
Nancy B. Ganz et al.: Predicción de fracasos en implantes dentales mediante...	 13

RECyT / Año 22 / Nº 34 / 2020

RECyT
Año 22 / Nº 34 / 2020 / 13–23

Predicción de fracasos en implantes dentales mediante la 
integración de múltiples clasificadores

Predicting dental implant failures by integrating multiple classifiers

Nancy B. Ganz1, *, Alicia E. Ares1, Horacio D. Kuna2

1- Instituto de Materiales de Misiones (IMAM), Consejo Nacional de Investigaciones Científicas y 

Técnicas (CONICET), Facultad de Ciencias Exactas Químicas y Naturales (FCEQyN), Universidad Nacional 

de Misiones (UNaM), Félix de Azara 1552, N3300LQH, Posadas, Misiones, Argentina.

2- Instituto de Investigación, Desarrollo e Innovación en Informática (IIDII), Facultad de Ciencias Exactas Químicas y Naturales 

(FCEQyN), Universidad Nacional de Misiones (UNaM), Félix de Azara 1552, N3300LQH, Posadas, Misiones, Argentina.

*E-mail: nancy.bea.ganz@gmail.com

Recibido: 10/12/2019; Aprobado: 29/05/2020

Resumen

El campo de la Ciencia de Datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el 
sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, 
identificación y reducción de riesgos, así como muchos otros. Este trabajo tiene por objetivo investigar el beneficio 
de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en Implantes Dentales de la 
provincia de Misiones, Argentina y proponer un procedimiento validado por expertos humanos. El modelo abarca 
la integración de varios tipos de clasificadores. La experimentación es realizada con cuatro conjuntos de datos, 
un conjunto de Implantes Dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y 
otros dos conjuntos obtenidos de distintos repositorios de datos. Los resultados arrojados del enfoque propuesto 
sobre el conjunto de datos de Implantes Dentales, es validado con el desempeño en la clasificación por expertos 
humanos. Nuestro enfoque logra un porcentaje de acierto del 93% de casos correctamente identificados, mientras 
que los expertos humanos consiguen un 87% de precisión. En base a esto podemos alegar, que los sistemas de 
múltiple clasificadores son un buen enfoque para predecir fracasos en implantes dentales.

Palabras clave: Combinación de clasificadores, clasificación, aprendizaje automático, implantes dentales, predicción 
de fracasos.

Abstract

The field of data science has made many advances in the application and development of techniques in several 
aspects of the health sector, such as in disease prediction, image classification, risk identification and risk reduction. 
Based on this, the objectives of this work were to investigate the benefit of using multiple classification algorithms 
to predict dental implant failures in patients from Misiones province, Argentina, and to propose a procedure 
validated by human experts. The model used the integration of several types of classifiers.The experimentation 
was performed with four data sets: a data set of dental implants made for the case study, an artificially generated 
data set, and two other data sets obtained from different data repositories. The results of the approach proposed 
were validated by the performance in classification made by human experts. Our approach achieved a success 
rate of 93% of correctly identified cases, whereas human experts achieved 87% accuracy. Based on this, we can 
argue that multi-classifier systems are a good approach to predict dental implant failures.

Keywords: Combination of classifiers, classification, machine learning, dental implants, prediction of failures.

Introduction

In decision-making, the combination of classification 
models can be fundamental, because such a combination 
aims to obtain an appropriate solution for a particular 
problem. Individually, classification methods are based 
on different estimation concepts or procedures. Thus, 

by combining them in some way, it is possible to bring 
together the best properties of each of them and to combine 
the decisions obtained with the same or different base 
classifiers [1]. Combination methods are those in which, 
given a set of already trained classifiers, the results are 
combined in different ways to return a more precise value 
than that of the individual classifiers [2]. This integration is 
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often more accurate, because training data may not provide 
enough information to choose a better classifier and, in this 
situation, the combination is the best option. Therefore, the 
combination may be equivalent to very complex decision 
trees [3].

