View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

All Dissertations Dissertations

5-2010

ARCHITECTURE OPTIMIZATION,
TRAINING CONVERGENCE AND
NETWORKESTIMATION ROBUSTNESS OF
AFULLY CONNECTED RECURRENT
NEURAL NETWORK

Xiaoyu Wang

Clemson University, xiaoyuclemson@hotmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all _dissertations

b Part of the Artificial Intellicence and Robotics Commons

Recommended Citation

Wang, Xiaoyu, "ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION
ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK" (2010). All Dissertations. 536.

https://tigerprints.clemson.edu/all_dissertations/536

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://core.ac.uk/display/268635082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/536?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK
ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL
NETWORK

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Mechanical Engineering

by
Xiaoyu Wang
May 2010

Accepted by:
Dr. Yong Huang, Committee Chair
Dr. John Gowdy
Dr. Nader Jalili
Dr. Ardalan Vahidi

ABSTRACT

Recurrent neural networks (RNN) have been rapidly developed in recent years.
Applications of RNN can be found in system identification, optimization, image
processing, pattern reorganization, classification, clustering, memory association, etc.

In this study, an optimized RNN is proposed to model nonlinear dynamical
systems. A fully connected RNN is developed first which is modified from a fully
forward connected neural network (FFCNN) by accommodating recurrent connections
among its hidden neurons. In addition, a destructive structure optimization algorithm is
applied and the extended Kalman filter (EKF) is adopted as a network’s training
algorithm. These two algorithms can seamlessly work together to generate the optimized
RNN. The enhancement of the modeling performance of the optimized network comes
from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron
network (MLP), the most widely used network, in terms of modeling accuracy and
generalization ability; 2) the recurrency in RNN network make it more capable of
modeling non-linear dynamical systems; and 3) the structure optimization algorithm
further improves RNN’s modeling performance in generalization ability and robustness.

Performance studies of the proposed network are highlighted in training
convergence and robustness. For the training convergence study, the Lyapunov method is
used to adapt some training parameters to guarantee the training convergence, while the
maximum likelihood method is used to estimate some other parameters to accelerate the
training process. In addition, robustness analysis is conducted to develop a robustness

measure considering uncertainties propagation through RNN via unscented transform.

il

Two case studies, the modeling of a benchmark non-linear dynamical system and
a tool wear progression in hard turning, are carried out to testify the development in this
dissertation.

The work detailed in this dissertation focuses on the creation of: (1) a new method
to prove/guarantee the training convergence of RNN, and (2) a new method to quantify
the robustness of RNN using uncertainty propagation analysis. With the proposed study,
RNN and related algorithms are developed to model nonlinear dynamical system which
can benefit modeling applications such as the condition monitoring studies in terms of

robustness and accuracy in the future.

il

DEDICATION

This Dissertation is dedicated to my parents who have always been supportive in

my life.

v

ACKNOWLEDGMENTS

I would like to thank Dr. Yong Huang, Dr. John Gowdy, Dr. Nader Jalili, and Dr.
Ardalan Vahidi, for their support and guidance in my study.

I would like to thank Dr. Nhan Nguyen and Dr. Kalmanje Krishnakumar, NASA
scientists from the Ames Research Center, for their help in my research.

I would like to thank my colleagues who helped me during my stay at Clemson:
Yu Long, Lei Tang, Wei Wang, Yafu Lin, Yin Jun, Leigh Herran, Mason D. Morehead,
and Kevin Foy.

I would like to acknowledge the financial support from the South Carolina Space

Grant Consortium and the NASA Ames Research Center.

TABLE OF CONTENTS

TITLE PAGE ..ottt ettt ettt e e st s i

ABSTRACT ..ttt ettt ettt e et e et e e st e e sbeeeeas i

DEDICATION ..ottt ettt ettt ettt e et e ettt e e sibeeesabeeesanneenas v

ACKNOWLEDGMENTS ...ttt ettt ettt et st ens A%

LIST OF TABLES ...ttt ettt ettt et e viii

LIST OF FIGURES ..ottt ettt et ix
CHAPTER

.. INTRODUCTION ...cctiiiiiiiieeiie ettt ettt e e s ens 1

Background............ooooiiiiiiiiiiiie e 1

Overview Of this StUAY ...ccovviiiiiiiiiiee e 6

Organization of this StUAYcccciiiiiiiiiiiiiiie e 8

II. RESEARCH BACKGROUND AND CURRENT STATUScccc....... 11

ADSETACE ..ottt 11

NOMENCIALUTE.eeiiiiiiiiiieieieceeee e 12

Neural network architectureccueevvveiiiiiiiniieinieeceeceee, 14

Neural network optimization.............ccceeerriieeeiiiiiieeeeiiiee e 26

Training algorithms of recurrent neural network............cccocveevieennnen. 29

Convergence studies of recurrent neural networkccoccceevieennnen. 35

Estimation robustness of recurrent neural networkc.ccceeneee. 39

CONCIUSIONS ...ttt ettt ettt e s e e 43

III. DEVELOPMENT OF THE RECURRENT NEURAL NETWORK.......... 46

ADSETACE ..ttt 46

NOMENCIALUTE.eeiiiiiiiiiie e 47

Architecture of the proposed neural networkcccceeevviiiiennnnnn.. 49

Training algorithm developmentcccooocviiieiiiiiiieniiiee e, 52

Connectivity optimization algorithm for the recurrent neural network .72

CONCIUSIONS ..ttt ettt ettt e et e s e e 75

vi

Table of Contents (Continued)

Page

IV. PERFORMANCE STUDIES OF THE RECURRENT NEURAL NETWORK
... 77
ADSETACE ..ottt 77
NOMENCIALUTE.eeeiiiiiiiiiiiiceee e 78
Convergence study of the recurrent neural network training algorithm 80
Robustness analysis of the recurrent neural network..............ccooueeenee. 98
CONCIUSIONS ...ttt ettt et 104

V. MODELING OF A NON-LINEAR DYNAMICAL BENCHMARK SYSTEM

... 106

ADSETACE ..ottt 106

The benchmark SyStem...........ccooeiiiiiiiiiiiiiiiiie e, 107

Recurrent neural network implementation..............cccceeeeeriiveeennnnnenn. 108

Modeling performance of the recurrent neural network 112

Training convergence study of the recurrent neural network.............. 116
Robustness study of the recurrent neural network.............ccocceeennieens 127
CONCIUSIONS ..ttt ettt e 136

VI. MODELING OF CBN TOOL WEAR IN HARD TURNING.................. 137
ADSETACE et 137

CBN t00] flank Wearceovuiiiiiiiiiiiieiieeeee e 138

Recurrent neural network implementation.............cccceeeeeriieeeennnnenn. 141

Modeling performance of the recurrent neural network 144

Training convergence study of the recurrent neural network.............. 149
Robustness study of the recurrent neural network.............ccoceeennieenn. 159
CONCIUSIONS «.nvteeeniiieeiiie ettt ettt e 167

VII. CONCLUSIONS ..ottt et 169
Challenges addressedcuvviieeiiiiiieeiiiiiee e 169
Methodology validation and performance evaluation 171
CONLLIDULIONS ..eeeniiiieiiieeiiiee et 172

FUture WOTKoiiiiiiiic e 173
REFERENCESottt ettt ettt et et 175
APPENDICES ...ttt ettt ettt ettt e st e e e e et en 184

vii

Table

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

LIST OF TABLES

Page
Training error with different network structure...........ccccceeviieinieennneen. 111
Training error with different types of network...........cccocceiniiiniinniinns 113
Modeling errors of the NetWOorksccoceeiriiiiiiiiiiiiiiceee, 114
Final training errors of different Q settings............cccceevviviiieiniiiieieeennnee. 124
Comparison of robustness quantification approachesccoceeevueeenne 132
Sensitivity matrix-based robustness of RNN and optimized RNN 133
Robustness results of RNN from a Monte Carlo method 135
Robustness results of RNN from the proposed UT-based method............ 135
Cutting conditions of the experiments [Huan04]cccoeeevveeenniineeen. 140
Training error with different network structure...........ccccceeveieiniieinnnenn. 143
Training error with different types of networkscccoceeeviiiiniiiniinns 145
Modeling error for teStING CASESc.vvvieeiriiiieeeiiiieeeeeiiieeeeiieeeeeiaeee e 148
Final training errors of different Q settings............cccceevviiiiieiniiiereeennnen. 155
Comparison of robustness quantification approachescccceccvvveennee 164
Sensitivity matrix-based robustness of RNN and optimized RNN 165
Robustness results of RNN from a Monte Carlo method 166
Robustness results of RNN from the proposed UT-based method............ 166

viii

Figure
1.1
1.2
1.3
1.4
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16

LIST OF FIGURES

Page
NN Developed for different applications.............occcvveeeeviiieeerniiieeeeiiieeeens 3
Networks with improved modeling performance............ccccceeevviveienninienenn. 4
Layout of the Studycccueiiiiiiiii e 7
Organization of the StUdYc..coeeeiiiiiiiiiiiiee e 10
Two connected neuron CellS.........ooouviiiiiiiiiiiiiiiiiiiecceeeee 14
A neuron unit in an NNooooiiiiiiii e 16
Different types of activation functionscceeceeeevieeiniieeiniieeniiieenieeene 16
An MLP neural NEtWOTKcooviiiiiiiiiiiiiiicicee e 19
Schematic of Equations (2.3 and 2.4).........coooviiiiiiiiiieieiiiee e 19
Architecture of a fully forward connected neural networkcco.ec... 20
[lustration of EQUations (2.7-2.9)uuiiiiiiiiiieeeiiiee e 22
Comparison of FFCNN and MLPccccciiiiiiiiiiiiiiieceieee e 23
AN EIMan network.......cocueoiiiiiiiiiiieccee e 23
A Jordan NEtWOTK........ccoiuiiiiiiiiiiiie e 24
A RMLP NEEWOTK ..ttt 25
Schematic of equations (2.12 and 2.13).....ccoeciiiiiiiiiiiieiiiiie e, 26
Classification of network topology optimization methods 28
[lustration of the supervised training Process............oecvveeeerrvieeeesnneeeeennns 31
Classifications of the supervised training methodsccoceeevieeninennnnn. 31
RNN training methodseeiiiiiiiiiiiiiiieiieeeiceee e 32

X

List of Figures (Continued)

Figure
2.17
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10

3.11

3.12
3.13
3.14
3.15

3.16

Page
An illustration Of BPTToooiiiiiiiiiiiie e 33
Architecture Of RNINoooiiiiiiiiiii e 50
An illustration of the output generation of neuron i in hidden section........ 51
The Kalman filter algorithm...........cccccoooiiiiiiiiiiiiii e 54
The extended Kalman filter algorithm..............ccccooeiiiiiiiiiniiiiieee 58
The flow chart of RNN training procedures............ccccuveeerrviieeennnieeeennnnn. 60
Training data set eXamplecccovvieiiiiiiiiiiiiie e 61
Case 1 for calculation of the orderly derivativecccoeevviveeerrnieeeennnee. 65
Case 2 for calculation of the orderly derivativecccceeeviveeeeriieeeennnnee. 66
. . 0’y .
[lustration of calculation of P mecase Il 67
Vi
net; decomposition (The items inside dash boxes contribute to the
) “net
calculation of) s 68
ow
_ 0" net,
Signal flow graph to compute e tteeeerrreeeesrreeeesrbtaeses bt aesenrrraaeas 69
ow

Case 3 for calculation of the orderly derivativecccoeevviveeeniiieeeennnnen. 70
The trainable weights for the three cases..........ccccveeeviiiiieiiiiiieeeiieeeee, 71
An illustration of connectivity OptimiZationceeeveuvveeeeriiieeeeennieeeens 72
[lustration of Equations (3.65 and 3.60)ccccoeeeieiiiieeeiniiieeeeiiiee e 73
Network optimizZation PrOCESS........eeeeervireeeriiiieeeeriieeeeerrireeeennreeeeenereeeens 75

List of Figures (Continued)

Figure Page
4.1 Flow chart of the convergence studyccccvvreeriiiiieenniiiiieeeiieee e, 98
4.2 Proposed procedures for robustness quantificationcc.ccceeveuveenninenne 100
5.1 The output of the non-linear dynamical benchmark system..................... 107
5.2 Training errors of RNN with typical structure configurations.................. 111
5.3 Modeling the bench mark system by a 6-9-1 RNN...........cccoecvvriiennnnnnnn. 112
5.4 Training results 0Of MLPccoooiiiiiiiiiiiiiiie e 113
5.5 Training results of FFCNN ..ot 113
5.6 Training results Of RNN........coooiiiiiiiiiiiiiieiee e 114
5.7 Modeling errors of the networksccceeviiiiiiiiiiiiiiiee, 115
5.8 Training result and modeling error without R adaption law.................... 117
5.9 rvalues during training without R adaption lawccccceeeiieeennnnnn.. 117

5.10 Training results with R adaption law............ccceoviiiiniiiniiiniiieicee, 119
5.11 Modeling error during training with R adaption law..........cc.ccccevieernnnee. 119
5.12 r values during training with R adaption lawc.ccceevviiiiinniiinnen. 120
5.13 Comparison of RNN training with different O settings.............cccceeeene. 122
5.14 Comparison of optimized RNN training with different O settings 123

5.15 Comparison of training process of RNN and optimized RNN with O adaption

JAW - 123
5.16 Trace of QO during training processes of Scenarios 1 and 3 125
5.17 Trace of Q in training epochs (5 and 6)cccceeveviiiiiieiiiiiieeiiiieeene 125

Xi

List of Figures (Continued)

Figure
5.18
5.19
5.20
5.21

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10
6.11
6.12

6.13
6.14

6.15

Page
Diagonal elements of Q after training scenarios 1 and 3...............co..ee. 126
Local robustness measures for RNN using 100 input samples 128
Robustness of RNN and optimized RNNcccccoviiiiiiiiiiiiiiiiiiieeee 129
Network robustness values under different perturbation levels 130
Typical tool wear picture in CBN hard turning...........ccccceeevveeniieennneens 138
A Typical tool wear progression in hard turning...........ccocceeeveeeenveennnen. 139
Training errors of RNN with typical structure configurations.................. 143
Modeling the tool wear progression by a 5-2-1 RNNcccceeviiiieeenn. 144
Training results for training Casescccevveeerieieniiieeniieene e 146
Modeling results for teSting CASESccevviieeeriiiiieeeiiiieeeeiiieeeeiieee e 148
A divergent training PrOCESSESeeeerrurrrreerriurreeeririeeeeenrrreeeenrreeessnneeeess 150

