Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 197690, 9 pages
http://dx.doi.org/10.1155/2013/197690

Research Article

Hindawi

Neural Model with Particle Swarm Optimization Kalman
Learning for Forecasting in Smart Grids

Alma Y. Alanis,' Luis J. Ricalde,” Chiara Simetti,’ and Francesca Odone>

! CUCEI, Universidad de Guadalajara, Apartado Postal 51-71, Colonia Las Aguilas, 45080 Zapopan, JAL, Mexico
2 UADY, Faculty of Engineering, Avenida Industrias no Contaminantes por Periferico Norte, Apartado Postal 115 Cordemesx,

Merida, Yuc, Mexico

3 DISI, Universita degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy

Correspondence should be addressed to Alma Y. Alanis; almayalanis@gmail.com

Received 29 March 2013; Accepted 27 May 2013

Academic Editor: Yudong Zhang

Copyright © 2013 Alma Y. Alanis et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper discusses a novel training algorithm for a neural network architecture applied to time series prediction with smart
grids applications. The proposed training algorithm is based on an extended Kalman filter (EKF) improved using particle swarm
optimization (PSO) to compute the design parameters. The EKF-PSO-based algorithm is employed to update the synaptic weights
of the neural network. The size of the regression vector is determined by means of the Cao methodology. The proposed structure
captures more efficiently the complex nature of the wind speed, energy generation, and electrical load demand time series that are
constantly monitorated in a smart grid benchmark. The proposed model is trained and tested using real data values in order to

show the applicability of the proposed scheme.

1. Introduction

The limited existing reserves of fossil fuels and the harmful
emissions associated with them have led to an increased focus
on renewable energy applications in recent years. The first
steps on integrating renewable energy sources began with
hybrid wind and solar systems as complementing sources and
as a solution for rural applications and weak grid intercon-
nections. Further research has implemented hybrid systems
including several small scale renewable energy sources as
solar thermal, biomass, fuel cells, and tidal power. Since the
production costs for photovoltaic and wind turbine appli-
cations have considerably reduced, they have become the
primary choice for hybrid energy generation systems. The
future of energy production is headed towards this scheme of
integration of renewable energy sources with existing con-
ventional generation systems with a high degree of mea-
surement, communications, and control. This integration is
defined as a smart grid. This new scheme increases the power
quality since the production becomes decentralized and is
the main reason for which institutions have increased the
research on this concept [1]. Microgrids integrate small scale

energy generation systems mainly from renewable energy
and implement complex control technologies to improve the
flexibility and reliability of the power system. The design of
these systems integrates a distributed power generation sys-
tem and a management unit composed of a communication
network which monitor and controls the interconnection
between energy sources, storage devices, and electrical loads.

Among renewable energy sources, wind energy is the one
with the lowest cost of electricity production [2]. However, in
practice the integration of wind energy into the existing elec-
tricity supply system is a real challenge because its availability
mainly depends on meteorological conditions, particularly
on the magnitude of the wind speed, which cannot directly be
changed by human intervention. For this reason, it is
important to have a reliable estimation of wind velocity
and direction which directly affects the energy generation.
Integration of the forecast of wind speed and output power
is a good way to improve the performance in scheduling for
smart grids [3]. Wind prediction is not an easy task; the wind
has a stochastic nature with high rate of change. Wind speed
time series present highly nonlinear behavior with no typical
patterns and a weak seasonal character [4].



Several methods have been proposed to accomplish wind
characteristics forecasting like numerical weather prediction
systems, statistical approaches, and artificial neural networks
using feedforward or recurrent structures [2, 5-9]. In [6], a
linear-time-series-based model relating the predicted inter-
val to its corresponding one and data covering a temporal
span of two years is developed. The statistical approaches
have the advantage of low cost since they only require
historical data; on the other hand, the accuracy of the
prediction drops for long time horizons. Artificial intelligence
methods are more suitable for short-term predictions; these
methods are based on time series historical data in order to
build a mathematical model which approximates the input-
output relationship. Time-series-based models include the
autoregressive (AR) and the autoregressive moving average
(ARMA) models which predict the average wind speed for
one step ahead [9].

