
TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 1

Robotic Ball Catching

with an Eye-in-Hand Single-Camera System
Pierluigi Cigliano, Vincenzo Lippiello, Member, IEEE, Fabio Ruggiero, Member, IEEE,

Bruno Siciliano, Fellow, IEEE

Abstract—In this paper, a unified control framework is pro-
posed to realize a robotic ball catching task with only a moving
single-camera (eye-in-hand) system able to catch flying, rolling
and bouncing balls in the same formalism. The thrown ball is
visually tracked through a circle detection algorithm. Once the
ball is recognized, the camera is forced to follow a baseline in the
space so as to acquire an initial data-set of visual measurements.
A first estimate of the catching point is initially provided through
a linear algorithm. Then, additional visual measurements are
acquired to constantly refine the current estimate by exploiting
a nonlinear optimization algorithm and a more accurate ballistic
model. A classic partitioned visual servoing approach is employed
to differently control the translational and rotational components
of the camera. Experimental results performed on an industrial
robotic system prove the effectiveness of the presented solution.
A motion-capture system is employed to validate the proposed
estimation process via ground truth.

Index Terms—Robotic Ball catching, Ball detection, Ball track-
ing tracking, Real-time trajectory estimation, Partitioned visual
servoing, Bouncing and rolling balls

I. INTRODUCTION

C
ATCHING a thrown ball is often a good exercise to check

human reflexes. The same task could be applied to an

advanced robotic platform to test new control methodologies.

Furthermore, such a challenging scenario covers several areas

like fast visual detection and tracking, motion estimation,

prediction and coordination, on-line trajectory planning, and

so on. Hence, the ball catching task might contribute in paving

the way towards the next generation of robots which should

be provided with the above mentioned skills.

The task of catching a thrown ball can be generally split

into three sub-problems: ball detection, trajectory estimation,

and robot motion control. Several works are present in the

literature covering each of the aforementioned sub-problems.

Usually, high-speed stereo vision system is required to solve

the first sub-problem. Through the approach proposed in this

paper, partially introduced in [1]–[3], it is shown both from

a theoretical and practical point of view that the problem of

The research leading to these results has been supported by the RoDyMan
project, which has received funding from the European Research Council (FP7
IDEAS) under Advanced Grant agreement number 320992. The authors are
solely responsible for its content. It does not represent the opinion of the
European Community and the Community is not responsible for any use that
might be made of the information contained therein.

Authors are listed in alphabetical order.
Vincenzo Lippiello, Fabio Ruggiero and Bruno Siciliano are with

the PRISMA Lab, Dipartimento di Ingegneria Elettrica e Tecnologie
dell’Informazione, Università degli Studi di Napoli Federico II, via Claudio
21, 80125, Naples, Italy.

Corresponding author’s email fabio.ruggiero@unina.it

catching a thrown ball can be solved by using only one camera.

Moreover, in this way, the cost of the overall equipment can

be reduced. Even if recently many low cost stereo systems

are available off-the-shelf, the computational cost to elaborate

at high frame rate (e.g., about 140 Hz) is still demanding in

the ball catching task and this can be lowered by using a

monocular system, saving computational resources. Moreover,

with respect to previous works, the estimate of the trajectory is

improved in this paper considering also bouncing and rolling

balls within the same framework.

Each year an intensive progress in ball tracking and catching

tasks is achieved by the RoboCup competition; many table

tennis robots are challenging humans with great outcomes;

plenty of videos can be found on the net showing differ-

ent robotic ball catching techniques. Even mobile humanoid

robots, with a stereo-camera system, have been used in such

a task [4], [5]. Nevertheless, authors do believe that the first

case of a robotic ball catcher employing only a single moving

camera and coping with rolling, bouncing and flying balls in

the same framework, i.e., without changing either the estimator

or the control law, is presented in this paper. In more detail, a

standard industrial robot manipulator is equipped with a CCD

camera mounted directly on the manipulator end-effector (eye-

in-hand configuration). Differently from [1]–[3], the ball is

recognized through a circle detection algorithm based on the

method developed in [6]. One of the novelties of this paper

is the improvement of the approach proposed in [6] along the

lines of the work introduced in [7], so as to provide a sub-

pixel accuracy to have a measure of the ball centroid that

ameliorates the trajectory estimation process. Therefore, the

proposed estimator is composed of a continuous refinement

of the ball interception point through a nonlinear algorithm,

whose initial starting condition is provided by a fast linear

estimation process. The initial camera motion is thus com-

manded along a suitable baseline so as to collect a sufficient

initial number of visual data from different points of view and

provide such initial estimate. As another novelty, the proposed

ball trajectory estimator extends what already presented by

the authors [1], [3] since now the process is able to cope

with rolling and bouncing balls too. A statistical reliability

test of the measures has been also introduced to discard

possible outliers in the measurements set. Last, but not least,

the employed control law is more detailed than in [1], [3], as

well as the policy employed for the intersection point selection.

Related stability proofs are now provided. Experimental results

demonstrate the effectiveness of the presented solution. The

performance of the proposed trajectory estimator is shown

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55140099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 2

through a comparison with the ground truth provided by a

motion-capture system.

The outline of the paper is as follows. The related work

is presented in the next section. A general overview of the

proposed algorithm is given in Section III. The algorithms for

the ball detection and tracking are analysed in Section IV. The

ball trajectory estimator and interception policies are described

in Section V. Section VI is devoted to describe the replanning

of the robot path. The partitioned visual servoing is revised in

Section VII. The employed set-up is introduced in Section VIII

and the experiments are critically discussed. Section IX gives

concluding remarks.

II. RELATED WORK

A brief literature review is now presented. It is clear from

the following that very few papers address the monocular

case in ball detection and trajectory estimation operations.

Moreover, in this paper, the camera is also moving during the

tracking/estimation since it is mounted in an eye-in-hand con-

figuration. Modifying and/or employing some methods already

presented in the literature concerning ball detection, trajectory

estimation and visual servoing, authors have achieved the goal

of catch a flying/bouncing/rolling ball through a single moving

camera system within the same framework.

A. Ball detection

Working in unstructured (or at least partially structured) en-

vironments requires recognizing some objects and key features

in the scene [8]. Detecting a ball, or in general a thrown object,

is thus crucial in robotic catching applications.

A first distinction can be made on the basis of the number of

the employed cameras in the visual system. On the one hand, a

stereo visual system benefits by using the triangulation method

to reconstruct the 3D position of the ball in the scene [6],

[9]–[11], but requires a more accurate calibration procedure

and sophisticate elaboration hardware. On the other hand, a

monocular visual system has an easier calibration procedure,

but more effort has to be put in the 3D reconstruction of

the scene [12]–[16]. Besides this, in a monocular visual

system, a classification about the position of the camera with

respect to the robot can be taken into account. An eye-to-

hand configuration is considered in [13], while the camera is

mounted in an eye-in-hand configuration in [1], [2].

Another distinction can be made about the employed tech-

niques to detect the thrown object. By using a threshold

method, the difference between the actual image and some

reference images is employed in [17]. An equalized color-

based clustering in the HSL color space is considered in [1],

[2], while a circular gradient method to detect the ball in the

images is utilized in [6].

Other objects rather than balls can be thrown and detected

in the image. The work in [18] can be taken as a starting point

to investigate further aspects and details.

B. Trajectory estimation

The problem about motion estimation has been addressed in

several ways. This subsection takes into account the estimation

performed by using a visual system in the particular context

of the ball catching. Hence, in order to predict the correct

catching point where the robot should intercept the thrown

object, the motion trajectory of this last has to be estimated.

A 2D task is defined in [19] on the image plane of each

available camera. The robotic arm may catch the ball if such

2D tasks are achieved simultaneously. The 3D position of

the ball can be instead estimated by resorting to an extended

Kalman filter (EKF) based on a Newtonian system which also

considers the effect of the air drag [17]. Six nonlinear regres-

sion methods are compared in [20] to estimate translational

and rotational velocities of free-flying objects.

By starting from a set of images taken from a monocular

system, the estimate of the motion trajectory of a thrown

object can be performed by using a least squares method [16]

(without modeling the air resistance). A least squares solution

is considered in [2], [13], [21], too.

Many estimators are based on the so-called Chapman’s

strategy –the fielder should run at a proper speed to maintain

a constant increasing rate of the tangent of the ball’s elevation

angle [22]– for the ball catching [14], [15], [23].

When the ball hits the ground, or other objects, the estimate

becomes more complicated due to the rebound effects. As

an example, this condition always appears during table tennis

games. In order to take into account not only the energy loss

of the ball after the collision with the ground, but also the

air resistance, the visual measurements errors and the friction

between the ball and the ground, a first-order polynomial

describing the bouncing model is employed in [24]. Another

model relating flying and self-rotational velocities just before

and after the rebound is considered in [25]. The lift and drag

aerodynamic effects of the rebound are examined in [26],

while the bouncing phenomenon between a ping-pong ball

and both the rigid table and the racket rubber are exploited

in [27], [28]. A 3D model for rigid body impact with tangential

compliance, represented through springs, is presented in [29].

Finally, other estimators either make use of proper neural

networks [30], or follow a programming-by-demonstration

approach to find a feasible catching configuration in a proba-

bilistic manner [31].

