + AP = M (330 + ar)- 521 | (650)
P, + PO = M[:2(+ &) - 22(0)] (6.5¢)
(4P, + 4P0 )R =2_ﬁ451'i[w9 1+ a0)- 02 0) (6.6a)
— 4POR= -2-"-’;‘;2 w2 + a0)-f 0) | (6.6b)
- ar k=2 (o ) 00 (6.60

These equations arc adequate to describe the change in the motion of the balls due to

the impact.

6.1.2 Impact Dynamics

At the contact point between the spheres, i.e. at A, let the relative speed of ball C to
that of ball O be s(¢) at an angle @(¢) with the X-axis (the relative velocity vector will
lie on the XZ plane). The instantaneous value of the normal impulse P;(which will be

the accumulated value of all AP,’s until time ) is always positive within the interval

of impact. In addition, P;monotonously increases with time, thus, in this analysis it is
taken as an independent variable instead of the usual variable of time r [Stronge

2000]. Slipping velocities along the X and Z axes respectively,
Xy= X5 -y = 5(P, )eos(@(P, )} (6.7a)

z, =35 =G =5(P)sin(@(P,)) . (6.7b)

The normal component of relative velocity,

Va=Y5 V4 | (6.7¢)
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For the nominal slipping speeds to be along the positive X and Z axes, when the balls

are sliding on each other at their contact point A, from the Amontons-Coulomb law,
AR, =iy, cos(@(P, AP, (6.82)
AP, =—p,, sin([®(P,))AP, (6.8b)
where y,, is the coefficient of sliding friction between the spheres.

Since ball O is moving on the plane, to satisfy the condition z5 (r + 41)— 2 (¢)=0, and
from (6.5¢), |

APS = AP, = -y, sin(@(P, ))AP, (6.9)

Similarly, for ball O, at B slip s* and its direction ¢’ with the X axis (s’ will on the
XY plane), for the ball to slide, and also using (6.9),

X

AP? =~ 1, cos(@)APY = py, p, sin(@(P, ))cos(@' (P, )P, (6.10a)

APyO =-H, Si"((p')ﬂp.g = HenHs sin((D(P,) Si"(@'(})f ))API (6.10b)

Here 4. is the sliding friction coefficient between the ball and the table, measured to

be 0.21 in Chapter 5. Sliding speeds are:

%y = x5 = 5'(P, )cos(®' (P, )) (6.11a)
vy =35 =5'(P,)sin(@' (P,)) (6.11b)

From now onwards the independent variable P; is omitted in the equations in order to

keep them compact.

Notably depending on the value of z,(as given in equation (6.7b)), some of the

impulses in the equation sets (6.3), (6.4), (6.5) or (6.6) will be zero.

If z, is negative, the cue ball will have more downward velocity (along the Z axis) at
the contact point A, and the frictional impulse AP, between the balls will be acting on

the balls in the directions as shown in Figure 6.2 (i.e. 4F,>0). If ball C is to remain on
the table, from equation (6.3c), AP, + APS <0. These two conditions can be satisfied
only when 4P$ <0, and apparently it is impossible to satisfy this condition as the table

cannot apply a ‘negative’ reaction on the ball. Thus, APS =0, which in turn allows us
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to say that the associated frictional impulses are also absent, i.e. 4P° =0 and APyC =0,

Here, ball C will lift up from the table, like a cue ball in a ‘jump’ shot, however small
the lift is. However, it is assumed that during the time of the impulse it remains at the
same spatial location, just above the table, without altering the configuration given in
Figure 6.2. This assumption is reasonable since the time of impulse between two balls

15 very small and is in the range of 0.3 ms [Marlow 1994]. Conversely, if z, is

positive, then APZ =0, AP =0 and AP? =0.

6.1.2.1 Conditions for Rolling

When rolling occurs, slip speed s (or s for the sliding on the table), becomes zero. At
this instance the relative motion between bodies stops at their contact poim' along the
common tangent. Neglecting the effects of static friction, the frictional forces are

assumed zero.

1) When s=0, which is a common occurrence depending on the initial conditions, as
shall be seen shortly, where both the spheres will be rolling on each other at their

contact point A.

AP, = AP, =0, that also follows APy = 4P7 =AP] =0

2) When 5 =0, 4P = AP? =0, and the sphere O will roll on the plane without sliding.

6.1.2.2 Coefficient of Restitution

According to Stronge [2000], the encrgetic coefficient of restitution e, is independent
of friction and the process of slip. ¢’ is the negative of the ratio of the work done by
the impulse force during the phase réstitution to that during the compression phase.
When P/, P/ denote the accumulated impulse at the termination of the impulse, and
at the termination of the compression, respectively, it is possible to show that the

work done is

AW, = [F,.9,dt = [j,dP, (6.12a)
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p/
= [yadp,
2 Pr
e =

p
[34aP,
1}

This can be rearranged as

Wy(f’:f )=li~e?r, () : (6.12b)

The termination of compression occurs when the normal component of relative

velocity becomes zero, 1.¢.,
7,(Pe)=0 | (6.12¢)
6.1.3 Velocity Relationships

The velocity of any point on a sphere’s surface can be written in vector notation as,

V=V,+a&AR

At A,

%6 =x5 —Rot, 55 =25 + RaC, %] =37 + Rw? and 9 =20 — R0’ (6.13a)
AtB,

xg =iJ - Rw) and y§ = y¢ + Ry (6.13b)

6.1.4 Solution for the ball velocities

Sets of equations in sections 6.1.1, 6.1.2 and 6.1.3 allow the calculation of the

increments in the centroid velocities of balls C and O, {A%5 ..., A0° } and
{ALG ..., Aw] } respectively, as given in equation sets (6.3), (6.4), (6.5) and (6.6).
For example, for AzS,

from equations (6.3a), (6.8a) and with the assumption that AP =0,

ai§ = £ cospap, (6.142)
M

@ can also be expressed in terms of the centroid velocities of the balls using

equations (6.7a), (6.7b) and (6.12a), as
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() +(2,)

A C : )
x; - Rw; —x¢ — Rw;

cosP =

cos @ =

JGE - RS — 52 — RwOT + (56 + RoC - 22 + R? )
Now (6.13a) becomes,

.C ¢ .0 o
.C_ M x¢ — Rw, - x5 - Rw,
G =

AP, (6.14b)

. . > [ - 2
M \/(xg - Rw® - 5§ —Ra)f)) +(zg + Rao® - 28 +Ra)§))
This can be expressed as a differential equation,

O
dxg

¢ ¢ _ .0 0
Hop X — Rw, - xg - sz

dP M .C . 2 C L 2

! x& = Rwt —xf - Ro?) +125 + Rol - 28 + Rw?

(6.14¢)

Deriving similar expressions for the other 11 components of the centroid velocities of

" both balls will result in 12, simultaneous, nonlinear, differential equations. Exact

solutions are not available. A numerical solution is possible. For, example for the

problem of rotating spheres colliding with each other (like a mid-air collision ), Kane

and Levinson [1987] have used a numerical scheme to obtain the variation of the

sliding velocities, etc during the time of impact, for both the spheres. When it comes

to robotic nonprehensile manipulation, Li and Payandeh [2003] modelled the

_trajectory and orientation of a polygonal, flat plate using numerical simulations. In

order to perform a numerical operation, equation (6.13¢) must be written in numerical

form as:

(56),.. - 55),
o (:6), - Rlof), - (:2), ~Rla?), "

M6, - Rlac), —(62), - R0} o f6), + Rlot), - (2), + R0),F

(6.152)

The work done during an increment of AP, can also be calculated numerically, using -

equation (6.12 a),

) () =an, [(y,,),m;(iu)n] - 616
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6.1.4.1 Initial Conditions
When P=0,

For ball C, (chr ), =V, sin8, (yé )] =V,cos0, (zé )] =0, (cuf )I =—w; cos@,

(a)f)] =w, sinf, (a)f)l =y .

A
[\]
Forball O, (:2), =0, (32}, =0, (:2), =0, (02}, =0, (0%}, =0, (?), =0.

Also, S(O):‘J(VO sinf - Rwg )2 + (ng" cos 9)2‘ and 5‘(0)=|V0 - Rwﬂ.

6.1.4.2 Numerical Alporithm

The numerical scheme is written in MATLAB® programming language. The values of

Vs, e , wy , 6 are the inputs to the scheme. The smaller the value of the increment in
impulse P, , 1.e. AP, , in (6.15a), the more accurate the results will be. The aim is to

find the centroid velocities of the balls at the final accumulated impulse value P/ .

The code initially starts by calculating the increments in the centroid velocities of both
balls by using equation (6.15a) and 11 other simultaneous equations as explained in
Section 6.1.4. Using these and equations (6.13a) and (6.13b) the new slip velocities
are calculated. The code is designed to incorporate the necessary modifications, as
given in Section 6.1.2.1, when a rolling condition is reached at either of the sliding

contacts.

Again P/ cannot be found analytically and has to be obtained numerically using the

equations (6.17a) and (6.17b). Initially P/ is calculated, from (6.17b), when the
relative speed in the normal direction becomes zerd in the numerical scheme i.e.

Y, (Pf)= 0. Until then, the work done is calculated in the scheme using equation

(6.16), this enables calculating the total work from the normal impulse, /¥, (P,“) and
then using (6.12b) the total work at the termination c;f impuise Wy(P,f ) can be

estimated. The numerical algorithm is stopped when W =W, (P,f )

For snooker balls, M=0.1406 kg and R=26.2 mm.
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Note: In order to assume a reasonable value for 4P, to start the numerical scheme, an
approximate value for P/ can be taken as (1 +e )MV0 cos @, the value of the impulse

had the ball O been a solid wall and, say approximately for N iterations,

(1+e )MV0 cos 8

AP, = ~ ..Clearly the values of P and P/ will decide the actual number

of iterations that have taken place in the scheme.

6.1.4.3 The values of yppand e

The values for these parameters presented in the literature are vague with only
Marlow [1994] reporting about them. Marlow predicts a value of 0.06 for g, for well-
polished balls. Furthermore, when the balls have any other substance, such as chalk,

on their surface, according to Marlow the value may be as high as 0.2. Also, quite
contradictorily, a  variation of g in the form of g, =9.951x107° +0.108¢7 "% s

also put forward by Marlow [1994], where s denotes the slip speed between the balls.
The experimental process in obtaining the aforesaid variation did not seem
sufficiently reliable. According to Marlow ¢>0.92. It is believed that the high-speed
camera measurements described in Chapter 5 are far superior to the techniques used
by Marlow, and therefore these results are used for the calculations and simulations
performed. In addition, the adhesive properties between the balls could lead to the
phenomenon of stick [Thronton and Ning 1998]. Stick between the balls is neglected
considering the polished nature of the ball suface. Therefore only the effects of the
sliding friction is assumed to be present at the contact point of the spheres. In
addition, the coefficient of restitution between the balls is assumed a constant and its
minor variations with the impact velocity of the balls, as explored by researchers such

as Zhang and Vu-Quoc [2002], are neglected.

The experimental plot shown in Figure 5.12 is used in conjunction with these
numerical simulations to obtain the values of the coefficient of restitution and the
value of sliding friction. The fundamental idea is to replicate the experimental results

by numerical simulations, by using two random numerical values for the above
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parameters by a trial-and-error procedure. The plot in Figure 5.12 was obtained under

the conditions of 8=0", @) =0 and w; T? For each of the incident speed values

V, given in Figure 5.12, the value of the centroid velocity of the object ball at the

termination of impact y& (P,Jr ) was found numerically for e in the range 0.7 to 1.0 and

ups between 0 and 0.2, both in 0.01 increments. For given values of us; and e, the
RMS value of all the errors between the experimental and the numerically obtained
values for each of the incident velocities given in Figure 5.12 was obtained. The
values of ,u,,ﬁO'.OS and e=0.89 were found to have the least RMS value. The
agreement of these values with Marlow’s [1994] values of 0.06 and 0.92 should be
noted. The experimental plot of Figure 5.12 is replicated with the predictions from the

numerical scheme in Figure 6.3.

2.5 r
¢ Measured e

- 2 r ® Numerical
E ¢ B
B LS F "L
[P}
& . ?
L .
‘g L 2
.g

05 F

0 [ A A » 2 Il e ry A i A 2 e I 2 r

0.5 2.5

1.5
Cue ball speed (m/s)
Fig.6.3. Experimental results and numerical predictions for 4445=0.05 and ¢=0.89 and
VO

under the conditions of 6=0", w, =0 and w, = n

6.1.5 Parabolic Path Subsequent to Impact
When the ball shown in Figure 6.4 spins about its velocity axis (here it has a spin

component of w; about its centroid velocity, which in this case is V), irrespective of

the other two spin components, the ball will move along a curved path. This is called
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massé in billiards. Curved shots can be made by elevating the cue when striking the
ball. Curved ball trajectories are also produced due to frictional percussions during the
impact between two balls or that between a ball and a cushion. The 2™ type is of
interest here. However, the derivation given in this section is, essentially, applicable

for any general curved shot.

Fig.6.4 A ball that spins about its frontal velocity axis

When the numerical scheme that is described in Section 6.1.4.2 is executed, it is
found that generally both the cue ball and the object ball would have spin about their
frontal velocity axes. Here the example of the object ball O is used to derive, with'
appropriate symbols, the description of the trajectory of the ball under massé

conditions.

The effect of table friction will generally impart a spin about the velocity axis of the
object ball, as in a spinning bullet. This will curve the path of ball O immediately after
the termination of impact, making the final direction of movement different to that at

the termination of impulse. Its effect will be very prominent for high values of 4,,. In

mathematical terms, at the termination of impact, when »n=N, i.c. the final step of the

numerical algorithm, this condition for curving is created when, -

@'y * By (6.17)

Where g, denotes the direction of movement of the centre of gravity of the ball O

(52), N
—1 > and @’ being its slipping

G In

(i.e. the direction of its velocity), given by tan g, =

direction on the table. It should be noted that any person will only observe # and not

¢, at any time during the motion of the ball.
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The subsequent curved path of the ball can be shown to describe a parabola,

conveniently in the X'}’ coordinate system, which is rotated from the XY axes by y

(see Figure 6.5). Where,
1

t
tand’y,

(6.18)

tany = —

and @', is obtained from the numerical algorithm explained earlier. Most of the
following equations used below are taken from the detailed analysis of Hopkins and
Patterson [1977], where they analyze the curved path of a bowling bail, and modified

accordingly.

Fig. 6.5. Curved path of O (the object ball)

(-¥, ')=—[ 2 }(x'—XV % | (6.19)

(X,' )
Where,

2
X,'= MO—) Y, = M , and the initial centroid velocities of the ball along

meg 0 2ug
X’ and Y’ are denoted by ¥,.(0) and ¥,.(0). When substituted with the parameters

used in this analysis, the following can be written,

Vi [(ig )N tan(@’y ) - ()’tg )N l(xg )N + ()’? )N tan(@'y )] a
A= ll +tan2(d>‘N)luSg (6-202)
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Y, = [(xf(l))N + (j’g),v ’“"(GD'N )]2
" tvaant (@) g

(6.20b)

The sliding can be shown to stop at time T, given by, T = _]25 ¥, when the ball is at S

5

(see Figure 6.5) or the coordinate (X;,Y;") in the XY’ system (where s', is the slip

velocity of O on the table at the termination of impact, obtained at the Nth iteration of

the numerical scheme). It is also possible to show, also using the expression in (6.18),

that,
28"y
¢'= X, (6.21)
: . . 2
Toinlp -wh[62) F +68),]
Y, 'can be calculated using equations {(6.21) and (6.19).
The velocities along X’ and Y’ at the termination of slip (at S),
Xg'=V0(0)=(52), cosy +(32), siny (6.22a)
V= Vy(0) - 12Ty =—(42), siny +(32), cosyy — 22A (6.22b)
The final velocity at the end of sliding is,
ve=(x,f + (0] | (6.22¢)
At an angle of &, with respect to the XY cbordinates, given by
X ‘
O, =w+A=y +1tan [———J (6.22d)
. X'

Equations (6.22 a-d) completely define the post-slip motion of the ball, except its
sidespin. The sidespin of the ball immediately after impact is also estimated using the
numerical algorithm. Section 7.1.1.2 explains how to obtain the value of sidespin at

the end of slipping process.
If the velocity and spin conditions, while the ball is still under the slipping process,

are to be estimated (i.e. well before the ball reaches S) then the following set of

equations will be useful. In Section 7.1.1.3, a similar situation arises.
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Slip velocities along X and Y: s, =V, -Rw, and s, =V, + Rw, (these are

equivalent to equations (6.13b))

Slip velocities along X and Y in terms of its initial conditions:
. 7 _
Sy = (xg )N —Epsgtcos @’y and s, = (y?)N - %y_,gt sind’,

Time-dependant coordinates of the ball in XY’ system: x'=¥,.(0) y'=¥,.(0) - ﬁ;&,z

6.1.6 Motion of the Airborne Ball

In Section 6.1.2, it was explained that when 7, <0 (i.e. the relative velocity of sphere

C relative to sphere O along the Z axis is in downward direction), the cue ball is not in
contact with the table but is airborne instead; when z, >0, the object ball will,
instead, behave in this manner. The implication is, when z, <0, the cue ball will have
a net upward velocity (along the Z axis referring to Figure 6.2) at the end of the
percussion, and the value of this velocity can be obtained from the numerical
algorithm. Using the numeric value of the initial velocity of the airborne ball and its
direction, the trajectory of that ball during its flight can be estimated. The following
analysis of airborne trajectory is carried out for the motion of the cue ball. A similar

procedure can be carried out for the object ball as well.
Figure 6.6 shows the vertical and the horizontal velocity components at the start of the

cue ball flight for collision speeds of 1 m/s and 4 m/s under the conditions of pure

rolling and no sidespin.
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Fig.6.6. Vertical (a) and horizontal (b) components of cue ball velocity at the end of
impact for initial cue ball speeds of 1 and 4 m/s (it was assumed to be rolling prior to

impact and ﬁo sidespin)

It can be understood from Figure 6.6 that the vertical velocity is significant when
compared to the horizontal component only for head-on collisions (around 8=0). For
high values of &, the trajectory of the cue ball in the air will be more like that shown
in the first drawing in Figure 6.7. The lift will be very low when compared to the
horizontal range of the ball, which can be easily estimated using the theory of
projectiles. The ball will land on the table with a very shallow angle to the horizontal,
‘grazing’ the table. As illustrated in Figure 6.7, a frictional percussion of u;P occurs,
where P denotes the normal percussion from the table surface, which will be very
small as the vertical lift itself is comparably small. As the value of 4; is also known to
be 0.21 from Chapter 5, the effects of ;P on the subsequent‘linear and angular
velocities of the cue ball will be neglected. However, during the flight of the ball there

will be no changes in either the horizontal velocity of the ball or in its spin. Thus, the

cue ball will land on the table at a distance of 2 (zi’)’” {(xé )N ]2 + [(yé )N]z }0'5, from the

-
collision location along the direction of tan"{(yo. )N } The distances covered for the

*G In

[}
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cue ball with rolling velocities of 1, 2, 3 and 4 m/s are shown in Fig. 6.8. For a very

high velocity of 4 m/s, the maximum distance obtained is 60 mm.