Based on this, the aim of the present study was to 
evaluate the application of multiple classifiers for the 
prediction of cases of dental implant failure. The data 
set used was based on clinical histories of patients who 
had undergone surgical processes of dental implant 
placement in the province of Misiones, Argentina. The 
model proposed used the following classifiers: Random 
Forest (RF) [4], C-Support Vector (SVC) [5], K-Nearest 
Neighbors (KNN) [6], Multinomial Naive Bayes (MNB) 
[7] and Multi-layer Perceptron (MLP) [8]. The proposed 
integration of these classifiers aimed to combine the 
results of their predictions to determine the degree of 
class membership and to achieve greater accuracy than 
that achieved by each of the classifiers individually for the 
target class label (dental implant failure).

The contributions of this work include the proposed of 
an automatic learning model for the prediction of failure 
in dental implants, which is a little known field. Likewise, 
we demonstrated that multiple classifier systems can also 
be applied to the case study, as they allow achieving better 
classification performance than that performed by the 
human experts.

This section has presented the motivations of our 
work. The rest of the paper is structured as follows: 
Section 2 presents related work on the application of 
multiple classifier systems, section 3 describes in detail the 
integrated approach of multiple classifiers and an overview 
of each of the individual classifiers, section 4 presents the 
experimental results obtained, and section 5 summarizes 
the main conclusions drawn from this work and outlines 
future lines of research.

Related work

Several studies have evaluated the combination or 
integration of classifiers to improve the percentage of 
success or even not to bias the decision on the results of a 
single classifier [9]. Miao et al. [10], for example, proposed 
a procedure to improve the accuracy in the identification of 
genes by integrating the Support Vector Machines (SVM), 
RF, and Extreme Learning Machines (ELM) classifiers, 
by applying ReliefF [11] to select the most relevant 
characteristics of the data set. After training and prediction 
with the three classifiers, the authors combined the results 
through the majority voting method [9]. The integration 
of the predictions allowed them to obtain greater accuracy 
than with the individual classifiers. Similarly, Catal and 
Nengir [12] presented a model for the classification of 
feelings by combining the Naive Bayes, SVM and Bagging 
classifiers. For the integration of predictions, the authors 

used the majority voting method and demonstrated that 
multiple classifier systems improve accuracy. Another 
work of similar characteristics is that of Pandey and 
Taruna [13], who proposed an integrated classifier using a 
J48 Decision Tree, K-Nearest Neighbor and Aggregating 
One-Dependence Estimators (AODE), on a data set of 
academic performance of engineering students. In this 
model, each individual classifier generates its predictive 
value and these are integrated through the probability 
product, where the final class label is represented by the 
maximum of a subsequent probability. Yan et al. [14] also 
proposed the integration of the Naive Bayes, Decision 
Tree (ID3) and Maximum Entropy classifiers with the 
majority voting method for semantic dependency analysis 
in Chinese. In this model, each of the three classifiers 
is trained with the same training data. The approach 
proposed achieved 86% accuracy in experimentation, 
which, according to the authors, is promising for semantic 
dependency analysis in Chinese. Ruano-Ordás et al. 
[15]the amount of acquired knowledge about the design 
and synthesis of pharmaceutical agents and bioactive 
molecules (drugs proposed a model to automatically 
determine the biological activity of molecules based on 
2048 chemical substructures (coded using binary values) 
and 84 physicochemical properties (coded using discrete 
and continuous values). The authors performed the process 
in three stages: grouping of characteristics, construction 
and optimization of hyper parameters of each classifier, 
and classification. They also used SVM with Radial Basis 
Function (RBF) kernel, AdaBag and rpart, and combined 
the individual results of each classification into a single 
result by using the majority voting method. In addition, 
Oliveira et al. [16] addressed the problem of pedestrian 
detection using the MLP and SVM classifiers. To combine 
the outputs of the classifiers, these authors used two 
types of fusion methods: the majority voting method and 
the diffuse integral. The authors demonstrated that the 
integration allows improving the percentage of success in 
the classification. Nweke et al. [17]ambient assisted living, 
activity of daily living (ADL presented a survey of the use 
of multiple classifier systems in the recognition of human 
activity and health monitoring. These authors also sought 
to reduce uncertainty and ambiguity by merging the results 
generated by different classification models. To this end, 
they addressed different design and fusion approaches with 
multiple classifiers, such as SVM, Decision Tree (ID3, J48, 
C4.5), K-Nearest Neighbor, Artificial Neural Network, 
Naive Bayes, and RF.