Modeling performance for tool wear progression without R adaption law

... 151
r values during training without R adaption lawc.ccccooeieiniieennnen. 151
Modeling results for teSting CASESceevviieeeriiiiieeeiiiieeeeriiee e 152
Training results for tool wear progression with R adaption law.............. 153
r values during training with R adaption 1awccoevieiniiiiniicennnen. 154
Comparison of RNN training errors with different O settings................. 156
Trace of Q for Scenarios 1 and 3 during training processc.ccee..... 157
Trace of Q in training epochs (91) and (92)........ceeevviiiiiiiiiiiiieiiiieeene 157

Xii

List of Figures (Continued)

Figure
6.16
6.17
6.18
6.19

6.20

Page
Diagonal elements of Q after training for Scenarios 3 and 1................... 158
Comparison of OptRNN training errors with different O settings........... 158
Local robustness measures for RNN using 100 input samples 160
Robustness of RNN and optimized RNNcccccoviiiiiiiiiiiiiiiiiieeeee 161
Network robustness values under different perturbation levels 162

Xiii

CHAPTER ONE

INTRODUCTION

Background

Typical engineering systems have high-order, nonlinear, and dynamical features.
These systems often include sensors and actuators which interact with the system itself
and the environment. Many of these systems are defined by characteristic parameters
indicating the complex relationship among their various physical characteristics, often
exhibiting time dependency due to their inherent dynamical nature. These condition or
characteristic parameters are often difficult, if not impossible, to measure directly. As a
result, modeling, a process that can describe the behavior of such system parameters, is
especially important in condition monitoring. This supervision can detect changes or
drifts in process parameters which may indicate the inception and growth of fault modes
in a system [Iser84] [Hofl196].

Several methods have been developed for modeling non-linear dynamical

systems. Generally, they can be categorized into the following two classes:

1) Physical-driven methods are developed by looking into the underlying theory
of systems and developing mathematical models to describe the relationship
among variables interested. These models are often in the form of differential
equations [Huan02]. Some of these equations can be analytically solved and

result in explicit models, while the complicated ones are often solved by

numerical methods as the finite element method (FEM), which divides a
system into numerous elements, numerically solving the equations [Xie05].

2) Data-driven methods are developed based on empirical observations by using
the information obtained through experiments and developing equations to
describe relationships of the system modeled. Regression models or
parametric models (linear regression with nonlinear terms, polynomial
regression, and nonlinear regression), select the form of model first, and then
determine its parameters through regression [Ozel05]. Artificial intelligence
(Al)-based methods using Al techniques such as neural networks (NN)
[Liu99] [Kuo99] [Sche03] and fuzzy logic [Kuo98] can be also applied to
model systems, while for this case the developed models often can’t be written
explicitly.

Theses modeling methods have advantages and disadvantages. Although
analytical models provide better insight into a system’s underlying physical mechanisms
through physical-driven methods, they are sometimes less satisfactory due to over-
simplifications and unrealistic assumptions in their development. On the other hand, the
models solved by FEM can provide accurate results; however, it is time-consuming and
not suitable for optimization using current computing technology. Time series and
regression models are typically less accurate than the Al —based models. If both accuracy
and speed are of interest instead of a system’s underlying physical mechanisms, Al-based

modeling approaches are favored for real-time applications.

Among the Al-based approaches, NN is extensively applied in system modeling
applications because of the following advantages:

1) They can carry out arbitrary function approximation especially for non-linear

systems

2) They do not require reprogramming and can be applied to different systems.

3) They are error-tolerant due to their parallel computation features.

These advantages make NN a viable, reliable, and attractive approach for
modeling engineering systems [Chry90] [Das96]. Figure (1.1) shows various NN
developed for different applications. This classification is based on the most frequent
application of the network. For example, while multi-layer perceptron NN (MLP) also
can be applied as classifications and clustering, here it is classified as estimation and

modeling applications.

—»I Multilayer perceptron |

—{ FEstimation 1 Time-delay NN |

modeling
—— Radial basis function NN |
Neural . Classification _4" Self-organizing NN |
networks Clustering —-l Adaptive resonance theory NN |
.y —| Hopfield NN
Association memory
— Pattern recognition =i Boltzmann machine |
Optimization

—’I Bidirectional associative memory NN

Figure 1.1: NN Developed for different applications

The research presented here focuses on applications in modeling and estimation.
Its objective is to develop an NN with advantages over the currently applied ones and
then study its performance. Among NN applied in system modeling, MLP is the one most
frequently used. Previous research has found that a fully forward connected NN
(FFCNN) exhibits better performance in terms of generalization ability, training
accuracy, and structural robustness than an MLP [Wang08a]. In addition, an FFCNN can
be modified to become a fully connected recurrent neural network (RNN),
accommodating recurrent connections among neurons. Unlike an FFCNN, a RNN can
store information from past states, making it more capable of modeling nonlinear
dynamical phenomena. However, using a RNN involves such issues as divergence
[MandO1], instability [Meds99], and a lack of robustness [Mand01]. The relationship

among these three networks, including their advantages, can be seen in Figure (1.2).

Enhanced features: Enhanced features for

«Generalization ability modeling dynamical systems:

«Training accuracy oTraining speed
Multilayer «Robustness Fully forward «Generalization ablhty‘ Fully connected
Perceptron connected NN RNN

Figure 1.2: Networks with improved modeling performance

To apply RNN, several issues have to be carefully addressed.

1) Network architecture optimization

The determination of optimal network architecture is critical for the successful
application of NN models because it can save calculation cost while at the same time

maintaining modeling accuracy, generalization ability, and robustness [Alip02].

Optimization of network structure requires consideration of such features as the number
of inputs, the number of outputs, the degree of complexity of the system, and the
available training data for each application. Overly complicated networks tend to have an
over-fitting problem, while architecture that is too simple results in poor training
accuracy [Mood92].

2) Training convergence

The different training algorithms for RNN have advantages and disadvantages. To
select an appropriate training algorithm in terms of training speed and accuracy is
important. Furthermore, determining the training parameters is another major concern
having a significant influence on network performance; specifically, training divergence
can occur if these parameters are not selected properly [Luo97].

3) Robustness

Robustness studies on NN have primarily considered uncertainties in inputs and
weights [Chiu93] [Alip01] [AlipO4]. Once the structure of a network has been decided
and the training process completed, a network is realized. The different architectures and
configurations of NN training are realized in different network models. Robustness
analysis of the realized networks is essential to eliminate those networks exhibiting poor
robustness so that the best candidate is selected.

As this discussion indicates, it is important to develop a complete and reliable
modeling technique for general non-linear dynamical systems. Network architecture
optimization and training algorithm realization are the foundation, and performance

studies including training convergence and network robustness can further enhance the

applications of RNN in non-linear dynamical system modeling. To investigate this area,
the objectives of this study are to develop a fully connected RNN, to explore its
capability for modeling dynamical systems and to evaluate its performance concerning

training convergence and robustness.

Overview of This Study

Previous research on nonlinear system modeling applications has focused on
applying RNN to model non-linear dynamical systems, but little has been conducted on
the theoretical analysis. In this study, RNN with internal feedback connections are
developed for modeling nonlinear dynamical systems with the following tasks:

1) A RNN is formed by accompanying recurrent connections in the hidden neuron
section of an FFCNN. An extended Kalman filter algorithm (EKF) is applied to
train the network.

2) Network architecture optimization is achieved using a destructive connectivity
algorithm.

3) Performance analysis including a convergence study of the training process of
RNN and a robustness analysis of the trained network are conducted,
theoretically making the network substantially complete in theoretical proof and
hence ensuring the quality of its performance.

This study was divided into the three parts shown in Figure (1.3). The first was
RNN development including the development of the network architecture optimization

and the training algorithm. A destructive optimization algorithm was applied to determine

network architecture and the extended Kalman filter algorithm to train the network.
Performance studies were then applied to this resulting network. A convergence study
was conducted to improve the network’s training convergence performance and a
robustness analysis conducted to assess its robustness to perturbations in the trained
weights. Finally, a non-linear dynamical benchmark system and a tool wear propagation

process were used to verify the algorithms applied.

——

| Part 1:
. RNN Development
Training Optimized
i RNN Algorithm . RNN
. Architecture | Architecture
Optimization
Algorithm
| Part 2: | | Part 3:
| Performance Study | | Case Studies i
5 Do Performance !
Optimized | | Convergence Benchmark | Evaluation |
RNN Study . System :
Architecture :
"""" g Performance |
L Robustness L Tool Wear | Evaluation |
Analysis System '

Figure 1.3: Layout of the study

Based on this study, the following conclusions were drawn:
1) The modeling capability of the proposed RNN is better than that of the

commonly used MLP network.

2) Architecture optimization improves the modeling capability of the proposed
RNN

3) The adaption law of training parameters improves the training convergence of
the network.

4) The proposed robustness quantification method is effective and efficient.

The contributions of this study to the literature are summarized below:

1) The EKF training and destructive optimization algorithms can be applied to
the proposed RNN

2) The Lyapunov method and the maximum likelihood method can be applied to
tune the statistical matrices Q and R of the EKF to ensure the convergence of
RNN training algorithm and at the same time to improve the convergence
speed

3) The unscented transform method can be applied to quantify the robustness of

RNN to uncertainties in the trained weights

Organization of This Study

The organization of the study is shown in Figure (1.4).

Chapter two provides the theoretical background of this study. Such topics as
architectures, training algorithms, and topology optimization techniques of neural
networks are introduced. The structures of networks, listed in Figure (1.2), applied in
modeling applications are illustrated first. Three classes of network structure optimization

methods (empirical methods, destructive or constructive methods, and other optimization

methods) are then reviewed. Training algorithms for RNN (back-propagation through
time, real-time recurrent learning, and EKF training algorithm) are introduced. These
algorithms are used to determine the structure and parameters of a RNN model. In
addition to the development of networks, convergence and robustness studies of recurrent
neural networks are reviewed as well. Convergence studies have been conducted on
networks’ states, outputs and training process and the last one is concerned in this study.
According to different applications of RNN, robustness studies have different concerns.
This study focuses on modeling applications and hence the estimation robustness is
reviewed in details. Along with the background introduction, the motivations and
concerns of this study are also discussed.

Chapter three proposes the development of an optimized RNN (Part 1 in Section
1.2) which has advantages in modeling non-linear dynamical systems over the commonly
used MLP. First, the structure of a RNN is illustrated; the RNN is modified from an
FFCNN by accommodating internal recurrency in its hidden neuron section. The EKF
algorithm which used to train the network (determine the weights of the RNN) is then
detailed in the following section. Finally a destructive optimization method is introduced,
which optimizes the RNN network structure to form the optimized RNN (OptRNN).

Chapter four studies the training convergence and robustness of the proposed
RNN (Part 2 in Section 1.2). The EKF training algorithm has divergence problem if its
parameters are not selected properly. To solve the problem, Lyapunov method is applied
to develop an adaption law on a training parameter, the covariance of measurement noise.

Furthermore, the convergence speed is accelerated by an adaption law on another training

parameter, the covariance of process noise, using the maximum likelihood method. In
addition to the training convergence, another important issue for the successful
implementation of RNN, the robustness is studied by conducting an uncertainty
propagation analysis using the unscented transform.

Chapter five and Chapter six verifies the studies in Chapter three and Chapter four
using two case studies, a non-linear dynamical benchmark system and a tool wear
progression process (Part 3 in Section 1.3).

The final chapter of this dissertation presents the conclusions of this study.

The appendix lists the flow charts of matlab programs for RNN training, RNN

optimization, and RNN training with R and Q adaption law applied.

Chapter 1: Introduction Chapter 2: Research Background and Current Status

v

Chapter 3: Development of the Recurrent Neural Network (Part 1 in Section 1.2)

A4

Chapter 4: Performance Studies of the Recurrent Neural Network (Part 2 in Section 1.2)

y

Chapters 5: Modeling of a Non-linear Dynamical Chapters 6: Modeling of CBN Tool Wear
Engineering System (Part 3 in Section 1.2) in Hard Turning (Part 3 in Section 1.2)

v

Chapter 7: Conclusions

Figure 1.4: Organization of the study

10

CHAPTER TWO

RESEARCH BACKGROUND AND CURRENT STATUS

Abstract

This chapter introduces the theoretical background of this study. Several topics
are covered on neural network architecture, topology optimization, training algorithms,
convergence study, and robustness study of RNN. The structure of the proposed RNN is
modified from an FFCNN which has advantages over the widely used MLP in training
accuracy and generalization ability. Network topology optimization techniques are
applied to optimize the structure of a network. Among these approaches, pruning
approach can generate simple robust and efficient optimized structure. Training algorithm
is applied to tune the weights of the developed structure. For RNN training, there are
three major algorithms developed, namely, back-propagation through time (BPTT)
algorithm, real-time recurrent learning (RTRL) algorithm and EKF training algorithm.
Among them, EKF is proved to be fast and accurate. Convergence studies of RNN
include three brunches - state convergence, output convergence and training convergence.
Training convergence concerns the stability of weight update during training process and
it is the focus of this study. Finally, robustness of NN for modeling applications, called
estimation robustness, is reviewed in this chapter. Basic concepts and the up to date
developments in these areas are introduced for each topic. Based on the background

review, the techniques applied in this study are also briefly introduced.