Fig.6.7. Cue ball trajectories in the air

For lower values of 8, the ball can be considered as it lifts up vertically (neglecting the
horizontal component) and then falls down to the same spot where it collided with the
object ball. The impulse from table will be P along the vertical and will have no effect
either on the horizontal velocity of the cue ball nor on its spins about any of the three
axes, as the moment of impulse created by P will be zero about all three axes.
Effectively, the cue ball in its motion has a time delay whereby its dynamics are put

-C
on hold for a time of 2@, that is the time taken for the ball to come down again.
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Fig.6.8. Horizontal distance covered by the cue ball during its flight
As soon as either of these types of motion, as given in Figure 6.7, is completed, the

subsequent curved trajectory of the cue ball is calculated in the same manner as that

for the object ball, since all its initial conditions are known at that instance.
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6.1.7 Results

The numerical results obtained in conjunction with equations (6.22 a-d), for the
motion of cue ball and object ball, generate the plots given in Figures 6.9, 6.10, 6.11
and 6.12, for an incoming cue ball speed of 2 m/s (equations (6.22 a-d) were also used
to estimate the effects due to massé). When X, and Y, (these are the corresponding
values of X; and Y’ in the XY coordinate system) were estimated, the effects of ball
flight described in Section 6.1.6 were also included. Notably, when the cut angle &
changes, the XY coordinate system will also be rotating about C (see Figure 6.1).
Hence the plots do not have the initial cue ball movement direction as their reference.
In Figure 6.5, the values of X; and w+4 (i.e. §;) for the object ball are the only
parameters that affect the predictions of Wallace and Schroeder [1988], as described
in Sections 2.3.3 and 5.1.3 respectively. Therefore, these two parameters influence the
ball-potting accuracy of the robotic system. Their variations, with the ball cutting
angle & and the type of spin the cue ball has, are illustrated in Figures 6.9(a) and
6.10(b) for a cue ball speed of 2 m/s. The maximum deviation from the prediction of
the 90° rule for the object ball motion occurs when the pre-collision cue ball has
sidespin, as seen from Figures 6.9(a) and 6.10(b). When calculating the Y; value for
the object ball, its centre C’s shift of 2R along the Y-axis from the origin C was also

incorporated (see Figure 6.1).
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Fig.6.9. For the object ball, the distances at which the slip stops, X; and Y, against
for four different shots with ¥p=2 m/s (0’y = kVo/R, w’=mVy/R
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Fig.6.10. For the object ball, the exit velocity and its direction after the termination of
slip, V; and &, against & for four different shots with ¥y=2 m/s (a)Tg = kVy/R, 0=
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Fig.6.11. For the cue ball, the distances at which the slip stops, X; and Y5, against & for
four different shots with V=2 m/s (coTO = kVyR, 0 = mVy/R)
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Fig. 6.12. For the cue ball, the exit velocity and its direction after the termination of
slip, ¥ and 8;, against & for four different shots with Vy=2 m/s (a)To =kVo/R, CUSo:
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Notably, whenever the cue ball has backspin (given by cuTo<0) before the collision, its
post collision motion is directed back towards the side from which it approached the
object ball. This effect is clearly shown in Figures 6.11(b) and 6.12(b), as ¥,<0 and
180°<0+8,<360° (the addition of & and 8, only signifies the reversal in the direction
of motion of the cue ball, also see Figures 6.1 and 6.5). This condition is satisfied for
the case of #<35° for the shot with backspin (k=-1) shown in Figure 6.12(b). This
phenomenon is also depicted in Figure 2.2, where a power shot with backspin is
shown to draw back and collide into a cushion resulting in the cue ball finally ending

up on the s.ide of the table from which it started.

Figure 6.13 shows the time taken for the cue ball slip on the table to terminate for
different 8’s. However, the airborne time of the cue ball for the three cases with @’y =
Vo/R (k=1) is not included in these plots and only the time that the cue ball was in
contact with the table is given in Figure 6.13. This plot, as explained in Section
7.1.1.3, is useful in estimating the sidespin of the ball after the termination of slip.
When w’p = Vy/R it can be seen from Figure 6.13 that the time taken for slip remains

almost the same irrespective of sidespin on the cue ball.
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Fig. 6.13 The time taken for the cue ball’s slip to terminate on the table, 7, versus €
for four different shots with V=2 m/s (ng = kVo/R, 0’y= mVy/Ry

6.1.7.1 Process of Slip

The numerical algorithm explained in Section 6.1.4.2 also computes the slip speeds

and the slip directions between the balls and those between the ball and the tablé, for
each increment of 4P; When the slip speeds and their directions are plotted against
the respective impulse values at the ball-ball interface, the shapes of the plots
typically resemble the one given in Figure 6.14, which is obtained for the conditions
of ¥p=3 m/s, 8=45°, (US() = Vp/R and ng = Jo/R. In Figure 6.14, &' remains a constant
while the maximum change in the value of @ is 0.6 % of its starting value. Hence, for
all practical purposes @ and @’ can be considered constants. This suggests that -the
analysis performed by Domenech [2008] is complete and accurate, as far as billiard
ball collisions are considered. However, Domenech has not explicitly set out the
justifications for this assumption of constant slip directions, which is only true for
very small values of the friction coefficient between the balls (i.c. Hps), hence usable
for billiard ball collisions where Hep is 0.05. For example when yuy, is increased to a
large value, say 0.4, the value of @ changes drastically with P, Figure 6.15 shows
that, for the same collisions as given in Figure 6.14, the value of @ can change
between zero and 2w radians. For such a case, the assumption made by Domenech

[2008] will not be valid.
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w’y= VR -
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6.2 Ball Collisions with the Cushion

A player often uses cushion impacts to achieve planned trajectories. Cushion impacts
give a great deal of vanation to the game. When combined with the effects of ball
spin, the ball-cushion impacts change the ball trajectories dramatically, and give the

player a greater flexibility in his game strategy (see Figure 2.2).

So far bounces of the ball off the cushion are analysed incorporating the coefficient of
restitution between the ball and cushion as the only influencing parameter. In this
analysis, the ball velocity normal to the cushion is considered as the sole variable.
According to the current level of theory, referring to Figure 6.14, once the ball
bounces off the cushion, it will have a velocity of e.Vgsina normal to the cushion, and
a velocity Vpcosa along the cushion respectively, where e, is the coefficient of
restitution between the ball and cushion. This simple analysis does not consider the
effects of ball spin and the effect of friction during the impact, and is purely treated as

a two dimensional phenomenon (the plane of analysis is as given in Figure 6.16).

Cushion

Fig. 6.16. Billiard ball prior to collision with a cushion

Spin on the ball, both sidespin w>y and topspin w’y as shown in Figure 6.16, affects

both the rebound speed and rebound angle, 3, of the ball. The latter two quantities are
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vital to estimate the trajectory of the ball. Even though Marlow {1994} has tried to
address these issues, the way the analysis was performed involved unnecessary
parameters like the impact time between the cushion and ball for which the values
were not known. Other assumptions, such as taking sliding directions as constant, do
not seem correct (it is shown later that these actually change during thé time impact).
Marlow’s analysis is not, most importantly, complete so that any comparison of the

results 1s impossible.

The billiards cushion is made out of pure gum rubber that has good rebound
properties. The cross section of a typical billiard cushion is shown in Figure 6.15.
Usually, a slope is provided in the cushion such that its contact point on the ball is
always above the horizontal great circle of the ball, in order to prevent the ball from
leaping up in the air after impact. Here, the cushion is assumed not to change its shape
during the impact with the ball, i.e. it is treated as a'rigid part. This assumption may
not be valid at higher ball speeds, as the normal ball velocity at I (see Figure 6.17),
will try to lift up the tip of the cushion. Also, the ball and cushion are assumed to have
a point contact, which again may not be true at larger ball speeds, as the ball will start

to ‘sink’ more into the rubber cushion.

Cushion

Fig. 6.17. The forces acting on the ball during the collision — a side view along the

cushion at the table level
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In Figure 6.17, the height of the contact point at the rail is 4. In both snooker and pool

h=TR/5, where R is ball radius. At the contact point with the cushion, the common

normal line Z’ makes an angle of 6 with the Y-axis, thus, sin8 = % .

Fig. 6.18. The forces on the ball during impact (a part of the cushion is shown)

The analysis here follows the same steps taken when analysing the ball-ball collisions.
Hence, only important steps are shown and wherever similarities are found, the

corresponding sections under Section 6.1 are referred.

6.2.1 General Equations of Motion

Referring to Figure 6.18, the impulse-momentum relationships

AP + APy = MAx, (6.23a)
- AP, cos 0 — AP} 5in@ + AP{ = MAy; (6.23b)
— AP, sin9+AP;, cos 0+ AF, = MAz; (6.23¢)
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In equation (6.23c) it should also be noted that due to the physical sloped shape of the

cushion, the vertical motion of the ball is constrained. Hence, Az; =0. Equation
(6.23c) is rearranged as,

AP, = AP, sinf — AP, cos 0 (6.23d)
Similarly, for the rotational motion of the ball about the X-axis, the following
equation can be derived, with angular velocity being denoted by «,

(4P + 4PE)R = 140,

where, the moment of inertia of the ball, 7= 2MR’ . The above equation can be
written as:

P!+ 4p¢ =28 40, (6.24a)
Similarly about the Y and Z axes:

AP! sing - ap¢ = 2MR o, (6.24b)
— AP] 0059=2~A—§R—Aa}z (6.24¢)

6.2.2 Impact Dynamics at Locations [ and C

At the contact point with the cushion, I, the slip will take place on the XY’ plane (i.e.
the tangential plane), also noting that the axis Y’ is in the YZ plane. Let the slip speed
of the ball at I, be s(7) at an angle @(¢) from the X-axis.

The slipping velocities along the X and Y’ axes are given by, respectively,

x, = s(P, )ecos(@(P,)) _ (6.25a)
v, = s(P)sin(@(P,)) (6.25b)
However, ', can also be written as,

V==, sin@+ 3 cos (6.26)
Using the Amontons-Coulomb law of friction, fors >0, also noting that the friction
forces/impulsés are opposite to the direction of sliding, the friction impulses along X

and Y’ are
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AP = —p, cos(@(P,))aP, (6.27a)

AP! = —p, sin(@(P,))AP, (6.27b)

¥

where, u, is the coefficient of friction between the ball and the cushion.

From (6.23d) and (6.27b), the normal reaction from the table surface to the ball is
given by,

AP, =(sin6 + p,, sinl@(P, ))cos 0)AP, (6.28)
Using the earlier argument, for the impact at C, the instantaneous impulse value Pc
should be chosen as the independent variable. But equation (6.28) shows that the
value of P directly depends on the value of P;. Hence, also for the impact at C, P;is
considered as the independent variable. This makes it possible to have P; as the

independent variable for all the impulse forces involved in this analysis.

For the impact at C, the slip takes place on the XY plane. Let s> be the slip speed, and
@’ be the direction of slip measured from the X-axis. Now, the components along the

X and Y directions are,
1. = 5'(P )eos(@'(P,)) (6.29a)
v =5 (P )sin{®' (P,)) (6.29b)
Hereafter let us omit the independent variable P; from all equations for the sake of
simplicity. When s'>0, the expressions for the impulse forces along X and Y
directions, also using equation (6.28), are
AP =—yu, cos @' AP,

=—u, cos @ (sin@+ u, sin® cos 8)AP, {6.30a)

AP},C =—pu, sin@" AP,

=—u, sin® (sin6 + p,, sin®d cos 6)AP, (6.30b)

Where p, is the coefficient of friction between the ball and table surface.

6.2.2.1 Conditions for Rolling
1) When s=0, the ball will be rolling on the cushion at | neglecting the effects of stick,

AP/ = AP] =0 and from (3¢), 4P, =0. Hence, AP] = AP =0 (6.37a)

2) When s =0, the ball will roll on the table surface, and neglecting stick,

144



AP{ = AP; =0 (6.37b)

In Section 5.1.1.2, that the average value of y; was found to be 0.21.

6.2.2.2 Coefficient of Restitution

Work done at 1, along the axis 7, is

A P+ apf;
AW, = f F .z di= [#dp,
f

£

Its numerical form is,

[(fi )n+l + (2, )n ]

w,,)  -Ww,) =ap , | (6.38a)
The coefficient of restitution is given by,

v/
eez _ Pf

Pf

[z, aP,

0

Rearranging the equation,

2 c
W, (P )=l- e W, () (6.38b)
The termination of compression occurs when the normal component of relative

velocity becomes zero, 1.€.,

#,(pt)=0 | (6.38¢)

6.2.3 Velocity Relationships

The velocity of any point on a sphere’s surface can be expressed in vector notation as
V=V, +&AR

The slip velocities at I are,

X, =x; +w,Rsin@—w,Rcos 0 (6.39a)
Vi=-Ygsin@+zi;cos0+m R (6.39b)
and at C, '
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X =%; —w,R ~ (6.40a)

Yo =y + R (6.40b)

6.2.4 Solution to the Ball Velocity

As in Section 6.1.4, the increments in centroid velocities of the ball can be calculated
in terms of the instantaneous values of centroid velocities. For example, the

expression for At can be written as:
(56 )y — G6), = —Ill— {u, cos(®), + u, cosl@®),[sin0 + p, sin(@)n cos OAP, (6.41a)

- (j}G )" sing + (2(; )n cosf + (.:uJr )n R

hy @), =
where, lan( )n (’tG)n +(my)"Rsin9—(a)z)chos6'

and, tan(®"), :M
Xg —@,R

For the other 5 components of the centroid velocity, similar expressions to (6.41a) can

be written.

6.2.4.1 Initial Conditions

(i‘G)l =V, cbsa, (j/G)] =V,sina, (z",ﬁ)l =0, (a)x)‘ =-w, sina, (a)y)] =w, cosa, and

(wz )l = CI)(; *

3(0)= ’\/[Vo cos o + R(a)g' cosa sinf — a)g cos 9)]2 + [— Vo sina sin - RwOT sin a]z ‘

s'(O): ‘VO - ng'l

The numerical algorithm follows the same steps as those for a ball-ball collision (see

Section 6.1.4.2).
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6.2.5 Results

6.2.5.1 Estimating e, and u,.
The experimental plot in Figure 5.7 was used to calculate the values of the coefficient

of restitution e,, and the sliding friction coefficient between the ball and cushion g,,. It

15 known that 0<e,<]. The results exhibited in Figure 5.7 are obtained under the
conditions of @ =90°, @, =0 and o, =?f’. Under these conditions, for each of the

experimentally-obtained incident speed values (i.e. ¥}) in the speed range of Vp<1.5

my/s, in Figure 5.7, the numerical algorithm was run for values of e, and p,, starting
from 0 and increasing to 1 in increments of 0.01, and the rebound speed y, (P;r ) was

obtained. Higher speeds were not considered, as the assumption of a rigid cushion
may not then be applicable. The values of e, and g, that minimise the RMS value of
all errors between the experimental and numerically-predicted rebound speeds should
be the actual value for the coefficient of restitution between the cushion and bail.