C. Robot motion control

On the basis of the configuration of the visual system,

the robot controller has to take into account either the ball

tracking, or the ball interception or both the tasks.

The most common visual servoing approaches are the

position-based and image-based methods [32]. A combination

of these lasts is used in [12] to catch a ball moving on a table,

and in [13] to solve the complete 3D task. A dynamic version

of the aforementioned approaches is proposed in [33]. Decou-

pling translational and angular components in a visual servoing

task is employed in partitioned visual approaches [34]–[36].

The importance in regulating the impedance of the hand, or

the arm, during a ball catching action is highlighted in [37]: a

human could miss the ball when the arm is both stiff beyond

necessity and too compliant.

A non-prehensile way to manipulate the thrown ball is

considered in [21]. After the dynamic catch, a balancing



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 3

Image processing

Non-linear
trajectory estimation

and refinement

Linear trajectory
estimation

Online trajectory
planning

Partitioned
visual-position

control

Fig. 1. Block diagram of the proposed monocular robotic ball catching
system. The Linear Trajectory Estimation block (dashed lines) is executed
just once during the robot starting motion.

controller is considered to keep the ball on a plate mounted

on the robot end-effector.

III. ALGORITHM OVERVIEW

The overview of the proposed method for catching a thrown

ball in the 3D space with a monocular visual system is shown

in the block diagram of Fig. 1. Once the ball is detected

by the visual system, the camera mounted in an eye-in-hand

configuration is forced to follow a suitable baseline in the

3D space. A partitioned visual-servoing control is employed

to both keep the ball in the field of view of the camera

(through the camera orientation) and follow the planned path

(camera position). The starting baseline is performed to ensure

a well-conditioned estimation problem and collect/process

visual information so as to get a first prediction of the ball

trajectory with a rough linear estimate. This prediction is

employed as a starting point for a more precise nonlinear

refinement process of the trajectory, that also considers the

case of rolling and bouncing balls. When a new estimate of

the robot interception pose is available, the on-line motion

planner smoothly switches its target to the new one, always

keeping the ball in the camera field of view. Hence, the

visual measurements are continuously acquired and processed

by the nonlinear optimization algorithm. Finally, when the

continuous refinement does no longer improve the prediction

of the trajectory significantly, the final catching pose of the

robot can be computed. In order to accommodate the ball into

the robotic gripper, the robot kinematics is taken into account.

IV. VISUAL BALL DETECTION AND TRACKING

The presence of a ball in the camera’s field of view is

evaluated with an algorithm derived from the circular-shape

detection proposed in [6], [38]. The main advantages with

respect to the classical Hough transform are the absence of

decision thresholds or parameters calibration, and the high

robustness with respect to changes in lighting conditions.

Let I(XI , YI) denote the light intensity (m × n) matrix

provided by the camera, where XI and YI represent the pixel

coordinates of the image sensor. The circular response function

Cr(XI , YI) ∈ [0, 1] considered in this paper represents the

degree of affinity between the circular region with radius r
of the image at the point (XI , YI) with respect to a radial

Fig. 2. Example of the contrast-normalized Sobel-filter matrix.

intensity gradient (i.e. it represents the average fraction of

the radial intensity gradient on the circle). In details, this

affinity is established with respect to the gradient of the image

intensity at the border of the considered circular region with

the following expression

Cr(XI , YI) =
1

2π

∫ 2π

0

([
cα
sα

]
C

([
XI + rcα
YI + rsα

]))2

dα,

(1)

where cα = cos(α) and sα = sin(α). The matrix C represents

the contrast-normalized Sobel filter1, which is defined as

follows [6]

C =

√
2





−1 0 1
−2 0 2
−1 0 1


 ∗ I



−1 −2 −1
0 0 0
1 2 1


 ∗ I



T

√√√√√16



1 2 1
2 4 2
1 2 1


 ∗ I2 −





1 2 1
2 4 2
1 2 1


 ∗ I




2

+ ǫ2

,

(2)

where ǫ = 1 is the discretization unit of pixel intensity

preventing singularities in constant image areas, and the oper-

ator ∗ represents the linear convolution. Equation (1) is thus

the integral of the squared scalar product of the contrast-

normalized Sobel filter with the radial direction. For more

details see [6], [38]. Moreover, notice how the matrix C has

two different channels, namely C =
[
CX CY

]T
, with

the same size of I . Figure 2 shows the contrast-normalized

Sobel-filter matrix of a ball in an image. Notice the radial

distribution of C close to the border of the ball.

Let be Ar the affinity matrix for a given radius r, which is

defined as follows

Ar =

{
Cr(XI , YI) (XI , YI) ∈ Ξr

0 otherwise
, (3)

where Ξr = [r, . . . ,m−r−1]×[r, . . . , n−r−1]. The pixels of

the image that are possible candidates as the center of a circle

are evaluated by applying a threshold αmin to the set of affinity

matrices in the range of radius of interest r− ≤ r ≤ r+, with

0 < r− < r+ < (min(m,n) − 3)/2. In Fig. 3 the flowchart

1Differently from the classical Sobel operator, the vector length in the
contrast-normalized Sobel filter indicates the gradient purity rather than the
gradient intensity.



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 4

Evaluation of the contrast-
normalized Sobel filter

Evaluation of the affinity
matrices

Evaluation of the best
candidates (threshold)

I

C

Ar

r
–, r+

{ }( , , , )X Y rI I rA

®min

Fig. 3. Flowchart of the ball detection visual process.

Fig. 4. Representation of the affinity matrix of an image corresponding to
the maximum circular correspondence.

of the ball detection process is represented, while a graphical

representation of the affinity matrix of an image corresponding

to the maximum circular correspondence is shown in Fig.4.

A. Affinity matrix evaluation

The evaluation of the affinity matrix Ar strongly affects the

overall performance of the ball detection algorithm. Hence,

more details on the adopted approach are provided in this

subsection.

Notice that discretizing Cr(XI , YI), with (XI , YI) ∈ Ξr, is

equivalent to the arithmetic mean of the values of C in cor-

respondence of the points of any circular region Ψr(XI , YI)
of radius r and centered in (XI , YI). Let Ĉr(XI , YI) denote

the square region of C with 2r+1 elements for each side and

centered at (XI , YI). Then, the contribution of the element at

point P ∈ Ψr(XI , YI) is (Ĉr(XI , YI)rP )
2, where rP is the

radial unit vector pointing from (XI , YI) to P . Notice that

the number of unit vectors employed does not depend on the

points where Ar is evaluated. By considering the square dual-

A3 0 15( , ) = ( +... )/16X Y zI I +z

C
3
( , )X YI I

K
3

( , )X YI I

( )¢
2

Fig. 5. Representation of the evaluation of the affinity matrix in the case
r = 3.

channel matrix K of dimension 2r + 1 defined as follows

Kr(X
′
I , Y

′
I ) =

{
r(X′

I
,Y ′

I
) (X ′

I , Y
′
I ) ∈ Ψr(XI , YI)

0 otherwise
, (4)

the affinity matrix Ar can be evaluated with a linear con-

volution of the matrix C with Kr. Figure 5 shows the

evaluation of A3 by using the kernel K3. On the other hand,

the evaluation of the points on a circumference of radius r
is required to evaluate the kernel Kr. To this purpose, the

algorithm proposed in [39] is employed with the advantage of

considering only integer values and reflection properties.

B. Parallelization

The number of operations required for the evaluation of

the affinity matrices rapidly grows with the dimension of the

image (e.g., the evaluation of the affinity matrix for an image

of (512× 368) pixels requires about 109 operations). In order

to reduce the computational time, several arrangements should

be introduced. The kernels required for the evaluation of the

affinity matrices are pre-computed during the initialization

phase of the algorithm. Moreover, the sparse nature of these

matrices requires a specific sparse matrix representation.

The evaluation of C is performed by parallelizing the

computation of its two channels. Moreover, each channel can

be processed by parallelizing the horizontal and the vertical

components of the gradient of I via the Sobel operator. Finally,

also the denominator of (2) is evaluated in parallel with respect

to the previous contributes, where the non-constant terms are

evaluated by a linear convolution.

By employing specific SIMD (Single Instruction Multiple

Data) operations, the evaluation of the affinity matrix is

parallelized by rows. Thanks to the symmetry of the employed

kernels it is possible to assume, without loss of generality,

that the non-zero elements are 4p, with p any integer number.

Hence, for r = r−, . . . , r+, and (XI , YI) ∈ Ξr, it is possible

to obtain

Ar(XI , YI) =
1

4p

4p−1∑

k=0

(
ukx

wkx
+ uky

wky

)2
, (5)



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 5

where uk =
[
ukx

uky

]T
is an element of C , and wk =[

wkx
wky

]T
is an element of Kr, respectively. By denoting

with qk = uT
kwk, with k = 0, . . . , 4p − 1, Equation (5) can

be rewritten as follows

Ar(XI , YI) =
1

4p

p−1∑

i=0

zi, (6)

where zi = q24i+q24i+1+q24i+2+q24i+3. This latter term can be

evaluated as a scalar product that can be computed by using

an intrinsic function available on modern processors.

C. Pyramidal approach and windowing

The localization of a shape into an image with algorithms

of template-matching requires a high number of calculations

because, in general, it is necessary to explore the entire

image and repeat the search several times for different size

of the shape. Moreover, with the extension of the shape, the

number of calculations rapidly increases. In order to reduce

the processing time, a pyramidal approach can be employed.

