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ABSTRACT 
 

Recurrent neural networks (RNN) have been rapidly developed in recent years. 

Applications of RNN can be found in system identification, optimization, image 

processing, pattern reorganization, classification, clustering, memory association, etc.  

In this study, an optimized RNN is proposed to model nonlinear dynamical 

systems. A fully connected RNN is developed first which is modified from a fully 

forward connected neural network (FFCNN) by accommodating recurrent connections 

among its hidden neurons. In addition, a destructive structure optimization algorithm is 

applied and the extended Kalman filter (EKF) is adopted as a network’s training 

algorithm. These two algorithms can seamlessly work together to generate the optimized 

RNN. The enhancement of the modeling performance of the optimized network comes 

from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron 

network (MLP), the most widely used network, in terms of modeling accuracy and 

generalization ability; 2) the recurrency in RNN network make it more capable of 

modeling non-linear dynamical systems; and 3) the structure optimization algorithm 

further improves RNN’s modeling performance in generalization ability and robustness. 

Performance studies of the proposed network are highlighted in training 

convergence and robustness. For the training convergence study, the Lyapunov method is 

used to adapt some training parameters to guarantee the training convergence, while the 

maximum likelihood method is used to estimate some other parameters to accelerate the 

training process. In addition, robustness analysis is conducted to develop a robustness 

measure considering uncertainties propagation through RNN via unscented transform.  
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Two case studies, the modeling of a benchmark non-linear dynamical system and 

a tool wear progression in hard turning, are carried out to testify the development in this 

dissertation. 

The work detailed in this dissertation focuses on the creation of: (1) a new method 

to prove/guarantee the training convergence of RNN, and (2) a new method to quantify 

the robustness of RNN using uncertainty propagation analysis. With the proposed study, 

RNN and related algorithms are developed to model nonlinear dynamical system which 

can benefit modeling applications such as the condition monitoring studies in terms of 

robustness and accuracy in the future. 
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CHAPTER ONE 

INTRODUCTION 

 
Background 

Typical engineering systems have high-order, nonlinear, and dynamical features. 

These systems often include sensors and actuators which interact with the system itself 

and the environment. Many of these systems are defined by characteristic parameters 

indicating the complex relationship among their various physical characteristics, often 

exhibiting time dependency due to their inherent dynamical nature. These condition or 

characteristic parameters are often difficult, if not impossible, to measure directly. As a 

result, modeling, a process that can describe the behavior of such system parameters, is 

especially important in condition monitoring. This supervision can detect changes or 

drifts in process parameters which may indicate the inception and growth of fault modes 

in a system [Iser84] [Hofl96].  

Several methods have been developed for modeling non-linear dynamical 

systems. Generally, they can be categorized into the following two classes:  

1) Physical-driven methods are developed by looking into the underlying theory 

of systems and developing mathematical models to describe the relationship 

among variables interested. These models are often in the form of differential 

equations [Huan02]. Some of these equations can be analytically solved and 

result in explicit models, while the complicated ones are often solved by 
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numerical methods as the finite element method (FEM), which divides a 

system into numerous elements, numerically solving the equations [Xie05].  

2) Data-driven methods are developed based on empirical observations by using 

the information obtained through experiments and developing equations to 

describe relationships of the system modeled. Regression models or 

parametric models (linear regression with nonlinear terms, polynomial 

regression, and nonlinear regression), select the form of model first, and then 

determine its parameters through regression [Ozel05]. Artificial intelligence 

(AI)-based methods using AI techniques such as neural networks (NN) 

[Liu99] [Kuo99] [Sche03] and fuzzy logic [Kuo98] can be also applied to 

model systems, while for this case the developed models often can’t be written 

explicitly.  

Theses modeling methods have advantages and disadvantages. Although 

analytical models provide better insight into a system’s underlying physical mechanisms 

through physical-driven methods, they are sometimes less satisfactory due to over-

simplifications and unrealistic assumptions in their development. On the other hand, the 

models solved by FEM can provide accurate results; however, it is time-consuming and 

not suitable for optimization using current computing technology. Time series and 

regression models are typically less accurate than the AI –based models. If both accuracy 

and speed are of interest instead of a system’s underlying physical mechanisms, AI-based 

modeling approaches are favored for real-time applications.  
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Among the AI-based approaches, NN is extensively applied in system modeling 

applications because of the following advantages: 

1) They can carry out arbitrary function approximation especially for non-linear 

systems  

2) They do not require reprogramming and can be applied to different systems. 

3) They are error-tolerant due to their parallel computation features.  

These advantages make NN a viable, reliable, and attractive approach for 

modeling engineering systems [Chry90] [Das96]. Figure (1.1) shows various NN 

developed for different applications. This classification is based on the most frequent 

application of the network. For example, while multi-layer perceptron NN (MLP) also 

can be applied as classifications and clustering, here it is classified as estimation and 

modeling applications.  

Neural 
networks

Estimation
modeling

Classification
Clustering

Association memory
Pattern recognition

Optimization

Multilayer perceptron

Radial basis function NN

Time-delay NN

Self-organizing NN

Adaptive resonance theory NN

Bidirectional associative memory NN

Hopfield NN

Boltzmann machine

 

Figure 1.1: NN Developed for different applications 
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The research presented here focuses on applications in modeling and estimation. 

Its objective is to develop an NN with advantages over the currently applied ones and 

then study its performance. Among NN applied in system modeling, MLP is the one most 

frequently used. Previous research has found that a fully forward connected NN 

(FFCNN) exhibits better performance in terms of generalization ability, training 

accuracy, and structural robustness than an MLP [Wang08a]. In addition, an FFCNN can 

be modified to become a fully connected recurrent neural network (RNN), 

accommodating recurrent connections among neurons. Unlike an FFCNN, a RNN can 

store information from past states, making it more capable of modeling nonlinear 

dynamical phenomena. However, using a RNN involves such issues as divergence 

[Mand01], instability [Meds99], and a lack of robustness [Mand01]. The relationship 

among these three networks, including their advantages, can be seen in Figure (1.2). 

Multilayer
Perceptron

Fully forward 
connected NN

Fully connected
RNN

Enhanced features for 
modeling dynamical systems:
lTraining speed
lGeneralization ability

Enhanced features:
lGeneralization ability
lTraining accuracy
lRobustness

 

Figure 1.2: Networks with improved modeling performance 

 

To apply RNN, several issues have to be carefully addressed. 

1) Network architecture optimization 

The determination of optimal network architecture is critical for the successful 

application of NN models because it can save calculation cost while at the same time 

maintaining modeling accuracy, generalization ability, and robustness [Alip02]. 
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Optimization of network structure requires consideration of such features as the number 

of inputs, the number of outputs, the degree of complexity of the system, and the 

available training data for each application. Overly complicated networks tend to have an 

over-fitting problem, while architecture that is too simple results in poor training 

accuracy [Mood92].  

2) Training convergence  

The different training algorithms for RNN have advantages and disadvantages. To 

select an appropriate training algorithm in terms of training speed and accuracy is 

important. Furthermore, determining the training parameters is another major concern 

having a significant influence on network performance; specifically, training divergence 

can occur if these parameters are not selected properly [Luo97]. 

3) Robustness 

Robustness studies on NN have primarily considered uncertainties in inputs and 

weights [Chiu93] [Alip01] [Alip04]. Once the structure of a network has been decided 

and the training process completed, a network is realized. The different architectures and 

configurations of NN training are realized in different network models. Robustness 

analysis of the realized networks is essential to eliminate those networks exhibiting poor 

robustness so that the best candidate is selected. 

As this discussion indicates, it is important to develop a complete and reliable 

modeling technique for general non-linear dynamical systems. Network architecture 

optimization and training algorithm realization are the foundation, and performance 

studies including training convergence and network robustness can further enhance the 
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applications of RNN in non-linear dynamical system modeling. To investigate this area, 

the objectives of this study are to develop a fully connected RNN, to explore its 

capability for modeling dynamical systems and to evaluate its performance concerning 

training convergence and robustness. 

 

Overview of This Study 

Previous research on nonlinear system modeling applications has focused on 

applying RNN to model non-linear dynamical systems, but little has been conducted on 

the theoretical analysis. In this study, RNN with internal feedback connections are 

developed for modeling nonlinear dynamical systems with the following tasks: 

1) A RNN is formed by accompanying recurrent connections in the hidden neuron 

section of an FFCNN. An extended Kalman filter algorithm (EKF) is applied to 

train the network. 

2) Network architecture optimization is achieved using a destructive connectivity 

algorithm. 

3) Performance analysis including a convergence study of the training process of 

RNN and a robustness analysis of the trained network are conducted, 

theoretically making the network substantially complete in theoretical proof and 

hence ensuring the quality of its performance. 

This study was divided into the three parts shown in Figure (1.3). The first was 

RNN development including the development of the network architecture optimization 

and the training algorithm. A destructive optimization algorithm was applied to determine 
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network architecture and the extended Kalman filter algorithm to train the network. 

Performance studies were then applied to this resulting network. A convergence study 

was conducted to improve the network’s training convergence performance and a 

robustness analysis conducted to assess its robustness to perturbations in the trained 

weights. Finally, a non-linear dynamical benchmark system and a tool wear propagation 

process were used to verify the algorithms applied. 

Optimization 
Algorithm

RNN 
Architecture

Optimized
RNN 

Architecture

Part 1:
RNN Development

Training 
Algorithm

Convergence 
Study

Part 2:
Performance Study

Benchmark 
System

Performance 
Evaluation

Performance 
Evaluation

Part 3:
Case Studies

Robustness 
Analysis

Tool Wear 
System

Optimized
RNN 

Architecture

 

Figure 1.3: Layout of the study 

 
Based on this study, the following conclusions were drawn: 

1) The modeling capability of the proposed RNN is better than that of the 

commonly used MLP network. 
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2) Architecture optimization improves the modeling capability of the proposed 

RNN 

3) The adaption law of training parameters improves the training convergence of 

the network. 

4) The proposed robustness quantification method is effective and efficient. 

The contributions of this study to the literature are summarized below: 

1) The EKF training and destructive optimization algorithms can be applied to 

the proposed RNN 

2) The Lyapunov method and the maximum likelihood method can be applied to 

tune the statistical matrices Q  and R  of the EKF to ensure the convergence of 

RNN training algorithm and at the same time to improve the convergence 

speed 

3) The unscented transform method can be applied to quantify the robustness of 

RNN to uncertainties in the trained weights 

 

Organization of This Study 

The organization of the study is shown in Figure (1.4).  

Chapter two provides the theoretical background of this study. Such topics as 

architectures, training algorithms, and topology optimization techniques of neural 

networks are introduced. The structures of networks, listed in Figure (1.2), applied in 

modeling applications are illustrated first. Three classes of network structure optimization 

methods (empirical methods, destructive or constructive methods, and other optimization 
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methods) are then reviewed. Training algorithms for RNN (back-propagation through 

time, real-time recurrent learning, and EKF training algorithm) are introduced. These 

algorithms are used to determine the structure and parameters of a RNN model. In 

addition to the development of networks, convergence and robustness studies of recurrent 

neural networks are reviewed as well. Convergence studies have been conducted on 

networks’ states, outputs and training process and the last one is concerned in this study. 

According to different applications of RNN, robustness studies have different concerns. 

This study focuses on modeling applications and hence the estimation robustness is 

reviewed in details. Along with the background introduction, the motivations and 

concerns of this study are also discussed. 

Chapter three proposes the development of an optimized RNN (Part 1 in Section 

1.2) which has advantages in modeling non-linear dynamical systems over the commonly 

used MLP. First, the structure of a RNN is illustrated; the RNN is modified from an 

FFCNN by accommodating internal recurrency in its hidden neuron section. The EKF 

algorithm which used to train the network (determine the weights of the RNN) is then 

detailed in the following section. Finally a destructive optimization method is introduced, 

which optimizes the RNN network structure to form the optimized RNN (OptRNN). 

Chapter four studies the training convergence and robustness of the proposed 

RNN (Part 2 in Section 1.2). The EKF training algorithm has divergence problem if its 

parameters are not selected properly. To solve the problem, Lyapunov method is applied 

to develop an adaption law on a training parameter, the covariance of measurement noise. 

Furthermore, the convergence speed is accelerated by an adaption law on another training 
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parameter, the covariance of process noise, using the maximum likelihood method. In 

addition to the training convergence, another important issue for the successful 

implementation of RNN, the robustness is studied by conducting an uncertainty 

propagation analysis using the unscented transform.  

Chapter five and Chapter six verifies the studies in Chapter three and Chapter four 

using two case studies, a non-linear dynamical benchmark system and a tool wear 

progression process (Part 3 in Section 1.3).  

The final chapter of this dissertation presents the conclusions of this study. 

The appendix lists the flow charts of matlab programs for RNN training, RNN 

optimization, and RNN training with R  and Q  adaption law applied. 

Chapter 1: Introduction Chapter 2: Research Background and Current Status 

Chapter 3: Development of the Recurrent Neural Network (Part 1 in Section 1.2 )

Chapters 5: Modeling of a Non-linear Dynamical 
Engineering System (Part 3 in Section 1.2 )

Chapter 7: Conclusions

Chapter 4: Performance Studies of the Recurrent Neural Network (Part 2 in Section 1.2 )

Chapters 6: Modeling of CBN Tool Wear 
in Hard Turning (Part 3 in Section 1.2 )

 

Figure 1.4: Organization of the study 
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CHAPTER TWO 

RESEARCH BACKGROUND AND CURRENT STATUS 

 
Abstract 

This chapter introduces the theoretical background of this study. Several topics 

are covered on neural network architecture, topology optimization, training algorithms, 

convergence study, and robustness study of RNN. The structure of the proposed RNN is 

modified from an FFCNN which has advantages over the widely used MLP in training 

accuracy and generalization ability. Network topology optimization techniques are 

applied to optimize the structure of a network. Among these approaches, pruning 

approach can generate simple robust and efficient optimized structure. Training algorithm 

is applied to tune the weights of the developed structure. For RNN training, there are 

three major algorithms developed, namely, back-propagation through time (BPTT) 

algorithm, real-time recurrent learning (RTRL) algorithm and EKF training algorithm. 

Among them, EKF is proved to be fast and accurate. Convergence studies of RNN 

include three brunches - state convergence, output convergence and training convergence. 

Training convergence concerns the stability of weight update during training process and 

it is the focus of this study. Finally, robustness of NN for modeling applications, called 

estimation robustness, is reviewed in this chapter. Basic concepts and the up to date 

developments in these areas are introduced for each topic. Based on the background 

review, the techniques applied in this study are also briefly introduced. 
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Nomenclature 

Multilayer Perceptron Network 

Symbol Definition 

ijb ,  Bias of the ith neuron in layer j 

)(, ⋅ijf  Activation function of the ith neuron in layer j 

ijnet ,  Net input of the ith neuron in layer j 

kijw ,,  Weight of the connection from neuron k in layer j-1 to  
neuron i in layer j 

o
ijy ,  Output of the ith neuron in layer j 

 

Recurrent Multilayer Perceptron Network 

Symbol Definition 

)(, ⋅ijf  Activation function of the ith neuron in layer j 

)(, nnet ij  Net input of the ith neuron in layer j at time step n 

jn  Number of neurons in layer j 

f
kijw ,,  Feedforward weight from neuron k in layer (j-1) to the ith  

neuron in layer j 
r

kijw ,,  Feedback weight from neuron k in layer (j+1) to the ith  
neuron in layer j 

)(, ny o
ij  Output of the ith neuron in layer j at time step n 
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EKF Training Algorithm 

Symbol Definition 

)(kH  Jacobian matrix at training step k 

)(kK  Kalman gain at training step k 

)(kP  Covariance matrix of weight estimation at training step k 

)(kQ  Covariance matrix of process noise at training step k 

)(kR  Covariance matrix of measurement noise at training step k 

)(kwv  Estimation of weight vector *wv  at training step k 

)(* kyv  Desired output at training step k 

)(kyv  Output of neural network at training step k 
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Neural Networks Architecture 

Artificial neural network, often abbreviated as neural network, was invented by 

Warren S. McCulloch and Walter Pitts in 1943 [Mccu43], which simulates the operations 

of biological neural network. It is composed of a number of highly interconnected 

processing elements (neurons) working in parallel to solve specific problems. 

As shown in Figure (2.1), biological neurons are the core component of a human 

brain, which are responsive cells that transmit and process signals. A neuron cell is 

generally comprised of the cell body, axon, and dendrites. It receives signals from other 

neurons through dendrites. In addition, it also sends out spikes of electrical activity 

through an axon, which splits into thousands of branches. At the end of each branch, a 

structure called a synapse converts the activity from the axon into electrical effects that 

inhibit or excite activity in the connected neurons. When a neuron receives excitatory 

input that is sufficiently large compared with its inhibitory input, it sends a spike of 

electrical activity down its axon. 

Axon Synapse

DendriteDendrite

Neuron 1
Neuron 2

Axon Synapse

DendriteDendrite

Neuron 1
Neuron 2

 

Figure 2.1: Two connected neuron cells 
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Neuron network is built to imitate a human’s neuron system. Figure (2.2) shows a 

typical artificial neuron in an NN. Such a neuron unit is also called a perceptron [Rose58] 

which can be viewed as a simplest NN – a single layer neural network with one neuron. 

Typically an artificial neuron is composed of weights, a summation operator and an 

activation function. The perceptron can be used to form a mapping function from its 

inputs ( mxxx ,..., 21 ) to its output (y). A weight simulates the function of a dendrite in 

Figure (2.1). The summation of weighted inputs is called net input which feeds into the 

activation function to form output of the neuron. The mapping function is described as 

follows: 

∑
=

=
m

k
kk xwnet

1
         (2.1) 

( )netfy =          (2.2) 

where net  is the net input, m is the number of inputs, kw  is the weight for input k, y is 

the output, and ( )⋅f  is the activation function 

The activation function represents the function of a cell body in Figure (2.1). Here 

it is a step function – if the net input is less than 0, the output is -1, and otherwise it will 

be 1. A lot of functions can be selected as activation function as shown in Figure (2.3). 

Among them the most popular one is the sigmoid function. For an NN with connected 

neurons, the output of a neuron can propagates through its axon to other neurons.  
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Figure 2.2: A neuron unit in an NN 
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Figure 2.3: Different types of activation functions 

 
A neuron network is often composed of a lot of connected neurons. There are 

many types of neural networks with different structures and operation mechanism, each 

of which has different strengths particular to some certain applications. Some well-known 
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NN are MLP NN - an NN model with more than three layers of neurons often using 

sigmoid activation function that maps sets of input data onto a set of output, radial basis 

function (RBF) NN - an NN similar to MLP but uses radial basis functions as its 

activation function, self-organizing map (SOM) NN – an NN that often used to produce a 

low-dimensional (typically two dimensional) representation of the input high-

dimensional data, Hopfield NN – an NN applied in content-addressable memory 

application that the network can converge to a "remembered" state if it is given a 

distorted input, Boltzmann machine – a type of stochastic NN which is used to model the 

a system’s statistical behavior, adaptive resonance theory (ART) NN – an NN used to 

achieve a self-organized stable pattern recognition capability in real time by using the 

adaptive resonance theory, and neural fuzzy NN – an NN combining combination the 

fuzzy inference system in its body to incorporate fuzzy IF-THEN rules to the network. 

According to the direction of calculation flows within a network, neural networks 

can be divided into two classes, feedforward neural networks (FFNN) and recurrent 

neural networks (RNN). While a feedforward network, such as the MLP, only propagates 

data forwardly from input to output, a recurrent neural network also has feedback 

connections and it can propagate data from later processing elements to earlier elements 

which make it more suitable for modeling dynamical systems [Link96]. Some commonly 

used RNN are Elman network, Jordan network, and recurrent multilayer perceptron 

network. They are generally modified from the MLP NN. 

MLP is the most popular and widely used neural network [Sama06]. As an 

example, Figure (2.4) shows an MLP neural network. Each circle represents a neuron 
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(perceptron) illustrated in Figure (2.2). The network is composed of three layers of 

neurons. The first layer is called input layer which take in inputs; the last layer is called 

output layer which generate output of network; the layers in between have no connection 

with the external world are called hidden layer. Information flows forwardly from layers 

in left to layers in right. Each neuron in one layer is connected to every neural on the next 

layer and there is no connection among neurons in the same layer. The network has 9 

neurons to form a mapping function from its inputs ( 4321 ,,, xxxx ) to its outputs ( 21 , yy ). 

In Figure (2.4), two types of outputs need to be distinguished; output of a neuron is 

denoted as o
jiy ,  where the first subscript i denotes the layer number of the neuron and the 

second subscript j denotes the index of the neuron in layer i; on the other hand, output of 

the network ( [ ]21 , yyy =v )is composed of the outputs of neurons in output layer. It is easy 

to see that oy 1,3  and 1y  are two notations for the same output. It is proved that an MLP 

with at least one hidden layer can approximate any continuous function at any desired 

degree of accuracy with sufficiently many hidden neurons are available and hence MLP 

can be seen as a universal approximator [Horn89]. 
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Figure 2.4: An MLP neural network 
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Figure 2.5: Schematic of Equations (2.3 and 2.4) 

 
As shown in Figure (2.5), for the ith neuron in layer j, its output o

ijy ,  can be 

written by  

)( ,,, ijij
o

ij netfy =         (2.3) 

∑
−

=
− +=

1

1
,,1,,,

jn

k
ij

o
kjkijij bywnet        (2.4) 

The output of the network can be written as: 

o
ini yy ,=          (2.5) 
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where ijnet ,  is the net input of the neuron, the weighted summation of outputs of neurons 

from the previous layer; kijw ,,  is the weight for the connection from neuron k in layer j-1 

to neuron i in layer j; ijb ,  is the bias for the neuron; n is the layer number of output layer, 

and )(, ⋅ijf  is the activation function of the neuron, which is often taken as a sigmoid 

function: 

xe
x

−+
=

1
1)(σ         (2.6) 

Other than the MLP, FFCNN is also an FFNN. The FFCNN was proposed by 

Werbos [Werb90]. It can be viewed as a general version of MLP and is adopted as the 

prototype of the proposed RNN in this study.  

h hidden neurons

feedforward loops (solid lines)

m input neurons n output neurons

x1 xm y1 yn

i j

wji

(a) Connection between two neurons

(b) FFCNN structure  

Figure 2.6: Architecture of a fully forward connected neural network 
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Recurrent Neural Networks 

A representative FFCNN is shown in Figure (2.6). The network is composed of 

three sections, namely input neurons section, hidden neurons section, and output neurons 

section respectively. The network has m neurons in input section which receive the inputs 

of the network. h hidden neurons are used to relay the outputs of input neurons to output 

neurons. n output neurons generate outputs of the network. The network is used to model 

a system with m inputs n outputs. It is a forward network since there are no feedback 

connections and data only propagate from left to right. It is also a fully connected 

network because each neuron takes connections from every other neuron to the left of 

itself. [Werb90] [Kris93]. Figure (2.6(a)) shows the connection between two neurons. 