For wind generation systems, artificial neural networks
(ANN) have been considered as a convenient analysis tool
for wind energy systems forecasting and control applications
due to the simplicity of the model and the accuracy of the
results for nonlinear and stochastic models and have been
implemented in several practical applications [8]. In [10],
a merged neuro-fuzzy system is developed as a universal
approximator in order to estimate the state of charge in a
battery bank. For wind generation systems, ANN have been
considered as a convenient analysis tool for wind forecasting
due to the simplicity of the model and the accuracy of the
results.

In [8], arecurrent neural network is applied to forecast the
output power of wind generators based on wind speed predic-
tion using one year of historical data achieving from hour-
ahead to day-ahead predictions with errors ranging from 5%
for one hour horizon to 20% for one day ahead forecasting.
In [5], local recurrent neural networks are implemented to
forecast wind speed and electrical power in a wind park with
a seventy-two hour ahead forecast and obtaining a better
performance in comparison with static network approaches.

ANN have been previously implemented for wind power
short-term predictions, outperforming other classical meth-
ods due to the fast learning algorithm which enables on-line
implementations and the versatility to vary the prediction
horizon [7]. Due to their nonlinear modeling characteristics,
neural networks have been successfully applied in control
systems, pattern classification, pattern recognition, and time
series forecasting problems. There are several previous works
that use artificial neural networks to predict wind time series
[2,4,11]. The best well-known training approach for recurrent
neural networks (RNN) is the back propagation through time
[12]. However, it is a first-order gradient descent method, and
hence its learning speed could be very slow [13]. Another
well-known training algorithm is the Levenberg-Marquardt
one [14]; its principal disadvantage is that it is not guaranteed
that it will find the global minimum and its learning speed
could be slow too, and this depends on the initialization. In
past years, extended-kalman-filter- (EKF-) based algorithms
have been introduced to train neural networks [15, 16].
With the EKF-based algorithm, the learning convergence is
improved [13]. The EKF training of neural networks, both

Mathematical Problems in Engineering

feedforward and recurrent ones, has proven to be reliable
for many applications over the past ten years [16]. However,
EKEF training requires the heuristic selection of some design
parameters which is not always an easy task [11, 15].

During the past decade, the use of evolutionary com-
putation in engineering applications has increased. Evolu-
tionary algorithms apply adaptation and stochastically in
optimization problems in schemes such as evolutionary
programming, genetic algorithms, and evolution strategies
[17]. Particle swarm optimization (PSO) technique, which is
based on the behavior of a flock of birds or school of fish, is
a type of evolutionary computing technique [18]. The PSO
algorithm uses a population of search points that evolve in
a search space using a communication method to transfer
the acquired experience from best solutions. This algorithm
has several advantages like the simplicity of the updating
law, faster convergence time, and less complexity on the
reorganization of the population. The PSO methods also have
emerged as an excellent tool to improve the performance of
neural network learning process [19]. In [20], a PSO learning
rule for a neural network is implemented using FPGA for
dynamic system identification. In [21], the PSO algorithm is
extended to multiple swarms in a neuro-fuzzy network with
good results in forecasting applications. It has been shown
that the PSO training algorithm takes fewer computations
and is faster than the BP algorithm for neural networks to
achieve the same performance [18].

In this paper, we propose the use of PSO for tuning
the parameters of EKF training algorithm. This scheme is
a new one and is suitable for data modeling in smart grids
since the forecasting horizon satisfies the requirements for
several applications in the grid operation. The length of the
regression vector is determined using the Cao methodology
which is an improvement to the false neighbors approach
[22]. The applicability of this architecture is illustrated via
simulation using real data values for electric load demand
(ELD), wind speed (WS), and wind energy generation (WEG)
in order to show the potential applications in forecasting for
energy generation in smart grid schemes.

The remainder of the paper is organized as follows.
Section 2 is devoted to describing the neural model, based
on the recurrent multilayer perceptron (RMLP), where the
training phase relies on an extended Kalman filter which
is able to deal with the nonlinearity of the model, and the
initialization of the system is based on a particle swarm
optimization strategy. Section 3 reports the experimental
analysis of the proposed method applied to the problem of
predicting variables in smart grids. Finally Section 4 includes
the conclusions and future work.