Calculations showed that ¢,=0.98 and x,=0.14.
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Fig. 6.19. Rebound speed versus incident velocity for ¢,=0.98 and u,=0.14

Numerically-obtained rebound speed values for e,=0.98 are plotted in Figure 6.19

together with the experimentally-obtained values. As seen in Figure 6.19, the
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numerically-obtained values of incident speed deviate from the experimentally-
obtained values for speeds V;>2.5 m/s. This is, quite possibly, the velocity limit at
which the rigid body assumption for the cushion would be valid. ¥5=2.5 m/s is a
considerably high speed as far as snooker is concerned. For oblique shots, only the
ones for which the normal component of the incident velocity of less than 2.5m/s,

would be analysed using the numerical algorithm.

6.2.5.2 Ball trajectories
The outputs from the numerical algorithm show that, in most cases, the ball has some

spin about its velocity axis at the termination of impact, causing it to curve. Under
such conditions, the equations derived in Section 6.1.5 can be used to determine the
parameters of the curved path and the exit conditions of the ball. The results obtained
for a ball speed of 1m/s and 5 different spin conditions are given in Figures 6.20 and
6.21. X5 and Y5 are measured with respect to the coordinate system OXY as shown in
Figure 6.18.
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Fig.6.20. Distances at which the slip stops, X; and Y,, against a for four different shots
with V=1 m/s (0" = kVo/R, &°= mVy/R,
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For the cases where @’=-Vy/R (i.e. m=-1 in the plots), from Figures 6.20(a) and
6.21(b), it can be seen that for a>70° the value of X; becomes negative and the
direction of its exit velocity, s, is below 270°. The implication is that, with reference
to Figure 6.22, the ball bounces back to the same side from which it approached the
cushion. This effect has been described by Walker [1983] for billiards, and by Cross
[2005] in a general context for the bounce of a ball. Cross [2005] also presents some

experimental values for a tennis ball bouncing on a rough surface.
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Fig.6.21. Exit velocity and its direction at the termination of slip, V; and #,, against a

for five different shots with V=1 m/s (o”p = kVy/R, @’= mVy/R,
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Fig. 6.22. Ball bouncing back to the same side under left spin conditions
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6.2.5.3 A note on the process of slip

As stated at the beginning of Section 6.2, the slip directions have been assumed to be
unchanged from the values at the onset of impulse by Marlow [1994]. The numerical
algorithm was also programmed to calculate the directions of slip and slip speeds for
every increment of AP, using equation sets (39) and (40). A plot against the
instantaneous impulse value is shown in Figure 6.23. The change in slip direction as

indicated by the plot suggests that the assumption of uni-directional slip is wrong.
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Fig. 6.23. Slip-impulse curves for Vy=2 m/s, a=45°, @’y = 2Vo/R and wp=15VyR

(s and ¢ are for the slip at the cushion, and s’ and @ are for the slip at the table)
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Summary

Using the principles of impact mechanics, the ball-ball collision was analysed. After
obtaining the differential equations describing balls dynamics during the period of
impact, they are solved numerically. When combined witﬁ two experimental plots
from Chapter 5, the numerical solutions provide the values of the friction present
between the balls and their coefficient of restitution. Numerical algorithms provide
post-impact velocities and the spins of the balls for a given collision condition
consisting of different ball speeds, directions and ball spins. For the first time, the
object ball is shown with the application of massé-type spin, which results in a curved
trajectory. A description of the massé shot trajectory is presented, suitably adapted
from an earlier work on the curving effects of bowling balls. The second part of the
chapter presents the same set of analyses for a ball-cushion collision. For both cases,
the slip curves during impact are provided and by using these curves some

assumptions adopted by earlier researchers are either validated or disproved.
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Chapter 7

MANIPULATION PROBLEM: DEFINITION, SOLUTIONS AND
RESULTS

This chapter focuses on the main question addressed by this thesis: how to position
the balls at desired locations on the table. First of all, the manipulation problem is
defined within the context of the background information from the previous chapters.
The performance of the robotic system is evaluated. Also, an empirical model, using
neural networks, for the cueing dynamics is obtained. Section 7.2 outlines the genetic
algorithm-based optimisation procedure that is suggested as the solution for the

manipulation problem. The last part provides the relevant experimental results.

7.1 Manipulation problem definition and background information

The artificial intelligence part of the system always makes decisions regarding which
object ball has to be played next, the pocket in which the object ball must to be pottepl
and where to leave the cue ball in order to make the next shot according to the overall
game plan (t-his is discussed in Section 2.1). Thus, for a given initial cue ball location,
C, as depicted in Figure 7.1 (only a part of the table is shown there) the decision to
play the ball O, into the pocket P| and then to leave the cue ball in or very close to the
desired ball location Cp has already been taken by the decision-making syste.m. These
results are assumed to be readily available. Now it is up to the robot dynamics planner
to plan and execute the shot so that the trajectories are achieved accordingly. This
planning phase is discussed in this section. The initial parameters of the ball motion
are, Vo, @' o, w>p, 6, namely, the velocity, top and side spins imparted to the ball, and
the direction along which the ball moves. These parameters of the ball motion can be

varied by the controllable parameters of the robot as will be seen later in this section.
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Fig. 7.1. A typical ball trajectory in snooker

The velocity of the cue determines the cue ball speed V). In Section 2.4.1 it was
described that the hitting point on the ball and the cue velocity determines the type
and amount of spin imparted to the cue ball. In summary, the cue velocity and the
hitting point stand out as two important variables. The third one is the cue swivel
angle fc (this is shightly different to  due to cue squirt, as described in section
2.4.1.3). In the robot, the cue velocity is determined by the speed of the servomotor.
The cue positioning on the ball 1s performed by the stepper motor unit, as described in

Section 4.2.

7.1.1 Ball Trajectories on the Table
Here the important ball motion characteristics are briefly outlined.

7.1.1.1 Straight-line ball motion

The essential equations to describe the ball’s straight-line movement are given in
Section 2.4.2, describing its sliding and rolling motion. Parameters needed for the

equations are estimated in Section 5.1.1.
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7.1.1.2 Estimating sidespin of the ball

Sidespin does not affect the free motion of the ball on the table, and its value is not
influenced by the linear speed of the ball (the assumption of decoupled motion).
However, sidespin plays a vital part in determining the dynamics of impacts, as seen
in Sections 6.1 and 6.2. This underlines the need to estimate the amount of sidespin on
the ball at any time during its motion, as the ball on its path can encounter another ball

or a cushion at any instant. The following formula describes the instantaneous value

of sidespin at time ¢ for its initial value of o,

o' (t)=a] —ay, for ! >0 and 1 <[22 (45a)
wr
7

o (()=0f + o, ‘ for wj <0 and ¢ < o (45b)
ml‘

o, is the resistance of the table to the sidespin of the ball, which is measured as 22
rad/s? in Section 5.3. It should also be noted that clockwise rotation of the ball (i.e.
right-spin), as seen when looking down on the table, is taken as positive. Once w” (i)
becomes zero, it stays at that value unless the ball collides with a ball or a cushion

where it attains a new value. ] is the value of sidespin immediately after cueing or

the one immediately after an impact, in which case it is estimated from the numerical

schemes described in Sections 6.1 and 6.2.

7.1.1.2 Dynamics of the Ball Collisions

When the dynamics prior to the collisions are provided, the algorithms presented in
Sections 6.1 and 6.2 form the basis for the estimation of the post-collision velocities

and the ball’s trajectory changes during the collisions.

7.1.1.3 Collisions under Massé Conditions

Cue ball collisions, either with another ball or with a cushion, can also occur during
the curved phase of the ball motion shown by segments CgE or 4D (see Figure 7.1).
Under such situations, the incoming conditions of the ball (its speed, direction of
movement, frontal and top spins and its sidespin) have 1o be estimated using the

equations given towards the end of Section 6.1.5.
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7.1.2 Robot Manipulation Parameters and their Constraints

Currently,- the robot swivel angle, 8¢ , has to be adjusted manually, thus it does not
have any constraints imposed on it. Generally, in the presence of cue squirt, the
direction along which the ball travels after the cueing, 8, will differ from 8¢ by a
certain amount, as discussed in Section 2.4.1.3. But 8¢ directly influences 6 and hence
it is one of the manipulation parameters. However, for a given cue ball-object ball
combination, for the former to impinge on the latter, & can be shown to lie within

specific limits.

4 4
O
CG X‘
B
C
)
m/ Y

Fig. 7.2. Constraints on the cue ball’s direction of movement

Let C= [x¢, yc] and O4= [xp, yo), be in the table coordinates XY that are defined for
the imaging purposes (Figure 4.18). The inclination of OC; with respect to the X-axis

can be obtained from,

an@, = Lo =Ye . (7.1)
Xo ~— *c

The cue ball trajectory when it brushes past the object ball sets a lower limit for 8.
Right at the moment the cue ball grazes against the object ball on its right side, the
cue ball is at C on the table (see Figure 7.2). For the right-angled triangle CCgQy, as

the radii of the cue ball and the object ball are equal,
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R i
Now, the minimum possible value for § for collision to take place is:

Opin = 0p = B

Using a similar procedure, it could also be proved that:

Oner =0 +

Hence the possible values for # are given by:

8, -ps0<6, +p (7.3)

Thus, the robot swivel angle, ¢, must also be kept within specific limits defined by

the expression in (7.3) for the cue ball to impinge on the object ball.

Fig. 7.3. Manipulation parameters of the robot and the initial cue ball motion

The other manipulation parameters of the robot are its linear velocity Vo with which
it drives the cue and the cue impact location on the ball. Referring to Figure 7.3, let O
be the point on the ball where the cue should impinge on the ball to obtain the stun
condition for a given position of the robét frame (essentially the stepper platform
location). Hence, O will lie on the horizontal great circle of the cue ball. Let the
coordinate system X’¢Y ¢Z’¢ be such that O is its origin and OG lies along the Z axis
(G is the ball centroid). X’y and Y’y are aligned to the horizontal and the vertical
respectively. X’oY o2’y essentially represents'the stepper drive’s coordinate system,

where X’y and Y’y lie along the drive’s positioning directions. Any movement xp and
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yo of the stepper will result in the driving line of the cue being shifted so as to go
through point, say A, on the XY’ plane that has coordinates [x'p, y'y] (refer to
Figure 7.3). Since the horizontal inclination of the cue,  is known as 6.5°, the impact
point on the ball can be calculated in the following manner. Now let X’Y’Z’ be a
coordinate system having the ball COG as its origin, which is shifted from the

X’0Y 0L’ g system by a distance R along the Z; axis.

The equation of the straight-line along which the cue moves, in the X Y'Z’ system, 1s,

_br) (7.4)

x'=x'y,and, z+R=
tany

Alciatore |2004] recommends that the radius of the cue-tip should ideally be the
radius of a nickel (a U.S. coin). The pre-shaped cue-tip that was used here was 10mm
in radius, which is very close to the size suggested by Alciatore. When the cue tip
touches the ball denoting the ball radius by R and the cue-tip radius by r, the Z’
coordinate of the centre of the sphere representing the cue-tip surface can shown to be

the solution of the following quadratic equation:

(o) + [o—lzy + RYamy [ + () = (- + RY (7.5)

There will be two values for z}, and the negative root is the relevant one. Now,
substituting for z’ using equation (7.4), the coordinates of the centre of the cue-tip
surface can be worked out, let them be [ x;., v, z; ]. Let the coordinates of the contact
point between the cue tip and the ball be [x,, y., 2. ]. They are the solutions of the

.following set of equations,

w] L [e]
= ' 7.6
Ve TR r |2 79
Zc Zr

Therefore, the impact location, which affects the spin imparted to the ball (w'g and
w’9), the ball velocity (¥p), and the amount of cue squirt, denoted by a in Figure 7.3,

is essentially a function of the stepper movement x 5 and ¥'o.

There are constraints on each of the robot parameters. For the robot, the following

limit is set,
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Veo < 2.2m/s ’ (7.6)

Vio 1s programmed to be as high as 2.75 m/s, but due to vibrations and the associated
problems with the robot’s repeatability it was not taken above 2.2 m/s. This
maximum cue velocity produces ball speeds close to 3 m/s, which is high enough to

do the tests over the half-table area.

According to Alciatore ]2004], for mis-cueing not to occur,

JeoP +bvey =5 &)

Coriolis suggested that the limit is 0.7R [Nadler 2005]. x';, and,y';, (and in turn x',
and y'.) are not constrained by the robot’s dynamics, but are to be rounded off to the

nearest millimetre,

Equations (7.3), (7.6) and (7.7) define the constraints for the control parameters of the

robot, V., ,x%, ¥oand 6.

7.1.3 Cueing Dynamics of the Robot

So far, a dynamic model for the ball motion on the table has been presented (as
summarised in Section 7.1.1). A complete control of the robotic components (both the
servo and the stepper drive) has also been established as described in Chapter 4. Now,
the final task is to establish a model for the interaction between the robot and its
environment (here the ball-table dynamics). The interaction is cueing, and a model is
developed for this process here. For a tapping-based positioning robot, Huang and
Mason [2000} have used Routh’s method of analysing two-dimensional impacts with
friction, betwcen the tapper and the planar part that is being positioned. In their study,
an analytical solution is possible as both their tapper and the tapped object are rigid
objects for which a theoretical analysis is a straightforward possibility. However, in
the case of the cue and the ball colliding, the cue-tip, which is both soft and
deformable, is present at the collision interface. The presence of the cue tip

complicates the dynamics at the interface.
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Before the cueing dynamics of the robot can be determined, the performance of the

cue launcher system has to be evaluated for its consistency.

7.1.3.1 Performance of the Robot

The servomotor-based cueing element is controiled through an Ilensys®
microcontroller board that is programmed to send pulses at a constant rate to the servo
controller. When the pulse rate is at its highest, the linear striking velocity of the cue
reaches 2.75 m/s, a typical maximum cue velocity found in a normal game of snooker
(some speed measurements on typical human cueing are shown in Figure 5.16). The
rate at which the pulses are sent out from the microcontroller is selected by a string
consisting of a 3 digit number appended with a ‘p’ from the PC through its srerial port
to the serial interface of the microcontroller. This 3-digit string, which ranges
from*001 to*200’, selects the intended pulse rate. String ‘001°corresponds to a cue
velocity of 2.75 m/s and ‘200’ achieves a cue velocity 0.3 m/s. However, the velocity
interval of 0.3-2.75 m/s is not divided into equal velocity intervals by the 200 strings
explained above, but they do approximately divide the velocity range. However, all
intermediate velocities are calculable using the values of the pulse widths used (the
pulse widths are in the range of tens to hundreds of nanoseconds). This amount of
~ resolution of the cue velocity'can position the cue ball, theoretically, to a 15mm
Spalial- accuracy on the table, but the repeatability chéracteristics of the robot, as

described later, will also have an effect on the positioning accuracy.