The weight jiw  represents the weight on the connection from neuron i to neuron j. This 

network architecture is used as the foundation for the proposed RNN. The equations (2.6-

2.8) describe the mapping functions of the network. 

As shown in Figure (2.7), for each neuron, its net input inet  is formed by 

summing the weighed outputs prior to it.  

∑
−

=

=
1

1

,
i

j

o
jiji ywnet    nhmi ++≤≤1    (2.7) 

where m , h , and n  represent the number of the input neurons, hidden neurons, and 

output neurons respectively, inet  represents the net input to the neuron i, ijw  represents 

the weight on the connection from neuron j to the neuron i, and o
iy  represents the output 

of the neuron i 
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Each neuron i has an activation function )(⋅if  which generates an output for its 

net input: 

)( ii
o
i netfy = ,    nhmi ++≤≤1    (2.8) 

Neurons can have different activation functions in different sections. For neurons 

in the hidden section, a unipolar sigmoid activation function (shown in Figure (2.3)) is 

used as follows: 

inetii e
netf

−+
=

1
1)( ,   hmim +≤<     (2.9) 

For neurons not in the hidden section, the identity function is used as follows: 

iii netnetf =)( ,   mi ≤≤1  and nhmihm ++≤<+  (2.10) 

The output of the network can be written as: 

o
hmii yy ++=     ni ≤      (2.11) 

∑ o
iy

Neuron i

1iw

2iw

)1( −iiw

oy1

oy2

o
iy 1−  

Figure 2.7: Illustration of Equations (2.7-2.9) 

 

An FFCNN with a 2-2-1 structure is shown in Figure (2.8(a)) and it can be 

transformed into an MLP form in Figure (2.8(b)). In addition, a regular MLP (2-2-1) is 

shown in Figure (2.8 (c)) for comparison. It can be seen that, with the same structure, 

there are more connections and weights in the FFCNN (9) than in the MLP (6), and hence 
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FFCNN has more parameters to tune in which sense it is said to be more general than an 

MLP. 
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a) An FFCNN

b) An equivalent MLP c) A regular MLP  

Figure 2.8: Comparison of FFCNN and MLP 

 
Apart from the above FFNN, RNN are also applied in modeling applications and 

some of them are introduced in the following. 
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Figure 2.9: An Elman network 
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An Elman neural network [Elma90] is shown in Figure (2.9). The Elman Network 

has an extra set of input units, so-called context units. The context units contain a copy of 

the network’s internal state (the outputs of neurons in the hidden layer) at the previous 

time step. The context units feed into the hidden layer just like the other input units do, so 

the network is able to compute a function that not only depends on the current input, but 

also on the network’s internal state, which is determined by previous inputs. The network 

can be seen as an MLP with feedback connections from hidden layer to input layer. 

 Similar to an Elman network, as shown in Figure (2.10), a Jordan network 

[Jord86] can be viewed as an MLP with feedback connections from output layer to input 

layer. Its context units, working as an extra set of inputs, is a copy of the network’s 

output at the previous time step.  
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Figure 2.10: A Jordan network 
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Figure 2.11: A RMLP network 

 
As shown in Figure (2.11), a recurrent multilayer perceptron (RMLP) is modified 

from MLP by adopting feedback connections among the nodes of neighboring layers and 

feedback connections from neurons in hidden layer to themselves [Psal88]. The recurrent 

connections are delayed by one time step. In another point of view, the RMLP can be 

seen as a generalized version of an Elman network or a Jordan network. 

For the ith neuron in layer j, its output can be described by  

))(()( ,,, nnetfny ijij
o

ij =        (2.12) 

∑ ∑
− +

= =
++− −+−+=

1 1

1 1
,1,,1,,,,1,,, )1()1()()(

j jn

k

n

k

o
kj

r
kij

o
ij

r
iij

o
k

f
kijij nywnywnywnnet   (2.13) 

where )(, ⋅jif  is the activation function, )(, nnet ji  is the net input at time step n, f
kijw ,,  is 

the forward weight from neuron k in layer (j-1) to node i in layer j, r
kijw ,,  is the feedback 

weight from neuron k in layer (j+1) to node i in layer j, and jn  is the number of neurons 

in layer j. 
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Figure 2.12: Schematic of equations (2.12 and 2.13) 

 
In this study, a recurrent network modified from an FFCNN network is used to 

model non-linear dynamical systems. The specific structure of network is chosen because 

FFCNN has some advantages than MLP in terms of modeling accuracy and 

generalization ability. Hence the RNN modified is believed to have better performance in 

modeling. 

 

Neural Network Optimization 

Both MLP and RMLP are capable of modeling nonlinear dynamic systems 

[Lo94]. However, there are some problems with these fully connected neural networks: 

1) They have a large parameters (weights and biases) space, which makes 

computation cost expensive; and 
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2) They are vulnerable to over fitting problem that networks tend to fit training 

data perfectly but poorly fit testing data. 

Network architecture optimization can alleviate these problems. Optimal 

determination of network topology is indispensable to build an optimal NN modeling 

tool. Usually network topology is determined considering the following items: 

1) How many hidden layers in the network; 

2) How many neurons in each hidden layer; and 

3) How neurons connect. 

The function of hidden neurons is to model mapping function between network 

inputs and outputs. If insufficient number of hidden nodes is picked, it is not possible to 

form an accurate model for the training data (the data used to determine the weights of a 

network through a training process). On the other hand, if too many hidden nodes are 

used, the network may lose its ability to generalize. In addition, keeping the number of 

hidden layer nodes to a minimum can reduces the number of trainable weights, and hence 

can reduce the computational cost of training. 

As shown in Figure (2.13), current network topology optimization techniques can 

be divided into three classes: empirical or trial and error method, destructive or 

constructive methods, and the applications of other optimization strategies to ANN 

[RAGG96]. 
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Figure 2.13: Classification of network topology optimization methods 

 
The first class is trial and error which applied in most applications. Most 

researchers don’t use a systematic approach, but test several sets of network topologies 

and compare the results. The best network structure (number of hidden layers, number of 

hidden neurons) is identified after comparison. The method is case-oriented and time 

consuming. 

The second class is destructive or constructive methods. For the destructive 

methods, a network starts with an over-large structure and some of its neurons are 

eliminated until a minimum structure with acceptable modeling performance is achieved 

[Scha97]. Representative techniques of this class include magnitude based pruning 

(MBP) [Seti00], weight decay method [Chow94], and optimal brain surgeon (OBS) 

[Hass93]. For the constructive methods, a network is initialized with an over-simple 

structure and the topology gradually augments until the network performance is 

satisfactory. Cascade correlation [Fahl90] is the most popular one of the constructive 

algorithms.  

The third class of methods uses other optimization techniques to determine the 

topology of networks. These methods include genetic algorithm-based techniques 

[Ezug95] [Diml00] [Habe03] and Bayesian regulation-based technique [Ozel05]. 
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For the developed optimization methods, there are still some common problems 

existed: 

1) The optimization methods are case dependent. Different samples of training 

data will generate different optimal networks for the same system to be 

modeled. 

2) It is not possible to guarantee that the resultant network structure is optimal. 

Most times the final structures are suboptimal. 

In this study, a destructive optimization is applied to RNN to form an optimized 

RNN. The method can generate simple and accurate network which can better avoid the 

over-fitting problem and the network is proved to be more robust [Kris99]. 

 

Training Algorithms of Recurrent Neural Networks 

A neural network can be viewed as a parametric model with weights and biases as 

its parameters. Once its architecture is determined, the parametric structure of NN model 

is fixed. Furthermore, its parameters (weights) need to be tuned then, which is called the 

training process. In other words, training is the process to determine the weights of a 

network to make it model the system been studied. 

There are three major training classes - supervised training, unsupervised training 

and reinforcement training, each of which applies to particular learning tasks. 

For supervised training, the neural network is provided with a set of training 

patterns (inputs along with the corresponding desired outputs – targets), and training 

involves the algorithm comparing its current actual output with the correct or target 
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outputs, so that it knows what its error is, and update weights accordingly. Usually 

supervised training is applied in modeling, estimation, and classification. 

For unsupervised training, the neural network is not told the target - for example, 

it is not trained on pairs consisting of an input and the desired output. Instead the network 

is given the input patterns and is left to find interesting patterns, regularities, or 

clusterings among them. Usually unsupervised training is applied in clustering, 

compression applications. 

For reinforcement training, it can be considered as an intermediate form of the 

above two types of training. A network interacts with the environment and gets a 

feedback response from it. Based on the environmental response, the network adjusts its 

weights. 

This study focuses on modeling applications, and the supervised training is 

introduced in more details. As shown in Figure (2.14), a neural network is to model a 

system )(* xfy vv = . The system is unknown but a set of training patterns (a set of input xv , 

and its corresponding target *yv ) are available. A neural network is to simulate the 

system based on the information from these training patterns. The network receives input 

xv  and generates its output yv . The objective of training is to tune the network adjustable 

parameters (weight wv ) to make yv ≈ *yv , so that modeling error is small and the network 

can represent the system.  
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Figure 2.14: Illustration of the supervised training process 

 
In training a neural network, the term epoch is used to describe a complete pass 

through all of the training patterns. The weights in the neural net may be updated after 

each pattern is presented to the net, or they may be updated just once at the end of the 

epoch. 

Supervised training methods

Gradient descant methods

Statistical estimation methods 

Optimization methods  

Figure 2.15: Classifications of the supervised training methods 

 
There are several algorithms available to train neural networks. As shown in 

Figure (2.15), most of them can be viewed as applications of optimization theory and 

statistical estimation. Among them some popular training algorithms are:  

1) Gradient descant methods such as the back-propagation (BP) method, which 

calculates the gradient of the modeling error of the network with respect to its 
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trainable weights and uses the gradient to guide the update of weights 

[Werb74],  

2) Statistical estimation methods such as EKF based algorithm, which use EKF 

to estimate the weight update from training data [Sing89], and 

3) Optimization methods such as genetic algorithm [Seif01] and simulated 

annealing [Boes93] which adopt optimization methods to minimize the cost 

function of training and to tune weights accordingly. 

For RNN, as shown in Figure (2.16), there are three major training algorithms 

developed, namely, back-propagation through time (BPTT) algorithm, real-time recurrent 

learning (RTRL) algorithm and EKF training algorithm.  

RNN training methods

Back-propagation through time

Real-time recurrent learning

Extended Kalman filter training algorithm  

Figure 2.16: RNN training methods 

 
The basic idea of BPTT is to unfold a RNN into a multilayer FFNN each time a 

sequence is processed [Rume86]. The resulting FFNN is then trained using the standard 

BP algorithm. An illustration of this process is shown in Figure (2.17). A recurrent 

network consists of two neurons and four weights. Since the layers have been obtained by 

replicating the RNN, the same weights in different layers should be the same. To achieve 

this, weights can only be updated at least after a complete forward step and a backward 

step to form a corresponding FFNN. The basic difference between it and the regular 
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back-propagation is that its desired responses ( )(1 ix ) are specified for neurons in layers 

of the network because the actual output layer is replicated many times when the 

temporal behavior of the network unfolded [Hayk99]. The unfolded network reflects the 

process where n represents the number of replication. 
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Figure 2.17: An illustration of BPTT 

 
RTRL computes the derivatives of states and outputs with respect to all weights as 

the network processes the sequence [Will89]. During the forward step, no unfolding is 

performed. Since derivatives of outputs are easily defined in terms of state derivatives, 

the trainable weights of RNN are updated after every time step in which output targets are 

available. This is one of the main advantages that RTRL can be used in online 

applications. 

EKF algorithm was first introduced to train neural networks in [Sing89]. The 

network weights can be viewed as the states of the non-linear dynamical process that NN 

describes. The training of networks can be viewed as a parameter (trainable weights) 

estimation problem using state estimation methods such as the EKF algorithm. 

Comparing to the BPTT and RTRL algorithms, the EKF algorithm uses higher-order 
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information more efficiently. It is therefore much faster that the BPTT and RTRL 

algorithms, but at the expense of increment in computational complexity, which can be 

compensated by the rapid advancement in computing resources. 

Due to its fast training speed and accuracy, the EKF training algorithm is adopted 

in this study as follows: 

( ))(*)()()1()( kykykKkwkw vvvv −−−=      (2.14) 

1)]()1()()()[()1()( −−+−= kHkPkHkRkHkPkK T     (2.15) 

)()1()()()1()( kQkPkHkKkPkP T +−−−=     (2.16) 

where )(kwv  is the estimation of weight vector *wv  at training step k, yv  is the output of 

neural network, *yv  is the desired output. H  is the Jacobian matrix which is comprised 

of 
w
y
v

v

∂
∂ - the derivative of output with respect to weight estimation, K  is the Kalman gain 

calculated by Equation (2.15), Q  is the approximate covariance matrix of process noise, 

and R  is the approximate covariance matrix of measurement noise. The EKF algorithm 

requires, in addition to the estimate of the network’s weight vector, the storing and 

updating of the approximate covariance matrix P , which is used to model the 

correlations or interactions between each pair of weights in the network. 

In this study, EKF is used to train RNN own to its advantages in training speed 

and accuracy. However, for EKF application in RNN training, there are some problems, 

some of which will be studied in the following sections. 
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Convergence Studies of Recurrent Neural Networks 

Generally speaking, convergence is defined as the property that a variable 

approaches toward a definite value, or a system approaches toward a fixed or equilibrium 

state as time goes on. 

For non-linear dynamical systems, two major classes of methods have been 

applied in the study of convergence. Energy-based methods are based on the idea of 

passive energy, that is, if an energy function related to the state error (the difference of 

actual state and equilibrium state) is shown to be passive in some sense with respect to 

time, then the passivity implies the error will decay to zero in time, or in other words, the 

system is converge. Representative method in this class is the Lyapunov method. On the 

other hand, stability of equilibrium state which equivalents to the convergence can be 

also conducted using frequency domain analysis methods such as the circle criterion, the 

Popov criterion, and the describing function method.  

There are many applications of RNN that relate to the network’s convergence 

properties. Understanding the convergence properties of RNN is an initial and important 

step towards their applications [Yi06]. Generally speaking, convergence studies of RNN 

can be divided into three classes: state convergence, output convergence and training 

convergence. 

State convergence is studied in applications such as content addressable memory 

when networks are required to have state convergence property [Cao03] [Lian01]. On the 

other hand, output convergence is of concerned in optimization applications [Li04] 

[Liu04]. 
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Training convergence is concerned in modeling application where RNN are to be 

trained to map the relations among the systems. The training process is under studied to 

avoid the training divergence problem so that the developed RNN can model the system 

been studied. 

For either case, convergence study of RNN desires to establish verifiable and 

sufficient conditions to guarantee convergence of the concerned process. Usually 

Lyapunov methods and energy functions method are adopted to conduct these studies. 

 

Training Convergence of RNN 

NN can be viewed as a multi-input and multi-output nonlinear system having a 

layered structure, and its weight learning/training algorithm can be regarded as parameter 

estimation for such a nonlinear system [Ligu92]. Two issues are of great importance in 

NN training: how to avoid training divergence and how to converge fast. Network 

training convergence is still a challenge in modeling input-output mapping relationships 

using NN, especially RNN. RNN training is still an open topic because network weight 

adjustments can affect the entire neural network state variables during the network 

evolution due to the inherent feedback and distributive parallel structure [Song08] and 

training is usually complex and might be divergent [Atiy00]. It should be pointed out that 

training convergence is different from the state or output convergence which is usually of 

concern in applying the trained RNN for associative memory applications [Tang07]. 

Among the most popular RNN training algorithms [Hayk99] such as back-

propagation through time (BPTT), real time recurrent learning (RTRL), and extended 
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Kalman filter (EKF), EKF has been favored in terms of its training efficiency and 

accuracy [Matt90] [Leun03] [Liu06]. Unfortunately, training convergence of EKF-based 

RNN is still not well studied [Rubi07]. Up to present, only a few studies have been 

conducted on convergence of EKF-based neural network training [Ales03] [Rubi07] 

including RNN training [Rubi07]; unfortunately, they have introduced many assumptions 

to make these pioneering studies less generic and less efficient. For effective 

implementation of EKF-based RNN training, some theoretical studies must be performed 

and tested with some applications. 

The objective of the training convergence study is to develop an effective EKF-

based RNN training approach with a controllable training convergence. While EKF has 

been proved to be very useful in a wide variety of estimation or prediction applications, 

its effectiveness can be nullified by its divergence [Fitz71], which can be classified as 

follows [Schl67]: 1) apparent divergence, in which the associated errors don’t approach 

infinity but the errors are too large to allow the estimates to be useful, and 2) true 

divergence, in which the mean square errors of estimation can actually approach infinity 

as training goes on, and this true divergence is of interest in this study. 

There are several approaches have been proposed to deal with the divergence 

problem in EKF [Simo06]: 1) to increase the arithmetic precision, 2) to artificially add 

white noise to the (noiseless) process equation, 3) to use square root Kalman filters, 4) to 

make the state estimation error covariance matrix P  symmetric, 5) to use a fading-

memory Kalman filter, and 6) to adapt filter parameters. Evaluation of the effectiveness 

of the aforementioned approaches is often difficult and case-dependent. The first 
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approach is suitable for applications dealing with hardware implementation in which the 

high precision in hardware is often prohibitive. The second to fourth approaches aim to 

make the covariance matrix P  nonnegative definite and/or symmetric. During the 

filtering process the covariance matrix P  may fail to meet the nonnegative definite 

and/or symmetric requirements, resulting in the divergence problem. This can be 

alleviated by artificially adding a process noise (the second approach) and the magnitude 

of the additive noise is chosen to be large enough to ensure that the P  matrix is 

nonnegative [Zarc01]. The square root Kalman filter is a more refined method to solve 

this divergence problem, and the covariance matrix is propagated in a square-root form 

by using the Cholesky factorization. However, the square root algorithm is 

computationally intensive which makes it less attractive in engineering applications 

[Harv89]. The fading-memory filter is another way of forcing the filter to forget 

measurements in the distant past and place more emphasis on recent measurements; 

however, it may result in the loss of optimality of the Kalman filter [Simo06]. The sixth 

approach is of interest in this study by adapting the covariance of measurement noise ( R ) 

and the covariance of process noise ( Q ) of Kalman filter. It is recognized that the poor 

statistics about R  and Q  may cause the divergence problem in estimation using the 

Kalman filter [Jwo07], so this study will investigate the EKF training algorithm stability 

in RNN training by adaptively adjusting the two noise covariance matrices R  and Q . 
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Estimation Robustness of RNN 

Most dynamic systems have a capacity, which is generally called robustness, to 

tolerate various system variations without exceeding predetermined tolerance bounds in 

the vicinity of nominal dynamic behaviors. Robustness analysis is usually studied to 

estimate the perturbation-induced performance variation or to quantify the system’s 

resilience to any possible perturbations. 

Analysis of NN robustness has been of great interest since the network robustness 

information allows the researchers to have a global and synthetic understanding of the 

network behavior under uncertainties. A robust network is expected to be fault tolerant 

and noise immune; if the inputs or the parameters (weights and others) of a network are 

contaminated with noise, or faults occur, the network response should differ only slightly 

with respect to the ideal performance [Eick07]. 

NN robustness has been studied for different applications including associative 

memory, classification, and modeling. For associative memory applications, the 

robustness is usually studied by establishing sufficient conditions for valid memory 

functions under uncertainties of network parameters such as weight and bias [Liu93] 

[Liu96] [Feng99] [Arik03] [Liu06]. For classification applications, the robustness is 

conducted by investigating the relationship between permissible variations of inputs and 

the associated network classification performance [Pier06]. On the other hand, for 

modeling applications, the robustness is characterized by studying the effects of 

perturbations in weights [Yee91] [Kris99] [Alip02] [Alip04] or inputs [Eick07] on 

network outputs. 
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The NN robustness in modeling applications has been of great interest. The goal 

for these applications is to reduce the sensitivity of modeling capacity to uncertainties in 

parameters, or to make the network fault tolerance. 

Dynamic systems can be modeled using different approaches including the data-

driven NN method [Hayk99]. When a system is represented by a NN-based model, it is 

naturally expected that the NN should have certain robustness to various perturbations 

[Chiu93] [Alip01] [Alip04]. For example, NN should still accurately describe system 

behaviors even its weights are altered due to different reasons: 

1) Hardware drifting over a period of time [Chiu93] 

2) Hardware implementation of analog and/or digital circuitry of NN in current 

technologies such as quantization and environmental noise [Dund95] 

[Raza00] [Wido02] [Alip04] [Eic07] 

3) Software perturbations [Asso04], and 

4) Neural network faults which includes disconnection or saturation of weights 

and lost of neurons [Phat95] 

While the effect of input uncertainties on the NN robustness has been studied 

[Pier06], the effect of weight alternation is usually of great interest in characterizing the 

NN robustness [Alip04]. As aforementioned the network weights are easy to be altered 

during various NN implementation scenarios, and robustness analysis on the effect of 

network weight perturbations has an immediate impact on NN physical realization 

[Alip04].  
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The NN robustness in modeling applications has been of great interest, and it has 

been studied mainly using the performance loss-based approach [Chiu93] [Alip04] 

[Eick07] and the sensitivity matrix-based approach [Yee91] [Kris99]. While these 

approaches have been developed for FFNN, they can also be extended to RNN. 

The performance loss-based approach is usually realized by computing the 

network modeling capability degradation due to any perturbation in its parameters such 

as weights. The performance loss is characterized in terms of the mean square error 

(MSE) over available measurement data sets [Chiu93] by introducing certain 

perturbations in trained network parameters such as weights. Perturbations can be 

introduced using a constant scaling factor which linearly changes the value of parameters 

of interest [Chiu93] [Alip04] and using a certain probability distribution function such as 

the Gaussian distribution [Eick07] and uniform distribution [Dund95] [Alipp04]. The 

upper boundary of performance loss for all the input data indicates the network 

robustness. Unfortunately, this approach is implemented using the measurement data and 

requires a large amount of measurement data, which are usually limited in real 

applications. 

