
Clemson University
TigerPrints

All Dissertations Dissertations

5-2010

ARCHITECTURE OPTIMIZATION,
TRAINING CONVERGENCE AND
NETWORK ESTIMATION ROBUSTNESS OF
A FULLY CONNECTED RECURRENT
NEURAL NETWORK
Xiaoyu Wang
Clemson University, xiaoyuclemson@hotmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Wang, Xiaoyu, "ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION
ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK" (2010). All Dissertations. 536.
https://tigerprints.clemson.edu/all_dissertations/536

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268635082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/536?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK
ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL

NETWORK

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mechanical Engineering

by
Xiaoyu Wang

May 2010

Accepted by:
Dr. Yong Huang, Committee Chair

Dr. John Gowdy
Dr. Nader Jalili

Dr. Ardalan Vahidi

 ii

ABSTRACT

Recurrent neural networks (RNN) have been rapidly developed in recent years.

Applications of RNN can be found in system identification, optimization, image

processing, pattern reorganization, classification, clustering, memory association, etc.

In this study, an optimized RNN is proposed to model nonlinear dynamical

systems. A fully connected RNN is developed first which is modified from a fully

forward connected neural network (FFCNN) by accommodating recurrent connections

among its hidden neurons. In addition, a destructive structure optimization algorithm is

applied and the extended Kalman filter (EKF) is adopted as a network’s training

algorithm. These two algorithms can seamlessly work together to generate the optimized

RNN. The enhancement of the modeling performance of the optimized network comes

from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron

network (MLP), the most widely used network, in terms of modeling accuracy and

generalization ability; 2) the recurrency in RNN network make it more capable of

modeling non-linear dynamical systems; and 3) the structure optimization algorithm

further improves RNN’s modeling performance in generalization ability and robustness.

Performance studies of the proposed network are highlighted in training

convergence and robustness. For the training convergence study, the Lyapunov method is

used to adapt some training parameters to guarantee the training convergence, while the

maximum likelihood method is used to estimate some other parameters to accelerate the

training process. In addition, robustness analysis is conducted to develop a robustness

measure considering uncertainties propagation through RNN via unscented transform.

 iii

Two case studies, the modeling of a benchmark non-linear dynamical system and

a tool wear progression in hard turning, are carried out to testify the development in this

dissertation.

The work detailed in this dissertation focuses on the creation of: (1) a new method

to prove/guarantee the training convergence of RNN, and (2) a new method to quantify

the robustness of RNN using uncertainty propagation analysis. With the proposed study,

RNN and related algorithms are developed to model nonlinear dynamical system which

can benefit modeling applications such as the condition monitoring studies in terms of

robustness and accuracy in the future.

 iv

DEDICATION

This Dissertation is dedicated to my parents who have always been supportive in

my life.

 v

ACKNOWLEDGMENTS

I would like to thank Dr. Yong Huang, Dr. John Gowdy, Dr. Nader Jalili, and Dr.

Ardalan Vahidi, for their support and guidance in my study.

I would like to thank Dr. Nhan Nguyen and Dr. Kalmanje Krishnakumar, NASA

scientists from the Ames Research Center, for their help in my research.

I would like to thank my colleagues who helped me during my stay at Clemson:

Yu Long, Lei Tang, Wei Wang, Yafu Lin, Yin Jun, Leigh Herran, Mason D. Morehead,

and Kevin Foy.

I would like to acknowledge the financial support from the South Carolina Space

Grant Consortium and the NASA Ames Research Center.

 vi

TABLE OF CONTENTS

Page

TITLE PAGE..i

ABSTRACT ..ii

DEDICATION..iv

ACKNOWLEDGMENTS..v

LIST OF TABLES..viii

LIST OF FIGURES ..ix

CHAPTER

 I. INTRODUCTION ..1

 Background...1
 Overview of this study ..6
 Organization of this study ...8

 II. RESEARCH BACKGROUND AND CURRENT STATUS11

 Abstract ..11
 Nomenclature..12
 Neural network architecture ..14
 Neural network optimization...26
 Training algorithms of recurrent neural network..................................29
 Convergence studies of recurrent neural network35
 Estimation robustness of recurrent neural network39
 Conclusions ..43

 III. DEVELOPMENT OF THE RECURRENT NEURAL NETWORK..........46

 Abstract ..46
 Nomenclature..47
 Architecture of the proposed neural network49
 Training algorithm development ...52
 Connectivity optimization algorithm for the recurrent neural network .72
 Conclusions ..75

 vii

Table of Contents (Continued)

Page

 IV. PERFORMANCE STUDIES OF THE RECURRENT NEURAL NETWORK

...77

 Abstract ..77
 Nomenclature..78
 Convergence study of the recurrent neural network training algorithm 80
 Robustness analysis of the recurrent neural network............................98
 Conclusions ..104

 V. MODELING OF A NON-LINEAR DYNAMICAL BENCHMARK SYSTEM
...106

 Abstract ..106
 The benchmark system..107
 Recurrent neural network implementation ...108
 Modeling performance of the recurrent neural network112
 Training convergence study of the recurrent neural network..............116
 Robustness study of the recurrent neural network..............................127
 Conclusions ..136

 VI. MODELING OF CBN TOOL WEAR IN HARD TURNING137

 Abstract ..137
 CBN tool flank wear ...138
 Recurrent neural network implementation ...141
 Modeling performance of the recurrent neural network144
 Training convergence study of the recurrent neural network..............149
 Robustness study of the recurrent neural network..............................159
 Conclusions ..167

 VII. CONCLUSIONS ..169

 Challenges addressed ..169
 Methodology validation and performance evaluation171
 Contributions ..172
 Future work ..173

REFERENCES ..175

APPENDICES ..184

 viii

LIST OF TABLES

Table Page

 5.1 Training error with different network structure..111

 5.2 Training error with different types of network...113

 5.3 Modeling errors of the networks ...114

 5.4 Final training errors of different Q settings...124

 5.5 Comparison of robustness quantification approaches132

 5.6 Sensitivity matrix-based robustness of RNN and optimized RNN133

 5.7 Robustness results of RNN from a Monte Carlo method135

 5.8 Robustness results of RNN from the proposed UT-based method135

 6.1 Cutting conditions of the experiments [Huan04]140

 6.2 Training error with different network structure..143

 6.3 Training error with different types of networks145

 6.4 Modeling error for testing cases ..148

 6.5 Final training errors of different Q settings...155

 6.6 Comparison of robustness quantification approaches164

 6.7 Sensitivity matrix-based robustness of RNN and optimized RNN165

 6.8 Robustness results of RNN from a Monte Carlo method166

 6.9 Robustness results of RNN from the proposed UT-based method............166

 ix

LIST OF FIGURES

Figure Page

 1.1 NN Developed for different applications...3

 1.2 Networks with improved modeling performance...4

 1.3 Layout of the study ...7

 1.4 Organization of the study..10

 2.1 Two connected neuron cells ..14

 2.2 A neuron unit in an NN...16

 2.3 Different types of activation functions ..16

 2.4 An MLP neural network ...19

 2.5 Schematic of Equations (2.3 and 2.4) ..19

 2.6 Architecture of a fully forward connected neural network20

 2.7 Illustration of Equations (2.7-2.9) ...22

 2.8 Comparison of FFCNN and MLP ...23

 2.9 An Elman network..23

 2.10 A Jordan network..24

 2.11 A RMLP network ...25

 2.12 Schematic of equations (2.12 and 2.13)...26

 2.13 Classification of network topology optimization methods28

 2.14 Illustration of the supervised training process..31

 2.15 Classifications of the supervised training methods31

 2.16 RNN training methods ..32

 x

List of Figures (Continued)

Figure Page

 2.17 An illustration of BPTT ..33

 3.1 Architecture of RNN...50

 3.2 An illustration of the output generation of neuron i in hidden section........51

 3.3 The Kalman filter algorithm..54

 3.4 The extended Kalman filter algorithm...58

 3.5 The flow chart of RNN training procedures...60

 3.6 Training data set example ...61

 3.7 Case 1 for calculation of the orderly derivative ...65

 3.8 Case 2 for calculation of the orderly derivative ...66

 3.9 Illustration of calculation of o
jy
y

∂
∂ +

 in case II ..67

 3.10 jnet decomposition (The items inside dash boxes contribute to the

 calculation of
ji

j

w
net

∂

∂ +

) ...68

 3.11 Signal flow graph to compute
ji

j

w
net

∂

∂ +

..69

 3.12 Case 3 for calculation of the orderly derivative ...70

 3.13 The trainable weights for the three cases ...71

 3.14 An illustration of connectivity optimization ..72

 3.15 Illustration of Equations (3.65 and 3.66) ...73

 3.16 Network optimization process...75

 xi

List of Figures (Continued)

Figure Page

 4.1 Flow chart of the convergence study ...98

 4.2 Proposed procedures for robustness quantification100

 5.1 The output of the non-linear dynamical benchmark system107

 5.2 Training errors of RNN with typical structure configurations111

 5.3 Modeling the bench mark system by a 6-9-1 RNN..................................112

 5.4 Training results of MLP..113

 5.5 Training results of FFCNN ...113

 5.6 Training results of RNN..114

 5.7 Modeling errors of the networks ...115

 5.8 Training result and modeling error without R adaption law....................117

 5.9 r values during training without R adaption law117

 5.10 Training results with R adaption law..119

 5.11 Modeling error during training with R adaption law...............................119

 5.12 r values during training with R adaption law ..120

 5.13 Comparison of RNN training with different Q settings...........................122

 5.14 Comparison of optimized RNN training with different Q settings123

 5.15 Comparison of training process of RNN and optimized RNN with Q adaption
 law..123

 5.16 Trace of Q during training processes of Scenarios 1 and 3125

 5.17 Trace of Q in training epochs (5 and 6) ...125

 xii

List of Figures (Continued)

Figure Page

 5.18 Diagonal elements of Q after training scenarios 1 and 3.........................126

 5.19 Local robustness measures for RNN using 100 input samples128

 5.20 Robustness of RNN and optimized RNN ..129

 5.21 Network robustness values under different perturbation levels130

 6.1 Typical tool wear picture in CBN hard turning..138

 6.2 A Typical tool wear progression in hard turning......................................139

 6.3 Training errors of RNN with typical structure configurations143

 6.4 Modeling the tool wear progression by a 5-2-1 RNN144

 6.5 Training results for training cases ...146

 6.6 Modeling results for testing cases ...148

 6.7 A divergent training processes ..150

 6.8 Modeling performance for tool wear progression without R adaption law
 ...151

 6.9 r values during training without R adaption law151

 6.10 Modeling results for testing cases ...152

 6.11 Training results for tool wear progression with R adaption law..............153

 6.12 r values during training with R adaption law ..154

 6.13 Comparison of RNN training errors with different Q settings.................156

 6.14 Trace of Q for Scenarios 1 and 3 during training process157

 6.15 Trace of Q in training epochs (91) and (92)..157

 xiii

List of Figures (Continued)

Figure Page

 6.16 Diagonal elements of Q after training for Scenarios 3 and 1...................158

 6.17 Comparison of OptRNN training errors with different Q settings158

 6.18 Local robustness measures for RNN using 100 input samples160

 6.19 Robustness of RNN and optimized RNN ..161

 6.20 Network robustness values under different perturbation levels162

1

CHAPTER ONE

INTRODUCTION

Background

Typical engineering systems have high-order, nonlinear, and dynamical features.

These systems often include sensors and actuators which interact with the system itself

and the environment. Many of these systems are defined by characteristic parameters

indicating the complex relationship among their various physical characteristics, often

exhibiting time dependency due to their inherent dynamical nature. These condition or

characteristic parameters are often difficult, if not impossible, to measure directly. As a

result, modeling, a process that can describe the behavior of such system parameters, is

especially important in condition monitoring. This supervision can detect changes or

drifts in process parameters which may indicate the inception and growth of fault modes

in a system [Iser84] [Hofl96].

Several methods have been developed for modeling non-linear dynamical

systems. Generally, they can be categorized into the following two classes:

1) Physical-driven methods are developed by looking into the underlying theory

of systems and developing mathematical models to describe the relationship

among variables interested. These models are often in the form of differential

equations [Huan02]. Some of these equations can be analytically solved and

result in explicit models, while the complicated ones are often solved by

 2

numerical methods as the finite element method (FEM), which divides a

system into numerous elements, numerically solving the equations [Xie05].

2) Data-driven methods are developed based on empirical observations by using

the information obtained through experiments and developing equations to

describe relationships of the system modeled. Regression models or

parametric models (linear regression with nonlinear terms, polynomial

regression, and nonlinear regression), select the form of model first, and then

determine its parameters through regression [Ozel05]. Artificial intelligence

(AI)-based methods using AI techniques such as neural networks (NN)

[Liu99] [Kuo99] [Sche03] and fuzzy logic [Kuo98] can be also applied to

model systems, while for this case the developed models often can’t be written

explicitly.

Theses modeling methods have advantages and disadvantages. Although

analytical models provide better insight into a system’s underlying physical mechanisms

through physical-driven methods, they are sometimes less satisfactory due to over-

simplifications and unrealistic assumptions in their development. On the other hand, the

models solved by FEM can provide accurate results; however, it is time-consuming and

not suitable for optimization using current computing technology. Time series and

regression models are typically less accurate than the AI –based models. If both accuracy

and speed are of interest instead of a system’s underlying physical mechanisms, AI-based

modeling approaches are favored for real-time applications.

 3

Among the AI-based approaches, NN is extensively applied in system modeling

applications because of the following advantages:

1) They can carry out arbitrary function approximation especially for non-linear

systems

2) They do not require reprogramming and can be applied to different systems.

3) They are error-tolerant due to their parallel computation features.

These advantages make NN a viable, reliable, and attractive approach for

modeling engineering systems [Chry90] [Das96]. Figure (1.1) shows various NN

developed for different applications. This classification is based on the most frequent

application of the network. For example, while multi-layer perceptron NN (MLP) also

can be applied as classifications and clustering, here it is classified as estimation and

modeling applications.

Neural
networks

Estimation
modeling

Classification
Clustering

Association memory
Pattern recognition

Optimization

Multilayer perceptron

Radial basis function NN

Time-delay NN

Self-organizing NN

Adaptive resonance theory NN

Bidirectional associative memory NN

Hopfield NN

Boltzmann machine

Figure 1.1: NN Developed for different applications

 4

The research presented here focuses on applications in modeling and estimation.

Its objective is to develop an NN with advantages over the currently applied ones and

then study its performance. Among NN applied in system modeling, MLP is the one most

frequently used. Previous research has found that a fully forward connected NN

(FFCNN) exhibits better performance in terms of generalization ability, training

accuracy, and structural robustness than an MLP [Wang08a]. In addition, an FFCNN can

be modified to become a fully connected recurrent neural network (RNN),

accommodating recurrent connections among neurons. Unlike an FFCNN, a RNN can

store information from past states, making it more capable of modeling nonlinear

dynamical phenomena. However, using a RNN involves such issues as divergence

[Mand01], instability [Meds99], and a lack of robustness [Mand01]. The relationship

among these three networks, including their advantages, can be seen in Figure (1.2).

Multilayer
Perceptron

Fully forward
connected NN

Fully connected
RNN

Enhanced features for
modeling dynamical systems:
lTraining speed
lGeneralization ability

Enhanced features:
lGeneralization ability
lTraining accuracy
lRobustness

Figure 1.2: Networks with improved modeling performance

To apply RNN, several issues have to be carefully addressed.

1) Network architecture optimization

The determination of optimal network architecture is critical for the successful

application of NN models because it can save calculation cost while at the same time

maintaining modeling accuracy, generalization ability, and robustness [Alip02].

 5

Optimization of network structure requires consideration of such features as the number

of inputs, the number of outputs, the degree of complexity of the system, and the

available training data for each application. Overly complicated networks tend to have an

over-fitting problem, while architecture that is too simple results in poor training

accuracy [Mood92].

2) Training convergence

The different training algorithms for RNN have advantages and disadvantages. To

select an appropriate training algorithm in terms of training speed and accuracy is

important. Furthermore, determining the training parameters is another major concern

having a significant influence on network performance; specifically, training divergence

can occur if these parameters are not selected properly [Luo97].

3) Robustness

Robustness studies on NN have primarily considered uncertainties in inputs and

weights [Chiu93] [Alip01] [Alip04]. Once the structure of a network has been decided

and the training process completed, a network is realized. The different architectures and

configurations of NN training are realized in different network models. Robustness

analysis of the realized networks is essential to eliminate those networks exhibiting poor

robustness so that the best candidate is selected.

As this discussion indicates, it is important to develop a complete and reliable

modeling technique for general non-linear dynamical systems. Network architecture

optimization and training algorithm realization are the foundation, and performance

studies including training convergence and network robustness can further enhance the

 6

applications of RNN in non-linear dynamical system modeling. To investigate this area,

the objectives of this study are to develop a fully connected RNN, to explore its

capability for modeling dynamical systems and to evaluate its performance concerning

training convergence and robustness.

Overview of This Study

Previous research on nonlinear system modeling applications has focused on

applying RNN to model non-linear dynamical systems, but little has been conducted on

the theoretical analysis. In this study, RNN with internal feedback connections are

developed for modeling nonlinear dynamical systems with the following tasks:

1) A RNN is formed by accompanying recurrent connections in the hidden neuron

section of an FFCNN. An extended Kalman filter algorithm (EKF) is applied to

train the network.

2) Network architecture optimization is achieved using a destructive connectivity

algorithm.

3) Performance analysis including a convergence study of the training process of

RNN and a robustness analysis of the trained network are conducted,

theoretically making the network substantially complete in theoretical proof and

hence ensuring the quality of its performance.

This study was divided into the three parts shown in Figure (1.3). The first was

RNN development including the development of the network architecture optimization

and the training algorithm. A destructive optimization algorithm was applied to determine

 7

network architecture and the extended Kalman filter algorithm to train the network.

Performance studies were then applied to this resulting network. A convergence study

was conducted to improve the network’s training convergence performance and a

robustness analysis conducted to assess its robustness to perturbations in the trained

weights. Finally, a non-linear dynamical benchmark system and a tool wear propagation

process were used to verify the algorithms applied.

Optimization
Algorithm

RNN
Architecture

Optimized
RNN

Architecture

Part 1:
RNN Development

Training
Algorithm

Convergence
Study

Part 2:
Performance Study

Benchmark
System

Performance
Evaluation

Performance
Evaluation

Part 3:
Case Studies

Robustness
Analysis

Tool Wear
System

Optimized
RNN

Architecture

Figure 1.3: Layout of the study

Based on this study, the following conclusions were drawn:

1) The modeling capability of the proposed RNN is better than that of the

commonly used MLP network.

 8

2) Architecture optimization improves the modeling capability of the proposed

RNN

3) The adaption law of training parameters improves the training convergence of

the network.

4) The proposed robustness quantification method is effective and efficient.

The contributions of this study to the literature are summarized below:

1) The EKF training and destructive optimization algorithms can be applied to

the proposed RNN

2) The Lyapunov method and the maximum likelihood method can be applied to

tune the statistical matrices Q and R of the EKF to ensure the convergence of

RNN training algorithm and at the same time to improve the convergence

speed

3) The unscented transform method can be applied to quantify the robustness of

RNN to uncertainties in the trained weights

Organization of This Study

The organization of the study is shown in Figure (1.4).

Chapter two provides the theoretical background of this study. Such topics as

architectures, training algorithms, and topology optimization techniques of neural

networks are introduced. The structures of networks, listed in Figure (1.2), applied in

modeling applications are illustrated first. Three classes of network structure optimization

methods (empirical methods, destructive or constructive methods, and other optimization

 9

methods) are then reviewed. Training algorithms for RNN (back-propagation through

time, real-time recurrent learning, and EKF training algorithm) are introduced. These

algorithms are used to determine the structure and parameters of a RNN model. In

addition to the development of networks, convergence and robustness studies of recurrent

neural networks are reviewed as well. Convergence studies have been conducted on

networks’ states, outputs and training process and the last one is concerned in this study.

According to different applications of RNN, robustness studies have different concerns.

This study focuses on modeling applications and hence the estimation robustness is

reviewed in details. Along with the background introduction, the motivations and

concerns of this study are also discussed.

Chapter three proposes the development of an optimized RNN (Part 1 in Section

1.2) which has advantages in modeling non-linear dynamical systems over the commonly

used MLP. First, the structure of a RNN is illustrated; the RNN is modified from an

FFCNN by accommodating internal recurrency in its hidden neuron section. The EKF

algorithm which used to train the network (determine the weights of the RNN) is then

detailed in the following section. Finally a destructive optimization method is introduced,

which optimizes the RNN network structure to form the optimized RNN (OptRNN).

Chapter four studies the training convergence and robustness of the proposed

RNN (Part 2 in Section 1.2). The EKF training algorithm has divergence problem if its

parameters are not selected properly. To solve the problem, Lyapunov method is applied

to develop an adaption law on a training parameter, the covariance of measurement noise.

Furthermore, the convergence speed is accelerated by an adaption law on another training

 10

parameter, the covariance of process noise, using the maximum likelihood method. In

addition to the training convergence, another important issue for the successful

implementation of RNN, the robustness is studied by conducting an uncertainty

propagation analysis using the unscented transform.

Chapter five and Chapter six verifies the studies in Chapter three and Chapter four

using two case studies, a non-linear dynamical benchmark system and a tool wear

progression process (Part 3 in Section 1.3).

The final chapter of this dissertation presents the conclusions of this study.

The appendix lists the flow charts of matlab programs for RNN training, RNN

optimization, and RNN training with R and Q adaption law applied.

Chapter 1: Introduction Chapter 2: Research Background and Current Status

Chapter 3: Development of the Recurrent Neural Network (Part 1 in Section 1.2)

Chapters 5: Modeling of a Non-linear Dynamical
Engineering System (Part 3 in Section 1.2)

Chapter 7: Conclusions

Chapter 4: Performance Studies of the Recurrent Neural Network (Part 2 in Section 1.2)

Chapters 6: Modeling of CBN Tool Wear
in Hard Turning (Part 3 in Section 1.2)

Figure 1.4: Organization of the study

 11

CHAPTER TWO

RESEARCH BACKGROUND AND CURRENT STATUS

Abstract

This chapter introduces the theoretical background of this study. Several topics

are covered on neural network architecture, topology optimization, training algorithms,

convergence study, and robustness study of RNN. The structure of the proposed RNN is

modified from an FFCNN which has advantages over the widely used MLP in training

accuracy and generalization ability. Network topology optimization techniques are

applied to optimize the structure of a network. Among these approaches, pruning

approach can generate simple robust and efficient optimized structure. Training algorithm

is applied to tune the weights of the developed structure. For RNN training, there are

three major algorithms developed, namely, back-propagation through time (BPTT)

algorithm, real-time recurrent learning (RTRL) algorithm and EKF training algorithm.

Among them, EKF is proved to be fast and accurate. Convergence studies of RNN

include three brunches - state convergence, output convergence and training convergence.

Training convergence concerns the stability of weight update during training process and

it is the focus of this study. Finally, robustness of NN for modeling applications, called

estimation robustness, is reviewed in this chapter. Basic concepts and the up to date

developments in these areas are introduced for each topic. Based on the background

review, the techniques applied in this study are also briefly introduced.

 12

Nomenclature

Multilayer Perceptron Network

Symbol Definition

ijb , Bias of the ith neuron in layer j

)(, ⋅ijf Activation function of the ith neuron in layer j

ijnet , Net input of the ith neuron in layer j

kijw ,, Weight of the connection from neuron k in layer j-1 to
neuron i in layer j

o
ijy , Output of the ith neuron in layer j

Recurrent Multilayer Perceptron Network

Symbol Definition

)(, ⋅ijf Activation function of the ith neuron in layer j

)(, nnet ij Net input of the ith neuron in layer j at time step n

jn Number of neurons in layer j

f
kijw ,, Feedforward weight from neuron k in layer (j-1) to the ith

neuron in layer j
r

kijw ,, Feedback weight from neuron k in layer (j+1) to the ith
neuron in layer j

)(, ny o
ij Output of the ith neuron in layer j at time step n

 13

EKF Training Algorithm

Symbol Definition

)(kH Jacobian matrix at training step k

)(kK Kalman gain at training step k

)(kP Covariance matrix of weight estimation at training step k

)(kQ Covariance matrix of process noise at training step k

)(kR Covariance matrix of measurement noise at training step k

)(kwv Estimation of weight vector *wv at training step k

)(* kyv Desired output at training step k

)(kyv Output of neural network at training step k

 14

Neural Networks Architecture

Artificial neural network, often abbreviated as neural network, was invented by

Warren S. McCulloch and Walter Pitts in 1943 [Mccu43], which simulates the operations

of biological neural network. It is composed of a number of highly interconnected

processing elements (neurons) working in parallel to solve specific problems.

As shown in Figure (2.1), biological neurons are the core component of a human

brain, which are responsive cells that transmit and process signals. A neuron cell is

generally comprised of the cell body, axon, and dendrites. It receives signals from other

neurons through dendrites. In addition, it also sends out spikes of electrical activity

through an axon, which splits into thousands of branches. At the end of each branch, a

structure called a synapse converts the activity from the axon into electrical effects that

inhibit or excite activity in the connected neurons. When a neuron receives excitatory

input that is sufficiently large compared with its inhibitory input, it sends a spike of

electrical activity down its axon.

Axon Synapse

DendriteDendrite

Neuron 1
Neuron 2

Axon Synapse

DendriteDendrite

Neuron 1
Neuron 2

Figure 2.1: Two connected neuron cells

 15

Neuron network is built to imitate a human’s neuron system. Figure (2.2) shows a

typical artificial neuron in an NN. Such a neuron unit is also called a perceptron [Rose58]

which can be viewed as a simplest NN – a single layer neural network with one neuron.

Typically an artificial neuron is composed of weights, a summation operator and an

activation function. The perceptron can be used to form a mapping function from its

inputs (mxxx ,..., 21) to its output (y). A weight simulates the function of a dendrite in

Figure (2.1). The summation of weighted inputs is called net input which feeds into the

activation function to form output of the neuron. The mapping function is described as

follows:

∑
=

=
m

k
kk xwnet

1
 (2.1)

()netfy = (2.2)

where net is the net input, m is the number of inputs, kw is the weight for input k, y is

the output, and ()⋅f is the activation function

The activation function represents the function of a cell body in Figure (2.1). Here

it is a step function – if the net input is less than 0, the output is -1, and otherwise it will

be 1. A lot of functions can be selected as activation function as shown in Figure (2.3).

Among them the most popular one is the sigmoid function. For an NN with connected

neurons, the output of a neuron can propagates through its axon to other neurons.

 16

∑∑

x1

Weight
(Dendrite)

Net input

Output
Activation

function
(Cell body)

(Axon)

x2

xm

w1

w2

wm

y

Input

Figure 2.2: A neuron unit in an NN

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

x

f(x
)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

f(x
)

a) Linear function

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

x

f(x
)

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

x

f(x
)

b) Step function

c) Sigmoid function d) Hyperbolic function

Figure 2.3: Different types of activation functions

A neuron network is often composed of a lot of connected neurons. There are

many types of neural networks with different structures and operation mechanism, each

of which has different strengths particular to some certain applications. Some well-known

 17

NN are MLP NN - an NN model with more than three layers of neurons often using

sigmoid activation function that maps sets of input data onto a set of output, radial basis

function (RBF) NN - an NN similar to MLP but uses radial basis functions as its

activation function, self-organizing map (SOM) NN – an NN that often used to produce a

low-dimensional (typically two dimensional) representation of the input high-

dimensional data, Hopfield NN – an NN applied in content-addressable memory

application that the network can converge to a "remembered" state if it is given a

distorted input, Boltzmann machine – a type of stochastic NN which is used to model the

a system’s statistical behavior, adaptive resonance theory (ART) NN – an NN used to

achieve a self-organized stable pattern recognition capability in real time by using the

adaptive resonance theory, and neural fuzzy NN – an NN combining combination the

fuzzy inference system in its body to incorporate fuzzy IF-THEN rules to the network.