Based on all the above, here we propose an automatic 
learning procedure using multiple classifiers for a little 
known field, as is the case of dental implants, and validated 
it with the performance in classification by human experts.

The following section contains a detailed description 
of our proposal.
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Materials and methods

This section presents the approach proposed, which 
consists of an automatic learning process (Fig. 1) to obtain 
the degree of belonging of the class attribute of the dental 
implant data set.
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Fig. 1:  Proposed approach. This representation summarizes the steps 
of the mechanism proposed in this work for the integration of the 
predictions of the following classifiers: Random Forest (RF), C-Support 
Vector (SVC), K-Nearest Neighbors (KNN), Multinomial Naive Bayes 
(MNB) and Multi-layer Perceptron (MLP).

Methods of feature selection

A significant step in automatic learning is the selection 
of features, as it eliminates irrelevant and redundant 
features, achieving reduced dimensionality and calculation 
requirements, as well as improving the performance 
of classifiers. Its purpose is to find an optimal subset of 
features that will provide good predictive results [11], [18], 
[19]. In general, feature selection methods can be divided 
into two categories: Filter and Wrapper. Filter methods use 
an approximate scale to rate a subset of characteristics and 
are considerably fast. Examples of filter methods include: 
Mutual Information [20], Correlation, Consistency, Gain 
Ratio [21], Information Gain [22], Symmetrical uncertainty 
[23], and Chi-Square [24]. Wrapper methods [25] first 
use an optimization algorithm in which several features 
are added or removed to form different subsets. These 
are slower than Filter methods. Examples of this type of 
method include: Sequential Forward Selection, Sequential 

Backward Selection, Bidirectional Search, and Relevance 
in Context [26].

In the present study, we used Chi-Square (X2), which is 
a widely used method to select characteristics [27]–[31]. 
This method evaluates the value of a characteristic by 
calculating the statistical value of X2 with respect to the 
class (equation (1)). It is given by:

𝑋𝑋𝑋𝑋2 =  �  
𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖=1

�  
𝑐𝑐𝑐𝑐

𝑗𝑗𝑗𝑗=1

(𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 − 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗)2

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗
  	 (1)

where Oij is the observed frequency and Eij is the 
expected (theoretical) frequency. The higher the value of 
X2, the greater the evidence of correlation between the two 
characteristics.

The cut-off criterion was the use of a level of 
significance, which in general is equal to 0.01, 0.05 or 0.10, 
but it can be any value between 0 and 1 [30], [32]. For this 
work, we proposed a significance level of p ≤ 0.05 for all 
data sets.

Classification methods

An important step in this work was the search for 
the best individual classifiers for our case study. After 
researching the existing methods and taking into account 
the combination approach and the types of classifiers of 
the papers mentioned in the Related Work section, we 
propose the use of the following five classifiers: Random 
Forest (RF) [4], C-Support Vector (SVC) [5], K-Nearest 
Neighbors (KNN) [6], Multinomial Naive Bayes (MNB) 
[7] and Multi-layer Perceptron (MLP) [8]. In exploratory 
evaluations, these classifiers obtained the best performance 
in comparison with other explored combinations, which 
included different methods such as: Rpart, Ada, Gradient 
Boosting Machine (GBM) [3] and different Naive Bayes 
classifiers [7].