For a given string sent from the PC, the driving signal of the servo should resemble a
step input as far as the cue velocity is concerned, as the pulses are sent at a constant
rate from the time =0, which should theoretically ensure that the cue is moved at a
constant speed from =0. However, when the cue was tracked from the overhead
camera and its speed was measured, the cue speed profiles were more like the plots
shown in Figure 7.4. At lower cue speeds, the resulting cue speed almost follows the
step-type input of pulses. However, for medium- to high-speed pulses, after an initial
acceleration (which is due to the high friction present between the slides and linear
guides) there is usually an overshoot in the velocity before it settles at the intended
striking velocity (Figure 7.4). The settling time was also found to change with the
intended velocities of the cue, the higher the desired velocity the higher the overshoot

and settling time (or the cue travel distance in Figure 7.4). Hence, the ball was always
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placed on the table at a distance of around 110mm, from the cue tip, in order to obtain
consistent and stabilised strikes (110mm is greater than the settling distance for the

maximum possible cue velocity as depicted in Figure 7.4).
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Fig. 7.4. The velocity variation of the cue against its travel for different control input

codes for the servo driver

7.1.3.2 Repeatability of the Robot

To make consistent measurements with the robot and to compare and contrast the
results that are obtained under different conditions, the robot’s performance should be
steady, i.e. it should be repeatable. The undesired dynamics of the mechanical setup,
such as vibrations and inconsistencies in the electromechanical components, such as
the servo used, can introduce inconsistencies into the system dynamics. Tests for
repeatability also ensure that the electronics of the system, as in the case of sending

pulses, also work steadily.
For these tests, the cue ball was kept at a particular position on the table and after each

shot it was replaced back to that same spot on the table. In order to do this, two steel

blocks were placed creating a wedge-shaped gap within which the cue ball was placed
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repeatedly not touching the blocks (camera measurements have shown that the cue
ball thus placed was within a tolerance of 0.2 mm). The cue was shot at a constant
speed repeatedly for 10 times and each time the cue ball motion was tracked. Results
were obtained for 3 sets of cue speeds: high, medium and low speed shots, with
velocity codes of ‘90p’, *150p’ and ‘190p’ respectively. No object ball was introduced
on the table. The reason is that, unlike the cue ball, it was very difficult to place the
object ball on the same spot on the table accurately, as any guide blocks cannot be
introduced into the playing area into which the cue ball is shot. However, to introduce
similar conditions to those present in ball-ball collisions, it was made sure that the cue
ball collided with the cushion. The high-speed shot for code ‘90p’, makes the ball
collide 3 times with the cushions (the shots were taken almost across the table) and
the ball travels for 3.5 m on the table. The ball under intermediate speed collides twice
with cushions and has a total length of travel of around 2.4 m, and the low speeds
shots make the ball have a single cushion collision with a .95 m distance of overall

ball movement.
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Fig. 7.5. Positioning results for 3 different speed shots around their respective mean

values
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The XY (i.e. the table coordinates) positioning results for the balls, when compared
with the respective overall average of X and Y values for each individual shot, are
plotted in Figure 7.5. For the single wall impact, low-speed shot, the positioning was
done within £ 15 mm. Whereas for the high-speed shot, with 3 successive wall
impacts, the ball was positioned within %150 mm, which is approximately 3 times the
ball diameter on each side of the mean. The reason for this deviation is that higher cue
speeds lead to larger vibration amplitudes in the cue launcher. This vibration in turn
affects th:; consistent hitting of the cue on the ball, and alters the hitting point.
Although very small, this change will vary the amount of spin imparted to the ball,
and this error propagates and becomes very large as the ball travels over longer
distances and makes more collisions with the cushion. In a game of snooker, players
mostly make use of the type of shot that is shown in Figure 7.1, the type of shots that
consist of a cue ball-object ball collision and a cue ball-cushion collision. At other
times, only a single collision between the cue ball and an object ball is employed.
Players do use very complicated shots only in the absence of such simpler shots.
Hence, the positioning repeatability of +50 mm for the intermediate speed shot, which
encounters two collisions and travels over a considerable length of 2.4 m, can be
assumed for the robot as well. In summary, the repeatability of the robot is assumed to

be equal to twice the ball diameter.

7.1.3.3 Cueing Dynamics

" The cueing model proposed by de la Torre Juarez [1994] incorporates all of the
effects that are present during cueing (see Section 2.4.1.1). The principal drawback
with this model is in the determination of the impulse forces, especially in estimating
the friction impulses between the cue and the cue ball. Even if the friction coefficient
between the cue-tip and the ball is assumed to be known, leading to the calculation of
the friction percussions, the directions of these percussions are difficult to determine
due to the high deformability of the cue tip. This difficulty in the application of a

theoretical model results in an experimentation-dependant approach.

For different cue offsets and cue speeds (V¢y, x'p and y'y, as shown in Figure 7.3), the
ball’s motion was tracked by the overhead camera. In order to evaluate the initial ball

spins, a single black pattern, such as the one used in Section 5.3, was kept upwards
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facing the overhead camera. The theory presented in Section 5.4 was planned to be
used to evaluate topspin and sidespin. This approach provides a mean to the

determination of cueing dynamics as it happens in the real world.

The robot was initially set to stun conditions by adjusting the stepper drives in order
to have x=0 and y’=0. Five shots of different speeds at approximately 0.5 m/s
intervals (in the range of 0.5 m/s to 2.8 m/s) were executed for the same ball position,
by replacing the ball back to the initial position after each shot. Also, the cue was
chalked well after each shot. For each shot the ball was placed such that the black
pattern was within the view of the overhead camera and the ball motion was recorded
at 180 fps (Figure 7.6). This very high-speed tracking introduces ‘error ball speeds’ of
up to 0.05 m/s (sub-pixel level errors are magnified due to the finer resolution of
time). Then y’p was varied from -12 mm to 12 mm in increments of 2 mm and for
each y’p, x’p was varied from zero to 12 mm also in 2 mm increments. For each
combination of xyand y s, 5 shots were played. Only right spin shots were played. As
the cueing dynamics have a symmetry about the x’y=0 line, the results obtained for

right spins of the ball can be easily translated to left spins as well.

Fig. 7.6. Testing for the cueing dynamics, the pattern and the ball are tracked
The initial ball speed was measured as described in Chapter 5. Additionally, for the

first few tracked points, an LMS error line was fit to obtain the direction of the ball

movement as well. This direction was compared to the direction value obtained for
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stun shots to obtain the deviation in the ball movement due to cue squirt. To calculate
the initial ball spins, when calculations were performed according to the theory
presented in Section 5.4, the values obtained for ng and @°, were found to be totally
unreasonable. For example, for shots with the slightest right-spin and zero topspin, the
algorithm was found to give very large values for both top and right spins. This is
possibly due to the drifting effect in the pattern-tracking that was found in Section 5.3,
which was identified as a problem with the uneven lighting conditions present over
the table area. This problem of estimating the initial ball spins is tackled in a different

way in the coming sections.

| o “10 X'o (mm)
Fig. 7.7. Variation of the cue ball speed V' against x5 and y s (measured in 2mm

increments), for a cue speed corresponding to velocity control string ‘70p’ (cue speed
~ 2.0 m/s)

Figure 7.7 shows the variation of ¥ with x’y and y’y for a cue velocity corresponding
to the *70p’ string sent to the servo drive. For such a constant cue speed, the cue ball’s
speed variation roughly resembles a dome having its apex around the point
corresponding to a stun shot (i.e. x 7=y '7=0). Hence, the velocity transfer from the cue
to the ball degrades as the cue is hit further away from the ‘stun’ point (this should be
compared with Figure 5.16). Cue squirt (« as shown in Figure 7.3) measurements for

the same cue speed are shown in Figure 7.8. A maximum squirt value of around 2.5°
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has been obtained. According to Figure 7.8, the squirt values almost remain the same
when x’p is kept constant and y s is changed. Hence, a general conclusion is that the
squirt increases with x s, and does not depend greatly on the value of y’s, which is
easy to understand intuitively, and also after the experimental work of Cross [2008],
which suggests that squirt values for a chalked cue tip can go up to 10°. However,
Cross’ measurements were performed on a cue ball hung by a string. When the cue
ball is on the table the resultant force of the normal and friction force components
(denoted by T in Figure 2.11) at the cue-cue ball interface will be countered by the
friction force at the cue ball-table interface, reducing the amount of squirt. Also, the
amount of squirt depends on the properties of the cue shaft. Cross [2008] also
concludes that thinner cue shafts can lead to reduced cue squirt because of their high

flexibility rather than due to their reduced mass.

16

y'0 (mm)

Fig. 7.8. Cue squirt values, a, against x y and y 'y (in 2Zmm increments), for a cue speed

corresponding to velocity control string *70p°

These experimental results for cue ball speed and cue squirt have to be generalised so
that for any given values of Vg x'p and y’y (also satisfying the constraints of
equations (7.6) and (7.7)), the values of ¥ and a can be estimated. This generalisation

of the dynamics can be performed in several ways. For example in a table tennis
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robot, to generate an appropriate paddle movement according to the incoming
conditions of the ball, an input-output map has been used [Matsushima et al. 2005,
Miyazaki et al. 2006]. For this table tennis robot, empirically-obtained results are
used to create the input-output maps of the dynamics, which essentially map out the
outgoing ball conditions against respective incoming ball conditions for different
paddle speeds and inclinations, and store them permanently in the memory of the
controller of the robot. When a query is put forward, a Locally Weighted Learning
(LWL) algorithm performs local interpolations, on the stored data, around the query
point [Miyazaki ef al. 2006]. However, the LWL method is memory expensive, as the
complete set of empirical data has to be always retained in the systerﬁ memory for
retrieval. Artificial Neural Networks (ANNs) are also used in similar situations. For
example Ming et al. [2006] use an ANN to derive the forward dynamics model of a
golf swing robot. An advantage with ANNSs is that once their training phase is over,

the experimental data can be discarded, hence they are memory efficient.

Here, a neural network solution is proposed. ANNs consist of several artificial
neurons (see Figure 7.9) that are arranged in different layers. A neuron j in the K
layer of the network is connected to all neurons in the (k—l)lh layer as well as in the

(k+1)" layer, but does not have any connectivity to any other neurons in its own layer.
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Fig. 7.9. An artificial neuron
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In a neuron as shown in Figure 7.9, the summation function is calculated by,

net" =wa,0,"‘"', where w¥ are known as connection weights. The activation
7

function can be expressed as Of =f (netf). A wide range of functions can be used for

/, the activation function. Even within a network, different activation functions can be

used for each of its layers.

Two backpropagation feedforward neural networks are trained to predict the cue ball
speed, ¥y, and cue squirt, o, separately for a given set of a cue velocity of V¢yp, and cue
offsets of x 'y and y'y. Feedforward networks are one of the most widely .used models
of ANNs, where the output of each node (also known as a neuron) propagates from
the input side (left) to the output side (right) unanimously [.iang et al. 1997}, as

shown in Figure 7.10. An error minimisation process usually trains the connection

weights, w'

" » where for each neuron the Least Mean Square (LMS) error between the

desired output 7; and the actual output O; is estimated as £ =%Z(T =0, )2 . In order

J
to minimise the LMS error rapidly, an iterative error reduction of the gradient descent
method (this is known as backpropagation, hence the name of the network) with an

added momentum term is carried out in the following fashion,

Aw‘f.,- (m + 1): n oF

k
X

+ pw' (m) where n is the learning rate, p is the momentum

coefficient, and m is the index of iteration.
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Fig. 7.10. A backpropagation feedforward neural network for predicting the value of

Vo

Since the input data are of dimension 3, the input layer (the one on the extreme left in
Figure 7.10) will have 3 nodes. The output of the network is essentially ¥V, so the
output layer has a single node. The network can have any number of hidden layers
(the intermediate layers) with any number of nodes. No standard procedure exists that
defines the exact number of layers and nodes to be used in the hidden layers for a
given problem. Selecting the hidden layer configuration is a trial and error process,
repeatedly evaluating the performance of the network. The neural networks are built
in the Matlab® Neural Network Toolbox, which makes the processes of creating and
training a network relatively simple. The prediction of the output value for any given
input to the networ.k is straightforward and performed with a simple command line
option. The network uses the hyperbolic tangent function as the activation function
(i.e. /) for its hidden layer and uses a linear activation function in its output layer
[Demuth and Beale 2001]. When a set of empirical data is given to the network, the
Toolbox sets aside some of the data for validation purposes and trains the network
with the remaining data. A 3-5-1 neuron network was found to give good results in
predicting both ¥, and a. The performance of the network trained for ¥jis shown in
Figure 7.11, which also shows the curve for the validation process carried out in

parallel with the training scheme. A trained network is stored in a MAT file format of
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Matlab® and can be called by a single-line command from within any M-file. The two

networks now represent the forward dynamic models for ¥ and a.

Best Validation Performance is 0.004023 at epoch 21
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Fig. 7.11 Performance of the network for ¥, during its training phase

Estimating ©’y and &°

Since the spin estimation using the pattern tracking did not provide reliable results, an
alternative way had to be found to estimate ' and ®°). Researchers have often used
the assumption of the cue tip gripping the cue ball during their impact [Cross 2008,
Shepard 2001, Alciatore 2004]. This is largely owing to the fact the cue tip is well
chalked before each shot, hence it has good frictional properties, and it is also flexible,
hence it can easily deform as necessitated by the cue-cue ball interface dynamics.
Being flexible and rough on its surface, the cue tip is assumed to grip the ball surface
as soon as the cue and the cue ball come into contact. To provide the evidence for the
instant gripping, Cross [2008] has performed a number of high-speed video-based
observations on a cue striking a glass surface, and the movement of the cue tip at the
interface. In fact, these high-speed camera-based measurements do show that the cue

tip grips onto the glass surface immediately after both come into contact.
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The assumption of instantaneous gripping as soon as the cue-tip touches the cue ball
makes it reasonable to assume that the force transfer from the cue to the ball is in the
direction of cue movement. Referring to Figure 7.3, the force component on the ball
due to the cue striking will be only a resolved component of it (0.113 times the force,
as siny=sin6.5°=0,113), which will give rise to a normal force at C. The friction force

acting on the ball is even less, as the normal force at C is further multiplied by 4,

estimated to be 0.21 in Section 5.1.1.2. When estimated, the friction force will only be
2% of the cue force. Moreover, it should also be noted here that de la Torre Juarez
[1994] also suggests that when the cue is held almost horizontal, the frictional
impulses from the table are negligible. The assumption of negligible frictional force
between the ball and the table (and hence friction percussion) provides a means to

- T s
estimate @' ¢ and w".

In the absence of friction forces, the effective value of the linear impulse transferred
to the ball is A, = MV,,. The coordinates of the cue hitting point were found io be
[xc,ye .20 ] in Section 7.1.2. As the cue impulse of 2. is the only impulse that is
assumed to act on the ball, the following expressions for the initial values of sidespin
and topspin can be written, denoting the moment of inertia of the ball by 7 (/ =
2MRY5),

5 _ x(r:Pc _ Sxé:Vu

Fele _2%cho 7.8

“ =7 IR? (7.8)
. yeP. SycV,

ol =2Yele _2¥c% 7.9
¢ 2R? (7:9)

Nominally, right spin and topspin are treated as positive quantities according to the

convention used in Figure 7.3.

7.1.4 Model for the Forward Dynamics
Figure 7.12 summarises the different elements involved in the forward dynamics of

the ball for the situation shown in Figure 7.1.
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(Section 6.2)

v

Ball sliding, rolling and sidespin
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h

Final cue and object ball positions
[xc, s Yo, land [x,, , yo, ]

Fig. 7.12. Forward dynamics model
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7.1.5 Definition of the Manipulation Problem

With reference to Figure 7.1, for a given cue ball location (C)), targeted object ball
(O,) and pocket (P|) combination, and to attain a certain desired final cue ball location
(Cp), the task is to determine the initial required parameters of the ball motion, given
by Vo. @9, @°, 6, and thereby establish the robot’s manipulation parameters Vg, x o,

y'a andB(V .

There can be other additional constraints such as other balls very close to the general
area of trajectories that limit the possible ball trajectories, and hence the solution
space, further. These constraints also have to be suitably tackled by the methodology
that is used to obtain the solutions. However, the objective here is to obtain a solution
for the fundamental manipulation problem defined above that is also depicted in
Figure 7.1. Once a solution methodology is obtained, additional complexities such as

additional balls in the vicinity can be treated as extended problems.

7.2 Manipulation Solutions

Now for all the interactions encountered in a regular shot, a form of descriptor for its
dynamics is established. The solution for the positioning task (this also includes the
potting of the object ball), set out in Section 7.1.4, is essentially an inverse one in
nature. But some of the descriptors of dynamics are not explicitly expressed by
equations, for example, the numerical solutions for the collisions and the empirical
model derived for cueing. This complexity prevents one from obtaining the inverse
solutions analytically. On top of this, there may arise situations where, due to the
properties inherent to the dynamics of the system, an inverse solution does not exist.
For example the object ball may not be able to be taken to Cp as required by the
strategy-planning element, for any combination of manipulation parameters 6., x',
y'o and Vg, 50 an option would be to take it to a position very close to Cp, for
instance to Cg (Figure 7.1). Hence, the direct inverse solution based approach is ruled
out. For positioning flat objects (axi-symmetric and polygonal ones) on a plane with

the action of sliding friction, Huang ef al. [1995] and Han and Park [2001] use inverse
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numerical algorithms. However, the dynamics are very complicated in snooker and

this approach cannot be used.

For a given positioning task, instead of finding a direct inverse solution, the
manipulation space can also be searched by u‘sing the forward dynamics models. A
possible solution can be found by trying to reduce the error in positioning, using a
forward motion model of the object, whilst satisfying any possible constraints on the
object motion. Various methodologies have Been used in this regard. The major types
of solutions used by various researchers are nonlinear optimisation [Mason 1999, Li
and Payandeh 2003b, Lynch and Black 2001], iterative learning control [Zhu ef al.
2006] and machine learning {Matsushima et al. 2005].