The general procedures to conduct performance loss-based robustness 

quantification are concluded as follows: 

1) Introduce certain perturbation in a trained NN’s parameters (i.e. weight) to 

form a series of NN,  
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2) Feed available data pairs, inputs and their corresponding measurements (target 

response), to each of NN formed in Step (1) and compute corresponding MSE as the 

performance loss using NN model, 

3) Use the maximum of the performance loss for all the input data to represent the 

network’s robustness. 

The aforementioned MSE in Step (2) is computed by: 

( )∑
=

∆−=∆
pn

i
ii

p
i xyxt

n
xMSE

1

2),()(1),( θθ      (2.17) 

where pn  is the number of available data set, ix  is the input, )( ixt  is the target value for 

NN output )( ixy , and θ∆  is the perturbation in parameters. 

For the sensitivity matrix-based approach, the robustness is studied using a 

differential analysis to compute the parameter-output sensitivity matrix of NN. The 

sensitivity matrix, often denoted as H , is the Jacobian matrix containing the derivatives 

of outputs with respect to parameters such as weights: 
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where [ ]
tnwwww ,...,, 21=v  is the weight vector and [ ]nyyyy ,..., 21=v  is the output vector  
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A norm of the sensitivity matrix, such as the 2-norm square ∑=
ji

ijHH
,

2
2

 

[Yee91] or the spectral norm [ ]HHH T
s maxλ=  [Kris99], is used as the robustness 

index. Similar to the performance loss-based approach, this approach also needs plenty of 

measurement data sets to compute the sensitivity matrices so that the resultant robustness 

measure can cover the whole input space. Furthermore, each sensitivity matrix only 

reflects the sensitivity of an infinitesimal range centered around the nominal weight 

values. 

The general procedures involved in this approach are listed as follows: 

1) For each input data ( )ixv , compute the sensitivity matrix H  during the training 

process; calculate its norm, and 

2) Use a statistic (average) of the norm values to indicate the network’s 

robustness. 

As the aforementioned two approaches are mainly limited by the available 

measurement data, this study aims to quantify the network robustness by computing 

weight perturbation-induced output uncertainties using an uncertainty propagation 

analysis. 

 

Conclusions 

This chapter reviews the theoretical background of this dissertation. The 

architectures of networks, topology optimization, and training algorithm are reviewed in 
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the first. Performance studies of NN such as the training convergence and estimation 

robustness are then introduced.  

Neural networks include forward neural networks (MLP, FFCNN) and recurrent 

neural networks (Elman, Jordan, and RMLP) applied in modeling applications are 

introduced. The recurrent neural networks are modified from MLP which is the most 

widely used feedforward network. In this study another RNN is to be proposed based on 

the FFCNN which has advantages over MLP.  

NN with different levels of complexity (in terms of numbers of neurons, layers 

and weights) can be applied for modeling non-linear dynamical systems. Usually a 

complicated network can generate small modeling error. However, the use of complicated 

networks is time consuming and often brings the over-fitting problem. To determine the 

optimized network for a specific application, generally there are three classes of methods: 

empirical method, destructive or constructive methods, and the applications of other 

optimization strategies. Usually a destructive method is preferred because the resulting 

optimized network is parsimonious and often has good extrapolation ability.  

Training algorithm is used to determine the weights of a network. Three major 

training algorithms are developed for RNN, namely, back-propagation through time 

(BPTT) algorithm, real-time recurrent learning (RTRL) algorithm and EKF training 

algorithm. Among them, the EKF is the most accurate and fastest one which is applied in 

this study. 

Two performance studies are also reviewed in this chapter. Training convergence 

studies the stability of weight update during training process and it is interested in this 
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study. Generally the Lyapunov method is applied to establish verifiable and sufficient 

conditions to guarantee convergence of the training process. To avoid training 

divergence, or fail of convergence, is still a major challenge in application of EKF based 

RNN training and the problem is to be addressed in this study by adapting some training 

parameters. 

Finally, robustness of NN for modeling applications is reviewed in this chapter. 

The goal of the research is to reduce the sensitivity of a network’s modeling capacity to 

uncertainties in its parameters. Two methods have been developed in quantifying 

robustness of FFNN, namely performance loss-based method and sensitivity matrix-

based method. Both the methods are limited by the available measurement data. In this 

study an uncertainty propagation analysis based method is to be developed which is 

effective, efficient, and flexible to quantify robustness of RNN.  
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CHAPTER THREE 

DEVELOPMENT OF THE RECURRENT NEURAL NETWORK 

 
Abstract 

In the study, a RNN and an optimized RNN are proposed to model non-linear 

dynamical systems. In this chapter, the development of RNN networks is introduced 

which include its structure, training algorithm, and architecture optimization algorithm. 

The network is modified from a fully forward connected network by the accommodation 

of one time step delayed internal recurrent connections in its hidden neuron section. The 

RNN EKF training algorithm is then introduced. The most time consuming part of the 

algorithm is to take the orderly derivative of network output with respect to trainable 

weights. The orderly derivative derivation is illustrated in three cases considering specific 

weight connections involved. The optimization of the network structure is achieved using 

a pruning approach which removes the insignificant connections. To conduct the 

structure optimization, first a connectivity coefficient is introduced to each connection 

through a connectivity function, then the coefficients are trained with weights 

simultaneously using EKF, and finally the unimportant connections are removed. With 

the techniques introduced in this chapter, an optimized RNN can be developed to model 

non-linear dynamical systems. 
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Nomenclature 

Fully Forward Connected Neural Network 

Symbol Definition 

h Number of the hidden neurons 

m Number of the input neurons 

n Number of the output neurons 

)(⋅if  Activation function of the ith neuron 

inet  Net input of the ith neuron 

ijw  Weight for the connection from neuron j to neuron i 

o
iy  Output of the ith neuron 

 

Recurrent Neural Network 

Symbol Definition 

h Number of the hidden neurons 

m Number of the input neurons 

n Number of the output neurons 

)(⋅if  Activation function of the ith neuron 

)(kneti  Net input of the ith neuron at time step k 

ijw  Weight for the connection from neuron j to neuron i 

)(ky o
i  Output of the ith neuron at time step k 
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Extend Kalman Filter Algorithm 

Symbol Definition 

)(* kx  Actual state at time step k 

−)(kx  The a priori estimate of )(* kx  

)(kx or +)(kx  The a posteriori estimate of )(* kx  

−)(ke  The a priori estimate error at time step k 

)(ke  the a posteriori estimate error at time step k 

)(kH  Jacobian matrix at time step k 

)(kK  Kalman gain at time step k 

−)(kP  The a priori estimate error covariance at time step k 

)(kP  or +)(kP  The a posteriori estimate error covariance at time step k 

)(kQ  Covariance matrix of process noise at time step k 

)(kR  Covariance matrix of measurement noise at time step k 

)(kwv  Estimation of weight vector *wv  at training step k 

 

Connectivity Optimization Algorithm for RNN 

Symbol Definition 

jic  Introduced connectivity coefficient for connection from  
neuron i to neuron j 

)( jicg  Connectivity function of jic  
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Architecture of the Proposed Neural Network 

A fully connected recurrent neural network is proposed in this study. The network 

is developed from an FFCNN introduced in Chapter two.  

As shown in Figure (3.1(b)), the RNN is comprised of m neurons in its input 

section, h neurons in its hidden section and n neurons in its output section. In addition to 

the forward connections in FFCNN (shown in Figure (2.6)), each neuron in the hidden 

section also takes one time step delay feedback connections from the neurons right to it. 

Hence, the RNN is fundamentally different from an FFNN in the sense that it not only 

operates on an input space but also on an internal state space – a trace of what already has 

been processed by the network. 

Figure (3.1(a)) shows the internal recurrency between a neuron i and a neuron j in 

the hidden section. ijw  represents the weight for the feedback connection between the 

two neurons, iiw  and jjw  represent the weights for the two neurons’ self-feedback 

connections, while the jiw  represents the weight for the feed forward connection. Notice 

that the recurrency only exist in network’s hidden section, and the other weights are for 

feedforward connections as in an FFNN. 

The proposed RNN has intra-neuron internal recurrency (the dashed lines in 

Figure (3.1(b))) in its hidden section. Different from other RNN (Elman, Jordan, and 

RMLP) mentioned in Chapter 2 which are based on the MLP network, the proposed RNN 

is modified from the FFCNN. Because the FFCNN has advantages over the MLP in terms 

of modeling accuracy and robustness, the proposed RNN is believed to be better than 

those RNN.  
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m input neurons h hidden neurons n output neurons

Feedforward loops (solid lines)

x1 xm y1 yn

i j

wji

wij

wii wjj

(a) Connection between two neurons

(b) The proposed RNN structure
(Dash lines: state feedback loops. Solid lines: feed forward loops)  

Figure 3.1: Architecture of RNN 

 

For each neuron i, its output )(ky o
i  at the time step k, is determined by the 

neuron’s activation function )(⋅if  and its net input )(kneti : 

))(()( knetfky ii
o
i = ,   nhmi ++≤≤1    (3.1) 

Same to the FFCNN case (shown in Figure (2.7)), the net input for neurons in 

input neuron section and output neuron section is calculated as: 

∑
−

=

=
1

1

)()(
i

j

o
jiji kywknet ,  mi ≤  or hmi +>    (3.2) 
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∑)(1 ky o

)(2 kyo

)(1 kyo
i−

)1(1 −+ kyo
i

)1( −+ ky o
hm

iiw

)1( +iiw

)( hmiw +

1iw

2iw

)1( −iiw

)(kyo
i

a) Schematic of the connections b) Neti composition

1 i-1 m+hi i+1

)1( −ky o
iFeedback from itself

Feedbacks from 
neurons right to it

Feed forward 
inputs from 
neurons left to it

neti

 

Figure 3.2: An illustration of the output generation of neuron i in hidden section 

 
As shown in Figure (3.2), due to the feedback connections introduced in the 

hidden neuron section, the functions for hidden neurons are different from those in the 

previous FFCNN case. The net input of each neuron in the hidden section is comprised of 

two parts: the summation of outputs at the current step from the neurons left to it and the 

summation of outputs at the previous step of hidden neurons right to it. 

,)1()()(
1

1
∑ ∑

−

= =

−+=
i

j

n

ij

o
jij

o
jiji

n

kywkywknet  hmim +≤<    (3.3) 

where nhmnn ++=  is the total number of neurons of network, activation function, and 

)1( −ky o
j  is the output of neuron j at the previous time step (k-1). 
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Training Algorithm Development 

As stated in Chapter 2, both BPTT and RTRL are based on first order gradient 

descendent and are heavy computationally and slow. GA is also computation demanding 

because the weight solution space of RNN is usually quite big. In this study an EKF 

algorithm is applied to train RNN. First a brief introduction of EKF is given in the 

following. 

 

Introduction of Kalman Filter 

Generally speaking, EKF [Mayb90] can be used to estimate states of a nonlinear 

system from its measurement history. The EKF is derived from Kalman filter (KF) which 

applies for linear systems. To better appreciate EKF, KF is introduced first as follows. 

Kalman Filter 

The objective of KF is to estimate the state *x  of a linear discrete-time system: 





+=
−+−−+−−=

)()()()(
)1()1()1()1()1()(

**

**

kkxkHky
kkukGkxkAkx

ξ
γ

   (3.4) 

where the first equation is called process equation, the second one is called measurement 

equation, *x  is the state of system at time step k, )1( −ku  is the control input at time step 

k-1, γ  is the process noise, y  is the measurement, ξ  is the measurement noise, the 

matrices )1( −kA  and )1( −kG  relate the state and input at the previous time step k-1 to 

the state of current time step k, )(kH  relates the state to measurement at the current time 

step, the noises are white, zero-mean, uncorrelated, and have known covariance matrices 

)(kQ  and )(kR  respectively: 
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)(kγ  ～ ( ))(,0 kQ         (3.5) 

)(kξ  ～ ( ))(,0 kR         (3.6) 

[ ] )()()()(E jkkQjk T −= δγγ        (3.7) 

[ ] )()()()(E jkkRjk T −= δξξ        (3.8) 

[ ] 0)()(E =Tjk ξγ         (3.9) 

where )( jk −δ  is the Kronecker delta function: 





≠
=

=−
jkif,0

if,1
)(

jk
jkδ        (3.10) 

The goal of KF is to estimate the state )(* kx  from the system dynamics (3.4) and 

the noisy measurement sequence{ })(),...,2(),1( *** kyyy . If all of the measurements before 

the current time step k are available, they can be used to form an a priori estimate of 

)(* kx  as: 

[ ])1(),...,2(),1((k)E)( **** −=− kyyyxkx      (3.11) 

The corresponding covariance of the estimation error is: 

( )( )[ ]TkxxkxxkP −−− −−= )((k))((k)E)( **      (3.12) 

The state can be further estimated based on the availability of the measurement at 

current time step, to form an a posteriori estimate of )(* kx  as: 

[ ])(),...,2(),1(x(k)E)( *** kyyykx =+       (3.13) 

The corresponding covariance of the estimation error is: 

( )( )[ ]TkxxkxxkP +++ −−= )((k))((k)E)( **      (3.14) 
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The KF algorithm is formed in a recursive way, to estimate )(* kx  based on the 

estimation of )1(* −kx . The a priori estimate ( −)(kx ) and estimation covariance ( −)(kP ) 

are calculated considering the process equation. The a posteriori estimate ( +)(kx ) and 

estimation covariance ( +)(kP ) are computed based on the knowledge of measurement 

( *y ) at time step k. The corresponding time update equations (3.15 and 3.16) and 

measurement equations (3.17-3.19) are listed as follows: 

)1()1()1()1()( −−+−−= +− kukGkxkAkx      (3.15) 

)1()1()1()1()( −+−−−= +− kQkAkPkAkP T      (3.16) 

( ) 1
)()()()()()()(

−−− += kRkHkPkHkHkPkK TT      (3.17) 

( )−−+ −+= )()()()()()( kxkHkykKkxkx      (3.18) 

( ) −+ −= )()()()( kPkHkKIkP        (3.19) 

To begin the recursive update, the estimation should be initialized as follows: 

[ ](0)E)0( *xx =+         (3.20) 

( )( )[ ]TxxxxP +++ −−= )0((0))0((0)E)0( **      (3.21) 

The KF is illustrated in Figure (3.3) as follows: 

Represent the dynamic system by the process-measurement equation (3.4)

Initialize the Kalman filter
(3.20 and 3.21)

Apply the Kalman filter recursion equations
(3.15-3.19)  

Figure 3.3: The Kalman filter algorithm 
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Introduction of Extended Kalman Filter 

When the system being studied is a nonlinear system, the EKF is modified from 

the KF to make state estimation. The basic idea is to linearize the system first and then to 

apply KF on the linearized system. Suppose the original nonlinear system is governed by 

the equations: 

( )
( )
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)(),()(
)1(),(),1()(
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kkxhky
kkukxfkx

ξ
γ

      (3.22) 

where )(* kx  and )(* ky  are the actual state and measurement at current time step k, )(⋅f  

represents the nonlinear process equation, (.)h  represents the nonlinear measurement 

equation, u  is the input of the system, and γ  and ξ  are the process noise and 

measurement noise which have the same properties as in Equations (3.5-3.9) :  

To implement EKF, the system is first linearized at the approximate point 

( −)(kx , −)(ky ), or the a priori estimation point, which comes from the noise free system: 

( )
( )
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  (3.24) 

where −)(kx  and −)(ky  are the approximate state and measurement at time step k 

respectively, A  is the Jacobian matrix of partial derivatives of f  with respect to *x , H  

is the Jacobian matrix of partial derivatives of h  with respect to *x , λ  is the Jacobian 
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matrix of partial derivatives of f  with respect to γ , and V  is the Jacobian matrix of 

partial derivatives of h  with respect to ξ . 

)(*)( kxx
fkA

∂
∂

=         (3.25) 

0)(
γ

λ
∂
∂

=
fk          (3.26) 

)(*)( kxx
hkH

∂
∂

=         (3.27) 

0)(
ξ∂

∂
=

hkV          (3.28) 

Consider the estimation residual which is the difference between the actual state 

and the approximate state: 

−−= )()()( ** kxkxkex        (3.29) 

The measurement residual is: 

−−= )()()( ** kykykey        (3.30) 

Plug the above equations (3.29 and 3.30) into the linearized equation (3.24) to get 

the error model: 

)()1()1()( ** kkekAke xx ε+−−=       (3.31) 

)()()1()( ** kkekHke xy η+−=       (3.32) 

Notice that the error equations are linear models hence the KF can be applied to 

compute the error estimate )(* kex .The noises of the error system follows the following 

distributions: 
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)(kε  ～ ( )TkkQk )()()(,0 λλ        (3.33) 

)(kη  ～ ( )TkVkRkV )()()(,0        (3.34) 

 After obtain the error estimate, the a posteriori estimate of )(* kx  can be 

computed from the relation: 

)()()( * kekxkx x+= −+        (3.35) 

In conclusion, the EKF algorithm includes time update equations (3.36 and 3.37) 

and measurement equations (3.38-3.40): 

( )0),(),1()( * kukxfkx −=−        (3.36) 

TT kkQkkAkPkAkP )()1()()()1()()( λλ −+−=−     (3.37) 

( ) 1
)()()()()()()()()(

−−− += TTT kVkRkVkHkPkHkHkPkK   (3.38) 

( )( )0,)()()()()( * −−+ −+= kxhkykKkxkx      (3.39) 

( ) −+ −= )()()()( kPkHkKIkP       (3.40) 

where −)(kx  is the a priori estimate of )(* kx - the actual state to be estimated, +)(kx  is 

the a posteriori estimate of )(* kx , K  is the Kalman gain, −P  is the a priori estimate error 

covariance [ ]TeeEP −−− = , −e  is the a priori estimate error −− −= xxe , +P  is the a 

posteriori estimate error covariance [ ]TeeEP =+ , and +−= xxe  is the a posteriori 

estimate error. +P  will be written as P  for simplicity in the following sections. 

The EKF algorithm is illustrated in Figure (3.4) as follows: 
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Represent the dynamic system by the process-measurement nonlinear equations (3.22)

Initialize the Kalman filter
(3.20 and 3.21)

Apply the Kalman filter recursion equations
(3.36-3.40)

Compute the Jacobian matrices
(3.25-3.28)

 

Figure 3.4: The extended Kalman filter algorithm 

 
EKF RNN Training Algorithm 

The EKF algorithm introduced above is for estimation of a scalar, but it can also 

apply to vectors as well. To apply EKF in RNN training, weights of a RNN are treated as 

the states of the network, and then EKF is used to estimate the states from network’s 

output. Corresponding to Equation (3.22), the training model is represented by: 

( )



+=
−+−=

)()()(
)1()1()(

**

**

kkwhky
kkwkw

ξ
γ
vvv

vvv
       (3.41) 

where )(* kwv  is the optimal weight vector *wv  at time step k, )1(* −kwv  is the weight 

vector at time step k-1, *yv  is the measurement data or target data, and ( )⋅h  represents 

RNN mapping function which generates the output of network. 

The optimal weight vector is the weight vector that minimize the difference of 

measurement )(* kyv  and the output of neuron network ( ))(* kwh v . The EKF is used to 

estimate the constant vector *wv  based on the measurements and the network function 
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( )⋅h . Ideally *** )1()( wkwkw vvv =−=  or 0)1(
vv =−kγ , but the non-zero process noise can 

introduce more flexibility in tuning the filter. 

The objective of training process is to generate an estimate )(kwv  of )(* kwv . The 

weights of a RNN are often represented in matrix form W ; each of its element jiw  

represents the weight on the connection from neuron i to neuron j. To apply the EKF, the 

elements of the matrix should be organized in the vector form wv . To achieve that, W is 

first written as a combination of row vectors: 





















=

nnW

W
W

W
v

v

v

...
2

1

, iW
v

 is the ith row of W , 

nhmnn ++=  is the number of neurons of the network; wv  is then formed by combing 

the row vectors and taking transpose, [ ]Tn
T

n tn
wwwWWWw ,...,,],...,,[ 2121 ==

vvvv ; iw  is the 

ith element of the vector, tn  is the total number of trainable weights. For example, the 

weight matrix of the network in Figure (2.17) is 








2221

1211

ww
ww

; in this case,  

[ ] [ ]TTT wwwwwwwwWWw 43212221121121 ,,,],[ ===
vvv .  

Corresponding to Equations (3.36-3.40), EKF for the weights update process can 

be written as: 

)1()( −=− kwkw vv         (3.42) 

)1()1()( −+−=− kQkPkP        (3.43) 

( ) 1
)()()()()()()(

−−− += kRkHkPkHkHkPkK TT     (3.44) 
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( )( )−− −+= )()()()()( * kwhkykKkwkw vvvv      (3.45) 

( ) −−= )()()()( kPkHkKIkP        (3.46) 

Combination of Equations (3.42-3.46) results in the simplified version of EKF 

training algorithm: 

( ))(*)()()1()( kykykKkwkw vvvv −−−=      (3.47) 

1)]()1()()()[()1()( −−+−= kHkPkHkRkHkPkK T     (3.48) 

)()1()()()1()( kQkPkHkKkPkP T +−−−=     (3.49) 

where )(kwv  is the estimate of weight vector *wv  at time step k, )1( −kwv  is the estimation 

of weight vector at one time step before, )(* kyv  is the target data, and ( )−= )()( kwhky vv  is 

the output of RNN which is supposed to be an estimate of )(* kyv . 