Random Forest, which was introduced by Leo Breiman 
[4], is an increasingly popular learning algorithm based 
on decision trees, which enables fast training, excellent 
performance and great flexibility to handle all types of data 
[33], [34]. Among the main rules used to divide binary data 
is the Gini index (equation (2)):

𝜇𝜇𝜇𝜇 =  ∑ 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(1 − 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎)𝐴𝐴𝐴𝐴
𝑎𝑎𝑎𝑎=1     (2)

where A is the target class and p_a the proportion of 
the class sample. This index measures the impurity of the 
node and is the most used [33]–[37]. A small value of a 
indicates that the node contains predominantly single-class 
observations, i.e., it is a purity node with good separation 
between classes [36].
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C-Support Vector is a type of support vector machine, 
which can incorporate different kernels [5]. It can be 
used for classification or regression [38], [39], and its 
operation consists in constructing a set of hyper-planes in 
a high dimensional space. The separation is measured as 
the distance between the hyper-planes and is called the 
functional margin. The larger the margin, the smaller the 
generalization error of the classifier. Examples of some 
kernels [40] (equation (3)) include:

linear:(x,x’)
polynomial: (γ (x,x’) + r)d

and
RBF: exp (-γ ‖ x, x’ ‖2) (3) where γ > 0

K Nearest Neighbors is a type of learning based on 
instances or non-generalized learning [41]. This method 
searches, in a set D, the k neighbors q closest to the object 
p to be classified in D, and assigns the class label according 
to most of its neighbors (equation (4)), with dist (p,q) ≤ 
dist (p,o), that is:

KNNk  (p) = {q│∀q ∈ D, dist (p,q) ≤ dist (p,o)} 	 (4)

where dist(p,o) is the distance between p and the k-th 
object o. To actually contribute to the adjustment, both the 
optimal choice of the k-value and the distance to be used 
for the nearest neighbors are highly dependent on the data 
[6].

Naive Bayes is based on the principle of the Bayes 
theorem, which assumes that the input characteristics are 
independent of each other, called conditional independence 
(equation (5)). It is given by:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑋𝑋𝑋𝑋) = � 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗�𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖�
𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)   	 (5)

where xj = (x1, x2, … , xN) is the characteristic vector 
and ci, with i = 1, 2, …, N, indicates possible class labels. 
The training phase consists in estimating the conditional 
probabilities P(xj│ci ) and the previous probabilities P(ci) 
[7]. In this work, we applied a variant called Multinomial 
Naive Bayes (MNB), which supports categorical data and 
is mainly used for the classification of documents and texts 
[42]–[46] due to its simplicity, efficiency and effectiveness.

Multi-layer Perceptron is widely used due to its ability 
to use both linear and nonlinear applications [47]–[52]. It 
consists of an input layer, one or more hidden layers and 
an output layer. The number of neurons in the input layer 
corresponds to the number of characteristics, whereas the 
number of neurons in the output layer corresponds to the 
number of outputs. The connection between the neurons in 
the different layers is calculated using weights (equation 
(6)). Its training purpose is to find suitable values for the 

weights of the links between the neurons. The general 
output function and the error function are given by:

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓�∑ 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 �  

(6)
𝐸𝐸𝐸𝐸 = 1

2
∑ (𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑖𝑖𝑖𝑖   

where xi are the input data, wji refers to the weight 
values, f(∙) is the activation function, yi is the network i-th 
output, and d_i is the expected i-th output [8].

Integration of the classifiers

To determine the final class label, we applied a weighted 
soft voting method [53], [54]. This rule allowed achieving 
the best predictive results for the case study. The integration 
of the predictions consisted in multiplying, for each tuple, 
the probability value of the target and non-target class, 
obtained by each classifier by the weight assigned to it. The 
weight was determined by means of a grid search using a 
test parameter w with values between 0 and 1. This search 
was subjected to a cross-validation of 10 iterations, in which 
the accuracy [55], [56] of each classifier for the class in 
question was measured, and the value of w that achieved 
the best accuracy was selected [15]–[17].

Once the weights were determined, the weighted 
soft voting method was applied [53], [54]. This method 
collects the predicted class probabilities for each classifier, 
multiplies them by the weight assigned to each classifier, 
and then averages them. The final class label is derived 
from the class label with the highest average probability 
(equation (7)), given by: 

𝑦𝑦𝑦𝑦� = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∑ 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗=1     	 (7)

where pij is the probability predicted by the j-th 
classifier and wj is the weight assigned to the j-th classifier. 
This approach is only recommended if the classifiers are 
well calibrated.