7.2.1 An Optimisation-based Solution

Here an optimisation-based approach is proposed. to position the balls on the table.
The optimisation function will have to be a composition of spatial errors between the
actual positions where the balls will end up, and the desired ball locations. The
conditions to ensure that the object ball is potted are also a part of the problem. This is
generally known as nonlinearly constrained optimisation, and can be defined as [Jang

et al. 1997], referring to Figure 7.1,

For ge®* and also subject to conditions in équations (7.2), (7.6) and (7.7),

Minimise F(g)= (xCD — X, )2 + (ycp - Y, )2

Subjectto [K(g)]<[L] where, g =[V,0. %,V .6, ] (7.10)

The matrix condition [K(g)]<[L] consists of two elements. This constraint ensures that

the object ball is potted by imposing conditions that the trajectory segment OO
should go up to the pocket Py (or go past it) and that the minimum distance between
the line segment and the centre of P1 must be less than 55 mm (for the ball to fall into

the pocket). To use analytical-method-based optimisation, F{g) has to be

differentiable with respect to the robot’s controllable variables ¢. Obtaining the
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derivatives (i.e. the gradients) of F(g) is not possible considering the difficulty in
expressing the forward dynamics of the ball algebraically, in terms of ¢, as described

earlier in this section. A numerical-based routine is still possible. Under similar
conditions, a quasi-Newtonian method has been used by Li and Payandeh [2003a] for
planar shding objects and by Lynch and Black [2001] for a batting manipulator. In
addition, many of the modern soft-computing methods such as Simulated Annealing,
Genetic Algorithms, and Downhill Simplex Search are used for derivative-free

optimisation [Jang ef al. 1997]. Here Genetic Algorithms (GAs) are to be used.

7.2.1.1 Genetic Alpgorithms

GAs encode each point in the parameter space (or state-space, here denoted by ¢)

into a binary bit string called a chromosome, and also associate each point with a
fitness value, which is related to the optimisation evaluated at that point. For example,
a state point ¢ = [2.0m/s, Srad, 4mm, 8 mm] of the robot can be represented by the

following chromosome:

0010010101001000

GAs usually keep'a set of points (chromosomes), instead of a single point, as a
population, and this population is evolved continuously to a better overall fitness
value. For each generation, a new population is constructed using genetic operations
like selection, crossover and mutation. This evolution procedure is such that the
chromosomes with better fitness values survive through to the next generation, and is
based on Darwinian models of evolution [Jang ef al. 1997]. The initial population 1s

usually selected randomly.

Selection

After evaluation, a new population has to be created from the current population. The
selection operation determines which chromosomes (also called parents) participate in
the production of offspring for the next generation. In order to do this, parents are

selected for mating with a selection probability proportional to their fitness values.
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Crossover

By crossover, it is generally hoped that good features of the current generation will be
retained in the successive generations, exploiting the current population’s potential.
Crossover is performed on selected pairs of parents with a probability equal to a given
crossover rate. Figure 7.13 shows a single point crossover, where a crossover point on
the parent chromosomes 1s selected at random and the chromosomeé are interchanged

at this point.
El)IIOI()O C)IIOIOI
=

o e e

Crossover Paint

Fig. 7.13. Crossover operation with parents a and b and children c and d

Mutation

In case the current population does not have all the encoded information needed to
solve the given optimisation problem, the crossover operator cannot lead to a
satisfactory solution. On the other hand, a mutation operator that spontaneously
generates new chromosomes can tackle this situation. The mutation operator is
designed such that it flips a bit in the chromosome with a probability equal to a very
low given mutation rate (Figure 7.14). The mutation rate is usually kept very low so

that the good chromosomes obtained from the crossover operation are not lost.

IO]OOl%rb)lOl()]i

Fig. 7.14. Mutation operation

There are also various different modifications to the general process described above
such as elitism, where certain best individuals from the current lot are passed on to the

next generation without applying any of the above evolutionary processes.

The evolution process is repeated and the solution with best fitness for the

optimisation is finally obtained.
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7.2.2 Implementation of the GA-Based Optimisation

The GA-based optimisation is performed in the Matlab® Optimization Toolbox. The
model describing the forward dynamics for the ball trajectory configuration shown in

Figure 7.1 is programmed as an M-file function having ¢ as its input. The numerical

impact models of the ball-ball and the ball-cushion collisions (they themselves are M-
file-based functions as described in Chapter 6) are called from within the forward
dynamics M-file. The trained neural network for the cueing, the data of which are
saved as a MAT file in Matlab®, is also used in the process. The straight-lines
representing the cushions have also been mathematically established in the table
coordinate system XY, using the overhead camera by placing the cue ball right next to
the cushions. Similarly, the pocket centres have also been obtained. Also, various
motions like straight-line sliding, rolling and curved motion profiles after collisions
have been programmed. The instantaneous value of sidespin is also estimated before
each collision. The constraints set out in equation (7.10) are also coded into the M-

file.

The initial cue ball location is determined using the overhead camera as described in
Chapter 5. A red ball is used as the object ball and its position on the table is
established by processing the R component of the RGB colour image sequences
obtained by the camera. These two parameters are embedded in the code. The desired
final cue ball location is also specified. The M-file is then called from the
Optimization Toolbox using its function handle and executed to deliver the best value

for g . Also, various plots for the optimisation process can be readily obtained from

the Toolbox.
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7.3 Results

7.3.1 Tests on the Forward Dynamics Model

Initially, the validity of the forward dynamics model that was developed in this thesis
was tested. If this was found to work well then the optimisation-based routine could
be used to find the robot parameters for a given trajectory requirement set by the
strategy subsystem. Initially the cue ball was placed before the robot and both the
robot and the cue ball were adjusted to obtain stun conditions. The cue inclination was
kept constantly at 6.5° with the horizontal. A shot was made (a stun shot) and the
direction of movement of the ball, #, was determined from the tracking performed by
the camera. This procedure essentially establishes the orientation of the cue, ¢, and if
the robot has a swivel control unit (a motor-encoder combination) this process will

not be needed.

Fig. 7.15. The configuration of the system before a shot was taken

Now the steppers were activated to place the cue on the ball at a given location (x

and y’p). The frontal support was also manually adjusted according to the stepper
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movement (Figure 7.15) and the front end of the cue holder was clamped. A velocity
string was sent from the PC to activate the servo (with a velocity V) and the
overhead camera was triggered simultaneously to start tracking the motion of the balls
(the camera was operated at 20fps because its ROI is a relatively large area). A typical
tracked trajectory of the balls is given in Figure 7.16 (only the region of the table
within the ROI settings is shown) where the cue ball also collides with the cushion
once. The tracking algorithm provides the successive ball locations by processing
every frame of the captured video. Hence, the final cue ball location and the equation
for the final line of movement for the object ball can be determined in the table

coordinate system XY.

\

Fig. 7.16. A typical cue ball-object ball trajectory

Now the initial cue ball location, [xc, yc], object ball location, [xg, yo|, the cue shift
from the stun location (x 'y, ¥'y) as set by the stepper drive, the cue orientation, ¢, and
its velocity Vep are passed to the forward dynamics model to predict the final cue ball
location and the final line of travel of the object ball. The line of the final object ball
motion was also considered, as the camera can only view the top-half table area and
the final object ball location could not always be obtained, as it may be outside the
camera ROI. However, the final line of travel for the object ball determines the
potting accuracy. Although it also has to go up to the pocket to fall in, this condition

can basically be ensured by increasing the cue ball velocity.
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Fig. 7.17. Model predicted and experimentally obtained trajectories

Figure 7.17 shows the plot containing the spatial positions of the model-predicted and
the camera-tracked values for the balls. The plot was obtained for a V¢ corresponding
to the ‘140p’ string, x’p = 6 mm and y’yp = -6 mm. The predicted plots only have the
initial ball positions, their final locations and the locations where the massé effect
stops (the massé type trajectory of the ball is usually encountered after every
collision). The cue inclination was 63.8° with the X-axis (measured by tracking a stun
shot). It can be seen that the object ball is aimed at a random direction and it is not
potted. The object ball can only be tracked up to a Y value of 1500 mm: at this
distance the camera’s field of view ends. The cue ball, in this case, was positioned to
within 47mm of the predicted spot (this value is less than the ball diameter). For the
object ball, to quantify the potting accuracy, the shortest distance between the actual
path and the predicted path are evaluated at the location where the prediction curve

meets the cushion (point C as shown in Figure 7.17). The cushion-predicted ball path
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intersection was selected as a reasonable location for evaluation, as all the pockets are
located along the cushions in snooker. For the shot shown above in Figure 7.17, the
deviation between the two points at the cushion was found to be around 15 mm. As
set out under the optimisation problem definition, this value can be up to 55 mm for
snooker pockets for the ball to be pocketed, given that the final ball movement has
adequate angles with the cushion for the ball not to be blocked by the cushion corners
close to the pockets. Hence, for this shot the model prediction worked very

satisfactorily.

1600
|
< -G, ball—predictedl
X
® O. ball-predicted | X
1400 - =
A C, ball-tracked X
X
X O.ball-tracked ol
X
= Stun line
1200 4 ;,Z(
X
X
—_ X
= X
E1000 4 %
o X
X
800 - -
600 -
400 T T
600 800 1000 1200
X (mm)

Fig. 7.18. Model-predicted and experimentally-obtained ball trajectories with the stun
line (only a part of the prediction for the object ball is shown)

Figure 7.18 shows the same shot as in Figure 7.17, but more focussed onto the region
of the observed ball trajectories, also showing the stun line, which is also the line of
action of the cue (However, even this resolution is not enough to visualise the effects

of cue squirt).
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More than twenty shots were predicted and then experimentally evaluated (see
Appendix 11 for some more results). Most of the time the object ball wall path was
found to be within 50mm of its predicted value, which is quite acceptable in terms of
the potting accuracy for the ball-pocket size configuration in snooker. Two attempts in
the set had higher values, suggesting non-potting. This is probabl).f due to the
occasional inconsistencies in cueing, like a slight miscue, possibly due to vibration-
induced effects in the robot. Also the repeatability characteristics of the robot, as
evaluated in Section 7.1.3.2, could have had an influence over these inconsistencies.
When it came to the positioning of the cue ball, positional error values in the range of

100-200mm were normally found.

With reference to Figure 7.1, if the next ball that is planned to be potted (O;) is
considerably far away (say, 750-1000 mm) from the intended (ideal) cue ball position
{Cp), the positioning accuracy of 100-250mm will not greatly affect the next shot, as
the angle of shot direction will not change drastically. However, if the next object ball
is close to the planned cue ball location, this level of positioning accuracy can be a
major concern, to the extent that the pre-planned object ball-pocket combination may
not be possible anymore. A possible solution for this problem is to modify the
strategy-planning element (the Al part) of the system so that this positioning error is
taken into consideration when planning the shot sequence. Furthermore, the location
of other balls in the vicinity of the intended cue ball location may also have an effect

on the outcomes of potting the next ball in view of the trajectory errors.

Since the shots were played in a half table area, errors can be higher when the whole
area of the table is used, as the shot lengths can be longer. The potting accuracy is still
within acceptable limits, when the errors obtained for the half table area are doubled
and compared with the potting requirements in snooker. However, the cue ball
positioning errors did occasionally reach values considerably higher than 0.5 m. This
could be attributed to the occasional high amplitude vibrations found when the robot
was clamped insufficiently to its front support. The front support is shown in Figure

7.15.
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7.3.2 Optimisation Algorithm Testing

As explained in Section 7.2, the coded M-file representing the forward ball dynamics
is called from the Matlab® Optimization Toolbox. The M-file is also provided with
the initial positions of the cue ball and the object ball; the left-side middle pocket is
targeted in this experiment and its location is included in the M-file. A function
tolerance value is used as the stopping criteria for the algorithm, where if the change
in the optimised function value between two iterations is found to be less than the
tolerance value set, the optimisation is terminated. The Toolbox is usually found to
output the optimised values of 8., x’y, y’p and V¢pin 3-4 minutes for a function (F in
equation 7.10) tolerance of 25x10°. This function tolerance is equivalent to a circular
area of 5 mm radius around the desired cue ball location Cp. A value of 5 mm was
deemed sufficient, as even this level of accuracy is not possible from the robot (for a
function tolerance of 10, which is equivalent to positioning the cue ball within 1
mm, the optimisation time goes up to 40 min). Occasionally, multiple optimal values
were also given, suggesting a multiple number of possibilities to obtain the specified

positional results (for example the one with or without a cushion-cue ball impact).

The Optimization Toolbox also has the option of plotting various parameters during
its search for the optimum solution. For example, Figure 7.19 is the plot of the
variation of the average distance between members in a population plotted against
~ successive generations during the search. The average distance is larger at the start of
the search because the chromosomes are initiated throughout the search space and
hence are spread out. Then, progressively, they all converge towards the optimum

value; hence the final distance value is zero.
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Fig. 7.19. Average distance between individuals in a population given for successive

generations
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For a 8, obtained from the GA-based optimisation it is not always possible to set the
cue launcher-mount accurately at that specific angle, since the table mount is very
heavy and repositioning is found to be very cumbersome. In order to experiment with
the results provided by the optimisation algorithm, the cue launcher was kept at a
positioﬁ for which the cue orientation 6. was known, and this value was embedded in
the code. Now the optimisation problem is of reduced dimensions (i.e. 3). The cue
" ball was placed on the table so that a stun shot could be executed by the robot. The
object ball was kept at a place where it seemed that it had chances 1o be potted for the
set cue orientation and cue ball position (the trajectory results for the object ball
obtained in Section 6.1 were consulted in this regard). A target post-shot cue ball

location was also provided to the algorithm.

For the following values of ¢ = 0.515 rad, [xc, y¢] = [698 mm, 562 mm], [xo.y0] =

[869 mm, 681 mm], and a desired cue ball location of [ x._, y. 1=[1250 mm, 0 mm],

the optimisation routine predicted the following parameters for the robot: Vgy
corresponding to string ‘73p’, x% = -11 mm and y = 0 (x’y and y'p were

approximated to the nearest millimetre).
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The shot that was executed for the above results obtained from the GA optimisation is
shown in Figure 7.20 (the pocket is not seen in the figure as it disappeared altogether
once the image was undistorted). The ball was potted and the cue ball ended up at 110

mm from its desired location, [ x- , v ]. The cue ball-cushion collision did not take

place.

Fig. 7.20. Tracking results of the executed optimal shot

For the above results, the computer program representing the forward dynamics
model was also executed and the intermediate slipping-rolling motion transition
locations were also estimated as described earlier in this section. They are plotted
together with the experimental values in Figure 7.21. These results make it possible to

conclude that the above optimisation routine works well for this problem.
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Fig. 7.21. Model predictions with experimental values for the optimal shot

Summary

In this chapter, the manipulation problem is defined with its appropriate background
information and the relevant information needed from the earlier chapters is
highlighted. A cueing model is established by combining experimental data with
neural nets. An optimisation solution with a Genetic Algorithm search is suggested,
programmed and finally tested for the positioning manipulation problem. The potting
accuracy (this was estimated by calculating the prediction error at the cushion, as
most of the shots were directed at random directions) was found to be very
satisfactory over the half table area where the experiments were performed. Generally,

a cue ball positioning accuracy in the range of 100-250 mm was also found.
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Chapter 8

OVERALL DISCUSSION

This chapter discusses the relative merits/demerits of the developed system,

approaches and methodologies.

8.1 System Design

The overall performance of the designed robotic system was found to be satisfactory
as far as the scope of this project is concerned. The system has produced a wide-range
of useful data that would be necessary for the design of an ‘ultimate’ robotic billiard/
snooker system, which was made possible by the very design of the system. However,
when it comes to the overall design of a system that could move around the table (or
over the table as in the case of gantry-based systems) a great deal of consideration
must be given to the rack-and-pinion-based cue manipulation solution. A servomotor-
driven rack and pinion solution has performed satisfactorily in closely controlling the
cue velocity and in manipulating the cue like a human, unlike the pneumatic powered
cues used in some other projects. However, the rotary to linear motion conversion is
observed to produce very high moments in the system necessitating a very rigid
reinforcement structure. This heavy structure, in turn, makes the systerﬁ very heavy to
move around the table. When the motor is actuated to drive the cue forward, the
whole cue launcher sways on the vertical plane that contains the cue. This at times
was found to lead to mis-hits, thus imparting a different spin to the ball, to that
required from the system. This swaying motion is due to an active couple in the said
vertical plane. The couple originates from the rotary to linear motion conversion at the
gears. A frontal support for the cue launcher as seen in Fig. 7.15 minimised the sway,
however, whenever the cue launcher was not adequately clamped, mis-hits were

observed.

Recent videos of the Queen’s University system also show that a shortened cue driven

by a custom made linear actuator produces reasonably good ball speeds |Deep Green
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2009]. As established in Section 5.1.4.1, the initial cue ball speed was only influenced
by the cue velocity and not by the inertia coupled to the driving side of the cue. Also,
considering the high flexibility of the cue, this raises doubts on whether the whole cue
is taking part in the momentum transfer to the ball or whether only the frontal part of
it actively drives the ball (Cross [2008] also makes an assumption to this effect when
formulating a theoretical model for the cue squirt dynamics). If only a considerable
front portion of the cue is found to actively participate in the momentum transfer (this
can be proved only after extensive tests with shortened cues and then comparing their
performances with the full-length ones), the cue may possibly be shortened, which
again simplifies the cue-launcher configuration and makes it more compact. Hence, a
shortened cue and a linear cue-driving configuration (without using a linear-rotary
motion conversion) may prove to be more suited to a full-scale snooker robot capable

of carrying the cue launcher easily around the table.