2. Neural Identification

In this paper for the neural model identification, the recurrent
multilayer perceptron is chosen, and then the neural model
structure problem reduces to dealing with the following
issues: (1) selecting the inputs to the network and (2) selecting
the internal architecture of the network.

The structure selected in this paper is NNARX [14]
(acronym for neural network autoregressive external input);



Mathematical Problems in Engineering

the output vector for the artificial neural network is defined
as the regression vector of an autorregressive external input
linear model structure (ARX) [15].

It is common to consider a general nonlinear system;
however, for many control applications it is preferred to ex-
press the model in an affine form, which can be represented
by the following equations:

yk+1)=f(yk),yk=-1),....,y(k=q+1)), 1)

where g is the dimension of the regression vector. In other
words, a nonlinear mapping f exists, for which the present
value of the output y(k + 1) is uniquely defined in terms of its
past values y(k), ..., y(k—g+1) and the present values of the
input u(k).

Considering that it is possible to define

$()=[y(R),....y(k—q+1)]" 2)

which is similar to the regression vector of a ARX linear
model structure [14], then the nonlinear mapping f can be
approximated by a neural network defined as

yk+1) =g (¢ k), w")+e (3)

where w” is an ideal weight vector, and ¢ is the modeling er-
ror; such neural network can be implemented on predictor
form as

Jk+1) =9 (pk),w), (4)

where w is the vector containing the adjustable parameters in
the neural network.

The neural network structure used in this work is de-
picted in Figure 1, which contains sigmoid units only in the
hidden layer; the output layer is a linear one. The used
sigmoid function S(-) is defined as a logistic one as follows:

.
1+ exp (fq)’

where ¢ is any real value variable.

S() B >0, (5)

2.1. EKF Training Algorithm. Kalman filter (KF) estimates the
state of a linear system with additive state and output white
noise. Kalman filter algorithm is developed for a linear,
discrete-time dynamical system. For KF-based neural net-
work training, the network weights become the states to be
estimated. Due to the fact that the neural network mapping
is nonlinear, an EKF type is required [15].

Consider a nonlinear dynamic system described by the
next model in state space

w(k+1) = f(kw(k)+v (k),
y (k) = h(k,w (k) + v, (k),

(6)

where v,(k) and v,(k) are zero-mean, white noises with
covariance matrices given by Q(k) and R(k), respectively.
f(k, w(k)) denotes the nonlinear transition matrix function.

3
u(k) System b0

1
-

y(k-n+1) y(k+1)

RMLP

u(k)
71
71

uk-n+1)

F1GURE 1: Neural network structure.

The basic idea of the extended Kalman filter is to linearize
the state space model 4 at each time instant around the most
recent state estimate, which is taken to be w(k). The training
goal is to find the optimal weight values which minimize the
prediction error. The modified extended kalman filter (EKF)
algorithm is defined by

Dk+1) = (k) +K K [y k) -7 K)],
K (k) =P (k)H" (k) M (k), )
P(k+1)=P(k)-K(k)H (k)P (k) +Q (k)
with
M@E) =[R(0)+HEPERH ®)] ",

e(k) =y k) -y k),

where e(k) € R is the respective approximation error, P €
ML s the prediction error associated covariance matrix at
step k, w € R is the weight (state) vector, L is the respective
number of neural network weights, y is the system output, yis
the neural network output, K € R" is the Kalman gain vector,
Q € R is the state noise associated covariance matrix, R €
R is the measurement noise associated covariance, H € R
is a vector, in which each entry (Hj;;) is the derivative of one
of the neural network outputs, (), with respect to one neural
network weight, and (w j) is defined as follows:

(8)

07k 1"
y()] ©)

Hi (k) = [aw]- (k)

w; (k)=w; (k)

wherei = 1,...,m; j = 1,...,L. Usually P, Q, and R are
initialized as diagonal matrices, with entries P(0), Q(0), and
R(0), respectively. It is important to note that for the EKF
training algorithm P(0), Q(0), and R(0) are considered as
design parameters that are typically heuristically determined;
however, in this paper we propose the use of particle swarm
optimization for determining such parameters [15].