The flow chart of RNN training process is listed in Figure (3.5). The process 

includes four steps: 

Stop criteria

Compute orderly derivative

and  generate Jacobian matrix H(k)

N

Stop
Y

Initialize filter parameters and weights )0(),0(),0(),0( wRQP vInitialize filter parameters and weights )0(),0(),0(),0( wRQP v

Apply Kalman filtering and update weights 
Equations (3.47-3.49) 

Trained weights  

Figure 3.5: The flow chart of RNN training procedures 
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1) Training data preparation 

NN is a data-driven modeling method. Suppose a system is to be modeled; the 

mathematical model of the system is unknown but its inputs-outputs data are available 

from experiments; an inputs-outputs pair is called a training pattern; a RNN is used to 

represent the system using these training patterns. Suppose the system to be modeled has 

m inputs and n targets, )(* xfy vr
= , [ ]mxxxx ,..., 21=v , [ ]**** ,...,

21 nyyyy =v , pn  sets of 

training patterns are generated as shown in Figure (3.6): 

Training pattern 1: )1(),...,1(),1( 21 mxxx
Training pattern 2:

Training pattern np:

)1(),...,1(),1( **
2

*
1 nyyy

)2(),...,2(),2( 21 mxxx

)(),...,(),( 21 pmpp nxnxnx )(),...,(),( **
2

*
1 pnpp nynyny

)2(),...,2(),2( **
2

*
1 nyyy

 

Figure 3.6: Training data set example 

 

In order to avoid the saturation problem, all inputs and all outputs need to be 

normalized before they are fed into the network. The normalization is carried out by a 

linear mapping function as: 

min
minmax

minmax
min )( N

NN
N x

xx
xx

xxx +
−
−

−=      (3.50) 

where x  is the original variable in the range of [ ]maxmin , xx  , maxx  and minx  are the 

maximum and minimum values of the variable before normalization, Nx  is the 

normalized variable, which is in the range of [ ]maxmin , NN xx , maxNx  and minNx  are the 

maximum and minimum values of the normalized variable. Usually the variables are 

normalized into the range of [0, 1]. 
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2) Training parameters initialization 

To use the recursive equations of EKF, its parameters such as P , Q , R , and 

weights estimation ŵ  need to be initialized first. To avoid the saturation problem, each 

element of 0ŵ  is randomly selected from a uniform distribution in the range of [0, 1]. 

There is no general guide to initialize the other parameters. Usually they are arbitrarily 

selected and if the algorithm converge they can recursively converge to their desired 

values.  

3) Training process 

After that, training data are fed into the network to update weights. For a training 

pattern k, [ ])(),...,(),()( 21 kxkxkxkx m=v  is the input to the network, and it generates 

output [ ])(),...,(),()( 21 kykykyky n=v  which is compared with the corresponding target 

value [ ])(),...(),()( ****
21

kykykyky n=v and the resulting error term is used to update weights 

as illustrated in Equation (3.47). To apply the EKF equations, the orderly derivatives 

(will be introduced in the following section) of network’s output yv  with respect to 

weight vector wv are calculated and form the Jacobian matrix 
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. The EKF equations (3.47-3.49) are then applied to train 

weights until the specified stop criteria are met, otherwise the process goes back to update 
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weights using training data for another epoch. A training epoch is used to describe a 

complete pass through all of the training patterns. For this case, the training process for 

training pattern 1 to pattern pn  is called a training epoch. Stop criteria are case dependent 

and may include the allowable maximum number of training epochs, the minimum 

training error, and the minimum amount of change in weights during training, etc. A 

normalized sum of square error (SSE) is used to represent the training error for a training 

epoch j:  

( ) ( ) %100)()(/)()()()()( **** ×−−= jyjyjyjyjyjyje TT vvvvvv   (3.51) 

where )(* jyv  is the target data at epoch j, and )( jyv  is the output of RNN at epoch j. 
 

Orderly Derivative 

The most calculation consuming step in the above training flow chart is the step 

of calculating orderly derivative. RNN is an ordered system and the outputs of neurons 

need to be calculated orderly from the left to the right. Orderly derivatives are used for 

this case instead of the ordinary partial derivatives. For ordered systems where the values 

need to be orderly calculated in the order of 1z , 2z ,…, nz The orderly derivative of a 

target with respect of iz  can be written as [Werb90]: 

∑
>

+

∂

∂

∂
∂

+
∂

∂
=

∂
∂

ij i

j

iii z
z

zzz
targettargettarget       (3.52) 

where the derivative with superscript represents orderly derivative and the derivative 

without superscript represents ordinary partial derivative. 
iz∂

∂ target , the ordinary partial, 
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derivative represents the direct impact of target on iz , while 
iz∂

∂ + target , the orderly 

derivative, represents the total effect of target on iz . A simple ordered system is 

illustrated for clarity as follows: 

An ordered system is orderly governed by the following equations: 

12 2zz =          (3.53) 

213 2zzz +=          (3.54) 

From Equation (3.25), the ordinary partial derivative 
1

3

z
z

∂
∂  is 1, while the orderly 

derivative 
1

3

z
z

∂
∂ +

 is 5. The difference comes from the indirect impact by 2z . 

In RNN training, the orderly derivative matrix )(kH  is computed using the 

orderly chain rule considering all the possible connections contributing to the output. 

Each element 
2

1

i

i

w
y

∂

∂ +

 is to be computed. The involved computation is introduced in the 

following. To better illustrate the process, the orderly derivative 
2

1

i

i

w
y

∂

∂ +

 is denoted as 

jiw
y

∂
∂ +

 where jiw  contains the connection information of 
2i

w . For simplicity, the subscript 

of 
1

ˆ iy is omitted and jiw  is another notation for the weight 
2i

w . Generally the orderly 

derivative can be written as: 
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ji

j

j

o
j

jji w
net

net
y

y
y

w
y

∂

∂

∂

∂

∂
∂

=
∂
∂ +++

0        (3.55) 

where o
jy  is the output of neuron j, jnet  is the net input of neuron j. 

The derivatives take different forms depending on the specific weight 

connections. The derivation is illustrated in the following: 

 
Orderly Derivative Calculation in Case I 

i j

jiw

Output section

y

m+h m+h+1

o
iy jiw jnet )(⋅f y

(a) Network connection involved in computing        
jiw
y

∂
∂+

(b) Signal flow graph        

o
iy

 

Figure 3.7: Case I for calculation of the orderly derivative 

 
Case I is the simplest case that only forward connections need to be considered to 

calculate the orderly derivative. In this case, for a weight jiw , neuron j is in the output 

section and the neuron i is in the previous sections; only direct impacts act on y  through 

the weight so that actually the ordinary derivative is considered here. Figure (3.7) shows 

an example in this case. Part (a) shows the connection from neuron i to neuron j. Part (b) 
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illustrates the signal flow graph from the output of neuron i ( )o
iy  to the output of 

network ( )y , from which the orderly derivative can be written as: 

o
i

jji

j

jji

y
net

y
w
net

net
y

w
y

∂
∂

=
∂

∂

∂
∂

=
∂
∂ +

       (3.56) 

 
Orderly Derivative Calculation in Case II 

i j j+1 j+s

jiw

y

m+n+h

Hidden section  

Figure 3.8: Case II for calculation of the orderly derivative 

 
Case II deals with the situation that the weight jiw  is on a forward connection 

(i<j) and neuron j is in the hidden section. As shown in Figure (3.8), in this case, both 

forward loops and feedback loops need to be considered to derive the orderly derivative 

jiw
y

∂
∂ +

. 
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y

Hidden section

j j+1 j+s m+n+h

o
jy

o
jy jsjw )( + sjnet +

o
sjy +)(⋅f )( sjnw + nnet )(⋅f y

(a) Illustration of direct impact (the solid line) and an indirect 
impacts (the dash lines) on  o

jy
y

∂
∂+

(b) The signal flow graph for the indirect impacts

o
jy njw nnet )(⋅f y

(c) The signal flow graph for the direct impact  

Figure 3.9: Illustration of calculation of o
jy
y

∂
∂ +

 in case II  

Figure (3.9) shows how to calculate the orderly derivative o
jy
y

∂
∂ +

 in Equation 

(3.57). o
jy , the output of neuron j, contributes to y  not only directly through the weight 

jnn
w  (the solid line in Figure (3.9 (a))), but also indirectly through other forward loops to 

the right of neuron j (the dash line in Figure (3.9 (a))). 
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∑1jw

jiw

)1( −jjw

jnet)('
1 ky

)(kyo
i

)(1 kyo
j−

)1( −kyo
j

)1( −+ kyo
sj

)1( −+ kyo
hm

jjw

)( sijw +

)( hmiw +

 

Figure 3.10: jnet  decomposition (The items inside dash boxes contribute to the 

calculation of 
ji

j

w
net

∂

∂ +

) 

Figure (3.10) shows the composition of jnet . It can be found that jnet  has two 

components related to the orderly derivative 
ji

j

w
net

∂

∂ +

. One is the forward path from 

)(kyo
i  through jiw  to jnet  at the current time step k. The others are the paths from 

feedbacks )1(),...,1(),1( 1 −−− ++ kykyky o
hm

o
j

o
j  which impact on )1( −ky o

j  and hence 

indirectly influence on jiw . k is used to denote time step because two consecutive time 

steps (current and the previous time step) need to be considered here. Figure (3.11) shows 

the effect of forward path at current time step k and the effect of a feedback path from 

)1( −+ ky o
sj  to )(knet j . 
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)( sjjw +

At time step k-1:

At time step k:
 

Figure 3.11: Signal flow graph to compute 
ji

j

w
net

∂

∂ +

 

From Figure (3.11), the orderly derivative 
ji

j

w
knet

∂
∂+ )(

 can be computed as follows: 

Consider the effect of forward path: 
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        (3.58) 

Consider the effect of feedback paths, as shown in the second item 

∑
=

−
n
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o
jij kyw )1(  in Equation (3.3), the output of neurons at time step k-1 also has impact 

on )(knet j : 
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Combine the above two equations, the orderly derivative is: 
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Consider Equations (3.57, 3.61), Equation 3.55 can be written as: 
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Figure 3.12: Case III for calculation of the orderly derivative 

 
Orderly Derivative Calculation in Case III 

Case III deals with the situation when the weight jiw  is on a feedback connection 

(j<i). In this case, both neuron i and neuron j are in the hidden section. As in Figure 
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(3.12), if weights are in the feedback loop (j<i), the orderly derivatives are computed as 

follows: 

)1(
)1(

)1(
)1(

)1(
)1(

)1(
)1(

−
−∂

−∂

−∂
∂

=

∂

−∂

−∂

−∂

−∂
∂

=
∂
∂

+

++

ky
knet

ky
ky
y

w
knet

knet
ky

ky
y

w
y

o
i

j

o
j

o
j

ji

j

j

o
j

o
jji      (3.63) 

Notice for this case the weight jiw  doesn’t have impact on )1( −ky o
i , because it 

would involve with calculations at 2 time steps before (k-2) and the network only 

considers one time step delayed recurrency. 

For the above discussion, if don’t mention otherwise, calculations are conducted 

for the current time step k. For example, jnet  is the same as )(knet j . 

To better understand the classification of three cases, an example of trainable 

weights for each case is shown in Figure (3.13). The example network has a structure of 

2-2-2. The rest weights are set to zero and don’t need to be trained. 
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Figure 3.13: The trainable weights for the three cases 
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Connectivity Optimization Algorithm for RNN 

In this study, a topology destructive optimization approach is utilized to optimize 

RNN. First, the number of hidden neurons is chosen based on a trial and error approach, 

then the network topology is optimized by disconnecting some weights among the 

network neurons using a method first proposed by KrishnaKumar [Kris93]. Such a 

pruned and optimized network has proved to be simpler, more accurate and robust 

[Kris99]. An example of the optimization process is illustrated in Figure (3.14), where the 

RNN originally has a structure of 1-3-1, and two connections ( 31c  and 24c ) are 

disconnected after optimization. 

31 2 54x y

Connections to be removed
 

Figure 3.14: An illustration of connectivity optimization 

 
To optimization the network connectivity, a function )( ijcg  as defined in 

Equation (3.64) is introduced to represent the availability of a connection between the 

neurons j and i. If )( ijcg  = 1.0, it implies there is a connection between the ith and jth 

neurons; while if )( ijcg  = 0, it implies there is no connection. 

ijcij e
cg

−+
=

1
1)(         (3.64) 

The procedures of optimization are listed as follows: 
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Derive the mapping functions of RNN considering the introduced connectivity 

coefficient jic  for each connection ij → , corresponding to Equations (3.1-3.3): 

)),(()( knetfky ii
o
i =    nhmi ++≤≤1    (3.65) 
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Figure 3.15: Illustration of Equations (3.65 and 3.66) 

 
The equations (3.65 and 3.66) are illustrated in Figure (3.15). Compare to Figure 

(2.7), it can be seen the connectivity functions have been added into the net input of the 

concerned neuron. Similarly, the net input for hidden neurons can be computed as 

follows:  

∑ ∑
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−+=
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nn
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o
jijji

o
jiji cgkywcgkywknet , hmim +≤<    (3.67) 

Calculate the orderly derivatives 
ijw
y

∂
∂ +

 and 
ijc
y

∂
∂ +

 accordingly. 

The corresponding equations for computation of orderly derivatives are as 

follows: 

For case I, corresponding to Equation (3.55): 
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Similarly, for case II, weights in forward loop i<j and jth neuron is a hidden 

neuron: 
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For case III, weights in feedback loop j<i 
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Finally the orderly derivatives of RNN outputs to connectivity coefficients can be 

computed as: 
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3) Then both the weights and connection coefficients are updated using the EKF 

algorithm. At the beginning of optimization, each ijc  is set as 0. When the stop criteria 

have been met, the connections with ijc  <0 will be disconnected by setting )( ijcg  = 0 and 

the others will be connected by setting )( ijcg  = 1. 
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Stop criteria N

Y

Initialize filter parameters and weights )0(),0(),0(),0( wRQP vInitialize filter parameters and weights )0(),0(),0(),0( wRQP v

Apply Kalman filtering and update weights and connectivity coefficients 
Equations (3.47-3.49) 

Introduce  network connectivity coefficient jicIntroduce  network connectivity coefficient jic

Compute orderly derivatives and  generate two Jacobian
matrices H(k) for weights and connectivity coefficients

Disconnect unimportant connections

The optimized network structure  

Figure 3.16: Network optimization process 

 
As shown in Figure (3.16), an optimized RNN is formed through the optimization 

process. The training process of the optimized network is divided into two phases: the 

connectivity optimization process which forms an optimized RNN connectivity structure 

and then the weights of the optimized network are further refined using EKF and the 

same training data.  

 

Conclusions 

This chapter introduces the development of the proposed RNN.  

The network is modified from FFCNN by importing internal recurrency into its 

hidden neuron section. The neurons receive not only the inputs at current time step from 
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neurons before it but also the inputs at the previous time step from neurons after it, 

Hence, RNN is fundamentally different from FFNN that it not only operates on the input 

space but also on its internal state space, which makes it more suitable for non-linear 

dynamical system modeling. 

EKF algorithm is applied in training the network. To achieve that, the training 

process is first written in terms of process and measurement equations. The Jacobian 

matrix in the measurement equation is formed by taking the orderly derivatives of 

network’s outputs with respect to its weights. The parameters of EKF are then initialized, 

and the EKF equations are applied to the system to estimate the weights update during 

training. The most time consuming procedure involved is the calculation of orderly 

derivatives.  

The network optimization is embedded into the training process to optimize the 

network structure for any specific applications. A destructive method is applied. A 

network with redundant structure is selected first. The insignificant weights are removed 

gradually during the process. To apply the method, first a connectivity coefficient is 

introduced to each connection through a connectivity function, and then the coefficients 

are trained with weights using EKF, finally the connections having negative connectivity 

coefficients are considered as unimportant and are finally removed. 

Through these development techniques, an optimized RNN can be formed to 

model non-linear dynamical systems. 
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CHPATER FOUR 

PERFORMANCE STUDIES OF THE RECURRENT NEURAL NETWORK 

Abstract 

 
Training convergence and estimation robustness are important in successful 

implementation of RNN in modeling non-linear dynamical systems. 

RNN has emerged as a promising tool in modeling of non-linear dynamical 

systems whereas the training convergence is still of concern. This study aims to develop 

an effective EKF-based RNN training approach with a controllable training convergence. 

The training convergence problem during extended Kalman filter-based RNN training 

has been proposed and studied by adapting two artificial training noise parameters: the 

covariance of measurement noise ( R ) and the covariance of process noise ( Q ) of 

Kalman filter. The R  and Q  adaption laws have been developed using the Lyapunov 

method and the maximum likelihood method, respectively.  

Robustness study of recurrent neural network is critical to their successful 

implementations. The goal of robustness study is to reduce the sensitivity of modeling 

capacity to uncertainties in parameters, or to make the network fault tolerance. In this 

study, an uncertainty propagation analysis is conducted to quantify the robustness of a 

recurrent neural network output due to perturbations in its trained weights. Perturbations 

are added into the weights and the unscented transform is used to quantify the 

corresponding uncertainties in the network’s output. A robustness measure has been 

proposed and compared with other two measures developed by sensitivity analysis and 

performance loss analysis.  
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Nomenclature 

R  Adaption Law Derivation 

Symbol Definition 

)(kH  Jacobian matrix at training step k 

)(kK  Kalman gain at training step k 

)(kP  Covariance matrix of weight estimation at training step k 

)(kQ  Covariance matrix of process noise at training step k 

)(kR  Covariance matrix of measurement noise at training step k 

)(kr  Diagonal element of )(kR , )(kR = Ikr ⋅)(  

)(kwv  Estimation of weight vector wv  at training step k 

*wv  Optimal value of wv  

)(kwe
v  Error of estimated weight vector )(kwv  

)(* kyv  Desired output at training step k 

)(kyv  Output of neural network at training step k 

)(kξ
v

 Residual of first order approximation 

)(kev  Estimation error of RNN output 

)(kB  Covariance matrix of network output 

)(kV  Lyapuov function 
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The Robustness Measure Derivation 

Symbol Definition 

*wv  Trained weight vector 

wv  Perturbed weight vector, wv ∝ ( )Σ,*wN v  

Σ  Covariance matrix of wv  

L  Perturbation level 

iχv  Sigma vector 

)( jxv  The jth sample input vector 

)( jyv  Output of )( jxv  from perturbed networks 

)( jy  mean of )( jyv  

)( jyvΣ  Covariance of )( jyv  

)( jyk
σ  Standard deviation of its kth element of )( jyv , 

),()()( kkjyjyk
vΣ=σ  
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Convergence Study of RNN Training Algorithm 

The stability of a dynamical system is usually evaluated using the Lyapunov 

theorems, which give a precise characterization of valid energy functions in the vicinity 

of equilibrium points [Sast99]. Lyapunov stability is concerned mainly with stability of 

equilibrium points, and a Lyapunov stable system is a system for which the states remain 

bounded for all time [Khal02]. In RNN training, the equilibrium points can be viewed as 

the optimal weight solutions that minimize the mean square error of the outputs of the 

neural network. The weight training process aims to find the optimal weights as the 

system’s equilibrium points, and the Lyapunov indirect method is used here to study the 

convergence of training by adapting R . 

While the training convergence is first guaranteed by adapting R , the process 

noise parameter Q  is further to be estimated to accelerate the training process, which 

needs the simultaneous estimation of the noise statistics and the update of the Kalman 

filter gain. The noise covariance matrixes can be estimated through the Bayesian 

estimation [Alsp74], the correlation method [Mehr72], the covariance matching method 

[Mehr72], and the maximum likelihood method [Mayb82]. The maximum likelihood 

method is favored in this study because it is more efficient, consistent, and suitable for 

online applications. It should be pointed out that this method may generate biased 

estimates for small sample sizes. However, because the maximum likelihood estimates 

tend to have the true value of the estimated variable close to the center of their 

distributions, the bias is often negligible [Mayb82]. 
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In the following sections, first the Lyapunove method and the maximum 

likelihood method are briefly introduced and then the convergence study is presented in 

detail. 

 

Lyapunov Method 

In this study, the direct Lyapunov method is applied to form an adaption law for 

the training parameter )(kR  in Equation (2.13) to guarantee the training process 

convergence. In this section, the direct Lyapunov method, also called the second 

Lyapunov method is reviewed. 

This method is used to determine the stability of an autonomous system without 

explicitly integrating its differential equation. The idea behind Lyapunov's direct method 

is to establish properties of the equilibrium point by studying how a carefully selected 

scalar function of the state (Lyapunov function) evolve as the system state evolves 

[Khal02]. 

Consider a non-linear dynamical system is represented by a differential equation: 

( ) ( ))(txftx =&          (4.1) 

Suppose origin is the equilibrium state: 

( ) 00 =f          (4.2) 

To prove the system is Lyapunov stable at the origin, a candidate Lyapunov 

function )(xV  needs to be proposed: 





≠>
==

0,0)(
0,0)0(

xxV
xV

        (4.3) 
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Such a )(xV  can be thought of as an energy function. Let )(xV&  denote the time 

derivative of )(xV  along any trajectory of the system, i.e. its rate of change as x(t) varies 

according to Equation (4.1). If this derivative is negative throughout the region (except at 

the origin): 

00)( ≠< xxV&         (4.4) 

Equation (4.4) implies that the energy is strictly decreasing over time. In this case, 

because the energy is lower bounded by 0, the energy must go to 0 when t goes to 

infinity, which implies that all trajectories converge to the equilibrium state, zero state. 

Or in another words, the system is asymptotically stable at the origin.  

For a discrete system, the key of the method is to find an appropriate Lyapunov 

function )(kV  for the concerned dynamic system so that 0)( <∆ kV . In this study, a 

discrete Lyapunov function is chosen as 

)()()()( 1 kwkPkwkV e
T

e
vv −=        (4.5) 

where *)()( wkwkwe
vvv −=  is the error of estimated weight vector, *wv  is the optimal weight 

and is a constant vector, )(kwv  is the estimate of *wv  using EKF at time step k, and )(kP  

is the approximate covariance matrix in Equations (3.48 and 3.49). 

 

Maximum Likelihood Method 

Once the training process is guaranteed to be convergent by using the Lypunov 

method mentioned in the previous section, another further question comes out, how to 
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make the convergence fast. To achieve that, the maximum likelihood method is adopted 

in this study to estimate the training parameter )(kQ  in Equation (3.49). 

In lot of cases, a parameter estimation process is requisite to a modeling process. 

A model with its parameters is first developed to describe the observed data or 

measurements. The remaining task is to find the best estimation of the parameters that 

make the model best fit the data. Maximum likelihood estimation (MLE) is a popular 

statistical method used for parameter estimation [Kay93]. 

Another major parameter estimation method is the least squares estimation (LSE) 

which aims to determine the parameters to make the model most accurately fit the sample 

data. In general, results of MLE are different from those of LSE. In most cases MLE is 

preferable to LSE unless the likelihood function can’t be easily formed. Generally MLE 

have desirable properties which makes MLE a desirable candidate to estimate the process 

noise )(kQ  in EKF Equation (3.49):  

1) It is a sufficient estimator which contains complete information about the 

parameter of interest which is the covariance of process noise in RNN 

training in this study; 

2) It is an unbiased estimator as the sample size increases; 

3) It is a minimum variance estimator as the sample size increases; and 

4) The likelihood function can be used to test hypotheses and construct 

confidence intervals for the model output which is the network output in this 

study. 
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To implement MLE, the first step is to develop the maximum likelihood function. 