The stepper-based positioning system has lead to the manipulation of the cue ball with
different types of spins, in order to take it to different regions on the table, and this is
the first reported effort in that direction. Such a positioning system can also be
replaced for its functionality by an eye-in-hand camera systern and the employment of
the visual servoing technique to precisely position the cue before striking the ball.
Visual servoing may not be essential if a rigorous calibration procedure is performed
‘on the robot, whereby the robot’s position within the workspace (here the table area)
can be accurately determined from the robot’s joint encoder readings. However,
robots having multiple serial links are often prone to positioning errors and require a

visual servoing-based fine positioning arrangement.

The current system did not have a tilting facility to alter cue angles, and the cue
inclination was kept constant at 6.5° to the horizontal. A fully-fledged robot will need
this capability to deal with the balls that lie very close to the cushions as this situation

requires a steep cue angle to the horizontal in order to make contact with the ball.
To improve the testing facilities with the current system (for a complete table testing

procedure), a swivel actuator unit (a motor encoder combination) should be added to

the robot. Without a swivel control unit the potting accuracy of the robot had to be
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estimated at the cushion intersection of the object ball path, as it was cumbersome to

manually and accurately set a swivel angle calculated by the forward dynamics model.

8.2 Computer Vision and Related Issues

The uneven lighting conditions present over the table area did not greatly affect the
detection of the ball centres accurately, as the camera measurements were shown to be
accurate and validated by physical measurements. This has enabled the extensive
testing and reporting of the parameters found in the dynamics of snooker for the first
time by a reliable methodology (the reported work in the American Journal of Physics
is given in Appendix III). However, the efforts on the tracking of ball spin did not
provide very reliable results. The existing fluorescent lighting over the table was
found to produce excessive glare on the balls, leading to inconsistent detection of the
pattern as it changed its position during the ball movement. The table resistance to the
ball rotation about the vertical was measured by tracking the ball spin and this
important value has been used in the forward model of the ball motion. However,
three-dimensional spin-tracking is essential in establishing the cueing dynamics, as
the existing models do not provide useful results. Thus an in-situ testing procedure is

required.

The theories proposed in this thesis in relation to the impact dynamics of collisions
also need an accurate spin-tracking element to enable their validation by the

determination of ball spins prior to and after the impact.

8.3 Modelling of Collisions and other Dynamics

The model for the ball-cushion collision presented in this thesis is the first of its kind
to perform a 3-dimensional analysis of the collision and predict the post-impact
velocities and spin. Nevertheless, a further improvement to this model by a possible
Finite Element Modelling of the area contact prevailing during the collision will make
its predictio}ls more accurate. When performing an analysis of the ball-cushion

collision, a point contact was assumed between the cushion and the ball throughout
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the time of impact. On the other hand, the high-speed motion-capture of the ball-
cushion impulse performed by Alciatore [2008] and others reveals that the ball, in

fact, deforms the cushion and makes contact over an area.

The assumption of decoupled motion (that between sidespin and the linear motion
parameters like linear velocity and topspin) is based on the postulation of a point
contact between the ball and the table. This assumption is obviously not the case in
actuality, as the ball makes contact over an area on its surface; an evidence for the
area contact is the presence of rolling friction, which cannot exist under the
supposition of a point contact, as explained in Chapter 5. A detailed analysis on the
influence of the area contact condition on ball motion will lead to a better

understanding of the mechanics of rolling and sliding.

8.4 Manipulation Methods

This thesis explores the ways in which a snooker cue ball imparted with different
spins can position itself and an object ball at different ‘spatial positions on the table.
 For the first time, the connection between the standard, established, nonprehensile
manipulation methodologies and the problem of spatial positioning present in snooker
has been identified, and a relevant solution method has been proposed based on
optimisation. Since the gradient-based optimisation methods cannot be used for this
problem, a’ soft-computing based approach involving a Genetic Algorithm is
employed. This optimisation procedure is found to take 3-4 minutes to converge to the
optimal solution. Although this time is acceptable considering the slow nature of the
game, some alternative optimisation procedures can also be considered. For example,
Lynch and Black [2001] use a quasi-Newtonian nonlinear optimisation method for a
single degree of freedom puck-juggler. According to Lynch and Black, this algorithm
takes a few milliseconds to arrive at the optimal solution. Even though quasi-
Newtonian nonlinear optimisation is a function-based method, and there are
differences between the current problem and the one of Lynch and Black in terms of
the estimation of the gradient of the optimisation function, a possibility for
improvements in time is highlighted by the millisecond-level calculations reported by

Lynch and Black.
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Nonprehensile manipulation solutions are very useful in solving the problem of ball
positioning in snooker. It is a programming or semi-programming-based approach
where the knowledge about the dynamics of the object that is being manipulated is
exploited to inform the fobot on manipulation. There are alternatives to this approach.
One such method is machine learning where an explicit knowledge about the system’s
dynamics is not given to the robot controller. Of late, machine-learning techniques are
_increasingly used in modern game-playing systems. An element of machine learning
was used in establishing an Artificial Neural Network for the prediction of the cueing
dynamics. An overall approach from a machine learning perspective should be able to
correlate the final ball positions on the table with the robot control parameters, and
should not involve the intermediate motion parameters like velocities and ball spins in
its formulation. For example, Moore [1991] and Moore er al. [1995] implemented a
memory-based learning scheme on the MIT robot. By only concentrating on the stun
shots, and by changing the cue speed and the robot’s swivel angle (a facility to impart
different types of spin was not available in the robot), Moore ef al. used § features,
consisting of different length segments and various included angles of a ball s
trajectory. All 8 features are stored in the robot’s memory and when the robot is
presented with a new situation, local function approximating techniques are used to
find a solution. However, no efforts were made to position the cue ball. Moreover, the
manipulation by imparting spin adds an additional complexity to the problem. With
these additional cc;mplexities, the feature space could well be double the size of the
feature space used by Moore er al. [1995]. To establish a strong correlation between
the features and the solution space parameters (defined as ¢ in Chapter 7), hundreds or
possibly thousands of experiments may be required. This can only be performed ona
fully automated system like the Queen’s University robot [Deep Green 2009] and is
not feasible with the experimental setup used in the present project, as it takes a
longer time to move the system from place to place. Nevertheless, a breakdown of the
overall problem into small sub-problems may prove to work with the present setup.
For example, as performed for cueing, individua! machine-learning-based models can
be trained for the ball-ball collisions and the ball-cushion collisions with the aid of

spin tracking.
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8.5 Ball positioning performance

Experiments on ball positioning were performed within a table area of 5ft x 6ft.
Within this area of the table, an object ball potting accuracy of more than 90% was
obtained. In addition, the ball was positioned to an accuracy within the range of 100-
250mm, in general. These are the first reported research efforts on the post-shot
positioning of the cue ball. In its early stages of development, the Deep Green system
was claimed to have 67% potting accuracy [Long ef al. 2004] |; Deep Green plays on
a pool table of size 4 ft x 8ft. However, the Deep Green research has not reported on
the issues related to the cue ball positioning. In their latest publication, Greenspan et
al. |2008] state that the robot has pocketed runs of four consecutive balls, but no
quantitative figure is given for the ball potting accuracy. Here some facts concerning
the pocket and the ball sizes in pool and snooker must also be considered. In snooker,
all six pockets are 90 mm in size and the ball diameter is 52.5. If the mid-pocket entry
is considered to be ideal for a object ball in snooker, the margin of maximum
allowable error for a flawless entry (not touching the pockets) is around 19 mm, on
either side of the ideal line of entry. However the way the cushion near the pocket
entrance is shaped allows up to a 45 mm deviation for the corner pockets and a 55mm
for the middle pockets, in snooker. Pool balls are 52.5 mm in diameter. In pool, the
four corner pockets are 114-117 mm in size while the middle pockets measure 127-
130 mm [WPBA 2009]. This leaves a robot with the margin of error of 28.5 mm for
the corner pockets and 35 mm for the middle pockets, for a non contact-entry of the
object ball; thus, the maximum possible values can also be expected to be larger than
those in snooker. The preceding comparison underlines the fact that the ball potting is
difficult in snooker. Another implication is, if the same robot is employed to play both
the games, it will have a higher potting accuracy in pooi when compared to that in

snooker.

The performance of the current robot must be evaluated in light of other facts
concerning the robot and the forward dynamics model for the ball motion. The robot’s
repeatability in ball positioning was found to be around £50 mm and this, in turn, will
unquestionably affect the positioning accuracy of the robot. In addition, a very basic
model was-utilized to estimate the initial values of sidespin and topspin of the ball

immediately after cueing, using assumptions such as negligible friction from the table.
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Hence, the forward model itself is not perfect. Suggestions have been made earlier in
this chapter as to the improvements to the robot configuration that could possibly
further reduce the vibration and the associated mishit problems. In addition, other
suggestions in relation to spin tracking will lead to a more accurate model of cueing

that is critically important for the success of a snooker robot.
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Chapter 9

CONCLUSIONS AND FURTHER WORK

9.1 Conclusions

This thesis presents solution methodologies for the problem of manipulating snooker
balls to achieve positional play. The following main research noveltics have been

achieved to present an overall solution to the problem.

9.1.1 Machine Vision i

The capabilities of the overhead camera have been fully exploited, for the first time,
to obtain the values of various physical parameters using accurate tracking at higher
spatial and temporal resolutions. A broad range of tests on the dynamics of snooker
has been performed and a journal paper based on these tests i1s accepted for
publication in the American Journal of Physics. Some original efforts on ballspin
tracking have been reported, and a ball with sidespin ha;; been tracked using a single
pattern. Furthermore, in relation to the tests on snooker dynamics, a thin film force
sensor has been fixed to the snooker cue, so as not to affect its dynamics. Experiments
with the force sensor and the overhead camera that tracks both the cue and the cue
ball, have shown that the cue ball velocity is predominantly influenced by the cue

velocity, regardless of the inertia driving the cue.

9.1.2 Analysis of Collisions in Snooker

An all-inch‘lsive analysis of ball-ball collisions, incorporating all frictional effects, has
been carried out without making any assumptions about the slip patterns at the impact
point. Numerical analysis performed on the differential equations for the balls’®
motion, shows for the first time that the massé type spin will be imparted on the
object ball due to the frictional forces at the collision point, and that the object ball
will curve in its forward motion. A similar analysis has also been presented for the

ball-cushion collision with the final solution being realised using numerical analysis.
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9.1.3 Manipulation Methodologies

Using the results obtained from the high-speed camera and the numerical simulations
of impacts, in conjunction with an empirical model of cueing, a forward model for the
ball motion is put forward. A Genetic-Algorithm-based, gradient-free, optimisation
procedure achieves a potting accuracy of over 90% and a cue ball positioning
accuracy in the range of 100-250mm within a table area of 5 ft x 6 ft. The efforts on
the cue ball positioning and the use of nonprehensile manipulation methods for this

task .are the first of their kind.

9.2 Recommendations for Further Work

The spin-tracking element has to be perfected, using very controlled lighting
conditions, so that accurate spin transfer characteristics from the cueing operation can
be determined. The present author believes that establishing the cueing dynamics
accurately is crucial to the success of the project of creating a fully automatic snooker
system, an aspect that has, hitherto, not been addressed in the literature in much detail.
The theory on estimating sidespin and topspin of the ball over a limited area on the
table by using a single overhead camera and a single circular pattern on the ball can
be used. For the ball-cushion collision, the effects on the two making a surface contact
must be investigated using Finite Element Models in order to achieve a better
understanding of its dynamics. A spin-tracker will also validate the results of the

collision models presented in this thesis.

The optimisation problem can possibly be reformulated giving lesser weight to the
solutions where multiple impacts that may give rise to additional uncertainties will be
present. For example, a forward solution with only a cue ball-object ball impact
should be given an advantage over a solution where the cue ball makes an additional

impact with the cushion before positioning itself to the desired location.
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APPENDIX I: HARDWARE DETAILS

CONTROL OF SureServo™ SERVOMOTOR BY EXTERNAL PULSES

(Connact 1o extarnal +5 VOC sourda)
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GENERAL PROGRAMMING BOARD

(IENSYS® BOARD INCORPOARATED WITH A PIC 18F458

MICROCONTROLLER)
J7 J6
Pot C'DHi  PortC/DLlo
[ (7Y 8 | 1 - AS232 J2 -DC Power In
] (.:)Jzac‘( 1 o 20 Socket Outer GND
o ! 1 NC Inner 9-25V dc
D JB 2 XD smoothad
J‘l 112 .Pi CAN Bus 3 RXD
N C 4 DSR J3 — uCHIPICD
D : 0 Power 5 o : MCLR/VPP
2, 7 CTS 2. 45V
J3 8  RTS 3 GND
(D 9 NG 4 RB7/PGD
5 RB6/PGC
L - ) — ] 6 RB5/PGM
J4 J5 .
Port B Analogue TNl
J4-Port B Js — Analogue J6—PortC/D Lo J7 — Port C/D Hi
1 GND 1 GND 1 GND 1 GND
2 RBO/INTO 2 RAO/ANC 2 RCO/T{OSO 2 RC4/SDI
3 RB1/INT1 3 RA1/AN1 3 RC1/T10SI 3 RC5/SDO
4 RB2/CANTX 4 RAZ2/AN2 4 RC2/CCP1 4 RC6/TX
5 AB3/CANRX 5 RA3/AN3 5 - RC3/SCK 5 RC7/RX
6 RB4 6 RAS/AN4 6 RDO/PSPO 6 RD4/P1A
7 RB5/PGM J12,3 7 REO/ANS 7 RD1/PSP1 7 RD5/P1B
8 RB6/PGC Ji12,4 8 RE1/ANG 8 RD2/PSP2 8 RD6/P1C
9 RB7/PGD J12,5 9 RE2/ANT 9 RD3/PSP3 9 RD7/P1D
10 Ve (+5v) 10 Vg (+5v 10 Ve (+5v) 10 Vec (+5v)
J8 - CAN Bus J10 - Expanaion J11 - Expansion
1 CAN In Hi 1 Vee (+5v) 1 GND
2 CAN In Lo p RCO/T10S0 2 RBO/INTO
3 CAN Out Hi 3 RC2/CCP1 3 CANH
4 Can Out Lo 4 RDO/PSPO 4 RB5/PGM
5 RD2/PSP2 5 RB7/PGD
6 RC4/SDI 5 RAO/ANO
7 RC6//TX 7 RA2/AN2
8 RD4/P1A 8 RA4/TOCKI (1WB)
9 RD&/P1C 9 REO/ANS
10 vdd (+12v) 10 RE2/ANT
J9 — Power & Reset 11 GND 11 GND
12 RD7/P1D 12 RE1/ANG
1 vad 13 RD5/P18 13 RAS/AN4
2 Vdd 14 RC7/RX 14 RA3/AN3
3 GND 15 RCS/SDO 15 RA1/AN1
4 GND 16 RD3/PSP3 16 MCLR
5 Vee 17 RD1/PSP1 17 RB6/PGC
8 Vee 18 RC3/SCK 18 RB4
7 RA4TOCKI (1WE) 19 RC1/T10SI 19 CANL
8 MCLR 20 RA6 20 RB1/INT1

J12 - JUMPERS [defauit]

Qe wh =

CTS Disconnect — removal allows use of RC4 fabsent — no CTS handshake]
RX Disconnect - removal aflows use of RC7 [fitted — AS232 active]
RB5 - aliows use of port when ICD not inuse fabsent — {CD in use]
RB6 — allows use of port when ICD not in use [absent - ICD in use]
RE7 - allows use of port when ICD not in use fabsent — ICD in use}
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PIXELINK CAMERA PL-B776

Specifications

Colour / Mono

Resolution

Frame Rate at Full Resolution
Sensor Type

Shutter Type

Lens Format

Pixel Pitch

Sensor Diagonal

Bit Depth

Power Consumption (Watts)
Variable ROI

Right-angle Capable

Interface (FireWire)

Camera Features via FireWire

Trigger Options

General Purpose Cutputs

Image Quality Measures

Responsivity (Peak)
Dynamic Range
FPN

PRNU

Read Noise

Colour
2048 x 1536
12
CMOS
Rolling
cl172»
3.2 um
8.19 mm
8orl0
32W
Yes

Yes

6 pins x 2

Hardware - Optically Isolated 5-12V
@ 4-11mA, Software and Free
Running

2 Optically Isolated - Maximum 40V
Differential. Maximum 15mA

1.8DN/(nl/cm?)
60 dB

< 1%

< 1%

<1DN
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Camera Calibration Results

The values of intrinsic parameters generated for the current camera setup are given

below. Refer to htip://www.vision.caltech.eduw/bouguetj/calib doc/ or Heikkila and

Silven [1997], for an explanation of the concepts.

Intrinsic Parameters:

Focal length in pixels, fc = [fc(1) fe(2)] = [1798.6, 1797.8]

Principal point coordinates, ce= [ce(1) ce(2)] = [1070.4, 738.9]

Skew coefficient defining the angle between the x and y pixel axes, alpha_c¢ =0
Image distortion coefficients (radial and tangential coefficients),

ke = [-0.3363, 0.1408, 0.0006, 0.0012, 0].