11

Nomenclature

Multilayer Perceptron Network

Symbol Definition
b;, Bias of the ith neuron in layer j
[0 Activation function of the itk neuron in layer j
net,;; Net input of the ith neuron in layer j
W Weight of the connection from neuron £ in layer j-/ to
sk neuron i in layer j
vy Output of the ith neuron in layer j
Recurrent Multilayer Perceptron Network
Symbol Definition
[0 Activation function of the itk neuron in layer j
net; (n) | Net input of the ith neuron in layer j at time step n
n, Number of neurons in layer j
i Feedforward weight from neuron £ in layer (j-7) to the ith
sk neuron in layer j
W Feedback weight from neuron £ in layer (j+7) to the ith
Jk neuron in layer j
v (n) Output of the ith neuron in layer j at time step n

12

EKF Training Algorithm

Symbol Definition
H (k) Jacobian matrix at training step &
K(k) Kalman gain at training step &
P(k) Covariance matrix of weight estimation at training step &
(k) Covariance matrix of process noise at training step &
R(k) Covariance matrix of measurement noise at training step &
w(k) Estimation of weight vector #" at training step k
¥ (k) Desired output at training step &
y(k) Output of neural network at training step &

13

Neural Networks Architecture

Artificial neural network, often abbreviated as neural network, was invented by
Warren S. McCulloch and Walter Pitts in 1943 [Mccu43], which simulates the operations
of biological neural network. It is composed of a number of highly interconnected
processing elements (neurons) working in parallel to solve specific problems.

As shown in Figure (2.1), biological neurons are the core component of a human
brain, which are responsive cells that transmit and process signals. A neuron cell is
generally comprised of the cell body, axon, and dendrites. It receives signals from other
neurons through dendrites. In addition, it also sends out spikes of electrical activity
through an axon, which splits into thousands of branches. At the end of each branch, a
structure called a synapse converts the activity from the axon into electrical effects that
inhibit or excite activity in the connected neurons. When a neuron receives excitatory
input that is sufficiently large compared with its inhibitory input, it sends a spike of
electrical activity down its axon.

r
-
\{ :)_/‘ Axon (Synapse

\

|
M) | /
AL~
Dendrite
}

f_""‘x1..-'
) { .
Dendrite
T~ "~ \,“ iz
) T e

{
A
¥ o —)
_\‘h.- _F! /_Y
| \ .

N Neuron 2

K
Neuron 1

Figure 2.1: Two connected neuron cells

14

Neuron network is built to imitate a human’s neuron system. Figure (2.2) shows a
typical artificial neuron in an NN. Such a neuron unit is also called a perceptron [Rose58]
which can be viewed as a simplest NN — a single layer neural network with one neuron.
Typically an artificial neuron is composed of weights, a summation operator and an
activation function. The perceptron can be used to form a mapping function from its

inputs (x,,x,,...x,) to its output (y). A weight simulates the function of a dendrite in

Figure (2.1). The summation of weighted inputs is called net input which feeds into the
activation function to form output of the neuron. The mapping function is described as

follows:

net = Zwkxk (2.1)

k=1

y = f(net) (2.2)

where net is the net input, m is the number of inputs, w, is the weight for input £, y is

the output, and f () is the activation function

The activation function represents the function of a cell body in Figure (2.1). Here
it is a step function — if the net input is less than 0, the output is -1, and otherwise it will
be 1. A lot of functions can be selected as activation function as shown in Figure (2.3).
Among them the most popular one is the sigmoid function. For an NN with connected

neurons, the output of a neuron can propagates through its axon to other neurons.

15

Input Weight
: (Dendrite)

v W,

Net input (Axon)

m Activation

X
function Output
(Cell body)
Figure 2.2: A neuron unit in an NN
1 15
a) Linear function b) Step function
1
0.5
0.5
Z o0 Z o0
-0.5
-0.5
-1
! 0.5 0 0.5 1 1% 0.5 0 0.5 1
X X
. . . 15 . .
] ¢) Sigmpid function d) Hyperbolic function
1
0.8 / 05 /
0.6
z / X o0
04 / =
0.2 -0.5 J
0 -1
02 05 0 0.5 1 1% 0.5 0 0.5 1
X X

Figure 2.3: Different types of activation functions

A neuron network is often composed of a lot of connected neurons. There are
many types of neural networks with different structures and operation mechanism, each

of which has different strengths particular to some certain applications. Some well-known

16

NN are MLP NN - an NN model with more than three layers of neurons often using
sigmoid activation function that maps sets of input data onto a set of output, radial basis
function (RBF) NN - an NN similar to MLP but uses radial basis functions as its
activation function, self-organizing map (SOM) NN — an NN that often used to produce a
low-dimensional (typically two dimensional) representation of the input high-
dimensional data, Hopfield NN — an NN applied in content-addressable memory
application that the network can converge to a "remembered" state if it is given a
distorted input, Boltzmann machine — a type of stochastic NN which is used to model the
a system’s statistical behavior, adaptive resonance theory (ART) NN — an NN used to
achieve a self-organized stable pattern recognition capability in real time by using the
adaptive resonance theory, and neural fuzzy NN — an NN combining combination the
fuzzy inference system in its body to incorporate fuzzy IF-THEN rules to the network.

According to the direction of calculation flows within a network, neural networks
can be divided into two classes, feedforward neural networks (FFNN) and recurrent
neural networks (RNN). While a feedforward network, such as the MLP, only propagates
data forwardly from input to output, a recurrent neural network also has feedback
connections and it can propagate data from later processing elements to earlier elements
which make it more suitable for modeling dynamical systems [Link96]. Some commonly
used RNN are Elman network, Jordan network, and recurrent multilayer perceptron
network. They are generally modified from the MLP NN.

MLP is the most popular and widely used neural network [Sama06]. As an

example, Figure (2.4) shows an MLP neural network. Each circle represents a neuron

17

(perceptron) illustrated in Figure (2.2). The network is composed of three layers of
neurons. The first layer is called input layer which take in inputs; the last layer is called
output layer which generate output of network; the layers in between have no connection
with the external world are called hidden layer. Information flows forwardly from layers
in left to layers in right. Each neuron in one layer is connected to every neural on the next
layer and there is no connection among neurons in the same layer. The network has 9
neurons to form a mapping function from its inputs (x,,x,,x,,x,) to its outputs (y,,»,).
In Figure (2.4), two types of outputs need to be distinguished; output of a neuron is

denoted as y;, where the first subscript i denotes the layer number of the neuron and the

second subscript j denotes the index of the neuron in layer 7; on the other hand, output of

the network (y = [y1 Vs])is composed of the outputs of neurons in output layer. It is easy
to see that y;, and y, are two notations for the same output. It is proved that an MLP

with at least one hidden layer can approximate any continuous function at any desired
degree of accuracy with sufficiently many hidden neurons are available and hence MLP

can be seen as a universal approximator [Horn89].

18

y ;—1,1
Outputs y;_1,2
from ... > :
layer j-1
y;—l,nj,l

Hidden

layer

A 4

jaian[—l |

Neuron 1 in

layer j

Figure 2.5: Schematic of Equations (2.3 and 2.4)

As shown in Figure (2.5), for the ith neuron in layer j, its output y7, can be

written by

YVii = fj,[(netj,[)

J-1
_ o
netj,[- zwj,[,kyjfl,k +bj,[
k=1

The output of the network can be written as:

Vi :yZ,i

19

where net ;, is the net input of the neuron, the weighted summation of outputs of neurons
from the previous layer; w,, , is the weight for the connection from neuron £ in layer j-/
to neuron i in layer j; b, ; is the bias for the neuron; n is the layer number of output layer,
and f,,(-) is the activation function of the neuron, which is often taken as a sigmoid

function:

1
l+e

o(x) = (2.6)

—X

Other than the MLP, FFCNN is also an FFNN. The FFCNN was proposed by
Werbos [Werb90]. It can be viewed as a general version of MLP and is adopted as the

prototype of the proposed RNN in this study.

(a) Connection between two neurons

m input neurons | h hidden neurons | n output neurons

(b) FFCNN structure

Figure 2.6: Architecture of a fully forward connected neural network

20

Recurrent Neural Networks

A representative FFCNN is shown in Figure (2.6). The network is composed of
three sections, namely input neurons section, hidden neurons section, and output neurons
section respectively. The network has m neurons in input section which receive the inputs
of the network. h hidden neurons are used to relay the outputs of input neurons to output
neurons. n output neurons generate outputs of the network. The network is used to model
a system with m inputs n outputs. It is a forward network since there are no feedback
connections and data only propagate from left to right. It is also a fully connected
network because each neuron takes connections from every other neuron to the left of
itself. [Werb90] [Kris93]. Figure (2.6(a)) shows the connection between two neurons.

The weightw; represents the weight on the connection from neuron i to neuron j. This

network architecture is used as the foundation for the proposed RNN. The equations (2.6-
2.8) describe the mapping functions of the network.

As shown in Figure (2.7), for each neuron, its net input net, is formed by

summing the weighed outputs prior to it.

i1 .
netl_:zwy_y;’ I1<i<m+h+n 2.7

J=1
where m, h, and n represent the number of the input neurons, hidden neurons, and

output neurons respectively, net, represents the net input to the neuron i, w, represents

the weight on the connection from neuron j to the neuron i, and y; represents the output

of the neuron i

21

Each neuron i has an activation function f;(-) which generates an output for its
net input:
v’ = fi(net,), I1<i<m+h+n (2.8)

Neurons can have different activation functions in different sections. For neurons
in the hidden section, a unipolar sigmoid activation function (shown in Figure (2.3)) is

used as follows:

f(net,) = l+elne"' , m<i<m+h (2.9)

For neurons not in the hidden section, the identity function is used as follows:

f.(net,) = net,, I1<i<mand m+h<i<m+h+n (2.10)
The output of the network can be written as:

yi :yioerJrh i<n (211)

M1
Yo —

2

Neuron i

Wiii-1) |

o
Yia

Figure 2.7: Illustration of Equations (2.7-2.9)

An FFCNN with a 2-2-1 structure is shown in Figure (2.8(a)) and it can be
transformed into an MLP form in Figure (2.8(b)). In addition, a regular MLP (2-2-1) is
shown in Figure (2.8 (c)) for comparison. It can be seen that, with the same structure,

there are more connections and weights in the FFCNN (9) than in the MLP (6), and hence

22

FFCNN has more parameters to tune in which sense it is said to be more general than an

MLP.

a) An FFCNN

(5)—y
"~

b) An equivalent MLP c) A regular MLP

X, Q%

Figure 2.8: Comparison of FFCNN and MLP

Apart from the above FFNN, RNN are also applied in modeling applications and

some of them are introduced in the following.

Context
units
v)
X, Vi (1)
X
Input « Hidden
3 layer layer
Xy

Figure 2.9: An Elman network

23

An Elman neural network [EIma90] is shown in Figure (2.9). The Elman Network
has an extra set of input units, so-called context units. The context units contain a copy of
the network’s internal state (the outputs of neurons in the hidden layer) at the previous
time step. The context units feed into the hidden layer just like the other input units do, so
the network is able to compute a function that not only depends on the current input, but
also on the network’s internal state, which is determined by previous inputs. The network
can be seen as an MLP with feedback connections from hidden layer to input layer.

Similar to an Elman network, as shown in Figure (2.10), a Jordan network
[Jord86] can be viewed as an MLP with feedback connections from output layer to input
layer. Its context units, working as an extra set of inputs, is a copy of the network’s

output at the previous time step.

Context 1.
units ’

. e)
1
Vi, (1)
X
Input
X3
X4

Hidden Output
layer layer

Figure 2.10: A Jordan network

24

)
(629,

Hidden
layer layer layer

Figure 2.11: A RMLP network

As shown in Figure (2.11), a recurrent multilayer perceptron (RMLP) is modified
from MLP by adopting feedback connections among the nodes of neighboring layers and
feedback connections from neurons in hidden layer to themselves [Psal88]. The recurrent
connections are delayed by one time step. In another point of view, the RMLP can be
seen as a generalized version of an Elman network or a Jordan network.

For the ith neuron in layer j, its output can be described by

y;,[(l’l) = f/',[(netj,[(l’l)) (212)

n_/‘+l

net;;(n) = z W_{,i,k V() + W;,i,iy;,i (n—-1)+ z W_;Jrl,i,ky;ﬂ,k (n—-1) (2.13)
k=1 k=1

S
Ji.k

where f, () is the activation function, net, ;(n) is the net input at time step n, wi,, is
the forward weight from neuron £ in layer (j-7) to node i in layer j, w;,, is the feedback
weight from neuron £ in layer (j+7) to node i in layer j, and n; is the number of neurons

in layer j.

25

Layer
itl

'
¥

Layer
j-l

Feedbacks
from the
next layer

Feedbacks

a) Schematic of the connections

y;’+1,1 (I’l - 1)
y;+1,2 (I’l - 1) -

y;’ﬂ,n“l (n _1)

.
Wi

.
WiiLi2
"

Wiitin,.,

from itself

B S | SN

y;—l,l(n) —
Y;':l,z(n) —

-
w.

2

@y@(n)

Neuron i in
layer j

Vit (1)

b) Input-output layout

Figure 2.12: Schematic of equations (2.12 and 2.13)

In this study, a recurrent network modified from an FFCNN network is used to

model non-linear dynamical systems. The specific structure of network is chosen because

FFCNN has some advantages than MLP in terms of modeling accuracy and

generalization ability. Hence the RNN modified is believed to have better performance in

modeling.

Neural Network Optimization

Both MLP and RMLP are capable of modeling nonlinear dynamic systems

[Lo94]. However, there are some problems with these fully connected neural networks:

1) They have a large parameters (weights and biases) space, which makes

computation cost expensive; and

26

2) They are vulnerable to over fitting problem that networks tend to fit training

data perfectly but poorly fit testing data.

Network architecture optimization can alleviate these problems. Optimal
determination of network topology is indispensable to build an optimal NN modeling
tool. Usually network topology is determined considering the following items:

1) How many hidden layers in the network;

2) How many neurons in each hidden layer; and

3) How neurons connect.

The function of hidden neurons is to model mapping function between network
inputs and outputs. If insufficient number of hidden nodes is picked, it is not possible to
form an accurate model for the training data (the data used to determine the weights of a
network through a training process). On the other hand, if too many hidden nodes are
used, the network may lose its ability to generalize. In addition, keeping the number of
hidden layer nodes to a minimum can reduces the number of trainable weights, and hence
can reduce the computational cost of training.