The technique consists in generating a copy in half resolution

of the image by selecting the rows and columns of odd place.

Iterating this process creates a number of images reproducing

the same scene but with a lower level of detail. The loss of

resolution can be recovered by using the results achieved on a

low-resolution image to recognize the region of interest where

perform the search within the original image.

Once that a thrown ball has been detected for the first time, a

windowing technique is employed. In details, a suitable region

of interest for the searching algorithm can be set up on the

base of the position, radius, and velocity of the ball measured

in the previous sequence of images. With this approach, a

square searching region is positioned on the current image

on the basis of the previous ball position and velocity, while

its size depends on the previous radius and a suitable safety

factor. Also the radius range of search is windowed starting

from the previous estimate and ball direction.

D. Sub-pixel refinement

The results achieved with the previous ball detection algo-

rithm can be improved thanks to the use of a post-elaboration

process resulting in a sub-pixel accuracy. For each image, it is

possible to observe that the intensity of the pixels, lying on an

outgoing radial direction from the estimated ball center (see

previous subsections), presents a distribution of values with

an inflection point (Fig. 6). A linear searching algorithm can

be employed to find the exact position pθi
=

[
xθi yθi

]T
,

i = 0, . . . , nd, of the ball contour along a finite number nd of

radial directions spanning the whole circumference.

Once that a number of ball contour measurements are

available, a new circle with center (xc, yc) and radius rc,

all with sub-pixel accuracies, is evaluated. In detail, the

equation of a circle in a plane is represented by x2
θi
+ y2θi +

ξ1(xc)xθi + ξ2(yc)yθi + ξ3(xc, yc, rc) = 0. Stacking all the

data, with i = 0, . . . , nd, a least squares approach can be then

employed to estimate ξ1, ξ2 and ξ3 from which in turn the

unknowns can be estimated as xc = −0.5ξ1, yc = −0.5ξ2,

0 10 20 30 40
0

20

40

60

80

100

X [px]

I(
X

,0
)

Fig. 6. Light intensity (on the bottom) along a radial direction from the
estimated center of a ball (on the top).

Fig. 7. Sub-pixel refinement examples.

rc =
√
0.25 ∗ (ξ21 + ξ22)− ξ3. Measurements that are statisti-

cally incoherent are discarded, and the estimation process is

repeated until all measurements are reliable. In particular, the

distance dθi from each point pθi
and the above estimated circle

with center (xc, yc) and radius rc is evaluated and saved in an

array. The mean and standard deviation of such an array are

then calculated. The points whose distance dθi outperforms

the standard deviation by a certain factor are discarded and

the above described least squares approach is performed again

with the surviving points until no elements are rejected.

Several examples of the achieved results are shown in Fig. 7.

Moreover, it has been verified during the experimental tests

that the proposed algorithm reduces the effect of the blur

around the contour of the ball, caused by the high-velocity

motion of the ball in the image, and improves the accuracy

of the estimation process (see Sections V and VIII-B). Notice

that other methods might be employed for sub-pixel accuracy

for moving cameras [7].



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 6

Camera
frame

ti

tj

Oc

xc

yc zc

sj
~

si
~

Base
frame

Ob
xb

yb

zb

Fig. 8. The camera reference frame Σc is shown in two different sample
times, tj and ti. The ball trajectory is shown with a red dotted line, while in
blue is represented the corresponding camera trajectory.

V. BALL TRAJECTORY ESTIMATION

Let Σb, Σe and Σc = Oc–xcyczc be the robot base frame,

fixed with respect to the ground, the end-effector frame and

the camera frame, respectively (see Fig. 8). Since Σe and Σc

are fixed with respect to each other, only Σc is considered

into the remainder of the paper. The camera optical axis is

then aligned with the approaching axis of Σe.

Let s =
[
X Y

]T
be the normalized image coordinates

vector of the centroid of the ball, i.e., the center of the circle

detected in Section IV. By denoting with s̃ =
[
sT 1

]T
, the

position of the ball center with respect to Σc is

pc
o =

[
xc yc zc

]T
= zc

[
X Y 1

]T
= zcs̃. (7)

A. Initial baseline and linear initialization

A classic static triangulation method cannot be adopted in

the proposed scenario because of the single employed camera.

Hence, the proposed process estimates the 3D trajectory of the

ball interpolating 2D visual measurements along the time.

As soon as the ball is detected for the first time, the

camera is commanded to move along a straight line, i.e.,

the initial baseline, in the 3D Cartesian space with high

velocity. To gain better results, such initial movement should

be orthogonal to the direction of the throw. The orientation of

the camera is controlled to keep the ball in its field of view

(see Section VII). The visual data collection along this path

leads to a well-conditioned problem. Once this first data-set

has been acquired, it is possible to start the procedure for the

linear initialization. This last is explained in [2], hence only a

brief description is here addressed.

Let tk be the k-th visual sample time, s̃k the corresponding

measured image feature vector, p =
[
x y z

]T
the points

belonging to the camera optical ray and passing through the

current origin of the camera ck =
[
cx,k cy,k cz,k

]T
. The

feature vector rk =
[
rx,k ry,k rz,k

]T
= ck + Rc,ks̃ can

be defined by the following equations representing a straight

line in the 3D space (see Fig. 8)
{
(ry,k − cy,k)x+ (cx,k − rx,k)y + rx,kcy,k − ry,kcx,k = 0
(rz,k − cz,k)x + (cx,k − rx,k)z + rx,kcz,k − rz,kcx,k = 0,

(8)

where Rc,k is the rotation matrix of Σc with respect to Σb at

time tk. Both ck and Rc,k are provided by the robot direct

kinematics.

A simplified model of the ball trajectory is considered

during this initialization phase, i.e. the effect of the air drag

to the motion of the ball is neglected:

po(t) = p0 + v0t+ 0.5gt2, (9)

with po the (3 × 1) position vector of the ball with respect

to Σb, g the gravity acceleration, p0 and v0 the (3 × 1)

vectors of the initial position and velocity of the ball (t = 0),

respectively, and corresponding to the time of the first ball

detection. Notice that, without loss of generality, the gravity

acceleration is aligned to the axis y of the chosen Σb, i.e.,

g =
[
0 g 0

]T
with g = 9.81m/s2.

At each tk, the optical ray intersects the ball trajectory.

Folding (9) into (8) yields a system of 2 equations into 6
unknowns, p0 and v0, that fully describes the trajectory of the

ball. Stacking the nl measurements into rows yields a system

of nl equations into 6 unknowns that can be solved through

a least squares solution. Additional considerations about this

stage are given in [1], [2].

The first interception point candidate is then computed. This

allows the robot to reach the predicted interception position,

whose computational details are provided in Section V-E, at

the estimated catching time. The robot path is replanned as

described in Section VI. The rotational part of the camera,

instead, is kept free to track the ball in order to acquire

more visual measurements during the movement. The estimate

provided by this linear algorithm is employed as a starting

point for the next stage.

B. Nonlinear estimation and continuous refinement

Meanwhile the previous linear estimation process gives the

result, new visual measurements are collected. Afterwards,

both these new visual measurements and the old ones are

employed in a nonlinear estimation process that starts initially

from the result obtained by the linear method.

In details, let sk be the centroid of the ball acquired at a

time tk, the cost function to minimize is

min
p

0
,v0

ni∑

k=1

∥∥∥∥
1

z̃ck

[
x̃c
k

ỹck

]
− sk

∥∥∥∥ , (10)

with ni the current number of available visual measurements

at the current estimation time ti, and p̃c
k the (3× 1) estimated

position vector of the ball with respect to Σc, which is defined

as follows

p̃c
k =

[
x̃c
k ỹck z̃ck

]T
= RT

c,k (p̃k − ck) . (11)

The estimated position of the ball p̃k(p0,i−1,v0,i−1, tk) is

numerically obtained by integrating the following ballistic

model [17]

p̈o(t) = g − cwπd
2
bρa

2mb

‖ ṗo(t) ‖ ṗo(t), (12)

with cw a coefficient depending on the thrown object, db the

diameter of the ball, ρa the density of the air and mb the mass



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 7

of the ball. Hence, the model in (12) includes the air drag, and

its numeric integration is sequentially performed in the time

intervals [tk−1, tk], where k = 1, . . . , ni, t0 = 0, with initial

conditions p0,i−1 and v0,i−1.

By knowing the altitude of the floor with respect to Σb, it

is possible to detect whether the ball hits the ground during

the above mentioned numerical integration. Without loss of

generality, let pf =
[
0 γ 0

]T
be a point of the floor

surface, which is horizontally placed with respect to Σb, where

γ represents the height of the ground. The adopted bouncing

model is the following [24]

vout = Kbvin + bb, (13)

in which Kb is a (3 × 3) diagonal matrix of coefficients

representing the loss of energy with respect to the (3×1) vector

of the ball velocity vin before the rebound, vout is a (3× 1)

vector of the ball velocity after the rebound, and bb is a (3×1)

vector of coefficients added to refine the model taking into

account, for instance, the effects of the air resistance, vision

measure error, and the spin caused by friction on the ground.