2.2. PSO Improvement for EKF Training Algorithm. Particle
swarm optimization (PSO) is a swarm intelligence technique
developed by Kennedy and Eberhart in 1995 [23]. In fact, nat-
ural flocking and swarm social behavior of birds and insects
inspired the PSO. This technique has been used in several
optimization and engineering problems [2, 18, 24]. In the
basic PSO technique proposed by Kennedy and Eberhart [23],
a great number of particles move around in a multidimen-
sional space and each particle memorizes its position vector
and velocity vector as well as the time at which the particle has
acquired the best fitness. Furthermore, related particles can
share data at the best-fitness time. The velocity of each particle
is updated with the best positions acquired for all particles
over iterations and the best positions are acquired by the
related particles over generations.

To improve the performance of the basic PSO algorithm,
some new versions of it have been proposed. At first, the con-
cept of an inertia weight is developed to better control explo-
ration and exploitation in [18, 25]. Then, the research done
by Clerc [26] indicated that using a constriction factor may be
necessary to insure convergence of the particle swarm algo-
rithm. After these two important modifications in the basic
PSO, the multiphase particle swarm optimization (MPSO),
the particle swarm optimization with Gaussian mutation, the
quantum particle swarm optimization, a modified PSO with
increasing inertia weight schedule, the Gaussian particle
swarm optimization (GPSO), and the guaranteed conver-
gence PSO (GCPSO) were introduced in [27], respectively.

In this paper, the algorithm proposed in [18] is used
in order to determine the design parameters for the EFK-
learning algorithm. Initially, a set of random solutions or a
set of particles are considered. A random velocity is given to
each particle and they are flown through the problem space.
Each particle has a memory which is used to keep track of
the previous best position and corresponding fitness. The best
value of the position of each individual is stored as p;;. In
other words, p,; is the best position acquired by an individual
particle during the course of its movement within the swarm.
It has another value called the p,4, which is the best value of
all the particles p,; in the swarm. The basic concept of the
PSO technique lies in accelerating each particle towards its
Pia and py; locations at each time step. The PSO algorithm
used in this paper is defined as follows [18].

(1) Initialize a population of particles with random posi-
tions and velocities in the problem space.

(2) For each particle, evaluate the desired optimization
fitness function.

(3) Compare the particles fitness evaluation with the
particles p,; and if the current value is better than the
Pia» then set p,; value equal to the current location.

(4) Compare the best fitness evaluation with the popu-
lation’s overall previous best. If the current value is
better than the p;, then set p_; to the particle’s array
and index value.

(5) Update the particle’s velocity and position as follows.

Mathematical Problems in Engineering

The velocity of the ith particle of d dimension is given
by

Vig (k+1) = qviy (k) + qrand; (pig (k) — x4 (k)
(10)
+ gyrand, (pyq (k) = x4 (K)).

The position vector of the ith particle of d dimension
is updated as follows:

Xig (k+ 1) = x5 (k) + v (k) (11)

where ¢, is the inertia weight, ¢, is the cognition
acceleration constant, and ¢, is the social acceleration
constant.

(6) Repeat step (2) until a criterion is met, usually a suf-
ficiently good fitness or a maximum number of iter-
ations or epochs.

In case the velocity of the particle exceeds V., (the
maximum velocity for the particles), then it is reduced to
Vinax- Thus, the resolution and fitness of search depends on
the V. .- If V.o« 18 too high, then particles will move in larger
steps and so the solution reached may not be as good as
expected. If V. is too low, then particles will take a long time
to reach the desired solution [18]. The above explained PSO
are very suitable models of noisy problems, as the one we are
considering.

2.3. Regressor Structure. We now discuss the choice of an ap-
propriate number of delayed signals to be used in the training
phase; a wrong number of delayed signals, used as regressors,
could have a substantially negative impact on the training
process, while a too small number imply that essential
dynamics will not be modeled. Additionally, a large number
of regression terms increase the required computation time.
Also, if too many delayed signals are included in the regres-
sion vector, it will contain redundant information. For a good
behavior of the model structure, it is necessary to have both a
sufficiently large lag space and an adequate number of hidden
units. If the lag space is properly determined, the model
structure selection problem is substantially reduced. There
have been many discussions of how to determine the optimal
embedding dimension from a scalar time series based on
Takens’ theorem [22]. The basic methods, which are usually
used to choose the minimum embedding dimension, are (1)
computing some invariants on the attractor, (2) singular
value decomposition, and (3) the method of false neighbors.
However, a practical method to select the lag space is the one
proposed by Cao [22] to determine the minimum embedding
dimension; it overcomes most of the shortcomings of the
above mentioned methodologies, like high dependence from
design parameters and high computational cost, among
others [22]. Besides, it has several advantages: it does not
contain any subjective parameters except for the time-delay
embedding; it does not strongly depend on how many data
points are available; it can clearly distinguish deterministic
signals from stochastic signals; it works well for time series
from high-dimensional attractors, and it is computationally