As shown in Figure (2.13), current network topology optimization techniques can
be divided into three classes: empirical or trial and error method, destructive or
constructive methods, and the applications of other optimization strategies to ANN

[RAGGY6].

27

Empirical methods
Network topology F

C . Destructive or constructive methods
optimization methods L

Other optimization methods

Figure 2.13: Classification of network topology optimization methods

The first class is trial and error which applied in most applications. Most
researchers don’t use a systematic approach, but test several sets of network topologies
and compare the results. The best network structure (number of hidden layers, number of
hidden neurons) is identified after comparison. The method is case-oriented and time
consuming.

The second class is destructive or constructive methods. For the destructive
methods, a network starts with an over-large structure and some of its neurons are
eliminated until a minimum structure with acceptable modeling performance is achieved
[Scha97]. Representative techniques of this class include magnitude based pruning
(MBP) [Seti00], weight decay method [Chow94], and optimal brain surgeon (OBS)
[Hass93]. For the constructive methods, a network is initialized with an over-simple
structure and the topology gradually augments until the network performance is
satisfactory. Cascade correlation [Fahl90] is the most popular one of the constructive
algorithms.

The third class of methods uses other optimization techniques to determine the
topology of networks. These methods include genetic algorithm-based techniques

[Ezug95] [Diml00] [Habe03] and Bayesian regulation-based technique [Ozel05].

28

For the developed optimization methods, there are still some common problems

existed:

1) The optimization methods are case dependent. Different samples of training
data will generate different optimal networks for the same system to be
modeled.

2) It is not possible to guarantee that the resultant network structure is optimal.
Most times the final structures are suboptimal.

In this study, a destructive optimization is applied to RNN to form an optimized

RNN. The method can generate simple and accurate network which can better avoid the

over-fitting problem and the network is proved to be more robust [Kris99].

Training Algorithms of Recurrent Neural Networks

A neural network can be viewed as a parametric model with weights and biases as
its parameters. Once its architecture is determined, the parametric structure of NN model
is fixed. Furthermore, its parameters (weights) need to be tuned then, which is called the
training process. In other words, training is the process to determine the weights of a
network to make it model the system been studied.

There are three major training classes - supervised training, unsupervised training
and reinforcement training, each of which applies to particular learning tasks.

For supervised training, the neural network is provided with a set of training
patterns (inputs along with the corresponding desired outputs — targets), and training

involves the algorithm comparing its current actual output with the correct or target

29

outputs, so that it knows what its error is, and update weights accordingly. Usually
supervised training is applied in modeling, estimation, and classification.

For unsupervised training, the neural network is not told the target - for example,
it is not trained on pairs consisting of an input and the desired output. Instead the network
is given the input patterns and is left to find interesting patterns, regularities, or
clusterings among them. Usually unsupervised training is applied in clustering,
compression applications.

For reinforcement training, it can be considered as an intermediate form of the
above two types of training. A network interacts with the environment and gets a
feedback response from it. Based on the environmental response, the network adjusts its
weights.

This study focuses on modeling applications, and the supervised training is
introduced in more details. As shown in Figure (2.14), a neural network is to model a

system y* = f(X). The system is unknown but a set of training patterns (a set of input x,
and its corresponding target y*) are available. A neural network is to simulate the

system based on the information from these training patterns. The network receives input

X and generates its output y . The objective of training is to tune the network adjustable
parameters (weight w) to make y =y *, so that modeling error is small and the network

can represent the system.

30

System
J/(X)

=l
Z

Training
algorithm

Figure 2.14: Illustration of the supervised training process

In training a neural network, the term epoch is used to describe a complete pass
through all of the training patterns. The weights in the neural net may be updated after
each pattern is presented to the net, or they may be updated just once at the end of the

epoch.

’—v Gradient descant methods

Statistical estimation methods

Supervised training methods

Lo

Optimization methods

Figure 2.15: Classifications of the supervised training methods

There are several algorithms available to train neural networks. As shown in
Figure (2.15), most of them can be viewed as applications of optimization theory and
statistical estimation. Among them some popular training algorithms are:

1) Gradient descant methods such as the back-propagation (BP) method, which

calculates the gradient of the modeling error of the network with respect to its

31

trainable weights and uses the gradient to guide the update of weights
[Werb74],

2) Statistical estimation methods such as EKF based algorithm, which use EKF
to estimate the weight update from training data [Sing89], and

3) Optimization methods such as genetic algorithm [Seif01] and simulated
annealing [Boes93] which adopt optimization methods to minimize the cost
function of training and to tune weights accordingly.

For RNN, as shown in Figure (2.16), there are three major training algorithms

developed, namely, back-propagation through time (BPTT) algorithm, real-time recurrent

learning (RTRL) algorithm and EKF training algorithm.

’—' Back-propagation through time

RNN training methods Real-time recurrent learning

‘—' Extended Kalman filter training algorithm

Figure 2.16: RNN training methods

The basic idea of BPTT is to unfold a RNN into a multilayer FFNN each time a
sequence is processed [Rume86]. The resulting FFNN is then trained using the standard
BP algorithm. An illustration of this process is shown in Figure (2.17). A recurrent
network consists of two neurons and four weights. Since the layers have been obtained by
replicating the RNN, the same weights in different layers should be the same. To achieve
this, weights can only be updated at least after a complete forward step and a backward

step to form a corresponding FFNN. The basic difference between it and the regular

32

back-propagation is that its desired responses (x,(i)) are specified for neurons in layers

of the network because the actual output layer is replicated many times when the
temporal behavior of the network unfolded [Hayk99]. The unfolded network reflects the

process where n represents the number of replication.

x,(0) Wi,)il(l) Wi, X;l(z) x;(n-1) W, Xln)

Wai
Wi ‘@.@ Wy
O V2) 2 @) x) Y2 g
Time step 0 1 2 n-1 n
a) A recurrent network b) Signal flow graph of the unfolded network

Figure 2.17: An illustration of BPTT

RTRL computes the derivatives of states and outputs with respect to all weights as
the network processes the sequence [Will89]. During the forward step, no unfolding is
performed. Since derivatives of outputs are easily defined in terms of state derivatives,
the trainable weights of RNN are updated after every time step in which output targets are
available. This is one of the main advantages that RTRL can be used in online
applications.

EKF algorithm was first introduced to train neural networks in [Sing89]. The
network weights can be viewed as the states of the non-linear dynamical process that NN
describes. The training of networks can be viewed as a parameter (trainable weights)
estimation problem using state estimation methods such as the EKF algorithm.

Comparing to the BPTT and RTRL algorithms, the EKF algorithm uses higher-order

33

information more efficiently. It is therefore much faster that the BPTT and RTRL
algorithms, but at the expense of increment in computational complexity, which can be
compensated by the rapid advancement in computing resources.

Due to its fast training speed and accuracy, the EKF training algorithm is adopted

in this study as follows:

wk) = w(k —1)— K (k)(p(k) — 3 * (k) (2.14)
K(k)= P(k-D)HK)[R(k)+ H(k)" P(k-1)H (k)] (2.15)
P(k)= P(k—=1)—K(k)H (k)" P(k —1)+ Q(k) (2.16)

where w(k) is the estimation of weight vector w* at training step &, y is the output of

neural network, y* is the desired output. A is the Jacobian matrix which is comprised

of —): - the derivative of output with respect to weight estimation, K is the Kalman gain
W

calculated by Equation (2.15), Q is the approximate covariance matrix of process noise,
and R is the approximate covariance matrix of measurement noise. The EKF algorithm
requires, in addition to the estimate of the network’s weight vector, the storing and
updating of the approximate covariance matrix P , which is used to model the
correlations or interactions between each pair of weights in the network.

In this study, EKF is used to train RNN own to its advantages in training speed
and accuracy. However, for EKF application in RNN training, there are some problems,

some of which will be studied in the following sections.

34

Convergence Studies of Recurrent Neural Networks

Generally speaking, convergence is defined as the property that a variable
approaches toward a definite value, or a system approaches toward a fixed or equilibrium
state as time goes on.

For non-linear dynamical systems, two major classes of methods have been
applied in the study of convergence. Energy-based methods are based on the idea of
passive energy, that is, if an energy function related to the state error (the difference of
actual state and equilibrium state) is shown to be passive in some sense with respect to
time, then the passivity implies the error will decay to zero in time, or in other words, the
system is converge. Representative method in this class is the Lyapunov method. On the
other hand, stability of equilibrium state which equivalents to the convergence can be
also conducted using frequency domain analysis methods such as the circle criterion, the
Popov criterion, and the describing function method.

There are many applications of RNN that relate to the network’s convergence
properties. Understanding the convergence properties of RNN is an initial and important
step towards their applications [Y106]. Generally speaking, convergence studies of RNN
can be divided into three classes: state convergence, output convergence and training
convergence.

State convergence is studied in applications such as content addressable memory
when networks are required to have state convergence property [Cao03] [Lian01]. On the
other hand, output convergence is of concerned in optimization applications [Li04]

[Liu04].

35

Training convergence is concerned in modeling application where RNN are to be
trained to map the relations among the systems. The training process is under studied to
avoid the training divergence problem so that the developed RNN can model the system
been studied.

For either case, convergence study of RNN desires to establish verifiable and
sufficient conditions to guarantee convergence of the concerned process. Usually

Lyapunov methods and energy functions method are adopted to conduct these studies.

Training Convergence of RNN

NN can be viewed as a multi-input and multi-output nonlinear system having a
layered structure, and its weight learning/training algorithm can be regarded as parameter
estimation for such a nonlinear system [Ligu92]. Two issues are of great importance in
NN training: how to avoid training divergence and how to converge fast. Network
training convergence is still a challenge in modeling input-output mapping relationships
using NN, especially RNN. RNN training is still an open topic because network weight
adjustments can affect the entire neural network state variables during the network
evolution due to the inherent feedback and distributive parallel structure [Song08] and
training is usually complex and might be divergent [Atiy00]. It should be pointed out that
training convergence is different from the state or output convergence which is usually of
concern in applying the trained RNN for associative memory applications [Tang07].

Among the most popular RNN training algorithms [Hayk99] such as back-

propagation through time (BPTT), real time recurrent learning (RTRL), and extended

36

Kalman filter (EKF), EKF has been favored in terms of its training efficiency and
accuracy [Matt90] [Leun03] [Liu06]. Unfortunately, training convergence of EKF-based
RNN is still not well studied [RubiO7]. Up to present, only a few studies have been
conducted on convergence of EKF-based neural network training [Ales03] [Rubi07]
including RNN training [Rubi07]; unfortunately, they have introduced many assumptions
to make these pioneering studies less generic and less efficient. For effective
implementation of EKF-based RNN training, some theoretical studies must be performed
and tested with some applications.

The objective of the training convergence study is to develop an effective EKF-
based RNN training approach with a controllable training convergence. While EKF has
been proved to be very useful in a wide variety of estimation or prediction applications,
its effectiveness can be nullified by its divergence [Fitz71], which can be classified as
follows [Schl67]: 1) apparent divergence, in which the associated errors don’t approach
infinity but the errors are too large to allow the estimates to be useful, and 2) true
divergence, in which the mean square errors of estimation can actually approach infinity
as training goes on, and this true divergence is of interest in this study.

There are several approaches have been proposed to deal with the divergence
problem in EKF [Simo06]: 1) to increase the arithmetic precision, 2) to artificially add
white noise to the (noiseless) process equation, 3) to use square root Kalman filters, 4) to
make the state estimation error covariance matrix P symmetric, 5) to use a fading-
memory Kalman filter, and 6) to adapt filter parameters. Evaluation of the effectiveness

of the aforementioned approaches is often difficult and case-dependent. The first

37

approach is suitable for applications dealing with hardware implementation in which the
high precision in hardware is often prohibitive. The second to fourth approaches aim to
make the covariance matrix P nonnegative definite and/or symmetric. During the
filtering process the covariance matrix P may fail to meet the nonnegative definite
and/or symmetric requirements, resulting in the divergence problem. This can be
alleviated by artificially adding a process noise (the second approach) and the magnitude
of the additive noise is chosen to be large enough to ensure that the P matrix is
nonnegative [ZarcO1]. The square root Kalman filter is a more refined method to solve
this divergence problem, and the covariance matrix is propagated in a square-root form
by wusing the Cholesky factorization. However, the square root algorithm is
computationally intensive which makes it less attractive in engineering applications
[Harv89]. The fading-memory filter is another way of forcing the filter to forget
measurements in the distant past and place more emphasis on recent measurements;
however, it may result in the loss of optimality of the Kalman filter [Simo06]. The sixth
approach is of interest in this study by adapting the covariance of measurement noise (R)

and the covariance of process noise (Q) of Kalman filter. It is recognized that the poor
statistics about R and O may cause the divergence problem in estimation using the

Kalman filter [Jwo07], so this study will investigate the EKF training algorithm stability

in RNN training by adaptively adjusting the two noise covariance matrices R and Q.

38

Estimation Robustness of RNN

Most dynamic systems have a capacity, which is generally called robustness, to
tolerate various system variations without exceeding predetermined tolerance bounds in
the vicinity of nominal dynamic behaviors. Robustness analysis is usually studied to
estimate the perturbation-induced performance variation or to quantify the system’s
resilience to any possible perturbations.

Analysis of NN robustness has been of great interest since the network robustness
information allows the researchers to have a global and synthetic understanding of the
network behavior under uncertainties. A robust network is expected to be fault tolerant
and noise immune; if the inputs or the parameters (weights and others) of a network are
contaminated with noise, or faults occur, the network response should differ only slightly
with respect to the ideal performance [Eick07].

NN robustness has been studied for different applications including associative
memory, classification, and modeling. For associative memory applications, the
robustness is usually studied by establishing sufficient conditions for valid memory
functions under uncertainties of network parameters such as weight and bias [Liu93]
[Liu96] [Feng99] [Arik03] [Liu06]. For classification applications, the robustness is
conducted by investigating the relationship between permissible variations of inputs and
the associated network classification performance [Pier06]. On the other hand, for
modeling applications, the robustness is characterized by studying the effects of
perturbations in weights [Yee91] [Kris99] [Alip02] [Alip04] or inputs [EickO7] on

network outputs.