Hence, by defining e2 =
[
0 1 0

]T
, at each integration time

the condition eT2 p̃k > eT2 pf is verified during the forward

integration of the model (12). When a rebound is detected,

the current velocity is changed accordingly to (13).

The purpose of minimizing (10) means that the initial

conditions of the ballistic model are tuned to generate an

estimated trajectory of the ball that minimizes the distance

between the predicted projection of the ball onto the image

plane and the corresponding measured observations of the ball

along the time.

In practice, the minimization of the cost function (10)

is performed using the Levembert-Marquardt algorithm. The

result at the estimation time ti is the updated values of p0,i and

v0,i. As long as the current estimate of the catching time is suf-

ficiently far from the actual time instant, if new measurements

have been acquired then the estimation process restarts using

the current estimation as starting solution, otherwise p0,i and

v0,i become the final estimated results p0 and v0. Hence, such

refinement process stops when the current estimate catching

time is approaching with respect to the grasping time required

by the available gripper. As soon as the new interception

point is available, the robot path is replanned as described

in Section VI.

C. Statistical reliability test

Differently from [1], a statistical procedure to deal with

the presence of image noise is also proposed. During its mo-

tion, the ball can be subject to different illumination/shadow

conditions that could generate different levels of noise in

the measurements dataset. In details, once the minimization

process ends at ti, the mean error, the standard deviation

and the contribution of each visual measurement sk to the

error residual are evaluated. The visual measurements that

contribute to the error residual outperforming the standard

deviation by a certain factor are temporarily excluded for the

next estimation process at time ti+1 (update outliers list in

Fig. 9). In particular, new measurements should be available at

Current dataset of visual measurments at time t
i

Current esitmate:

p
0,i-1

 and v
0,i-1

Non linear optimization

of cost function (10)

Update current esitmate

p
0,i

 and v
0,i

Ball is rollingBall is flying

e
r
 < e

f

The 

intersections 

belong to the portion 

of the ground  upon 

which the ball can 

feasibly 

roll

Compute intersections

between the optical

rays and the ground

 

Fit the intersection

points with a parabola

Backproject onto

the image plane 

Residual computation

No Yes

Yes

Ball is flying

No

Create dataset for mimization

excluding the outliers

Update the outliers list 

for the next estimation 

process at time t
i+1

Residual computation

 

Model forward

integration

e
f e

r

  

Fig. 9. Schematic flowchart of the implemented estimator, frozen at time ti,
to decide whether the ball is rolling or not.

the time in which such nonlinear estimation process computes

the updated values of p0,i and v0,i, i.e. the interception

time/point. This new data set (without the measurements which

have been classified as outliers at the previous estimation

time) is employed during the current nonlinear refinement.

Again, once the minimization process ends, all the visual

measurements (even the outliers) that contribute to the error

residual in a way that is not statistically coherent are excluded

for the next optimization. Notice that in this way it should

be possible to recover also measures that have previously

considered as outliers due to a rough initial estimation.

This arrangement is hence able to improve significantly

the accuracy of the estimation process when noisy visual

measurements are available without losing significant mea-

surements. Some figures regarding such improvement are

given in Section VIII.

D. Rolling balls

In parallel to the nonlinear estimation refinement process, a

condition is continuously tested to detect whether the balling

is rolling or not on the ground. A schematic representation is

provided in Fig. 9.

As previously introduced, for each acquired visual measure-

ment s̃k it is possible to associate the equations of the related

optical ray (8). By knowing the position and orientation of the

floor with respect to Σb, it is possible to compute the (3× 1)

intersection point pint,k between the straight line (8) and the



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 8

ground. Afterwards, it is possible to fit the available points

pint,k, with k = 1, . . . , ni, through a polynomial curve on the

ground plane. Notice that this operation is performed only if

each point pint,k belongs to the portion of the ground upon

which the ball can feasibly roll. In fact, if the ball is flying, the

observation angle of the optical ray will produce interception

points with the floor that are not located in such portion of

the ground.

Without loss of generality, in order to take into account

both the ball spin and the effects of the friction on the floor,

a parabolic path has been chosen as fitting curve. Hence, the

three coefficients of the parabola that best fits all the ground

points can be retrieved through a least squares solution. Once

the parabola has been defined, the points pcur,k closest to

the curve at point pint,k are computed. Notice that in case

of perfect fitting pcur,k = pint,k , with k = 1, . . . , ni. By

knowing ck and Rc,k, each point pcur,k is then back projected

onto the image plane obtaining the feature vector s̃cur,k. The

norm of the residual error between the visual measurements

and these ones derived by the estimated model is employed as

a quality measure. If the residual error achieved with this last

method is less than the residual of (10), the ball is considered

as rolling on the floor.

In case of rolling, the catching candidate point p× is

computed as the intersection between the ground parabolic

path and a predetermined goal line in the robot workspace. The

camera’s orientation is kept parallel to the ground, the gripper

is positioned at a safety distance from the floor and its fingers

are held open so as to lightly touch the floor. The final catching

time t× is determined by the timing of the measurement on

the parabolic path, since at each point pcur,k is associated a

time tk. On the basis of the above considerations, the robot

path is replanned as described in Section VI.

E. Catching point selection

In case the estimation process does not detect a rolling ball,

for which it has been already described how the interception

pose is selected, the current catching point candidate p× is

evaluated with respect to the actual configuration along the

current estimated trajectory of the ball as deeply explained in

the following. The catching time t× and the ball velocity υ× at

p× can be evaluated from both the actual predicted trajectory

and the robot kinematic model.

In detail, the current estimated path T belonging to the

working space of the robot arm is partitioned in several

candidate catching points Pi ∈ T by a fixed step. For each Pi,

the inverse kinematics of the robot is calculated to compute

the joint position of the robot arm. The inverse kinematics

is computed through a closed-loop algorithm (CLIK) [32]2.

A set of quality indices can be considered for the selection

of the best catching point. In this paper, joint limits and a

manipulability measure are suitably coupled through a convex

2Notice that the inverse kinematics can be evaluated iteratively between
two consecutive candidate catching points, by using the joint configuration of
the previous catching point to initialize the algorithm for the new Cartesian
configuration. In this way, being consecutive candidates close to each other,
few iterations are required to converge to the solution of the joint configuration
corresponding to the current candidate.

linear combination (see [32] for more details about the adopted

quality indices). The candidate catching point maximizing the

above defined convex linear combination of quality indices is

chosen as the current catching point p×.

Therefore, the robot path is replanned to lead the gripper

from the current state of the robot to the point p× at the

time t× with the same velocity of the ball υ× (details in the

next Section). Notice that the planned trajectory could be not

achievable with respect to the robot capabilities. If the velocity

υ× and the maximum required acceleration for the end-

effector, i.e. the camera, are greater than a fixed limit chosen

in a conservative way accordingly with robot capabilities,

then the catching time is suitably scaled. Concerning the

acceleration, denoting with amax the norm of the maximum

acceleration that the end-effector can reach and with p̈c,d the

maximum planned acceleration, if ‖p̈c,d‖ > amax, then the

catching time is scaled as t̄× = t×

√
‖p̈c,d‖/amax. On the

other hand, in case of ‖υ×‖ > vmax, where vmax is the

chosen limit for the linear Cartesian velocity of the robot,

a reduced velocity is considered for the interception time

ῡ× = vmax
υ×

‖υ×‖ , while the catching time is scaled similarly

to the acceleration case.

The catching path is then generated when the estimation

process stops. The camera’s orientation is controlled to have

a direction of the optical axis, i.e., of the gripper, equal to the

tangent to the estimated trajectory of the ball at p×. Once that

the catching point is reached at t× with the same (or reduced)

velocity of the ball, the gripper is closed and moved along the

predicted path of the ball, while its velocity is decreased to

zero in a fixed time/space. In this way it is possible to dissipate

the impact energy in a finite time interval.

VI. ON-LINE PATH REPLANNING

When a new h-th estimation is available at time th, the

current robot path has to be modified in a smooth way to

reach the new estimated catching point. This means that

such new path must guarantee the continuity with the current

motion state (position, velocity and acceleration). A fifth-order

polynomial has been employed in [1], [2]. In order to lower the

polynomial order, reducing as much as possible the oscillations

of the planned path, a classic cubic spline [32] employing only

third-order polynomials is instead used in this paper.

Hence, the following definition can be given for the desired

trajectory of the robot

pc,d(t) = Πh(t) =





Πh1
(t) th ≤ t ≤ tv1

Πh2
(t) tv1 ≤ t ≤ tv2

Πh3
(t) tv2 ≤ t ≤ tf

(14)

where pc,d(t) is a (3×1) vector denoting the desired trajectory

for Σc with respect to Σb, tf = t× (or tf = t̄×, in case of

time scaling), tv1 and tv2 are two time instants referred to two

generic virtual points in Πh(t).