Extrinsic parameters:

0.009334 0.999954  0.002338 —559.748458
Re=|0999825 —0.009371 0.016206 |, Tc ={~613.678549
0.016227 0.002186 —0.999866 1710.132676

Where the values of elements of Tc¢ are in mm and the camera coordinate frame and

the world frame OXYZ are related by the equation,

XX.=Rc*XX+Tc
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FlexiForce® FORCE SENSOR

e B hFIc.meccr_ R O
A LT T= ¥ b dGa s 500 ] a J

Ffex:Force A2071 Sensor

Specifications
Thickness (.208 mm
Leﬁgth 203 mm
Width 14 mm
Connector 3-pin male connector
Linearity error <+ 3%
Repeatability < 2.5%
Hysteresis <4.5%
Drift <5%
Response time <5us
Operating Temperature -9°Cto 60 °C
Force range 0-440 N*
Température sensitivity Output variance up to 0.36% per °£3

* To measure above 440 N apply a Jower drive and reduce the resistance of the
feedback resistor (1 k€2 minimum; see driving circuit)
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Driving Circuit

Veu

n - 'V1 > (R!/BS)

K

S

K-V
l{ ;:EY&FW:E__J—‘ ,Vour
' MCP 5001
oV’
— 1
V, -5v
POWER

Typical Response Curve

Vout (V)

50

40

30

20

* Supply Voltages should be constant

** Reference Resistance R_Is 1kQ to 100k%2
Sensor Resistance Rg at no load is >5MQ
Max recommended current is 2.5mA

e

=

0 20 40 60 &0 100
Farce (Ibs)
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Some Pictures of the Robotic System
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APPENDIX II: BALL POSITIONING RESULTS

Here some of the shots that were executed to test the validity of the forward dynamics

model are given.

Ve: 100p° , x’p = 8 mm, y s = -6 mm, 6= 29.5°.

4000

7000
¢ C. ball-predicted
® O. ball-predicted
4 C. ball-tracked
6000 4 ¥ X O.bal-tracked
x cushion
® pocket
5000 - 4 [— Cushion linc
4000 4
3000 -
E
E
>
2000 A
1000 4
0 T L] L] L
1000 2000 3000
-1000
-2000
X (mm)

Cue ball positioning error: 83 mm. A cue ball-cushion collision is predicted by the

dynamics model, whereas no such collision occurred in the shot.

Error in the object ball path (estimated at the cushion intersection of the predicted

path): 12 mm.
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Ve: <100p° ,x°p =0 mm, y’p=-10 mm, f¢ = 29.5°.

7000
| & C. balkpredicted
| ® 0. ball-predicted
60007 | , C. baltracked | T
X 0O.ball-tracked
x cushion
5000 ® pocket T
4000 - X
}_QOO - b 4
et
2000 - X
1000 4
@
0 0 Ll L ]
0 500 1000 1500 2000 2500 3000
-1000 -
-2000
X (mm)

Cue ball positioning error: 248 mm. A cue ball-cushion collision is predicted by the
dynamics model, whereas no such collision occurred in the shot.
Error in the object ball path (estimated at the cushion intersection of the predicted

path): 100 mm.
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Ve: *140p° , x'p=0mm, y’p = -10 mm, 8¢ = 29.5°.

| 7000 |
| i o C. bal-predicted i
60001 | ™ O.ballpredicted X |
| 4 C. ball-tracked | |
i | X O.bal-tracked | |
150004 | x cushion | * |
' | @ pocket ‘ |
| | e g i
140004 | \ | |
. |
|
| |
- i |
=
| 2000 + ¥ |
|
1000 A
| @
| ‘ :
0 ' . JF '
| (] 500 1000 1500 2000
| |
~1000 A ] |
| |
| |
2000 |
| X (mm) |

Cue ball positioning error: 303 mm. A cue ball-cushion collision is predicted by the

dynamics model, whereas no such collision occurred in the shot.

Error in the object ball path (estimated at the cushion intersection of the predicted

path): 29 mm.
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Ve: “160p° , x’p =0 mm, y o= 0 mm, fc = 29.5°.

2000

7000
¢ C. ball-predicted
B O. ball-predicted
6000 4| & C.ball-tracked ¥
X O.ball-tracked
x cushion
5000 - ® pocket *
4000 ¥
3000 A p
o]
2000 4 X
1000 4
0 L] ¥ L]
$ 500 1000 1500
-1000 4
-2000
X (mm)

Cue ball positioning error: 74 mm. A cue ball-cushion collision is predicted by the

dynamics model, whereas no such collision occurred in the shot.

Error in the object ball path (estimated at the cushion intersection of the predicted

path): 22 mm.
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Ve: “100p° , x o= 0 mm, yp= 10 mm, 6. = 63.8°.

9000
| 8000 - .
i |
| 7000 - |
|
' 6000 - » \
| |
' 5000 4 *
\ |
| 4000 - X |
£
Pe
3000 1 : o C. balkpredicted
® O. ball-predicted
| a C.bal-tracked |
2000 | % O.bal-tracked |
: ' x cushion ‘
| | ® pocket ‘
| 1000 - b |
| |2 ]
0 L v L]
| dho
| 0 2000 3000 4000 5000
-1000 -
|
1-2000

. X (mm)

Cue ball positioning error could not be obtained as top spin was imparted to the cue
ball in this case, and this took the cue ball further away at the direction of the object
ball and eventually disappeared from the field of view. However the angle at which
the cue ball was travelling coincided with the one that was predicted by the model
indicating that it could end somewhere close to the predicted position. Error in the

object ball path (estimated at the cushion intersection of the predicted path): 15 mm.
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Ve: f100p” ,x'p =6 mm, yp = -6 mm, & = 63.8°.

{
| 7000
' < C. balk-predicted
B O. ball-predicted ;
6000 - A C. balktracked
X O.ball-tracked
x cushion
® pocket
5000 - + Series7
—— Linear (Series7)
4000 4 3
3000 4
£
E
o
2000 -
1000 1
o
L 2000
-1000 -
-2000 X ()

Cue ball positioning error: 930mm.

Object ball deviation (estimated at a distance of 2 m from the ball-ball collision
location): around 160 mm. The object ball will not be potted for the distance of 2m
from the collision location..

Such a large variation in both the positioning parameters suggests that a mishit may
have happened due to jerk-induced vibration in the system, this especially happens
whenever the front part of the robot was not properly clamped to the cue rest that sits
on the table.
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Application of high-speed imaging'to determine the dynamics of billiards

S. Mathavan,® M. R. Jackson,”

and R. M. Parkin®

Mechatronics Research Group, Wolfson School of Mechanical and Manufacturing Engincering,
Loughborough University, Loughborough LEN 3JUZ, United Kingdom

(Received 19 December 2008; accepted 2 June 2009)

In spite of interest in the dynamics of the billiards family of games (for example, pool and snooker),
experiments using present-day inexpensive and easily accessible cameras have not been reported.
We use a single high-spced camera and image processing technigues to track the trajectory of
snooker balls 10 1 mm accuracy. Successive ball positions are used to measure the dynamical
parameters involved in snooker. Values for the rolling and the sliding coefficients of friction were
found. The cushion-ball impact was studied (or impacts perpendicular to the cushion. The separation
angles and scparation velocities afier an oblique collision were measured and compared with
predicted values. Our measurement technique is a simple, reliable, fast. and nonintrusive method,
which can be used (o test the numerous theories for the dynamics of billiards. The addition of a spin
tracking clement would further broaden its capabilitics. © 2009 American Association of Physics Teachers.

[DOI: 10.1119/1.3157159]

L INTRODUCTION

Pool and snooker are popular billiard games. Billiard
games involve very subtle physics and have been of interest
10 the physics community lor over 200 years. The ﬁrst CX-
tensive treatment of billiards was by Coriolis in 1835 Other
works, such as lhosc of Wallace and SLhrocdcr Salazar and
Sanchez-Lavega,® and de la Torre Judrer,® address the dy-
namics of blll:ards There have been both theory and experi-
mental works® on the dynamics.

Special apparatus have been used for the measurements in
most instances. For example, glass and textured black for-
mica was used to repluce 1hc. ldbl(, felt in studying the colli-
sions between billiard balls.” Tracking techniques such as
spreading lalcum powder on the surface of the table have
also been empioycd Many of these techniques aifect thc
dynamics that is being studied. Although Bayes and Scot®
used a Polaroid camera and a stroboscope to track the balls,
they did not base their results on this setup probably due to
the poor accuracy of the cameras in the 196(s. As recent as
1994, rudimentary techniques were still used to estimate the
physical parameters in billiard dynamics. For example,
Marlow® used a melter stick and a stop waltch 10 measure
friction cocificients.

Today's echnologies allow the high resolution tracking of

objects High-speed tracking technologies are cxlensivcl%
used in JSports such as football, teonis, and cricket.
Alciatore” used high-speed video Cdplure to visualize the dy-
namics in the game of pool. Alciatore' also used infrared
imaging to visualize the collision points. However, he did not
analyze the images to extract the physical parameters in-
volved in the dynamics. Cross'' employed a video camera to
measure the ball velocity and batl spin using an overhead
camera and analyzed squirt dynamics in a cue ball suspended
as a pendulum bob. Researchers tnvolved in robotic billiards
have also used overhcad cameras to locate the static ball
positions on the table.'*™"*

In this paper we use high-speed camera based tracking to
measure the characteristics of the intcractions between the
cue ball, table, and object ball. Accurate spatial and temporal
tracking of the ball and the use of speed-time plot of the balls
allow us to distinguish the different phases of ball dynamics,
such as sliding, rolling, and impulses. The accurate detection

788 Am. ). Phys. 77 (9). September 2009
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of the changes in the phases of the ball motion allows us to
measure the parameters more accurately than has been done.
The use of speed-time plots also atlows us 10 measure Lhe
effects of special collision between two balls, such as “over-
spinning,” which has only been qualitatively described in the
literature.

H. EXPERIMENTAL SETUP

A Riley Renaissance type snooker table with dimensions
of 10X 5 ft? was installed in our laboratory (see Fig. 1). This
brand is the official table of the World Snocker Association
and has becen used for its professional snooker tournaments
since 1992,

The tables used in pool and snooker are almost identical,
except that the pool table has larger pockets compared to the
size of a pool ball. At the start of a game there are 21 cotored
balls worth various points and a while cue ball at prcdcl"ncd
places on the table.

A machine vision camera was mounted on the ceiling,
right above the snooker table, looking vertically downward
{(Fig. ). A single camera is sufficient to capture the dynamics
because the dynamics is confined to the table surface. The
color camera is PixeLINK PL-B776F with 3.15 X 10° pixcl
resolution. The camera is connected to a host personal com-
puter via FIREWIRE. For the region of interest option the cam-
cra is capable of capturing up to 1000 frames per sccond
(fps). This feature of the camcra was used whenever it was
necessary to analyze the dynamics at finer temporal resolu-
tions. The camera is fitted with a wide-angle lens to capture
thc whole table from the limited available hcadspace be-
tween the snooker table and the ceiling. The wable area is
imaged to a | mm spatial resolution with the current setup of
the camera.

To verify that the measurements made by the camera are
accurate, some distance measurcments were also made with
a meter stick. For this purpose two rectangular blocks with a
height of the ball radius and with circular white patterns on
their top surfaces were placed al two locations on the Lable.
Circular patterns of diameter of 52.4 mm (the ball diameter)
were used so thal the camera and the image processing algo-
rithm would treat them as balls. The distance between their
centers was obtained using the camera and the meter stick.

© 2009 American Association of Physics Teachers 788




Fig. 1. Snooker table and ceiling-mounted machine vision camera in the
mechatronics laboratory. Note the hendspace and the vertical mount of the
camera o look perpendicularly down at the mble

We used this method because it was very cumbersome (o
physically measure the center distance between two snooker
balls because the balls change position with the slightest
touch. This procedure was repeated for several random posi-
tions of the blocks almost covering the whole imaged area of
the table. The differences in the measurements by the two
methods were found to be at most 2 mm, validating the re-
sults from the imaging system. The video and image han-
dling and the image processing were performed using MAT-
LAB

A. Methods

Before measurements could be made on the images from a
camera, two calibrations were done. The intrinsic camera
calibration was performed to correct for the lens distortion
that is present in wide-angle lenses [see Fig. 2(a)]. The cam-
era calibration toolbox from the Computational Vision Group
at Caltech was used in conjunction with MATLAB to calibrate
the camera; for a detailed description of the procedure, see
Ref. 16.

The MATLAB toolbox also incorporates an extrinsic cali-
bration e¢lement. The extrinsic calibration procedure enables
metric measurements to be made from the values given in
terms of pixels. This procedure provides the translation and
rotation matrices that relate the real world coordinate system
to the image plane (see Fig. 3). The equation for the trans-
formation between a point in the world frame xyz to its cor-
responding image point in the camera fame x'y'z" is x’
=Rc"x+Tc, where Re and Tc are the rotation and translation
matrices, |'c~pccti\cl)‘.'

A real world coordinate system was selected such that it
was fixed 1o the snooker table so that two of its axes lie along
the two perpendicular edges of the table and both x and y lie
on the imaginary plane that is created by the ball centers [see
Fig. 2(b)], which is 26.2 mm above the table surface. The

(a)

Fig. 2. (a) Distorted and (b) corrected images of the half table (note the
barrel distortion due 10 the wide-angle lens) with the checkerboard pattern

for extrinsi¢ camera calibration, placed on the table
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A Camera "-‘ 3 )
/./1 coordinate system — Jux
u oy ' c e ’.l'
e | Optical axis |
-— C A | \ 'y
- aadl ‘;,//‘/t
’ o
Real World
Image coordinale system

coordinate system

Fig. 3. The pinhole camera model shows how & real world point X is pro
jected as X' on the camera image plane wwv, through the optical center C of
the lens. Also note how the camera frame x

of the lens

is fixed to the optical center

experiments were performed in halfl of the table arca to ob-
tain better spatial resolution from the camera. The image blur
due to fast moving balls was minimized by selecting the
lowest possible camera shutter opening time. Image se-
quences with high image blurs were not analyzed. Quantifi-
cation was donc by counting the number of pixels in a blur
and then comparing it with the number of pixels found in a
stationary ball.

B. Image processing

An image processing program was wrilten to execute the
following operations., The video was captured and then split
into image frames. The images were then converted into gray
scale images. Each of these gray scale images were then
transformed to binary images using an appropriate threshold
value of the image intensity. A treatment of these concepts
can be found in textbooks on digital image processing such
as that of Gonzalez and Woods.'® Then the image processing
program to extract the ball centroid was executed. Two func-
tions from the MATLAB Image Processing Toolbox called bw-
label and regionprops were used to extract the ball from the
image, thus determining its centroid in pixels. The real world
coordinates of the ball centroid are obtained using the trans-
formation matrices Rc and Tc from the extrinsic calibration
procedure, The time stamping of these values based on the
camera frame rate enables us to calculate the velocities and
accelerations of the ball.

III. RESULTS AND DISCUSSION

The tracked cue ball is shown with its initial position on
the snooker table in Fig. 4. The spatial separation between
the successive tracked centroids indicates the variation in the
ball's velocity.

Fig. 4. The tracked cue ball positions (the centroid of the ball is shown by
the white markers) are superimposed on the image at the start of the wrack
ing, also showing the initial cue ball location (four consecutive impacts with

two parallel cushions are shown)

Mathavan, Juckson, and Parkin



Fig. 5. The buall rolting oo the table. It shows the forces that are acting on the
ball while it is rolling. Note the reaction force from the table S, which is a
combined effect of the “regulur” normal reaction from the table and, most
impaonantly, due to of the table-felt under the weight of the moving bail. The
horizontal component of §, § sin 8, decelerates the ball.

A. Ball motion against surface friction on the table

When there is no relative velocity between the ball and the
1able at their contact point, the ball is said 1o roll on the table.
During the rolling the lincar and angular velocities of the
ball, V¥ and 2, respectively, satisfy the relation V=R(}, with
R the ball radius. Because the table-felt is deformable and the
ball 1s rigid, the table surface deforms when the ball is in
motion as shown in Fig. 5. Hence the ball makes contact
with the 1able over an extended area. According to Ref. 19
this deformation is independent of V. The table cloth defor-
mation results in a normal reaction force S from the table at
an angle 8 with the vertical, inclined from the moving direc-
tion of the ball as shown in Fig. 5. For an extensive treatment
of this deformation, see Refs. 19 and 20.

According to Fig. 5, the reaction force § has a horizontal
component equal to § sin £, which opposes (he ball motion,
Generally the reaction force § does not go through the cen-
troid of the ball, and hence there is a torque acting in the
opposite direction to that of the angular velocity ), resulling
in angular deceleration. The rolling friction coefficient does
not change with the ball’s velocity and is a constant because
it depends only on the surface propertics of the table-felt and
the geometry and mass of the ball,

Figure 6 shows the variation in the ball's velocily with
respect to time. Once the impulse is delivered to the ball, the

e
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Ball speed (nv's)

bl
.