39

The NN robustness in modeling applications has been of great interest. The goal
for these applications is to reduce the sensitivity of modeling capacity to uncertainties in
parameters, or to make the network fault tolerance.

Dynamic systems can be modeled using different approaches including the data-
driven NN method [Hayk99]. When a system is represented by a NN-based model, it is
naturally expected that the NN should have certain robustness to various perturbations
[Chiu93] [AlipO1] [AlipO4]. For example, NN should still accurately describe system
behaviors even its weights are altered due to different reasons:

1) Hardware drifting over a period of time [Chiu93]

2) Hardware implementation of analog and/or digital circuitry of NN in current

technologies such as quantization and environmental noise [Dund95]
[Raza00] [Wido02] [Alip04] [Eic07]

3) Software perturbations [Asso04], and

4) Neural network faults which includes disconnection or saturation of weights

and lost of neurons [Phat95]

While the effect of input uncertainties on the NN robustness has been studied
[Pier06], the effect of weight alternation is usually of great interest in characterizing the
NN robustness [Alip04]. As aforementioned the network weights are easy to be altered
during various NN implementation scenarios, and robustness analysis on the effect of
network weight perturbations has an immediate impact on NN physical realization

[Alip04].

40

The NN robustness in modeling applications has been of great interest, and it has
been studied mainly using the performance loss-based approach [Chiu93] [Alip04]
[Eick07] and the sensitivity matrix-based approach [Yee91] [Kris99]. While these
approaches have been developed for FFNN, they can also be extended to RNN.

The performance loss-based approach is usually realized by computing the
network modeling capability degradation due to any perturbation in its parameters such
as weights. The performance loss is characterized in terms of the mean square error
(MSE) over available measurement data sets [Chiu93] by introducing certain
perturbations in trained network parameters such as weights. Perturbations can be
introduced using a constant scaling factor which linearly changes the value of parameters
of interest [Chiu93] [Alip04] and using a certain probability distribution function such as
the Gaussian distribution [EickO7] and uniform distribution [Dund95] [Alipp04]. The
upper boundary of performance loss for all the input data indicates the network
robustness. Unfortunately, this approach is implemented using the measurement data and
requires a large amount of measurement data, which are usually limited in real
applications.

The general procedures to conduct performance loss-based robustness
quantification are concluded as follows:

1) Introduce certain perturbation in a trained NN’s parameters (i.e. weight) to

form a series of NN,

41

2) Feed available data pairs, inputs and their corresponding measurements (target
response), to each of NN formed in Step (1) and compute corresponding MSE as the
performance loss using NN model,

3) Use the maximum of the performance loss for all the input data to represent the
network’s robustness.

The aforementioned MSE in Step (2) is computed by:

I’l[)

MSE(x,,AQ) = iZ(t(xl.) —y(x,,A0)) (2.17)

p i=l
where 7, is the number of available data set, x, is the input, #(x,) is the target value for

NN output y(x;), and A@ is the perturbation in parameters.

For the sensitivity matrix-based approach, the robustness is studied using a
differential analysis to compute the parameter-output sensitivity matrix of NN. The
sensitivity matrix, often denoted as H , is the Jacobian matrix containing the derivatives

of outputs with respect to parameters such as weights:

S

ow, Oow, ow,

@ & (2.18)
H=| 06w, ow, ow,

&, &,

where w = [wl,w2 yeees W, J is the weight vector and 7 = [y,,,.,...v, | is the output vector

42

A norm of the sensitivity matrix, such as the 2-norm square ||H || 5 :ZH l./z.
ij

[Yee91] or the spectral norm ||H|| =4 A, |H "H | [Kris99], is used as the robustness

index. Similar to the performance loss-based approach, this approach also needs plenty of
measurement data sets to compute the sensitivity matrices so that the resultant robustness
measure can cover the whole input space. Furthermore, each sensitivity matrix only
reflects the sensitivity of an infinitesimal range centered around the nominal weight
values.
The general procedures involved in this approach are listed as follows:
1) For each input data)?(i) , compute the sensitivity matrix A during the training
process; calculate its norm, and
2) Use a statistic (average) of the norm values to indicate the network’s
robustness.
As the aforementioned two approaches are mainly limited by the available
measurement data, this study aims to quantify the network robustness by computing
weight perturbation-induced output uncertainties using an uncertainty propagation

analysis.
Conclusions

This chapter reviews the theoretical background of this dissertation. The

architectures of networks, topology optimization, and training algorithm are reviewed in

43

the first. Performance studies of NN such as the training convergence and estimation
robustness are then introduced.

Neural networks include forward neural networks (MLP, FFCNN) and recurrent
neural networks (Elman, Jordan, and RMLP) applied in modeling applications are
introduced. The recurrent neural networks are modified from MLP which is the most
widely used feedforward network. In this study another RNN is to be proposed based on
the FFCNN which has advantages over MLP.

NN with different levels of complexity (in terms of numbers of neurons, layers
and weights) can be applied for modeling non-linear dynamical systems. Usually a
complicated network can generate small modeling error. However, the use of complicated
networks is time consuming and often brings the over-fitting problem. To determine the
optimized network for a specific application, generally there are three classes of methods:
empirical method, destructive or constructive methods, and the applications of other
optimization strategies. Usually a destructive method is preferred because the resulting
optimized network is parsimonious and often has good extrapolation ability.

Training algorithm is used to determine the weights of a network. Three major
training algorithms are developed for RNN, namely, back-propagation through time
(BPTT) algorithm, real-time recurrent learning (RTRL) algorithm and EKF training
algorithm. Among them, the EKF is the most accurate and fastest one which is applied in
this study.

Two performance studies are also reviewed in this chapter. Training convergence

studies the stability of weight update during training process and it is interested in this

44

study. Generally the Lyapunov method is applied to establish verifiable and sufficient
conditions to guarantee convergence of the training process. To avoid training
divergence, or fail of convergence, is still a major challenge in application of EKF based
RNN training and the problem is to be addressed in this study by adapting some training
parameters.

Finally, robustness of NN for modeling applications is reviewed in this chapter.
The goal of the research is to reduce the sensitivity of a network’s modeling capacity to
uncertainties in its parameters. Two methods have been developed in quantifying
robustness of FFNN, namely performance loss-based method and sensitivity matrix-
based method. Both the methods are limited by the available measurement data. In this
study an uncertainty propagation analysis based method is to be developed which is

effective, efficient, and flexible to quantify robustness of RNN.

45

CHAPTER THREE

DEVELOPMENT OF THE RECURRENT NEURAL NETWORK

Abstract

In the study, a RNN and an optimized RNN are proposed to model non-linear
dynamical systems. In this chapter, the development of RNN networks is introduced
which include its structure, training algorithm, and architecture optimization algorithm.
The network is modified from a fully forward connected network by the accommodation
of one time step delayed internal recurrent connections in its hidden neuron section. The
RNN EKF training algorithm is then introduced. The most time consuming part of the
algorithm is to take the orderly derivative of network output with respect to trainable
weights. The orderly derivative derivation is illustrated in three cases considering specific
weight connections involved. The optimization of the network structure is achieved using
a pruning approach which removes the insignificant connections. To conduct the
structure optimization, first a connectivity coefficient is introduced to each connection
through a connectivity function, then the coefficients are trained with weights
simultaneously using EKF, and finally the unimportant connections are removed. With
the techniques introduced in this chapter, an optimized RNN can be developed to model

non-linear dynamical systems.

46

Nomenclature

Fully Forward Connected Neural Network

Symbol Definition
h Number of the hidden neurons
m Number of the input neurons
n Number of the output neurons
JAQ) Activation function of the ith neuron
net, Net input of the ith neuron
wy Weight for the connection from neuron j to neuron i
vy Output of the ith neuron
Recurrent Neural Network
Symbol Definition
h Number of the hidden neurons
m Number of the input neurons
n Number of the output neurons
JAQ) Activation function of the ith neuron
net, (k) Net input of the ith neuron at time step &k
wy Weight for the connection from neuron j to neuron i
! (k) Output of the ith neuron at time step &

47

Extend Kalman Filter Algorithm

Symbol Definition
x" (k) Actual state at time step &
x(k)” The a priori estimate of x" (k)

x(k)or x(k)*

The a posteriori estimate of x” (k)

e(k)” The a priori estimate error at time step k

e(k) the a posteriori estimate error at time step k

H(k) Jacobian matrix at time step k

K(k) Kalman gain at time step k&

P(k)” The a priori estimate error covariance at time step k

P(k) or P(k)"

The a posteriori estimate error covariance at time step

(k) Covariance matrix of process noise at time step &
R(k) Covariance matrix of measurement noise at time step &
w(k) Estimation of weight vector # " at training step k
Connectivity Optimization Algorithm for RNN
Symbol Definition
e Introduced connectivity coefficient for connection from
4 neuron i to neuron j
g(c;) Connectivity function of ¢

48

Architecture of the Proposed Neural Network

A fully connected recurrent neural network is proposed in this study. The network
is developed from an FFCNN introduced in Chapter two.

As shown in Figure (3.1(b)), the RNN is comprised of m neurons in its input
section, h neurons in its hidden section and n neurons in its output section. In addition to
the forward connections in FFCNN (shown in Figure (2.6)), each neuron in the hidden
section also takes one time step delay feedback connections from the neurons right to it.
Hence, the RNN is fundamentally different from an FFNN in the sense that it not only
operates on an input space but also on an internal state space — a trace of what already has
been processed by the network.

Figure (3.1(a)) shows the internal recurrency between a neuron i and a neuron j in

the hidden section. w; represents the weight for the feedback connection between the
two neurons, w, and w, represent the weights for the two neurons’ self-feedback

connections, while the w, represents the weight for the feed forward connection. Notice

that the recurrency only exist in network’s hidden section, and the other weights are for
feedforward connections as in an FFNN.

The proposed RNN has intra-neuron internal recurrency (the dashed lines in
Figure (3.1(b))) in its hidden section. Different from other RNN (Elman, Jordan, and
RMLP) mentioned in Chapter 2 which are based on the MLP network, the proposed RNN
is modified from the FFCNN. Because the FFCNN has advantages over the MLP in terms
of modeling accuracy and robustness, the proposed RNN is believed to be better than

those RNN.

49

PN ”‘\
’
.o \
Wil (1) ORI

~- ~ ij . ~-

Feedforward loops (solid lines)

m input neurons | h hidden neurons . n output neurons

(b) The proposed RNN structure
(Dash lines: state feedback loops. Solid lines: feed forward loops)

Figure 3.1: Architecture of RNN

For each neuron i, its output y’(k) at the time step k, is determined by the
neuron’s activation function f,(-) and its net input net, (k) :
v (k) = f.(net,(k)), I1<i<m+h+n (3.1)

Same to the FFCNN case (shown in Figure (2.7)), the net input for neurons in

input neuron section and output neuron section is calculated as:

i—1
net, (k) =Y w,y%(k), i<mori>m+h (3.2)
Jj=1

50

itk =1) 2o

Feedbacks from

E—
Wi(m+h)

y;(:Hh (k - 1) e

@ ' >0 (k- 1) — <
. - neti
‘Feed forward v (k) Wi

rinputs from 0 W,
ineurons lefttoit . . 7 2_(k) i
i —
! —

yio—1.(k)

a) Schematic of the connections b) Net, composition

Figure 3.2: An illustration of the output generation of neuron i in hidden section

As shown in Figure (3.2), due to the feedback connections introduced in the
hidden neuron section, the functions for hidden neurons are different from those in the
previous FFCNN case. The net input of each neuron in the hidden section is comprised of
two parts: the summation of outputs at the current step from the neurons left to it and the

summation of outputs at the previous step of hidden neurons right to it.
i1 n,
net,(k)=Y w;y?(k)+ > w,y(k=1), m<i<m+h (3.3)
Jj=1 Jj=i

where n, =m+h+n is the total number of neurons of network, activation function, and

¥ (k —1) is the output of neuron j at the previous time step (k-1).

51

Training Algorithm Development

As stated in Chapter 2, both BPTT and RTRL are based on first order gradient
descendent and are heavy computationally and slow. GA is also computation demanding
because the weight solution space of RNN is usually quite big. In this study an EKF
algorithm is applied to train RNN. First a brief introduction of EKF is given in the

following.

Introduction of Kalman Filter
Generally speaking, EKF [Mayb90] can be used to estimate states of a nonlinear
system from its measurement history. The EKF is derived from Kalman filter (KF) which
applies for linear systems. To better appreciate EKF, KF is introduced first as follows.

Kalman Filter
The objective of KF is to estimate the state x~ of a linear discrete-time system:

{x*(k) = Ak —D)x" (k=1 + G(k —Du(k —=1)+y(k—1) (3.4)

v (k) = H(k)x" (k) + & (k)
where the first equation is called process equation, the second one is called measurement
equation, x is the state of system at time step k, u(k —1) is the control input at time step
k-1, y is the process noise, y is the measurement, & is the measurement noise, the
matrices A(k —1) and G(k —1) relate the state and input at the previous time step £~/ to
the state of current time step k, H (k) relates the state to measurement at the current time

step, the noises are white, zero-mean, uncorrelated, and have known covariance matrices

Q(k) and R(k) respectively:

52

y(k) ~(0,0(k)) (3.5)

E(k) ~(0,R(k)) (3.6)
Ely (y ()")= 08 (k- j) (3.7)
Ele0s ()" |= RSk - j) (3.8)
Ep ()"]=0 (3.9)

where 6 (k — j) is the Kronecker delta function:

L, if k=

3.10
0, if k#j (3-10)

5(k—j)={

The goal of KF is to estimate the state x* (k) from the system dynamics (3.4) and
the noisy measurement sequence {y* 0,y 2),....y" (k)}. If all of the measurements before
the current time step k are available, they can be used to form an a priori estimate of
x" (k) as:

x(k)” =E" @y (1, @)y (k=1 3.11)

The corresponding covariance of the estimation error is:

P(k) = E[(x (&) —x(k) " Nx" (k) - x(k) ") J (3.12)
The state can be further estimated based on the availability of the measurement at

current time step, to form an a posteriori estimate of x * (k) as:

x(k)* = Elx()y" (1), @)y’ (6)] (3.13)

The corresponding covariance of the estimation error is:

Pk)" = E[(x*(k) —x(k) " " (k) - x(k)*)TJ (3.14)

53

The KF algorithm is formed in a recursive way, to estimate x (k) based on the
estimation of x"(k —1). The a priori estimate (x(k)™) and estimation covariance (P(k)")
are calculated considering the process equation. The a posteriori estimate (x(k)") and
estimation covariance (P(k)") are computed based on the knowledge of measurement

(") at time step k. The corresponding time update equations (3.15 and 3.16) and

measurement equations (3.17-3.19) are listed as follows:

x(k)™ = Ak =)x(k =1)* +G(k —Du(k —1) (3.15)
P(k)” = A(k—=1)P(k-1)" A(k—1)" + Q(k - 1) (3.16)
K(k) = P(k)” H(k)" (H(k)P(k)” H(k) + R(k))" (3.17)
x(k)* = x(k)” + K () yk)— Hk)x(k)") (3.18)
P(k)" = (I - K(k)H (k))P(k)~ (3.19)

To begin the recursive update, the estimation should be initialized as follows:

x(0)" = E[x"(0)] (3.20)

P(0)* = E[(x (0)— x(0)* \x"(0) = x(0)*)’ J (3.21)

The KF is illustrated in Figure (3.3) as follows:

Represent the dynamic system by the process-measurement equation (3.4)

!