In the present work, instead of using the maximum 
average, we applied a threshold [3], [16], because, in 
exploratory evaluations, it allowed us to achieve better 
results in the classification. This threshold was determined 
by a grid search using a test parameter μ with values 
between 0.1 and 0.5, with 0.1 increments in each test. The 
value of μ selected was the one that allowed obtaining the 
best classification result for all the data sets used.

Generation of artificial data

An artificial data set generated with the SMOTE 
algorithm was used for validation [57]. This algorithm 
generates new artificial tuples to balance the data sample 
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based on the nearest neighbor rule, in which, to classify a 
new instance, the distance between each attribute of the 
new instance and the rest of the instances of the data set is 
calculated (equation (8)) and associated with the class of 
the nearest instance. Therefore, given 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥̅𝑥𝑥𝑥  ∈ 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,  this 
algorithm can be described as:

𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + (𝑥̅𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) .× 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  	 (8)

Here, xi is the minority class sample to be oversampled, 
𝑥̅𝑥𝑥𝑥  is another minority sample that is generally selected from 
Nmin near xi, the expression .× represents the multiplication 
by element, and rand(0,1) indicates a random number in 
the interval (0,1).

This method, which is widely used to balance data sets 
[58]–[62], has the advantage of not losing information and of 
being able to repeat samples with noise. The method should 
be provided with the following inputs: Number of minority 
class samples T; Amount of SMOTE N%; and Number 
of nearest neighbors k, and should provide the following 
output: (N/100) * T synthetic minority class samples [57].

Structure of the data set

The approach proposed was used to experiment with 
four data sets: case study set (i.e. a data set of actual 
dental implant cases), and three validation sets: a data 
set artificially generated with the Synthetic Minority 
Over-sampling Technique (SMOTE) [57] based on actual 
dental implant cases, and two other data sets obtained 
from the kaggle and OpenML (Heart Disease, Breast 
Cancer) repositories. Table 1 presents the summarized 
characteristics of these sets.

To perform a classification task, after selecting the most 
important characteristics of a data set, it is necessary to 
divide the data. A common strategy is to take all labeled 
data and divide them into training and evaluation subsets, 
usually with a proportion of 70 to 80% for training and 
20 to 30% for evaluation or testing [29], [30], [34], [36], 
[42], [63]. This division will depend to a large extent on the 
total number of samples and the model to be trained [16], 
[64]–[67]. In our case, the data were randomly divided to 
preserve the distribution of both classes: 70% for training 
and 30% for evaluation [35], [45], [47], [49], [50], [68]–
[70], ensuring that all cases were represented in both sets.

Table 1: Characteristics of the data sets used for the experimental 
evaluation. From left to right: names of the data sets, number of sam-
ples, number of attributes per tuple, number of characteristics selected 
by the Chi-Square method () and size of the training and test sets.

Data set Sample Feature Training Test

Dental Implants1 1165 33 17 815 350

Artificial2 1748 33 21 1223 525

Heart Disease3 303 13 10 212 91

Breast Cancer4 277 10 5 193 84

1Dental Implants: this data set consisted of 1165 tuples 
of clinical histories of patients from Misiones Province, 
Argentina, undergoing surgical processes of placement 
of dental implants. It was made up of 32 categorical 
characteristics and an unbalanced binary class attribute 
(1009 cases labeled as success and 156 as failure). 

2Artificial: this data set consisted of an artificial set 
generated with the SMOTE algorithm, where, to obtain 
the artificial cases of the minority class, the input consisted 
of: T = 156 tuples; SMOTE N% = 250%; and k = 5, and, to 
generate the artificial cases of the majority class, the input 
consisted of: T = 1009 cases; SMOTE N% = 250%; and k = 
5. For the latter, instead of taking the subset of tuples with 
the lowest index, the algorithm was modified so that it took 
the subset of the highest index, which corresponds to the 
cases of the success class. The procedure to generate the 
cases was the same as for the minority class. Finally, the 
cases generated for both classes were extracted and a new 
artificial data set was created with a distribution similar to 
that of the Dental Implants data set. 

Table 2 presents the characteristics of the Dental 
Implants and Artificial data sets in more detail.