Mathematical Problems in Engineering

efficient. In this paper, this technique for determination of the
optimal regressor structure is used.

Let us consider a time series x, x5, . . .
of time-delay vectors as

, X, and define a set

Vi = [xi Xigr " xi+(d—1)r]’

i=1,2,....N-(d-1t,

(12)

where d is the embedding dimension. This dimension is
determined from the evolution of a function E(d) defined as

1 Nidr ly: (d+1) = ypa (d+ 1)

E(d) = ’
() N-dr & 1y: () = Yy @D (13)

i=12,...,N-dr,

where n(i,d) is an integer such that y,; ;(d) is the nearest
neighbor of y;(d) [28]. The minimum embedding dimension
dy + 1is determined when E(d) stops changing for any d,,.

3. Simulation Results

In this section, two application examples to validate the
proposed PSO-EKF learning algorithm are presented. First,
the experimental analysis of the proposed method applied to
the problem of predicting the wind speed in order to compare
the performance with similar approaches [29] is discussed.
As a second test for the proposed method, the neural
predictor with data obtained for the microgrid in the UADY
School of Engineering is implemented in order to evaluate
the performance with time series of a different nature but
related with the energy production and demand in smart
grids.

3.1. Comparison of the PSO Algorithm for Wind Speed Fore-
casting. In order to evaluate the performance of the PSO
algorithm and compare with similar methods, a neural net-
work predictor for wind speed is implemented, on the basis
of the proposed training algorithm. The proposed algorithm
requires the following methodology.

(1) Define the training set. Training is performed using
minute data from the first 3 hours from January 1,
2011 and the testing is performed using the 3 hours
subsequent to the data training. Experimental data is
taken from [30].

(2) Determine the optimal dimension of the regression
vector (1) for dataset of step (1).

(3) Select the neural structure to be used (4).

(4) Train the neural identifier.

(5) Validate the neural identifier using the testing data.

The neural network used is an RMLP trained with
an PSO-EKE whose structure is presented in Figure 1; the
hidden layer has 5 units with logistic sigmoid activation

functions (5), whose is fixed in 1 and the output layer is com-
posed of just one neuron, with a linear activation function.

Training Testing

Real signal

Speed (m/s)

Neural signal

0 100 200 300 400 500 600 700

Time (min)

FIGURE 2: Identification performance for wind speed forecast.

TABLE 1: Mean value (u) and standard deviation (o) for identification
error.

PSO-EKF EKF LM
I -5.6693 x 10°° -1.2547 x 10~ 1.8354 x 10~
o 0.0749 0.0807 0.0724

The initial values for the covariance matrices (R, Q, P) are
determined using the PSO algorithm, with 200 as the max-
imum number of iterations, 4 generations, 3 particles, and
¢ = ¢ = 0.1. The initial values for neural weights are
randomly selected. The length of the regression vector is 5
because that is the order of the system, which is determined
using the Cao methodology.

The training is performed offline, using a series-parallel
configuration; for this case the delayed output is taken from
the wind speed. The mean square error (MSE) reached in
training is 1.735x 107" in 200 iterations and the mean absolute
relative error reached is 0.6912%. Besides, to measure the
performance of the neural network, the absolute relative error
(ARE) is calculated from

y () -y

) (14)

ARE:‘

where y(n) is the predicted wind speed time series achieved
by the network. Simulation results are presented as follows:
Figure 2 displays the wind speed time series neural identifi-
cation, Figure 3 includes the identification error (8), Figure 4
shows the time evolution of mean square error, and Figure 5
displays the absolute relative error obtained with (14).

