2,515 research outputs found

    Malware Detection Using a Heterogeneous Distance Function

    Get PDF
    Classification of automatically generated malware is an active research area. The amount of new malware is growing exponentially and since manual investigation is not possible, automated malware classification is necessary. In this paper, we present a static malware detection system for the detection of unknown malicious programs which is based on combination of the weighted k-nearest neighbors classifier and the statistical scoring technique from [12]. We have extracted the most relevant features from portable executable (PE) file format using gain ratio and have designed a heterogeneous distance function that can handle both linear and nominal features. Our proposed detection method was evaluated on a dataset with tens of thousands of malicious and benign samples and the experimental results show that the accuracy of our classifier is 98.80 %. In addition, preliminary results indicate that the proposed similarity metric on our feature space could be used for clustering malware into families

    Automatic Malware Detection

    Get PDF
    The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system.The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Text Mining - A Toolbox for Text Classification

    Get PDF
    Nesta tese, irá ser explorado em profundidade o processo de text mining e classificação de documentos. O foco principal será no desenvolvimento de uma plataforma capaz de executar operações de extração de dados, processamento de linguagem natural, classificação de dados e avaliação dos modelos construidos, de um conjunto de documentos classificados. Isto vai ser integrado com um conjuntos de dados sobre analise de sentimentos , onde os documentos são baseados em polaridade, classificados em positivos ou negativos. Irá ser feita uma avaliação da precisão dos algoritmos de processamento, e uma comparação em profundidade entre os vários usados neste processo. Foi tido como objetivo produzir uma aplicação amigável para o utilizador, capaz de fornecer várias ferramentas para text mining e análise preditiva, com a integração de um conjunto de dados de polaridade.In this thesis it will be explored in depth the process of text mining and further document classification. The main focus will be the development of a platform capable of achieving op- erations of data extraction, natural language processing, classification of data, and evaluation of constructed models, from a corpus of labeled documents. This will be integrated with a sentiment analysis dataset where the documents are polarity based, classified as positive or negative. It will be made an evaluation of the accuracy in the processing algorithms and an in depth comparison between the different ones used although this process. It was aimed to produce a user-friendly application, capable of providing the user with tools of text mining and predictive analysis with the integration of a polarity dataset

    Transformation Based Ensembles for Time Series Classification

    Get PDF
    Until recently, the vast majority of data mining time series classification (TSC) research has focused on alternative distance measures for 1-Nearest Neighbour (1-NN) classifiers based on either the raw data, or on compressions or smoothing of the raw data. Despite the extensive evidence in favour of 1-NN classifiers with Euclidean or Dynamic Time Warping distance, there has also been a flurry of recent research publications proposing classification algorithms for TSC. Generally, these classifiers describe different ways of incorporating summary measures in the time domain into more complex classifiers. Our hypothesis is that the easiest way to gain improvement on TSC problems is simply to transform into an alternative data space where the discriminatory features are more easily detected. To test our hypothesis, we perform a range of benchmarking experiments in the time domain, before evaluating nearest neighbour classifiers on data transformed into the power spectrum, the autocorrelation function, and the principal component space. We demonstrate that on some problems there is dramatic improvement in the accuracy of classifiers built on the transformed data over classifiers built in the time domain, but that there is also a wide variance in accuracy for a particular classifier built on different data transforms. To overcome this variability, we propose a simple transformation based ensemble, then demonstrate that it improves performance and reduces the variability of classifiers built in the time domain only. Our advice to a practitioner with a real world TSC problem is to try transforms before developing a complex classifier; it is the easiest way to get a potentially large increase in accuracy, and may provide further insights into the underlying relationships that characterise the problem

    Breast Tumor Classification Using an Ensemble Machine Learning Method

    Get PDF
    Breast cancer is the most common cause of death for women worldwide. Thus, the ability of artificial intelligence systems to detect possible breast cancer is very important. In this paper, an ensemble classification mechanism is proposed based on a majority voting mechanism. First, the performance of different state-of-the-art machine learning classification algorithms were evaluated for the Wisconsin Breast Cancer Dataset (WBCD). The three best classifiers were then selected based on their F3 score. F3 score is used to emphasize the importance of false negatives (recall) in breast cancer classification. Then, these three classifiers, simple logistic regression learning, support vector machine learning with stochastic gradient descent optimization and multilayer perceptron network, are used for ensemble classification using a voting mechanism. We also evaluated the performance of hard and soft voting mechanism. For hard voting, majority-based voting mechanism was used and for soft voting we used average of probabilities, product of probabilities, maximum of probabilities and minimum of probabilities-based voting methods. The hard voting (majority-based voting) mechanism shows better performance with 99.42%, as compared to the state-of-the-art algorithm for WBCD

    Predicting dental implant failures by integrating multiple classifiers

    Get PDF
    El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina y proponer un procedimiento validado por expertos humanos. El modelo abarca la combinación de los clasificadores: Random Forest, C-Support Vector, K-Nearest Neighbors, Multinomial Naive Bayes y Multi-layer Perceptron. La integración de los modelos se realiza con el weighted soft voting method. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. Los resultados arrojados del enfoque propuesto sobre el conjunto de datos de implantes dentales, es validado con el desempeño en la clasificación por expertos humanos. Nuestro enfoque logra un porcentaje de acierto del 93% de casos correctamente identificados, mientras que los expertos humanos consiguen un 87% de precisión.The field of data science has made many advances in the application and development of techniques in several aspects of the health sector, such as in disease prediction, image classification, risk identification and risk reduction. Based on this, the objectives of this work were to investigate the benefit of using multiple classification algorithms to predict dental implant failures in patients from Misiones province, Argentina, and to propose a procedure validated by human experts. The model used the integration of several types of classifiers.The experimentation was performed with four data sets: a data set of dental implants made for the case study, an artificially generated data set, and two other data sets obtained from different data repositories. The results of the approach proposed were validated by the performance in classification made by human experts. Our approach achieved a success rate of 93% of correctly identified cases, whereas human experts achieved 87% accuracy. Based on this, we can argue that multi-classifier systems are a good approach to predict dental implant failures.Fil: Ganz, Nancy Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Ares, Alicia Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Kuna, Horacio Daniel. Universidad Nacional de Misiones. Facultad de Cs.exactas Quimicas y Naturales. Instituto de Investigacion Desarrollo E Innovacion En Informatica.; Argentin
    corecore