3Heart Disease: this data set consisted of a total of 303 
tuples with 12 categorical attributes and one binary class 
attribute. Each tuple represented the data obtained from a 
patient. The objective characteristic refers to the presence 
or absence of heart disease. It consisted of 138 cases with 
absence of the disease and 165 with presence of the disease. 
This set was extracted from the kaggle repository [71].

4Breast Cancer: this data set contains breast cancer 
registries obtained at the Institute of Oncology of the University 
Medical Center in Ljubljana, Yugoslavia. It consists of 277 
tuples with 9 categorical characteristics and a binary class 
attribute. The class attribute reflects cases of recurrence and 
non-recurrence to the disease. This set was extracted from the 
Open Machine Learning (OpenML) repository [72].

Table 2: Dimensions of the Dental Implants and Artificial data sets.

Dimensions Description Features

Patient Data

Features related to 
the antecedents and 
medical conditions of 

the patients at the time 
of the intervention.

Age range, gender, profession, 
social security, antecedent, smoking 

habit, alcoholism, periodontitis, 
toothless, med intake, and allergy.

Implant Data
Features related to the 

implant used by the 
implant specialist.

Surface treatment, design, length, 
diameter, connection, and origin.

Data of the 
Surgical Phase

Features related to the 
surgical intervention 

and improvement of the 
patient’s bone bed.

Season, patient zone, register, dental 
piece, load protocol, exodontia, 
bone expansion, maxillary sinus 

elev, regeneration of hard tissues, 
regeneration of soft tissues, 

additional procedure, placement 
time, bone type, prosthetic indication, 

and surgical complication.

Data of the 
Post-operative 

Follow-up

Particularities of 
the outcome of the 
implant placement 

process, i.e. whether 
the tissue/implant 

osseointegration process 
was successful or not.

Post-op follow-up.
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Training

To obtain a robust model and optimize the results of 
the classifiers, a grid search was carried out to adjust the 
hyper parameters [35], [39], [40], [43], [50]the quantitative 
effects of heat acclimation (HA. This search was performed 
with the training data from each of the data sets. For this 
process, we specified:

1. A search space: we defined value ranges for the 
hyper parameters and adjusted them according to the 
performance measurement.
2. An optimization or adjustment algorithm: we used 
the GridSearchCV method [73], which is the most 
expensive in terms of performance, but allows covering 
all the search space defined.
3. An evaluation method: we used cross-validation of 
10 iterations as a resampling strategy.
A measure of performance: we used the equilibrium 

accuracy metrics, which is given by the true positives plus 
the true negatives divided by the totality of samples from 
the data set [74].

Table 3 shows the hyper parameters that were sought 
to be adjusted for each classifier on each data set and 
the search spaces defined for each parameter. The 
implementation uses the Python programming language 
with the Scikit-learn library [75].

Table 3: Hyper parameters and search ranges defined for the RF, SVC, 
KNN, MNB and MLP classifiers.

Classifiers Hyper parameters Search space

RF

n_estimators range (1, 150)

criterion gini, entropy

bootstrap True, False

SVC

kernel linear, rbf, poly

C range (1, 10)

gamma range (1, 10)

degree range (1, 10)

KNN

n_neighbors range (1, 100)

weights uniform, distance

p manhattan, euclidean

MNB

alpha [0, 0.1, 0.2, 0.3, …, 0.9, 1]

fit_prior True, False

class_prior [0.5,0.5], [0.4,0.6], [0.6,0.4]

MLP

hidden_layer_sizes range (1, 10)

activation logistic, tanh, relu

alpha [0.0001, 0.05]

solver lbfgs, sgd, adam

learning_rate constant, invscaling

Evaluation parameters

The parameters used to evaluate and compare the 
performance of the individual classifiers with the approach 
proposed were: true positive (TP), true negative (TN), false 
positive (FP), false negative (FN), sensitivity, specificity, 
accuracy and error [55], [56]. TP is the percentage of 
correctly classified observations of the target class; TN 

is the percentage of correctly classified observations of 
the non-target class; FP is the percentage of erroneously 
classified observations of the non-target class; FN is the 
percentage of erroneously classified observations of the 
target class; sensitivity (equation (9)) is the ability of the 
model to correctly classify the target samples; specificity 
(equation (10)) is the fraction of non-target samples 
classified as non-target samples by the model; accuracy 
(equation (11)) is the total proportion of instances correctly 
classified for both classes; and error (equation (12)) allows 
the total proportion of instances incorrectly classified for 
both classes to be measured.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (9)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 (10)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
 (11)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 (12)