Figure 6 depicts the comparison detail of the proposed
PSO-EKEF training algorithm against the classical EKF one
and the well-known Levenberg-Marquardt one.

Table 1 includes a comparison between the proposed
PSO-EKF learning algorithm, the EKF one and the well-
known Levenberg-Marquardt (LM) one.

Results included in Table1l show that the proposed
methodology leads to an improvement of the results. There-
fore for the second example only PSO-EKF results are pre-
sented.



0.5 T T T T T T

0.4+ ]

0.2} 1

0.1 ]

Identification error (m/s)
)

=02+t 1
=03t E

-04

0 100 200 300 400 500 600 700

Time (min)

F1GURE 3: Identification error.

10° ; ; ; ; ; ; ; ; ;

107! E

1072 F E

MSE

107 3

1075 \ \ \ .
0

20 40 60 80 100 120 140 160 180 200

Iterations

FIGURE 4: Mean square error.

3.2. Forecasting Results for Smart Grid Variables. Due to
random variations in weather conditions, power generation
from renewable sources is constantly changing. Combining
the forecast of wind speed and output power is a good way
to improve the performance in scheduling of wind power [3].
Reliability is one of the most important factors in smart grid
operation, so constant monitoring and control is necessary to
achieve this goal. An accurate forecast can improve the per-
formance of intelligent controllers and management systems
in the grid.

This project is implemented in the Mechatronics Building
of the UADY Faculty of Engineering using the data obtained
from a 10 kW wind turbine as shown in Figure 7. To char-
acterize the energy consumption from the public grid a year
of data has been collected. To characterize the wind and solar
potential, irradiance and wind speed data are collected from
the meteorological station installed in the FI-UADY. The
statistical values obtained from a one-year analysis are
applied to train the neural predictor.

Figures 8, 10, and 12 display the computation of the
minimum embedding dimension for each one of the analyzed
time series. We select 6 regressors to be included in the neural

Mathematical Problems in Engineering

Absolute error (%)

2L J

‘JLLhL I[LﬂLLm | ) A

0 100 200 300 400 500 600 700

Time (min)

—

(=]

FIGURE 5: Absolute relative error.

Speed (m/s)

360 370 380 390 400 410 420

Time (min)

FIGURE 6: Identification performance comparison for wind speed
forecast.

FiGURe 7: Wind turbines and photovoltaics modules in the FI-
UADY.



Mathematical Problems in Engineering

1 2 3 4 5 6 7 8 9 10
Embedding dimension for ELD

FIGURE 8: Embedding dimension for the electrical load demand
time series.

30 T T T T T
Training

T
Testing
25 ¢ E

10 I R

WA Ui Y |

0 1
0 200 400 600 800 1000 1200 1400 1600
Samples (15 min/sample)

Electrical load demand (kW)
G

- -~ Neural approximation
—— Real value

FIGURE 9: Electric load demand time series forecasting.

network input vector for the electrical load demand (ELD),
8 for wind energy generation (WEG), and 7 for the wind
speed (WS). To train the HONN for each variable, we kept the
following design parameters: 2 external inputs corresponding
to hours and days, 25 units in the hidden layer, 1 neuron in
the output layer, 300 iterations maximum, initial values for
synaptic weights randomly selected in the range, and MSE
required to end the training less than 1 x 10~*. The training is
performed offline, using a parallel configuration; for this case
the delayed output is taken from the neural network output.
The initial values for the covariance matrices are for the elec-
trical load demand (ELD) and for the wind speed (WS). The
data for the ELD is collected every 5 minutes and averaged
each 15 minutes, in the case of the WS wich is taken every
minute and without average; therefore, each variable is
plotted as a function of the sample. The data for the wind
energy generation (WEG) is collected every 18 minutes.

For the ELD, 765 are used as samples to accomplish the
network training. The data size to train the neural network
for WS forecasting is 715 samples. In order to verify if the
proposed scheme is adequate using less samples, 200 samples
are employed for the WEG and good results are obtained

1 2 3 4 5 6 7 8 9 10
Embedding dimension for wind speed

FIGURE 10: Embedding dimension for wind speed.