The following 12 equations in 12 unknowns–the 4 coef-

ficients for each of the 3 cubic polynomials in (14)–can be



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 9

imposed

Πh1
(th) = Πh−1(th), Π̇h1

(th) = Π̇h−1(th), (15a)

Π̈h1
(th) = Π̈h−1(th), (15b)

Πh3
(tf ) = p×, Π̇h3

(tf ) = υf , (15c)

Π̈h3
(tf ) = 0, (15d)

Πh1
(tv1) = Πh2

(tv1), Π̇h1
(tv1) = Π̇h2

(tv1), (15e)

Π̈h1
(tv1) = Π̈h2

(tv1), Πh2
(tv2) = Πh3

(tv2), (15f)

Π̇h2
(tv2) = Π̇h3

(tv2), Π̈h2
(tv2) = Π̈h3

(tv2), (15g)

where 0 is the (3 × 1) null vector, while υf = υ× (or ῡ×

if ‖υ×‖ > vmax). Notice that the effective location of the

virtual points is irrelevant, since their position constraints are

exploited for continuity only, and depends on the choice of

tv1 and tv2 (a possible solution is tv1 = (tf − th)/3 and

tv2 = 2(tf − th)/3). Finally, notice that (15a)-(15b) are the

equations relative to the initial conditions, (15c)-(15d) are the

equations relative to the final conditions, and (15e)-(15g) are

the equations relative to the two virtual points. Moreover,

notice that for h = 1 the continuity is intended to be with

respect to the planned baseline (see Section V-A).

VII. PARTITIONED VISUAL SERVOING CONTROL LAW

The partitioned visual servoing control law described in

this paper belongs to the category named Resolved-Velocity

Image-Based Visual Servoing [32], for which it is assumed

that the manipulator dynamics is taken into account directly

by the low-level robot controller. Such a control law has been

introduced in [34]–[36] and already employed in [1], [3]. Only

the key features will be thus here reported: the reader may refer

to the original papers for more details.

The (6 × 1) absolute velocity vector of the camera υc
c =[

ṗcT
c ωcT

c

]T
, the (6 × 1) absolute velocity vector of the

thrown ball υc
o =

[
ṗcT
o ωcT

o

]T
, both expressed with respect

to Σc, and the (2×1) velocity vector of the image feature ṡ in

the image plane, are related by the following expression [32]

ṡ = Lsυ
c
c +LsΓ(−pc

o)υ
c
o, (16)

in which Ls =
[
Lsp(s,p

c
o) Lso(s)

]
is the (2×6) interaction

matrix of a point image feature defined as follows

Ls =




− 1

zc
0

X

zc
XY −1−X2 Y

0 − 1

zc
Y

zc
1 + Y 2 −XY −X


 ,

(17)

where Lsp and Lso are the (2×3) sub-matrices corresponding

to the first and last three columns of (17), respectively, and

Γ(·) is the (6× 6) matrix

Γ(·) =
[
−I3 S(·)
0 −I3

]
, (18)

where In denotes the (n × n) identity matrix and S(·) the

skew-symmetric matrix. Equation (16) can be rewritten as

ṡ = Lsp (ṗ
c
c − ṗc

o + S(−pc
o)ω

c
o) +Lso (ω

c
c − ωc

o) . (19)

By exploiting the employed partitioned visual servoing

controller, the translational components ṗc
c of the robot motion

are devoted to move the robot to intercept the path of the ball

with the gripper mounted on the robot end-effector [34].

Given the desired trajectory pc,d, ṗc,d and p̈c,d for the

camera frame, on the one hand, the translational components

of the velocity input for the camera frame Σc can be generated

as follows

ṗc
c = RT

c

(
ṗc,d +Kpep

)
, (20)

with Rc the rotational matrix of the camera frame Σc with

respect to the base frame Σb, Kp > 0 a diagonal constant

(3 × 3) gain matrix, and ep the (3 × 1) error vector between

the desired trajectory pc,d and the one provided by the robot

direct kinematics at time t. On the other hand, the rotational

components of the velocity input for the camera frame Σc can

be generated in the image space as follows:

ωc
c = L†

so [Kso,eb2(es)τττ eb1 (es)

− L̂sp

(
ṗc
c − ˆ̇pc

o + S(−p̂
c
o)ω̂

c
o

)]
+ ω̂

c
o, (21)

with † denoting the pseudo-inverse of a matrix, p̂
c
o the estimate

of the unknown position of the ball in Σc, and ṗc
c evaluated

in (20). Notice that the matrix LsoL
T
so is never singular since

its determinant is equal to 1/(X2 + Y 2 + 1)3. The terms ˙̂pc
o

and ω̂
c
o are the estimates of the unknown absolute translational

and angular velocities of the ball with respect to Σc. Notice

that L̂sp in (21) is an estimated term since it depends on p̂
c
o.

Moreover, the error term es = −s is the image error vector

becoming null when the camera is pointed towards the centroid

of the ball, while the term τττ eb(es) is a threshold function

defined as [3]

τττ eb1(es) =




0 if ‖es‖ ≤ eb1(
1− eb1

‖es‖

)
es if ‖es‖ > eb1,

(22)

with Kso,eb2(es) a (2× 2) gain matrix defined as

Kso,eb2 (es) =





koI2 if ‖es‖ ≤ eb2

koe
βo

(‖es‖
eb2

− 1

)

I2 if ‖es‖ > eb2,
(23)

where ko > 0 is a gain factor, eb2 > eb1 > 0 are proper

thresholds, and βo > 0 is a restraint factor tuning the

increasing rate of Kso. The details about how to estimate

p̂
c
o (and then also L̂sp), ˙̂pc

o and ω̂
c
o are given in the next

subsection.

Finally, the input to the robot controller, i.e., the joint

velocity vector, can be computed as [32]

q̇ = J†(q)T cv
c
c +NJKrq̇r, (24)

with q the vector of joint positions, J(q) the Jacobian matrix

of the robot that is pseudo-inverted as denoted in [32], T c

the (6 × 6) matrix relating υc
c to the velocity of the robot

end-effector with respect to the base frame, NJ the projector

matrix into the null space of the robot Jacobian, Kr a diagonal

positive definite gain matrix, and q̇r a set of joint velocities

employed in a possible redundancy management to optimize



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 10

some other sub-tasks [40], e.g. joint limits and singularities

avoidance, increasing the manipulability.

A. Estimation of the ball-camera relative motion

The necessary quantities to be estimated in (21) are the

linear position p̂
c
o, linear velocity ˙̂pc

o, and angular velocity ω̂
c
o

of the center of the ball with respect to Σc. Starting from

the current estimate of the position p0 and velocity v0 of the

ball, the ballistic model (12) is numerically integrated in the

time interval [0, ti]. In this way, p̂
c
o can be obtained at a certain

time t. With the same numerical integration, it is also possible

to obtain the estimate of the linear velocity ˙̂pc
o. It is worth

noting that the first estimate of p0 and v0 is obtained after nl

measurements (see Section V-A). Before nl measurements are

collected, in order to compute the above mentioned quantities,

an initial value of p0 and v0 should be anyhow provided.

Hence, a statistical calibration has been preliminary realized

to retrieve a rough initial estimation of p0 and v0.

Finally, the angular velocity can be retrieved as

ω̂
c
o = (p̂c

o × ˙̂pc
o)‖p̂c

o‖−2 = S(p̂c
o)
˙̂pc
o‖p̂c

o‖−2. (25)

B. Stability proofs

Before starting with the proofs, it is necessary to give

some bounds about the quantities given in Section VII-A. In

particular, taking into account what written in Section VII-A

and (12), the following expressions hold

‖ ˙̂pc
o‖ ≤ B1 < ∞, (26)

‖p̂c
o‖ ≤ B2 < ∞, (27)

where B1 and B2 are two positive limited bounds since ˙̂pc
o and

p̂
c
o are numerically integrated as described in Section VII-A,

and this means that they are a finite sum of finite elements.

Moreover, they can be also saturated by programming code.

For the angular part, taking into account (25) and the property

that the Eucledian norm of a skew-symmetric matrix of a

vector is equal to the norm of the vector itself, the following

bound can be considered

‖ω̂c
o‖ ≤ B3 < ∞, (28)

with B3 = B1/B2 a positive limited bound since B1 and B2

are positive and limited. Finally, the following physical bounds

can be considered

‖pc
o‖ ≤ B4 < ∞ (29a)

‖ṗc
o‖ ≤ B5 < ∞ (29b)

‖ωc
o‖ ≤ B6 < ∞ (29c)

For what concerns the stability proofs of the system, the

following theorems hold.

Theorem 1. Provided that Kp is a positive definite matrix,

the control law (20) ensures an asymptotic convergence to zero

of the position error ep.

Proof. The time derivative of the position error can be com-

puted as

ėp =
d

dt
(pc,d − pc(t)) = ṗc,d − ṗc, (30)

where pc(t) is the (3×1) vector denoting the current position

of the camera with respect to Σb at time t, computed by

solving the direct kinematics of the robot, while ṗc is the

related translational velocity of the camera with respect to Σb.

Pre-multiplying by Rc both sides of (20) and folding the result

into the previous equation yields

ėp +Kpep = 0. (31)

Since KP is a positive definite matrix, usually a diagonal

matrix, the previous system is asymptotically stable and the

error ep tends to zero along the trajectory with a convergence

rate depending on the eigenvalues of Kp.

Theorem 2. The system (19), equivalent to (16), is asymptot-

ically stable under the control laws (20)-(21), in the presence

of a perfect estimate of the unknown terms. Otherwise, only

stability can be ensured, where the bounds can be determined

by tuning the gain ko.