According to the direction of calculation flows within a network, neural networks

can be divided into two classes, feedforward neural networks (FFNN) and recurrent

neural networks (RNN). While a feedforward network, such as the MLP, only propagates

data forwardly from input to output, a recurrent neural network also has feedback

connections and it can propagate data from later processing elements to earlier elements

which make it more suitable for modeling dynamical systems [Link96]. Some commonly

used RNN are Elman network, Jordan network, and recurrent multilayer perceptron

network. They are generally modified from the MLP NN.

MLP is the most popular and widely used neural network [Sama06]. As an

example, Figure (2.4) shows an MLP neural network. Each circle represents a neuron

 18

(perceptron) illustrated in Figure (2.2). The network is composed of three layers of

neurons. The first layer is called input layer which take in inputs; the last layer is called

output layer which generate output of network; the layers in between have no connection

with the external world are called hidden layer. Information flows forwardly from layers

in left to layers in right. Each neuron in one layer is connected to every neural on the next

layer and there is no connection among neurons in the same layer. The network has 9

neurons to form a mapping function from its inputs (4321 ,,, xxxx) to its outputs (21 , yy).

In Figure (2.4), two types of outputs need to be distinguished; output of a neuron is

denoted as o
jiy , where the first subscript i denotes the layer number of the neuron and the

second subscript j denotes the index of the neuron in layer i; on the other hand, output of

the network ([]21 , yyy =v)is composed of the outputs of neurons in output layer. It is easy

to see that oy 1,3 and 1y are two notations for the same output. It is proved that an MLP

with at least one hidden layer can approximate any continuous function at any desired

degree of accuracy with sufficiently many hidden neurons are available and hence MLP

can be seen as a universal approximator [Horn89].

 19

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

)(11,3 yyo

)(22,3 yyo

Figure 2.4: An MLP neural network

∑ o
ijy ,

o
jy 1,1−

o
jy 2,1−

o
nj j

y
1,1 −− Neuron i in

layer j
ijb ,

1,,ijw

2,,ijw

1,, −jnijw

Outputs
from

layer j-1

Bias

Figure 2.5: Schematic of Equations (2.3 and 2.4)

As shown in Figure (2.5), for the ith neuron in layer j, its output o

ijy , can be

written by

)(,,, ijij
o

ij netfy = (2.3)

∑
−

=
− +=

1

1
,,1,,,

jn

k
ij

o
kjkijij bywnet (2.4)

The output of the network can be written as:

o
ini yy ,= (2.5)

 20

where ijnet , is the net input of the neuron, the weighted summation of outputs of neurons

from the previous layer; kijw ,, is the weight for the connection from neuron k in layer j-1

to neuron i in layer j; ijb , is the bias for the neuron; n is the layer number of output layer,

and)(, ⋅ijf is the activation function of the neuron, which is often taken as a sigmoid

function:

xe
x

−+
=

1
1)(σ (2.6)

Other than the MLP, FFCNN is also an FFNN. The FFCNN was proposed by

Werbos [Werb90]. It can be viewed as a general version of MLP and is adopted as the

prototype of the proposed RNN in this study.

h hidden neurons

feedforward loops (solid lines)

m input neurons n output neurons

x1 xm y1 yn

i j

wji

(a) Connection between two neurons

(b) FFCNN structure

Figure 2.6: Architecture of a fully forward connected neural network

 21

Recurrent Neural Networks

A representative FFCNN is shown in Figure (2.6). The network is composed of

three sections, namely input neurons section, hidden neurons section, and output neurons

section respectively. The network has m neurons in input section which receive the inputs

of the network. h hidden neurons are used to relay the outputs of input neurons to output

neurons. n output neurons generate outputs of the network. The network is used to model

a system with m inputs n outputs. It is a forward network since there are no feedback

connections and data only propagate from left to right. It is also a fully connected

network because each neuron takes connections from every other neuron to the left of

itself. [Werb90] [Kris93]. Figure (2.6(a)) shows the connection between two neurons.

The weight jiw represents the weight on the connection from neuron i to neuron j. This

network architecture is used as the foundation for the proposed RNN. The equations (2.6-

2.8) describe the mapping functions of the network.

As shown in Figure (2.7), for each neuron, its net input inet is formed by

summing the weighed outputs prior to it.

∑
−

=

=
1

1

,
i

j

o
jiji ywnet nhmi ++≤≤1 (2.7)

where m , h , and n represent the number of the input neurons, hidden neurons, and

output neurons respectively, inet represents the net input to the neuron i, ijw represents

the weight on the connection from neuron j to the neuron i, and o
iy represents the output

of the neuron i

 22

Each neuron i has an activation function)(⋅if which generates an output for its

net input:

)(ii
o
i netfy = , nhmi ++≤≤1 (2.8)

Neurons can have different activation functions in different sections. For neurons

in the hidden section, a unipolar sigmoid activation function (shown in Figure (2.3)) is

used as follows:

inetii e
netf

−+
=

1
1)(, hmim +≤< (2.9)

For neurons not in the hidden section, the identity function is used as follows:

iii netnetf =)(, mi ≤≤1 and nhmihm ++≤<+ (2.10)

The output of the network can be written as:

o
hmii yy ++= ni ≤ (2.11)

∑ o
iy

Neuron i

1iw

2iw

)1(−iiw

oy1

oy2

o
iy 1−

Figure 2.7: Illustration of Equations (2.7-2.9)

An FFCNN with a 2-2-1 structure is shown in Figure (2.8(a)) and it can be

transformed into an MLP form in Figure (2.8(b)). In addition, a regular MLP (2-2-1) is

shown in Figure (2.8 (c)) for comparison. It can be seen that, with the same structure,

there are more connections and weights in the FFCNN (9) than in the MLP (6), and hence

 23

FFCNN has more parameters to tune in which sense it is said to be more general than an

MLP.

1 2 3 4 5

x1 x2

y

1

2

3

4

5 y

x1

x2

1

2

3

4

5 y

x1

x2

a) An FFCNN

b) An equivalent MLP c) A regular MLP

Figure 2.8: Comparison of FFCNN and MLP

Apart from the above FFNN, RNN are also applied in modeling applications and

some of them are introduced in the following.

Input Hidden
layer

Output
layer

x1

x2

x3

x4

Context
units

)(11,3 yyo

)(22,3 yyo

Figure 2.9: An Elman network

 24

An Elman neural network [Elma90] is shown in Figure (2.9). The Elman Network

has an extra set of input units, so-called context units. The context units contain a copy of

the network’s internal state (the outputs of neurons in the hidden layer) at the previous

time step. The context units feed into the hidden layer just like the other input units do, so

the network is able to compute a function that not only depends on the current input, but

also on the network’s internal state, which is determined by previous inputs. The network

can be seen as an MLP with feedback connections from hidden layer to input layer.

 Similar to an Elman network, as shown in Figure (2.10), a Jordan network

[Jord86] can be viewed as an MLP with feedback connections from output layer to input

layer. Its context units, working as an extra set of inputs, is a copy of the network’s

output at the previous time step.

Input

Hidden
layer

Output
layer

x1

x2

x3

x4

Context
units

)(11,3 yyo

)(22,3 yyo

Figure 2.10: A Jordan network

 25

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

)(11,3 yyo

)(22,3 yyo

Figure 2.11: A RMLP network

As shown in Figure (2.11), a recurrent multilayer perceptron (RMLP) is modified

from MLP by adopting feedback connections among the nodes of neighboring layers and

feedback connections from neurons in hidden layer to themselves [Psal88]. The recurrent

connections are delayed by one time step. In another point of view, the RMLP can be

seen as a generalized version of an Elman network or a Jordan network.

For the ith neuron in layer j, its output can be described by

))(()(,,, nnetfny ijij
o

ij = (2.12)

∑ ∑
− +

= =
++− −+−+=

1 1

1 1
,1,,1,,,,1,,,)1()1()()(

j jn

k

n

k

o
kj

r
kij

o
ij

r
iij

o
k

f
kijij nywnywnywnnet (2.13)

where)(, ⋅jif is the activation function,)(, nnet ji is the net input at time step n, f
kijw ,, is

the forward weight from neuron k in layer (j-1) to node i in layer j, r
kijw ,, is the feedback

weight from neuron k in layer (j+1) to node i in layer j, and jn is the number of neurons

in layer j.

 26

∑)(, nyo
ij)(1,1 nyo

j−

)(2,1 nyo
j−

)(
1,1 nyo

nj j−−

Neuron i in
layer j

)1(1,1 −+ nyo
j

)1(2,1 −+ nyo
j

)1(
1,1 −

++ nyo
nj j

Feedbacks
from the

next layer

)1(' , −ny ij

Feedbacks
from itself

Inputs from outputs at layer j-1
at current time step

r
ijw 1,,1+

r
ijw 2,,1+

r
nij j

w
1,,1 ++

r
iijw ,,

f
ijw 1,,1−

f
ijw 2,,1−

f
nij j

w
1,,1 −−

)(, nyo
ij

Layer
j+1

Layer
j-1

a) Schematic of the connections b) Input-output layout

Figure 2.12: Schematic of equations (2.12 and 2.13)

In this study, a recurrent network modified from an FFCNN network is used to

model non-linear dynamical systems. The specific structure of network is chosen because

FFCNN has some advantages than MLP in terms of modeling accuracy and

generalization ability. Hence the RNN modified is believed to have better performance in

modeling.

Neural Network Optimization

Both MLP and RMLP are capable of modeling nonlinear dynamic systems

[Lo94]. However, there are some problems with these fully connected neural networks:

1) They have a large parameters (weights and biases) space, which makes

computation cost expensive; and

 27

2) They are vulnerable to over fitting problem that networks tend to fit training

data perfectly but poorly fit testing data.

Network architecture optimization can alleviate these problems. Optimal

determination of network topology is indispensable to build an optimal NN modeling

tool. Usually network topology is determined considering the following items:

1) How many hidden layers in the network;

2) How many neurons in each hidden layer; and

3) How neurons connect.

The function of hidden neurons is to model mapping function between network

inputs and outputs. If insufficient number of hidden nodes is picked, it is not possible to

form an accurate model for the training data (the data used to determine the weights of a

network through a training process). On the other hand, if too many hidden nodes are

used, the network may lose its ability to generalize. In addition, keeping the number of

hidden layer nodes to a minimum can reduces the number of trainable weights, and hence

can reduce the computational cost of training.

As shown in Figure (2.13), current network topology optimization techniques can

be divided into three classes: empirical or trial and error method, destructive or

constructive methods, and the applications of other optimization strategies to ANN

[RAGG96].

 28

Network topology
optimization methods

Empirical methods

Destructive or constructive methods

Other optimization methods

Figure 2.13: Classification of network topology optimization methods

The first class is trial and error which applied in most applications. Most

researchers don’t use a systematic approach, but test several sets of network topologies

and compare the results. The best network structure (number of hidden layers, number of

hidden neurons) is identified after comparison. The method is case-oriented and time

consuming.

The second class is destructive or constructive methods. For the destructive

methods, a network starts with an over-large structure and some of its neurons are

eliminated until a minimum structure with acceptable modeling performance is achieved

[Scha97]. Representative techniques of this class include magnitude based pruning

(MBP) [Seti00], weight decay method [Chow94], and optimal brain surgeon (OBS)

[Hass93]. For the constructive methods, a network is initialized with an over-simple

structure and the topology gradually augments until the network performance is

satisfactory. Cascade correlation [Fahl90] is the most popular one of the constructive

algorithms.

The third class of methods uses other optimization techniques to determine the

topology of networks. These methods include genetic algorithm-based techniques

[Ezug95] [Diml00] [Habe03] and Bayesian regulation-based technique [Ozel05].

 29

For the developed optimization methods, there are still some common problems

existed:

1) The optimization methods are case dependent. Different samples of training

data will generate different optimal networks for the same system to be

modeled.

2) It is not possible to guarantee that the resultant network structure is optimal.

Most times the final structures are suboptimal.

In this study, a destructive optimization is applied to RNN to form an optimized

RNN. The method can generate simple and accurate network which can better avoid the

over-fitting problem and the network is proved to be more robust [Kris99].

Training Algorithms of Recurrent Neural Networks

A neural network can be viewed as a parametric model with weights and biases as

its parameters. Once its architecture is determined, the parametric structure of NN model

is fixed. Furthermore, its parameters (weights) need to be tuned then, which is called the

training process. In other words, training is the process to determine the weights of a

network to make it model the system been studied.

There are three major training classes - supervised training, unsupervised training

and reinforcement training, each of which applies to particular learning tasks.

For supervised training, the neural network is provided with a set of training

patterns (inputs along with the corresponding desired outputs – targets), and training

involves the algorithm comparing its current actual output with the correct or target

 30

outputs, so that it knows what its error is, and update weights accordingly. Usually

supervised training is applied in modeling, estimation, and classification.

For unsupervised training, the neural network is not told the target - for example,

it is not trained on pairs consisting of an input and the desired output. Instead the network

is given the input patterns and is left to find interesting patterns, regularities, or

clusterings among them. Usually unsupervised training is applied in clustering,

compression applications.

For reinforcement training, it can be considered as an intermediate form of the

above two types of training. A network interacts with the environment and gets a

feedback response from it. Based on the environmental response, the network adjusts its

weights.

This study focuses on modeling applications, and the supervised training is

introduced in more details. As shown in Figure (2.14), a neural network is to model a

system)(* xfy vv = . The system is unknown but a set of training patterns (a set of input xv ,

and its corresponding target *yv) are available. A neural network is to simulate the

system based on the information from these training patterns. The network receives input

xv and generates its output yv . The objective of training is to tune the network adjustable

parameters (weight wv) to make yv ≈ *yv , so that modeling error is small and the network

can represent the system.

 31

NN
()

System

Training
algorithm

xv

*yv

yv

wv

ev
)(xf v

Figure 2.14: Illustration of the supervised training process

In training a neural network, the term epoch is used to describe a complete pass

through all of the training patterns. The weights in the neural net may be updated after

each pattern is presented to the net, or they may be updated just once at the end of the

epoch.

Supervised training methods

Gradient descant methods

Statistical estimation methods

Optimization methods

Figure 2.15: Classifications of the supervised training methods

There are several algorithms available to train neural networks. As shown in

Figure (2.15), most of them can be viewed as applications of optimization theory and

statistical estimation. Among them some popular training algorithms are:

1) Gradient descant methods such as the back-propagation (BP) method, which

calculates the gradient of the modeling error of the network with respect to its

 32

trainable weights and uses the gradient to guide the update of weights

[Werb74],

2) Statistical estimation methods such as EKF based algorithm, which use EKF

to estimate the weight update from training data [Sing89], and

3) Optimization methods such as genetic algorithm [Seif01] and simulated

annealing [Boes93] which adopt optimization methods to minimize the cost

function of training and to tune weights accordingly.

For RNN, as shown in Figure (2.16), there are three major training algorithms

developed, namely, back-propagation through time (BPTT) algorithm, real-time recurrent

learning (RTRL) algorithm and EKF training algorithm.

RNN training methods

Back-propagation through time

Real-time recurrent learning

Extended Kalman filter training algorithm

Figure 2.16: RNN training methods

The basic idea of BPTT is to unfold a RNN into a multilayer FFNN each time a

sequence is processed [Rume86]. The resulting FFNN is then trained using the standard

BP algorithm. An illustration of this process is shown in Figure (2.17). A recurrent

network consists of two neurons and four weights. Since the layers have been obtained by

replicating the RNN, the same weights in different layers should be the same. To achieve

this, weights can only be updated at least after a complete forward step and a backward

step to form a corresponding FFNN. The basic difference between it and the regular

 33

back-propagation is that its desired responses ()(1 ix) are specified for neurons in layers

of the network because the actual output layer is replicated many times when the

temporal behavior of the network unfolded [Hayk99]. The unfolded network reflects the

process where n represents the number of replication.

x1 x2

x1(0)

w22
w11

w21

w12

w11

w21

a) A recurrent network b) Signal flow graph of the unfolded network

x1(1) x1(2) x1(n-1) x1(n)

x2(0) x2(1) x2(2) x2(n-1) x2(n)

w11 w11

w22 w22 w22

w21 w21

w12 w12 w12

Time step 0 1 2 n-1 n

Figure 2.17: An illustration of BPTT

RTRL computes the derivatives of states and outputs with respect to all weights as

the network processes the sequence [Will89]. During the forward step, no unfolding is

performed. Since derivatives of outputs are easily defined in terms of state derivatives,

the trainable weights of RNN are updated after every time step in which output targets are

available. This is one of the main advantages that RTRL can be used in online

applications.

EKF algorithm was first introduced to train neural networks in [Sing89]. The

network weights can be viewed as the states of the non-linear dynamical process that NN

describes. The training of networks can be viewed as a parameter (trainable weights)

estimation problem using state estimation methods such as the EKF algorithm.

Comparing to the BPTT and RTRL algorithms, the EKF algorithm uses higher-order

 34

information more efficiently. It is therefore much faster that the BPTT and RTRL

algorithms, but at the expense of increment in computational complexity, which can be

compensated by the rapid advancement in computing resources.

Due to its fast training speed and accuracy, the EKF training algorithm is adopted

in this study as follows:

())(*)()()1()(kykykKkwkw vvvv −−−= (2.14)

1)]()1()()()[()1()(−−+−= kHkPkHkRkHkPkK T (2.15)

)()1()()()1()(kQkPkHkKkPkP T +−−−= (2.16)

where)(kwv is the estimation of weight vector *wv at training step k, yv is the output of

neural network, *yv is the desired output. H is the Jacobian matrix which is comprised

of
w
y
v

v

∂
∂ - the derivative of output with respect to weight estimation, K is the Kalman gain

calculated by Equation (2.15), Q is the approximate covariance matrix of process noise,

and R is the approximate covariance matrix of measurement noise. The EKF algorithm

requires, in addition to the estimate of the network’s weight vector, the storing and

updating of the approximate covariance matrix P , which is used to model the

correlations or interactions between each pair of weights in the network.

In this study, EKF is used to train RNN own to its advantages in training speed

and accuracy. However, for EKF application in RNN training, there are some problems,

some of which will be studied in the following sections.

 35

Convergence Studies of Recurrent Neural Networks

Generally speaking, convergence is defined as the property that a variable

approaches toward a definite value, or a system approaches toward a fixed or equilibrium

state as time goes on.

For non-linear dynamical systems, two major classes of methods have been

applied in the study of convergence. Energy-based methods are based on the idea of

passive energy, that is, if an energy function related to the state error (the difference of

actual state and equilibrium state) is shown to be passive in some sense with respect to

time, then the passivity implies the error will decay to zero in time, or in other words, the

system is converge. Representative method in this class is the Lyapunov method. On the

other hand, stability of equilibrium state which equivalents to the convergence can be

also conducted using frequency domain analysis methods such as the circle criterion, the

Popov criterion, and the describing function method.

There are many applications of RNN that relate to the network’s convergence

properties. Understanding the convergence properties of RNN is an initial and important

step towards their applications [Yi06]. Generally speaking, convergence studies of RNN

can be divided into three classes: state convergence, output convergence and training

convergence.

State convergence is studied in applications such as content addressable memory

when networks are required to have state convergence property [Cao03] [Lian01]. On the

other hand, output convergence is of concerned in optimization applications [Li04]

[Liu04].

 36

Training convergence is concerned in modeling application where RNN are to be

trained to map the relations among the systems. The training process is under studied to

avoid the training divergence problem so that the developed RNN can model the system

been studied.

For either case, convergence study of RNN desires to establish verifiable and

sufficient conditions to guarantee convergence of the concerned process. Usually

Lyapunov methods and energy functions method are adopted to conduct these studies.

Training Convergence of RNN

NN can be viewed as a multi-input and multi-output nonlinear system having a

layered structure, and its weight learning/training algorithm can be regarded as parameter

estimation for such a nonlinear system [Ligu92]. Two issues are of great importance in

NN training: how to avoid training divergence and how to converge fast. Network

training convergence is still a challenge in modeling input-output mapping relationships

using NN, especially RNN. RNN training is still an open topic because network weight

adjustments can affect the entire neural network state variables during the network

evolution due to the inherent feedback and distributive parallel structure [Song08] and

training is usually complex and might be divergent [Atiy00]. It should be pointed out that

training convergence is different from the state or output convergence which is usually of

concern in applying the trained RNN for associative memory applications [Tang07].

Among the most popular RNN training algorithms [Hayk99] such as back-

propagation through time (BPTT), real time recurrent learning (RTRL), and extended

 37

Kalman filter (EKF), EKF has been favored in terms of its training efficiency and

accuracy [Matt90] [Leun03] [Liu06]. Unfortunately, training convergence of EKF-based

RNN is still not well studied [Rubi07]. Up to present, only a few studies have been

conducted on convergence of EKF-based neural network training [Ales03] [Rubi07]

including RNN training [Rubi07]; unfortunately, they have introduced many assumptions

to make these pioneering studies less generic and less efficient. For effective

implementation of EKF-based RNN training, some theoretical studies must be performed

and tested with some applications.

The objective of the training convergence study is to develop an effective EKF-

based RNN training approach with a controllable training convergence. While EKF has

been proved to be very useful in a wide variety of estimation or prediction applications,

its effectiveness can be nullified by its divergence [Fitz71], which can be classified as

follows [Schl67]: 1) apparent divergence, in which the associated errors don’t approach

infinity but the errors are too large to allow the estimates to be useful, and 2) true

divergence, in which the mean square errors of estimation can actually approach infinity

as training goes on, and this true divergence is of interest in this study.

There are several approaches have been proposed to deal with the divergence

problem in EKF [Simo06]: 1) to increase the arithmetic precision, 2) to artificially add

white noise to the (noiseless) process equation, 3) to use square root Kalman filters, 4) to

make the state estimation error covariance matrix P symmetric, 5) to use a fading-

memory Kalman filter, and 6) to adapt filter parameters. Evaluation of the effectiveness

of the aforementioned approaches is often difficult and case-dependent. The first

 38

approach is suitable for applications dealing with hardware implementation in which the

high precision in hardware is often prohibitive. The second to fourth approaches aim to

make the covariance matrix P nonnegative definite and/or symmetric. During the

filtering process the covariance matrix P may fail to meet the nonnegative definite

and/or symmetric requirements, resulting in the divergence problem. This can be

alleviated by artificially adding a process noise (the second approach) and the magnitude

of the additive noise is chosen to be large enough to ensure that the P matrix is

nonnegative [Zarc01]. The square root Kalman filter is a more refined method to solve

this divergence problem, and the covariance matrix is propagated in a square-root form

by using the Cholesky factorization. However, the square root algorithm is

computationally intensive which makes it less attractive in engineering applications

[Harv89]. The fading-memory filter is another way of forcing the filter to forget

measurements in the distant past and place more emphasis on recent measurements;

however, it may result in the loss of optimality of the Kalman filter [Simo06]. The sixth

approach is of interest in this study by adapting the covariance of measurement noise (R)

and the covariance of process noise (Q) of Kalman filter. It is recognized that the poor

statistics about R and Q may cause the divergence problem in estimation using the

Kalman filter [Jwo07], so this study will investigate the EKF training algorithm stability

in RNN training by adaptively adjusting the two noise covariance matrices R and Q .

 39

Estimation Robustness of RNN

Most dynamic systems have a capacity, which is generally called robustness, to

tolerate various system variations without exceeding predetermined tolerance bounds in

the vicinity of nominal dynamic behaviors. Robustness analysis is usually studied to

estimate the perturbation-induced performance variation or to quantify the system’s

resilience to any possible perturbations.

Analysis of NN robustness has been of great interest since the network robustness

information allows the researchers to have a global and synthetic understanding of the

network behavior under uncertainties. A robust network is expected to be fault tolerant

and noise immune; if the inputs or the parameters (weights and others) of a network are

contaminated with noise, or faults occur, the network response should differ only slightly

with respect to the ideal performance [Eick07].

NN robustness has been studied for different applications including associative

memory, classification, and modeling. For associative memory applications, the

robustness is usually studied by establishing sufficient conditions for valid memory

functions under uncertainties of network parameters such as weight and bias [Liu93]

[Liu96] [Feng99] [Arik03] [Liu06]. For classification applications, the robustness is

conducted by investigating the relationship between permissible variations of inputs and

the associated network classification performance [Pier06]. On the other hand, for

modeling applications, the robustness is characterized by studying the effects of

perturbations in weights [Yee91] [Kris99] [Alip02] [Alip04] or inputs [Eick07] on

network outputs.

 40

The NN robustness in modeling applications has been of great interest. The goal

for these applications is to reduce the sensitivity of modeling capacity to uncertainties in

parameters, or to make the network fault tolerance.

Dynamic systems can be modeled using different approaches including the data-

driven NN method [Hayk99]. When a system is represented by a NN-based model, it is

naturally expected that the NN should have certain robustness to various perturbations

[Chiu93] [Alip01] [Alip04]. For example, NN should still accurately describe system

behaviors even its weights are altered due to different reasons:

1) Hardware drifting over a period of time [Chiu93]

2) Hardware implementation of analog and/or digital circuitry of NN in current

technologies such as quantization and environmental noise [Dund95]

[Raza00] [Wido02] [Alip04] [Eic07]

3) Software perturbations [Asso04], and

4) Neural network faults which includes disconnection or saturation of weights

and lost of neurons [Phat95]

While the effect of input uncertainties on the NN robustness has been studied

[Pier06], the effect of weight alternation is usually of great interest in characterizing the

NN robustness [Alip04]. As aforementioned the network weights are easy to be altered

during various NN implementation scenarios, and robustness analysis on the effect of

network weight perturbations has an immediate impact on NN physical realization

[Alip04].

 41

The NN robustness in modeling applications has been of great interest, and it has

been studied mainly using the performance loss-based approach [Chiu93] [Alip04]

[Eick07] and the sensitivity matrix-based approach [Yee91] [Kris99]. While these

approaches have been developed for FFNN, they can also be extended to RNN.

The performance loss-based approach is usually realized by computing the

network modeling capability degradation due to any perturbation in its parameters such

as weights. The performance loss is characterized in terms of the mean square error

(MSE) over available measurement data sets [Chiu93] by introducing certain

perturbations in trained network parameters such as weights. Perturbations can be

introduced using a constant scaling factor which linearly changes the value of parameters

of interest [Chiu93] [Alip04] and using a certain probability distribution function such as

the Gaussian distribution [Eick07] and uniform distribution [Dund95] [Alipp04]. The

upper boundary of performance loss for all the input data indicates the network

robustness. Unfortunately, this approach is implemented using the measurement data and

requires a large amount of measurement data, which are usually limited in real

applications.

The general procedures to conduct performance loss-based robustness

quantification are concluded as follows:

1) Introduce certain perturbation in a trained NN’s parameters (i.e. weight) to

form a series of NN,

 42

2) Feed available data pairs, inputs and their corresponding measurements (target

response), to each of NN formed in Step (1) and compute corresponding MSE as the

performance loss using NN model,

3) Use the maximum of the performance loss for all the input data to represent the

network’s robustness.

The aforementioned MSE in Step (2) is computed by:

()∑
=

∆−=∆
pn

i
ii

p
i xyxt

n
xMSE

1

2),()(1),(θθ (2.17)

where pn is the number of available data set, ix is the input,)(ixt is the target value for

NN output)(ixy , and θ∆ is the perturbation in parameters.

For the sensitivity matrix-based approach, the robustness is studied using a

differential analysis to compute the parameter-output sensitivity matrix of NN. The

sensitivity matrix, often denoted as H , is the Jacobian matrix containing the derivatives

of outputs with respect to parameters such as weights:



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

t

t

t

n

nnn

n

n

w
y

w
y

w
y

w
y

w
y

w
y

w
y

w
y

w
y

H

...
............