Initialize the Kalman filter
(3.20 and 3.21)

|

Apply the Kalman filter recursion equations
(3.15-3.19)

Figure 3.3: The Kalman filter algorithm

54

Introduction of Extended Kalman Filter
When the system being studied is a nonlinear system, the EKF is modified from
the KF to make state estimation. The basic idea is to linearize the system first and then to
apply KF on the linearized system. Suppose the original nonlinear system is governed by

the equations:

{x* (k) = f{x" k= 1),uk),y (k1)) (3.22)

Y (k) = hlx" (), (h))
where x"(k) and y" (k) are the actual state and measurement at current time step &, f(-)
represents the nonlinear process equation, 4(.) represents the nonlinear measurement
equation, u is the input of the system, and y and & are the process noise and

measurement noise which have the same properties as in Equations (3.5-3.9) :

To implement EKF, the system is first linearized at the approximate point

(x(k)™,y(k)™), or the a priori estimation point, which comes from the noise free system:

{x(k) = f(x* (k =1),u(k).0) (3.23)
y(k)™ = h(x(k)",0)

{ X (k) = x(k)” + A(k = D" (k = 1) = x(k 1))+ Ak =)y (k —1) 324)
¥ (k) =y + H()x (k) —x(k))+ V(k)E(K) '

where x(k)” and y(k)” are the approximate state and measurement at time step k
respectively, 4 is the Jacobian matrix of partial derivatives of f with respect to x*, H

is the Jacobian matrix of partial derivatives of 4 with respect to x”, A is the Jacobian

55

matrix of partial derivatives of f with respect to y, and V' is the Jacobian matrix of

partial derivatives of & with respect to & .

o
AR =] (3.25)
A(k) = Zl| . (3.26)
Y
oh
H)=—"] (3.27)
oh
Vk)= aEh (3.28)

Consider the estimation residual which is the difference between the actual state

and the approximate state:
e. (k)=x"(k)—x(k) (3.29)
The measurement residual is:
e, (k)= y" (k)= y(k) (3.30)
Plug the above equations (3.29 and 3.30) into the linearized equation (3.24) to get

the error model:
e (k)= A(k-1e, (k-1)+&(k) (3.31)
e, (k)= H(k-1e, (k)+n(k) (3.32)
Notice that the error equations are linear models hence the KF can be applied to
compute the error estimate ex*(k) .The noises of the error system follows the following

distributions:

56

g(k) ~ (0, 2()Q()A(K)") (3.33)
(k) ~ 0.V (ORKV (k)") (3.34)

After obtain the error estimate, the a posteriori estimate of x" (k) can be

computed from the relation:
x(k)" =x(k)” +e, (k) (3.35)

In conclusion, the EKF algorithm includes time update equations (3.36 and 3.37)

and measurement equations (3.38-3.40):

x(k)” = £ (k=1),u(k),0) (3.36)
P(k)™ = A(K)P(k = 1) A(k)" + A(k)O(k = 1)A(k)" (3.37)
K(k) = P(k) H(k)" (H(k)P(k)” H(k)" +V ()R()V (k)") (3.38)
(k)" = x(k)” + K()y" (k)= hlx(k),0)) (3.39)
P(k)" = (I - K(k)H (k))P(k)" (3.40)

where x(k)~ is the a priori estimate of x” (k)- the actual state to be estimated, x(k)" is

the a posteriori estimate of x"(k), K is the Kalman gain, P~ is the a priori estimate error
covariance P~ :Ele’e’TJ, e is the a priori estimate error e =x —x , P" is the a
posteriori estimate error covariance P~ :Ele eTJ, and e=x—x" is the a posteriori

estimate error. P* will be written as P for simplicity in the following sections.

The EKF algorithm is illustrated in Figure (3.4) as follows:

57

Represent the dynamic system by the process-measurement nonlinear equations (3.22)

|

Initialize the Kalman filter
(3.20 and 3.21)

Compute the Jacobian matrices
(3.25-3.28)

!

Apply the Kalman filter recursion equations
(3.36-3.40)

Figure 3.4: The extended Kalman filter algorithm

EKF RNN Training Algorithm
The EKF algorithm introduced above is for estimation of a scalar, but it can also
apply to vectors as well. To apply EKF in RNN training, weights of a RNN are treated as
the states of the network, and then EKF is used to estimate the states from network’s

output. Corresponding to Equation (3.22), the training model is represented by:

{w*(k)zw*(k—m?(k—l) (3.41)

70y = (i () +)
where " (k) is the optimal weight vector W™ at time step k, w (k—1) is the weight

vector at time step k-1, y is the measurement data or target data, and h() represents

RNN mapping function which generates the output of network.

The optimal weight vector is the weight vector that minimize the difference of

measurement y (k) and the output of neuron network h(w*(k)). The EKF is used to

estimate the constant vector w based on the measurements and the network function

58

A(). 1deally w" (k) = #w"(k—1)=w" or 7(k—1)=0, but the non-zero process noise can
introduce more flexibility in tuning the filter.

The objective of training process is to generate an estimate w(k) of W (k). The
weights of a RNN are often represented in matrix form W ; each of its element w,

represents the weight on the connection from neuron i to neuron j. To apply the EKF, the

elements of the matrix should be organized in the vector form w. To achieve that, W is

N3

first written as a combination of row vectors: W = ,Wl. i1s the ith row of W,

n, =m+h+n is the number of neurons of the network; w is then formed by combing

the row vectors and taking transpose, w:[Wl,Wz,...,W 1" = [v_vl,wz,...,v_vnr]T; w, 1s the

ith element of the vector, n, is the total number of trainable weights. For example, the

Wll WIZ

weight matrix of the network in Figure (2.17) is { } ; in this case,

Wy Wy

W= [W/laWz]T = [Wll Wi, Wy Wp]T = ["_VlaV_"zaV_VyV_U]T .
Corresponding to Equations (3.36-3.40), EKF for the weights update process can

be written as:

(k)" = wik —1) (3.42)
P(k)” = P(k—1)+ Ok -1 (3.43)
K(k) = P(k) H(k)" (H (k)P(k)” H(k)" + R(k))" (3.44)

59

w(k) = w(k)” + K ()3 k) - ()) (3.45)
P(k) = (I — K(k)H (k))P(k)~ (3.46)
Combination of Equations (3.42-3.46) results in the simplified version of EKF

training algorithm:

w(k) = w(k —1) - K(k)((k) - 5 * (k)) (3.47)
K(k)= P(k-1)Hk)[R(k)+ H(k)" P(k-D)H (k)] (3.48)
P(k) = P(k-1)— K(k)H (k)" P(k 1)+ O(k) (3.49)

where w(k) is the estimate of weight vector W’ at time step k, w(k —1) is the estimation
of weight vector at one time step before, ¥" (k) is the target data, and y(k) = h(v‘v(k)’) is

the output of RNN which is supposed to be an estimate of (k).

The flow chart of RNN training process is listed in Figure (3.5). The process

includes four steps:

Initialize filter parameters and weights P(0),0(0), R(0),#(0)

Compute orderly derivative

and generate Jacobian matrix H(k)
v

Apply Kalman filtering and update weights
Equations (3.47-3.49)

o N
Stop criteria

Trained weights

Figure 3.5: The flow chart of RNN training procedures

60

1) Training data preparation

NN is a data-driven modeling method. Suppose a system is to be modeled; the
mathematical model of the system is unknown but its inputs-outputs data are available
from experiments; an inputs-outputs pair is called a training pattern; a RNN is used to

represent the system using these training patterns. Suppose the system to be modeled has
m inputs and n targets, y = f(¥), ¥ = [xl,xz,...xm] ST [y?,yj ,...y: , n, sets of
training patterns are generated as shown in Figure (3.6):

Training pattern 1: x,(1), x,(D),...,x, (1) —s yf(l),y;(l),...,y:(l)
Training pattern 2: x,(2),x,(2),...,x,,(2) —— 3,(2), y5(2),..., ¥, (2)

Training pattern n,: x(n,),x,(n,),.... X, (n,) —> yf(np),y;(np),...,y:(np)

Figure 3.6: Training data set example

In order to avoid the saturation problem, all inputs and all outputs need to be
normalized before they are fed into the network. The normalization is carried out by a

linear mapping function as:

X — X
i) e Nmin. xN“““ + Xy i (3.50)

max min

where x is the original variable in the range of [x

Xy =(x—x

and x . are the

min > % max] 2 xmax min

maximum and minimum values of the variable before normalization, x, is the

normalized variable, which is in the range of [x and x, . are the

N min > % ¥ max]’ meax
maximum and minimum values of the normalized variable. Usually the variables are

normalized into the range of [0, 1].

61

2) Training parameters initialization

To use the recursive equations of EKF, its parameters such as P, O, R, and
weights estimation w need to be initialized first. To avoid the saturation problem, each
element of W, is randomly selected from a uniform distribution in the range of [0, 1].
There is no general guide to initialize the other parameters. Usually they are arbitrarily
selected and if the algorithm converge they can recursively converge to their desired
values.

3) Training process

After that, training data are fed into the network to update weights. For a training

pattern £,)?(k)z[xl(k),xz(k),...,xm (k)] is the input to the network, and it generates
output y(k) = [y1 k), y,(k),....», (k)] which is compared with the corresponding target
value ¥ (k) = [y? (), y. (k),..y, (k)Jand the resulting error term is used to update weights

as illustrated in Equation (3.47). To apply the EKF equations, the orderly derivatives

(will be introduced in the following section) of network’s output y with respect to

weight vector w are calculated and form the Jacobian matrix

'y 9y 0"
ow, Ow, ow,
'y, 0y 9"y,
H=\| 5w ow, —~ ow, | The EKF equations (3.47-3.49) are then applied to train
o, o5, %,
ow, ow, = ow,

weights until the specified stop criteria are met, otherwise the process goes back to update

62

weights using training data for another epoch. A training epoch is used to describe a

complete pass through all of the training patterns. For this case, the training process for

training pattern 1 to pattern n,, is called a training epoch. Stop criteria are case dependent

and may include the allowable maximum number of training epochs, the minimum
training error, and the minimum amount of change in weights during training, etc. A
normalized sum of square error (SSE) is used to represent the training error for a training

epoch j:

(/) =G -7 D) GH-5 D) 7 ()7 () x100% (3.51)

where 3"(j) is the target data at epoch j, and () is the output of RNN at epoch j.

Orderly Derivative
The most calculation consuming step in the above training flow chart is the step
of calculating orderly derivative. RNN is an ordered system and the outputs of neurons
need to be calculated orderly from the left to the right. Orderly derivatives are used for
this case instead of the ordinary partial derivatives. For ordered systems where the values

need to be orderly calculated in the order of z,,z,,..., z, The orderly derivative of a

target with respect of z, can be written as [Werb90]:

0" target _ Otarget N z Otarget Oz
0z, 0z, = 0z, Oz,

1

(3.52)

where the derivative with superscript represents orderly derivative and the derivative

Otarget

without superscript represents ordinary partial derivative. , the ordinary partial,

Z .

1

63

0" target

derivative represents the direct impact of target on z,, while , the orderly

Oz.

1

derivative, represents the total effect of target on z, . A simple ordered system is

illustrated for clarity as follows:

An ordered system is orderly governed by the following equations:

z, =2z, (3.53)
z,=z,+2z, (3.54)
From Equation (3.25), the ordinary partial derivative % is 1, while the orderly
Zl
derivative ——=2 is 5. The difference comes from the indirect impact by z,.

0z,

In RNN training, the orderly derivative matrix H (k) is computed using the

orderly chain rule considering all the possible connections contributing to the output.

+
i

w.

—1i

Each element is to be computed. The involved computation is introduced in the

+
i

ow.

— i

following. To better illustrate the process, the orderly derivative is denoted as

+

0"y

ow,;

where w; contains the connection information of w, . For simplicity, the subscript

of y, is omitted and w is another notation for the weight w, . Generally the orderly

derivative can be written as:

64

0'y _0'y) O'net,
ow ay? Onet; Ow,

(3.55)

J
where y? is the output of neuron j, net; is the net input of neuron /.