Proof. The following analysis is performed by using the

direct Lyapunov theorem. Consider the following candidate

Lyapunov function V (es) = eTs Kses, where Ks is a (2× 2)

positive definite diagonal matrix. By noticing that ės = −ṡ,

computing the time derivative of V (es) and taking into

account (19), (20) and (21) yield V̇ = −α1 −α2 −α3, where

α1 = eTs Ks

(
Lsp − L̂sp

)
ṗc
c (32a)

α2 = eTs KsKso,eb2(es)τ eb1(es) (32b)

α3 = eTs Ks

(
LsΓ(−pc

o)υ
c
o − L̂sΓ(−p̂

c
o)υ̂

c
o

)
. (32c)

If each term in (32) is strictly positive, then V̇ < 0.

However, no term in (32) is a quadratic form, hence only

qualitative considerations can be achieved.

If L̂sp = Lsp, the term α1 in (32a) vanishes, but there is

no guarantee that such condition can happen. Nevertheless,

the α1 term is bounded since the condition for updating L̂sp

through the estimate of p̂
c
o seems to be the optimal one during

the experiments [41].

By considering (22)-(23), the term α2 in (32b) can be

bounded as follows

0 ≤ α2 ≤ eTs Ks


koe

βo

(‖es‖
eb2

− 1

)

I2


es. (33)

By choosing Ks = koe
βo

(‖es‖
eb2

− 1

)

I2, the last term in

(33) is positive definite. Hence, α2 is always positive and

limited.

The α3 term in (32c) vanishes in case of perfect esti-

mate. Otherwise, nothing can be said about the sign of α3.

Denoting with λ the maximum eigenvalue of Ks and with

σM (·) the maximum singular value of a matrix, recalling that

Ls =
[
Lsp Lso

]
, L̂s =

[
L̂sp Lso

]
, υc

o =
[
ṗc
o ωc

o

]

and υ̂
c
o =

[
˙̂pc
o ω̂

c
o

]
, taking into account (29), the following



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 11

expression for α3 holds α3 = α3,1+ . . . α3,6, where each term

can be bounded as follows

α3,1 = eTs KsLspṗ
c
o ≤ λσM (Lsp)B5‖es‖ (34a)

α3,2 = eTs KsLspS(ω
c
o)p

c
o ≤ λσM (Lsp)B6B4‖es‖ (34b)

α3,3 = −eTs KsL̂sp
˙̂pc
o ≤ λσM (L̂sp)B1‖es‖ (34c)

α3,4 = esKsL̂spS(−p̂
c
o)ω

c
o ≤ λσM (L̂sp)B2B6‖es‖ (34d)

α3,5 = −eTs KsLsoω̂
c
o ≤ λσM (Lso)B3‖es‖ (34e)

α3,6 = eTs KsLsoω
c
o ≤ λσM (Lso)B6‖es‖. (34f)

Hence, supposing α1 is positive definite, taking into account

(33), the particular choice for Ks and the expressions in (34),

the following bounds for V̇ hold

V̇ ≤ −eTs KsKses + λB‖es‖ ≤ −λ (λ‖es‖ −B) ‖es‖,
(35)

where B = σM (Lsp) (B5 +B6B4) + σM (Lso) (B3 +B6) +
σM (L̂sp) (B1 +B2B6). Hence, from (35), it is possible to

conclude that when ‖es‖ > B/λ then V̇ < 0 and then the

system is asymptotically stable. When ‖es‖ ≤ B/λ nothing

can be said about the sign. Hence, the term B/λ is the bound

for the error es. To reduce the bound, λ → ∞, the gain ko
should be increased as much as possible with respect to the

employed controller sample time.

In conclusion, in case of a perfect estimate, the terms α1

and α3 vanish, while α2 is positive and limited. Then, the

chosen control laws lead to an asymptotically stable system.

In case of an imperfect compensation, instead, the error in the

image plane is anyway bounded.

For a ball catching task, this stability condition can be

considered sufficient, because the visual control goal is mainly

in keeping the ball in the field of view of the camera.

VIII. EXPERIMENTS

The employed experimental set-up is depicted in Fig. 10. An

USB iDS UEYE UI-1220SE-C camera is mounted in eye-in-

hand configuration directly in the center of the base of the

gripper. This last is made up of two brushed DC motors,

with a metal gearbox and an integrated quadrature encoder.

Through a rack-and-pinion mechanism the motion of these

motors allows the closure of the gripper fingers. The gripper

is in turn mounted on a COMAU Smart-Six robot manipulator

standing on a sliding track. The COMAU C4G control unit is

in charge of the compensation of the robot dynamics.

An external PC with UBUNTU OS and a patched RTAI

real-time kernel generates the references for the robot each

2ms. A second PC with Windows OS is in charge of the

visual elaboration process and communicates with the first one

through an UDP protocol over a GigaBit dedicated LAN. A

high-priority multi-thread programming has been employed to

improve the stability of the elaboration time and synchronize

the visual measurements with the robot motion.

In order to provide a ground truth for the proposed estima-

tion algorithm, an OptiTrack motion-capture system composed

of ten S250e cameras has been employed to track the ball

during its motion.

actuator 

commands

measurements

UDP socket

USBSerial 

communication

Comau Smart-Six 7ax

iDS uEye UI-1220SE-C

Gripper

Comau C4G Control Unit

Control Pc - Ubuntu RTAI
Vision Pc - Windows

UDP socket

Fig. 10. Architecture of the ball catching system.

A. Technical details

The portion of the camera image employed for the ball

detection is limited to (368 × 512) pixels. On the basis of

the available ball, the range of radius of interest for the first

detection is [10, 14] pixels, which corresponds to a distance of

the ball from the camera in the range of [5, 6] m. For other

balls, these parameters have to be retuned. The RoI window

is dynamically placed and sized with respect to the current

radius of the detected ball. At the first detection, its dimension

is set to (38 × 38) pixels. With this configuration parameter

the acquisition frame rate is speeded up to 140 fps.

The available ball has a diameter of 8.5 cm and a weight

of about 32 g. Six soft reflecting markers are attached to the

ball in order to make the OptiTrack system able to observe

it. These markers do not affect the visual detection of the

ball in the scene since they do not alter the ball shape. The

coefficients of the air drag factor have been tuned to cw = 0.45
and ρa = 1.293 kg/m3.

On the basis of the available robot, the gain matrix in (20)

has been set by experimental tuning to Kp = 500I3, while

the gains in (21) have been tuned to ko = 200, eb1 = 10 and

eb2 = 100.

By using the OptiTrack system, it has been possible to

measure the rebound of the chosen ball on the ground.

Hence, a calibration procedure has been adopted to tune the

parameters Kb and bb in (13). In details, the motion-capture

system has provided the 3D position of the six markers at

a frequency of 250 Hz. By knowing both the geometrical

features of the ball and the position of these markers it has

been possible to reconstruct the real ballistic trajectory of

the ball. A set of 20 trajectories containing rebounded points

have been acquired. The ball velocities before and after the

rebound have been computed with a filtered derivative of

such trajectories. Thereafter, the coefficients Kb and bb have

been retrieved through a least squares solution. Namely, the

obtained values are Kb = diag
[
0.2 −0.785 0.55

]
, while

bb has been approximated to a null vector since its values are

very small with respect to Kb for the current set-up.

The intrinsic redundancy of the chosen robotic platform

has been exploited in (24) to avoid joint limits, kinematic



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 12

2 3 4 5 6 7
0

2

4

6

8

10

12

d [m]

||e
|| 

/ 
r

Fig. 11. Ball distance estimation error normalized to the radius in green (red)
with (without) the sub-pixel refinement.

singularities and to reduce the movements of the sliding track

since its dynamics is considerably slower than those of the

other joints.

On the basis of the available set-up, the initial baseline has

a planned length of 50 cm that should be performed by the

camera in 500 ms. The first estimate of the trajectory starts

when about nl = 45 samples have been collected, i.e., after

about 320 ms. Therefore, typically, the first catching trajectory

starts before the end of the baseline path.

Latency periods and delays between the robot control PC,

the C4G control unit and the visual elaboration PC have been

estimated so as to synchronize at the best the direct kinematic

measurements of the robot with the visual data.

B. Ball detection and tracking results

In order to evaluate the performance of the proposed sub-

pixel refinement algorithm (see Section IV-D), a (fixed) ball

with a diameter of 9 cm has been observed at 15 different

distances from the camera, equally distributed by a step of

30 cm. Since the camera calibration parameters are known,

from the observed radius of the ball in the image it is possible

to estimate the distance of the ball from the camera. The error

between the real distance and the estimated one, normalized

with respect to the ball radius, is depicted in Fig. 11. The

errors computed with the measurements taken through the sub-

pixel refinement are represented in green, while the not refined

measurements are represented in red. In all cases, the refined

measure outperform significantly the integer estimations of the

ball position and radius.

With respect to a generic throw, the elaboration time of the

proposed detection and tracking process with respect to the

distance of the ball from the camera (which is related to the

ball radius) is shown in Fig. 12. The whole elaboration time

is represented in green, while the time required for the sub-

pixel refinement process is represented in red. The dashed line

indicates the time limit corresponding to the camera rate of

140fps. Since Fig. 12 depicts the elaboration time with respect

to the distance of the ball from the camera, the pictures goes

from right to left. Hence, it is worth noticing how the first

elaboration time is bigger than others because the detection

process is applied to the whole image, while from the second

step the elaboration time is significantly reduced thanks to the

windowing and tracking strategy. At the end (extreme left of

2 3 4 5 6
0

1

2

3

4

5

6

7

d [m]

[m
s]

 

 

Fig. 12. Elaboration time of the ball detection and tracking process with
respect to the ball distance from the camera (hence, read the picture from
right to left). In green the whole elaboration time, in red the time required
for the sub-pixel refinement process. The dashed line indicates the time limit
corresponding to the camera rate of 140fps.