...

...

21

2

2

2

1

2

1

2

1

1

1

 (2.18)

where []
tnwwww ,...,, 21=v is the weight vector and []nyyyy ,..., 21=v is the output vector

 43

A norm of the sensitivity matrix, such as the 2-norm square ∑=
ji

ijHH
,

2
2

[Yee91] or the spectral norm []HHH T
s maxλ= [Kris99], is used as the robustness

index. Similar to the performance loss-based approach, this approach also needs plenty of

measurement data sets to compute the sensitivity matrices so that the resultant robustness

measure can cover the whole input space. Furthermore, each sensitivity matrix only

reflects the sensitivity of an infinitesimal range centered around the nominal weight

values.

The general procedures involved in this approach are listed as follows:

1) For each input data ()ixv , compute the sensitivity matrix H during the training

process; calculate its norm, and

2) Use a statistic (average) of the norm values to indicate the network’s

robustness.

As the aforementioned two approaches are mainly limited by the available

measurement data, this study aims to quantify the network robustness by computing

weight perturbation-induced output uncertainties using an uncertainty propagation

analysis.

Conclusions

This chapter reviews the theoretical background of this dissertation. The

architectures of networks, topology optimization, and training algorithm are reviewed in

 44

the first. Performance studies of NN such as the training convergence and estimation

robustness are then introduced.

Neural networks include forward neural networks (MLP, FFCNN) and recurrent

neural networks (Elman, Jordan, and RMLP) applied in modeling applications are

introduced. The recurrent neural networks are modified from MLP which is the most

widely used feedforward network. In this study another RNN is to be proposed based on

the FFCNN which has advantages over MLP.

NN with different levels of complexity (in terms of numbers of neurons, layers

and weights) can be applied for modeling non-linear dynamical systems. Usually a

complicated network can generate small modeling error. However, the use of complicated

networks is time consuming and often brings the over-fitting problem. To determine the

optimized network for a specific application, generally there are three classes of methods:

empirical method, destructive or constructive methods, and the applications of other

optimization strategies. Usually a destructive method is preferred because the resulting

optimized network is parsimonious and often has good extrapolation ability.

Training algorithm is used to determine the weights of a network. Three major

training algorithms are developed for RNN, namely, back-propagation through time

(BPTT) algorithm, real-time recurrent learning (RTRL) algorithm and EKF training

algorithm. Among them, the EKF is the most accurate and fastest one which is applied in

this study.

Two performance studies are also reviewed in this chapter. Training convergence

studies the stability of weight update during training process and it is interested in this

 45

study. Generally the Lyapunov method is applied to establish verifiable and sufficient

conditions to guarantee convergence of the training process. To avoid training

divergence, or fail of convergence, is still a major challenge in application of EKF based

RNN training and the problem is to be addressed in this study by adapting some training

parameters.

Finally, robustness of NN for modeling applications is reviewed in this chapter.

The goal of the research is to reduce the sensitivity of a network’s modeling capacity to

uncertainties in its parameters. Two methods have been developed in quantifying

robustness of FFNN, namely performance loss-based method and sensitivity matrix-

based method. Both the methods are limited by the available measurement data. In this

study an uncertainty propagation analysis based method is to be developed which is

effective, efficient, and flexible to quantify robustness of RNN.

 46

CHAPTER THREE

DEVELOPMENT OF THE RECURRENT NEURAL NETWORK

Abstract

In the study, a RNN and an optimized RNN are proposed to model non-linear

dynamical systems. In this chapter, the development of RNN networks is introduced

which include its structure, training algorithm, and architecture optimization algorithm.

The network is modified from a fully forward connected network by the accommodation

of one time step delayed internal recurrent connections in its hidden neuron section. The

RNN EKF training algorithm is then introduced. The most time consuming part of the

algorithm is to take the orderly derivative of network output with respect to trainable

weights. The orderly derivative derivation is illustrated in three cases considering specific

weight connections involved. The optimization of the network structure is achieved using

a pruning approach which removes the insignificant connections. To conduct the

structure optimization, first a connectivity coefficient is introduced to each connection

through a connectivity function, then the coefficients are trained with weights

simultaneously using EKF, and finally the unimportant connections are removed. With

the techniques introduced in this chapter, an optimized RNN can be developed to model

non-linear dynamical systems.

 47

Nomenclature

Fully Forward Connected Neural Network

Symbol Definition

h Number of the hidden neurons

m Number of the input neurons

n Number of the output neurons

)(⋅if Activation function of the ith neuron

inet Net input of the ith neuron

ijw Weight for the connection from neuron j to neuron i

o
iy Output of the ith neuron

Recurrent Neural Network

Symbol Definition

h Number of the hidden neurons

m Number of the input neurons

n Number of the output neurons

)(⋅if Activation function of the ith neuron

)(kneti Net input of the ith neuron at time step k

ijw Weight for the connection from neuron j to neuron i

)(ky o
i Output of the ith neuron at time step k

 48

Extend Kalman Filter Algorithm

Symbol Definition

)(* kx Actual state at time step k

−)(kx The a priori estimate of)(* kx

)(kx or +)(kx The a posteriori estimate of)(* kx

−)(ke The a priori estimate error at time step k

)(ke the a posteriori estimate error at time step k

)(kH Jacobian matrix at time step k

)(kK Kalman gain at time step k

−)(kP The a priori estimate error covariance at time step k

)(kP or +)(kP The a posteriori estimate error covariance at time step k

)(kQ Covariance matrix of process noise at time step k

)(kR Covariance matrix of measurement noise at time step k

)(kwv Estimation of weight vector *wv at training step k

Connectivity Optimization Algorithm for RNN

Symbol Definition

jic Introduced connectivity coefficient for connection from
neuron i to neuron j

)(jicg Connectivity function of jic

 49

Architecture of the Proposed Neural Network

A fully connected recurrent neural network is proposed in this study. The network

is developed from an FFCNN introduced in Chapter two.

As shown in Figure (3.1(b)), the RNN is comprised of m neurons in its input

section, h neurons in its hidden section and n neurons in its output section. In addition to

the forward connections in FFCNN (shown in Figure (2.6)), each neuron in the hidden

section also takes one time step delay feedback connections from the neurons right to it.

Hence, the RNN is fundamentally different from an FFNN in the sense that it not only

operates on an input space but also on an internal state space – a trace of what already has

been processed by the network.

Figure (3.1(a)) shows the internal recurrency between a neuron i and a neuron j in

the hidden section. ijw represents the weight for the feedback connection between the

two neurons, iiw and jjw represent the weights for the two neurons’ self-feedback

connections, while the jiw represents the weight for the feed forward connection. Notice

that the recurrency only exist in network’s hidden section, and the other weights are for

feedforward connections as in an FFNN.

The proposed RNN has intra-neuron internal recurrency (the dashed lines in

Figure (3.1(b))) in its hidden section. Different from other RNN (Elman, Jordan, and

RMLP) mentioned in Chapter 2 which are based on the MLP network, the proposed RNN

is modified from the FFCNN. Because the FFCNN has advantages over the MLP in terms

of modeling accuracy and robustness, the proposed RNN is believed to be better than

those RNN.

 50

m input neurons h hidden neurons n output neurons

Feedforward loops (solid lines)

x1 xm y1 yn

i j

wji

wij

wii wjj

(a) Connection between two neurons

(b) The proposed RNN structure
(Dash lines: state feedback loops. Solid lines: feed forward loops)

Figure 3.1: Architecture of RNN

For each neuron i, its output)(ky o
i at the time step k, is determined by the

neuron’s activation function)(⋅if and its net input)(kneti :

))(()(knetfky ii
o
i = , nhmi ++≤≤1 (3.1)

Same to the FFCNN case (shown in Figure (2.7)), the net input for neurons in

input neuron section and output neuron section is calculated as:

∑
−

=

=
1

1

)()(
i

j

o
jiji kywknet , mi ≤ or hmi +> (3.2)

 51

∑)(1 ky o

)(2 kyo

)(1 kyo
i−

)1(1 −+ kyo
i

)1(−+ ky o
hm

iiw

)1(+iiw

)(hmiw +

1iw

2iw

)1(−iiw

)(kyo
i

a) Schematic of the connections b) Neti composition

1 i-1 m+hi i+1

)1(−ky o
iFeedback from itself

Feedbacks from
neurons right to it

Feed forward
inputs from
neurons left to it

neti

Figure 3.2: An illustration of the output generation of neuron i in hidden section

As shown in Figure (3.2), due to the feedback connections introduced in the

hidden neuron section, the functions for hidden neurons are different from those in the

previous FFCNN case. The net input of each neuron in the hidden section is comprised of

two parts: the summation of outputs at the current step from the neurons left to it and the

summation of outputs at the previous step of hidden neurons right to it.

,)1()()(
1

1
∑ ∑

−

= =

−+=
i

j

n

ij

o
jij

o
jiji

n

kywkywknet hmim +≤< (3.3)

where nhmnn ++= is the total number of neurons of network, activation function, and

)1(−ky o
j is the output of neuron j at the previous time step (k-1).

 52

Training Algorithm Development

As stated in Chapter 2, both BPTT and RTRL are based on first order gradient

descendent and are heavy computationally and slow. GA is also computation demanding

because the weight solution space of RNN is usually quite big. In this study an EKF

algorithm is applied to train RNN. First a brief introduction of EKF is given in the

following.

Introduction of Kalman Filter

Generally speaking, EKF [Mayb90] can be used to estimate states of a nonlinear

system from its measurement history. The EKF is derived from Kalman filter (KF) which

applies for linear systems. To better appreciate EKF, KF is introduced first as follows.

Kalman Filter

The objective of KF is to estimate the state *x of a linear discrete-time system:





+=
−+−−+−−=

)()()()(
)1()1()1()1()1()(

**

**

kkxkHky
kkukGkxkAkx

ξ
γ

 (3.4)

where the first equation is called process equation, the second one is called measurement

equation, *x is the state of system at time step k,)1(−ku is the control input at time step

k-1, γ is the process noise, y is the measurement, ξ is the measurement noise, the

matrices)1(−kA and)1(−kG relate the state and input at the previous time step k-1 to

the state of current time step k,)(kH relates the state to measurement at the current time

step, the noises are white, zero-mean, uncorrelated, and have known covariance matrices

)(kQ and)(kR respectively:

 53

)(kγ ～ ())(,0 kQ (3.5)

)(kξ ～ ())(,0 kR (3.6)

[])()()()(E jkkQjk T −= δγγ (3.7)

[])()()()(E jkkRjk T −= δξξ (3.8)

[] 0)()(E =Tjk ξγ (3.9)

where)(jk −δ is the Kronecker delta function:





≠
=

=−
jkif,0

if,1
)(

jk
jkδ (3.10)

The goal of KF is to estimate the state)(* kx from the system dynamics (3.4) and

the noisy measurement sequence{ })(),...,2(),1(*** kyyy . If all of the measurements before

the current time step k are available, they can be used to form an a priori estimate of

)(* kx as:

[])1(),...,2(),1((k)E)(**** −=− kyyyxkx (3.11)

The corresponding covariance of the estimation error is:

()()[]TkxxkxxkP −−− −−=)((k))((k)E)(** (3.12)

The state can be further estimated based on the availability of the measurement at

current time step, to form an a posteriori estimate of)(* kx as:

[])(),...,2(),1(x(k)E)(*** kyyykx =+ (3.13)

The corresponding covariance of the estimation error is:

()()[]TkxxkxxkP +++ −−=)((k))((k)E)(** (3.14)

 54

The KF algorithm is formed in a recursive way, to estimate)(* kx based on the

estimation of)1(* −kx . The a priori estimate (−)(kx) and estimation covariance (−)(kP)

are calculated considering the process equation. The a posteriori estimate (+)(kx) and

estimation covariance (+)(kP) are computed based on the knowledge of measurement

(*y) at time step k. The corresponding time update equations (3.15 and 3.16) and

measurement equations (3.17-3.19) are listed as follows:

)1()1()1()1()(−−+−−= +− kukGkxkAkx (3.15)

)1()1()1()1()(−+−−−= +− kQkAkPkAkP T (3.16)

() 1
)()()()()()()(

−−− += kRkHkPkHkHkPkK TT (3.17)

()−−+ −+=)()()()()()(kxkHkykKkxkx (3.18)

() −+ −=)()()()(kPkHkKIkP (3.19)

To begin the recursive update, the estimation should be initialized as follows:

[](0)E)0(*xx =+ (3.20)

()()[]TxxxxP +++ −−=)0((0))0((0)E)0(** (3.21)

The KF is illustrated in Figure (3.3) as follows:

Represent the dynamic system by the process-measurement equation (3.4)

Initialize the Kalman filter
(3.20 and 3.21)

Apply the Kalman filter recursion equations
(3.15-3.19)

Figure 3.3: The Kalman filter algorithm

 55

Introduction of Extended Kalman Filter

When the system being studied is a nonlinear system, the EKF is modified from

the KF to make state estimation. The basic idea is to linearize the system first and then to

apply KF on the linearized system. Suppose the original nonlinear system is governed by

the equations:

()
()




=
−−=

)(),()(
)1(),(),1()(

**

**

kkxhky
kkukxfkx

ξ
γ

 (3.22)

where)(* kx and)(* ky are the actual state and measurement at current time step k,)(⋅f

represents the nonlinear process equation, (.)h represents the nonlinear measurement

equation, u is the input of the system, and γ and ξ are the process noise and

measurement noise which have the same properties as in Equations (3.5-3.9) :

To implement EKF, the system is first linearized at the approximate point

(−)(kx , −)(ky), or the a priori estimation point, which comes from the noise free system:

()
()





=

−=
−−

−

0,)()(
0),(),1(*)(

kxhky
kukxfkx

 (3.23)

()
()




+−+=
−−+−−−−+=

−−

−−

)()()()()()()(
)1()1()1()1()1()()(

**

**

kkVkxkxkHkyky
kkkxkxkAkxkx

ξ
γλ

 (3.24)

where −)(kx and −)(ky are the approximate state and measurement at time step k

respectively, A is the Jacobian matrix of partial derivatives of f with respect to *x , H

is the Jacobian matrix of partial derivatives of h with respect to *x , λ is the Jacobian

 56

matrix of partial derivatives of f with respect to γ , and V is the Jacobian matrix of

partial derivatives of h with respect to ξ .

)(*)(kxx
fkA

∂
∂

= (3.25)

0)(
γ

λ
∂
∂

=
fk (3.26)

)(*)(kxx
hkH

∂
∂

= (3.27)

0)(
ξ∂

∂
=

hkV (3.28)

Consider the estimation residual which is the difference between the actual state

and the approximate state:

−−=)()()(** kxkxkex (3.29)

The measurement residual is:

−−=)()()(** kykykey (3.30)

Plug the above equations (3.29 and 3.30) into the linearized equation (3.24) to get

the error model:

)()1()1()(** kkekAke xx ε+−−= (3.31)

)()()1()(** kkekHke xy η+−= (3.32)

Notice that the error equations are linear models hence the KF can be applied to

compute the error estimate)(* kex .The noises of the error system follows the following

distributions:

 57

)(kε ～ ()TkkQk)()()(,0 λλ (3.33)

)(kη ～ ()TkVkRkV)()()(,0 (3.34)

 After obtain the error estimate, the a posteriori estimate of)(* kx can be

computed from the relation:

)()()(* kekxkx x+= −+ (3.35)

In conclusion, the EKF algorithm includes time update equations (3.36 and 3.37)

and measurement equations (3.38-3.40):

()0),(),1()(* kukxfkx −=− (3.36)

TT kkQkkAkPkAkP)()1()()()1()()(λλ −+−=− (3.37)

() 1
)()()()()()()()()(

−−− += TTT kVkRkVkHkPkHkHkPkK (3.38)

()()0,)()()()()(* −−+ −+= kxhkykKkxkx (3.39)

() −+ −=)()()()(kPkHkKIkP (3.40)

where −)(kx is the a priori estimate of)(* kx - the actual state to be estimated, +)(kx is

the a posteriori estimate of)(* kx , K is the Kalman gain, −P is the a priori estimate error

covariance []TeeEP −−− = , −e is the a priori estimate error −− −= xxe , +P is the a

posteriori estimate error covariance []TeeEP =+ , and +−= xxe is the a posteriori

estimate error. +P will be written as P for simplicity in the following sections.

The EKF algorithm is illustrated in Figure (3.4) as follows:

 58

Represent the dynamic system by the process-measurement nonlinear equations (3.22)

Initialize the Kalman filter
(3.20 and 3.21)

Apply the Kalman filter recursion equations
(3.36-3.40)

Compute the Jacobian matrices
(3.25-3.28)

Figure 3.4: The extended Kalman filter algorithm

EKF RNN Training Algorithm

The EKF algorithm introduced above is for estimation of a scalar, but it can also

apply to vectors as well. To apply EKF in RNN training, weights of a RNN are treated as

the states of the network, and then EKF is used to estimate the states from network’s

output. Corresponding to Equation (3.22), the training model is represented by:

()



+=
−+−=

)()()(
)1()1()(

**

**

kkwhky
kkwkw

ξ
γ
vvv

vvv
 (3.41)

where)(* kwv is the optimal weight vector *wv at time step k,)1(* −kwv is the weight

vector at time step k-1, *yv is the measurement data or target data, and ()⋅h represents

RNN mapping function which generates the output of network.

The optimal weight vector is the weight vector that minimize the difference of

measurement)(* kyv and the output of neuron network ())(* kwh v . The EKF is used to

estimate the constant vector *wv based on the measurements and the network function

 59

()⋅h . Ideally ***)1()(wkwkw vvv =−= or 0)1(
vv =−kγ , but the non-zero process noise can

introduce more flexibility in tuning the filter.

The objective of training process is to generate an estimate)(kwv of)(* kwv . The

weights of a RNN are often represented in matrix form W ; each of its element jiw

represents the weight on the connection from neuron i to neuron j. To apply the EKF, the

elements of the matrix should be organized in the vector form wv . To achieve that, W is

first written as a combination of row vectors:





















=

nnW

W
W

W
v

v

v

...
2

1

, iW
v

 is the ith row of W ,

nhmnn ++= is the number of neurons of the network; wv is then formed by combing

the row vectors and taking transpose, []Tn
T

n tn
wwwWWWw ,...,,],...,,[2121 ==

vvvv ; iw is the

ith element of the vector, tn is the total number of trainable weights. For example, the

weight matrix of the network in Figure (2.17) is 








2221

1211

ww
ww

; in this case,

[] []TTT wwwwwwwwWWw 43212221121121 ,,,],[===
vvv .

Corresponding to Equations (3.36-3.40), EKF for the weights update process can

be written as:

)1()(−=− kwkw vv (3.42)

)1()1()(−+−=− kQkPkP (3.43)

() 1
)()()()()()()(

−−− += kRkHkPkHkHkPkK TT (3.44)

 60

()()−− −+=)()()()()(* kwhkykKkwkw vvvv (3.45)

() −−=)()()()(kPkHkKIkP (3.46)

Combination of Equations (3.42-3.46) results in the simplified version of EKF

training algorithm:

())(*)()()1()(kykykKkwkw vvvv −−−= (3.47)

1)]()1()()()[()1()(−−+−= kHkPkHkRkHkPkK T (3.48)

)()1()()()1()(kQkPkHkKkPkP T +−−−= (3.49)

where)(kwv is the estimate of weight vector *wv at time step k,)1(−kwv is the estimation

of weight vector at one time step before,)(* kyv is the target data, and ()−=)()(kwhky vv is

the output of RNN which is supposed to be an estimate of)(* kyv .

The flow chart of RNN training process is listed in Figure (3.5). The process

includes four steps:

Stop criteria

Compute orderly derivative

and generate Jacobian matrix H(k)

N

Stop
Y

Initialize filter parameters and weights)0(),0(),0(),0(wRQP vInitialize filter parameters and weights)0(),0(),0(),0(wRQP v

Apply Kalman filtering and update weights
Equations (3.47-3.49)

Trained weights

Figure 3.5: The flow chart of RNN training procedures

 61

1) Training data preparation

NN is a data-driven modeling method. Suppose a system is to be modeled; the

mathematical model of the system is unknown but its inputs-outputs data are available

from experiments; an inputs-outputs pair is called a training pattern; a RNN is used to

represent the system using these training patterns. Suppose the system to be modeled has

m inputs and n targets,)(* xfy vr
= , []mxxxx ,..., 21=v , []**** ,...,

21 nyyyy =v , pn sets of

training patterns are generated as shown in Figure (3.6):

Training pattern 1:)1(),...,1(),1(21 mxxx
Training pattern 2:

Training pattern np:

)1(),...,1(),1(**
2

*
1 nyyy

)2(),...,2(),2(21 mxxx

)(),...,(),(21 pmpp nxnxnx)(),...,(),(**
2

*
1 pnpp nynyny

)2(),...,2(),2(**
2

*
1 nyyy

Figure 3.6: Training data set example

In order to avoid the saturation problem, all inputs and all outputs need to be

normalized before they are fed into the network. The normalization is carried out by a

linear mapping function as:

min
minmax

minmax
min)(N

NN
N x

xx
xx

xxx +
−
−

−= (3.50)

where x is the original variable in the range of []maxmin , xx , maxx and minx are the

maximum and minimum values of the variable before normalization, Nx is the

normalized variable, which is in the range of []maxmin , NN xx , maxNx and minNx are the

maximum and minimum values of the normalized variable. Usually the variables are

normalized into the range of [0, 1].

 62

2) Training parameters initialization

To use the recursive equations of EKF, its parameters such as P , Q , R , and

weights estimation ŵ need to be initialized first. To avoid the saturation problem, each

element of 0ŵ is randomly selected from a uniform distribution in the range of [0, 1].

There is no general guide to initialize the other parameters. Usually they are arbitrarily

selected and if the algorithm converge they can recursively converge to their desired

values.

3) Training process

After that, training data are fed into the network to update weights. For a training

pattern k, [])(),...,(),()(21 kxkxkxkx m=v is the input to the network, and it generates

output [])(),...,(),()(21 kykykyky n=v which is compared with the corresponding target

value [])(),...(),()(****
21

kykykyky n=v and the resulting error term is used to update weights

as illustrated in Equation (3.47). To apply the EKF equations, the orderly derivatives

(will be introduced in the following section) of network’s output yv with respect to

weight vector wv are calculated and form the Jacobian matrix



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

+++

+++

+++

t

t

t

n

nnn

n

n

w
y

w
y

w
y

w
y

w
y

w
y

w
y

w
y

w
y

H

...

............

...

...

11

2

2

2

1

2

1

2

1

1

1

. The EKF equations (3.47-3.49) are then applied to train

weights until the specified stop criteria are met, otherwise the process goes back to update

 63

weights using training data for another epoch. A training epoch is used to describe a

complete pass through all of the training patterns. For this case, the training process for

training pattern 1 to pattern pn is called a training epoch. Stop criteria are case dependent

and may include the allowable maximum number of training epochs, the minimum

training error, and the minimum amount of change in weights during training, etc. A

normalized sum of square error (SSE) is used to represent the training error for a training

epoch j:

() () %100)()(/)()()()()(**** ×−−= jyjyjyjyjyjyje TT vvvvvv (3.51)

where)(* jyv is the target data at epoch j, and)(jyv is the output of RNN at epoch j.

Orderly Derivative

The most calculation consuming step in the above training flow chart is the step

of calculating orderly derivative. RNN is an ordered system and the outputs of neurons

need to be calculated orderly from the left to the right. Orderly derivatives are used for

this case instead of the ordinary partial derivatives. For ordered systems where the values

need to be orderly calculated in the order of 1z , 2z ,…, nz The orderly derivative of a

target with respect of iz can be written as [Werb90]:

∑
>

+

∂

∂

∂
∂

+
∂

∂
=

∂
∂

ij i

j

iii z
z

zzz
targettargettarget (3.52)

where the derivative with superscript represents orderly derivative and the derivative

without superscript represents ordinary partial derivative.
iz∂

∂ target , the ordinary partial,

 64

derivative represents the direct impact of target on iz , while
iz∂

∂ + target , the orderly

derivative, represents the total effect of target on iz . A simple ordered system is

illustrated for clarity as follows:

An ordered system is orderly governed by the following equations:

12 2zz = (3.53)

213 2zzz += (3.54)

From Equation (3.25), the ordinary partial derivative
1

3

z
z

∂
∂ is 1, while the orderly

derivative
1

3

z
z

∂
∂ +

 is 5. The difference comes from the indirect impact by 2z .

In RNN training, the orderly derivative matrix)(kH is computed using the

orderly chain rule considering all the possible connections contributing to the output.

Each element
2

1

i

i

w
y

∂

∂ +

 is to be computed. The involved computation is introduced in the

following. To better illustrate the process, the orderly derivative
2

1

i

i

w
y

∂

∂ +

 is denoted as

jiw
y

∂
∂ +

 where jiw contains the connection information of
2i

w . For simplicity, the subscript

of
1

ˆ iy is omitted and jiw is another notation for the weight
2i

w . Generally the orderly

derivative can be written as:

 65

ji

j

j

o
j

jji w
net

net
y

y
y

w
y

∂

∂

∂

∂

∂
∂

=
∂
∂ +++

0 (3.55)

where o
jy is the output of neuron j, jnet is the net input of neuron j.

The derivatives take different forms depending on the specific weight

connections. The derivation is illustrated in the following:

Orderly Derivative Calculation in Case I

i j

jiw

Output section

y

m+h m+h+1

o
iy jiw jnet)(⋅f y

(a) Network connection involved in computing
jiw
y

∂
∂+

(b) Signal flow graph

o
iy

Figure 3.7: Case I for calculation of the orderly derivative

Case I is the simplest case that only forward connections need to be considered to

calculate the orderly derivative. In this case, for a weight jiw , neuron j is in the output

section and the neuron i is in the previous sections; only direct impacts act on y through

the weight so that actually the ordinary derivative is considered here. Figure (3.7) shows

an example in this case. Part (a) shows the connection from neuron i to neuron j. Part (b)

 66

illustrates the signal flow graph from the output of neuron i ()o
iy to the output of

network ()y , from which the orderly derivative can be written as:

o
i

jji

j

jji

y
net

y
w
net

net
y

w
y

∂
∂

=
∂

∂

∂
∂

=
∂
∂ +

 (3.56)

Orderly Derivative Calculation in Case II

i j j+1 j+s

jiw

y

m+n+h

Hidden section

Figure 3.8: Case II for calculation of the orderly derivative

Case II deals with the situation that the weight jiw is on a forward connection

(i<j) and neuron j is in the hidden section. As shown in Figure (3.8), in this case, both

forward loops and feedback loops need to be considered to derive the orderly derivative

jiw
y

∂
∂ +

.