A popular way to develop the function is described as follows. Suppose the variable to be 

modeled is a random variable and the functional form of the variable’s probability density 

function (PDF) is known. A random sample ),...,,( 21 nXXXX =  for the variable is 

observed and the observation ),...,,( 21 nxxx  is used to estimate the parameters. A group 

of parametric models are established to describe the observation data, each model 

depends on a unknown parameter θ . 

The PDF which accounts for the probability of random sample X  given the 

parameter θ  can be written as ( )θθ |,...1 nXXf . If individual samples iX  are independent 

of one another, the PDF can be written as a multiplication of each PDFs for all the 

observations: 

( ) ( ) ( ) ( ) ( )∏
=

==
n

i
inn XfXfXfXfXXf

1
211 ||...|||,... θθθθθ θθθθθ

   (4. 6) 

The likelihood function is defined by reversing the roles of sample X  and 

parameter of θ  in PDF, which represents the likelihood of parameter θ  given the sample 

X : 

( ) ( )θθ θ |,...,...| 11 nn XXfXXL =       (4.7) 

Similar to (4.6), if the random samples iX  are independent with one another the 

likelihood function (4.7) can be simplified as: 

( ) ( )∏
=

=
n

i
in XfXXL

1
1 |,...| θθ θ       (4.8) 
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For this case, the likelihood function is often written in logarithm format as 

follows: 

( ) ( )θθ θ |log,...|
1

1 i

n

i
n XfXXL ∑

=

=       (4.9) 

In other words, the likelihood function represents how likely the parameter can be 

if the observed data x  of X  is given. The method of maximum likelihood estimation of 

θ  that maximizes the likelihood function: 

),...|(maxargˆ
1 nXXL θθ

θ
=        (4.10) 

In summary, MLE begins with writing the likelihood function of the unknown 

parameter θ  based on sample data. The parameter value that maximizes the likelihood 

function then provides MLE results – the maximum likelihood estimator of the 

parameter.  

 

The Development of R  Adaption Law 

The covariance of measurement noise R  describes the statistics of network 

modeling error, and this information is generally not available for a RNN training 

process. As seen from Equation (3.25), a small R  value might lead to a large Kalman 

gain, which may make training divergent. For this training divergence problem, a dead-

zone Kalman filter was developed to train a state space recurrent neural network to avoid 

divergence in training [Rubi07]. This study further extends the modified EKF work 

[Rubi07] in the following aspects: 
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1) The development here considers training process of general neural networks; 

the training model (3.18) is applicable to a general neural network.  

2) The development here doesn’t require the knowledge of upper bound of kξ , 

the residual of first order approximation, which is unavailable in most cases; 

and 

3) The developed algorithm is more efficient because it doesn’t have dead-zone 

regions.  

To better illustrate the development process, weights update equations (3.47-3.49) 

are repeated as in the following equations (4.11-4.13): 

( )
( )




=
−−=+

)()(
)()()()()1( *

kwhky
kykykKkwkw

vv

vvvv
     (4.11) 

1

1

)()()(
)]()()()()[()()(

−

−

≡

+=

kBkHkP
kHkPkHkRkHkPkK T

     (4.12) 

[ ] )()()()()1( kPkHkKIkQkP T−+=+       (4.13) 

where )(kwv  is the estimate of weight vector *wv  at time step k, )1( −kwv  is the estimation 

of weight vector at one time step before, K  is the Kalman gain, )(kyv  is the output of 

RNN, )(* kyv  is the target value for )(kyv , P  is the approximate covariance matrices, H  

is the orderly derivatives matrix, and the covariance matrix of output 

( )()()()( T kHkPkHkR +  or ( ))(kyCov v ) is denoted as )(kB . 

Expand output of RNN )(kyv  at the optimal weight vector *wv : 
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       (4.14) 

where *)()( wkwkwe
vvv −=  is the error of estimated weight vector, *wv  is the optimal weight 

and is a constant vector, and ξ
v

 is the residual of first order approximation. 

The estimation error of RNN output is represented as: 

)()()()()()( * kkwkHkykyke e
T ξ

vvvvv +=−=      (4.15) 

A Lyapunov function is selected as in [Rubi07]: 

)()()()( 1 kwkPkwkV e
T

e
vv −=        (4.16) 

)()()()1()1()1()( 11 kwkPkwkwkPkwkV e
T

ee
T

e
rrrr −− −+++=∆    (4.17) 

Plug Equations (4.12) and (4.15) into (4.11), the following equation is derived as: 

( ) )()()()()()()()()(-

)()()()()()()()()(-)(

)()()()(-)()1(

11

11

1

kkBkHkPkwkHkBkHkPI
kkBkHkPkwkHkBkHkPkw

kekBkHkPkwkw

e
T

e
T

e

ee

ξ

ξ
vr

vrr

rv

−−

−−

−

−=

−=

=+

 (4.18) 

The following equation is equivalent to Equation (4.13): 

( ) ( ) )()()()()(-)()1( 1 kPkHkBkHkPIkQkP T−=−+     (4.19) 

Apply the matrix calculation formula on ( ) 111 )()()()(
−−− + TkHkRkHkP , according 

to the matrix inversion lemma: 

( ) ( ) 1111111 −−−−−−− +−=+ DACBDABAABCDA     (4.20) 

which leads to: 

( ) ( ) )()()()()(-)()()()( 1111 kPkHkBkHkPIkHkRkHkP TT −−−− =+   (4.21) 
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Compare (4.19) and (4.21), it is found: 

( ) ( ) 0)()()()()()1( 111 >+=−+ −−− TkHkRkHkPkQkP     (4.22) 

From Equation (4.18), (4.21) and (4.22), it can be derived that: 

( )
( ) )()()()()()1()()(

)1(()1(
111

1

kkBkHkPkQkPkwkP

kwkQkP

e

e

ξ
vv

v

−−−

−

−+−=

+−+
   (4.23) 

( ) )1()()1()1()1()1()1( 11 +−++<+++ −− kwkQkPkwkwkPkw e
T

ee
T

e
vvvv   (4.24) 

Equations (4.23) and (4.24) give: 

[ ]
( ) )()()()()()1()1(

)()()()1(

)()()()1()1()1()(

11

1

11

kkBkHkPkQkPkw

kwkPkwkw

kwkPkwkwkPkwkV

T
e

e
T

ee

e
T

ee
T

e

ξ
vv

vvv

vvvv

−−

−

−−

−++−

−+<

−+++=∆

  (4.25) 

Plug Equation (4.18) into (4.25), also knowing )(kB and )(kP are symmetric: 
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  (4.26) 

Consider the third part on the right side of Equation (4.26) gives (knowing )(kV∆  

is a scalar, plug Equation (4.23) in): 
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Plug in Equation (4.27) into (4.26) and consider the relationships: 

a) )()()()()( kBkHkPkHkR T =+ ,  
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b) 11 )()( −− > kBkR , and  

c) IkBkHkPkH T <−1)()()()(  

Equation (4.26) becomes: 
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(4.28) 

Based on the matrix property, it is known that: 

( ) ( ) 21121 )()()()()()()( kekBkekBkekekB M
T

m
vvvv −−− ≤≤ λλ    (4.29) 

( ) ( ) 21121 )()()()()()()( kkRkkRkkkR M
T

m ξλξξξλ
vvvv

−−− ≤≤    (4.30) 

where ( )1)( −kBmλ  and ( )1)( −kBMλ  are the minimum and maximum eigenvalues of 

matrix 1)( −kB  respectively, and )(kev  is the Euclidean norm of )(kev  as )()( keke T vv . 

Plug Equations (4.29) and (4.30) into Equation (4.28), it can be seen: 

( ) ( ) 2121 )()(3)()()( kkRkekBkV Mm ξλλ
vv −− +−<∆      (4.31) 
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Since there is no prior information about the measurement noise, this study 

simplifies the measurement noises for each output as uncorrelated but with the same 

variance )(kr  as follows: 

IkrkR )()( =          (4.32) 

where )(kr  is a positive scalar, I is the nn ×  identity matrix, and n is the dimension of 

output vector. Then 

( )
)(

1)( 1

kr
kRM =−λ         (4.33) 

The minimum eigenvalue of 1)( −kB  is the inverse of maximum eigenvalue of )(kB : 

( ) ( ))(
1)( 1

kB
kB

M
m λ

λ =−         (4.34) 

The maximum eigenvalue of )(kB  should follow the relationship: 

( ) ( ) ( )∑∑ ≤≤
i

iM
i

i kBkBkB
n

)()()(1
λλλ       (4.35) 

where ( ))(kBiλ  is the ith eigenvalue of )(kB . The summation of eigenvalues of a matrix 

equals the trace of the matrix and it is known that the covariance matrix )(kB  is positive 

definite, which leads to: 

( ) ( ) [ ]( ) )()()()()()()()( T knrkhknrkHkPkHTracekBTracekB
i

i +≡+==∑λ  (4.36) 

where [ ]( ))()()( T kHkPkHTrace  is the trace of )()()( T kHkPkH  and is denoted by )(kh . 

 Plug (4.36) into the left side of (4.35): 

( ))()()(1 kBkrkh
n Mλ≤+        (4.37) 
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Plug (4.37) into (4.34): 

( )
)()()()(1

1)( 1

knrkh
n

krkh
n

kBm +
=

+
≤−λ      (4.38) 

Hence, the inequality (4.31) will be satisfied if 

( ) 212 )()(3)(
)()(1

1)( kkRke
krkh

n

kV M ξλ
vv −+

+
−<∆      (4.39) 

Plug (4.34) into (4.39): 

22 )(
)(

3)(
)()(1

1)( k
kr

ke
krkh

n

kV ξ
vv +

+
−<∆       (4.40) 

The training process is convergent if 0)( <∆ kV , which leads to the following 

sufficient condition based on (4.40): 
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)(
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>         (4.41) 

Suppose )(kξ
v

 is bounded by )(kξ  ( )()( kk ξξ
v

≥ ), consider the following two cases: 

Case 1: The output estimation error 2)(kev  is greater than 2)(4 kξ : 

22 )(4)( kke ξ>v          (4.42) 

then plug (4.42) in (4.41): 
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It can be seen that if Inequality (4.43) holds true then (4.41) holds true, and then 

<∆ )(kV 0 as guided in (4.40), and the training process is convergent. )(kξ , the upper 

bound of the norm of )(kξ
v

 in (4.42) should be known as a prior condition. As )(kξ
v

 is 

the residual of liner model of )(kev  as shown in (4.15), it follows the normal distribution: 

)(kξ
v
～ [ ] ))(,0( 1 nnn IkrN ××

v
 based on the extended Kalman filter algorithm.  Each element 

of )(kξ
v

, )(kiξ , follows the normal distribution as )(kiξ ～ ))(,0( krN . Then the upper 

bound of )(kiξ  can be approximated as )(krη . If η  is selected as 4, then at least 

99.99% )(kiξ  values are bounded by )(4 kr . As an approximation, 2)(kξ  is taken as 

nkr 2))(4( , which is nkr )(16 . 

Thus, (4.42) becomes: 

nkrkke )(64)(4)( 22
=> ξv        (4.44) 

Combine Inequalities (4.43) and (4.44), it is found that 

n
ke

kr
n
kh

64
)(

)()(3
2v

<<         (4.45) 

When (4.45) holds, both (4.42) and (4.44) hold which leads to <∆ )(kV 0, and the 

training should be convergent as guaranteed by the Lyapunov method. 



 93 

To implement (4.45), the training error information at each step, )(kev , should be 

considered first. When 
n

ke
n
kh

64
)()(3

2v
< , or )(192)( khke >v , (41) is satisfied if )(kr  is 

set as the average of  
n
kh )(3  and 

n
ke

64
)( 2v

 as follows: 
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khkr

64
)()(3

2
1)(

2v

  when )(192)( khke >v   (4.46) 

Under this circumstance 0)( <∆ kV , which means a convergent training process.  

Case 2: The output estimation error 2)(kev  is less than 2)(4 kξ : 

The training error is bounded and no adaption needs to be implemented at training 

step k.  

Under this circumstance, 0)( <∆ kV  can always be satisfied using Equation 

(4.46), which means a convergent training process. For some engineering applications 

where there is only one output (n=1), the R  adaption law can be further simplified as 

follows: 









+=

64
)()()()(3

2
1)(

2kekHkPkHkr T  when )()()(192)( kHkPkHke T>  (4.47) 

It should be pointed out that the above condition (Equations (4.46) or (4.47)) is 

the sufficient condition for a convergent training process instead of as a necessary 

condition. 
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The Development of Q  Adaption Law 

In the previous section, a noise parameter R  is adapted using Lyapunov method 

to guarantee the convergence of training process. Furthermore, another noise parameter 

Q  is to be estimated to accelerate the training process. Estimation of Q  falls in the region 

of adaptive filtering technologies, which simultaneously estimate the statistics of the 

noise and update the Kalman gain during the filtering process.  

Generally four approaches are developed to estimate the noise covariance matrix: 

1) Bayesian estimation was applied as in [Alsp74], which requires an a priori 

specification of a parameter density function, and sufficient statistical 

information to infer such density function is often not available in real 

applications. Also, usually prohibitive computation cost hurdle its wide 

application, especially for online estimations,  

2) For the correlation method, autocorrelation functions of innovation sequence 

are constructed and the unknown covariance can be inferred by solving a set 

of equations [Mehr70]. However, to apply this method, system is assumed to 

be completely observable and controllable which is not valid for RNN 

training system model,  

3) Covariance matching method makes the residuals consistent with their 

theoretical covariance and hereby solves the unknown matrices. The 

covariance usually does not match the actual one and the convergence of the 

method is therefore often doubtful. [Mehr72], and  
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4) The maximum likelihood method has been also used to adapt EKF. It can 

generate efficient, unbiased, and consistent estimate. 

In this study, the maximum likelihood method is applied to estimate Q  because it 

has the following advantages:  

1) The maximum likelihood method can lead to an efficient estimate (an 

unbiased estimate with the lowest covariance);  

2) It is consistent. The likelihood equation has a solution that converges to the 

true value of the variables as the number of sample grows to infinity; and  

3) It is suitable for online application. On the other hand, the method may 

generate biased estimate for small sample size. However, because the 

maximum likelihood estimates tend to have the true value of the estimated 

variable close to the center to their distributions, the bias is often negligible 

[Mayb82].  

To apply the maximum likelihood method, an appropriate likelihood function 

should be chosen at first.  

The following conditional density function is selected because it exploits all a 

priori information available and can yield an effective and computationally feasible 

estimator [Mayb82]. Consider the conditional density function and using Baye’s rule: 

∏
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where )(kwv  is the state vector (weight vector) at time step k, )(kY  is the measurement 

history { })(),...,2(),1( kyyy vvv , qv  is the vector composed of diagonal elements of matrix Q .  

To simplify the calculation, instead of the whole measurement history )(kY , only 

the wn  most resent measurement history are considered. Thus a fixed sample size wn  of 

measurement history )(kYN = { })(),1(),...,2(),1( kykynkynky ww
vvvv −+−+−  is used in 

Equation (4.44), which leads to the new conditional density function: 
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  (4.49) 

Each of the densities in Equation (4.49) can be assumed as a Gaussian density function: 
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where )(kψv , )(kδ , )( jγv  and ρv  are the realization of random variables )(),( kYkwv , 

)( jyv  and qv  respectively, and m  and n  are the dimensions of the states and output 

respectively, )(kP  is the approximate covariance matrix, )( jwv  is the estimate of *wv , 

)( jH  is the orderly derivatives matrix, and )()()()()( T jHjPjHjRjB +=  is the 

covariance matrix of output. 

The likelihood function is represented as ( )qnkYkYkw wN
fL vv ),(|)(),(ln −= . To take 

derivative of the likelihood function with respect to qv  and make it zero will give the 

maximum likelihood equation as following: 
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where )1()( −−= jwtHyr jjj
vvv  is a notation for simplicity.      

To enhance online applicability, some less sensitive terms in Equation (4.52) are 

neglected and thus form an approximated maximum likelihood equation as follows: 

[ ] 0)()()()1()1(
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=∆∆−−−+−∑
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Nkj

TjwjwjPjQjP vv     (4.53) 

where )1()()( −−=∆ jwjwjw vvv  is the difference of estimated weights at k and k-1 time 

steps, and )(kQ  is assumed constant over the period 1+− wnk  from to k [Mayb82]. Then 

the )(kQ  matrix can be estimated as follows [Mayb82]: 
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The R  and Q  adaption-based training is summarized in Figure (4.1). Training 

parameters such as the window size N, the noise parameters )0(Q  and )0(R , and the error 
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covariance )0(P  should be specified first. The adapted R(k) and Q(k) at each training step 

are fed into the EKF training algorithm to update the network weights. The training 

process iterates until the stop criteria are met, and the trained weights are obtained. 

wn andR(0),Q(0),P(0),(0),wv

k>=nw

Adaption of Q(k) using the maximum likelihood method
Equation (4.54)

Application of extended Kalman filter algorithm training
Equations (4.11-4.13)

change no Q(k) change no Q(k)

change no  R(k) change no  R(k)No

Adaption of R(k) using the Lyapunov method
Equation (4.46)

No

Yes

Yes

Training 
data

))(max(192)( 2 khnke i>v

Stop criteria
No

Yes

Trained weights  

Figure 4.1: Flow chart of the convergence study 

 

Robustness Analysis of RNN 

Robustness Analysis 

In addition to the training convergence study, network estimation robustness is 

also studied; a robustness measure is developed to quantify the robustness of a RNN 

network.  
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The major part of the proposed method is to take uncertainty propagation analysis. 

The two most commonly applied numerical approaches for uncertainty propagation 

analysis are Monte Carlo analysis and Monte Carlo with Latin Hypercube analysis. 

Monte Carlo analysis is numerical experimentation. Different from using closed form 

analytical expression to assess the propagation of uncertainty, Monte Carlo method 

repeatedly generates samples based on the probability distribution of the uncertain 

parameters to characterize the uncertainty in propagation [Driv00]. Application of Monte 

Carlo method in the NN robustness study often includes the following steps:  

1) Define the domain of perturbation for each uncertain parameters (weight), 

2) Draw a set of possible values of each of the uncertain parameters randomly 

from the domain, 

3)  Calculate the output of NN that corresponds to these particular values of the 

parameters 

4) Repeat the above two steps and generate corresponding NN outputs, and 

5) Aggregate the individual results from step (4) and get the statistics of NN 

outputs.  

However, if the dimension of parameters (weights in this study) is large, the 

computation cost would make the method prohibitive to apply. To alleviate the problem, 

in this study a deterministic sampling method, namely unscented transform, is applied. 

Instead of Monte-Carlo method, unscented transform is chosen as the 

computational method in this study due to its high efficiency that it can capture high 

order information about distributions using only a small number of samples [Juli97]. 
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Using uncertainty propagation analysis, a new robustness measure is proposed 

here in two steps:  

1) Input sample generation using the Latin hypercube sampling (LHS) method 

[Helt03]; and  

2) Robustness quantification using the unscented transform.  

This procedure is shown in Figure (4.2) and elaborated as follows. 

Input space

Sampling using Latin hypercube method

Input samplesInitial weights and 
their perturbation

RNN

Sigma points

Computing RNN output covariances
and standard deviations

Taking L-1 norm

Local robustness measures

Averaging

Global robustness of RNN

Output covariances
standard deviations

Input space

Sampling using Latin hypercube method

Input samplesInitial weights and 
their perturbation

RNN

Sigma points

Computing RNN output covariances
and standard deviations

Taking L-1 norm

Local robustness measures

Averaging

Global robustness of RNN

Output covariances
standard deviations

 

Figure 4.2: Proposed procedures for robustness quantification 

 

The first step is to uniformly generate n samples ( ))(),...,2(),1( nxxx vvv  from the 

whole input space. This is done by implementing an LHS method, which is a type of 

stratified Monte Carlo sampling methods [Loh96] and can be nearly five times more 

effective than other traditional sampling methods [Swid00]. During the first step n 
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samples are generated, and they are to be fed into the trained network, which may 

undergo certain weight perturbations. 

The second step is to quantify the network robustness using the unscented 

transform method based on the generated n samples. The proposed unscented transform-

based robustness quantification approach includes two measures: 1) local robustness for 

network robustness for a given input only; and 2) global robustness to evaluate the 

network robustness by collectively considering all possible inputs from the whole input 

space. As RNN is a nonlinear function which maps both inputs and weights to network 

outputs, outputs can be viewed as a function of weights for given inputs. As so, the local 

robustness can be interpreted as follows: for a specific input, how much do the outputs 

vary when the weights deviate from the trained value? It can be seen that the local 

robustness is input dependent. In this study, the local robustness for any input is defined 

as the L-1 norm of the output standard deviation vector. 

During the second step, the distribution of perturbed weight vector should be 

determined first. The trained weights are assumed to be contaminated with zero mean 

finite variance multivariate normal distributed noises [Eick07], and the contaminated 

weight vector wv  follows the normal distribution as wv ∝ ( )Σ,*wN v , where *wv  is the 

trained weight vector, which is a column vector transformed from the trained weight 

matrix by cascading the rows of the matrix into a row vector and further taking transpose, 

and Σ  is the covariance matrix of wv . The standard deviation of iw , which is the ith 

element (weight) of wv , is determined as follows: 

*
iw Lw

i
=σ , tni ,...,2,1=        (4.55) 
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where 
iwσ  is the square root of the ith diagonal element of Σ , tn  is the dimension of the 

weight vector, and L  is the perturbation level which is a constant specified based on 

application needs.  

The unscented transform is usually used to compute the statistics (mean and 

covariance) of a random vector which undergoes a nonlinear transformation. In this study 

the unscented transform is used to compute the statistics of RNN output due to 

perturbations introduced into the trained weights. With l  as the dimension of the trained 

weight vector, 12 +l  sigma vectors iχv  ( 12,...,2,1 += ll ) are generated around wv  based 

on the mean ( *wv ) and covariance ( Σ ) of the contaminated weight vectors: 

*
0 wvv =χ          (4.56) 

( )( ) lilw ii ,...,2,1* =Σ++= λχ vv      (4.57) 

( )( ) lllilw lii 2,...,2,1* ++=Σ+−= −λχ vv    (4.58) 

where lcL −+= )(2αλ  is a scaling parameter, α  is a constant which determines the 

spread of the sigma vectors around *wv  and it is set as 0.1 in this study [Wan01], c is a 

secondary scaling parameter and is set as 0 [Wan01], and ( )( )il Σ+ λ  is the ith column 

of square root of matrix ( )Σ+ λl . Accordingly, 12 +l  new RNNs are formed based on 

the 12 +l  sigma vectors. 

