8 research outputs found

    A Novel Neuroglial Architecture for Modelling Singular Perturbation System

    Get PDF
    This work develops a new modular architecture that emulates a recently-discovered biological paradigm. It originates from the human brain where the information flows along two different pathways and is processed along two time scales: one is a fast neural network (NN) and the other is a slow network called the glial network (GN). It was found that the neural network is powered and controlled by the glial network. Based on our biological knowledge of glial cells and the powerful concept of modularity, a novel approach called artificial neuroglial Network (ANGN) was designed and an algorithm based on different concepts of modularity was also developed. The implementation is based on the notion of multi-time scale systems. Validation is performed through an asynchronous machine (ASM) modeled in the standard singularly perturbed form. We apply the geometrical approach, based on Gerschgorin’s circle theorem (GCT), to separate the fast and slow variables, as well as the singular perturbation method (SPM) to determine the reduced models. This new architecture makes it possible to obtain smaller networks with less complexity and better performance

    Inverse Optimal Control with Speed Gradient for a Power Electric System Using a Neural Reduced Model

    Get PDF
    This paper presented an inverse optimal neural controller with speed gradient (SG) for discrete-time unknown nonlinear systems in the presence of external disturbances and parameter uncertainties, for a power electric system with different types of faults in the transmission lines including load variations. It is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF) based algorithm. It is well known that electric power grids are considered as complex systems due to their interconections and number of state variables; then, in this paper, a reduced neural model for synchronous machine is proposed for the stabilization of nine bus system in the presence of a fault in three different cases in the lines of transmission

    Neural Model with Particle Swarm Optimization Kalman Learning for Forecasting in Smart Grids

    Get PDF
    This paper discusses a novel training algorithm for a neural network architecture applied to time series prediction with smart grids applications. The proposed training algorithm is based on an extended Kalman filter (EKF) improved using particle swarm optimization (PSO) to compute the design parameters. The EKF-PSO-based algorithm is employed to update the synaptic weights of the neural network. The size of the regression vector is determined by means of the Cao methodology. The proposed structure captures more efficiently the complex nature of the wind speed, energy generation, and electrical load demand time series that are constantly monitorated in a smart grid benchmark. The proposed model is trained and tested using real data values in order to show the applicability of the proposed scheme. \ua9 2013 Alma Y. Alanis et al

    ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK

    Get PDF
    Recurrent neural networks (RNN) have been rapidly developed in recent years. Applications of RNN can be found in system identification, optimization, image processing, pattern reorganization, classification, clustering, memory association, etc. In this study, an optimized RNN is proposed to model nonlinear dynamical systems. A fully connected RNN is developed first which is modified from a fully forward connected neural network (FFCNN) by accommodating recurrent connections among its hidden neurons. In addition, a destructive structure optimization algorithm is applied and the extended Kalman filter (EKF) is adopted as a network\u27s training algorithm. These two algorithms can seamlessly work together to generate the optimized RNN. The enhancement of the modeling performance of the optimized network comes from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron network (MLP), the most widely used network, in terms of modeling accuracy and generalization ability; 2) the recurrency in RNN network make it more capable of modeling non-linear dynamical systems; and 3) the structure optimization algorithm further improves RNN\u27s modeling performance in generalization ability and robustness. Performance studies of the proposed network are highlighted in training convergence and robustness. For the training convergence study, the Lyapunov method is used to adapt some training parameters to guarantee the training convergence, while the maximum likelihood method is used to estimate some other parameters to accelerate the training process. In addition, robustness analysis is conducted to develop a robustness measure considering uncertainties propagation through RNN via unscented transform. Two case studies, the modeling of a benchmark non-linear dynamical system and a tool wear progression in hard turning, are carried out to testify the development in this dissertation. The work detailed in this dissertation focuses on the creation of: (1) a new method to prove/guarantee the training convergence of RNN, and (2) a new method to quantify the robustness of RNN using uncertainty propagation analysis. With the proposed study, RNN and related algorithms are developed to model nonlinear dynamical system which can benefit modeling applications such as the condition monitoring studies in terms of robustness and accuracy in the future

    Identification and Control of Nonlinear Singularly Perturbed Systems Using Multi-time-scale Neural Networks

    Get PDF
    Many industrial systems are nonlinear with "slow" and "fast" dynamics because of the presence of some ``parasitic" parameters such as small time constants, resistances, inductances, capacitances, masses and moments of inertia. These systems are usually labeled as "singularly perturbed" or ``multi-time-scale" systems. Singular perturbation theory has been proved to be a useful tool to control and analyze singularly perturbed systems if the full knowledge of the system model parameters is available. However, the accurate and faithful mathematical models of those systems are usually difficult to obtain due to the uncertainties and nonlinearities. To obtain the accurate system models, in this research, a new identification scheme for the discrete time nonlinear singularly perturbed systems using multi-time-scale neural network and optimal bounded ellipsoid method is proposed firstly. Compared with other gradient descent based identification schemes, the new identification method proposed in this research can achieve faster convergence and higher accuracy due to the adaptively adjusted learning gain. Later, the optimal bounded ellipsoid based identification method for discrete time systems is extended to the identification of continuous singularly perturbed systems. Subsequently, by adding two additional terms in the weight's updating laws, a modified identification scheme is proposed to guarantee the effectiveness of the identification algorithm during the whole identification process. Lastly, through introducing some filtered variables, a robust neural network training algorithm is proposed for the system identification problem subjected to measurement noises. Based on the identification results, the singular perturbation theory is introduced to decompose a high order multi-time-scale system into two low order subsystems -- the reduced slow subsystem and the reduced fast subsystem. Then, two controllers are designed for the two subsystems separately. By using the singular perturbation theory, an adaptive controller for a regulation problem is designed in this research firstly. Because the system order is reduced, the adaptive controller proposed in this research has a simpler structure and requires much less computational resources, compared with other conventional controllers. Afterward, an indirect adaptive controller is proposed for solving the trajectory tracking problem. The stability of both identification and control schemes are analyzed through the Lyapunov approach, and the effectiveness of the identification and control algorithms are demonstrated using simulations and experiments

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000
    corecore