 67

y

Hidden section

j j+1 j+s m+n+h

o
jy

o
jy jsjw)(+ sjnet +

o
sjy +)(⋅f)(sjnw + nnet)(⋅f y

(a) Illustration of direct impact (the solid line) and an indirect
impacts (the dash lines) on o

jy
y

∂
∂+

(b) The signal flow graph for the indirect impacts

o
jy njw nnet)(⋅f y

(c) The signal flow graph for the direct impact

Figure 3.9: Illustration of calculation of o
jy
y

∂
∂ +

 in case II

Figure (3.9) shows how to calculate the orderly derivative o
jy
y

∂
∂ +

 in Equation

(3.57). o
jy , the output of neuron j, contributes to y not only directly through the weight

jnn
w (the solid line in Figure (3.9 (a))), but also indirectly through other forward loops to

the right of neuron j (the dash line in Figure (3.9 (a))).

jsj
sj

o
sj

jhm

s
o

sj

o
j

sj

sj

o
sj

jhm

s
o

sj

o
j

o
sj

jhm

s
o

sj
o
j

w
net
y

y
y

y
net

net
y

y
y

y
y

y
y

y

)(
1

1

1

+
+

+
−+

= +

+

+

+

+
−+

= +

+

+
−+

= +

++

∂

∂

∂
∂

=

∂

∂

∂

∂

∂
∂

=

∂

∂

∂
∂

=
∂
∂

∑

∑

∑

 (3.57)

 68

∑1jw

jiw

)1(−jjw

jnet)('
1 ky

)(kyo
i

)(1 kyo
j−

)1(−kyo
j

)1(−+ kyo
sj

)1(−+ kyo
hm

jjw

)(sijw +

)(hmiw +

Figure 3.10: jnet decomposition (The items inside dash boxes contribute to the

calculation of
ji

j

w
net

∂

∂ +

)

Figure (3.10) shows the composition of jnet . It can be found that jnet has two

components related to the orderly derivative
ji

j

w
net

∂

∂ +

. One is the forward path from

)(kyo
i through jiw to jnet at the current time step k. The others are the paths from

feedbacks)1(),...,1(),1(1 −−− ++ kykyky o
hm

o
j

o
j which impact on)1(−ky o

j and hence

indirectly influence on jiw . k is used to denote time step because two consecutive time

steps (current and the previous time step) need to be considered here. Figure (3.11) shows

the effect of forward path at current time step k and the effect of a feedback path from

)1(−+ ky o
sj to)(knet j .

 69

o
jy jsjw)(+ sjnet +

o
sjy +)(⋅fo

iy jiw
jnet)(⋅f

o
jy jsjw)(+ sjnet +

o
sjy +)(⋅f

o
iy

jiw jnet)(⋅f

)(sjjw +

At time step k-1:

At time step k:

Figure 3.11: Signal flow graph to compute
ji

j

w
net

∂

∂ +

From Figure (3.11), the orderly derivative
ji

j

w
knet

∂
∂+)(

 can be computed as follows:

Consider the effect of forward path:

()ky
w

knet o
i

ji

j =
∂

∂ +)(
 (3.58)

Consider the effect of feedback paths, as shown in the second item

∑
=

−
n

ij

o
jij kyw)1(in Equation (3.3), the output of neurons at time step k-1 also has impact

on)(knet j :

ji

j

j

o
j

jhm

s
o
j

o
sj

o
sj

j

ji

o
j

jhm

s
o
j

o
sj

o
sj

j

ji

o
j

o
j

j

ji

j

w
knet

knet
ky

ky
ky

ky
knet

w
ky

ky
ky

ky
knet

w
ky

ky
knet

w
knet

∂

−∂

−∂

−∂
×











−∂

−∂

−∂

∂
=

∂

−∂











−∂

−∂

−∂

∂
=

∂

−∂

−∂

∂
=

∂

∂

∑

∑
−+

=

+
+

+

−+

=

+
+

+

++

)1(
)1(

)1(
)1(

)1(
)1(

)(

)1(
)1(

)1(
)1(

)(

)1(
)1(
)()(

0

0

 (3.59)

∑
=

−+

−+

+

+

++
+

−∂

−∂

−∂

−∂

−∂

−∂
=

−∂

−∂ s

p
o
j

o
psj

o
psj

sj

sj

o
sj

o
j

o
sj

ky
ky

ky
knet

knet
ky

ky
ky

1)1(
)1(

)1(
)1(

)1(
)1(

)1(
)1((3.60)

Combine the above two equations, the orderly derivative is:

 70

ji

j

j

o
j

jhm

s
o
j

o
sj

o
sj

jo
i

ji

j

w
knet

knet
ky

ky
ky

ky
knet

ky
w

knet
∂

−∂

−∂

−∂
×











−∂

−∂

−∂

∂
+=

∂

∂
∑

−+

=

+
+

+

+)1(
)1(

)1(
)1(

)1(
)1(

)(
)(

)(

0

 (3.61)

Consider Equations (3.57, 3.61), Equation 3.55 can be written as:















∂

−∂

−∂

−∂
×











−∂

−∂

−∂

∂
+×

∂

∂

∂

∂

∂
∂

=

∂

∂

∂

∂

∂

∂

∂
∂

=

∂

∂

∂

∂

∂
∂

=
∂
∂

∑

∑

∑

−+

=

+

+

+
+

+
−+

= +

+

+

+
+

+
−+

= +

+

+++

ji

j

j

o
j

jhm

s
o
j

o
sj

o
sj

jo
i

j

o
j

jsj
sj

o
sj

jhm

s
o

sj

ji

j

j

o
j

jsj
sj

o
sj

jhm

s
o

sj

ji

j

j

o
j

o
jji

w
knet

knet
ky

ky
ky

ky
knet

y

net
y

w
net
y

y
y

w
net

net
y

w
net
y

y
y

w
net

net
y

y
y

w
y

)1(
)1(

)1(
)1(
)1(

)1(
)(

0

)(
1

)(
1 (3.62)

j i

jiw

jjw
iiw

Hidden section

m+n+h

yo
jy

(b) The signal flow graph for the impact

(a) Illustration of direct impact of on . (Dash line: feedback connections.
Solid line: forward connections)

jiw y

)1(−ky O
i

jiw)1(−knet j)1(−ky O
j)(⋅f njw)(knetn)(⋅f

y

Figure 3.12: Case III for calculation of the orderly derivative

Orderly Derivative Calculation in Case III

Case III deals with the situation when the weight jiw is on a feedback connection

(j<i). In this case, both neuron i and neuron j are in the hidden section. As in Figure

 71

(3.12), if weights are in the feedback loop (j<i), the orderly derivatives are computed as

follows:

)1(
)1(

)1(
)1(

)1(
)1(

)1(
)1(

−
−∂

−∂

−∂
∂

=

∂

−∂

−∂

−∂

−∂
∂

=
∂
∂

+

++

ky
knet

ky
ky
y

w
knet

knet
ky

ky
y

w
y

o
i

j

o
j

o
j

ji

j

j

o
j

o
jji (3.63)

Notice for this case the weight jiw doesn’t have impact on)1(−ky o
i , because it

would involve with calculations at 2 time steps before (k-2) and the network only

considers one time step delayed recurrency.

For the above discussion, if don’t mention otherwise, calculations are conducted

for the current time step k. For example, jnet is the same as)(knet j .

To better understand the classification of three cases, an example of trainable

weights for each case is shown in Figure (3.13). The example network has a structure of

2-2-2. The rest weights are set to zero and don’t need to be trained.



























////
////
////
////

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

wwwwww
wwwwww
wwwwww
wwwwww
wwwwww
wwwwww

Trainable weights for case I

Trainable weights
for case II Trainable weights

for case III

Figure 3.13: The trainable weights for the three cases

 72

Connectivity Optimization Algorithm for RNN

In this study, a topology destructive optimization approach is utilized to optimize

RNN. First, the number of hidden neurons is chosen based on a trial and error approach,

then the network topology is optimized by disconnecting some weights among the

network neurons using a method first proposed by KrishnaKumar [Kris93]. Such a

pruned and optimized network has proved to be simpler, more accurate and robust

[Kris99]. An example of the optimization process is illustrated in Figure (3.14), where the

RNN originally has a structure of 1-3-1, and two connections (31c and 24c) are

disconnected after optimization.

31 2 54x y

Connections to be removed

Figure 3.14: An illustration of connectivity optimization

To optimization the network connectivity, a function)(ijcg as defined in

Equation (3.64) is introduced to represent the availability of a connection between the

neurons j and i. If)(ijcg = 1.0, it implies there is a connection between the ith and jth

neurons; while if)(ijcg = 0, it implies there is no connection.

ijcij e
cg

−+
=

1
1)((3.64)

The procedures of optimization are listed as follows:

 73

Derive the mapping functions of RNN considering the introduced connectivity

coefficient jic for each connection ij → , corresponding to Equations (3.1-3.3):

)),(()(knetfky ii
o
i = nhmi ++≤≤1 (3.65)

)()()(
1

1
ji

i

j

o
jiji cgkywknet ∑

−

=

= , mi ≤ or hmi +> (3.66)

∑ o
iy

Neuron i

1iw

2iw

)1(−iiw

o
i ycg 11)(⋅

o
i ycg 22)(⋅

o
iii ycg 1)1()(−− ⋅

Figure 3.15: Illustration of Equations (3.65 and 3.66)

The equations (3.65 and 3.66) are illustrated in Figure (3.15). Compare to Figure

(2.7), it can be seen the connectivity functions have been added into the net input of the

concerned neuron. Similarly, the net input for hidden neurons can be computed as

follows:

∑ ∑
−

= =

−+=
1

1

)()1()()()(
i

j

nn

ij
ij

o
jijji

o
jiji cgkywcgkywknet , hmim +≤< (3.67)

Calculate the orderly derivatives
ijw
y

∂
∂ +

 and
ijc
y

∂
∂ +

 accordingly.

The corresponding equations for computation of orderly derivatives are as

follows:

For case I, corresponding to Equation (3.55):

 74

)(ji
o
j

j

o
j

o
jij

cgy
net
y

y
y

w
y

∂

∂

∂
∂

=
∂
∂ ++

 (3.68)

Similarly, for case II, weights in forward loop i<j and jth neuron is a hidden

neuron:















∂

−∂

−∂

−∂
×











−∂

−∂

−∂

∂
+×

∂

∂

∂
∂

=
∂
∂

∑
−+

=

+

+

++

ji

j

j

o
j

jhm

s
o
j

o
sj

o
sj

j
ji

o
j

j

o
j

o
jji

w
knet

knet
ky

ky
ky

ky
knet

cgy

knet
ky

ky
y

w
y

)1(
)1(

)1(

)1(

)1(

)1(

)(
)(

)(
)(

)(

0

 (3.69)

∑
=

−+
−++

−+

+

+

++

−∂

−∂

−∂

−∂

−∂

−∂
=

−∂

−∂ s

p
o
j

o
psj

pkjkjo
psj

sj

sj

o
sj

o
j

o
sj

ky

ky
cg

ky

knet
knet

ky

ky

ky

1
))(()1(

)1(
)(

)1(

)1(
)1(

)1(

)1(

)1(
 (3.70)

For case III, weights in feedback loop j<i

)()1(
)1(

)1(
)1(ji

o
i

j

o
j

o
jji

cgky
knet

ky
ky
y

w
y

−
−∂

−∂

−∂
∂

=
∂
∂ ++

 (3.71)

Finally the orderly derivatives of RNN outputs to connectivity coefficients can be

computed as:

)(/
)(

ji
ji

ji
ji

jiji

cg
c
cg

w
w

y
c

y
∂

∂

∂
∂

=
∂
∂ ++

 (3.72)

3) Then both the weights and connection coefficients are updated using the EKF

algorithm. At the beginning of optimization, each ijc is set as 0. When the stop criteria

have been met, the connections with ijc <0 will be disconnected by setting)(ijcg = 0 and

the others will be connected by setting)(ijcg = 1.

 75

Stop criteria N

Y

Initialize filter parameters and weights)0(),0(),0(),0(wRQP vInitialize filter parameters and weights)0(),0(),0(),0(wRQP v

Apply Kalman filtering and update weights and connectivity coefficients
Equations (3.47-3.49)

Introduce network connectivity coefficient jicIntroduce network connectivity coefficient jic

Compute orderly derivatives and generate two Jacobian
matrices H(k) for weights and connectivity coefficients

Disconnect unimportant connections

The optimized network structure

Figure 3.16: Network optimization process

As shown in Figure (3.16), an optimized RNN is formed through the optimization

process. The training process of the optimized network is divided into two phases: the

connectivity optimization process which forms an optimized RNN connectivity structure

and then the weights of the optimized network are further refined using EKF and the

same training data.

Conclusions

This chapter introduces the development of the proposed RNN.

The network is modified from FFCNN by importing internal recurrency into its

hidden neuron section. The neurons receive not only the inputs at current time step from

 76

neurons before it but also the inputs at the previous time step from neurons after it,

Hence, RNN is fundamentally different from FFNN that it not only operates on the input

space but also on its internal state space, which makes it more suitable for non-linear

dynamical system modeling.

EKF algorithm is applied in training the network. To achieve that, the training

process is first written in terms of process and measurement equations. The Jacobian

matrix in the measurement equation is formed by taking the orderly derivatives of

network’s outputs with respect to its weights. The parameters of EKF are then initialized,

and the EKF equations are applied to the system to estimate the weights update during

training. The most time consuming procedure involved is the calculation of orderly

derivatives.

The network optimization is embedded into the training process to optimize the

network structure for any specific applications. A destructive method is applied. A

network with redundant structure is selected first. The insignificant weights are removed

gradually during the process. To apply the method, first a connectivity coefficient is

introduced to each connection through a connectivity function, and then the coefficients

are trained with weights using EKF, finally the connections having negative connectivity

coefficients are considered as unimportant and are finally removed.

Through these development techniques, an optimized RNN can be formed to

model non-linear dynamical systems.

 77

CHPATER FOUR

PERFORMANCE STUDIES OF THE RECURRENT NEURAL NETWORK

Abstract

Training convergence and estimation robustness are important in successful

implementation of RNN in modeling non-linear dynamical systems.

RNN has emerged as a promising tool in modeling of non-linear dynamical

systems whereas the training convergence is still of concern. This study aims to develop

an effective EKF-based RNN training approach with a controllable training convergence.

The training convergence problem during extended Kalman filter-based RNN training

has been proposed and studied by adapting two artificial training noise parameters: the

covariance of measurement noise (R) and the covariance of process noise (Q) of

Kalman filter. The R and Q adaption laws have been developed using the Lyapunov

method and the maximum likelihood method, respectively.

Robustness study of recurrent neural network is critical to their successful

implementations. The goal of robustness study is to reduce the sensitivity of modeling

capacity to uncertainties in parameters, or to make the network fault tolerance. In this

study, an uncertainty propagation analysis is conducted to quantify the robustness of a

recurrent neural network output due to perturbations in its trained weights. Perturbations

are added into the weights and the unscented transform is used to quantify the

corresponding uncertainties in the network’s output. A robustness measure has been

proposed and compared with other two measures developed by sensitivity analysis and

performance loss analysis.

 78

Nomenclature

R Adaption Law Derivation

Symbol Definition

)(kH Jacobian matrix at training step k

)(kK Kalman gain at training step k

)(kP Covariance matrix of weight estimation at training step k

)(kQ Covariance matrix of process noise at training step k

)(kR Covariance matrix of measurement noise at training step k

)(kr Diagonal element of)(kR ,)(kR = Ikr ⋅)(

)(kwv Estimation of weight vector wv at training step k

*wv Optimal value of wv

)(kwe
v Error of estimated weight vector)(kwv

)(* kyv Desired output at training step k

)(kyv Output of neural network at training step k

)(kξ
v

 Residual of first order approximation

)(kev Estimation error of RNN output

)(kB Covariance matrix of network output

)(kV Lyapuov function

 79

The Robustness Measure Derivation

Symbol Definition

*wv Trained weight vector

wv Perturbed weight vector, wv ∝ ()Σ,*wN v

Σ Covariance matrix of wv

L Perturbation level

iχv Sigma vector

)(jxv The jth sample input vector

)(jyv Output of)(jxv from perturbed networks

)(jy mean of)(jyv

)(jyvΣ Covariance of)(jyv

)(jyk
σ Standard deviation of its kth element of)(jyv ,

),()()(kkjyjyk
vΣ=σ

 80

Convergence Study of RNN Training Algorithm

The stability of a dynamical system is usually evaluated using the Lyapunov

theorems, which give a precise characterization of valid energy functions in the vicinity

of equilibrium points [Sast99]. Lyapunov stability is concerned mainly with stability of

equilibrium points, and a Lyapunov stable system is a system for which the states remain

bounded for all time [Khal02]. In RNN training, the equilibrium points can be viewed as

the optimal weight solutions that minimize the mean square error of the outputs of the

neural network. The weight training process aims to find the optimal weights as the

system’s equilibrium points, and the Lyapunov indirect method is used here to study the

convergence of training by adapting R .

While the training convergence is first guaranteed by adapting R , the process

noise parameter Q is further to be estimated to accelerate the training process, which

needs the simultaneous estimation of the noise statistics and the update of the Kalman

filter gain. The noise covariance matrixes can be estimated through the Bayesian

estimation [Alsp74], the correlation method [Mehr72], the covariance matching method

[Mehr72], and the maximum likelihood method [Mayb82]. The maximum likelihood

method is favored in this study because it is more efficient, consistent, and suitable for

online applications. It should be pointed out that this method may generate biased

estimates for small sample sizes. However, because the maximum likelihood estimates

tend to have the true value of the estimated variable close to the center of their

distributions, the bias is often negligible [Mayb82].

 81

In the following sections, first the Lyapunove method and the maximum

likelihood method are briefly introduced and then the convergence study is presented in

detail.

Lyapunov Method

In this study, the direct Lyapunov method is applied to form an adaption law for

the training parameter)(kR in Equation (2.13) to guarantee the training process

convergence. In this section, the direct Lyapunov method, also called the second

Lyapunov method is reviewed.

This method is used to determine the stability of an autonomous system without

explicitly integrating its differential equation. The idea behind Lyapunov's direct method

is to establish properties of the equilibrium point by studying how a carefully selected

scalar function of the state (Lyapunov function) evolve as the system state evolves

[Khal02].

Consider a non-linear dynamical system is represented by a differential equation:

() ())(txftx =& (4.1)

Suppose origin is the equilibrium state:

() 00 =f (4.2)

To prove the system is Lyapunov stable at the origin, a candidate Lyapunov

function)(xV needs to be proposed:





≠>
==

0,0)(
0,0)0(

xxV
xV

 (4.3)

 82

Such a)(xV can be thought of as an energy function. Let)(xV& denote the time

derivative of)(xV along any trajectory of the system, i.e. its rate of change as x(t) varies

according to Equation (4.1). If this derivative is negative throughout the region (except at

the origin):

00)(≠< xxV& (4.4)

Equation (4.4) implies that the energy is strictly decreasing over time. In this case,

because the energy is lower bounded by 0, the energy must go to 0 when t goes to

infinity, which implies that all trajectories converge to the equilibrium state, zero state.

Or in another words, the system is asymptotically stable at the origin.

For a discrete system, the key of the method is to find an appropriate Lyapunov

function)(kV for the concerned dynamic system so that 0)(<∆ kV . In this study, a

discrete Lyapunov function is chosen as

)()()()(1 kwkPkwkV e
T

e
vv −= (4.5)

where *)()(wkwkwe
vvv −= is the error of estimated weight vector, *wv is the optimal weight

and is a constant vector,)(kwv is the estimate of *wv using EKF at time step k, and)(kP

is the approximate covariance matrix in Equations (3.48 and 3.49).

Maximum Likelihood Method

Once the training process is guaranteed to be convergent by using the Lypunov

method mentioned in the previous section, another further question comes out, how to

 83

make the convergence fast. To achieve that, the maximum likelihood method is adopted

in this study to estimate the training parameter)(kQ in Equation (3.49).

In lot of cases, a parameter estimation process is requisite to a modeling process.

A model with its parameters is first developed to describe the observed data or

measurements. The remaining task is to find the best estimation of the parameters that

make the model best fit the data. Maximum likelihood estimation (MLE) is a popular

statistical method used for parameter estimation [Kay93].

Another major parameter estimation method is the least squares estimation (LSE)

which aims to determine the parameters to make the model most accurately fit the sample

data. In general, results of MLE are different from those of LSE. In most cases MLE is

preferable to LSE unless the likelihood function can’t be easily formed. Generally MLE

have desirable properties which makes MLE a desirable candidate to estimate the process

noise)(kQ in EKF Equation (3.49):

1) It is a sufficient estimator which contains complete information about the

parameter of interest which is the covariance of process noise in RNN

training in this study;

2) It is an unbiased estimator as the sample size increases;

3) It is a minimum variance estimator as the sample size increases; and

4) The likelihood function can be used to test hypotheses and construct

confidence intervals for the model output which is the network output in this

study.

 84

To implement MLE, the first step is to develop the maximum likelihood function.

A popular way to develop the function is described as follows. Suppose the variable to be

modeled is a random variable and the functional form of the variable’s probability density

function (PDF) is known. A random sample),...,,(21 nXXXX = for the variable is

observed and the observation),...,,(21 nxxx is used to estimate the parameters. A group

of parametric models are established to describe the observation data, each model

depends on a unknown parameter θ .

The PDF which accounts for the probability of random sample X given the

parameter θ can be written as ()θθ |,...1 nXXf . If individual samples iX are independent

of one another, the PDF can be written as a multiplication of each PDFs for all the

observations:

() () () () ()∏
=

==
n

i
inn XfXfXfXfXXf

1
211 ||...|||,... θθθθθ θθθθθ

 (4. 6)

The likelihood function is defined by reversing the roles of sample X and

parameter of θ in PDF, which represents the likelihood of parameter θ given the sample

X :

() ()θθ θ |,...,...| 11 nn XXfXXL = (4.7)

Similar to (4.6), if the random samples iX are independent with one another the

likelihood function (4.7) can be simplified as:

() ()∏
=

=
n

i
in XfXXL

1
1 |,...| θθ θ (4.8)

 85

For this case, the likelihood function is often written in logarithm format as

follows:

() ()θθ θ |log,...|
1

1 i

n

i
n XfXXL ∑

=

= (4.9)

In other words, the likelihood function represents how likely the parameter can be

if the observed data x of X is given. The method of maximum likelihood estimation of

θ that maximizes the likelihood function:

),...|(maxargˆ
1 nXXL θθ

θ
= (4.10)

In summary, MLE begins with writing the likelihood function of the unknown

parameter θ based on sample data. The parameter value that maximizes the likelihood

function then provides MLE results – the maximum likelihood estimator of the

parameter.

The Development of R Adaption Law

The covariance of measurement noise R describes the statistics of network

modeling error, and this information is generally not available for a RNN training

process. As seen from Equation (3.25), a small R value might lead to a large Kalman

gain, which may make training divergent. For this training divergence problem, a dead-

zone Kalman filter was developed to train a state space recurrent neural network to avoid

divergence in training [Rubi07]. This study further extends the modified EKF work

[Rubi07] in the following aspects:

 86

1) The development here considers training process of general neural networks;

the training model (3.18) is applicable to a general neural network.

2) The development here doesn’t require the knowledge of upper bound of kξ ,

the residual of first order approximation, which is unavailable in most cases;

and

3) The developed algorithm is more efficient because it doesn’t have dead-zone

regions.

To better illustrate the development process, weights update equations (3.47-3.49)

are repeated as in the following equations (4.11-4.13):

()
()




=
−−=+

)()(
)()()()()1(*

kwhky
kykykKkwkw

vv

vvvv
 (4.11)

1

1

)()()(
)]()()()()[()()(

−

−

≡

+=

kBkHkP
kHkPkHkRkHkPkK T

 (4.12)

[])()()()()1(kPkHkKIkQkP T−+=+ (4.13)

where)(kwv is the estimate of weight vector *wv at time step k,)1(−kwv is the estimation

of weight vector at one time step before, K is the Kalman gain,)(kyv is the output of

RNN,)(* kyv is the target value for)(kyv , P is the approximate covariance matrices, H

is the orderly derivatives matrix, and the covariance matrix of output

()()()()(T kHkPkHkR + or ())(kyCov v) is denoted as)(kB .

Expand output of RNN)(kyv at the optimal weight vector *wv :

 87

()

() ()
)()()()(

)()(

)()(

*

**

kkwkHky

kwkw
w
hwh

kwhky

e
T ξ

ξ
vvv

vvvv

vv

++=

+−
∂
∂

+=

=

 (4.14)

where *)()(wkwkwe
vvv −= is the error of estimated weight vector, *wv is the optimal weight

and is a constant vector, and ξ
v

 is the residual of first order approximation.

The estimation error of RNN output is represented as:

)()()()()()(* kkwkHkykyke e
T ξ

vvvvv +=−= (4.15)

A Lyapunov function is selected as in [Rubi07]:

)()()()(1 kwkPkwkV e
T

e
vv −= (4.16)

)()()()1()1()1()(11 kwkPkwkwkPkwkV e
T

ee
T

e
rrrr −− −+++=∆ (4.17)

Plug Equations (4.12) and (4.15) into (4.11), the following equation is derived as:

())()()()()()()()()(-

)()()()()()()()()(-)(

)()()()(-)()1(

11

11

1

kkBkHkPkwkHkBkHkPI
kkBkHkPkwkHkBkHkPkw

kekBkHkPkwkw

e
T

e
T

e

ee

ξ

ξ
vr

vrr

rv

−−

−−

−

−=

−=

=+

 (4.18)

The following equation is equivalent to Equation (4.13):

() ())()()()()(-)()1(1 kPkHkBkHkPIkQkP T−=−+ (4.19)

Apply the matrix calculation formula on () 111)()()()(
−−− + TkHkRkHkP , according

to the matrix inversion lemma:

() () 1111111 −−−−−−− +−=+ DACBDABAABCDA (4.20)

which leads to:

() ())()()()()(-)()()()(1111 kPkHkBkHkPIkHkRkHkP TT −−−− =+ (4.21)

 88

Compare (4.19) and (4.21), it is found:

() () 0)()()()()()1(111 >+=−+ −−− TkHkRkHkPkQkP (4.22)

From Equation (4.18), (4.21) and (4.22), it can be derived that:

()
())()()()()()1()()(

)1(()1(
111

1

kkBkHkPkQkPkwkP

kwkQkP

e

e

ξ
vv

v

−−−

−

−+−=

+−+
 (4.23)

())1()()1()1()1()1()1(11 +−++<+++ −− kwkQkPkwkwkPkw e
T

ee
T

e
vvvv (4.24)

Equations (4.23) and (4.24) give:

[]
())()()()()()1()1(

)()()()1(

)()()()1()1()1()(

11

1

11

kkBkHkPkQkPkw

kwkPkwkw

kwkPkwkwkPkwkV

T
e

e
T

ee

e
T

ee
T

e

ξ
vv

vvv

vvvv

−−

−

−−

−++−

−+<

−+++=∆

 (4.25)

Plug Equation (4.18) into (4.25), also knowing)(kB and)(kP are symmetric:

())()()()()()1()1(

)()()()()()()()()()(
11

11

kkBkHkPkQkPkw

kwkHkBkkwkHkBkHkwkV
T

e

e
TT

e
TT

e

ξ

ξ
vv

vvvv

−−

−−

−++−

−−<∆
 (4.26)

Consider the third part on the right side of Equation (4.26) gives (knowing)(kV∆

is a scalar, plug Equation (4.23) in):

()
()

()

())()()()()()1()()()()(

)()()()(

)]()()()()()1(

)()()[()()()(

)1()()1()()()()(

)()()()()()1()1(

111

1

11

11

11

11

kkBkHkPkQkPkPkHkBk

kwkHkBk
kkBkHkPkQkP

kwkPkPkHkBk
kwkQkPkPkHkBk

kkBkHkPkQkPkw

TT

e
TT

e
TT

e
TT

T
e

ξξ

ξ

ξ

ξ

ξ

ξ

vv

vv

v

vv

vv

vv

−−−

−

−−

−−

−−

−−

−+−

=

−+−

=

+−+=

−++

 (4.27)

Plug in Equation (4.27) into (4.26) and consider the relationships:

a))()()()()(kBkHkPkHkR T =+ ,

 89

b) 11)()(−− > kBkR , and

c) IkBkHkPkH T <−1)()()()(

Equation (4.26) becomes:

()

()
[] []

()

[]
)()()(3)()()(

)()()()()()()()(
)(])()()()()()()()()(

)()()()()([)(

)()()()()()()(

)(])()()()()()()(

)()()()([)(

)]()()()()()()(2

)()()()()([
)()()()()()1()()()()(

)()()()(

)()()()()()()()()()(

11

111

111

11

1

111

11

11

1

111

1

11

kkRkkekBke

kkRIIkBkkekBke

kkBkHkPkHkRkHkPkHkB
kBkHkPkHIkBk

kkwkHkBkkwkH

kkBkHkPkHkRkHkP

kPkHkBkBk
kkBkkwkHkBk

kwkHkBkHkw
kkBkHkPkQkPkPkHkBk

kwkHkBk

kwkHkBkkwkHkBkHkwkV

TT

TT

TT

TT
e

TT
e

T

T

TT

T
e

TT
e

TT
e

TT

e
TT

e
TT

e
TT

e

ξξ

ξξ

ξ

ξ

ξξ

ξ

ξ

ξξξ

ξξ

ξ

ξ

vv

vv

v

v

vvvv

v

v

vvvv

vv

vv

vv

vvvv

−−

−−−

−−−

−−

−

−−−

−−

−−

−

−−−

−

−−

+−≤

+++−≤

+

++

++−=

+×

++

++

−=

−++

−

−−<∆

(4.28)

Based on the matrix property, it is known that:

() () 21121)()()()()()()(kekBkekBkekekB M
T

m
vvvv −−− ≤≤ λλ (4.29)

() () 21121)()()()()()()(kkRkkRkkkR M
T

m ξλξξξλ
vvvv

−−− ≤≤ (4.30)

where ()1)(−kBmλ and ()1)(−kBMλ are the minimum and maximum eigenvalues of

matrix 1)(−kB respectively, and)(kev is the Euclidean norm of)(kev as)()(keke T vv .