To compute the local robustness measure for a jth sample input )( jxv , the sample 

is fed into these 12 +l  networks respectively, and the corresponding outputs are obtained 

and called as the outputs of sigma vectors )( jiψv  )12,...,2,1( += li .  
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lifj ii 2,...,0)()( == χψ vv       (4.59) 

where )(⋅f  is RNN mapping function. 

The mean of network output )( jy  can be obtained by weighting the outputs of 

sigma vectors: 
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where )(m
iw  is a weight used in the unscented transform. The covariance of )( jy , )( jyvΣ  is 

obtained by: 
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The weights in Equations (4.56) and (4.57) are given by 
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where β  is a constant used to incorporate any prior knowledge of the distribution of 

*wv and is set as 2 for normal distributions [Wan01]. 

Suppose )( jyv  is RNN output vector for input sample )( jxv , the standard deviation 

of its kth element ( )( jyk ) can be written as: 

),()()( kkjyjyk
vΣ=σ         (4.63) 

where 
),()( kkjyvΣ  denotes the kth diagonal element of )( jyvΣ .  
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A vector composed of the standard deviations of all the elements of output vector 

)( jy  can be written as: 

[ ])()()()( ,...,,
21 jyjyjyjy yn

σσσσ =v
v       (4.64) 

where yn  is the dimension of )( jy . 

The L-1 vector norm, which computes the summation of absolute value of all 

elements of a vector, is used as the local robustness measure for the sample input )( jxv : 

1)()( jyjR v
vσ=         (4.65) 

For finite dimensional vector spaces, all vector norms are equivalent [Horn90], 

and the L-1 norm is selected here due to its robustness to outliers and its easiness for 

implementation [Kwak08].  

Finally, the global robustness measure which accounts for effects on all the input 

samples from input space is defined as the average of the local robustness measures as 

∑
=

=
n

j
jR

n
R

1
1 )(1 , where n is the number of samples. 

 

Conclusions 

This chapter carries out two performance studies on the proposed network.  

The study of training convergence is conducted by adapting the parameters of 

process noise and measurement noise. The Lyapunov method has been applied to adapt 

the covariance of measurement noise to guarantee training convergence. First, a candidate 

Lyapunov function is selected and its rate of change is computed which is a function of 
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the concerned parameter. The adaption law is then derived by making the function 

negative. In addition, the maximum likelihood method is applied to estimate the 

covariance of process noise to accelerate the training process. A likelihood function is 

formed by taking the joint probability density function of the weights estimation and 

outputs of network given the concerned parameter of the process noise. The MLE 

estimator of the parameter is derived by maximizing the likelihood function. 

In addition to the training convergence, the study of estimation robustness of the 

network due to perturbations in trained weights is also carried out. Gaussian noise has 

been added into the trained weights which results in uncertainties in the network’s output. 

An uncertainty propagation analysis is then conducted using the unscented transform to 

quantify the uncertainties in the network’s output due to the perturbation. A robustness 

measure is developed in the study to be compared with the existing sensitivity-based 

measure and performance-loss based measure.  

Both the performance studies are important in successful implementation of RNN 

in modeling non-linear dynamical systems. 
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CHAPTER FIVE 

MODELING OF A NON-LINEAR DYNAMICAL BENCHMARK SYSTEM  

 
Abstract 

In this chapter, the techniques and algorithms developed in Chapter three and 

Chapter four are verified with a non-linear dynamical benchmark system. A RNN and an 

optimized RNN are developed to model the system. Modeling capability, training 

convergence, and robustness of the networks are investigated. Results show both 

networks are capable of modeling the system. In addition, RNN are better than two 

FFNN (a MLP and a FFCNN) in terms of training accuracy and speed. Furthermore, from 

the study of training convergence, it is found that the proposed R  adaption law can 

guarantee the training convergence of the network and the proposed Q  adaption law can 

accelerate the training convergence. Finally, the proposed robustness quantification 

method is also applied to the networks and is compared with another two methods. 

Results show that the proposed robustness quantification approach is more efficient, 

generic, and flexible to quantify the robustness of a recurrent neural network. All 

together, the results show that the developed optimized RNN has advantages over FFNN 

in modeling the non-linear dynamical benchmark system and the convergence study and 

robustness study can further improve the network’s performance. 
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The Benchmark System 

To validate the proposed adaption laws, a non-linear dynamical benchmark 

system [Nare92], which represents a single-input single-output (SISO) non-linear plant, 

has been modeled using RNN. Such a benchmark system (Equation (5.1)), as shown in 

Fig. (4), has been selected due to its generality as well as analytical tractability: 

It can be seen from Figure (5.1) that the output sequence is a piecewise function 

which is composed of four regions: [1,250], [251-500], [501-750], and [751-1000]. 

))1(),(),2(),1(),(()1( −−−=+ kukukykykyfky pppp    (5.1) 

where [ ])(),( kyku p  represents the input-output pair of the SISO plant at time step k , 
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Figure 5.1: The output of the non-linear dynamical benchmark system 
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Recurrent Neural Network Implementation 

A RNN and an optimized RNN are formed to model the system and their 

modeling result is compared with the measurements as well as the results of an FFCNN 

and an MLP approaches. The following tasks are conducted to train a RNN to model the 

benchmark system: 

1) Training patterns preparation 

In this study, a neural network is implemented to model the benchmark system, or 

in other words, to predict the output at next time step )1( +ky p  based on six inputs such 

as current and previous outputs - )2(),1(),( −− kykyky ppp , current and previous inputs - 

)1(),( −kuku  and a constant bias 1. 

1000 training patterns are formed using Equation (5.1) with the zero initial 

condition. Each training pattern contains one set of inputs and corresponding output. 

Usually training data need to be normalized to alleviate the risk of saturation. However, 

in this case the training data are already within the region of [0, 1], hence the 

normalization process is unnecessary here. 

2) Training parameters configuration.  

To train the RNN, some training parameters in the EKF algorithm such as P , Q , 

and R  need to be initialized first. The training parameters configuration is referred from 

a previous study [Pusk94] without considering the training divergence issue. Without any 

specific note, in this study the error covariance matrix P , the covariance matrix of 

process noise Q, and the measurement noise covariance matrix R  are all diagonal 

matrices. Each of the diagonal elements of P  is initialized as 100. Each diagonal element 
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of the covariance matrix of process noise Q  is initialized as 0.01 and this value descends 

linearly within 100,000 training patterns until Q  reaches a minimum limit of 0.000001. 

Similarly, each diagonal element of the measurement noise covariance matrix R  is 

initialized as 100 and it also descends linearly until it reaches a minimum value of 2. Both 

the settings of R  and Q  help the training error converge to a global minimum. 

3) Training Process Configuration.  

First, each weight of the network is randomly initialized in the region of [-1, 1]. 

Training parameters are initialized as mentioned before. Training patterns are then fed 

into the EKF training algorithm (Equations (3.47-3.49)) to train the network weights. 

Single pattern training is used here so that the weights are updated after each training 

pattern is presented. The training process stops when its stop criteria are satisfied. The 

stop criteria is used to guarantee the final training error is small so that the network is 

capable of modeling and at the same time not too small which leads to the over-fitting 

problem. In this study, the stop criteria are determined by trial-and-error: i) the number of 

training epochs (a complete pass through all of the training patterns) used should be less 

than 100 and the training process stops after 100 steps if no other stop criteria are met; or 

ii) if the training error is less than a predetermined case-dependent value (here is 3%) and 

the difference between the current error and the error of 20 epochs before is less than 

another predetermined case-dependent value (here is 0.03%). 

4) Network structure determination 

RNN network structure is first determined by setting the numbers of input 

neurons, hidden neurons and output neurons. Six network inputs are selected as follows: 
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three outputs at the previous steps )(ky p , )1( −ky p , and )2( −ky p , two control actions 

)(ku  and )1( −ku , and a constant bias 1; and the network output is )1( +ky p , which is 

the output of the benchmark system at the next time step (k+1). The number of hidden 

neurons is determined by a trial and error method, and the final training error results are 

listed in Table (5.1). According to a rule of thumb [Scha97], 13 hidden neurons are 

chosen first and the training error is found to be 3.2%. Afterwards, networks with fewer 

hidden neurons are selected and the corresponding training errors are investigated. It is 

found that RNN with more than 8 hidden neurons is able to adequately model the tool 

wear progression (the final training error is less than 5%). For example, the training error 

of the network (6-9-1) with 9 hidden neurons (3.7%) is quite close to that of the network 

(6-13-1) with 13 hidden neurons (3.2%). However, for the network with 8 hidden 

neurons, the training error becomes relatively large (5.7%). The training error results for 

selected networks are shown in Figure (5.2). A simple network structure is always 

preferred to reduce the risk of over-fitting, so the network with a 6-9-1 structure as shown 

in Figure (5.3) is selected in this study. 
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Table 5.1: Training error with different network structure 

Network structure Training error (%) 
6-13-1 3.2 
6-11-1 3.3 
6-9-1 3.7 
6-8-1 5.7 
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Figure 5.2: Training errors of RNN with typical structure configurations 

 



 112 

State feedback loops 
(dash lines)

9 hidden neurons

feedforward loops (solid lines)

6 input neurons 1 output neuron

1),1(),(

)2(),1(),(

−

−−

kuku

kykyky ppp )1( +ky p

 

Figure 5.3: Modeling the bench mark system by a 6-9-1 RNN 

 

Modeling Performance of the Recurrent Network 

An MLP, an FFCNN and a RNN are implemented to model the system. The 

networks are trained using the training data which are assumed to be able to represent the 

overall characteristics of the system being studied. Therefore, through the training 

process, networks capable of modeling the training data are expected to represent the 

dynamics of the benchmark system. 

During the training process, the appropriate network architecture is determined 

first as stated in the previous section. Using a similar trial and error approach, the MLP 

has been found to be 6-11-1 and the other networks (FFCNN and RNN) are 6-9-1. The 

same training data are used to train the networks. 400 training epochs are used since MLP 

converges much slower. The modeling results for MLP, FFCNN, and RNN are shown in 

Figures (5.4-5.6) respectively. Two discontinuous regions (250-300 and 500-550) are 

magnified to see more details of network’s modeling performance no these complex part. 
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Table 5.2: Training error with different types of network 

Network  Training error (%) 
MLP 6.8 

FFCNN 3.8 
RNN 1.1 
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Figure 5.4: Training results of MLP 
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Figure 5.5: Training results of FFCNN 
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Figure 5.6: Training results of RNN 

 

Moreover, to better compare these networks’ modeling accuracy, the modeling 

errors are depicted in Figure (5.7). Training error and modeling error are two related but 

different concepts. The former one is defined by Equation (3.51) which accounts for the 

overall modeling error for all the training patterns of an epoch while the latter one 

accounts for the difference between target value (measurement) and the corresponding 

network output for a pattern. The sum of square errors in the four regions ([1-250] [251-

500] [501-750] [751-1000]), and the overall region ([1-1000]) are listed in Table (5.3)  

Table 5.3: Modeling errors of the networks 

Sum of square of modeling error Network 1-250 251-500 501-750 751-1000 1-1000 
MLP 0.3381 0.3173 0.0722 0.3654 1.0929 

FFCNN 0.0435 0.2792 0.0093 0.0065 0.3385 
RNN 0.0053 0.0021 0.0055 0.0024 0.0154 
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Figure 5.7: Modeling errors of the networks 

 

Some observations can be drawn from the results: 

1) The largest modeling errors are distributed around the discontinuous regions 

around time steps 250, 500, and 750 because theses regions contain abrupt 

changes and are most difficult to be modeled.  

2) For MLP, the error distribution is relatively even and there are large steady 

errors (±0.1) in the first and last regions. 

3) For FFCNN, the modeling error at time step 500 is the largest among all the 

results, although its average modeling error is smaller than the MLP. 
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4) The distribution of modeling errors of RNN are similar to that of FFCNN 

within the four regions, while in the discontinuous regions the modeling 

errors of RNN are much smaller which indicates that RNN works better in 

modeling non-linear dynamical systems. 

Comparing all the modeling results, RNN can most accurately model the 

benchmark system. 

 

Training Convergence Study of Recurrent Neural Network 

Apart from the modeling accuracy, some other aspects of RNN are also studied. 

Training convergence and estimation robustness are studied and results are shown in the 

following sections. Training convergence studies are conducted for two objectives:  

1) To make the training process convergent, and  

2) To make the training process converges faster.  

In this study, the first objective is achieved by adapting the covariance matrix of 

process noise R  of the EKF training algorithm, while the second one is achieved by 

adapting the covariance matrix of measurement noise Q  of the EKF. 

 

R  Adaption Law for Convergence Guarantee 

The R  adaption law is verified with the case study first. As mentioned in Chapter 

four, training divergence of RNN may occur due to improper choice of training noise 

parameters. Figure (5.8) shows the result of a modeling scenario as r  is first initialized as 

5 and it then decreases linearly to 0.5 at –4.5×10-5 per training pattern during first 
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100,000 training patterns. The corresponding modeling error is also shown in Figure 

(5.8), which diverges right after 50 patterns even before finishing a training epoch. At 

that time, r  has been linearly reduced from 5 to 4.9978 as in Figure (5.9). The modeling 

error for a certain training pattern is defined as the difference between its desired output 

and RNN output. 
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Figure 5.8: Training result and modeling error without R  adaption law 
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Figure 5.9: r  values during training without R  adaption law 
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To verify the effectiveness of the R  adaption law in stabilizing the training 

process, RNN is further trained by applying the proposed R  adaption law. As shown in 

Equation (4.43), the R  adaption law takes effect when the modeling error is beyond a 

certain boundary ( )()()(192)( kHkPkHke T> ). As in the aforementioned divergent 

case, the r  is first initialized as 5 and gradually reduced whereas the R  adaption law is 

concurrently implemented. Corresponding to Figure (5.8), Figure (5.10) shows the 

convergent training results. Using the R  adaption law, the training process is finally 

convergent and the modeling errors are much smaller and its final training error =3.6% 

which is comparable to the stable RNN training error, 3.7% in the previous case shown in 

Table (5.1).  

Figure (5.11) shows the magnitude of modeling errors gradually decreases from 2 

to 0.015 during the training process. Corresponding to Figure (5.9), the r  values during 

training for this convergent case are shown in Figure (5.12). It can be seen that when the 

precondition in R  adaption law (Equation (4.43)) is met, R  adaption law takes effect – 

the r  values deviate away from the straight line as shown in Figure (5.9). The 

oscillations in Figures (5.11) and (5.12) are the outcomes of the R  adaption law. From 

Figure (5.11), it can be seen that relatively big modeling errors (about ±2) are generated 

in the oscillation region, while with the R  adaption law the error gradually decreases 

during the training process and finally reach a stable small value 0.015. From these 

results it is clear that the R  adaption law make the previously divergent training process 

become convergent. 
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Figure 5.10: Training results with R  adaption law 
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Figure 5.11: Modeling error during training with R  adaption law 
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Figure 5.12: r  values during training with R  adaption law 

 

Q  Adaption Law for Convergence Speed 

In addition to the R  adaption law, a Q  adaption law derived from the maximum 

likelihood estimation method is applied to speed up the training convergence process. 

Four simulation scenarios are studied to appreciate the importance of the Q  adaption law: 

1) The Q  matrix is set as a null matrix, which means a zero covariance matrix of 

process noise or the process noise is removed from the EKF training 

algorithm;  

2) RNN is trained using constant Q  (Q  = 0.01I);  

3) RNN is trained as follows: each diagonal element of Q  is initialized as 0.01 

and this value decreases linearly during 100,000 training patterns until it 

reaches a limit of 0.000001; and  
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4) The proposed Q  adaption law is implemented during the training process. In 

all the cases r  is initialized as 100 and it is reduced linearly until r  reaches a 

limit of 2 as in a previous study [Pusk94]. It should be pointed out that the 

diagonal elements of Q  under the third scenario are always the same whereas 

they might be different under the fourth scenario. 

For the above four scenarios, the training process is found always stable and 

Figure (5.13) illustrates the effecting of introducing the Q  adaption law during training. 

The final training error after the training process is listed in Table (5.4). As seen from 

Figire (5.13), the Q  adaption law has helped achieve the best convergence performance 

with a minimum final training error (3.2%) and fastest training speed, followed by the 

decreasing Q  setting (Scenario 3 with a 3.7% error), the constant Q  setting (Scenario 2 

with a 3.9% error), and the zero Q  setting (Scenario 1 with a 4.8% error). Different from 

the other cases, in Scenario 1, the training error fluctuates during the training process. 

The fluctuation is due to that the update of weight is only driven by the measurement 

noise and the modeling error fluctuates during the training process. 
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. Figure 5.13: Comparison of RNN training with different Q  settings 

 

Similarly, to show the effectiveness of the proposed Q  adaption law, same sets of 

simulations have been conducted for the optimized RNN network. The training error 

results are listed in Table (5.4). As shown in Figure (5.14), the results are similar to those 

in Figure (5.13) except that the training errors decrease much faster owning to the 

connectivity optimization process mentioned in Chapter three. Again, the Q  adaption law 

has helped achieve the best convergence performance with a minimum final training error 

(3.0%) and fastest training speed, followed by the decreasing Q  setting (Scenario 3 with 

a 3.6% error), the constant Q  setting (Scenario 2 with a 3.8% error), and the zero Q  

setting (Scenario 1 with a 4.3% error). 
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Figure 5.14: Comparison of optimized RNN training with different Q  settings 
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Figure 5.15: Comparison of training process of RNN and optimized RNN with Q  

adaption law 
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Figure (5.15) is drawn to better illustrate the effectiveness of Q  adaption law on 

RNN and corresponding optimized RNN. Although the training speed of optimized RNN 

is much faster, the final training errors of both cases are comparable (3.1% for RNN and 

3.0% for the optimized RNN). 

Table 5.4: Final training errors of different Q  settings 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
RNN 3.1% 3.9% 3.7% 4.8% 

OptRNN 3.0% 3.8% 3.6% 4.3% 
 

Figure (5.16) shows the trace of Q  during training for Scenario 1 and Scenario 3. 

Trace of Q  is drawn versus training patterns. For Scenario 3, the diagonal elements of Q  

linearly decrease during training process while for Scenario 1, the trace value reduce 

dramatically first and then staying on a periodical-like feature. To watch the details of 

Part (b), the region of training patterns [5001, 7000] is depicted in Figure (5.17). The 

training patterns [5001, 6000] account for training epoch 5 and the training patterns [6001, 

7000] account for training epoch 6. It can be seen that in each training epoch, trace of Q  

is relatively high in the discontinuous regions, such as regions close to training pattern 

5000, 5250, 5500, 5750 etc.  
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Figure 5.16: Trace of Q  during training processes of Scenarios 1 and 3 
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Figure 5.17: Trace of Q  in training epochs (5 and 6) 

Q  is diagonal matrix. The diagonal element of Q  after the training process is 

shown in Figure (5.18). In the training Scenario 3 the diagonal elements are equal while 

in the training Scenario 1 the diagonal elements are varied. It is obvious that training 

Scenario 1, which uses the proposed Q  adaption law, has more freedom in setting Q . 
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(a) Diagonal elements of Q after training for 
Scenario 3

(b) Diagonal elements of Q after training for 
Scenario 1
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Figure 5.18: Diagonal elements of Q  after training scenarios 1 and 3 
 

From the training convergence study, the following conclusion can be drawn as: 

1) The R  adaption law can stabilize the training process by increasing R  values 

when modeling error in training is large. Generally small R  value put more 

confidence to the measurement hence it is possible to make the training 

process converge fast. However, too small R  value may make the training 

process diverge. Hence it is critical to use the R  adaption law to guarantee the 

training convergence. 

2) The Q  adaption law can adapt Q  during training which can accelerate the 

training convergence. It is further found that when the modeling error is 

relatively large, the Q  values are enlarged to drive the training process more 

efficiently; when the modeling error is very small, the Q  values are adjusted 

to be small, which means there is no need to change the weights too much.  
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Altogether, the weight update is driven by the two noises; the developed adaption 

laws can adapt these noises and hence stabilize NN training process, increase its training 

accuracy, and accelerate the training process. 

 

Robustness Study of the Recurrent Neural Network 

In a pervious section, A RNN and an optimized RNN are applied to model the 

non-linear dynamical benchmark system. The architectures of these two networks are 

both 6-9-1. Six inputs are the current and previous outputs )1(),( −kyky pp , and 

, )2( −ky p , two control actions )1(),( −kuku  and a constant bias 1; the output of the 

network is )1( +ky p .  

In this section, the proposed robustness quantification method is applied to 

quantify the robustness of the trained RNN and the optimized RNN. Here two robustness 

measures are considered: the local robustness measure, which is input-dependent, for any 

specific input sample based on Equations (4.61) and the global robustness measure for 

overall network robustness based on the average of local robustness measures. Generally, 

the perturbation level should be determined based on experimental observations as the 

hardware/software might have during the implementation of ANN. Here the perturbation 

level L in Equation (4.51) has been taken as 1% for simplicity and 100 input samples 

have been used if not mentioned otherwise. Based on the proposed approach a smaller 

robustness value means higher system robustness to external perturbations. 

Figure (5.19) shows the varying local robustness measures of NN using 100 

sample inputs. Each point represents a local robustness measure for the nth input sample. 
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The global robustness measure is found to be 0.0136 by averaging the local robustness 

measures. Similar varying local robustness measure tendency has been observed with 

optimized RNN, and its global robustness measure is found to be 0.0067, which is 

smaller than that of NN. 
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Figure 5.19: Local robustness measures for RNN using 100 input samples 

 

The proposed global robustness measure is dependent on the two factors: the 

number of input samples and the perturbation level applied. The following sections study 

the effects of the two factors on the global robustness value. 