Fig. 12), once the ball is near to the camera, the elaboration

time increases since the ball radius increases in the image and

more pixels have to be elaborated.

C. Ball Catching Results

Several experiments have been performed with a number

of pitchers and varying light conditions. The percentage of

caught ball evaluated over a set of 300 shots (100 shots for

each of the three trials: rolling, bouncing, flying ball) is about

95%. Namely, the caught balls in the rolling case have been

98, as well as in the flying ball case, while 89 balls have

been grabbed in the bouncing case. Hence, the main problems

originate from the employed rebound model and the related

parameters. Concerning the statistical reliability test, the mean

percentage of discarded outliers in each throw is about 11.5%,

while the accuracy of the final catching point, on the basis of

the OptiTrack measurements, has been improved about 5%.

This corresponds to an improvement of the interception point

of about 2–3cm in the available set-up.

An example of a possible ball trajectory for a given throw

with the overlay of the motion of the robot is depicted in

Fig. 13. Moreover, a multimedia attachment (available also

online3) shows the performance of the proposed algorithm.

The OptiTrack system has been employed to give a ground

truth about the estimate of the ballistic trajectory. Some

examples are shown in Fig. 14: the case of a bouncing ball

is depicted in Fig. 14(a), the case of a normal throw in

Fig. 14(b), while Fig. 14(c) presents the case of a rolling

ball. In all these pictures, the green tube is the space occupied

by the ball during its motion towards the robot as measured

by the OptiTrack system. The blue line is the final estimated

trajectory of the centroid of the ball. It is possible to observe

that the blue line is always inside the green tube: this gives

a geometric quality measure about the performance of the

proposed estimation process. The red line shows the path

followed by the camera/gripper mounted on the robot. It is

then possible to recognize both the initial baseline and the

catching path in which the gripper follows the predicted ball

3http://www.youtube.com/watch?v=gT8Zn6L5PEk

http://www.youtube.com/watch?v=gT8Zn6L5PEk


TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 13

(a) Flying case (b) Bouncing case

Fig. 13. Overlay of the ball trajectory and robot motion in flying and bouncing
cases.

trajectory during the catch. In Fig. 14(c) the blue circle denotes

the space occupied by the opened gripper that is placed at a

safety distance from the ground.

Further to the geometrical path, another quality index to

measure the performance of the estimation process is a com-

parison along the time between the ground truth and the final

predicted trajectory. With reference to the throw depicted in

Fig. 14(a), the time histories of both the ground truth (i.e.,

the space traced by the ball) and the predicted trajectories are

shown in Fig. 15. Again, the time histories of the predicted

trajectory fit inside the ground truth.

The predicted interception points p× for the throw of

Fig. 14(a) at each estimation time ti, projected in both the

(x− y) and (z− y) planes of Σb, are represented with a cross

point in Fig. 16. The color bar identifies the ordered sequence

of such predicted interception points with reference to the

number of employed measures, while the biggest brown cross

represents the final position p× in which the estimate has been

considered as stable. The dashed lines represent the planned

path for the hand (see Section VI), starting from the current

motion state and leading to the current estimated interception

position, while the continuous line is the real path followed

by the gripper, which starts with the baseline (green piece of

the path). It is worth noticing that the first estimated point,

the green one, is given by the linear estimation process. The

big orange circle is the full representation of the ball in the

final position measured by the OptiTrack system and projected

in the above mentioned planes of Σb. The big blue circle in

the background is instead the space occupied by the gripper

base in the final estimated position and projected in the the

above mentioned planes of Σb. The information provided by

Fig. 16 is twofold. First, it is possible possible to recognize the

tolerance between the real position of the ball and the space

occupied by the gripper at the interception point; then, another

way to measure the quality of the estimate is the evaluation

of how far the final estimated p× is from the center of the

measured position of the ball.

(a) Bouncing throw

(b) Flying throw

(c) Rolling throw

Fig. 14. 3D plots of three different throws. The blue line is the final estimated
trajectory of the ball centroid. The green cylinder is the space occupied by
the ball during the flight that has been measured by the OptiTrack system.
The red path is the motion of the camera/gripper. The light blue circle is the
space occupied by the gripper with all the fingers open.

IX. CONCLUSION

A new technique to catch a thrown ball with a robotic

system endowed of only a single camera mounted in eye-in-

hand configuration has been provided. Namely, the proposed

novelties are: a sub-pixel refinement for the circle detector

visual algorithm; a statistical reliability test to reduce image

noise and possible outliers; deal with flying, bouncing and

rolling balls in the same framework without changing neither

the estimator nor the control law. The effectiveness of the

proposed approach has been demonstrated in both theory and

experimental results on a common industrial robotic set-up.

An experimental comparison of the achieved results with the

measurements given by an OptiTrack motion-capture system

has been provided.



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 14

0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

t [s]

x
 [

m
]

(a)

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

t [s]

y
 [

m
]

(b)

0 0.5 1 1.5
−6

−4

−2

0

2

t [s]

z 
[m

]

(c)

Fig. 15. Time histories of the ground truth (in green) and the final predicted
trajectory (in blue) of the throw depicted in Figure 14(a).

REFERENCES

[1] V. Lippiello and F. Ruggiero, “3D monocular robotic ball catching
with an iterative trajectory estimation refinement,” in IEEE International
Conference on Robotics and Automation, (St. Paul, MN), pp. 3950–3955,
2012.

[2] V. Lippiello and F. Ruggiero, “Monocular eye-in-hand robotic ball
catching with parabolic motion estimation,” in 10th International IFAC

Symposium on Robot Control, (Dubrovnik, HR), pp. 229–234, 2012.

[3] V. Lippiello, F. Ruggiero, and B. Siciliano, “3D monocular robotic ball
catching,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1615–
1625, 2013.

[4] B. Bauml, O. Birbach, T. Wimbock, U. Frese, A. Dietrich, and
G. Hirzinger, “Catching flying balls with a mobile humanoid: System
overview and design considerations,” in 2011 11th IEEE-RAS Interna-

tional Conference on Humanoid Robots, (Bled, SI), pp. 513–520, 2011.

[5] J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with
a humanoid robot,” in 2012 12th IEEE-RAS International Conference

on Humanoid Robots, (Osaka, J), pp. 875–881, 2012.

[6] O. Birbach, U. Frese, and B. Bauml, “Realtime perception for catching a
flying ball with a mobile humanoid,” in IEEE International Conference

on Robotics and Automation, (Shanghai, PRC), pp. 5955–5962, 2011.

[7] D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using
sub-pixel displacements,” in 1988 IEEE Conference on Computer Vision

and Pattern Recognition, (Ann Arbor, MI, USA), pp. 742–746, 1988.

[8] L. Torabi and K. Gupta, “An autonomous six-DOF eye-in-hand system
for in situ 3D object modeling,” The International Journal of Robotics
Research, vol. 31, no. 1, pp. 82–100, 2011.

[9] C. Borst, M. Fischer, S. Haidacher, H. Liu, and G. Hirzinger, “DLR
hand II: Experiments and experiences with an anthropomorphic hand,”
in IEEE International Conference on Robotics and Automation, (Taipei,
ROC), pp. 702–707, 2003.

[10] V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani, “Visual grasp
planning for unknown objects using a multifingered robotic hand,”
IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 1050–
1059, 2013.

[11] Q. He, C. Hu, W. Liu, N. Wei, M. Meng, L. Liu, and C. Wang,
“Simple 3-D point reconstruction methods with accuracy prediction
for multiocular system,” IEEE/ASME Transactions on Mechatronics,
vol. 18, no. 1, pp. 366–375, 2013.

[12] D. Fernandes and P. Lima, “A testbed for robotic visual servoing and
catching of moving objects,” in IEEE International Conference on

Electronics, Circuits and Systems, (Lisboa, P), pp. 475–478, 1998.

[13] R. Herrejon, S. Kagami, and K. Hashimoto, “Composite visual servo-
ing for catching a 3-D flying object using RLS trajectory estimation
from a monocular image sequence,” in IEEE International Symposium
on Computational Intelligence in Robotics and Automation, (Daejeon,
KOR), pp. 526–531, 2009.

(a) x− y plane.

(b) z − y plane.

Fig. 16. Sequence of the interception points (cross points) projected onto
the (x− y)-plane and (z − y)-plane. The dashed lines represent the planned
path, starting from the current hand position (circle points) and ending at
the current estimated interception points. The continuous lines represent the
real path followed by the gripper, starting with the initial baseline (green)
and leading to the final catching point (biggest cross). The big orange circle
represents the final position of the ball measured by the OptiTrack system.
The big blue circle in the background is the estimated final position of the
gripper catching base. The color bar on the right identifies the refinements of
the interception points, while the related labels represent the number of visual
measurements employed by the estimation process of each refinement.