Plug Equations (4.29) and (4.30) into Equation (4.28), it can be seen:

() () 2121)()(3)()()(kkRkekBkV Mm ξλλ
vv −− +−<∆ (4.31)

 90

Since there is no prior information about the measurement noise, this study

simplifies the measurement noises for each output as uncorrelated but with the same

variance)(kr as follows:

IkrkR)()(= (4.32)

where)(kr is a positive scalar, I is the nn × identity matrix, and n is the dimension of

output vector. Then

()
)(

1)(1

kr
kRM =−λ (4.33)

The minimum eigenvalue of 1)(−kB is the inverse of maximum eigenvalue of)(kB :

() ())(
1)(1

kB
kB

M
m λ

λ =− (4.34)

The maximum eigenvalue of)(kB should follow the relationship:

() () ()∑∑ ≤≤
i

iM
i

i kBkBkB
n

)()()(1
λλλ (4.35)

where ())(kBiλ is the ith eigenvalue of)(kB . The summation of eigenvalues of a matrix

equals the trace of the matrix and it is known that the covariance matrix)(kB is positive

definite, which leads to:

() () []())()()()()()()()(T knrkhknrkHkPkHTracekBTracekB
i

i +≡+==∑λ (4.36)

where []())()()(T kHkPkHTrace is the trace of)()()(T kHkPkH and is denoted by)(kh .

 Plug (4.36) into the left side of (4.35):

())()()(1 kBkrkh
n Mλ≤+ (4.37)

 91

Plug (4.37) into (4.34):

()
)()()()(1

1)(1

knrkh
n

krkh
n

kBm +
=

+
≤−λ (4.38)

Hence, the inequality (4.31) will be satisfied if

() 212)()(3)(
)()(1

1)(kkRke
krkh

n

kV M ξλ
vv −+

+
−<∆ (4.39)

Plug (4.34) into (4.39):

22)(
)(

3)(
)()(1

1)(k
kr

ke
krkh

n

kV ξ
vv +

+
−<∆ (4.40)

The training process is convergent if 0)(<∆ kV , which leads to the following

sufficient condition based on (4.40):

22

2

)(3)(

)()(3

)(
kke

k
n
kh

kr
ξ

ξ
vv

v

−

⋅
> (4.41)

Suppose)(kξ
v

 is bounded by)(kξ ()()(kk ξξ
v

≥), consider the following two cases:

Case 1: The output estimation error 2)(kev is greater than 2)(4 kξ :

22)(4)(kke ξ>v (4.42)

then plug (4.42) in (4.41):

n
kh

kk

k
n
kh

kr)(3

)(3)(4

)()(3

)(22

2

=
−

⋅
>

ξξ

ξ
vv

v

 (4.43)

 92

It can be seen that if Inequality (4.43) holds true then (4.41) holds true, and then

<∆)(kV 0 as guided in (4.40), and the training process is convergent.)(kξ , the upper

bound of the norm of)(kξ
v

 in (4.42) should be known as a prior condition. As)(kξ
v

 is

the residual of liner model of)(kev as shown in (4.15), it follows the normal distribution:

)(kξ
v
～ []))(,0(1 nnn IkrN ××

v
 based on the extended Kalman filter algorithm. Each element

of)(kξ
v

,)(kiξ , follows the normal distribution as)(kiξ ～))(,0(krN . Then the upper

bound of)(kiξ can be approximated as)(krη . If η is selected as 4, then at least

99.99%)(kiξ values are bounded by)(4 kr . As an approximation, 2)(kξ is taken as

nkr 2))(4(, which is nkr)(16 .

Thus, (4.42) becomes:

nkrkke)(64)(4)(22
=> ξv (4.44)

Combine Inequalities (4.43) and (4.44), it is found that

n
ke

kr
n
kh

64
)(

)()(3
2v

<< (4.45)

When (4.45) holds, both (4.42) and (4.44) hold which leads to <∆)(kV 0, and the

training should be convergent as guaranteed by the Lyapunov method.

 93

To implement (4.45), the training error information at each step,)(kev , should be

considered first. When
n

ke
n
kh

64
)()(3

2v
< , or)(192)(khke >v , (41) is satisfied if)(kr is

set as the average of
n
kh)(3 and

n
ke

64
)(2v

 as follows:














+=

n
ke

n
khkr

64
)()(3

2
1)(

2v

 when)(192)(khke >v (4.46)

Under this circumstance 0)(<∆ kV , which means a convergent training process.

Case 2: The output estimation error 2)(kev is less than 2)(4 kξ :

The training error is bounded and no adaption needs to be implemented at training

step k.

Under this circumstance, 0)(<∆ kV can always be satisfied using Equation

(4.46), which means a convergent training process. For some engineering applications

where there is only one output (n=1), the R adaption law can be further simplified as

follows:









+=

64
)()()()(3

2
1)(

2kekHkPkHkr T when)()()(192)(kHkPkHke T> (4.47)

It should be pointed out that the above condition (Equations (4.46) or (4.47)) is

the sufficient condition for a convergent training process instead of as a necessary

condition.

 94

The Development of Q Adaption Law

In the previous section, a noise parameter R is adapted using Lyapunov method

to guarantee the convergence of training process. Furthermore, another noise parameter

Q is to be estimated to accelerate the training process. Estimation of Q falls in the region

of adaptive filtering technologies, which simultaneously estimate the statistics of the

noise and update the Kalman gain during the filtering process.

Generally four approaches are developed to estimate the noise covariance matrix:

1) Bayesian estimation was applied as in [Alsp74], which requires an a priori

specification of a parameter density function, and sufficient statistical

information to infer such density function is often not available in real

applications. Also, usually prohibitive computation cost hurdle its wide

application, especially for online estimations,

2) For the correlation method, autocorrelation functions of innovation sequence

are constructed and the unknown covariance can be inferred by solving a set

of equations [Mehr70]. However, to apply this method, system is assumed to

be completely observable and controllable which is not valid for RNN

training system model,

3) Covariance matching method makes the residuals consistent with their

theoretical covariance and hereby solves the unknown matrices. The

covariance usually does not match the actual one and the convergence of the

method is therefore often doubtful. [Mehr72], and

 95

4) The maximum likelihood method has been also used to adapt EKF. It can

generate efficient, unbiased, and consistent estimate.

In this study, the maximum likelihood method is applied to estimate Q because it

has the following advantages:

1) The maximum likelihood method can lead to an efficient estimate (an

unbiased estimate with the lowest covariance);

2) It is consistent. The likelihood equation has a solution that converges to the

true value of the variables as the number of sample grows to infinity; and

3) It is suitable for online application. On the other hand, the method may

generate biased estimate for small sample size. However, because the

maximum likelihood estimates tend to have the true value of the estimated

variable close to the center to their distributions, the bias is often negligible

[Mayb82].

To apply the maximum likelihood method, an appropriate likelihood function

should be chosen at first.

The following conditional density function is selected because it exploits all a

priori information available and can yield an effective and computationally feasible

estimator [Mayb82]. Consider the conditional density function and using Baye’s rule:

∏
=

−

−−

−

=

⋅⋅=

⋅=

⋅=

k

j
qjYjyqkYkw

qkYqkYkyqkYkw

qkYkyqkYkw

qkYqkYkwqkYkw

ff

fff
ff
fff

1
),1(|)(),(|)(

|)1(),1(|)(),(|)(

|)1(),(),(|)(

|)(),(|)(|)(),(

vvvv

vvvvv

vvvv

vvvvv

 (4.48)

 96

where)(kwv is the state vector (weight vector) at time step k,)(kY is the measurement

history { })(),...,2(),1(kyyy vvv , qv is the vector composed of diagonal elements of matrix Q .

To simplify the calculation, instead of the whole measurement history)(kY , only

the wn most resent measurement history are considered. Thus a fixed sample size wn of

measurement history)(kYN = { })(),1(),...,2(),1(kykynkynky ww
vvvv −+−+− is used in

Equation (4.44), which leads to the new conditional density function:

∏
+−=

−

−

−−

−

−

−

−

−
−

−−−

=

=

=

=

=

⋅=

i

nij
qjYjyqkYkw

qnkY

qkYqkYky
qkYkw

qnkY

qkYky
qkYkw

qnkY

qkY
qkYkw

qnkY

qnkYkY
qnkYkYkw

qnkYkYqnkYkYkwqnkYkYkw

w

w

w

w

w

wN

wN

wNwNwN

ff

f
ff

f

f
f

f

f
f

f

f
f

f

fff

1
),1()|(),()|(

)|(

)|1(),1()|(
),()|(

)|(

)|1(),(
),()|(

)|(

)|(
),()|(

)|(

)|(),(
),(),()|(

),()|(),(),()|(),()|(),(

.

vvvv

v

vvv

vv

v

vv

vv

v

v

vv

v

v

vv

vvvvv

 (4.49)

Each of the densities in Equation (4.49) can be assumed as a Gaussian density function:

()
[] []







 −−−= −)()()()()(

2
1exp

)(2
1

)),(|)((

1
2/12/

),()|(

kwkkPkwk
kP

kkf

T
m

qkYkw

vvvv

vv
rv

ψψ
π

ρδψ

 (4.50)

()
[] []







 −−−−−=

−

−

−

)1()()()()1()()(
2
1exp

)(2
1

)),1(|)((

1
2/12/

),1(|)(

jwjHjjBjwjHj
jB

jjf

T

n

qjYjy

vvvv

vv
vv

γγ
π

ρδγ
 (4.51)

 97

where)(kψv ,)(kδ ,)(jγv and ρv are the realization of random variables)(),(kYkwv ,

)(jyv and qv respectively, and m and n are the dimensions of the states and output

respectively,)(kP is the approximate covariance matrix,)(jwv is the estimate of *wv ,

)(jH is the orderly derivatives matrix, and)()()()()(T jHjPjHjRjB += is the

covariance matrix of output.

The likelihood function is represented as ()qnkYkYkw wN
fL vv),(|)(),(ln −= . To take

derivative of the likelihood function with respect to qv and make it zero will give the

maximum likelihood equation as following:

[]{ } 0)()()()()()()()()1(2)()(
)(1

1111

1

1

*

=−+
∂

−−








∂
∂

=+−=

−−−−

+−=

− ∑∑
iqq

i

Nij

TT
i

nij kk ww

jBjrjrjAjAtrjrjBjH
q
jw

q
kPkPtr

vv

vvv
v (4.52)

where)1()(−−= jwtHyr jjj
vvv is a notation for simplicity.

To enhance online applicability, some less sensitive terms in Equation (4.52) are

neglected and thus form an approximated maximum likelihood equation as follows:

[] 0)()()()1()1(
1

=∆∆−−−+−∑
+−=

k

Nkj

TjwjwjPjQjP vv (4.53)

where)1()()(−−=∆ jwjwjw vvv is the difference of estimated weights at k and k-1 time

steps, and)(kQ is assumed constant over the period 1+− wnk from to k [Mayb82]. Then

the)(kQ matrix can be estimated as follows [Mayb82]:

{ }








−−+∆∆= ∑
+−=

)()()()(1)(ˆ
1

w

k

nkj

T

w

nkPkPjwjw
n

kQ
w

vv (4.54)

The R and Q adaption-based training is summarized in Figure (4.1). Training

parameters such as the window size N, the noise parameters)0(Q and)0(R , and the error

 98

covariance)0(P should be specified first. The adapted R(k) and Q(k) at each training step

are fed into the EKF training algorithm to update the network weights. The training

process iterates until the stop criteria are met, and the trained weights are obtained.

wn andR(0),Q(0),P(0),(0),wv

k>=nw

Adaption of Q(k) using the maximum likelihood method
Equation (4.54)

Application of extended Kalman filter algorithm training
Equations (4.11-4.13)

change no Q(k) change no Q(k)

change no R(k) change no R(k)No

Adaption of R(k) using the Lyapunov method
Equation (4.46)

No

Yes

Yes

Training
data

))(max(192)(2 khnke i>v

Stop criteria
No

Yes

Trained weights

Figure 4.1: Flow chart of the convergence study

Robustness Analysis of RNN

Robustness Analysis

In addition to the training convergence study, network estimation robustness is

also studied; a robustness measure is developed to quantify the robustness of a RNN

network.

 99

The major part of the proposed method is to take uncertainty propagation analysis.

The two most commonly applied numerical approaches for uncertainty propagation

analysis are Monte Carlo analysis and Monte Carlo with Latin Hypercube analysis.

Monte Carlo analysis is numerical experimentation. Different from using closed form

analytical expression to assess the propagation of uncertainty, Monte Carlo method

repeatedly generates samples based on the probability distribution of the uncertain

parameters to characterize the uncertainty in propagation [Driv00]. Application of Monte

Carlo method in the NN robustness study often includes the following steps:

1) Define the domain of perturbation for each uncertain parameters (weight),

2) Draw a set of possible values of each of the uncertain parameters randomly

from the domain,

3) Calculate the output of NN that corresponds to these particular values of the

parameters

4) Repeat the above two steps and generate corresponding NN outputs, and

5) Aggregate the individual results from step (4) and get the statistics of NN

outputs.

However, if the dimension of parameters (weights in this study) is large, the

computation cost would make the method prohibitive to apply. To alleviate the problem,

in this study a deterministic sampling method, namely unscented transform, is applied.

Instead of Monte-Carlo method, unscented transform is chosen as the

computational method in this study due to its high efficiency that it can capture high

order information about distributions using only a small number of samples [Juli97].

 100

Using uncertainty propagation analysis, a new robustness measure is proposed

here in two steps:

1) Input sample generation using the Latin hypercube sampling (LHS) method

[Helt03]; and

2) Robustness quantification using the unscented transform.

This procedure is shown in Figure (4.2) and elaborated as follows.

Input space

Sampling using Latin hypercube method

Input samplesInitial weights and
their perturbation

RNN

Sigma points

Computing RNN output covariances
and standard deviations

Taking L-1 norm

Local robustness measures

Averaging

Global robustness of RNN

Output covariances
standard deviations

Input space

Sampling using Latin hypercube method

Input samplesInitial weights and
their perturbation

RNN

Sigma points

Computing RNN output covariances
and standard deviations

Taking L-1 norm

Local robustness measures

Averaging

Global robustness of RNN

Output covariances
standard deviations

Figure 4.2: Proposed procedures for robustness quantification

The first step is to uniformly generate n samples ())(),...,2(),1(nxxx vvv from the

whole input space. This is done by implementing an LHS method, which is a type of

stratified Monte Carlo sampling methods [Loh96] and can be nearly five times more

effective than other traditional sampling methods [Swid00]. During the first step n

 101

samples are generated, and they are to be fed into the trained network, which may

undergo certain weight perturbations.

The second step is to quantify the network robustness using the unscented

transform method based on the generated n samples. The proposed unscented transform-

based robustness quantification approach includes two measures: 1) local robustness for

network robustness for a given input only; and 2) global robustness to evaluate the

network robustness by collectively considering all possible inputs from the whole input

space. As RNN is a nonlinear function which maps both inputs and weights to network

outputs, outputs can be viewed as a function of weights for given inputs. As so, the local

robustness can be interpreted as follows: for a specific input, how much do the outputs

vary when the weights deviate from the trained value? It can be seen that the local

robustness is input dependent. In this study, the local robustness for any input is defined

as the L-1 norm of the output standard deviation vector.

During the second step, the distribution of perturbed weight vector should be

determined first. The trained weights are assumed to be contaminated with zero mean

finite variance multivariate normal distributed noises [Eick07], and the contaminated

weight vector wv follows the normal distribution as wv ∝ ()Σ,*wN v , where *wv is the

trained weight vector, which is a column vector transformed from the trained weight

matrix by cascading the rows of the matrix into a row vector and further taking transpose,

and Σ is the covariance matrix of wv . The standard deviation of iw , which is the ith

element (weight) of wv , is determined as follows:

*
iw Lw

i
=σ , tni ,...,2,1= (4.55)

 102

where
iwσ is the square root of the ith diagonal element of Σ , tn is the dimension of the

weight vector, and L is the perturbation level which is a constant specified based on

application needs.

The unscented transform is usually used to compute the statistics (mean and

covariance) of a random vector which undergoes a nonlinear transformation. In this study

the unscented transform is used to compute the statistics of RNN output due to

perturbations introduced into the trained weights. With l as the dimension of the trained

weight vector, 12 +l sigma vectors iχv (12,...,2,1 += ll) are generated around wv based

on the mean (*wv) and covariance (Σ) of the contaminated weight vectors:

*
0 wvv =χ (4.56)

()() lilw ii ,...,2,1* =Σ++= λχ vv (4.57)

()() lllilw lii 2,...,2,1* ++=Σ+−= −λχ vv (4.58)

where lcL −+=)(2αλ is a scaling parameter, α is a constant which determines the

spread of the sigma vectors around *wv and it is set as 0.1 in this study [Wan01], c is a

secondary scaling parameter and is set as 0 [Wan01], and ()()il Σ+ λ is the ith column

of square root of matrix ()Σ+ λl . Accordingly, 12 +l new RNNs are formed based on

the 12 +l sigma vectors.

To compute the local robustness measure for a jth sample input)(jxv , the sample

is fed into these 12 +l networks respectively, and the corresponding outputs are obtained

and called as the outputs of sigma vectors)(jiψv)12,...,2,1(+= li .

 103

lifj ii 2,...,0)()(== χψ vv (4.59)

where)(⋅f is RNN mapping function.

The mean of network output)(jy can be obtained by weighting the outputs of

sigma vectors:

∑
=

≈
l

i
i

m
i jwjy

2

0

)()()(ψv (4.60)

where)(m
iw is a weight used in the unscented transform. The covariance of)(jy ,)(jyvΣ is

obtained by:

∑
=

−−=Σ
l

i

T
ii

c
ijy jjyjjyw

2

0

)(
)())()())(()((ψψ vvvv

v (4.61)

The weights in Equations (4.56) and (4.57) are given by

lilww
lw
lw

c
i

m
i

c

m

2,...,1,)}(2/{1
)1()/(

)/(

)()(

2)(
0

)(
0

=+==

+−++=

+=

λ

βαλλ

λλ

 (4.62)

where β is a constant used to incorporate any prior knowledge of the distribution of

*wv and is set as 2 for normal distributions [Wan01].

Suppose)(jyv is RNN output vector for input sample)(jxv , the standard deviation

of its kth element ()(jyk) can be written as:

),()()(kkjyjyk
vΣ=σ (4.63)

where
),()(kkjyvΣ denotes the kth diagonal element of)(jyvΣ .

 104

A vector composed of the standard deviations of all the elements of output vector

)(jy can be written as:

[])()()()(,...,,
21 jyjyjyjy yn

σσσσ =v
v (4.64)

where yn is the dimension of)(jy .

The L-1 vector norm, which computes the summation of absolute value of all

elements of a vector, is used as the local robustness measure for the sample input)(jxv :

1)()(jyjR v
vσ= (4.65)

For finite dimensional vector spaces, all vector norms are equivalent [Horn90],

and the L-1 norm is selected here due to its robustness to outliers and its easiness for

implementation [Kwak08].

Finally, the global robustness measure which accounts for effects on all the input

samples from input space is defined as the average of the local robustness measures as

∑
=

=
n

j
jR

n
R

1
1)(1 , where n is the number of samples.

Conclusions

This chapter carries out two performance studies on the proposed network.

The study of training convergence is conducted by adapting the parameters of

process noise and measurement noise. The Lyapunov method has been applied to adapt

the covariance of measurement noise to guarantee training convergence. First, a candidate

Lyapunov function is selected and its rate of change is computed which is a function of

 105

the concerned parameter. The adaption law is then derived by making the function

negative. In addition, the maximum likelihood method is applied to estimate the

covariance of process noise to accelerate the training process. A likelihood function is

formed by taking the joint probability density function of the weights estimation and

outputs of network given the concerned parameter of the process noise. The MLE

estimator of the parameter is derived by maximizing the likelihood function.

In addition to the training convergence, the study of estimation robustness of the

network due to perturbations in trained weights is also carried out. Gaussian noise has

been added into the trained weights which results in uncertainties in the network’s output.

An uncertainty propagation analysis is then conducted using the unscented transform to

quantify the uncertainties in the network’s output due to the perturbation. A robustness

measure is developed in the study to be compared with the existing sensitivity-based

measure and performance-loss based measure.

Both the performance studies are important in successful implementation of RNN

in modeling non-linear dynamical systems.

 106

CHAPTER FIVE

MODELING OF A NON-LINEAR DYNAMICAL BENCHMARK SYSTEM

Abstract

In this chapter, the techniques and algorithms developed in Chapter three and

Chapter four are verified with a non-linear dynamical benchmark system. A RNN and an

optimized RNN are developed to model the system. Modeling capability, training

convergence, and robustness of the networks are investigated. Results show both

networks are capable of modeling the system. In addition, RNN are better than two

FFNN (a MLP and a FFCNN) in terms of training accuracy and speed. Furthermore, from

the study of training convergence, it is found that the proposed R adaption law can

guarantee the training convergence of the network and the proposed Q adaption law can

accelerate the training convergence. Finally, the proposed robustness quantification

method is also applied to the networks and is compared with another two methods.

Results show that the proposed robustness quantification approach is more efficient,

generic, and flexible to quantify the robustness of a recurrent neural network. All

together, the results show that the developed optimized RNN has advantages over FFNN

in modeling the non-linear dynamical benchmark system and the convergence study and

robustness study can further improve the network’s performance.

 107

The Benchmark System

To validate the proposed adaption laws, a non-linear dynamical benchmark

system [Nare92], which represents a single-input single-output (SISO) non-linear plant,

has been modeled using RNN. Such a benchmark system (Equation (5.1)), as shown in

Fig. (4), has been selected due to its generality as well as analytical tractability:

It can be seen from Figure (5.1) that the output sequence is a piecewise function

which is composed of four regions: [1,250], [251-500], [501-750], and [751-1000].

))1(),(),2(),1(),(()1(−−−=+ kukukykykyfky pppp (5.1)

where [])(),(kyku p represents the input-output pair of the SISO plant at time step k ,

2
3

2
2

435321
54321 1

)1(),,,,(
xx

xxxxxxxxxxxf
++

+−
= , and











<≤++
<≤−

<≤
<≤

=

1000750),10/sin(6.0)32/sin(1.0)25/sin(3.0
750500,0.1

500250,0.1
2500),25/sin(

)(

kkkk
k

k
kk

ku

πππ

π

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

Time step

O
ut

pu
t 240 260 280 300 320

0.4

0.6

0.8

Time step

O
ut

pu
t

500 520 540 560
-0.7

-0.6

-0.5

-0.4

Time step

O
ut

pu
t

Figure 5.1: The output of the non-linear dynamical benchmark system

 108

Recurrent Neural Network Implementation

A RNN and an optimized RNN are formed to model the system and their

modeling result is compared with the measurements as well as the results of an FFCNN

and an MLP approaches. The following tasks are conducted to train a RNN to model the

benchmark system:

1) Training patterns preparation

In this study, a neural network is implemented to model the benchmark system, or

in other words, to predict the output at next time step)1(+ky p based on six inputs such

as current and previous outputs -)2(),1(),(−− kykyky ppp , current and previous inputs -

)1(),(−kuku and a constant bias 1.

1000 training patterns are formed using Equation (5.1) with the zero initial

condition. Each training pattern contains one set of inputs and corresponding output.

Usually training data need to be normalized to alleviate the risk of saturation. However,

in this case the training data are already within the region of [0, 1], hence the

normalization process is unnecessary here.

2) Training parameters configuration.

To train the RNN, some training parameters in the EKF algorithm such as P , Q ,

and R need to be initialized first. The training parameters configuration is referred from

a previous study [Pusk94] without considering the training divergence issue. Without any

specific note, in this study the error covariance matrix P , the covariance matrix of

process noise Q, and the measurement noise covariance matrix R are all diagonal

matrices. Each of the diagonal elements of P is initialized as 100. Each diagonal element

 109

of the covariance matrix of process noise Q is initialized as 0.01 and this value descends

linearly within 100,000 training patterns until Q reaches a minimum limit of 0.000001.

Similarly, each diagonal element of the measurement noise covariance matrix R is

initialized as 100 and it also descends linearly until it reaches a minimum value of 2. Both

the settings of R and Q help the training error converge to a global minimum.

3) Training Process Configuration.

First, each weight of the network is randomly initialized in the region of [-1, 1].

Training parameters are initialized as mentioned before. Training patterns are then fed

into the EKF training algorithm (Equations (3.47-3.49)) to train the network weights.

Single pattern training is used here so that the weights are updated after each training

pattern is presented. The training process stops when its stop criteria are satisfied. The

stop criteria is used to guarantee the final training error is small so that the network is

capable of modeling and at the same time not too small which leads to the over-fitting

problem. In this study, the stop criteria are determined by trial-and-error: i) the number of

training epochs (a complete pass through all of the training patterns) used should be less

than 100 and the training process stops after 100 steps if no other stop criteria are met; or

ii) if the training error is less than a predetermined case-dependent value (here is 3%) and

the difference between the current error and the error of 20 epochs before is less than

another predetermined case-dependent value (here is 0.03%).

4) Network structure determination

RNN network structure is first determined by setting the numbers of input

neurons, hidden neurons and output neurons. Six network inputs are selected as follows:

 110

three outputs at the previous steps)(ky p ,)1(−ky p , and)2(−ky p , two control actions

)(ku and)1(−ku , and a constant bias 1; and the network output is)1(+ky p , which is

the output of the benchmark system at the next time step (k+1). The number of hidden

neurons is determined by a trial and error method, and the final training error results are

listed in Table (5.1). According to a rule of thumb [Scha97], 13 hidden neurons are

chosen first and the training error is found to be 3.2%. Afterwards, networks with fewer

hidden neurons are selected and the corresponding training errors are investigated. It is

found that RNN with more than 8 hidden neurons is able to adequately model the tool

wear progression (the final training error is less than 5%). For example, the training error

of the network (6-9-1) with 9 hidden neurons (3.7%) is quite close to that of the network

(6-13-1) with 13 hidden neurons (3.2%). However, for the network with 8 hidden

neurons, the training error becomes relatively large (5.7%). The training error results for

selected networks are shown in Figure (5.2). A simple network structure is always

preferred to reduce the risk of over-fitting, so the network with a 6-9-1 structure as shown

in Figure (5.3) is selected in this study.