Effect of Number of Input Samples on Global Robustness Measure 

In general, the more input samples are used, the more reliable the global 

robustness measure represents the system robustness performance over the whole input 

space. Unfortunately, it is impossible to compute the global measure based on an 

exhaustive way by sampling all possible inputs. As so, a minimum amount of input 
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samples, which are needed for global robustness quantification, should be determined 

first. To find this minimum amount in this study, different numbers of input samples have 

been selected and their corresponding global robustness measures for both RNN and the 

optimized RNN are computed and shown in Figure (5.20). 
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Figure 5.20: Robustness of RNN and optimized RNN (perturbation level = 1%) 

 

It can be seen that for each network the robustness measures converge to a steady 

value quickly after more than 10 uniformly generated input samples are used. Based on a 

conservative consideration, 100 input samples are used here and in the following 

sections. Based on the 100 input samples, optimized RNN has a global robustness value 

of 0.0067, which is smaller than that of RNN (0.0136), implying that optimized NN is 

more robust than the regular NN [Kris93]. 
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Effect of the Perturbation Level on Global Robustness Measure 

The perturbation levels ranging from 1% to 20% have been applied to the trained 

network weights to study the network robustness under perturbed weights; and the results 

are shown in Figure (5.21). It can be seen from Figure (5.21) that the optimized RNN is 

more robust than the regular RNN for all the perturbation levels, which indicates the 

connectivity optimization process has improved the network robustness as observed 

before [Kris93]. 
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Figure 5.21: Network robustness values under different perturbation levels 

 

It can also be seen that the relationship between the robustness measure and the 

perturbation level can be approximated as linear. This linear pattern is attributed to the 

following reason. All the input and output neurons use a linear activation function, only 

hidden neurons which adopt a sigmoid activation function that may generate nonlinearity. 

However, most hidden neurons work in the linear region of their activation functions 
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under small perturbations, which may lead to a linear mapping between the perturbation 

and the robustness measure. 

 

Comparison among Robustness Measures 

The proposed robustness quantification approach is further compared with the 

performance loss-based and sensitivity matrix-based approaches. The performance loss-

based and sensitivity matrix-based measures are computed based on the training data 

mentioned in the previous section. To fairly compare the three approaches, the same 

training data are also used to compute the proposed robustness measure, and the LHS 

input sampling process is not applied here to generate input samples for the proposed 

approach. 

For both the performance loss-based and the proposed approaches, the 1% 

perturbation level is used. For the performance loss-based approach, 10,000 networks are 

generated based on the perturbed weights, and the network output is then compared with 

the corresponding desired outputs to compute MSE. The resulting maximum MSE is 

taken as the performance loss-based measure. For the sensitivity matrix-based approach, 

the sensitivity matrices for all the training inputs are obtained during the training process 

and the spectral norm [Kris99] for each matrix is computed as the local robustness 

measure. It should be emphasized that the output of the non-linear dynamical benchmark 

system is a scalar, so the sensitivity matrix is actually a vector. It is known that the matrix 

norm corresponding to the Euclidean vector norm is the spectral norm [Baks80], 
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therefore the spectral norm of a vector is the same as its Euclidean norm. The average of 

these norms is used as the sensitivity matrix-based measure. 

It should be pointed out that the three robustness measures cannot be directly 

compared against each other because they are computed using different criteria. Instead, 

the ratio of robustness measures between RNN and optimized RNN is studied to indicate 

the effectiveness of any quantification approach. A larger robustness ratio means that this 

quantification approach is more sensitive in quantifying the robustness difference. 

Table 5.5: Comparison of robustness quantification approaches 

Robustness 
quantification approach RNN robustness (r1) Optimized RNN 

robustness (r2) 
Robustness 
ratio (r1/r2) 

Performance loss-based 0.0395 0.0342 1.16 
Sensitivity matrix-based 2.7163 1.9988 1.36 

Proposed 0.0138 0.007 1.97 
 

Table (5.5) lists the comparison results. For all the three quantification 

approaches, the optimized RNN is found to be more robust than RNN. It is found that the 

proposed approach (1.97) has the largest robustness ratio than those of the performance 

loss-based approach (1.16) and the sensitivity matrix-based approach (1.36). As the 

largest robustness ratio value is associated with the most sensitive quantification 

approach, it is concluded that the proposed robustness quantification approach is the most 

effective one among these three approaches. 

 

Relationship between Proposed and Sensitivity Matrix-based Approaches 

Under a small perturbation level the uncertainty propagation analysis used in this 

proposed approach can also be related to the sensitivity matrix–based approach. Each 
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element (
j

i
ij w

y
H

∂
∂

= ) of the weight–output Jacobian sensitivity matrix H represents the 

derivative of an output ( iy ) with respect to a weight ( jw ). Using the uncertainty 

propagation analysis under a small weight perturbation such as 0.01%, this ijH  can be 

approximated by the standard deviation ratio 
)(
)( )(

j

j
i

ij wstd
ystd

S = , where std(·) is a standard 

deviation operator and )( )( j
iystd  represents the standard deviation of output iy  under a 

perturbation with weight jw . This standard deviation ratio ijS  describes the dependence 

of the output variation on the weight variation. It should be pointed out that different 

from the proposed robustness quantification approach where perturbations are added to 

all the weights simultaneously to compute )( jyv
vσ , here each time perturbation is only 

added into a specific weight jw  to compute )( )( j
iystd  while all the other weights remain 

the same. 

Table (5.6) lists the sensitivity matrix-based robustness measures averaged based 

on their spectral norms [Kris99], which are computed using the traditional method ( ijH ) 

and the uncertainty propagation analysis ( ijS ), respectively. It is found that the two 

results quite match each other; therefore the proposed analysis can also be used to 

compute the sensitivity matrix-based measure.  

Table 5.6: Sensitivity matrix-based robustness of RNN and optimized RNN 
 

 RNN robustness Optimized RNN robustness 
Robustness (H matrix based) 2.7163 1.9988 
Robustness (S matrix based) 2.7274 1.9946 
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Efficiency of the Proposed Robustness Quantification Method 

The unscented transform is efficient to quantify the uncertainties in RNN output; 

to verify that, another uncertainty propagation method using Monte Carlo analysis is 

carried out. A set of weight vectors are randomly generated based on the Gaussian 

distribution of the perturbed weight vector used before, and each of them form a RNN. 

The inputs are fed into these RNN, and the standard deviation in networks’ output are 

used as the local robustness measure, which further forms the global robustness measure 

by averaging. Different numbers of RNN are generated and the computation times are 

recorded in Table (5.7). It is found that to reach the same robustness result (0.0138), 2000 

RNN need to be generated and the computation time is about 6 times of the proposed 

method, whose corresponding results are shown in Table (5.8). The experiment is carried 

out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz 

and 3.0 G RAM. 

Although the proposed robustness measure is developed based on the assumptions 

that same level of perturbation is introduced to all the weights, in real applications the 

perturbation level for weights can be specified based on measurements and the same 

procedure can be applied. 
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Table 5.7: Robustness results of RNN from a Monte Carlo method 

Number of RNN generated Robustness measure Computation time (second) 
10 0.0099 9.21 

100 0.0132 95.82 
500 0.0133 464.28 
1000 0.0137 960.07 
2000 0.0138 1895.31 

 

Table 5.8: Robustness results of RNN from the proposed UT-based method 

Number of RNN generated Robustness measure Computation time (second) 
301 0.0138 284.91 

 

From these results in robustness study, it can be seen that: 

1) The proposed robustness quantification method is flexible and viable. It can 

study robustness of a network under different levels of perturbation level. It 

does not need the training data, instead it is an uncertainty propagation 

method and only a few amounts (100) of input samples are required to 

quantify network’s robustness. 

2) As an uncertainty propagation based method, because of the application of 

the unscented transform, it is more efficient than the Monte Carlo simulation 

based method. 

3) The proposed robustness quantification is more effective compared with the 

other two methods.  

4) The optimized RNN is more robust than RNN. 
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Conclusions 

From this case study, some conclusions can be drawn that: 

1) RNN network is capable of modeling the non-linear dynamical benchmark 

system. 

2) The modeling capability of RNN is enhanced through the connectivity 

optimization process and the optimized RNN excels RNN in training speed 

and modeling accuracy. 

3) The proposed R  and Q  adaption laws can further improve a RNN’s training 

convergence performance - to stabilize and accelerate its training process. 

4) The developed uncertainty propagation analysis based robustness measure is 

more flexible and effective than the other two methods. 

All of the results prove that the developed RNN modeling approach is powerful in 

terms of accuracy, speed, and stability. 
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CHAPTER SIX 

MODELING OF CBN TOOL WEAR IN HARD TURNING  

 

Abstract 

In addition to the benchmark system, another application is used to test 

performance of the developed RNN modeling tool. Hard turning with Cubic Boron 

Nitride (CBN) tools has been proved to be more effective and efficient in turning 

hardened steels than traditional grinding operations. However, rapid tool wear is always a 

problem which hurdles the wide implementation of hard turning in industry. Therefore, a 

better understanding of the CBN tool wear progression will help optimize cutting 

conditions and tool geometry to reduce tool wear, which may make hard turning a viable 

technology. The goal of this case study is to use the optimized RNN to model the tool 

wear progression and further investigate the network’s performance in training 

convergence and robustness. The results show that the developed optimized RNN have 

advantages over FFNN in modeling the tool wear progression in hard turning and the 

convergence study and robustness study can further improve the network’s performance. 
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CBN Tool Flank Wear 

Based on a typical CBN tool wear observation [Daws02], CBN tool flank wear 

length or wearland (VB), as shown in Figure (6.1), is generally regarded as the tool life 

criterion or an important index to evaluate the tool performance in hard turning [Taka83] 

[Abra95] [Dewe96]. The tool wear rate is assumed uniform across the width of cut as 

shown in Figure (6.1).  

VB

rake face

flank face

flank wear

100 µm

VB

rake face

flank face

flank wear

100 µm

 

Figure 6.1: Typical tool wear picture in CBN hard turning 

 
Figure (6.2) shows a typical tool wear progression process which is to be modeled 

by the proposed RNN and the optimized RNN. Usually many factors would affect the 

process. For a given tool and workpiece combination, the capability to estimate the tool 

wear as a function of cutting conditions as cutting speed, feed rate, and depth of cut, is 

critical to the overall optimization of a hard turning process. The objective of this case 

study is to model the tool wear progression process using proposed RNN networks. 
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Figure 6.2: A Typical tool wear progression in hard turning 

 

Experimental Setup 

The Data are collected from an experiment [Huan04]. In that experiment, 

hardened AISI 52100 bearing steel with a hardness 62 HRc was machined on a horizontal 

Hardinge lathe using a low CBN content tool insert (Kennametal KD050) with a -20º and 

0.1 mm wide edge chamfer and a 0.8 mm nose radius. The ISO DCLNR-164D tool 

holder was used, which introduced a negative 5º rake angle. No cutting fluid was applied. 

Flank wear length was measured using an optical microscope (Zygo NewView 200). The 

experiment was stopped when a sudden force jump was observed signaling a chipping or 

broken tool condition. 



 140 

Table 6.1: Cutting conditions of the experiments [Huan04] 

Condition 
index 

Speed 
(m/s) 

Feed 
(mm/re) 

Depth of 
cut (mm) 

1 3.05 0.152 0.203 
2 1.52 0.152 0.203 
3 3.05 0.076 0.203 
4 2.29 0.114 0.203 
5 1.52 0.076 0.203 
6 3.36 0.114 0.203 
7 2.29 0.114 0.203 
8 2.29 0.061 0.203 
9 2.29 0.168 0.203 

10 1.21 0.114 0.203 
11 2.29 0.114 0.203 
A 1.52 0.076 0.102 
B 1.52 0.076 0.152 

 

Machining test was performed based on a standard central composite design test 

matrix with an alpha value of 1.414. The center point (0,0) was determined based on the 

tool manufacturer’s recommendation [Huan04]. A typical depth of cut was suggested as 

0.203 mm, which was used in the test matrix. To further investigate the effect of depth of 

cut on tool wear, experiments with various depths of cut were also studied. Ten different 

cutting conditions [Huan04], namely conditions 1-5, 8-10, a, and b are listed in Table 

(6.1). Conditions 7 and 11 are not utilized here since they are the same as condition 4, 

and condition 6 (cutting speed = 3.36 m/s) is also not used since the break-in period 

accounted for a large portion of tool flank wear and microchipping was a dominant factor 

of tool life under such an aggressive cutting speed. Uncertainty characterization is not 

offered here due to the size of the experimental data set. 
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Recurrent Neural Network Implementation 

In this study, a RNN and an optimized RNN are formed to model the CBN tool 

wear progression based on the data from Huang et al’s study [Huan04] and their 

modeling performance is compared with the measurements as well as that of FFNN 

approaches from previous studies [Wang08a] [Wang08b]. The following tasks need to be 

conducted to train a RNN modeling the tool wear progression: 

1) Training and testing data preparation 

As shown in Table (6.1), there are total 10 groups of data available from the hard 

turning experiment. Among them data of conditions 1, 5, 9, 10, and a are used for 

network training. The training data contain 48 training patterns. The rest of the data (44 

patterns) are used to test the generalization ability of the proposed RNN model. 

2) Training parameters configuration  

To train RNN, some training parameters such as P , Q  , and R  need to be 

initialized first. The training parameters configuration is referred from a previous study 

[Pusk94] without considering the training divergence issue. Without any specific note, in 

this study, the error covariance matrix P  is initialized as a diagonal matrix and each of its 

diagonal elements is initialized as 100. Each diagonal element of the covariance matrix of 

process noise Q  is initialized as 0.01 and this value descends linearly within 100,000 

training cycles until Q  reaches a minimum limit of 0.000001. Similarly, each diagonal 

element of the measurement noise covariance matrix R  is initialized as 100 and it also 

descends linearly until it reaches a minimum boundary of 2. Both the settings of R  and 

Q  help the training error converge to a global minimum. 
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3) Training Process Configuration 

First, each weight of the network is randomly initialized in the region of [-1, 1]. 

Training parameters are initialized as mentioned before. Training data are then fed into 

the EKF training algorithm (Equations (3.47-3.49)) to train the network weights. During 

the training process, the training data are used for each training epoch and the weights are 

updated accordingly. The procedure of training using all the training patterns once is 

called a training step or epoch. The training process stops when the stop criteria are 

satisfied. The stop criteria are determined by trial-and-error: i) the number of training step 

should be less than 500 and the training process stops after 500 steps if no other stop 

criteria are met; or ii) if the training error is less than 3% and the difference between the 

current error and the error of 20 epochs before is less than 0.03% [Wang09].  

4) Network structure determination 

RNN network structure is first determined by setting the numbers of input 

neurons, hidden neurons and output neurons. Four independent variables - cutting speed, 

feed rate, depth of cut and machining time and a constant bias 1 are used as the inputs. 

The output of the network is the tool flank wear length. The number of hidden neurons is 

determined by a trial and error method, and the training error results are listed in Table 

(6.2). According to a rule of thumb [Scha97], 12 hidden neurons are chosen first and the 

training error is found to be 4.2%. Afterwards, networks with fewer hidden neurons are 

selected and the corresponding training errors are investigated. It is found that RNN with 

more than 1 hidden neuron is able to adequately model the tool wear progression. For 

example, the training error of the network (5-2-1) with 2 hidden neurons (4.5%) is quite 
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close to that of the network (5-12-1) with 12 hidden neurons (4.2%). However, for the 

network with 1 hidden neuron, the training error becomes relatively large (12.8%). The 

training results for typical networks are shown in Figure (6.3). The simple network 

structure would reduce the risk of over-fitting, so the network with a 5-2-1 structure as 

shown in Figure (6.4) is selected in this study.  

Table 6.2: Training error with different network structure 

Network structure Training error (%) 
5-12-1 4.2 
5-2-1 4.5 
5-1-1 12.8 
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Figure 6.3: Training errors of RNN with typical structure configurations 
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Figure 6.4: Modeling the tool wear progression by a 5-2-1 RNN 

 

Modeling Performance of the Recurrent Network 

An MLP, an FFCNN, an optimized FFCNN (OptFFCNN), a RNN, and an 

optimized RNN (OptRNN) are applied to model the process. Both the training 

performance and testing performance are studied.  

Training results indicate the fitness of the network model in modeling the training 

data. Training data are assumed to be able to represent the overall characteristics of the 

system being studied. Therefore, from the training process, a network capable of 

modeling the training data is expected to represent the system dynamics. 

During the training process, the appropriate network architecture should be 

determined first as stated in a previous section. The MLP has been found to be 5-5-1 and 

the other networks (RNN and OptRNN) are 5-2-1. The same training data (conditions 1, 

4, 5, 9, and a) have been used to train these networks. 500 training epochs are used for 

RNN and OptRNN training while 100000 training epochs are used for MLP training 
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since MLP converges much slower. The final training error results are listed in Table 

(6.3). 

Table 6.3: Training error with different types of networks 

Network  Training error (%) 
MLP 4.8 
RNN 4.5 

OptRNN 4.4 
 

From the results, all the training errors are smaller than 5% (MLP: 4.8%, RNN: 

4.5%, and OptRNN: 4.4%). Figure (6.5) shows some representative training result 

comparisons. It can be seen that the modeling performance of these investigated NN are 

close in modeling the training data and all the networks are able to accurately represent 

the training data and model the tool wear progression.  

From Figure (6.5), it should be pointed out that the training results of conditions 

10 and a are more accurate than those of conditions 1 and 5. It is because that during this 

pattern learning process the network is trained orderly from condition 1 to condition a. As 

a result, more training effort has been put to the most recent training patterns. While the 

overall training error of the OptRNN is generally smaller than that of MLP, the OptRNN 

may have large errors for some specific training patterns. 

The trained networks are further tested for their generalization ability. Conditions 

2, 3, 4, 8, and b have been used as the testing cases, which are unseen in the above 

network development process. 
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Figure 6.5: Training results for training cases 

 
Figure (6.6) shows the testing results from the MLP, RNN, and OptRNN. It can 

be seen that: 

1) Except for a few testing patterns in condition 4, RNN is more capable of 

accurately modeling this non-stationary and dynamical tool wear progression 

than the MLP; 

2) For most cases, the discrepancy between the network prediction and its 

desired output (the experimental measurement) increases with time; 
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3) RNN and OptRNN have the similar modeling performance in this tool wear 

study mainly due to their inherent recurrent architectures; and 

4) The MLP tends to over estimate the tool wear length for all the testing cases 

which implies its limitation in modeling this non-stationary and dynamical 

system. 

The modeling performance is further compared with those of an FFCNN approach 

and an OptFFCNN approach [Wang08a]. Table (6.4) shows the testing errors for these 

networks which better illustrate their overall modeling capability. Some observations can 

be drawn as follows: 

1) The average testing errors of optimized networks (the optimized FFCNN and 

the optimized RNN) are smaller than those of their corresponding regular 

networks (FFCNN and RNN); 

2) The average testing errors of recurrent networks (RNN and the optimized 

RNN) are smaller than those of purely forward networks (MLP and FFCNN); 

and 

3) From the variance of errors, the MLP has the largest variation which means it 

is the least robust network while the optimized networks have smaller 

variances (8.0 and 6.1) which indicates the optimization process can improve 

network’s robustness as well as their modeling accuracy. 



 148 

0 1 2 3 4
0

20

40

60

80

100

120

140

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 10 20 30 40
0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 5 10 15
0

50

100

150

200

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

Time (min)

W
ea

r l
en

gh
t (

m
ic

or
 m

et
er

)

Desired output
MLP output
RNN output
OptRNN output

Condition 2 Condition 3

Condition 4 Condition 8

 

Figure 6.6: Modeling results for testing cases 

 

Table 6.4: Modeling error for testing cases 

Condition 
Index MLP (%) FFCNN (%) Optimized 

FFCNN (%) RNN (%) Optimized 
RNN (%) 

2 8.37 10.65 10.29 10.63 7.65 
3 39.45 26.32 12.77 16.42 10.27 
4 17.94 22.03 11.51 16.09 12.62 
8 15.57 15.27 13.71 9.35 8.65 
B 5.96 6.50 5.60 5.84 5.29 

Avg. of error 17.46 16.15 10.78 11.67 8.90 
Var. of error 140.4 52.4 8.0 16.5 6.1 
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Training Convergence Study of RNN 

In the previous study, parameter setting of EKF training algorithm is borrowed 

from [Pusk94]. The parameter R  represents the confidence of noised measurement, the 

smaller the value the more confidence would put on the measurements. From Equation 

(3.48), small R  also leads to high learning rate. However, too small R  may lead to 

excessively large learning rate which cause the training instability problem. On the other 

hand, the covariance matrix of measurement noise, R , also indicates the amount of noise 

added in the measurements. In the beginning stage of training process, the network output 

is far from the desired output. The network output can be viewed as the estimation result 

of a measurement with large noise. Hence, the diagonal element of R  is supposed to set 

as a large number (100) at the beginning stage. During the training process, the modeling 

error become smaller and the network output can be viewed as the estimation of a 

measurement with small noise. Follow this intuition, the R  setting in [Pusk94] provides 

an empirical guide for R  configuration. However, the R  setting can’t guarantee the 

convergence of a training process. In contrast the R  adaption law is proposed in this 

study and the results are presented in the following section.  

 

R  Adaption Law for Convergence Guarantee 

The R  adaption law is first verified in this case study. Similarly as in the 

benchmark system case study, a divergent case is first illustrated and the R  adaption law 

is applied to make the process convergent. A divergence training case is shown in Figure 

(6.7). The r  in Equation (4.32) is initialized as 0.45 and linearly reduced to 0.1 during 
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training with 100000 training patterns and the modeling error goes to infinite after 922 

patterns.  
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Figure 6.7: A divergent training processes 

 
For the above case, its modeling results have big errors. The final modeling 

performance (trained with 922 training patterns) of case b) is shown in Figure (6.8). 

Large modeling errors (more than 1000 times of the magnitude of the measurements) are 

observed in Figure (6.8).  

Correspondingly, the r  values during the training process are shown in Figure 

(6.9) as below. This R  setting leads to the divergence problem indicated in Figure (6.8). 
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Figure 6.8: Modeling performance for tool wear progression without R  adaption law  
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Figure 6.9: r  values during training without R  adaption law 
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RNN is also trained using the proposed R  adaption law. The r  value is initialized 

as in the aforementioned divergent case, and the R  adaption law takes effect when the 

modeling error is beyond the certain threshold as specified by Equation (4.43). Under the 

R  adaption law, the training process became convergent as shown in the modeling error 

during training plot, Figure (6.10). It is found that two groups of big oscillations occur in 

the beginning region of the plot. But the training error hasn’t blow up to infinity during 

the training process and finally it converge to a small value, 4.1%. 