Human level classification performance

Human-level performance allows estimating an 
optimal error rate and corroborating the operation of the 
classification system. To evaluate the performance of 
the proposed approach on the Dental Implants data set, 
a comparison was made with human expert opinion. The 
evaluation was subject to classification by two experts 
in the area (selected from the Provincial Registry of 
Professionals who practice Maxillofacial Buco Surgery, 
Implantology, Periodontics and Tissue Manipulation), each 
of whom was provided with a random sample distinct from 
the 10% prevalence of cases. The cases were presented 
without the label so that the experts could classify them 
according to their experience, and in this way be able 
to contrast with the values found by our classification 
approach.

Experimental results

This section presents the results of applying the 
proposed approach to the four data sets.

As described in the section on materials and methods, 
the predictions were integrated through the weighted soft 
voting method. Using the threshold value that allowed 
obtaining the best classification accuracy to be obtained 
in each data set.

Table 4 shows the optimal values found in training for 
each of the classifiers with the training data for each data 
set. Table 5 presents the success percentages obtained by 
each classifier individually and the result of the proposed 
approach to the test data from the data sets used.
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Table 4: Hyper parameters and optimal values found for the RF, SVC, 
KNN, MNB and MLP classifiers on the Dental Implants, Artificial, Heart 
Disease and Breast Cancer data sets.

Classifiers
Hyper 

parameters

Optimal values

Dental 
Implants

Artificial
Heart 

Disease
Breast 
Cancer

RF

n_estimators 8 2 7 7

criterion entropy entropy gini gini

bootstrap True False True True

SVC

kernel rbf rbf rbf liner

C 1 1 1 1

gamma 1 1 1 1

degree 0 0 0 0

KNN

n_neighbors 20 40 2 50

weights distance distance uniform uniform

p euclidean euclidean manhattan manhattan

MNB

alpha 1 0.7 0 0.2

fit_prior True True True True

class_prior [0.6,0.4] [0.6,0.4] [0.6,0.4] [0.6,0.4]

MLP

hidden_
layer_sizes

10 10 10 10

activation logistic logistic relu logistic

alpha 0.05 0.05 0.0001 0.0001

solver lbfgs lbfgs lbfgs lbfgs

learning_rate constant constant constant constant

Table 5: Efficiency in the success of the RF, SVC, KNN, MNB, and MLP 
classifiers and the proposed approach (Integrated) to the Dental Im-
plants, Artificial, Heart Disease and Breast Cancer data sets.

Data sets Classifiers
Target class Non-target class

Sensitivity Specificity

Dental 
Implants

RF 59% 98%

SVC 64% 99%

KNN 64% 99%

MNB 72% 79%

MLP 66% 97%

Integrated 75% 96%

Artificial

RF 81% 97%

SVC 81% 99%

KNN 81% 99%

MNB 60% 81%

MLP 82% 97%

Integrated 89% 97%

Heart 
Disease

RF 81% 71%

SVC 70% 79%

KNN 70% 76%

MNB 77% 74%

MLP 72% 68%

Integrated 94% 58%

Breast 
Cancer

RF 36% 78%

SVC 36% 83%

KNN 20% 97%

MNB 52% 76%

MLP 32% 80%

Integrated 60% 64%

Table 5 shows that the SVC and KNN classifiers 
achieved the best performance over the non-target class 

for all data sets compared to the other classifiers, even 
exceeding the approach proposed in all cases. For the 
target class, it can be seen that the integration of the 
predictions of the five classifiers allowed achieving the 
highest success rate. For this class, it is also observed that 
the performance of the individual classifiers was varied. 
While the performance of the integration of the predictions 
was not the best option for the non-target class, it does 
not mean that it was the worst compared to the individual 
predictions. The integration of the probabilities for the 
target class was the best option, since it allowed obtaining 
the highest percentage of success.