 111

Table 5.1: Training error with different network structure

Network structure Training error (%)
6-13-1 3.2
6-11-1 3.3
6-9-1 3.7
6-8-1 5.7

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Training epoch

Tr
ai

ni
ng

 e
rro

r

6-13-1 RNN
6-11-1 RNN
6-9-1 RNN
6-8-1 RNN

Figure 5.2: Training errors of RNN with typical structure configurations

 112

State feedback loops
(dash lines)

9 hidden neurons

feedforward loops (solid lines)

6 input neurons 1 output neuron

1),1(),(

)2(),1(),(

−

−−

kuku

kykyky ppp)1(+ky p

Figure 5.3: Modeling the bench mark system by a 6-9-1 RNN

Modeling Performance of the Recurrent Network

An MLP, an FFCNN and a RNN are implemented to model the system. The

networks are trained using the training data which are assumed to be able to represent the

overall characteristics of the system being studied. Therefore, through the training

process, networks capable of modeling the training data are expected to represent the

dynamics of the benchmark system.

During the training process, the appropriate network architecture is determined

first as stated in the previous section. Using a similar trial and error approach, the MLP

has been found to be 6-11-1 and the other networks (FFCNN and RNN) are 6-9-1. The

same training data are used to train the networks. 400 training epochs are used since MLP

converges much slower. The modeling results for MLP, FFCNN, and RNN are shown in

Figures (5.4-5.6) respectively. Two discontinuous regions (250-300 and 500-550) are

magnified to see more details of network’s modeling performance no these complex part.

 113

Table 5.2: Training error with different types of network

Network Training error (%)
MLP 6.8

FFCNN 3.8
RNN 1.1

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

1.5

Time step

O
ut

pu
t

Desired output
MLP output

240 260 280 300
0.2

0.4

0.6

0.8

1

Time step

O
ut

pu
t

Desired output
MLP output

500 520 540

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Time step

O
ut

pu
t

Desired output
MLP output

Figure 5.4: Training results of MLP

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

Time step

O
ut

pu
t

Desired output
FFCNN output

500 510 520 530 540 550

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Time step

O
ut

pu
t

Desired output
FFCNN output

250 260 270 280 290
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time step

O
ut

pu
t

Desired output
FFCNN output

Figure 5.5: Training results of FFCNN

 114

500 510 520 530 540 550
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

Time step

O
ut

pu
t

Desired output
RNN output

250 260 270 280 290 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time step

O
ut

pu
t

Desired output
RNN output

0 200 400 600 800 1000

-0.5

0

0.5

1

Time step

O
ut

pu
t

Desired output
RNN output

Figure 5.6: Training results of RNN

Moreover, to better compare these networks’ modeling accuracy, the modeling

errors are depicted in Figure (5.7). Training error and modeling error are two related but

different concepts. The former one is defined by Equation (3.51) which accounts for the

overall modeling error for all the training patterns of an epoch while the latter one

accounts for the difference between target value (measurement) and the corresponding

network output for a pattern. The sum of square errors in the four regions ([1-250] [251-

500] [501-750] [751-1000]), and the overall region ([1-1000]) are listed in Table (5.3)

Table 5.3: Modeling errors of the networks

Sum of square of modeling error Network 1-250 251-500 501-750 751-1000 1-1000
MLP 0.3381 0.3173 0.0722 0.3654 1.0929

FFCNN 0.0435 0.2792 0.0093 0.0065 0.3385
RNN 0.0053 0.0021 0.0055 0.0024 0.0154

 115

a) RNN

b) MLP c) FCNN

0 200 400 600 800 1000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time step

M
od

el
in

g
er

ro
r

0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2

0.3

Time step

M
od

el
in

g
er

ro
r

0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2

0.3

Time step

M
od

el
in

g
er

ro
r

Figure 5.7: Modeling errors of the networks

Some observations can be drawn from the results:

1) The largest modeling errors are distributed around the discontinuous regions

around time steps 250, 500, and 750 because theses regions contain abrupt

changes and are most difficult to be modeled.

2) For MLP, the error distribution is relatively even and there are large steady

errors (±0.1) in the first and last regions.

3) For FFCNN, the modeling error at time step 500 is the largest among all the

results, although its average modeling error is smaller than the MLP.

 116

4) The distribution of modeling errors of RNN are similar to that of FFCNN

within the four regions, while in the discontinuous regions the modeling

errors of RNN are much smaller which indicates that RNN works better in

modeling non-linear dynamical systems.

Comparing all the modeling results, RNN can most accurately model the

benchmark system.

Training Convergence Study of Recurrent Neural Network

Apart from the modeling accuracy, some other aspects of RNN are also studied.

Training convergence and estimation robustness are studied and results are shown in the

following sections. Training convergence studies are conducted for two objectives:

1) To make the training process convergent, and

2) To make the training process converges faster.

In this study, the first objective is achieved by adapting the covariance matrix of

process noise R of the EKF training algorithm, while the second one is achieved by

adapting the covariance matrix of measurement noise Q of the EKF.

R Adaption Law for Convergence Guarantee

The R adaption law is verified with the case study first. As mentioned in Chapter

four, training divergence of RNN may occur due to improper choice of training noise

parameters. Figure (5.8) shows the result of a modeling scenario as r is first initialized as

5 and it then decreases linearly to 0.5 at –4.5×10-5 per training pattern during first

 117

100,000 training patterns. The corresponding modeling error is also shown in Figure

(5.8), which diverges right after 50 patterns even before finishing a training epoch. At

that time, r has been linearly reduced from 5 to 4.9978 as in Figure (5.9). The modeling

error for a certain training pattern is defined as the difference between its desired output

and RNN output.

0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

Time step

O
ut

pu
t

Desired output
RNN output

0 10 20 30 40 50 60 70
-80

-60

-40

-20

0

20

40

60

80

Time step

M
od

el
in

g
er

ro
r

0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

Time step

O
ut

pu
t

Desired output
RNN output

0 10 20 30 40 50 60 70
-80

-60

-40

-20

0

20

40

60

80

Time step

M
od

el
in

g
er

ro
r

Figure 5.8: Training result and modeling error without R adaption law

0 10 20 30 40 50
4.9975

4.998

4.9985

4.999

4.9995

5

5.0005

5.001

Training pattern

r

Figure 5.9: r values during training without R adaption law

 118

To verify the effectiveness of the R adaption law in stabilizing the training

process, RNN is further trained by applying the proposed R adaption law. As shown in

Equation (4.43), the R adaption law takes effect when the modeling error is beyond a

certain boundary ()()()(192)(kHkPkHke T>). As in the aforementioned divergent

case, the r is first initialized as 5 and gradually reduced whereas the R adaption law is

concurrently implemented. Corresponding to Figure (5.8), Figure (5.10) shows the

convergent training results. Using the R adaption law, the training process is finally

convergent and the modeling errors are much smaller and its final training error =3.6%

which is comparable to the stable RNN training error, 3.7% in the previous case shown in

Table (5.1).

Figure (5.11) shows the magnitude of modeling errors gradually decreases from 2

to 0.015 during the training process. Corresponding to Figure (5.9), the r values during

training for this convergent case are shown in Figure (5.12). It can be seen that when the

precondition in R adaption law (Equation (4.43)) is met, R adaption law takes effect –

the r values deviate away from the straight line as shown in Figure (5.9). The

oscillations in Figures (5.11) and (5.12) are the outcomes of the R adaption law. From

Figure (5.11), it can be seen that relatively big modeling errors (about ±2) are generated

in the oscillation region, while with the R adaption law the error gradually decreases

during the training process and finally reach a stable small value 0.015. From these

results it is clear that the R adaption law make the previously divergent training process

become convergent.

 119

500 510 520 530 540 550
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

Time step

O
ut

pu
t

Desired output
RNN output

250 260 270 280 290 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time step

O
ut

pu
t

Desired output
RNN output

0 200 400 600 800 1000

-0.5

0

0.5

1

Time step

O
ut

pu
t

Desired output
RNN output

Figure 5.10: Training results with R adaption law

0 2 4 6 8 10
x 10

4

-3

-2

-1

0

1

2

3

Training pattern

M
od

el
in

g
er

ro
r Oscillation

0 2 4 6 8 10
x 10

4

-3

-2

-1

0

1

2

3

Training pattern

M
od

el
in

g
er

ro
r Oscillation

Figure 5.11: Modeling error during training with R adaption law

 120

0 2 4 6 8 10
x 104

0

5

10

15

20

25

30

35

40

Training pattern

r
Oscillation

Figure 5.12: r values during training with R adaption law

Q Adaption Law for Convergence Speed

In addition to the R adaption law, a Q adaption law derived from the maximum

likelihood estimation method is applied to speed up the training convergence process.

Four simulation scenarios are studied to appreciate the importance of the Q adaption law:

1) The Q matrix is set as a null matrix, which means a zero covariance matrix of

process noise or the process noise is removed from the EKF training

algorithm;

2) RNN is trained using constant Q (Q = 0.01I);

3) RNN is trained as follows: each diagonal element of Q is initialized as 0.01

and this value decreases linearly during 100,000 training patterns until it

reaches a limit of 0.000001; and

 121

4) The proposed Q adaption law is implemented during the training process. In

all the cases r is initialized as 100 and it is reduced linearly until r reaches a

limit of 2 as in a previous study [Pusk94]. It should be pointed out that the

diagonal elements of Q under the third scenario are always the same whereas

they might be different under the fourth scenario.

For the above four scenarios, the training process is found always stable and

Figure (5.13) illustrates the effecting of introducing the Q adaption law during training.

The final training error after the training process is listed in Table (5.4). As seen from

Figire (5.13), the Q adaption law has helped achieve the best convergence performance

with a minimum final training error (3.2%) and fastest training speed, followed by the

decreasing Q setting (Scenario 3 with a 3.7% error), the constant Q setting (Scenario 2

with a 3.9% error), and the zero Q setting (Scenario 1 with a 4.8% error). Different from

the other cases, in Scenario 1, the training error fluctuates during the training process.

The fluctuation is due to that the update of weight is only driven by the measurement

noise and the modeling error fluctuates during the training process.

 122

0 20 40 60 80 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Training epoch

Tr
ai

ni
ng

 e
rro

r

Q = 0
Q = 0.01I

Decreasing Q

Q adaption law

. Figure 5.13: Comparison of RNN training with different Q settings

Similarly, to show the effectiveness of the proposed Q adaption law, same sets of

simulations have been conducted for the optimized RNN network. The training error

results are listed in Table (5.4). As shown in Figure (5.14), the results are similar to those

in Figure (5.13) except that the training errors decrease much faster owning to the

connectivity optimization process mentioned in Chapter three. Again, the Q adaption law

has helped achieve the best convergence performance with a minimum final training error

(3.0%) and fastest training speed, followed by the decreasing Q setting (Scenario 3 with

a 3.6% error), the constant Q setting (Scenario 2 with a 3.8% error), and the zero Q

setting (Scenario 1 with a 4.3% error).

 123

0 20 40 60 80 100
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Training epoch

Tr
ai

ni
ng

 e
rro

r

Q = 0

Q = 0.01I
Decreasing Q

Q adaption law

0 20 40 60 80 100
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Training epoch

Tr
ai

ni
ng

 e
rro

r

Q = 0

Q = 0.01I
Decreasing Q

Q adaption law

Figure 5.14: Comparison of optimized RNN training with different Q settings

0 20 40 60 80 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Training epoch

Tr
ai

ni
ng

 e
rro

r

OptRNN with Q adaption law
RNN with Q adaption law

Figure 5.15: Comparison of training process of RNN and optimized RNN with Q

adaption law

 124

Figure (5.15) is drawn to better illustrate the effectiveness of Q adaption law on

RNN and corresponding optimized RNN. Although the training speed of optimized RNN

is much faster, the final training errors of both cases are comparable (3.1% for RNN and

3.0% for the optimized RNN).

Table 5.4: Final training errors of different Q settings

 Scenario 1 Scenario 2 Scenario 3 Scenario 4
RNN 3.1% 3.9% 3.7% 4.8%

OptRNN 3.0% 3.8% 3.6% 4.3%

Figure (5.16) shows the trace of Q during training for Scenario 1 and Scenario 3.

Trace of Q is drawn versus training patterns. For Scenario 3, the diagonal elements of Q

linearly decrease during training process while for Scenario 1, the trace value reduce

dramatically first and then staying on a periodical-like feature. To watch the details of

Part (b), the region of training patterns [5001, 7000] is depicted in Figure (5.17). The

training patterns [5001, 6000] account for training epoch 5 and the training patterns [6001,

7000] account for training epoch 6. It can be seen that in each training epoch, trace of Q

is relatively high in the discontinuous regions, such as regions close to training pattern

5000, 5250, 5500, 5750 etc.

 125

0 2 4 6 8 10
x 10

4

0

0.1

0.2

0.3

0.4

Training pattern

Tr
ac

e(
Q

)

0 2 4 6 8 10
x 10

4

0

0.1

0.2

0.3

0.4

Training pattern

Tr
ac

e(
Q

)

(a) Trace of Q during training for Scenario 3 (b) Trace of Q during training for Scenario 1

Figure 5.16: Trace of Q during training processes of Scenarios 1 and 3

5000 5500 6000 6500 7000
0

0.01

0.02

0.03

0.04

Training pattern

Tr
ac

e(
Q

)

Epoch 5 Epoch 6

Figure 5.17: Trace of Q in training epochs (5 and 6)

Q is diagonal matrix. The diagonal element of Q after the training process is

shown in Figure (5.18). In the training Scenario 3 the diagonal elements are equal while

in the training Scenario 1 the diagonal elements are varied. It is obvious that training

Scenario 1, which uses the proposed Q adaption law, has more freedom in setting Q .

 126

(a) Diagonal elements of Q after training for
Scenario 3

(b) Diagonal elements of Q after training for
Scenario 1

0 10 20 30 40
0

2

4

6

8 x 10-4

k

Q
k,

k

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 x 10-4

k

Q
k,

k

Figure 5.18: Diagonal elements of Q after training scenarios 1 and 3

From the training convergence study, the following conclusion can be drawn as:

1) The R adaption law can stabilize the training process by increasing R values

when modeling error in training is large. Generally small R value put more

confidence to the measurement hence it is possible to make the training

process converge fast. However, too small R value may make the training

process diverge. Hence it is critical to use the R adaption law to guarantee the

training convergence.

2) The Q adaption law can adapt Q during training which can accelerate the

training convergence. It is further found that when the modeling error is

relatively large, the Q values are enlarged to drive the training process more

efficiently; when the modeling error is very small, the Q values are adjusted

to be small, which means there is no need to change the weights too much.

 127

Altogether, the weight update is driven by the two noises; the developed adaption

laws can adapt these noises and hence stabilize NN training process, increase its training

accuracy, and accelerate the training process.

Robustness Study of the Recurrent Neural Network

In a pervious section, A RNN and an optimized RNN are applied to model the

non-linear dynamical benchmark system. The architectures of these two networks are

both 6-9-1. Six inputs are the current and previous outputs)1(),(−kyky pp , and

,)2(−ky p , two control actions)1(),(−kuku and a constant bias 1; the output of the

network is)1(+ky p .

In this section, the proposed robustness quantification method is applied to

quantify the robustness of the trained RNN and the optimized RNN. Here two robustness

measures are considered: the local robustness measure, which is input-dependent, for any

specific input sample based on Equations (4.61) and the global robustness measure for

overall network robustness based on the average of local robustness measures. Generally,

the perturbation level should be determined based on experimental observations as the

hardware/software might have during the implementation of ANN. Here the perturbation

level L in Equation (4.51) has been taken as 1% for simplicity and 100 input samples

have been used if not mentioned otherwise. Based on the proposed approach a smaller

robustness value means higher system robustness to external perturbations.

Figure (5.19) shows the varying local robustness measures of NN using 100

sample inputs. Each point represents a local robustness measure for the nth input sample.

 128

The global robustness measure is found to be 0.0136 by averaging the local robustness

measures. Similar varying local robustness measure tendency has been observed with

optimized RNN, and its global robustness measure is found to be 0.0067, which is

smaller than that of NN.

0 20 40 60 80 100
0.01

0.012

0.014

0.016

0.018

0.02

nth input sample

Lo
ca

l r
ob

us
tn

es
s

Figure 5.19: Local robustness measures for RNN using 100 input samples

The proposed global robustness measure is dependent on the two factors: the

number of input samples and the perturbation level applied. The following sections study

the effects of the two factors on the global robustness value.

Effect of Number of Input Samples on Global Robustness Measure

In general, the more input samples are used, the more reliable the global

robustness measure represents the system robustness performance over the whole input

space. Unfortunately, it is impossible to compute the global measure based on an

exhaustive way by sampling all possible inputs. As so, a minimum amount of input

 129

samples, which are needed for global robustness quantification, should be determined

first. To find this minimum amount in this study, different numbers of input samples have

been selected and their corresponding global robustness measures for both RNN and the

optimized RNN are computed and shown in Figure (5.20).

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Number of input samples

G
lo

ba
l r

ob
us

tn
es

s
m

ea
su

re

RNN
Optimized RNN

Figure 5.20: Robustness of RNN and optimized RNN (perturbation level = 1%)

It can be seen that for each network the robustness measures converge to a steady

value quickly after more than 10 uniformly generated input samples are used. Based on a

conservative consideration, 100 input samples are used here and in the following

sections. Based on the 100 input samples, optimized RNN has a global robustness value

of 0.0067, which is smaller than that of RNN (0.0136), implying that optimized NN is

more robust than the regular NN [Kris93].

 130

Effect of the Perturbation Level on Global Robustness Measure

The perturbation levels ranging from 1% to 20% have been applied to the trained

network weights to study the network robustness under perturbed weights; and the results

are shown in Figure (5.21). It can be seen from Figure (5.21) that the optimized RNN is

more robust than the regular RNN for all the perturbation levels, which indicates the

connectivity optimization process has improved the network robustness as observed

before [Kris93].

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Perturbation level (%)

G
lo

ba
l r

ob
us

tn
es

s
m

ea
su

re

RNN
Optimized RNN

Figure 5.21: Network robustness values under different perturbation levels

It can also be seen that the relationship between the robustness measure and the

perturbation level can be approximated as linear. This linear pattern is attributed to the

following reason. All the input and output neurons use a linear activation function, only

hidden neurons which adopt a sigmoid activation function that may generate nonlinearity.

However, most hidden neurons work in the linear region of their activation functions

 131

under small perturbations, which may lead to a linear mapping between the perturbation

and the robustness measure.

Comparison among Robustness Measures

The proposed robustness quantification approach is further compared with the

performance loss-based and sensitivity matrix-based approaches. The performance loss-

based and sensitivity matrix-based measures are computed based on the training data

mentioned in the previous section. To fairly compare the three approaches, the same

training data are also used to compute the proposed robustness measure, and the LHS

input sampling process is not applied here to generate input samples for the proposed

approach.

For both the performance loss-based and the proposed approaches, the 1%

perturbation level is used. For the performance loss-based approach, 10,000 networks are

generated based on the perturbed weights, and the network output is then compared with

the corresponding desired outputs to compute MSE. The resulting maximum MSE is

taken as the performance loss-based measure. For the sensitivity matrix-based approach,

the sensitivity matrices for all the training inputs are obtained during the training process

and the spectral norm [Kris99] for each matrix is computed as the local robustness

measure. It should be emphasized that the output of the non-linear dynamical benchmark

system is a scalar, so the sensitivity matrix is actually a vector. It is known that the matrix

norm corresponding to the Euclidean vector norm is the spectral norm [Baks80],

 132

therefore the spectral norm of a vector is the same as its Euclidean norm. The average of

these norms is used as the sensitivity matrix-based measure.

It should be pointed out that the three robustness measures cannot be directly

compared against each other because they are computed using different criteria. Instead,

the ratio of robustness measures between RNN and optimized RNN is studied to indicate

the effectiveness of any quantification approach. A larger robustness ratio means that this

quantification approach is more sensitive in quantifying the robustness difference.

Table 5.5: Comparison of robustness quantification approaches

Robustness
quantification approach RNN robustness (r1) Optimized RNN

robustness (r2)
Robustness
ratio (r1/r2)

Performance loss-based 0.0395 0.0342 1.16
Sensitivity matrix-based 2.7163 1.9988 1.36

Proposed 0.0138 0.007 1.97

Table (5.5) lists the comparison results. For all the three quantification

approaches, the optimized RNN is found to be more robust than RNN. It is found that the

proposed approach (1.97) has the largest robustness ratio than those of the performance

loss-based approach (1.16) and the sensitivity matrix-based approach (1.36). As the

largest robustness ratio value is associated with the most sensitive quantification

approach, it is concluded that the proposed robustness quantification approach is the most

effective one among these three approaches.

Relationship between Proposed and Sensitivity Matrix-based Approaches

Under a small perturbation level the uncertainty propagation analysis used in this

proposed approach can also be related to the sensitivity matrix–based approach. Each

 133

element (
j

i
ij w

y
H

∂
∂

=) of the weight–output Jacobian sensitivity matrix H represents the

derivative of an output (iy) with respect to a weight (jw). Using the uncertainty

propagation analysis under a small weight perturbation such as 0.01%, this ijH can be

approximated by the standard deviation ratio
)(
)()(

j

j
i

ij wstd
ystd

S = , where std(·) is a standard

deviation operator and)()(j
iystd represents the standard deviation of output iy under a

perturbation with weight jw . This standard deviation ratio ijS describes the dependence

of the output variation on the weight variation. It should be pointed out that different

from the proposed robustness quantification approach where perturbations are added to

all the weights simultaneously to compute)(jyv
vσ , here each time perturbation is only

added into a specific weight jw to compute)()(j
iystd while all the other weights remain

the same.

Table (5.6) lists the sensitivity matrix-based robustness measures averaged based

on their spectral norms [Kris99], which are computed using the traditional method (ijH)

and the uncertainty propagation analysis (ijS), respectively. It is found that the two

results quite match each other; therefore the proposed analysis can also be used to

compute the sensitivity matrix-based measure.

Table 5.6: Sensitivity matrix-based robustness of RNN and optimized RNN

 RNN robustness Optimized RNN robustness
Robustness (H matrix based) 2.7163 1.9988
Robustness (S matrix based) 2.7274 1.9946

 134

Efficiency of the Proposed Robustness Quantification Method

The unscented transform is efficient to quantify the uncertainties in RNN output;

to verify that, another uncertainty propagation method using Monte Carlo analysis is

carried out. A set of weight vectors are randomly generated based on the Gaussian

distribution of the perturbed weight vector used before, and each of them form a RNN.

The inputs are fed into these RNN, and the standard deviation in networks’ output are

used as the local robustness measure, which further forms the global robustness measure

by averaging. Different numbers of RNN are generated and the computation times are

recorded in Table (5.7). It is found that to reach the same robustness result (0.0138), 2000

RNN need to be generated and the computation time is about 6 times of the proposed

method, whose corresponding results are shown in Table (5.8). The experiment is carried

out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz

and 3.0 G RAM.

Although the proposed robustness measure is developed based on the assumptions

that same level of perturbation is introduced to all the weights, in real applications the

perturbation level for weights can be specified based on measurements and the same

procedure can be applied.

 135

Table 5.7: Robustness results of RNN from a Monte Carlo method

Number of RNN generated Robustness measure Computation time (second)
10 0.0099 9.21

100 0.0132 95.82
500 0.0133 464.28
1000 0.0137 960.07
2000 0.0138 1895.31

Table 5.8: Robustness results of RNN from the proposed UT-based method

Number of RNN generated Robustness measure Computation time (second)
301 0.0138 284.91

From these results in robustness study, it can be seen that:

1) The proposed robustness quantification method is flexible and viable. It can

study robustness of a network under different levels of perturbation level. It

does not need the training data, instead it is an uncertainty propagation

method and only a few amounts (100) of input samples are required to

quantify network’s robustness.

2) As an uncertainty propagation based method, because of the application of

the unscented transform, it is more efficient than the Monte Carlo simulation

based method.

3) The proposed robustness quantification is more effective compared with the

other two methods.

4) The optimized RNN is more robust than RNN.

 136

Conclusions

From this case study, some conclusions can be drawn that:

1) RNN network is capable of modeling the non-linear dynamical benchmark

system.

2) The modeling capability of RNN is enhanced through the connectivity

optimization process and the optimized RNN excels RNN in training speed

and modeling accuracy.

3) The proposed R and Q adaption laws can further improve a RNN’s training

convergence performance - to stabilize and accelerate its training process.

4) The developed uncertainty propagation analysis based robustness measure is

more flexible and effective than the other two methods.

All of the results prove that the developed RNN modeling approach is powerful in

terms of accuracy, speed, and stability.

 137

CHAPTER SIX

MODELING OF CBN TOOL WEAR IN HARD TURNING

Abstract

In addition to the benchmark system, another application is used to test

performance of the developed RNN modeling tool. Hard turning with Cubic Boron

Nitride (CBN) tools has been proved to be more effective and efficient in turning

hardened steels than traditional grinding operations. However, rapid tool wear is always a

problem which hurdles the wide implementation of hard turning in industry. Therefore, a

better understanding of the CBN tool wear progression will help optimize cutting

conditions and tool geometry to reduce tool wear, which may make hard turning a viable

technology. The goal of this case study is to use the optimized RNN to model the tool

wear progression and further investigate the network’s performance in training

convergence and robustness. The results show that the developed optimized RNN have

advantages over FFNN in modeling the tool wear progression in hard turning and the

convergence study and robustness study can further improve the network’s performance.

 138

CBN Tool Flank Wear

Based on a typical CBN tool wear observation [Daws02], CBN tool flank wear

length or wearland (VB), as shown in Figure (6.1), is generally regarded as the tool life

criterion or an important index to evaluate the tool performance in hard turning [Taka83]

[Abra95] [Dewe96]. The tool wear rate is assumed uniform across the width of cut as

shown in Figure (6.1).

VB

rake face

flank face

flank wear

100 µm

VB

rake face

flank face

flank wear

100 µm

Figure 6.1: Typical tool wear picture in CBN hard turning

Figure (6.2) shows a typical tool wear progression process which is to be modeled

by the proposed RNN and the optimized RNN. Usually many factors would affect the

process. For a given tool and workpiece combination, the capability to estimate the tool

wear as a function of cutting conditions as cutting speed, feed rate, and depth of cut, is

critical to the overall optimization of a hard turning process. The objective of this case

study is to model the tool wear progression process using proposed RNN networks.

 139

0 20 40 60 80 100
0

50

100

150

200

250

Time (second)

Fl
an

k
w

ea
r (

m
ic

ro
 m

et
er

)

Figure 6.2: A Typical tool wear progression in hard turning

Experimental Setup

The Data are collected from an experiment [Huan04]. In that experiment,

hardened AISI 52100 bearing steel with a hardness 62 HRc was machined on a horizontal

Hardinge lathe using a low CBN content tool insert (Kennametal KD050) with a -20º and

0.1 mm wide edge chamfer and a 0.8 mm nose radius. The ISO DCLNR-164D tool

holder was used, which introduced a negative 5º rake angle. No cutting fluid was applied.

Flank wear length was measured using an optical microscope (Zygo NewView 200). The

experiment was stopped when a sudden force jump was observed signaling a chipping or

broken tool condition.

 140

Table 6.1: Cutting conditions of the experiments [Huan04]

Condition
index

Speed
(m/s)

Feed
(mm/re)

Depth of
cut (mm)

1 3.05 0.152 0.203
2 1.52 0.152 0.203
3 3.05 0.076 0.203
4 2.29 0.114 0.203
5 1.52 0.076 0.203
6 3.36 0.114 0.203
7 2.29 0.114 0.203
8 2.29 0.061 0.203
9 2.29 0.168 0.203

10 1.21 0.114 0.203
11 2.29 0.114 0.203
A 1.52 0.076 0.102
B 1.52 0.076 0.152

Machining test was performed based on a standard central composite design test

matrix with an alpha value of 1.414. The center point (0,0) was determined based on the

tool manufacturer’s recommendation [Huan04]. A typical depth of cut was suggested as

0.203 mm, which was used in the test matrix. To further investigate the effect of depth of

cut on tool wear, experiments with various depths of cut were also studied. Ten different

cutting conditions [Huan04], namely conditions 1-5, 8-10, a, and b are listed in Table

(6.1). Conditions 7 and 11 are not utilized here since they are the same as condition 4,

and condition 6 (cutting speed = 3.36 m/s) is also not used since the break-in period

accounted for a large portion of tool flank wear and microchipping was a dominant factor

of tool life under such an aggressive cutting speed. Uncertainty characterization is not

offered here due to the size of the experimental data set.