The derivatives take different forms depending on the specific weight

connections. The derivation is illustrated in the following:

Orderly Derivative Calculation in Case |

i m+h | m+h+l j
— > Output section

(a) Network connection involved in computing 2 J
Wji
0 w. net. f(
Y o ‘FJ / ﬂ) o Yy

(b) Signal flow graph

Figure 3.7: Case I for calculation of the orderly derivative

Case I is the simplest case that only forward connections need to be considered to

calculate the orderly derivative. In this case, for a weight w

i » neuron j is in the output
section and the neuron i is in the previous sections; only direct impacts act on y through

the weight so that actually the ordinary derivative is considered here. Figure (3.7) shows

an example in this case. Part (a) shows the connection from neuron i to neuron j. Part (b)

65

illustrates the signal flow graph from the output of neuron i (yl”) to the output of
network (y) , from which the orderly derivative can be written as:

¥ Onet ;
Oy _ 0y omet; Oy e (3.56)
ow, Onet, Ow, Onet,

Orderly Derivative Calculation in Case 11

i J jrl jts m+n+h

Hidden section —————

Figure 3.8: Case II for calculation of the orderly derivative

Case II deals with the situation that the weight W; is on a forward connection

(i<j) and neuron j is in the hidden section. As shown in Figure (3.8), in this case, both

forward loops and feedback loops need to be considered to derive the orderly derivative

66

j jrl jts m+n+h
Hidden section ——

(a) Illustration of direct impact (the solid line) and an indirect
impacts (the dash lines) on ‘(;Ty

J

» o Wi Melys O Yoo Waggen met, [0,

(b) The signal flow graph for the indirect impacts

0 w,: net .
ij 7y n f() oy

> »-

(c) The signal flow graph for the direct impact

+

'y
oy’

Figure 3.9: Illustration of calculation of in case I

Figure (3.9) shows how to calculate the orderly derivative 0 g}

in Equation
J

(3.57). y7, the output of neuron j, contributes to y not only directly through the weight

w, ; (the solid line in Figure (3.9 (a))), but also indirectly through other forward loops to

the right of neuron j (the dash line in Figure (3.9 (a))).

6+y m+h—j a+y ay’/’ﬁ

o7 S o, 0
mihly 6+y 6y(;+s 6netj+s (3'57)

s=1 6y(;+s 6netj+s ay(;
m+h—j a+y ay’/’ﬁ

o

s=1 6yj+s anetjﬂ

Wijss)j

67

k=1

y;#—s (k - 1) B
Wi m+.
Vo (k=1) ==
, — net .
n (k) /
,,E WiG-1
yiatk)y ——

Figure 3.10: nef; decomposition (The items inside dash boxes contribute to the

) 0" net,
calculation of

ow i

Figure (3.10) shows the composition of 7€Z; . It can be found that 72€f; has two

N
0 net,

components related to the orderly derivative . One is the forward path from

ow i

v;{ (k) through w . to net; at the current time step k. The others are the paths from
feedbacks yjf(k—1),yjf+1(k—1),...,y;’1+h(k—l) which impact on y7(k—1) and hence
indirectly influence on w . k is used to denote time step because two consecutive time

steps (current and the previous time step) need to be considered here. Figure (3.11) shows

the effect of forward path at current time step k and the effect of a feedback path from

¥, (k=1) to net, (k).

68

o

At time step k-1: y /o Wi net; O Yy W Melivs JO Voo

Y

Wij+s)

At time step k: y o

A\ 4

O O > O

Wi netj VO] y5 Wijes)i netjﬂ fO i

N
0 net,

Figure 3.11: Signal flow graph to compute

le.

: .. O'net (k)
From Figure (3.11), the orderly derivative 8—] can be computed as follows:
W,
Consider the effect of forward path:
O"net (k)
——L—=y/(k) (3.58)
ow

Ji

Consider the effect of feedback paths, as shown in the second item

ZW[]. y§(k—1) in Equation (3.3), the output of neurons at time step k-7 also has impact

Jj=i
on net;(k):

0" net ; (k) _ 0" net (k) oy (k—1)
ow oyi(k=1) ow,

Jt Ji

_ mdi - Onet (k) 0" yf, (k=1 |dy;(k-1) (3.59)

o oyl (k=1) oyi(k-1) ow,;
mihi Onet (k) 0"yl (k=1)) oy(k—1) Onet,(k-1)

= X

= Oyl (k=1 dyi(k-1) onet (k—=1) ow,
6+y(;+s (k - 1) 6y(/)+s (k - 1) > 6netj+s (k - 1) 6.)}(;)+s—p (k - 1)
- > (3.60)
(=) anet, (k1) oy7,_ (k=1) &’ (k—1)

Combine the above two equations, the orderly derivative is:

69

d nelj(k):yio - Ehl onet, (k) 07y}, (k=D oyj(k-D) onet,(k-1) 3¢}y
Gwﬁ 0 Oy (k=1) oyi(k-1) Gnezj(k—l) Gwﬁ

Consider Equations (3.57, 3.61), Equation 3.55 can be written as:

'y 0y o 6+nelj
ow, Qy; Onet; Ow

Jt

Ji

m+h—j 6+y 5)/(,)“ " ay(; 6+}’lelj
- P) (+s)J

= oyS,, Onet, " Onet; oOw, (3.62)
Tty v ;

_W, . S —
(j+s)J
sy Gy;H Gnezlm Gnezj

. [onet; (k) oy (k=1)) ay5(k—1) onet, (k1)
x| y? + : : X : l
T & o k-1 ayik—1)) onet,(k—1) ow,

Jt

Hidden section

(a) Mlustration of direct impact of W ; ony . (Dash line: feedback connections.
Solid line: forward connections)

wy, omety (k=) f0O yP(k-1) W, o net, (k) SO

y{ (k - 1)o > o Y

(b) The signal flow graph for the impact

Figure 3.12: Case III for calculation of the orderly derivative

Orderly Derivative Calculation in Case 11
Case III deals with the situation when the weight W;; is on a feedback connection

(j<i). In this case, both neuron i and neuron j are in the hidden section. As in Figure

70

(3.12), if weights are in the feedback loop (j<i), the orderly derivatives are computed as

follows:

o'y 9%y oyi(k—1) onet;(k-1)
ow, oyi(k-1) onet,(k=1) ow, .
a k=1
T e yi (k=1
oy (k—1) onet (k1)

Notice for this case the weight w, doesn’t have impact on y;(k —1), because it

would involve with calculations at 2 time steps before (k-2) and the network only
considers one time step delayed recurrency.

For the above discussion, if don’t mention otherwise, calculations are conducted
for the current time step k. For example, net, is the same as net (k).

To better understand the classification of three cases, an example of trainable

weights for each case is shown in Figure (3.13). The example network has a structure of

2-2-2. The rest weights are set to zero and don’t need to be trained.

Trainable weights W31 W32W33 Wy, Wy Wy . .
for case 11 . Trainable weights

§W41 Wi Waz Wayt Wys Wyg for case III

Wi Wer xWes. Wea. Wos Wes

Trainable weights for case I

Figure 3.13: The trainable weights for the three cases

71

Connectivity Optimization Algorithm for RNN

In this study, a topology destructive optimization approach is utilized to optimize
RNN. First, the number of hidden neurons is chosen based on a trial and error approach,
then the network topology is optimized by disconnecting some weights among the
network neurons using a method first proposed by KrishnaKumar [Kris93]. Such a
pruned and optimized network has proved to be simpler, more accurate and robust
[Kris99]. An example of the optimization process is illustrated in Figure (3.14), where the

RNN originally has a structure of 1-3-1, and two connections (¢;, and c,,) are

disconnected after optimization.

(O ROmO

be removed

Connections to

Figure 3.14: An illustration of connectivity optimization

To optimization the network connectivity, a function g(c,) as defined in
Equation (3.64) is introduced to represent the availability of a connection between the
neurons j and i. If g(c,) = 1.0, it implies there is a connection between the ith and jth
neurons; while if g(c;) = 0, it implies there is no connection.

1

—c;i

l+e

ge,) = (3.64)

The procedures of optimization are listed as follows:

72

Derive the mapping functions of RNN considering the introduced connectivity

coefficient ¢, for each connection j — i, corresponding to Equations (3.1-3.3):

! (k) = f,(net, (k)), 1<i<m+h+n (3.65)
i—1
net, (k) =Y w,y9(k)g(c,), i<mori>m+h (3.66)
J=1
Wi
g(cn)'ylo
o Wi
g(c)y; L
E —»@—» yio
g(ci(i—l)) Vi M Neuron 1

Figure 3.15: Illustration of Equations (3.65 and 3.66)

The equations (3.65 and 3.66) are illustrated in Figure (3.15). Compare to Figure
(2.7), it can be seen the connectivity functions have been added into the net input of the

concerned neuron. Similarly, the net input for hidden neurons can be computed as

follows:
i—1 nn
net (k)= w,;y(k)g(c,)+ > w,y(k=Dg(c;),m<i<m+h (3.67)
J=1 j=i
.. o'y o'y .
Calculate the orderly derivatives . and . accordingly.
W c..

y y
The corresponding equations for computation of orderly derivatives are as
follows:

For case I, corresponding to Equation (3.55):

73

o

o'y _a'y 9y
ow, 0y| Onet,;

)

vig(e;) (3.68)

Similarly, for case II, weights in forward loop i<j and jth neuron is a hidden

ncuron:

6*)/: oty oyi(k)

ow, 0oy (k) Onet (k) (3.69)
{ [Mj onet , (k) 6y;+s(k—1)] oy?(k—1) onet (k-1
x| yigle,)+ %

S oy (k=1) oy’ (k—1) | onmet,(k—=1) ow

Ji

ove, (k=1) ayl, (k=1) & dnet,, (k—1) v, (k=1)

- . (3.70)
ovi(k=1) dnet,,, (k—l);ay;us_p e S TG
For case 111, weights in feedback loop j<i
* * oo (k—1
Oy 0y D g, (3.71)

ow, oy’ (k—1) onet, (k —1)

Ji
Finally the orderly derivatives of RNN outputs to connectivity coefficients can be

computed as:

8+y 8+y ag(cj[)
= w_l_
oc. ow, " oc.

Jt Jt Jt

/g(c;) (3.72)

3) Then both the weights and connection coefficients are updated using the EKF
algorithm. At the beginning of optimization, each c; is set as 0. When the stop criteria

have been met, the connections with ¢; <0 will be disconnected by setting g(c,) =0 and

the others will be connected by setting g(c;) = 1.

74

Initialize filter parameters and weights P(0),0(0), R(0),w(0)

|

Introduce network connectivity coefficient € j;

v

Compute orderly derivatives and generate two Jacobian
matrices H(k) for weights and connectivity coefficients

l

Apply Kalman filtering and update weights and connectivity coefficients
Equations (3.47-3.49)

Stop criteria

Disconnect unimportant connections

}

The optimized network structure

Figure 3.16: Network optimization process

As shown in Figure (3.16), an optimized RNN is formed through the optimization
process. The training process of the optimized network is divided into two phases: the
connectivity optimization process which forms an optimized RNN connectivity structure
and then the weights of the optimized network are further refined using EKF and the

same training data.

Conclusions
This chapter introduces the development of the proposed RNN.
The network is modified from FFCNN by importing internal recurrency into its

hidden neuron section. The neurons receive not only the inputs at current time step from

75

neurons before it but also the inputs at the previous time step from neurons after it,
Hence, RNN is fundamentally different from FFNN that it not only operates on the input
space but also on its internal state space, which makes it more suitable for non-linear
dynamical system modeling.

EKF algorithm is applied in training the network. To achieve that, the training
process is first written in terms of process and measurement equations. The Jacobian
matrix in the measurement equation is formed by taking the orderly derivatives of
network’s outputs with respect to its weights. The parameters of EKF are then initialized,
and the EKF equations are applied to the system to estimate the weights update during
training. The most time consuming procedure involved is the calculation of orderly
derivatives.

The network optimization is embedded into the training process to optimize the
network structure for any specific applications. A destructive method is applied. A
network with redundant structure is selected first. The insignificant weights are removed
gradually during the process. To apply the method, first a connectivity coefficient is
introduced to each connection through a connectivity function, and then the coefficients
are trained with weights using EKF, finally the connections having negative connectivity
coefficients are considered as unimportant and are finally removed.

Through these development techniques, an optimized RNN can be formed to

model non-linear dynamical systems.

76

CHPATER FOUR
PERFORMANCE STUDIES OF THE RECURRENT NEURAL NETWORK

Abstract

Training convergence and estimation robustness are important in successful
implementation of RNN in modeling non-linear dynamical systems.

RNN has emerged as a promising tool in modeling of non-linear dynamical
systems whereas the training convergence is still of concern. This study aims to develop
an effective EKF-based RNN training approach with a controllable training convergence.
The training convergence problem during extended Kalman filter-based RNN training
has been proposed and studied by adapting two artificial training noise parameters: the
covariance of measurement noise (R) and the covariance of process noise (Q) of
Kalman filter. The R and Q adaption laws have been developed using the Lyapunov
method and the maximum likelihood method, respectively.

Robustness study of recurrent neural network is critical to their successful
implementations. The goal of robustness study is to reduce the sensitivity of modeling
capacity to uncertainties in parameters, or to make the network fault tolerance. In this
study, an uncertainty propagation analysis is conducted to quantify the robustness of a
recurrent neural network output due to perturbations in its trained weights. Perturbations
are added into the weights and the unscented transform is used to quantify the
corresponding uncertainties in the network’s output. A robustness measure has been
proposed and compared with other two measures developed by sensitivity analysis and

performance loss analysis.

77

Nomenclature

R Adaption Law Derivation

Symbol Definition
H(k) | Jacobian matrix at training step k
K(k) | Kalman gain at training step &
P(k) Covariance matrix of weight estimation at training step &
(k) Covariance matrix of process noise at training step &
R(k) Covariance matrix of measurement noise at training step
r(k) Diagonal element of R(k), R(k)=r(k)-1
w(k) Estimation of weight vector w at training step k
w Optimal value of w
w, (k) | Error of estimated weight vector w(k)
9 (k) | Desired output at training step k
y(k) Output of neural network at training step &
(k) Residual of first order approximation
e(k) Estimation error of RNN output
B(k) | Covariance matrix of network output
V(k) | Lyapuov function

78

The Robustness Measure Derivation

Symbol Definition

W Trained weight vector
W Perturbed weight vector, w oc N (w* ,Z)
)y Covariance matrix of w
L Perturbation level
X Sigma vector

x(j) The jth sample input vector

y(j) Output of x(j) from perturbed networks

y(j) | meanof y(j)

50 Covariance of y(j)

o, Standard deviation of its kth element of y(j), o W) = m

79

Convergence Study of RNN Training Algorithm

The stability of a dynamical system is usually evaluated using the Lyapunov
theorems, which give a precise characterization of valid energy functions in the vicinity
of equilibrium points [Sast99]. Lyapunov stability is concerned mainly with stability of
equilibrium points, and a Lyapunov stable system is a system for which the states remain
bounded for all time [Khal02]. In RNN training, the equilibrium points can be viewed as
the optimal weight solutions that minimize the mean square error of the outputs of the
neural network. The weight training process aims to find the optimal weights as the
system’s equilibrium points, and the Lyapunov indirect method is used here to study the
convergence of training by adapting R .