The following graph (Fig. 2) presents the percentage 
of the accuracy metric achieved for each classifier and the 
proposed approach to the four data sets used.

 

RF SVC KNN MNB MLP Integrated
Dental Implants 92% 93% 93% 78% 92% 93%
Artificial 95% 96% 96% 78% 95% 96%
Heart Disease 77% 74% 73% 76% 70% 79%
Breast Cancer 65% 69% 74% 69% 65% 63%
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Fig. 2: Accuracy of the RF, SVC, KNN, MNB, and MLP classifiers and the 
proposed approach (Integrated) on the Dental Implants, Artificial, Heart 
Disease and Breast Cancer data sets.

Figure 2 shows that the SVC and KNN classifiers and 
the proposed approach showed the best performance on the 
Dental Implants and Artificial data sets. Also, the proposed 
approach achieved the best accuracy on the Heart Disease 
data set. The results on the Breast Cancer data set were 
not as good as with our model, although it was consistent 
in comparison with the results obtained with the other 
classifiers.

Finally, the results achieved with the proposed approach 
on the Dental Implants data set were compared with the 
accuracy achieved in classification by human experts (Fig. 
3). Our model achieved 93% overall accuracy, with 7% 
error, whereas, on average, the classification made by the 
experts achieved a total accuracy of 87%, with an average 
error of 13% (Table 6).
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Fig. 3: Values of the Sensitivity, Specificity and Accuracy metrics achie-
ved by the proposed approach compared to the classification made by 
the human experts.

Table 6: Comparison of the evaluation parameters achieved by the 
proposed approach and the classification of the experts on the Dental 
Implants data set.

Model Sensitivity Specificity Accuracy Error

Proposed 
approach

75% 96% 93% 7%

Human experts 71% 92% 87% 13%

Discussion

The purpose of this work was to apply multiple 
classifiers to increase the successful classification of the 
failures of a data set of clinical records of patients who 
had undergone surgical processes of placement of dental 
implants in the Province of Misiones, Argentina. We 
demonstrated that, in this field, it is better to integrate the 
predictions of the classifiers, so as not to bias the decision 
on a single outcome. Likewise, using integrated predictions 
allows knowing different points of view or results for the 
same case, since the use of more than one classifier allows 
assuring a more precise label or classification assignment.

The proposed approach was also validated with an 
artificial data set generated for the case study and two 
other test data sets. By experimenting on the original 
dental implant data set, the proposed approach achieved 
the best success rate of the target class, compared to the 
performance of individual classifiers and the classification 
by the human experts.

The experts in oral pathologies and complex 
rehabilitation in oral implantology consulted agreed and 
remarked that, in this field of study, it is less delicate to 
label a case as a failure than to label it as a success when 
it was an eventual failure. As a result, each classifier 
achieved up to 72% success of the target class, whereas 
the human expert achieved up to 71% success, whereas 
the proposed approach allowed reaching 75% of cases 
correctly identified as failures.

The SVC and KNN classifiers achieved the best 
performance over the non-target class for all the data 
sets compared to the other classifiers, even exceeding 
the proposed approach. For the target class, the proposed 

approach allowed achieving the highest success rate and 
lowest error rate for all cases.

Conclusions and future work

This work allowed studying the application of multiple 
classifiers to a little known field. We proposed an automatic 
learning model to improve the performance of prediction 
of failure in dental implants. According to the experimental 
results, the multiple classifiers approach can also be 
applied to the prediction of dental implant failures. Based 
on the results of the classification by the human experts, 
we can say that our approach allowed achieving a superior 
classification performance. Therefore, we have succeeded 
in proposing a knowledge extraction procedure validated 
by human experts in a little known field.

Finally, as future work, we propose validating the 
proposed approach with other data sets in the area of 
health or medicine. In addition, we propose including or 
extending the classifiers used, to assess the possibility of 
adjusting the success rate of both classes. Finally, we also 
propose extending the survey of cases of clinical histories 
of dental implants to other parts of the country as well as 
to other countries.
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