 141

Recurrent Neural Network Implementation

In this study, a RNN and an optimized RNN are formed to model the CBN tool

wear progression based on the data from Huang et al’s study [Huan04] and their

modeling performance is compared with the measurements as well as that of FFNN

approaches from previous studies [Wang08a] [Wang08b]. The following tasks need to be

conducted to train a RNN modeling the tool wear progression:

1) Training and testing data preparation

As shown in Table (6.1), there are total 10 groups of data available from the hard

turning experiment. Among them data of conditions 1, 5, 9, 10, and a are used for

network training. The training data contain 48 training patterns. The rest of the data (44

patterns) are used to test the generalization ability of the proposed RNN model.

2) Training parameters configuration

To train RNN, some training parameters such as P , Q , and R need to be

initialized first. The training parameters configuration is referred from a previous study

[Pusk94] without considering the training divergence issue. Without any specific note, in

this study, the error covariance matrix P is initialized as a diagonal matrix and each of its

diagonal elements is initialized as 100. Each diagonal element of the covariance matrix of

process noise Q is initialized as 0.01 and this value descends linearly within 100,000

training cycles until Q reaches a minimum limit of 0.000001. Similarly, each diagonal

element of the measurement noise covariance matrix R is initialized as 100 and it also

descends linearly until it reaches a minimum boundary of 2. Both the settings of R and

Q help the training error converge to a global minimum.

 142

3) Training Process Configuration

First, each weight of the network is randomly initialized in the region of [-1, 1].

Training parameters are initialized as mentioned before. Training data are then fed into

the EKF training algorithm (Equations (3.47-3.49)) to train the network weights. During

the training process, the training data are used for each training epoch and the weights are

updated accordingly. The procedure of training using all the training patterns once is

called a training step or epoch. The training process stops when the stop criteria are

satisfied. The stop criteria are determined by trial-and-error: i) the number of training step

should be less than 500 and the training process stops after 500 steps if no other stop

criteria are met; or ii) if the training error is less than 3% and the difference between the

current error and the error of 20 epochs before is less than 0.03% [Wang09].

4) Network structure determination

RNN network structure is first determined by setting the numbers of input

neurons, hidden neurons and output neurons. Four independent variables - cutting speed,

feed rate, depth of cut and machining time and a constant bias 1 are used as the inputs.

The output of the network is the tool flank wear length. The number of hidden neurons is

determined by a trial and error method, and the training error results are listed in Table

(6.2). According to a rule of thumb [Scha97], 12 hidden neurons are chosen first and the

training error is found to be 4.2%. Afterwards, networks with fewer hidden neurons are

selected and the corresponding training errors are investigated. It is found that RNN with

more than 1 hidden neuron is able to adequately model the tool wear progression. For

example, the training error of the network (5-2-1) with 2 hidden neurons (4.5%) is quite

 143

close to that of the network (5-12-1) with 12 hidden neurons (4.2%). However, for the

network with 1 hidden neuron, the training error becomes relatively large (12.8%). The

training results for typical networks are shown in Figure (6.3). The simple network

structure would reduce the risk of over-fitting, so the network with a 5-2-1 structure as

shown in Figure (6.4) is selected in this study.

Table 6.2: Training error with different network structure

Network structure Training error (%)
5-12-1 4.2
5-2-1 4.5
5-1-1 12.8

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

Training step

Tr
ai

ni
ng

 e
rro

r

5-12-1 RNN
5-5-1 RNN
5-2-1 RNN
5-1-1 RNN

Training epoch

Figure 6.3: Training errors of RNN with typical structure configurations

 144

Input neurons Hidden neurons

State feedback loops
(dash lines)

2

feedforward loops (solid lines)

5 1
Output neuron

cutting speed, feed rate,
depth of cut, machining time,

bias 1 Tool wear length
VB

Figure 6.4: Modeling the tool wear progression by a 5-2-1 RNN

Modeling Performance of the Recurrent Network

An MLP, an FFCNN, an optimized FFCNN (OptFFCNN), a RNN, and an

optimized RNN (OptRNN) are applied to model the process. Both the training

performance and testing performance are studied.

Training results indicate the fitness of the network model in modeling the training

data. Training data are assumed to be able to represent the overall characteristics of the

system being studied. Therefore, from the training process, a network capable of

modeling the training data is expected to represent the system dynamics.

During the training process, the appropriate network architecture should be

determined first as stated in a previous section. The MLP has been found to be 5-5-1 and

the other networks (RNN and OptRNN) are 5-2-1. The same training data (conditions 1,

4, 5, 9, and a) have been used to train these networks. 500 training epochs are used for

RNN and OptRNN training while 100000 training epochs are used for MLP training

 145

since MLP converges much slower. The final training error results are listed in Table

(6.3).

Table 6.3: Training error with different types of networks

Network Training error (%)
MLP 4.8
RNN 4.5

OptRNN 4.4

From the results, all the training errors are smaller than 5% (MLP: 4.8%, RNN:

4.5%, and OptRNN: 4.4%). Figure (6.5) shows some representative training result

comparisons. It can be seen that the modeling performance of these investigated NN are

close in modeling the training data and all the networks are able to accurately represent

the training data and model the tool wear progression.

From Figure (6.5), it should be pointed out that the training results of conditions

10 and a are more accurate than those of conditions 1 and 5. It is because that during this

pattern learning process the network is trained orderly from condition 1 to condition a. As

a result, more training effort has been put to the most recent training patterns. While the

overall training error of the OptRNN is generally smaller than that of MLP, the OptRNN

may have large errors for some specific training patterns.

The trained networks are further tested for their generalization ability. Conditions

2, 3, 4, 8, and b have been used as the testing cases, which are unseen in the above

network development process.

 146

0 1 2 3 4
0

20

40

60

80

100

120

140

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 5 10 15 20 25 30
-50

0

50

100

150

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 20 40 60 80 100
-50

0

50

100

150

200

250

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 10 20 30 40 50 60
-50

0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

Condition 1 Condition 5

Condition 10 Condition a

Figure 6.5: Training results for training cases

Figure (6.6) shows the testing results from the MLP, RNN, and OptRNN. It can

be seen that:

1) Except for a few testing patterns in condition 4, RNN is more capable of

accurately modeling this non-stationary and dynamical tool wear progression

than the MLP;

2) For most cases, the discrepancy between the network prediction and its

desired output (the experimental measurement) increases with time;

 147

3) RNN and OptRNN have the similar modeling performance in this tool wear

study mainly due to their inherent recurrent architectures; and

4) The MLP tends to over estimate the tool wear length for all the testing cases

which implies its limitation in modeling this non-stationary and dynamical

system.

The modeling performance is further compared with those of an FFCNN approach

and an OptFFCNN approach [Wang08a]. Table (6.4) shows the testing errors for these

networks which better illustrate their overall modeling capability. Some observations can

be drawn as follows:

1) The average testing errors of optimized networks (the optimized FFCNN and

the optimized RNN) are smaller than those of their corresponding regular

networks (FFCNN and RNN);

2) The average testing errors of recurrent networks (RNN and the optimized

RNN) are smaller than those of purely forward networks (MLP and FFCNN);

and

3) From the variance of errors, the MLP has the largest variation which means it

is the least robust network while the optimized networks have smaller

variances (8.0 and 6.1) which indicates the optimization process can improve

network’s robustness as well as their modeling accuracy.

 148

0 1 2 3 4
0

20

40

60

80

100

120

140

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 10 20 30 40
0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 5 10 15
0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

Condition 2 Condition 3

Condition 4 Condition 8

Figure 6.6: Modeling results for testing cases

Table 6.4: Modeling error for testing cases

Condition
Index MLP (%) FFCNN (%) Optimized

FFCNN (%) RNN (%) Optimized
RNN (%)

2 8.37 10.65 10.29 10.63 7.65
3 39.45 26.32 12.77 16.42 10.27
4 17.94 22.03 11.51 16.09 12.62
8 15.57 15.27 13.71 9.35 8.65
B 5.96 6.50 5.60 5.84 5.29

Avg. of error 17.46 16.15 10.78 11.67 8.90
Var. of error 140.4 52.4 8.0 16.5 6.1

 149

Training Convergence Study of RNN

In the previous study, parameter setting of EKF training algorithm is borrowed

from [Pusk94]. The parameter R represents the confidence of noised measurement, the

smaller the value the more confidence would put on the measurements. From Equation

(3.48), small R also leads to high learning rate. However, too small R may lead to

excessively large learning rate which cause the training instability problem. On the other

hand, the covariance matrix of measurement noise, R , also indicates the amount of noise

added in the measurements. In the beginning stage of training process, the network output

is far from the desired output. The network output can be viewed as the estimation result

of a measurement with large noise. Hence, the diagonal element of R is supposed to set

as a large number (100) at the beginning stage. During the training process, the modeling

error become smaller and the network output can be viewed as the estimation of a

measurement with small noise. Follow this intuition, the R setting in [Pusk94] provides

an empirical guide for R configuration. However, the R setting can’t guarantee the

convergence of a training process. In contrast the R adaption law is proposed in this

study and the results are presented in the following section.

R Adaption Law for Convergence Guarantee

The R adaption law is first verified in this case study. Similarly as in the

benchmark system case study, a divergent case is first illustrated and the R adaption law

is applied to make the process convergent. A divergence training case is shown in Figure

(6.7). The r in Equation (4.32) is initialized as 0.45 and linearly reduced to 0.1 during

 150

training with 100000 training patterns and the modeling error goes to infinite after 922

patterns.

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5 x 107

Training pattern

M
od

el
in

g
er

ro
r

Figure 6.7: A divergent training processes

For the above case, its modeling results have big errors. The final modeling

performance (trained with 922 training patterns) of case b) is shown in Figure (6.8).

Large modeling errors (more than 1000 times of the magnitude of the measurements) are

observed in Figure (6.8).

Correspondingly, the r values during the training process are shown in Figure

(6.9) as below. This R setting leads to the divergence problem indicated in Figure (6.8).

 151

0 10 20 30 40 50 60
-6

-4

-2

0

2

4 x 10
4

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

) Desired output
RNN output

0 20 40 60 80 100
-6

-4

-2

0

2

4

6

8 x 10
4

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

0 10 20 30
-1

-0.5

0

0.5

1 x 10
5

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

0 1 2 3 4
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5 x 10
4

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

Condition 1 Condition 5

Condition 10 Condition a

Figure 6.8: Modeling performance for tool wear progression without R adaption law

0 200 400 600 800 1000
0.446

0.447

0.448

0.449

0.45

0.451

0.452

Training pattern

r

Figure 6.9: r values during training without R adaption law

 152

RNN is also trained using the proposed R adaption law. The r value is initialized

as in the aforementioned divergent case, and the R adaption law takes effect when the

modeling error is beyond the certain threshold as specified by Equation (4.43). Under the

R adaption law, the training process became convergent as shown in the modeling error

during training plot, Figure (6.10). It is found that two groups of big oscillations occur in

the beginning region of the plot. But the training error hasn’t blow up to infinity during

the training process and finally it converge to a small value, 4.1%.

In addition to modeling errors, the training results under adaption are also shown

in Figure (6.11). Comparing to the divergent case in Figure (6.7), the modeling errors

here are relatively small.

0 0.5 1 1.5 2 2.5
x 10

4

-4

-3

-2

-1

0

1

2

3

4

5

Training pattern

M
od

el
in

g
er

ro
r Oscillation

Figure 6.10: Modeling error during training with R adaption law

 153

0 1 2 3 4
-50

0

50

100

150

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

0 5 10 15 20 25 30
-50

0

50

100

150

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

0 20 40 60 80 100
0

50

100

150

200

250

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

0 10 20 30 40 50 60
-50

0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
RNN output

Condition 1 Condition 5

Condition 10 Condition a

Figure 6.11: Training results for tool wear progression with R adaption law

To show the effect of the adaption law on R , the adapted r during the training

process is drawn in Figure (6.12). Again, the big variations account for the effect of R

adaption law. It can be also seen that the oscillations in Figure (6.12) are coherent with

oscillations in the modeling error plot Figure (6.10). When the modeling error is beyond

the boundary in Equation (4.43) ()()1()(192)(kHkPkHke T −>), the adaption law

takes effect to generate a larger r to draw the training process to be convergent. From

these results of training in Figure (6.7-6.12), a conclusion can be drawn that the R

adaption law can draw the training process from divergence to convergence.

 154

0 0.5 1 1.5 2 2.5
x 104

0

1

2

3

4

5

Training pattern

r

Oscillation

0 0.5 1 1.5 2 2.5
x 104

0

1

2

3

4

5

Training pattern

r

Oscillation

Figure 6.12: r values during training with R adaption law

Q Adaption Law for Convergence Speed

In addition to the R adaption law, the Q adaption law (Equation (4.43))

developed in Chapter four is applied in this case study as well. The effect of the Q

adaption law is also tested in tool wear modeling under the same representative cutting

conditions. As in the benchmark validation chapter, the four simulation scenarios are

studied to appreciate the importance of the Q adaption law:

1) The Q matrix is set as a null matrix, which means a zero covariance matrix of

process noise or the process noise is removed from the EKF training

algorithm;

2) RNN is trained using constant Q (Q = 0.01I);

 155

3) RNN is trained as follows: each diagonal element of Q is initialized as 0.01

and this value decreases linearly during 100,000 training patterns until it

reaches a limit of 0.000001; and

4) The proposed Q adaption law is implemented during the training process. In

all the cases r is initialized as 100 and it is reduced linearly until r reaches a

limit of 2 as in a previous study [Pusk94]. It should be pointed out that the

diagonal elements of Q under the third scenario are always the same whereas

they might be different under the fourth scenario.

The results for RNN training are shown in Figure (6.13) and the final training

errors are listed in Table (6.5). It can be seen that the Q law is most effective to minimize

training error and accelerate the training process. The training process with Q =0 has the

largest training error. For the other two scenarios, they are overlap in some regions and it

is difficult to compare their effectiveness.

Table 6.5: Final training errors of different Q settings

 Scenario 1 Scenario 2 Scenario 3 Scenario 4
RNN 3.8% 4.4% 4.5% 5.4%

OptRNN 3.6% 4.2% 4.0% 4.5%

 156

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Training epoch

Tr
ai

ni
ng

 e
rro

r

Q = 0 Q = 0.01IDecreasing Q

Q adaption law

Figure 6.13: Comparison of RNN training errors with different Q settings

To investigate how the Q law affects the training process, Figure (6.14) shows

the trace of Q during training processes under Scenarios 3 and 1. It is clear that the trace

of Q decrease linearly in Scenario 3, while the trace of Q in Scenario 1 decreases more

dramatically in the beginning region. A sub-section of Figure (6.14) is detailed in Figure

(6.15) which reveals the periodicity feature for training patterns. It can be seen that the

Q ’s are specified for training patterns in each training epoch. Further comparing this

figure to the training patterns, it is found that the high Q ’s correspond to big changes in

training patterns. It means the adaption law generates big Q ’s for high variation in the

training patterns. High Q represents high Kalman gain hence the law put more effort to

model these patterns. This is the first factor that contributes to the improvement in

modeling performance in Scenario 3.

 157

(a) Trace of Q during training for Scenario 3 (b) Trace of Q during training for Scenario 1

0 0.5 1 1.5 2 2.5
x 10

4

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Training pattern

Tr
ac

e(
Q

)

0 0.5 1 1.5 2 2.5
x 10

4

0

1

2

3

4

5

Training pattern

Tr
ac

e(
Q

)

Figure 6.14: Trace of Q for Scenarios 1 and 3 during training process

4400 4420 4440 4460 4480
0.03

0.04

0.05

0.06

0.07

Training pattern

Tr
ac

e(
Q

)

Epoch 91 Epoch 92

Figure 6.15: Trace of Q in training epochs (91) and (92)

Figure (6.16) shows the diagonal elements of Q after training under Scenario 3

and 1. For Scenario 3, the elements have the same values while for Scenario 1 different

values are assigned to the elements of Q and hence different training strengths are to be

 158

put on different weights based on needs. This is the second factor that contributes to the

higher modeling capability of Scenario 3.

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

k
Q

k,
k

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

k

Q
k,

k

(a) Diagonal elements of Q after training for
Scenario 3

(b) Diagonal elements of Q after training for
Scenario 1

Figure 6.16: Diagonal elements of Q after training for Scenarios 3 and 1

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Training epoch

Tr
ai

ni
ng

 e
rro

r

Q = 0 Q = 0.01I Decreasing QQ adaption law

Figure 6.17: Comparison of OptRNN training errors with different Q settings

 159

The four Q configurations are also applied on the optimized RNN. Figure (6.17)

shows the results. From these results, the proposed Q adaption law generates the smallest

training error compared to other Q control schemes.

Robustness of Neural Networks

In a pervious section, A RNN and an optimized RNN are applied to model the

non-linear dynamical benchmark system. The architectures of these two networks are

both 5-2-1. Five inputs are cutting speed, feed rate, depth of cut and machining time and a

constant bias 1 are used as the inputs. The output of the network is the tool flank wear

length.

In this section, the proposed robustness quantification method is applied to

quantify the robustness of the trained RNN and the optimized RNN. First local robustness

measure for input samples are computed based on Equations (4.61) and the global

robustness measure for overall network robustness based on the average of local

robustness measures. Generally the perturbation level should be determined based on

experimental observations as the hardware/software might have during the

implementation of ANN. Here the perturbation level L in Equation (4.51) has been taken

as 1% for simplicity and 100 input samples have been used if not mentioned otherwise.

Based on the proposed approach a smaller robustness value implies higher system

robustness to external perturbations. In the following sections, similar tasks have been

conducted as the robustness study of RNN in modeling the benchmark system in Chapter

5.

 160

Corresponding to Figure (5.19), Figure (6.18) shows the varying local robustness

measures using 100 sample inputs. Each point represents a local robustness measure for

the nth input sample. The global robustness measure is found to be 0.0412 by averaging

the local robustness measures. Similar varying local robustness measure tendency has

been observed with the optimized RNN, and its global robustness measure is found to be

0.0232, which is smaller than that of RNN.

0 20 40 60 80 100
0.04

0.041

0.042

0.043

0.044

nth input sample

Lo
ca

l r
ob

us
tn

es
s

Figure 6.18: Local robustness measures for RNN using 100 input samples

The effects of the number of input samples and the perturbation level to the global

robustness measure are studied as follows.

Effect of Number of Input Samples on Global Robustness Measure

In general, the more input samples are used, the more reliable the global

robustness measure represents the system robustness performance over the whole input

 161

space. Unfortunately, it is impossible to compute the global measure based on an

exhaustive way by sampling all possible inputs. As so, a minimum amount of input

samples, which are needed for global robustness quantification, should be determined

first. To find this minimum amount in this study, different numbers of input samples have

been selected and their corresponding global robustness measures for both RNN and

optimized RNN are computed and shown in Figure (6.19).

0 20 40 60 80 100
0.02

0.025

0.03

0.035

0.04

0.045

Number of input samples

G
lo

ba
l r

ob
us

tn
es

s
m

ea
su

re

RNN
Optimized RNN

Figure 6.19: Robustness of RNN and optimized RNN (perturbation level = 1%)

It can be seen that for each network the robustness measures converge to a steady

value quickly after more than 10 uniformly generated input samples are used. Based on a

conservative consideration, 100 input samples are used here and in the following

sections. Based on the 100 input samples, optimized RNN has a global robustness value

of 0.0232, which is smaller than that of RNN (0.0412), implying that optimized NN is

more robust than the regular NN [Kris93].

 162

Effect of the Perturbation Level on Global Robustness Measure

Similar to the robustness study in Chapter five, the perturbation levels ranging

from 1% to 20% have been applied to the trained network weights to study the network

robustness under different level of perturbed weights; and the results are shown in Figure

(6.20). It can be seen from Figure (6.20) that the optimized RNN is more robust than the

regular RNN for all the perturbation levels, which indicates the connectivity optimization

process has improved the network robustness as observed before [Kris93].

It can also be seen that the relationship between the robustness measure and the

perturbation level can be approximated as linear. This linear pattern is again attributed to

the network mapping feature discussed in Chapter five.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Perturbation level (%)

G
lo

ba
l r

ob
us

tn
es

s
m

ea
su

re

RNN
Optimized RNN

Figure 6.20: Network robustness values under different perturbation levels

 163

Comparison among Robustness Measures

The proposed robustness quantification approach is further compared with the

performance loss-based and sensitivity matrix-based approaches. The performance loss-

based and sensitivity matrix-based measures are computed based on the training data

mentioned in the previous section. To fairly compare the three approaches, the same

training data (condition 1, 5, 9, 10, and a) are also used to compute the proposed

robustness measure, and the LHS input sampling process is not applied here to generate

input samples for the proposed approach.

For both the performance loss-based and the proposed approaches, the 1%

perturbation level is used. For the performance loss-based approach, 10,000 networks are

generated based on the perturbed weights, and the network output is then compared with

the corresponding desired outputs to compute MSE. The resulting maximum MSE is

taken as the performance loss-based measure. For the sensitivity matrix-based approach,

the sensitivity matrices for all the training inputs are obtained during the training process

and the spectral norm [Kris99] for each matrix is computed as the local robustness

measure. The average of these norms is used as the sensitivity matrix-based measure.

It should be pointed out that the three robustness measures cannot be directly

compared against each other because they are computed using different criteria. Instead,

the ratio of robustness measures between RNN and optimized RNN is studied to indicate

the effectiveness of any quantification approach. A larger robustness ratio means that this

quantification approach is more sensitive in quantifying the robustness difference.

 164

Table 6.6: Comparison of robustness quantification approaches

Robustness
quantification approach RNN robustness (r1) Optimized RNN

robustness (r2)
Robustness
ratio (r1/r2)

Performance loss-based 0.1118 0.0954 1.1719
Sensitivity matrix-based 2.3821 2.1164 1.1255

Proposed 0.0412 0.0232 1.7835

Table (6.6) lists the comparison results. For all the three quantification

approaches, optimized RNN is found to be more robust than RNN. It is found that the

proposed approach (1.78) has the largest robustness ratio than those of the performance

loss-based approach (1.17) and the sensitivity matrix-based approach (1.12). As the most

sensitive quantification approach is associated with largest robustness ratio value, it is

concluded that the proposed robustness quantification approach is the most effective one

among these three approaches.

Relationship between Proposed and Sensitivity Matrix-based Approaches

Under a small perturbation level the uncertainty propagation analysis used in this

proposed approach can also be related to the sensitivity matrix–based approach. Each

element (
j

i
ij w

y
H

∂
∂

=) of the weight–output Jacobian sensitivity matrix H represents the

derivative of an output (iy) with respect to a weight (jw). Using the uncertainty

propagation analysis under a small weight perturbation such as 0.01%, this ijH can be

approximated by the standard deviation ratio
)(
)()(

j

j
i

ij wstd
ystd

S = , where std(·) is a standard

deviation operator and)()(j
iystd represents the standard deviation of output iy under a

 165

perturbation with weight jw . This standard deviation ratio ijS describes the dependence

of the output variation on the weight variation. It should be pointed out that different

from the proposed robustness quantification approach where perturbations are added to

all the weights simultaneously to compute)(jyv
vσ , here each time perturbation is only

added into a specific weight to compute)()(j
iystd while all the other weights remain the

same.

Table (6.7) lists the sensitivity matrix-based robustness measures averaged based

on their spectral norms [Kris99], which are computed using the traditional method (ijH)

and the uncertainty propagation analysis (ijS), respectively. It is found that the two

results quite match each other; therefore the proposed analysis can also be used to

compute the sensitivity matrix-based measure.

Table 6.7: Sensitivity matrix-based robustness of RNN and optimized RNN

 RNN robustness Optimized RNN robustness
Robustness (H matrix based) 2.3821 2.1164
Robustness (S matrix based) 2.3799 2.1105

Efficiency of the Proposed Robustness Quantification Method

The unscented transform is efficient to quantify the uncertainties in RNN output;

to verify that, another uncertainty propagation method using Monte Carlo method is

carried out. A set of weight vectors are randomly generated based on the Gaussian

distribution of the perturbed weight vector used before, and each of them form a RNN.

The inputs are fed into these RNN, and the standard deviation in networks’ output are

used as the local robustness measure, which further forms the global robustness measure

 166

by averaging. Different numbers of RNN are generated and the computation times are

recorded in Table (6.8). It is found that to reach the same robustness result (0.0422), 1500

RNN need to be generated and the computation time is about 32 times of the proposed

method, whose corresponding results are shown in Table (6.9). The experiment is carried

out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz

and 3.0 G RAM.

Table 6.8: Robustness results of RNN from a Monte Carlo method

Number of RNN generated Robustness measure Computation time (second)
10 0.0413 0.30

100 0.0429 2.65
500 0.0426 13.25
1000 0.0425 26.15
1500 0.0422 38.16

Table 6.9: Robustness results of RNN from the proposed UT-based method

Number of RNN generated Robustness measure Computation time (second)
43 0.0422 1.16

It should be pointed out that the robustness measure 0.0422 in Table (6.9) is

slightly different from the result 0.0412 in Table (6.6). The difference is due to that

different input sets are applied in these two computation processes. In Table (6.6), 100

uniformly generated input samples are used while in Table (6.9) the training input data

are applied.

Similar results have been obtained in this tool wear modeling application. The

following conclusions can be drawn based on this robustness study:

1) The proposed robustness quantification method is flexible and viable.

 167

2) The proposed method is more efficient than another Monte Carlo simulation

based uncertainty propagation analysis based method.

3) The proposed robustness quantification is more effective compared with the

other two methods, the performance loss-based and the sensitivity matrix-

based approaches.

4) All the three methods show that the optimized RNN is more robust than RNN.

Conclusions

In this chapter, modeling performance, training convergence, and robustness of

the developed RNN are studied using a tool wear progression process. The modeling

capability for an MLP, a RNN, and an optimized RNN are compared using the training

data. It can be seen that all the networks can accurately model the training data.

Furthermore, the generalization capability of RNN, the optimized RNN, MLP, FFCNN,

and the optimized FFCNN are studied. It is found that the generalization ability of the

optimized RNN is the best among these networks. The training convergence is also

studied in this case, and the R adaption law is able to make the training process

convergent while the Q adaption law can accelerate the training convergence speed.

Finally, the robustness of the RNN and the optimized RNN are studied. It is found that

the proposed uncertainty propagation based method is more effective, flexible, viable and

efficient than other two existing methods in quantifying RNN’s robustness.

Some conclusions can be drawn from the case study:

 168

1) The applied RNN structure, training algorithm, and optimization method can

make the developed RNN modeling approach more accurate, robust and fast.

2) The proposed adaptive training algorithm can make the training process of

RNN more stable and faster.

3) The proposed robustness measures are effective and efficient to quantify the

robustness of RNN.

All of the results prove that the developed RNN modeling approach is powerful in

terms of accuracy, speed, and stability.

 169

CHAPTER SEVEN

CONCLUSIONS

In this study a RNN is developed based on an FFNN by adding recurrences in its

hidden neuron section. The added recurrences are found to be beneficial in modeling non-

linear dynamics and hence can improve the network’s modeling performance.

Challenges Addressed

This study endeavors to address the following challenges:

Network Structure Determination and Training

How to form an optimal network structure and how to efficiently train networks

are common problems in neural network study. A network is defined from two sides, its

structure and values of its weights. A structured network is actually a parametric model.

