3,498 research outputs found

    Duality between invariant spaces for max-plus linear discrete event systems

    Full text link
    We extend the notions of conditioned and controlled invariant spaces to linear dynamical systems over the max-plus or tropical semiring. We establish a duality theorem relating both notions, which we use to construct dynamic observers. These are useful in situations in which some of the system coefficients may vary within certain intervals. The results are illustrated by an application to a manufacturing system.Comment: 22 pages, 3 figures (6 eps files

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    The tropical analogue of polar cones

    Get PDF
    We study the max-plus or tropical analogue of the notion of polar: the polar of a cone represents the set of linear inequalities satisfied by its elements. We establish an analogue of the bipolar theorem, which characterizes all the inequalities satisfied by the elements of a tropical convex cone. We derive this characterization from a new separation theorem. We also establish variants of these results concerning systems of linear equalities.Comment: 21 pages, 3 figures, example added, figures improved, notation change

    Max-plus (A,B)-invariant spaces and control of timed discrete event systems

    Full text link
    The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical systems over rings, it appears capable of providing solutions to many control problems like in the cases of linear systems over fields or rings. Sufficient conditions are given for computing the maximal (A,B)-invariant subspace contained in a given space and the existence of linear state feedbacks is discussed. An application to the study of transportation networks which evolve according to a timetable is considered.Comment: 24 pages, 1 Postscript figure, proof of Lemma 1 and some references adde

    The tropical double description method

    Get PDF
    We develop a tropical analogue of the classical double description method allowing one to compute an internal representation (in terms of vertices) of a polyhedron defined externally (by inequalities). The heart of the tropical algorithm is a characterization of the extreme points of a polyhedron in terms of a system of constraints which define it. We show that checking the extremality of a point reduces to checking whether there is only one minimal strongly connected component in an hypergraph. The latter problem can be solved in almost linear time, which allows us to eliminate quickly redundant generators. We report extensive tests (including benchmarks from an application to static analysis) showing that the method outperforms experimentally the previous ones by orders of magnitude. The present tools also lead to worst case bounds which improve the ones provided by previous methods.Comment: 12 pages, prepared for the Proceedings of the Symposium on Theoretical Aspects of Computer Science, 2010, Nancy, Franc

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande

    Green's J-order and the rank of tropical matrices

    Get PDF
    We study Green's J-order and J-equivalence for the semigroup of all n-by-n matrices over the tropical semiring. We give an exact characterisation of the J-order, in terms of morphisms between tropical convex sets. We establish connections between the J-order, isometries of tropical convex sets, and various notions of rank for tropical matrices. We also study the relationship between the relations J and D; Izhakian and Margolis have observed that DJD \neq J for the semigroup of all 3-by-3 matrices over the tropical semiring with -\infty, but in contrast, we show that D=JD = J for all full matrix semigroups over the finitary tropical semiring.Comment: 21 pages, exposition improve
    corecore