P ' ' Train'ing 'Testin'g

Wind speed (m/s)

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Samples

- -~ Neural approximation
—— Real value

FIGURE 11: Wind speed time series forecasting.

using this reduced samples number, as exemplified by the
simulation results. The results for the ELD, WS, and WEG
time series forecasting are shown. As can be seen from
Figures 9, 11, and 13, the forecasting is successfully done with
a good prediction horizon.

4. Conclusions

This paper proposes the use of an RMLP trained with
a PSO-EKF learning algorithm, to predict minutely wind
speed with good results as shown in Table 1. The proposed
method has a compact structure but taking into account the
dynamic nature of the system where behavior is required to
be predicted. The proposed neural identifier proved in our
experiments to be a model that captures very well the
complexity associated with important variables in smart grids
operation. Future work on implementing higher order neural
networks aims for the design of optimal operation algo-
rithms for smart grids composed of wind and photovoltaic
generation systems interconnected to the utility grid. This
management system can use the forecasting data to operate
the global system, fulfilling the load demand, minimizing the
power supplied by the utility grid, and maximizing the one
supplied by renewable sources.



-1 1 1 1 1 1 L L L

1 2 3 4 5 6 7 8 9 10

Embedding dimension for wind energy generation

FIGURE 12: Embedding dimension for wind energy generation.

Wind energy generation (kW)

z A ' Trai'ning ' T'esting'
7t

6t

5t

4 |

3

2

1

0

0 50 100 150 200 250 300 350 400 450 500 550

Samples (18 min/sample)

--- Neural network approximation
— Real value

FIGURE 13: Wind energy generation forecasting.

Acknowledgments

The authors thank the support of CONACYT Mexico,
through Project 103191Y and FOMIX 170414. They also thank
the very useful comments of the anonymous reviewers, which
helped to improve the paper.

References

(1]

M. Meiqin, D. Ming, S. Jianhui, L. Chang, S. Min, and Z.
Guorong, “Testbed for microgrid with multi-energy Gener-
ators,” in Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE "08), pp. 637-640,
May 2008.

R. L. Welch, S. M. Ruffing, and G. K. Venayagamoorthy, “Com-
parison of feedforward and feedback neural network architec-
tures for short term wind speed prediction,” in Proceedings of
the International Joint Conference on Neural Networks (I[TCNN
’09), pp- 3335-3340, Atlanta, Ga, USA, June 2009.

J. Wu, S. Chen, J. Zeng, and L. Gao, “Control technologies in
distributed generation system based on renewable energy;,
Asian Power Electronics Journal, vol. 3, no. 1, pp. 39-52, 2009.

A. Y. Alanis, L. J. Ricalde, and E. N. Sanchez, “High Order
Neural Networks for wind speed time series prediction,” in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN °09), pp. 76-80, Atlanta, Ga, USA, June 2009.

(5]

(10]

(11

[12

(13

(16]

(19

(20]

Mathematical Problems in Engineering

T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, and P. S.
Dokopoulos, “Long-term wind speed and power forecasting
using local recurrent neural network models,” IEEE Transac-
tions on Energy Conversion, vol. 21, no. 1, pp. 273-284, 2006.

T. H. M. El-Fouly, E. E. El-Saadany, and M. M. A. Salama, “One
day ahead prediction of wind speed and direction,” IEEE Trans-
actions on Energy Conversion, vol. 23, no. 1, pp. 191-201, 2008.
G. N. Kariniotakis, G. S. Stavrakakis, and E. FE. Nogaret, “Wind
power forecasting using advanced neural networks models,”
IEEE Transactions on Energy Conversion, vol. 11, no. 4, pp. 762—
767,1996.

T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “Application of
recurrent neural network to long-term-ahead generating power
forecasting for wind power generator,” in Proceedings of the IEEE
PES Power Systems Conference and Exposition (PSCE °06), pp.
1260-1265, November 2006.

Y.-K. Wuand J.-S. Hong, “A literature review of wind forecasting
technology in the world,” in Proceedings of the IEEE Lausanne
POWERTECH, pp. 504-509, July 2007.

L-H. Li, W.-Y. Wang, S.-E. Su, and Y.-S. Lee, “A merged fuzzy
neural network and its applications in battery state-of-charge
estimation,” IEEE Transactions on Energy Conversion, vol. 22,
no. 3, pp. 697-708, 2007.