[14] R. Mori and F. Miyazaki, “Examination of human ball catching strategy
though autonomous mobile robot,” in IEEE International Conference on

Robotics and Automation, (Washington, DC), pp. 4236–4241, 2002.

[15] R. Mori, K. Hashimoto, and F. Miyazaki, “Tracking and catching of 3d
flying target based on GAG strategy,” in IEEE International Conference

on Robotics and Automation, (New Orleans, LA), pp. 5189–5193, 2004.

[16] E. Ribnick, S. Atev, and N. Papanikolopoulos, “Estimating 3D positions
and velocities of projectiles from monocular views,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 938–
944, 2009.

[17] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hahnle,
and G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
(Maui, HI), pp. 1623–1629, 2001.

[18] E. Ribnick, S. Atev, N. Papanikolopoulos, O. Masoud, and R. Voyles,
“Detection of thrown objects in indoor and outdoor scenes,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, (San Diego,
CA), pp. 979–984, 2007.

[19] K. Deguchi, H. Sakurai, and S. Ushida, “A goal oriented just-in-time
visual servoing for ball catching robot arm,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, (Nice, F), pp. 3034–3039,
2008.

[20] S. Kim. and A. Billard, “Estimating the non-linear dynamics of free-
flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9,
pp. 1108–1122, 2012.



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 15

[21] G. Batz, A. Yaqub, H. Wu, K. Kuhnlenz, D. Wollherr, and M. Buss,
“Dynamic manipulation: Nonprehensile ball catching,” in 18th Mediter-

ranean Conference on Control and Automation, (Marrakech, MA),
pp. 365–370, 2010.

[22] S. Chapman, “Catching a baseball,” American Journal of Physics,
vol. 36, no. 10, pp. 868–870, 1968.

[23] R. Mori and F. Miyazaki, “GAG (gaining angle of gaze) strategy for
ball tracking and catching task,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, (Lausanne, CH), pp. 281–286, 2002.
[24] Z. Zhang, D. Xu, and M. Tan, “Visual measurement and prediction of

ball trajectory for table tennis robot,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 59, no. 12, pp. 3195–3205, 2010.

[25] Y. Huang, D. Xu, M. Tan, and H. Su, “Trajectory prediction of spinning
ball for ping-pong player robot,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, (San Francisco, CA), pp. 3434–3439,
2011.

[26] J. Nonomura, A. Nakashima, and Y. Hayakawa, “Analysis of effects of
rebounds and aerodynamics for trajectory of table tennis ball,” in SICE
Annual Conference, (Taipei, ROC), pp. 1567–1572, 2010.

[27] A. Nakashima, Y. Ogawa, Y. Kobayashi, and Y. Hayakawa, “Modeling of
rebound phenomenon of a rigid ball with friction and elastic effects,” in
American Control Conference, (Baltimore, MD), pp. 1410–1415, 2010.

[28] A. Nakashima, Y. Ogawa, C. Liu, and Y. Hayakawa, “Robotic table
tennis based on physical models of aerodynamics and rebounds,” in
IEEE International Conference on Robotics and Biomimetics, (Phuket,
T), pp. 2348–2354, 2011.

[29] Y.-B. Jia, “Three-dimensional impact: energy-based modeling of tan-
gential compliance,” The International Journal of Robotics Research,
vol. 32, no. 1, pp. 56–83, 2013.

[30] K. Nishiwaki, A. Konno, K. Nagashima, M. Inaba, and H. Inoue, “The
humanoid Saika that catches a thrown ball,” in IEEE International

Workshop on Robot and Human Communication, (Sendai, J), pp. 94–99,
1997.

[31] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE

Transactions on Robotics, 2014 (in press).
[32] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-

elling, Planning and Control. London, UK: Springer, 2008.
[33] R. Dahmouche, N. Andreff, Y. Mezouar, O. Ait-Aider, and P. Martinet,

“Dynamic visual servoing from sequential regions of interest acquisi-
tion,” The International Journal of Robotics Research, vol. 31, no. 4,
pp. 520–537, 2012.

[34] K. Deguchi, “Optimal motion control for image-based visual servoing
by decoupling translation and rotation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, (Victoria, CDN), pp. 705–
711, 1998.

[35] E. Malis, F. Chaumette, and S. Boudet, “2 1

2
D visual servoing,” IEEE

Transactions on Robotics and Automation, vol. 15, no. 2, pp. 238–250,
1999.

[36] P. Corke and S. Hutchinson, “A new partitioned approach to image-based
visual servo control,” IEEE Transactions on Robotics and Automation,
vol. 17, no. 4, pp. 507–515, 2001.

[37] Y. Tanaka, T. Tsuji, and M. Kaneko, “Task readiness impedance in
human arm movements for virtual ball-catching task,” in Conference

of the IEEE Industrial Electronic Society, (Roanoke, VA), pp. 478–483,
2003.

[38] O. Birbach and U. Frese, “A multiple hypothesis approach for a ball
tracking system,” in 7th International Conference on Computer Vision
Systems: Computer Vision Systems, (Liege, B), pp. 435–444, 2009.

[39] J. Bresenham, “A linear algorithm for incremental digital display of
circular arcs,” Communications of the ACM, vol. 20, no. 2, pp. 100–
106, 1977.

[40] G. Antonelli, “Stability analysis for prioritized closed-loop inverse
kinematic algorithms for redundant robotic systems,” IEEE Transactions

on Robotics, vol. 25, no. 5, pp. 985–994, 2009.
[41] F. Chaumette, Potential Problems of Stability and Convergence in Image-

based and Position-based Visual Servoing. London, UK: Springer, 1998.

Pierluigi Cigliano was born in Naples, Italy, on
October 19, 1970. He received the Laurea degree
in Electronic Engineering from the University of
Naples in 2012. He works as consultant engineer
in the aerospace and defence field for the Altran
group. He worked as freelancer at Department of
Electrical Engineering and Information Technology
at University of Naples. He also worked as assistant
project supervisor for the technological revamp of
Naples Metro Line 1.

Vincenzo Lippiello (M’12) was born in Naples,
Italy, on June 19, 1975. He received his Laurea de-
gree in electronic engineering and the Research Doc-
torate degree in information engineering from the
University of Naples, in 2000 and 2004, respectively.
He is an Assistant Professor of Automatic Control
in the Department of Electrical Engineering and
Information Technology, University of Naples. His
research interests include visual servoing of robot
manipulators, hybrid visual/force control, adaptive
control, grasping and manipulation, aerial robotics,

robotic ball catching, and visual object tracking and reconstruction. He has
published more than 90 journal and conference papers and book chapters. He
is member of the IFAC Technical Committee on Robotics.

Fabio Ruggiero (S’07 - M’10) was born in Naples,
Italy, on December 16, 1983. He received the Laurea
Specialistica degree (M.Sc.) in Automation Engi-
neering from the University of Naples in 2007. He
got the Ph.D. degree from the same institution in
2010. Fabio Ruggiero has been holding a PostDoc-
toral position at Department of Electrical Engineer-
ing and Information Technology at University of
Naples since 2011. His research interests are focused
on dexterous and dual-hand robotic manipulation,
even by using UAVs with small robotic arms, dy-

namic non-prehensile manipulation, 3D object preshaping and reconstruction.
He has co-authored about 25 journal papers, book chapters and conference
papers.

Bruno Siciliano (M’91 - SM’94 - F’00) was born in
Naples, Italy, on October 27, 1959. He received the
Laurea degree and the Research Doctorate degree
in Electronic Engineering from the University of
Naples in 1982 and 1987, respectively. He is Pro-
fessor of Control and Robotics, and Director of the
PRISMA Lab in the Department of Electrical En-
gineering and Information Technology at University
of Naples Federico II. His research interests include
force and visual control, human-robot interaction,
aerial and service robotics. He has co-authored 13

books, 80 journal papers, 240 conference papers and book chapters. He has
delivered 110 invited lectures and seminars at institutions worldwide, and he
has been the recipient of several awards. He is a Fellow of IEEE, ASME
and IFAC. He has served on the editorial boards of several peer-reviewed
journals and has been chair of program and organizing committees of several
international conferences. He is Co-Editor of the Springer Tracts in Advanced
Robotics, and of the Springer Handbook of Robotics, which received the
PROSE Award for Excellence in Physical Sciences & Mathematics and was
also the winner in the category Engineering & Technology. His group has
been granted 14 European projects, including an Advanced Grant from the
European Research Council. Professor Siciliano is the Past-President of the
IEEE Robotics and Automation Society.


	Introduction
	Related work
	Ball detection
	Trajectory estimation
	Robot motion control

	Algorithm overview
	Visual Ball Detection and Tracking
	Affinity matrix evaluation
	Parallelization
	Pyramidal approach and windowing
	Sub-pixel refinement

	Ball Trajectory Estimation
	Initial baseline and linear initialization
	Nonlinear estimation and continuous refinement
	Statistical reliability test
	Rolling balls
	Catching point selection

	On-line path replanning
	Partitioned Visual Servoing Control Law
	Estimation of the ball-camera relative motion
	Stability proofs

	Experiments
	Technical details
	Ball detection and tracking results
	Ball Catching Results

	Conclusion
	References
	Biographies
	Pierluigi Cigliano
	Vincenzo Lippiello
	Fabio Ruggiero
	Bruno Siciliano