The procedure of determining network structure is to find the functional form of the

model and the procedure of training is to determine its parameters.

As for the structure, the prototype of RNN is an FFCNN which has three sections

of neurons (input neuron section, hidden neuron section and output neuron section), and

information flows strictly feedforward in only one direction, from input units to output

units. RNN network can be viewed as the summation of a FFCNN and recurrent

connections added in its hidden neuron section. The recurrent connections can introduce

state feedback into the network structure and improve the network’s modeling

performance. A network with optimal structure is desirable in training speed, training

 170

accuracy, generalization ability, and robustness. However, the optimal topology of a

RNN is case dependent. A pruning method is seamlessly embedded into the training

process to optimize the network structure. The optimized RNN is found to be most

capable of modeling non-linear dynamical systems.

As for the network training, the EKF is an efficient and powerful state estimation

algorithm and applied in the study. The training process can be viewed as a state (weights)

estimation problem and the EKF is used to estimate the state from the training patterns.

The most time consuming part in EKF training implementation is the formation of the

orderly derivatives of network’s outputs with respect to weights considering the effect of

all contributive connections.

Training Convergence

Training divergence can occur if training parameters are not selected properly.

Furthermore, RNN are more vulnerable to training divergence than FFNN due to their

recurrent connections. To solve the problem, a parameter R of EKF training algorithm is

adapted to guarantee the training convergence while another parameter Q is adapted to

accelerate the training. Q is estimated by maximum likelihood method to accelerate

training speed and R is adapted by Lyapunov method to ensure training convergence.

Network Robustness Quantification

In addition to training convergence, robustness is another important issue of RNN

for its successful implementation. The robustness study considering perturbations in

 171

trained weights is vital for network’s implementation. Various networks can be

developed for an application. But to select the best fault tolerant network is important for

successful application of a RNN. A uncertainty propagation analysis based robustness

measures using the unscented transform is proposed.

Methodology Validation and Performance Evaluation

For methodology validation and performance evaluation, two non-linear

dynamical systems, a benchmark system and a tool wear progression process in CBN

hard turning, are used to verify the modeling performance of the network. From the two

case studies, some observations are found as follows:

1) The developed RNN is better than FFNN such as FFCNN and MLP in

training accuracy, generalization ability, and training speed.

2) The connectivity optimization can improve a network’s performance in terms

of training speed, computation cost, and network robustness.

3) The developed R adaption law can guarantee convergence of the training

process, while the Q adaption law can speed up RNN training process.

4) The proposed robustness measures have advantages over the other two

existing measures developed from the differential analysis and performance

loss analysis, respectively.

 172

Contributions

This research can contribute to the current research state of the art as follows:

Develop and Apply RNN in Modeling Applications

A RNN is developed which is better than the commonly used MLP network in

modeling applications. This study investigates RNN’s modeling performance and

compares it with FFNN including FFCNN and MLP. In addition, structure optimization

is applied to the networks and forms corresponding optimized networks. Training speed,

training accuracy and generalization ability are studied for each network. The results

show that RNN surpass FFNN and the connectivity optimization process further

improves a network’s performance.

Training Convergence Study of RNN

When NN is applied in modeling, training convergence is seldom studied and

researchers just train networks without justifying the convergence property first. Training

convergence is carried out in this study. Improperly selection of training parameters

would result in training divergence, so that the outputs of the network turn to out of

bounds. The training convergence include two levels, how to guarantee training

convergence and how to accelerate training process. To solve the problem, Lyapunov

method is applied to form an R adaption law to guarantee the convergence of training,

while maximum likelihood method is used to adapt Q to speed up the training process.

 173

Robustness Study of RNN

An unscented transform based robustness quantification measure for RNN has

been developed in this study. The unscented transform is applied in the uncertainty

propagation analysis owning to its advantages in efficiency and computation cost saving.

Uncertainty propagation analysis is conducted to assess the robustness of the network

considering perturbations in network’s trained weights. The proposed quantification

method is found to have advantages over two other methods.

To summarize, the study proposes the developments of:

1) RNN architecture implementation,

2) the EKF-based training algorithm for RNN,

3) the connectivity optimization algorithm for RNN,

4) the convergence study of developed RNN, and

5) the robustness analysis of RNN.

Future Work

While a thorough study has been carried out for RNN to model non-linear

dynamical systems, some work still needs to be carried out which can further improve the

study in the future.

To Study the Coupled Effects of Developed Adaption Laws

It should be pointed out that the R adaption law may also affect the training speed.

To further optimize the training convergence speed, R needs to be adapted to guarantee

 174

convergence as well as to accelerate the training speed. Future work should

mathematically investigate the coupled effects of the two noise parameters on EKF

training and further improve the training convergence performance.

To Study the Robustness of RNN in Training Process

In this study the robustness of trained networks is investigated and a method to

quantify robustness is proposed. However, evaluation of the robustness of RNN during

training is more useful. Combining the robustness study into the training process needs to

be carried out in the future. The study includes how to select a training technology and

how to select training parameters to improve the network’s robustness. To accomplish

that, the cost function of robustness for a network which relates robustness to training

parameters should be proposed and further studied.

To Study the Robustness of RNN Due to Architecture Variation

Current study only considers robustness of network due to perturbation in trained

weights, although the developed method can also apply to assessing robustness due to

perturbation in inputs. However, consideration of perturbation in architecture level, for

example missing/fault of neuron and connections is also another important aspect of

robustness study which needs to be conducted in the future. This problem is correlated

with the above one, because the network’s structure is determined through the

connectivity optimization process.

 175

REFFERENCES

A. M. Abrao, M. L. H. Wise, and D. K. Aspinwall, “Tool Life and Workpiece Surface
Integrity Evaluations when Machining Hardened AISI 52100 Steels with
Conventional Ceramic and PCBN Tool Materials,” SME Technical Paper, MR95-159,
pp.1-9, 1995.

A. Alessandri, M. Cuneo, S. Pagnan, and M. Sanguineti, “On the Convergence of EKF-

based Parameters Optimization for Neural Networks,” 42nd IEEE Conference on
Decision and Control, pp. 6181–6186, 2003.

C. Alippi and M. Milena, “A Poly-time Analysis of Robustness in Feedforward Neural

Networks,” IEEE International Workshop on Virtual and Intelligent Measurement
Systmes, pp. 76-80, Budapest, Hungary, May 19-20, 2001.

C. Alippi, “Selecting Accurate, Robust, and Minimal Feedforward Neural Networks,”

IEEE Trans on Circuits and Systems -I: Fundamental Theory and Applications, Vol.
49(12), pp. 1799-1810, 2002.

C. Alippi, D. Sam, and F. Scotti, “A Training-time Analysis of Robustness in Feed-

Forward Neural Networks,” 2004 IEEE International Joint Conference on Neural
Networks, Vol. 4, pp. 2853- 2858, 2004.

D. L. Alspach, “A Parallel Filtering Algorithm for Linear Systems with Unknown Time

Varying Statistics,” IEEE Trans. Automatic. Control., Vol. AC-19, pp. 552-556, 1974.

S. Arik, “Global Robust Stability of Delayed Neural Networks,” IEEE Trans. on Circuits

and Systems—I: Fundamental Theory and Applications, Vol. 50(1), pp. 156-160,
2003.

A. Assoum, M. Geagea, and R. Velazco, “Influence on ANNs Fault Tolerance of Binary

Errors Introduced during Training,” International Conference on Information and
Communication Technologies: From Theory to Applications, pp. 435-436, 2004.

A. F. Atiya and A. G. Parlos, “New Results on Recurrent Network Training: Unifying the

Algorithms and Accelerating Convergence,” IEEE Transactions on Neural Networks,
Vol. 11(3), pp. 697-709, 2000.

J. K. Baksalary and R. Kala, “A New Bound for the Euclidean Norm of the Difference

between the Least Squares and the Best Linear Unbiased Estimators,” The Annals of
Statistics, Vol. 3, pp. 679-681, 1980.

 176

K.D. Boese and A.B. Kahng, “Simulated Annealing of Neural Networks: The "Cooling"
Strategy Reconsidered,” IEEE International Symposium on Circuits and Systems,
Vol. 4, pp. 2572-2575, 1993.

J. Cao and J. Wang, “Global Asymptotic Stability of a General Class of Recurrent Neural

Networks with Time-varying Delays,” IEEE Transactions on Circuits and Systems
Part I, Vol. 50, pp. 34-44, 2003.

C. Chiu, K. Mehrotra, C. K. Mohan, and S. Rankat, “Robustness of Feedforward Neural

Networks,” IEEE International Conference on Neural Networks, Vol.2, pp. 783-788,
1993.

M. Chow and J. Teeter, “Analysis of Weight Decay as A Methodology of Reducing

Three-Layer Feedforward Artificial Neural Networks for Classification Problems,”
IEEE International Conference on Neural Networks - Conference Proceedings, Part
1 (of 7), pp. 600-605, Orlando, FL, 27th-29th June, 1994.

G. Chryssoluouris and M. Guillot, “A Comparison of Statistical and AI Approaches to the

Selection of Process Parameters in Intelligent Machining,” ASME, Journal of
Engineering for Industry, Vol. 112, pp. 122-131, 1990.

S. Das, A. B. Chattopadhyay and A. S. R. Murthy, “Force Parameters for On-line Tool

Wear Estimation: A Neural Network Approach,” Neural Networks, Vol. 9, pp. 1639-
1645, 1996.

T. Dawson, Machining Hardened Steel with Polycrystalline Cubic Boron Nitride Cutting

Tools, Ph.D. Thesis, GIT, Atlanta, GA, 2002.

R. C. Dewes and D. K. Aspinwall, “The Use of High Speed Machining for the

Manufacture of Hardened Steel Dies,” Trans. of NAMRI, Vol. 24, pp. 21-26, 1996.

D. E. Sr. Dimla and P. M. Lister, “On-Line Metal Cutting Tool Condition Monitoring. II:

Tool-State Classification Using Multi-layer Perceptron Neural Networks,”
International Journal of Machine Tools & Manufacture, Vol. 40, pp. 769-781, 2000.

J. Driver, S. R. Baker, and D. McCallum, Residential Exposure Assessment: A

Sourcebook, Springer, 2000.

G. Dundar and K. Rose, “The Effects of Quantization on Multilayer Neural Networks,”

IEEE Trans on Neural Networks, Vol. 6(6), pp. 1446-1451.

R. Eickhoff and U. Ruckert, “Robustness of Radial Basis Functions,” Neurocomputing,

Vol. 70, pp. 2758–2767, 2007.

 177

J. L. Elman, “Finding Structure in Time,” Cognitive Science, Vol. 14(2), pp. 179-211,
1990.

E. O. Ezugwu, S. J. Arthur, and E. L. Hines, “Tool-wear Prediction Using Artificial

Neural Networks,” Journal of Materials Processing Technology, Vol. 49, pp. 255-264,
1995.

S. E. Fahlman and C. Lebiere, “The Cascade-Correlation Learning Architecture,”

Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), San
Mateo, CA: Morgan Kaufmann, pp. 524- 532, 1990.

Zhaoshu Feng and Anthony N. Michel, “Robustness Analysis of a Class of Discrete-Time

Recurrent Neural Networks under Perturbations,” IEEE Trans on Circuits and
Systems-I: Fundamental Theory and Applications, Vol. 46, No. 46, pp. 1482-1486,
1999.

R. Fitzgerald, “Divergence of the Kalman Filter,” IEEE Trans on Automatic Control, Vol.

16(6), pp. 736-747, 1971.

R. E. Haber, A. Alique, “Intelligent Process Supervision for Predicting Tool Wear in

Machining Processes,” Mechatronics, Vol. 13, pp. 825-849, 2003.

A. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter,

Cambridge University Press, New York, 1989.

B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal Brain Surgeon and General Network

Pruning,” IEEE International Conference on Neural Networks, San Francisco, CA,
Mar 28-April 1, 1993, pp. 293-299, 1993.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-Hall,

Upper Saddle River, NJ, 1999.

J. C. Helton and F. J. Davis, “Latin Hypercube Sampling and the Propagation of

Uncertainty in Analyses of Complex Systems,” Rliab. Eng. Syst. Safety, Vol. 81(1),
pp.23-69, 2003.

T. Hofling and R. Isermann, “Fault Detection Based on Adaptive Parity Equations and

Single-Parameter Tracking,” Control Engineering Practice, Vol. 4, pp. 1361–1369,
1996.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are

Universal Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990.

 178

Y. Huang, Predictive Modeling of Tool Wear Rate with Application to CBN Hard Turning,
Ph.D. Thesis, Georgia Institute of Technology, GA, 2002.

Y. Huang and S. Y. Liang, “Modeling of CBN tool flank wear progression in finish hard

turning,” ASME J. of Manufacturing Science and Engineering, Vol. 126, pp. 98-106,
2004.

R. Iserman, “Process Fault Detection Based on Modeling and Estimation Methods — A

Survey,” Automatica, Vol. 20, pp. 387–404, 1984.

M. I. Jordan, “Attractor Dynamics and Parallelism in A Connectionist Sequential

Machine,” Proceeding of the 1986 Connitive Science Conference, pp. 531-546, 1986.

S. Julier and J. K. Uhlmann, 1997, “A New Extension of the Kalman Filter to Non-linear

Systems”, Proc of AeroSense: The 11th International Symposium on
Aerospace/Defence Sensing, Simulation and Control, Florida, 1997.

D. Jwo and T. Cho, “A Practical Note on Evaluating Kalman Filter Performance

Optimality and Degradation,” Applied Mathematics and Computation, Vol. 193(2),
pp. 482-505, 2007.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice

Hall, 1993.

N. Kwak, “Principal Component Analysis Based on L1-Norm Maximization,” IEEE

Trans on Pattern Analysis and Machine Intelligence, Vol. 30(9), pp. 1672-1680, 2008.

H. K. Khalil, Nonlinear Systems, Prentice Hell, New Jersey, 2002.

K. KrishnaKumar, “Optimization of the Neural Net Connectivity Pattern Using A

Backpropagation Algorithm,” Neurocomputing, Vol. 5, pp. 273-286, 1993.

K. KrishnaKumar and K. Nishta, “Robustness Analysis of Nueral Networks with An

Application to System Identification,” Journal of Guidance, Control and Dynamics,
Vol. 22, pp. 695-701, 1999.

R. J. Kuo and P. H. Cohen, “Intelligent Tool Wear Estimation System through Artificial

Neural Networks and Fuzzy Modeling,” Artificial Intelligence in Engineering, Vol.
12, pp. 229-242, 1998.

R. J. Kuo and P. H. Cohen, “Multi-sensor Integration for On-line Tool Wear Estimation

through Radial Basis Function Networks and Fuzzy Neural Network,” Neural
Networks, Vol. 12, pp. 355-370, 1999.

 179

C. S. Leung and L. W. Chan, “Dual extended Kalman filtering in recurrent neural
networks source,” Neural Networks, Vol. 16(2), pp. 223–239, 2003.

X. Li, L. Huang, and J. Wu, “A New Method of Lyapunov Functionals for Delayed

Cellular Neural Networks,” IEEE Trans. Circuits Syst. I, Vol. 51(11), pp. 2263–2270,
2004.

X. B. Liang and J. Wang, “An Additive Diagonal Stability Condition for Absolute

Exponential Stability of a General Class of Neural Networks,” IEEE Trans on
Circuits and Systems Part I, Vol. 48, pp. 1308-1317, 2001.

Y. Liguni, H. Sakai, and H. Tokumaru, “A Real-time Learning Algorithm for a

Multilayered Neural Network Based on the Extended Kalman Filter,” IEEE Trans.
Signal Process, Vol. 40(4), pp. 59–966, 1992.

D. Linkens and Y. Nyongesa, “Learning Systems in Intelligent Control: An Appraisal of

Fuzzy, Neural and Genetic Algorithm Control Applications”, IEE Proc. Control
Theory App., Vol. 134 (4), pp. 367-385, 1996.

D. Liu and A. N. Michel, “Robustness Analysis of a Class of Neural Networks,” Circuits

and Systems, 1993., Proceedings of the 36th Midwest Symposium, pp. 1077-1080,
1993.

D. Liu and A. N. Michel, “Robustness Analysis and Design of a Class of Neural

Networks with Sparse Interconnecting Structure,” Neurocomputing, Vol. 12, pp. 59-
76, 1996.

Q. Liu and Y. Altintas, “On-line Monitoring of Flank Wear in Turning with Multilayered

Feed-forward Neural Network,” International Journal of Machine Tools &
Manufacture, Vol. 39, pp.1945-1959, 1999.

D. Liu, S. Hu, and J. Wang, “Global Output Convergence of a Class of Continuous-time

Recurrent Neural Networks with Time-varying Thresholds,” IEEE Trans. Circuits
Syst. II, Vol. 51(4), pp. 161–167, 2004.

W. Liu, L. Yang, and L. Hanzo, “Recurrent Neural Network based Narrowband Channel

Prediction,” IEEE 63rd Vehicular Technology Conference, Vol. 5, pp. 2173-2177,
2006.

J. T. Lo, “Synthetic Approach to Optimal Filtering,” IEEE Trans on Neural Networks, Vol.

5(5), pp. 803-811, 1994.

W. L. Loh, "On Latin Hypercube Sampling," Annals of Statistics, Vol. 24(5), pp. 2058-

2080, 1996.

 180

L. Luo, C. Guo, G. Ma, and A. Ji, “Choice of Optimum Model Parameters in Artificial
Neural Networks and Application to X-ray Fluorescence Analysis,” X-Ray
Spectrometry, Vol. 26, pp. 15-22, 1997.

D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction: Learning

Algorithms, Architectures and Stability, Wiley, 2001.

M. B. Matthews, “Neural Network Nonlinear Adaptive Filtering Using the Extended

Kalman Filter Algorithm,” in Proceedings of the International Neural Networks
Conference, Vol. 1, pp. 115-119, Paris, 1990.

P. S. Maybeck, Stochastic Models, Estimation, and Control, Vol. 2, Academic Press, 1982.

P. S. Maybeck, The Kalman Filter: An Introduction to Concepts in Autonomous Robot

Vehicles, I. J. Cox, G. T. Wilfong (eds), Springer-Verlag, 1990.

W. S. McCulloch and P. Walter, 1943, "A Logical Calculus of the Ideas Immanent in

Nervous Activity," Bulletin of Mathematical Biophysics, Vol 5, pp 115-133, 1943.

L. Medsker and L. C. Jain, Recurrent Neural Networks: Design and Applications, CRC,

1999.

R. K. Mehra, “On the Identification of Variance and Adaptive Kalman Filtering,” IEEE

Trans. On Automatic Control, Vol. 15(2), pp. 175-184, 1970.

R. K. Mehra, “Approaches to Adaptive Filtering,” IEEE Trans. Automatic. Control, Vol.

17(5), pp. 693-698, 1972.

J. E. Moody, S. J. Hanson, and R. P. Lippmann, "The Effective Number of Parameters:

An Analysis of Generalization and Regularization in Nonlinear Learning Systems,"
Advances in Neural Information Processing Systems, Vol. 4, pp. 847-854, 1992.

K. S. Narendra, Adaptive Control of Dynamical System Using Neural Networks,

Handbook of Intelligent Control Neural, Fuzzy, and Adaptive Approaches, New York,
NY: Van Nostrand Reinhold, 1992.

T. Ozel and Y. Karpat, “Predictive Modeling of Surface Roughness and Tool Wear in

Hard Turning Using Regression and Neural Networks,” International Journal of
Machine Tools & Manufacture, Vol. 45, pp. 467-479, 2005.

D. S. Phatak and I. Koren, “Complete and Partial Fault Tolerance of Feedforward Neural

Nets,” IEEE Trans. Neural Networks, Vol.6 (2), pp. 446–456, 1995.

 181

S. G. Pierce, Y. B. Haim, K. Worden, and G. Manson, “Evaluation of Neural Network
Robust Reliability Using Information-Gap Theory,” IEEE Trans on Neural Neteorks,
Vol. 17(6), pp. 1349-1361, 2006.

D. Psaltis, A. Sideris, and A. Yamamura, “A Multilayered Neural Network Controller,”

IEEE Control Systems Magazine, Vol. 8(2), pp. 17-21, 1988.

G. V. Puskorius and L.A. Feldkamp, “Neurocontrol of Nonlinear Dynamical Systems with

Kalman Filter Trained Recurrent Networks,” IEEE Trans. on Neural Networks, Vol. 5,
pp. 279-297, 1994.

T. Ragg, H. Braun, and H. Landsberg, “A Comparative Study of Neural Network

Optimization Techniques,” 13th International Conference on Machine Learning:
Workshop Proceedings on Evolutionary Computing and Machine Learning, pp. 111-
118, 1996.

B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2000.

F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychological Review, Vol. 65(6), pp. 386-408, 1958.

J. D. J. Rubio and W. Yu, “Nonlinear System Identification with Recurrent Neural

Networks and Dead-zone Kalman Filter Algorithm,” Neurocomputing, Vol. 70, pp.
2460–2466, 2007.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations,
Cambridge, MA: MIT Press, 1986.

S. Samarasinghe, Neural Networks for Applied Sciences and Engineering: From

Fundamentals to Complex Pattern Recognition, Auerbach Publications, 2006.

J. Santos and R. J. Duro, “Evolutionary generation and training of recurrent artificial

neural networks,” Proceedings of the First IEEE Conference on Evolutionary
Computation, Vol. 2, pp. 759-763, 1994.

S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer, 1999.

R. J. Schalkoff, Artificial Neural Networks, McGraw-Hill Inc., New York, 1997.

C. Scheffer, H. Kratz, P. S. Heyns, and F. Klocke, “Development of A Tool Wear-

monitoring System for Hard Turning,” International Journal of Machine Tools &
Manufacture, Vol. 43, pp. 973-985, 2003.

 182

F. H. Schlee, C. J. Standish, and N. F. Toda, “Divergence in the Kalman Filter,” AIAA
Journal, Vol. 5, pp. 1l14-1120, 1967.

U. Seiffert, “Multiple Layer Perceptron Training Using Genetic Algorithms,” European

Symposium on Artificial Neural Networks ESANN, pp. 159-164, 2001.

R. Setiono and W. K. Leow, “FERNN: an Algorithm for Fast Extraction of Rules from

Neural Networks, Applied Intelligence,” Vol. 12, pp. 15-25, 2001.

D. Simon, Optimal State Estimation, John Wiley & Sons, New Jersey, 2006.

S. Singhal and L. Wu, “Training Feed forward Networks with Extended Kalman Filter

Algorithm,” Proceedings - ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1187-1190, Glasgow, Scotland, 23th-26th May,
1989.

Q. Song, Y. Wu, and Y. C. Soh, “Robust Adaptive Gradient-Descent Training Algorithm

for Recurrent Neural Networks in Discrete Time Domain,” IEEE Trans on Neural
Networks, Vol. 19(11), pp. 1841-1853, 2008.

J. F. Swidzinski and C. Kai, “Nonlinear Statistical Modeling and Yield Estimation

Technique for Use in Monte Carlo Simulations,” IEEE Trans on Microwave Theory
and Techniques, Vol. 48(12), pp.2316-2324, 2000.

S. Takatsu, H. Shimoda, and K. Otani, “Effect of CBN Content on the Cutting

Performance of Polycrystalline CBN Tools,” International Journal of Refract. Hard
Mat., Vol. 2(4), pp. 175-178, 1983.

H. Tang, K. C. Tan, and Z. Yi, Neural Networks: Computational Models and Applications,

Springer, 2007.

E. A. Wan and R. V. D. Merwe, Kalman Filtering and Neural Networks, Chapter 7 : The

Unscented Kalman Filter, Wiley Publishing, Eds. S. Haykin, 2001.

X. Wang, W. Wang, Y. Huang, N. Nguyen, and K. Krishnakumar, "Design of Neural

Network-based Estimator for Tool Wear Modeling in Hard Turning," Journal of
Intelligent Manufacturing, Vol. 19(4), pp. 383-396, 2008.

X. Wang, Y. Huang, N. Nguyen, and K. Krishnakumar, "CBN Tool Flank Wear Modeling

Using Hybrid Neural Network," International Journal of Mechatronics and
Manufacturing Systems, Vol. 1(1), pp. 83-102, 2008.

 183

X. Wang and Y. Huang, "Optimized Recurrent Neural Network-Based Tool Wear
Modeling in Hard Turning," Transactions of NAMRI/SME, Vol. 37, pp. 213-220,
2009.

P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in The

Behavioral Sciences, Harvard University, Unpublished doctoral dissertation, 1974.

P. J. Werbos, “Back propagation through time: what it does and how to do it,” Proc. of the

IEEE, Vol. 78(10), pp. 1550-1560, 1990.

B. Widrow and J. Kolla, Quantization Noise, Prentice-Hall, NJ, USA, 2002.

R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running fully

Recurrent Neural Networks,” Neural Computation, Vol. 1 , pp. 270-280, 1989.

L. J. Xie, J. Schmidt, J. C. Schmidt, and F. Biesinger, “2D FEM Estimate of Tool Wear in

Turning Operation,” Wear, Vol. 258, pp. 1479-1490.

S. O. Yee and M. Y. Chow, “Robustness of an Induction Motor Incipient Fault Detector

Neural Network Subject to Small Input Perturbations,” IEEE Proceedings of
Southeastcon '91, Vol. 1, pp. 365-369, 1991.

Z. Yi, C. Jian, and L. Zhang, 2006, “Output Convergence Analysis for a Class of Delayed

Recurrent Neural Networks with Time-Varying Inputs,” IEEE Trans on Systems, Man,
and Cybernetics-Part B: Cybernetics, Vol. 36(1), pp. 87-95, 2006.

P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach,

AIAA, 2001.

L. Zhang, “Neural Network-based Market Clearing Price Prediction and Confidence

Interval Estimation with an Improved Extended Kalman Filter Method,” IEEE Trans
on Power Systems, Vol. 20 (1), pp. 59-66, 2005.

Z. Zhang, J. C. Lv, and L. Zhang, “Output Convergence Analysis for a Class of Delayed

Recurrent Neural Networks with Time-varying Inputs,” IEEE Trans on Systems, Man,
and Cybernetics—Part B: Cybernetics, Vol. 36(1), pp. 87-95, 2006.

 184

APPENDICES

Appendix A

Program to train RNN - trainrnn.m

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and compute output of neural network (rnn.m)

Calculate H matrix (rnnsolveH.m)

Apply EKF training (nnEKF.m)

Compute and display training error

Stop criteriaStop criteria

yes

no

Trained weight and RNN output

 185

Appendix B

Program to optimize RNN and train OptRNN - trainoptrnn.m

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and compute output of neural network (optrnn1.m)

Calculate the H matrix (optrnnsolveH1.m)

Apply the EKF training to weight (nnEKF.m)

Apply the EKF training to connectivity (nnEKF.m)

Compute and display training error

Optimized connectivity

Feed input and compute output of the optimized RNN (optrnn2.m)

Calculate the H matrix (optrnnsolveH2.m)

Apply the EKF training to weight (nnEKF.m)

Compute and display training error

Trained weight of OptRNN and output

Initialize weight of the optimized RNN (initialize.m)

Stop criteriaStop criteria

yes

no

Stop criteriaStop criteria

yes

no

 186

Appendix C

Program to apply R and Q adaption laws in training RNN – trainrnn_adrq.m

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and get output of neural network (rnn.m)

Calculate H matrix (rnnsolveH.m)

Apply EKF training (nnEKF.m)

Compute and display training error

Stop criteriaStop criteria

yes

no

Trained weight and RNN output

Apply R adaption law

Apply Q adaption law

	Clemson University
	TigerPrints
	5-2010

	ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK
	Xiaoyu Wang
	Recommended Citation

	Dissertation18.doc