L. J. Ricalde, G. A. Catzin, A. Y. Alanis, and E. N. Sanchez,
“Higher order wavelet neural networks with Kalman learning
for wind speed forecasting,” in Proceedings of the IEEE Sympo-
sium on Computational Intelligence Applications in Smart Grid
(CIASG ’11), Symposium Series on Computational Intelligence,
pp- 55-60, Paris, France, April 2011.

R.J. Williams and D. Zipser, “A learning algorithm for contin-
ually running fully recurrent neural networks,” Neural Compu-
tation, vol. 1, pp. 270-280, 1989.

C.-S. Leung and L.-W. Chan, “Dual extended Kalman filtering
in recurrent neural networks,” Neural Networks, vol. 16, no. 2,
pp. 223-239, 2003.

M. Norgaard, N. K. Poulsen, and O. Ravn, “Advances in
derivative-free state estimation for nonlinear systems,” Tech-
nical Report IMM-REP-1988-15, Technical University of Den-
mark, 2000.

A.Y. Alanis, E. N. Sanchez, and A. G. Loukianov, “Discrete-time
adaptive backstepping nonlinear control via high-order neural
networks,” IEEE Transactions on Neural Networks, vol. 18, no. 4,
pp. 1185-1195, 2007.

L. A. Feldkamp, D. V. Prokhorov, and T. M. Feldkamp, “Simple
and conditioned adaptive behavior from Kalman filter trained
recurrent networks,” Neural Networks, vol. 16, no. 5-6, pp. 683-
689, 2003.

K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimiza-
tion, IGI Global, 2010.

R. Kiran, S. R. Jetti, and G. K. Venayagamoorthy, “Online train-
ing of a generalized neuron with particle swarm optimization,”
in Proceedings of the International Joint Conference on Neu-
ral Networks 2006 (IJCNN °06), pp. 5088-5095, Vancouver,
Canada, July 2006.

T. Su, J. Jhang, and C. Hou, “A hybrid artificial neural networks
and particle swarm optimization for function approximation,”
International Journal of Innovative Computing, Information and
Control, vol. 4, no. 9, pp. 2363-2374, 2008.

C.-J. Lin and H.-M. Tsai, “FPGA implementation of a wavelet
neural network with particle swarm optimization learning,”
Mathematical and Computer Modelling, vol. 47, no. 9-10, pp.
982-996, 2008.



Mathematical Problems in Engineering

(21]

(22]

(23

(24]
(25]

(26]

(27]

(30]

C.-J. Lin, C.-H. Chen, and C.-T. Lin, “A hybrid of cooperative
particle swarm optimization and cultural algorithm for neural
fuzzy networks and its prediction applications,” IEEE Transac-
tions on Systems, Man and Cybernetics C, vol. 39, no. 1, pp. 55-68,
20009.

L. Cao, “Practical method for determining the minimum
embedding dimension of a scalar time series,” Physica D, vol.
110, no. 1-2, pp. 43-50, 1997,

J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp- 1942-1948, December 1995.

A. Lazinica, Particle Swarm Optimization, In-Tech, 2009.

Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in
Proceedings of the IEEE International Conference on Evolution-
ary Computation (ICEC 98), pp. 69-73, May 1998.

M. Clerc, “The swarm and the queen: towards a deterministic
and adaptive particle swarm optimization,” in Proceedings of the
Congress on Evolutionary Computation, pp. 1951-1957, 1999.

B. Al-kazemi and C. K. Mohan, “Multi-phase generalization of
the particle swarm optimization algorithm,” in Proceedings of
the Congress on Evolutionary Computation, vol. 1, pp. 489-494,
2002.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining
embedding dimension for phase-space reconstruction using a
geometrical construction,” Physical Review A, vol. 45, no. 6, pp.
3403-3411, 1992.

A. Y. Alanis, C. Simetti, L. J. Ricalde, and E Odone, “A wind
speed neural model with particle swarm optimization kalman
learning,” in Proceedings of the 9th International Symposium
on Intelligent Automation and Control, Puerto Vallarta, Mexico,
June 2012.

National Renewable Energy Laboratory’s National Wind Tech-
nology Center, http://www.nrel.gov/wind/.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