In addition to modeling errors, the training results under adaption are also shown 

in Figure (6.11). Comparing to the divergent case in Figure (6.7), the modeling errors 

here are relatively small. 
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Figure 6.10: Modeling error during training with R  adaption law 
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Figure 6.11: Training results for tool wear progression with R  adaption law 

 
To show the effect of the adaption law on R , the adapted r  during the training 

process is drawn in Figure (6.12). Again, the big variations account for the effect of R  

adaption law. It can be also seen that the oscillations in Figure (6.12) are coherent with 

oscillations in the modeling error plot Figure (6.10). When the modeling error is beyond 

the boundary in Equation (4.43) ( )()1()(192)( kHkPkHke T −> ), the adaption law 

takes effect to generate a larger r  to draw the training process to be convergent. From 

these results of training in Figure (6.7-6.12), a conclusion can be drawn that the R  

adaption law can draw the training process from divergence to convergence. 
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Figure 6.12: r  values during training with R  adaption law 

 

Q  Adaption Law for Convergence Speed 

In addition to the R  adaption law, the Q  adaption law (Equation (4.43)) 

developed in Chapter four is applied in this case study as well. The effect of the Q  

adaption law is also tested in tool wear modeling under the same representative cutting 

conditions. As in the benchmark validation chapter, the four simulation scenarios are 

studied to appreciate the importance of the Q  adaption law: 

1) The Q  matrix is set as a null matrix, which means a zero covariance matrix of 

process noise or the process noise is removed from the EKF training 

algorithm;  

2) RNN is trained using constant Q  (Q  = 0.01I);  
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3) RNN is trained as follows: each diagonal element of Q  is initialized as 0.01 

and this value decreases linearly during 100,000 training patterns until it 

reaches a limit of 0.000001; and  

4) The proposed Q  adaption law is implemented during the training process. In 

all the cases r  is initialized as 100 and it is reduced linearly until r  reaches a 

limit of 2 as in a previous study [Pusk94]. It should be pointed out that the 

diagonal elements of Q  under the third scenario are always the same whereas 

they might be different under the fourth scenario. 

The results for RNN training are shown in Figure (6.13) and the final training 

errors are listed in Table (6.5). It can be seen that the Q  law is most effective to minimize 

training error and accelerate the training process. The training process with Q =0 has the 

largest training error. For the other two scenarios, they are overlap in some regions and it 

is difficult to compare their effectiveness.  

Table 6.5: Final training errors of different Q  settings 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
RNN 3.8% 4.4% 4.5% 5.4% 

OptRNN 3.6% 4.2% 4.0% 4.5% 
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Figure 6.13: Comparison of RNN training errors with different Q  settings 

 

To investigate how the Q  law affects the training process, Figure (6.14) shows 

the trace of Q  during training processes under Scenarios 3 and 1. It is clear that the trace 

of Q  decrease linearly in Scenario 3, while the trace of Q  in Scenario 1 decreases more 

dramatically in the beginning region. A sub-section of Figure (6.14) is detailed in Figure 

(6.15) which reveals the periodicity feature for training patterns. It can be seen that the 

Q ’s are specified for training patterns in each training epoch. Further comparing this 

figure to the training patterns, it is found that the high Q ’s correspond to big changes in 

training patterns. It means the adaption law generates big Q ’s for high variation in the 

training patterns. High Q  represents high Kalman gain hence the law put more effort to 

model these patterns. This is the first factor that contributes to the improvement in 

modeling performance in Scenario 3. 
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(a) Trace of Q during training for Scenario 3 (b) Trace of Q during training for Scenario 1
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Figure 6.14: Trace of Q  for Scenarios 1 and 3 during training process 
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Figure 6.15: Trace of Q  in training epochs (91) and (92) 

 
Figure (6.16) shows the diagonal elements of Q  after training under Scenario 3 

and 1. For Scenario 3, the elements have the same values while for Scenario 1 different 

values are assigned to the elements of Q  and hence different training strengths are to be 
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put on different weights based on needs. This is the second factor that contributes to the 

higher modeling capability of Scenario 3. 
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Figure 6.16: Diagonal elements of Q  after training for Scenarios 3 and 1 
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Figure 6.17: Comparison of OptRNN training errors with different Q  settings 
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The four Q  configurations are also applied on the optimized RNN. Figure (6.17) 

shows the results. From these results, the proposed Q  adaption law generates the smallest 

training error compared to other Q  control schemes. 

 

Robustness of Neural Networks 

In a pervious section, A RNN and an optimized RNN are applied to model the 

non-linear dynamical benchmark system. The architectures of these two networks are 

both 5-2-1. Five inputs are cutting speed, feed rate, depth of cut and machining time and a 

constant bias 1 are used as the inputs. The output of the network is the tool flank wear 

length.  

In this section, the proposed robustness quantification method is applied to 

quantify the robustness of the trained RNN and the optimized RNN. First local robustness 

measure for input samples are computed based on Equations (4.61) and the global 

robustness measure for overall network robustness based on the average of local 

robustness measures. Generally the perturbation level should be determined based on 

experimental observations as the hardware/software might have during the 

implementation of ANN. Here the perturbation level L in Equation (4.51) has been taken 

as 1% for simplicity and 100 input samples have been used if not mentioned otherwise. 

Based on the proposed approach a smaller robustness value implies higher system 

robustness to external perturbations. In the following sections, similar tasks have been 

conducted as the robustness study of RNN in modeling the benchmark system in Chapter 

5. 
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Corresponding to Figure (5.19), Figure (6.18) shows the varying local robustness 

measures using 100 sample inputs. Each point represents a local robustness measure for 

the nth input sample. The global robustness measure is found to be 0.0412 by averaging 

the local robustness measures. Similar varying local robustness measure tendency has 

been observed with the optimized RNN, and its global robustness measure is found to be 

0.0232, which is smaller than that of RNN. 

0 20 40 60 80 100
0.04

0.041

0.042

0.043

0.044

nth input sample

Lo
ca

l r
ob

us
tn

es
s

 

Figure 6.18: Local robustness measures for RNN using 100 input samples 

 

The effects of the number of input samples and the perturbation level to the global 

robustness measure are studied as follows. 

 

Effect of Number of Input Samples on Global Robustness Measure 

In general, the more input samples are used, the more reliable the global 

robustness measure represents the system robustness performance over the whole input 
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space. Unfortunately, it is impossible to compute the global measure based on an 

exhaustive way by sampling all possible inputs. As so, a minimum amount of input 

samples, which are needed for global robustness quantification, should be determined 

first. To find this minimum amount in this study, different numbers of input samples have 

been selected and their corresponding global robustness measures for both RNN and 

optimized RNN are computed and shown in Figure (6.19). 
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Figure 6.19: Robustness of RNN and optimized RNN (perturbation level = 1%) 

 

It can be seen that for each network the robustness measures converge to a steady 

value quickly after more than 10 uniformly generated input samples are used. Based on a 

conservative consideration, 100 input samples are used here and in the following 

sections. Based on the 100 input samples, optimized RNN has a global robustness value 

of 0.0232, which is smaller than that of RNN (0.0412), implying that optimized NN is 

more robust than the regular NN [Kris93]. 
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Effect of the Perturbation Level on Global Robustness Measure 

Similar to the robustness study in Chapter five, the perturbation levels ranging 

from 1% to 20% have been applied to the trained network weights to study the network 

robustness under different level of perturbed weights; and the results are shown in Figure 

(6.20). It can be seen from Figure (6.20) that the optimized RNN is more robust than the 

regular RNN for all the perturbation levels, which indicates the connectivity optimization 

process has improved the network robustness as observed before [Kris93]. 

It can also be seen that the relationship between the robustness measure and the 

perturbation level can be approximated as linear. This linear pattern is again attributed to 

the network mapping feature discussed in Chapter five. 
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Figure 6.20: Network robustness values under different perturbation levels 
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Comparison among Robustness Measures 

The proposed robustness quantification approach is further compared with the 

performance loss-based and sensitivity matrix-based approaches. The performance loss-

based and sensitivity matrix-based measures are computed based on the training data 

mentioned in the previous section. To fairly compare the three approaches, the same 

training data (condition 1, 5, 9, 10, and a) are also used to compute the proposed 

robustness measure, and the LHS input sampling process is not applied here to generate 

input samples for the proposed approach. 

For both the performance loss-based and the proposed approaches, the 1% 

perturbation level is used. For the performance loss-based approach, 10,000 networks are 

generated based on the perturbed weights, and the network output is then compared with 

the corresponding desired outputs to compute MSE. The resulting maximum MSE is 

taken as the performance loss-based measure. For the sensitivity matrix-based approach, 

the sensitivity matrices for all the training inputs are obtained during the training process 

and the spectral norm [Kris99] for each matrix is computed as the local robustness 

measure. The average of these norms is used as the sensitivity matrix-based measure. 

It should be pointed out that the three robustness measures cannot be directly 

compared against each other because they are computed using different criteria. Instead, 

the ratio of robustness measures between RNN and optimized RNN is studied to indicate 

the effectiveness of any quantification approach. A larger robustness ratio means that this 

quantification approach is more sensitive in quantifying the robustness difference. 
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Table 6.6: Comparison of robustness quantification approaches 

Robustness 
quantification approach RNN robustness (r1) Optimized RNN 

robustness (r2) 
Robustness 
ratio (r1/r2) 

Performance loss-based 0.1118 0.0954 1.1719 
Sensitivity matrix-based 2.3821 2.1164 1.1255 

Proposed 0.0412 0.0232 1.7835 
 

Table (6.6) lists the comparison results. For all the three quantification 

approaches, optimized RNN is found to be more robust than RNN. It is found that the 

proposed approach (1.78) has the largest robustness ratio than those of the performance 

loss-based approach (1.17) and the sensitivity matrix-based approach (1.12). As the most 

sensitive quantification approach is associated with largest robustness ratio value, it is 

concluded that the proposed robustness quantification approach is the most effective one 

among these three approaches. 

 

Relationship between Proposed and Sensitivity Matrix-based Approaches 

Under a small perturbation level the uncertainty propagation analysis used in this 

proposed approach can also be related to the sensitivity matrix–based approach. Each 

element (
j

i
ij w

y
H

∂
∂

= ) of the weight–output Jacobian sensitivity matrix H represents the 

derivative of an output ( iy ) with respect to a weight ( jw ). Using the uncertainty 

propagation analysis under a small weight perturbation such as 0.01%, this ijH  can be 

approximated by the standard deviation ratio 
)(
)( )(

j

j
i

ij wstd
ystd

S = , where std(·) is a standard 

deviation operator and )( )( j
iystd  represents the standard deviation of output iy  under a 
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perturbation with weight jw . This standard deviation ratio ijS  describes the dependence 

of the output variation on the weight variation. It should be pointed out that different 

from the proposed robustness quantification approach where perturbations are added to 

all the weights simultaneously to compute )( jyv
vσ , here each time perturbation is only 

added into a specific weight to compute )( )( j
iystd  while all the other weights remain the 

same. 

Table (6.7) lists the sensitivity matrix-based robustness measures averaged based 

on their spectral norms [Kris99], which are computed using the traditional method ( ijH ) 

and the uncertainty propagation analysis ( ijS ), respectively. It is found that the two 

results quite match each other; therefore the proposed analysis can also be used to 

compute the sensitivity matrix-based measure.  

Table 6.7: Sensitivity matrix-based robustness of RNN and optimized RNN 
 

 RNN robustness Optimized RNN robustness 
Robustness (H matrix based) 2.3821 2.1164 
Robustness (S matrix based) 2.3799 2.1105 

 

Efficiency of the Proposed Robustness Quantification Method 

The unscented transform is efficient to quantify the uncertainties in RNN output; 

to verify that, another uncertainty propagation method using Monte Carlo method is 

carried out. A set of weight vectors are randomly generated based on the Gaussian 

distribution of the perturbed weight vector used before, and each of them form a RNN. 

The inputs are fed into these RNN, and the standard deviation in networks’ output are 

used as the local robustness measure, which further forms the global robustness measure 
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by averaging. Different numbers of RNN are generated and the computation times are 

recorded in Table (6.8). It is found that to reach the same robustness result (0.0422), 1500 

RNN need to be generated and the computation time is about 32 times of the proposed 

method, whose corresponding results are shown in Table (6.9). The experiment is carried 

out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz 

and 3.0 G RAM. 

Table 6.8: Robustness results of RNN from a Monte Carlo method 

Number of RNN generated Robustness measure Computation time (second) 
10 0.0413 0.30 

100 0.0429 2.65 
500 0.0426 13.25 
1000 0.0425 26.15 
1500 0.0422 38.16 

 

Table 6.9: Robustness results of RNN from the proposed UT-based method 

Number of RNN generated Robustness measure Computation time (second) 
43 0.0422 1.16 

 

It should be pointed out that the robustness measure 0.0422 in Table (6.9) is 

slightly different from the result 0.0412 in Table (6.6). The difference is due to that 

different input sets are applied in these two computation processes. In Table (6.6), 100 

uniformly generated input samples are used while in Table (6.9) the training input data 

are applied. 

Similar results have been obtained in this tool wear modeling application. The 

following conclusions can be drawn based on this robustness study: 

1) The proposed robustness quantification method is flexible and viable. 
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2) The proposed method is more efficient than another Monte Carlo simulation 

based uncertainty propagation analysis based method. 

3) The proposed robustness quantification is more effective compared with the 

other two methods, the performance loss-based and the sensitivity matrix-

based approaches.  

4) All the three methods show that the optimized RNN is more robust than RNN. 

 

Conclusions 

In this chapter, modeling performance, training convergence, and robustness of 

the developed RNN are studied using a tool wear progression process. The modeling 

capability for an MLP, a RNN, and an optimized RNN are compared using the training 

data. It can be seen that all the networks can accurately model the training data. 

Furthermore, the generalization capability of RNN, the optimized RNN, MLP, FFCNN, 

and the optimized FFCNN are studied. It is found that the generalization ability of the 

optimized RNN is the best among these networks. The training convergence is also 

studied in this case, and the R  adaption law is able to make the training process 

convergent while the Q  adaption law can accelerate the training convergence speed. 

Finally, the robustness of the RNN and the optimized RNN are studied. It is found that 

the proposed uncertainty propagation based method is more effective, flexible, viable and 

efficient than other two existing methods in quantifying RNN’s robustness.  

Some conclusions can be drawn from the case study: 
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1) The applied RNN structure, training algorithm, and optimization method can 

make the developed RNN modeling approach more accurate, robust and fast.  

2) The proposed adaptive training algorithm can make the training process of 

RNN more stable and faster. 

3) The proposed robustness measures are effective and efficient to quantify the 

robustness of RNN. 

All of the results prove that the developed RNN modeling approach is powerful in 

terms of accuracy, speed, and stability. 
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CHAPTER SEVEN 

CONCLUSIONS 

 
In this study a RNN is developed based on an FFNN by adding recurrences in its 

hidden neuron section. The added recurrences are found to be beneficial in modeling non-

linear dynamics and hence can improve the network’s modeling performance.  

 

Challenges Addressed 

This study endeavors to address the following challenges: 

 
Network Structure Determination and Training 

How to form an optimal network structure and how to efficiently train networks 

are common problems in neural network study. A network is defined from two sides, its 

structure and values of its weights. A structured network is actually a parametric model. 

The procedure of determining network structure is to find the functional form of the 

model and the procedure of training is to determine its parameters.  

As for the structure, the prototype of RNN is an FFCNN which has three sections 

of neurons (input neuron section, hidden neuron section and output neuron section), and 

information flows strictly feedforward in only one direction, from input units to output 

units. RNN network can be viewed as the summation of a FFCNN and recurrent 

connections added in its hidden neuron section. The recurrent connections can introduce 

state feedback into the network structure and improve the network’s modeling 

performance. A network with optimal structure is desirable in training speed, training 



 170 

accuracy, generalization ability, and robustness. However, the optimal topology of a 

RNN is case dependent. A pruning method is seamlessly embedded into the training 

process to optimize the network structure. The optimized RNN is found to be most 

capable of modeling non-linear dynamical systems. 

As for the network training, the EKF is an efficient and powerful state estimation 

algorithm and applied in the study. The training process can be viewed as a state (weights) 

estimation problem and the EKF is used to estimate the state from the training patterns. 

The most time consuming part in EKF training implementation is the formation of the 

orderly derivatives of network’s outputs with respect to weights considering the effect of 

all contributive connections. 

 

Training Convergence 

Training divergence can occur if training parameters are not selected properly. 

Furthermore, RNN are more vulnerable to training divergence than FFNN due to their 

recurrent connections. To solve the problem, a parameter R  of EKF training algorithm is 

adapted to guarantee the training convergence while another parameter Q  is adapted to 

accelerate the training. Q  is estimated by maximum likelihood method to accelerate 

training speed and R  is adapted by Lyapunov method to ensure training convergence.  

 

Network Robustness Quantification 

In addition to training convergence, robustness is another important issue of RNN 

for its successful implementation. The robustness study considering perturbations in 
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trained weights is vital for network’s implementation. Various networks can be 

developed for an application. But to select the best fault tolerant network is important for 

successful application of a RNN. A uncertainty propagation analysis based robustness 

measures using the unscented transform is proposed.  

 

Methodology Validation and Performance Evaluation 

For methodology validation and performance evaluation, two non-linear 

dynamical systems, a benchmark system and a tool wear progression process in CBN 

hard turning, are used to verify the modeling performance of the network. From the two 

case studies, some observations are found as follows: 

1) The developed RNN is better than FFNN such as FFCNN and MLP in 

training accuracy, generalization ability, and training speed. 

2) The connectivity optimization can improve a network’s performance in terms 

of training speed, computation cost, and network robustness.  

3) The developed R  adaption law can guarantee convergence of the training 

process, while the Q  adaption law can speed up RNN training process. 

4) The proposed robustness measures have advantages over the other two 

existing measures developed from the differential analysis and performance 

loss analysis, respectively.  
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Contributions 

This research can contribute to the current research state of the art as follows: 

 

Develop and Apply RNN in Modeling Applications 

A RNN is developed which is better than the commonly used MLP network in 

modeling applications. This study investigates RNN’s modeling performance and 

compares it with FFNN including FFCNN and MLP. In addition, structure optimization 

is applied to the networks and forms corresponding optimized networks. Training speed, 

training accuracy and generalization ability are studied for each network. The results 

show that RNN surpass FFNN and the connectivity optimization process further 

improves a network’s performance. 

 

Training Convergence Study of RNN 

When NN is applied in modeling, training convergence is seldom studied and 

researchers just train networks without justifying the convergence property first. Training 

convergence is carried out in this study. Improperly selection of training parameters 

would result in training divergence, so that the outputs of the network turn to out of 

bounds. The training convergence include two levels, how to guarantee training 

convergence and how to accelerate training process. To solve the problem, Lyapunov 

method is applied to form an R  adaption law to guarantee the convergence of training, 

while maximum likelihood method is used to adapt Q  to speed up the training process. 
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Robustness Study of RNN 

An unscented transform based robustness quantification measure for RNN has 

been developed in this study. The unscented transform is applied in the uncertainty 

propagation analysis owning to its advantages in efficiency and computation cost saving. 

Uncertainty propagation analysis is conducted to assess the robustness of the network 

considering perturbations in network’s trained weights. The proposed quantification 

method is found to have advantages over two other methods.  

To summarize, the study proposes the developments of:  

1) RNN architecture implementation,  

2) the EKF-based training algorithm for RNN,  

3) the connectivity optimization algorithm for RNN,  

4) the convergence study of developed RNN, and  

5) the robustness analysis of RNN.  

 

Future Work 

While a thorough study has been carried out for RNN to model non-linear 

dynamical systems, some work still needs to be carried out which can further improve the 

study in the future. 

 

To Study the Coupled Effects of Developed Adaption Laws 

It should be pointed out that the R adaption law may also affect the training speed. 

To further optimize the training convergence speed, R  needs to be adapted to guarantee 
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convergence as well as to accelerate the training speed. Future work should 

mathematically investigate the coupled effects of the two noise parameters on EKF 

training and further improve the training convergence performance. 

 

To Study the Robustness of RNN in Training Process 

In this study the robustness of trained networks is investigated and a method to 

quantify robustness is proposed. However, evaluation of the robustness of RNN during 

training is more useful. Combining the robustness study into the training process needs to 

be carried out in the future. The study includes how to select a training technology and 

how to select training parameters to improve the network’s robustness. To accomplish 

that, the cost function of robustness for a network which relates robustness to training 

parameters should be proposed and further studied. 

 

To Study the Robustness of RNN Due to Architecture Variation 

Current study only considers robustness of network due to perturbation in trained 

weights, although the developed method can also apply to assessing robustness due to 

perturbation in inputs. However, consideration of perturbation in architecture level, for 

example missing/fault of neuron and connections is also another important aspect of 

robustness study which needs to be conducted in the future. This problem is correlated 

with the above one, because the network’s structure is determined through the 

connectivity optimization process. 
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APPENDICES 

Appendix A 

 
Program to train RNN - trainrnn.m 

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and compute output of neural network (rnn.m)

Calculate H matrix (rnnsolveH.m)

Apply EKF training (nnEKF.m)

Compute and display training error

Stop criteriaStop criteria

yes

no

Trained weight and RNN output
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Appendix B 

Program to optimize RNN and train OptRNN - trainoptrnn.m 

 

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and compute output of neural network (optrnn1.m)

Calculate the H matrix (optrnnsolveH1.m)

Apply the EKF training to weight (nnEKF.m)

Apply the EKF training to connectivity (nnEKF.m)

Compute and display training error

Optimized connectivity

Feed input and compute output of the optimized RNN (optrnn2.m)

Calculate the H matrix (optrnnsolveH2.m)

Apply the EKF training to weight (nnEKF.m)

Compute and display training error

Trained weight of OptRNN and output

Initialize weight of the optimized RNN (initialize.m)

Stop criteriaStop criteria

yes

no

Stop criteriaStop criteria

yes

no
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Appendix C 

Program to apply R  and Q  adaption laws in training RNN – trainrnn_adrq.m 

 

Set network structure

Initialize weight (initialize.m)

Get training patterns

Feed input and get output of neural network (rnn.m)

Calculate H matrix (rnnsolveH.m)

Apply EKF training (nnEKF.m)

Compute and display training error

Stop criteriaStop criteria

yes

no

Trained weight and RNN output

Apply R adaption law

Apply Q adaption law
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