7,531 research outputs found

    The NASA Astrophysics Data System: Architecture

    Full text link
    The powerful discovery capabilities available in the ADS bibliographic services are possible thanks to the design of a flexible search and retrieval system based on a relational database model. Bibliographic records are stored as a corpus of structured documents containing fielded data and metadata, while discipline-specific knowledge is segregated in a set of files independent of the bibliographic data itself. The creation and management of links to both internal and external resources associated with each bibliography in the database is made possible by representing them as a set of document properties and their attributes. To improve global access to the ADS data holdings, a number of mirror sites have been created by cloning the database contents and software on a variety of hardware and software platforms. The procedures used to create and manage the database and its mirrors have been written as a set of scripts that can be run in either an interactive or unsupervised fashion. The ADS can be accessed at http://adswww.harvard.eduComment: 25 pages, 8 figures, 3 table

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Index ordering by query-independent measures

    Get PDF
    Conventional approaches to information retrieval search through all applicable entries in an inverted file for a particular collection in order to find those documents with the highest scores. For particularly large collections this may be extremely time consuming. A solution to this problem is to only search a limited amount of the collection at query-time, in order to speed up the retrieval process. In doing this we can also limit the loss in retrieval efficacy (in terms of accuracy of results). The way we achieve this is to firstly identify the most “important” documents within the collection, and sort documents within inverted file lists in order of this “importance”. In this way we limit the amount of information to be searched at query time by eliminating documents of lesser importance, which not only makes the search more efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the TREC Terabyte collection, report significant savings, in terms of number of postings examined, without significant loss of effectiveness when based on several measures of importance used in isolation, and in combination. Our results point to several ways in which the computation cost of searching large collections of documents can be significantly reduced

    On Optimally Partitioning Variable-Byte Codes

    Get PDF
    The ubiquitous Variable-Byte encoding is one of the fastest compressed representation for integer sequences. However, its compression ratio is usually not competitive with other more sophisticated encoders, especially when the integers to be compressed are small that is the typical case for inverted indexes. This paper shows that the compression ratio of Variable-Byte can be improved by 2x by adopting a partitioned representation of the inverted lists. This makes Variable-Byte surprisingly competitive in space with the best bit-aligned encoders, hence disproving the folklore belief that Variable-Byte is space-inefficient for inverted index compression. Despite the significant space savings, we show that our optimization almost comes for free, given that: we introduce an optimal partitioning algorithm that does not affect indexing time because of its linear-time complexity; we show that the query processing speed of Variable-Byte is preserved, with an extensive experimental analysis and comparison with several other state-of-the-art encoders.Comment: Published in IEEE Transactions on Knowledge and Data Engineering (TKDE), 15 April 201

    Observing Users - Designing clarity a case study on the user-centred design of a cross-language information retrieval system

    Get PDF
    This paper presents a case study of the development of an interface to a novel and complex form of document retrieval: searching for texts written in foreign languages based on native language queries. Although the underlying technology for achieving such a search is relatively well understood, the appropriate interface design is not. A study involving users (with such searching needs) from the start of the design process is described covering initial examination of user needs and tasks; preliminary design and testing of interface components; building, testing, and further refining an interface; before finally conducting usability tests of the system. Lessons are learned at every stage of the process leading to a much more informed view of how such an interface should be built

    Compressed materialised views of semi-structured data

    Get PDF
    Query performance issues over semi-structured data have led to the emergence of materialised XML views as a means of restricting the data structure processed by a query. However preserving the conventional representation of such views remains a significant limiting factor especially in the context of mobile devices where processing power, memory usage and bandwidth are significant factors. To explore the concept of a compressed materialised view, we extend our earlier work on structural XML compression to produce a combination of structural summarisation and data compression techniques. These techniques provide a basis for efficiently dealing with both structural queries and valuebased predicates. We evaluate the effectiveness of such a scheme, presenting results and performance measures that show advantages of using such structures

    Using Search Engine Technology to Improve Library Catalogs

    Get PDF
    This chapter outlines how search engine technology can be used in online public access library catalogs (OPACs) to help improve users’ experiences, to identify users’ intentions, and to indicate how it can be applied in the library context, along with how sophisticated ranking criteria can be applied to the online library catalog. A review of the literature and current OPAC developments form the basis of recommendations on how to improve OPACs. Findings were that the major shortcomings of current OPACs are that they are not sufficiently user-centered and that their results presentations lack sophistication. Further, these shortcomings are not addressed in current 2.0 developments. It is argued that OPAC development should be made search-centered before additional features are applied. While the recommendations on ranking functionality and the use of user intentions are only conceptual and not yet applied to a library catalogue, practitioners will find recommendations for developing better OPACs in this chapter. In short, readers will find a systematic view on how the search engines’ strengths can be applied to improving libraries’ online catalogs
    • 

    corecore