Time (5)

Fig. 6. The speed-time plot for the ball showing all the different phenomena
involved from the video caplured at 42 fps (the complete motion profile
until the ball comes 10 the rest is not shown here).
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ball's velocity decreasces rapidly during what is known as the
sliding phase, and then the ball starts (o roll. Reference 3
showed that the ball starts to roll immediately only when the
ball is hit horizontally at a height of 7R/5 from the table
surface. In Fig. 6 the velocity gradient during the rolling
phase gives the value of the deceleration due to rolling fric-
tion, Different shots were tracked and the deceleration during
the rolling phase was found to be 0.124-0.126 m/s?. The
rolling [riction cocfficient, which is usually cxpressed as a
fraction of the gravnatlonal acceleration 9.81 m/s%, is
0.0127-0.0129. Marlow® suggested a range of 0.011-0.024
for pocket billiards (pool} and a mcan value of 0.016. Al-
though the physical propertics of the ball and table are dif-
ferent in pool and snooker, there is no obvious reason for this
cxcessive variation (more than 100% of the lower value)
obtained in peol with Marlow’s measurements. The only
plausible explanation is that the meter stick and stop watch
mecasurement method used by Marlow is prone (o crror. Al-
though Williams®' claimed that the nap of the table-felt af-
fects the ball motion, depending on whether its motion is
toward the top cushion or away from it, we did not find any
evidence to support this claim,

When there is a relative velocity between the ball and the
table at their point of contact. the ball is said to slip on the
iable. In the sliding phase V= R(}. For a theoretical treatment
of all the possible cases of ball motion immediately after the
cue impact, sec Ref. 3. The friction that exists during the
sliding motion {the sliding coefficient of friction) usually de-
pends on the sliding velocity of the ball. The ball speed-time
plot given in Fig. 6 shows that the sliding friction is much
larger than the rolling friction, disappears within a very short
time interval, and quickly diminishes with the velocity. An-
other interesting obscrvation from this plot is (hat after the
ball has started its rolling motion, il starts to slide again (note
the speed gradicnts immedimtely after the impacts) when it
collides with the cushion (table wall/rail) because the cush-
jon impact violates the V=R(} rolling condition. Once V
=R is reached again, the ball goes into the pure rolling
mode.

From the analysis of the speed of the tracked ball, the -
sliding friction coefficient was found to be in the range of
1.75-2.40 m/s? (0.178-0.245 in dimensionless units).
These values were obtained for the ball motion wlong random
directions on the table. Marlow® calculated a dimensionless
value of 0.2 for pool using the rolling coefficient value of
0.016. An indcpendent measurement was not performed be-
cause only a meter "illck and a stop watch were available.
Witers and Duymelinck™ used stroboscopic illumination to
photograph a decelerating pool {not snooker) ball. They
found that when the ball velocity increases from zero, the
friction coefficient approaches 0.21 from a value of 0.14,
Such a varation could not be verified from our cxperiments.

The stiding friction is 15-20 times larger than the rolling
friction. Alse, during the sliding phase some rolling action
will simultancousty take place, as the displacement effect,
shown in Fig. 3, is always present at the ball-table interface.
Due (0 its comparatively small magnitude (approximately
5%}, it is usually ncglcctcd and the motion is treated as pure
shiding.

B. Ball-cushion interaction

To visvalize and analyze the impulse dynamics between
the ball and the cushion, high-speed image capturing experi-
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Fig. 7. Bounge of the cue ball off the rail. The ball location depicts its
position as it approached the rail. The frame rate is 120 fps, and an imagi-
nary continuous white line shows the approximate location of the cushion.

ments with > 100 fps for small regions of interest were per-
formed. The impulse of the cue ball on the cushion depends
on factors such as the speed al which it collides with the
cushion surface, the incident angle with respect to the cush-
ion surface, the amaount of spin of the ball, the physical char-
acteristics of the ball and the cushion, and the parameters
involved in the intcraction between the ball and the cushion
such as the coefficient of restitution and the surface friction.

Spin on the ball changes the impact characieristics drasti-
cully. Ball spin is difficult to quantify with our experimental
setup and methodology. Sidespin changes the postimpulse
cue ball path significantly; the interested reader is directed 1o
Rel. 23 or Ref. 9. The ball-cushion interaction is a case of
multiple impacts, both normal and tangential, the latter due
1o the force of friction, with one component normal to the
cushion surface, and the other (wo perpendicular frictional
impacts from the cushion wall. Derivations of the dynamics
for general impact are not available.

For this reason we conducted ¢xperiments on shots with-
oul considerable sidespin. Care was taken so that a shot was
directed perpendicular 1o the rails (cushions) as much as pos-
sible. Whenever the cue ball is played perpendicular to the
rails, if it does not have any sidespin and should bounce back
along the same path along which it approached the rail. This
criterion was used to ensure that the shots did not impart a
considerable sidespin on the cue ball. Figure 7{(a) shows a
perpendicular shot with no sidespin, and Fig. 7(b) shows a
perpendicular incoming shot that apparently has some side-
spin, which results in the ball rebounding to the right side,
For the rebound analysis the shot shown in Fig. 7(b) was not
used, and only the onc shown in Fig. 7(a) was used. The
no-sidespin condition ensures that there is only one unknown
in the form of top/back spin.
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Fig. 8. The tracked resulis for a batl-cushion impulse {at 150 fps). |
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If we assume that the ball had gone into pure rolling mode
before the impact, we can determine the top spin of the ball
from 1=V/R. Thus the incident ball velocity V is the only
independent variable involved, and the velocity drop during
the impact can be correlated with V.

Figure 8 shows the velocity plot obtained from a high-
speed video captured at 150 fps. The velocity plot was used
o determine if the ball was rolling just before it hil the
cushion. The gradient of the specd-time plot was used to
determine this, as shown in Fig. 8. Results that were obtained
for 31 such shots into the rails, almost satisfying the condi-
tions of no-sidespin and that of pure rolling. arc given in
Fig. 9.

From Fig. 9 we see that the relation between the rebound
and incident speeds is almost lincar for the incident velocity
in the range of 0.28-3.5 m/s (the 1ypical range of ball veloci-
ties in the game). A best fit straight line for the rebound-
incident speed data gives a coefficient of restitution of 0.818
for this velocity range. The results are more closely fit by the
sccond-order  polynomial  y=—-0.0877x*+1.131x-0.0953,
where x is the incident velocity and y is the rebound velocity.
These resulls are not valid for a general ball-cushion impulse
but are applicable only under the conditions of no-sidespin
and pure rolling motion prior to the impulse. We believe that
the ideal variation between the rebound and incidem speeds
should be linear and the reduction in the coeflficient of resti-
wtion at higher incident speeds is due to cushion deforma-
tion, The gradiemt of the plot at lower incident speceds is
around 0.910, and this value shall be valid under the assump-
tion of a rigid cushion,

Martow® reported that the coefficient of restitution for rails
i a billiard tablc is 0.55 but did not give much detail about
the experimental procedure. He compared his results with the
values suggested by Coriolis' and concluded that they agree
closely.® The cushion height for snooker is 36 mm, with the
ball radius equal to 26 mm, which is close o the height of
1.4 times ball radius found in pool. Thus the cushion and
ball geometry is almost identical in pool and snooker. It is
possible that Marlow considered the rebound ball velocity at
the end of the sliding phase rather than the correct one im-
mediately after the impulse. Then the coefficient of restitu-
tion for the shot could be 0.63, but this result has no physical
meaning.

3.5
3 A Best-tit. 2ud order
pelyonial

Ik
g y=-0.0877 + 1.1306x - 0.0953
¥ o1
b
4
E L ¥=0.8178x+ (0564
E A Best-fit stinight Line
o

Tucident speed {ni/s)

Fig. 9. The varation in the rebound velocity versus the incidence velocity.
At lower incident velocities the variation is almosi linear. However, at
higher incident velocities the rebound velocitics tend to Yevel ofi, guite
possibly as the cushion is not rigid at higher incident speeds.
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Fig. 10, The effect of table friction on the cue ball path for an oblique
collision {from Ref. 2). (a) The parameters involved in an oblique collision.
(b} The cue ball path for different precollision cue ball speeds under solling
conditions.

C. Impact between balls

If the approaching and separating velocities of two balls
lie along the line connecting the centers of the balls, then the
impact is said to be fromtal or head-on. Impacts occur in two
dimensions in billiards as oblique collisions, and the frontal
impact is a special case.

Amateur billiards players usc the 90° rule”"’ to visualize
the posteollision trajectories of the colliding balls. Tt states
that the balls will separate at 90° aller an oblique collision
(sec Fig. +0 for the predicted ideal directions of travels). It is
also assumed that the cue ball will immediately stop after a
frontal collision. in snooker the cue ball and all object balls
have the same mass. It can be casily shown by momentum
conservation that the 90° rule only holds when the coefficient
of restitution between the balls is one (that is, the balls are
purely elastic). The angular velocity of the cue ball (in the
form of the sideftop spin) when it collides with the object
ball also affects the postcollision velocities and the directions
of separation for the balls. The friction present between the
colliding balls has also beel‘g shown to affect the postcollision
motion.”" Bayes and Scot’ employed a spring loaded cue
launcher and two pool balls on a felt-covered table to exam-
ine this ¢ffect. They used a stroboscope and a camera to
determine the subsequent ball paths and found that the angle
was around 67°. There is no data on how much spin the ball
had at the time of impact, which is known to affect the col-
listion dynamics, They also tested the ball on various glass
surfaces and found that the collision angle approaches 90° as
the surface becomes smoother (in soapy glass it reached
89.9°). Thus tablc friction creates some unpredictable behav-
ior in the ball collision.

The tracked results for the cue ball and an object ball
collision arc shown in Fig, 11. We see that the temporal
resolution of the tracking is sufficient to capture the deflec-
tions in its postimpact trajectory. The reason for the curva-
ture in the path of the cue ball is that it siarts to slip imme-
diately after the impact [a similar slipping phenomenon was

Fig. 11. Tracking results for u collision between the cue bali and an object
ball at 45 fps.
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also observed in the ball collision with a cushion; see Fig.
10(a}). Figure 10(b) gives an idea of how this behavior is
influenced by the incident velocity of the cue ball. Similarly,
the object ball also starts to slip immediately after the im-
pact. Once the slipping phasc has stopped. both balls go into
rolling motion, and the curved path of the cue ball is then
directed along the tangent line to the curve. Reference 2
analyzed this phenomenon and showed that the velocities for
the posteollision and postsliding phases of the object ball are
{sce their notation in Fig. 10)

Vo= %V cos &,

8= 0. (1)
and for the cue ball is

Sc, 00
Ve= ;V\f_;smz g+ 2%

Hc=la|1"[§ﬁ§%]. (2}

They defined S=5b/D as the fractional impact parameter,
where D is the ball diameter and b is the separation of the
ball centers in the direction perpendicular to the incident ball
velocity V. Also notc that S=sin .

Plots of angles #,, 4., and 8,+ 0_ versus the impact param-
eter are shown in Fig. 12. The experimental values agree
with the theoretical predictions in most instances, but 0, de-
viates more from its theoretical value at high fractional im-
pact values, The reason is unknown, and we do not know if
factors such as spin affect collisions for very obligue colli-
sions. A possible explanation is that at high values of b, an
cxcessive amount of sidespin is imparted to the object ball,
which changes its path from what is derived in Ref. 2. Thig
phenomenon also raises questions aboutl whether sidespin af-
fects its speed or direction of travel.

In billards sidespin is considered to be independent of the
linear speed of the bail because it is assumed that the ball
makes a point contact with the table. If both. the contacting
surfaces are extremely rigid, this assumption would be valid.
For billiards the rigid table-top is covered by a soft felt. Thus
a considerably rigid billiard ball sinks into the felt, making
comtact over a finite region of the ball’s surface. Hence we
suspect that the ball exhibits disklike properties. For a flat
disk, such as an ice-hockey puck, is linear motion and its

Angle (Degrees)

0 -+ — T r .

0 0.2 0.4 0& 0g 1
Fractional impact parameter D

Fig. 12. Theoretical and measured deflection angles for the cue and object
balls versus the fractional impact parameter . The symbols B, A, and #
represent 6., 8, and 8.+ 0, respectively. Conlinuous lines show the respec-
tive predictions.
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Fig. 13. A typicul speed variation ir the cue ball and object ball near impact.
It shows how both the cue ball and the object hall start to slip on the table
immediately after their collision. The cue ball speed plot alse shows how the
cue ball is zccelerated after the impact.

rotation (it only has a side-rotation, which is analogous to the
sidespin of the ball) are always ca:;uplcd.25 That is, the rota-
tional motion and lincar motion of a disk will end at exactly
the same time.” Thus there are some characteristics of the
disklike motion found in billiard ball motion. One observa-
tion that supports this claim is that we never see the ball
continue 1o rotate about the vertical axis (that is, sidespin)
after its lincar motion is stopped. The coupling of lincar and
rotational motions is readily apparent in the game of pool
where the balls have a number or other pattern painted on
their surface.

Wallace and Schroeder” did not experimentally validate

the velocity relations found in Egs. {1) and (2) because their
tracking method could record only the positions and not the
time stampings. We use the velocity plots for both colliding
balls 1o validate these equalions. As shown in Fig, 13, the
incident velocity is measurcd right at impact. The gradient,
typical for the pure rolling motion, as discussed, was used as
the criteria for detecting the time at which the ball starts 1o
roll {or stops slipping). The detected times are shown with
their respective velocity symbols in Fig. 13, We observe that
the cue ball accelerates right alter the collision. This accel-
cration occurs because the collision greatly reduces only the
linear velocity and not the angular velocity, and thus the cue
ball goes into a sliding condition with excess top spin (over-
spinning). This excess top spin is then converted into linear
velocity by the action of the sliding force, which in this case
acts in the same direction as the ball velocity, increasing the
lauer.

The results are given in Table 1 for five such shots involv-
ing impacts. The maximum crror between the theory and the

measurcments is found to be around 10%. We do not know
whether this error is also induced by the cifect of sidespin on
the collision between two balls. The sidespin of the ball was
not taken into consideration in Ref. 2. There is reason 1o
believe that the friction between the cue ball and the object
ball will introduce tangential force components at the colli-
sion point, which would impart a sidespin onto the object
ball, even though the values of these wangenual force com-
ponents may be small,

During impulse there will be a relative velocity between
the cue ball and object ball along the vertical due 1o the
angular velocity (top spin) in the nawral rol] of the cue ball
prior to the impact. This relative velocity will introduce a
tangential friction force during the time of impulse on the
cue ball as well as on the object ball. This force will induce
a spin on the cue ball about its fromal velocity axis. produc-
ing an effect equivalent to a massé shot {a shot played with
an elevated cue stick). For a massé shot a ball is known to
move along a curved path instead of on a straight line. This
correction should also be added to the prediction in Ref. 2.
These observations and the evidence presented in Fig. 12 and
Table T should motivate a new theory for the collision be-
tween two balls, which involves the frictional forces between
the balls that are present during the impulsc.

IV. CONCLUSIONS

High-speed video capture using a single machine vision
camera was found 1o give good results in determining the
dynamics involved in snooker. The rolling coefficient of iric-
tion was found w be between 0.124 and 0.126 m/s* The
sliding friction value is in the range of 1.75-2.40 m/s%
One-dimensional ball-cushion collisions were also analyzed,
and the mean coclficient of restitution was determined. Both
frontal and oblique collisions between the balls were ana-
lyzed. Predictions of separation angles and velocities were
tested experimentally and close agreement was found.

Some cxperiments could not be performed. One such cx-
periment would look at the generat impact of the ball with
the cushion. The inability to perform such experiments is
mainly due o the difficulty of determining the amount of
spin on the ball using the camera. To track the ball spin in
football and golf, researchers have used marked pauems on
the ball surface. Some interferometer hased techniques have
also been uscd for this purpose.

Table [. The postimpact speed theoretical predictions (Ref. 2) and the measured values from ball tracking. V is
the incoming cue batl speed. ¢ is the cut angle for oblique collision, V,, and 0, are the posicollision and postslip
direction of truvel and speed for the object ball, and V, and 6, are the posteollision and posislip direction of

travel and speed of the cue ball.

v 4 Measured V. Measored V,  Theoretical ¥, Theoretical ¥V, Errorin V.  Errorin V,
{m/s) (%) (m/s) {m/s) (s} (s} (%) (%)
1.539 3383 0816 0.836 0.932 0913 124 843
1.032 2636 0,520 0.629 0.529 0.660 1.70 470
1.364 4052 0925 0.700 0934 0.740 0.964 540
1.731 46,50 1.275 0.787 1.301 0.851 200 752
0942 1805 0.365 0.581 0.388 0.640 5.93 9.22
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