While the training convergence is first guaranteed by adapting R, the process

noise parameter Q is further to be estimated to accelerate the training process, which

needs the simultaneous estimation of the noise statistics and the update of the Kalman
filter gain. The noise covariance matrixes can be estimated through the Bayesian
estimation [Alsp74], the correlation method [Mehr72], the covariance matching method
[Mehr72], and the maximum likelihood method [Mayb82]. The maximum likelihood
method is favored in this study because it is more efficient, consistent, and suitable for
online applications. It should be pointed out that this method may generate biased
estimates for small sample sizes. However, because the maximum likelihood estimates
tend to have the true value of the estimated variable close to the center of their

distributions, the bias is often negligible [Mayb82].

80

In the following sections, first the Lyapunove method and the maximum
likelihood method are briefly introduced and then the convergence study is presented in

detail.

Lyapunov Method

In this study, the direct Lyapunov method is applied to form an adaption law for
the training parameter R(k) in Equation (2.13) to guarantee the training process
convergence. In this section, the direct Lyapunov method, also called the second
Lyapunov method is reviewed.

This method is used to determine the stability of an autonomous system without
explicitly integrating its differential equation. The idea behind Lyapunov's direct method
is to establish properties of the equilibrium point by studying how a carefully selected
scalar function of the state (Lyapunov function) evolve as the system state evolves
[Khal02].

Consider a non-linear dynamical system is represented by a differential equation:

i(t)= f(x()) (4.1)

Suppose origin is the equilibrium state:

f(0)=0 (4.2)

To prove the system is Lyapunov stable at the origin, a candidate Lyapunov

function V' (x) needs to be proposed:

{V(O) =0, x=0 (4.3)

Vix)>0, x=#0

81

Such a ¥ (x) can be thought of as an energy function. Let ¥ (x) denote the time
derivative of V(x) along any trajectory of the system, i.e. its rate of change as x(t) varies
according to Equation (4.1). If this derivative is negative throughout the region (except at
the origin):

V(x)<0 x#0 (4.4)

Equation (4.4) implies that the energy is strictly decreasing over time. In this case,
because the energy is lower bounded by 0, the energy must go to 0 when t goes to
infinity, which implies that all trajectories converge to the equilibrium state, zero state.
Or in another words, the system is asymptotically stable at the origin.

For a discrete system, the key of the method is to find an appropriate Lyapunov
function V(k) for the concerned dynamic system so that AV (k)< 0. In this study, a
discrete Lyapunov function is chosen as

V(k)=w, (k)" P(k) " w,(k) (4.5)

where w, (k) =w(k)—w" is the error of estimated weight vector, " is the optimal weight

and is a constant vector, Ww(k) is the estimate of w" using EKF at time step k, and P(k)

is the approximate covariance matrix in Equations (3.48 and 3.49).

Maximum Likelihood Method

Once the training process is guaranteed to be convergent by using the Lypunov

method mentioned in the previous section, another further question comes out, how to

82

make the convergence fast. To achieve that, the maximum likelihood method is adopted
in this study to estimate the training parameter Q(k) in Equation (3.49).

In lot of cases, a parameter estimation process is requisite to a modeling process.
A model with its parameters is first developed to describe the observed data or
measurements. The remaining task is to find the best estimation of the parameters that
make the model best fit the data. Maximum likelihood estimation (MLE) is a popular
statistical method used for parameter estimation [Kay93].

Another major parameter estimation method is the least squares estimation (LSE)
which aims to determine the parameters to make the model most accurately fit the sample
data. In general, results of MLE are different from those of LSE. In most cases MLE is
preferable to LSE unless the likelihood function can’t be easily formed. Generally MLE
have desirable properties which makes MLE a desirable candidate to estimate the process
noise O(k) in EKF Equation (3.49):

1) It is a sufficient estimator which contains complete information about the
parameter of interest which is the covariance of process noise in RNN
training in this study;

2) Itis an unbiased estimator as the sample size increases;

3) [Itis a minimum variance estimator as the sample size increases; and

4) The likelihood function can be used to test hypotheses and construct
confidence intervals for the model output which is the network output in this

study.

83

To implement MLE, the first step is to develop the maximum likelihood function.
A popular way to develop the function is described as follows. Suppose the variable to be
modeled is a random variable and the functional form of the variable’s probability density
function (PDF) is known. A random sample X =(X,,X,,.,X,) for the variable is
observed and the observation (x,,x,,...,x,) is used to estimate the parameters. A group
of parametric models are established to describe the observation data, each model
depends on a unknown parameter 6 .

The PDF which accounts for the probability of random sample X given the
parameter 6 can be written as f,(X,,..x, |0). If individual samples X, are independent

of one another, the PDF can be written as a multiplication of each PDFs for all the

observations:

n

fo(X,.X, 10)=£,(X,10)f, (X, |0)..1,(X,10)=]] f, (X, |0) (4.6)

i
The likelihood function is defined by reversing the roles of sample X and
parameter of 6 in PDF, which represents the likelihood of parameter 6 given the sample
X:
Lo X,,..X,)=f,(X,,..X,|0) 4.7)
Similar to (4.6), if the random samples X, are independent with one another the

likelihood function (4.7) can be simplified as:

1o1X,..x,)=[£(x,10) (4.8)

84

For this case, the likelihood function is often written in logarithm format as

follows:
LO|X,,.X,)= logf,(X,|0) (4.9)
i=1

In other words, the likelihood function represents how likely the parameter can be
if the observed data x of X is given. The method of maximum likelihood estimation of

0 that maximizes the likelithood function:

A

O:argmgth(9|X1,...Xn) (4.10)

In summary, MLE begins with writing the likelihood function of the unknown
parameter 6 based on sample data. The parameter value that maximizes the likelihood
function then provides MLE results — the maximum likelihood estimator of the

parameter.

The Development of R Adaption Law
The covariance of measurement noise R describes the statistics of network
modeling error, and this information is generally not available for a RNN training
process. As seen from Equation (3.25), a small R value might lead to a large Kalman
gain, which may make training divergent. For this training divergence problem, a dead-
zone Kalman filter was developed to train a state space recurrent neural network to avoid
divergence in training [Rubi07]. This study further extends the modified EKF work

[Rubi07] in the following aspects:

85

1) The development here considers training process of general neural networks;
the training model (3.18) is applicable to a general neural network.

2) The development here doesn’t require the knowledge of upper bound of &, ,

the residual of first order approximation, which is unavailable in most cases;
and

3) The developed algorithm is more efficient because it doesn’t have dead-zone
regions.

To better illustrate the development process, weights update equations (3.47-3.49)

are repeated as in the following equations (4.11-4.13):

{W(ml) = (k) - K(k)((k) - 7" (k) @11

(k) = h(w(k))

K (k)= P(k)H (k)[R(k) + H (k)" P(k)H (k)]”' (4.12)
= P(k)H (k)B(k)™

Pk +1)=0(k) +|I - K H (k)" |[P(k) (4.13)

where w(k) is the estimate of weight vector " at time step k, w(k —1) is the estimation
of weight vector at one time step before, K is the Kalman gain, y(k) is the output of

RNN, 7" (k) is the target value for y(k), P is the approximate covariance matrices, H
is the orderly derivatives matrix, and the covariance matrix of output

(R(k)+ H(k)" P(k)H (k) or Cov(3(k))) is denoted as B(k).

Expand output of RNN 3(k) at the optimal weight vector W :

86

(k) = h(iw(k))
- h(w*)+2—h(W(k) —W")+ E (k) (4.14)
W
=3 (k) + H(k)" W, (k) + & (k)

where W, (k) =w(k)—Ww" is the error of estimated weight vector, w" is the optimal weight

and is a constant vector, and £ is the residual of first order approximation.
The estimation error of RNN output is represented as:
e(k) = y(k) = 3" (k) = H(k)" W, (k) + & (k) (4.15)
A Lyapunov function is selected as in [Rubi07]:
V(k)y=w,(k)" P(k)"'w,(k) (4.16)
AV (k) =w,(k+1)" P(k+1)"w,(k+1)—w, (k)" P(k)™"w,(k) (4.17)
Plug Equations (4.12) and (4.15) into (4.11), the following equation is derived as:

w, (k +1) =, (k) - P(k)H (k)B(k) " e(k)
=, (k) - P(k)H (k) B(k) ™ H(k)" W, (k) ~ P(RYH () B(k) ' E (k) (4.18)
= (1- PUOYH () BUY ™ H(K)' i, (k) = Pk H (k) BE) ™ & (k)

The following equation is equivalent to Equation (4.13):

(P(k +1)—0(k)) = (1 - P(k)YH (k) B(k) ™ H(K)")P() (4.19)

Apply the matrix calculation formula on (P(k)'1 +H(k)R(k)" H(k)")_1 , according
to the matrix inversion lemma:

(4+BCD)" =4 — 4" B(DA"'B+C") " D! (4.20)

which leads to:

(P(k)™" + HORGK) H (k)") = (1 - PUYH (K)B(k) ™ H (k)T)P(k) (4.21)

87

Compare (4.19) and (4.21), it is found:
(Pk +1) = Q)" = (P(k)™" + H(R(K) " H (k)")> 0 (4.22)
From Equation (4.18), (4.21) and (4.22), it can be derived that:

(P(k+1) = Q(k) "W, (k +1)

1 3 (4.23)
= P(k) "W, (k) = (P(k + 1) = Q(k))™ P(k)H (k)B(k) "€ (k)

w,(k+)" P(k+1) " w, (k+D) <w, (k+1)" (P(k +1)— Q(k))_1 w,(k+1) (4.24)
Equations (4.23) and (4.24) give:

AV(ky=w,(k+1)" P(k +1)"w,(k +1)—w, (k)" P(k)"w, (k)
<[,k +1) =, ()] P(k) ™", (k) (4.25)
— W, (k+)" (P(k +1)— Q(k))" P(k)H (k)B(k) ™ (k)

Plug Equation (4.18) into (4.25), also knowing B(k)and P(k) are symmetric:

AV (k) <=, (k)" H(k)B(k) " H(k)" W, (k) =& (k)" Bk)™ H(k)" w, (k)

1 3 (4.26)
=, (k+1)" (P(k +1) - O(k))" P(k)H (k)B(k) & (k)

Consider the third part on the right side of Equation (4.26) gives (knowing AV (k)
is a scalar, plug Equation (4.23) in):

i, (k +)" (P(k +1) - O(k)) " P(k)H (k) B(k) ™' & (k)
= E(k)" B(k)" H (k)" P(k)(P(k +1)— Q(k)) ', (k +1)
=E (k)" B(k)™" H (k)" P(k)[P(k) ™ W, (k)
—(P(k+1)- O(k))" P(k)H (k) B(k) & (k)]
=E(k) B(k)" H (k)" W, (k)
—E(k) B(k)" H (k)" P(k)(P(k +1) - Q(k))" P(k)H (k)B(k) & (k)

(4.27)

Plug in Equation (4.27) into (4.26) and consider the relationships:

a) R(k)+ H(k)" P(k)H (k) = B(k),

88

b) R(k)™ > B(k)™', and
) H(k)" P(k)H(k)B(k)" <1
Equation (4.26) becomes:

AVK) <=3, (k)" FHOOBUR) " HR) 35, (0)~E(R) BUOY HR) 3, (k)
—~E(kY Bk HB) (k)
+E(k)" By (k)" P P+ 1)~ Q)™ PO H(k)BUR) ™ E (k)
=, (k) H)BUY H), (k)
2L (k) By HOkY' i, (k)+E (k) BUky E(k)]
+ERY (B + B HKY (k)
(P + HEORKY HO' JP0H®BRY By)
=), 0+ E) || By [HH kY, (k) +E)]
+EK0) 1B 1+ HK) PUOH®)BKY™)
+ Bk HK)" PUOH(R(Y ' H (k)" PR)EGk)BR) ™ E)
<—efk)" BkY" elh)+E(R)" [By (1-+1)+ RKY ' [Eh)
<—efk)" BkY " eth)+3E(k)" ROY ' EG)

Based on the matrix property, it is known that:
A, (BUO™ e <e(t)” B(k) e (k) < Ay, (BUO e h)|* (4.29)
A, (R NEW| <& R Ek) < 2 (R JEW (4.30)
where A, (B(k)"') and A, (B(k)") arc the minimum and maximum cigenvalues of

matrix B(k)™' respectively, and ||é(k)|| is the Euclidean norm of (k) as ye(k)" (k) .

Plug Equations (4.29) and (4.30) into Equation (4.28), it can be seen:

V)<, (BHY Je) +32, Ry |Eo| @4.31)

&9

Since there is no prior information about the measurement noise, this study
simplifies the measurement noises for each output as uncorrelated but with the same
variance (k) as follows:

R(k)=r(k)I (4.32)
where r(k) is a positive scalar, I is the 7 X 7 identity matrix, and n is the dimension of

output vector. Then

Ay (R()) = % (4.33)

The minimum eigenvalue of B(k)™' is the inverse of maximum eigenvalue of B(k):

! 4.34
Ay (B(K)) 339

2, (B)=

The maximum eigenvalue of B(k) should follow the relationship:

—Z,l B(k))< A, (B(k))< Z,I B(k)) (4.35)
where A, (B(k)) is the ith eigenvalue of B(k) . The summation of eigenvalues of a matrix

equals the trace of the matrix and it is known that the covariance matrix B(k) is positive

definite, which leads to:

> 2,(B(k)) = Trace(B(k)) = Trace([H (k)" P(k)H (k)])+ nr(k) = h(k) + nr(k) (4.36)

where T race(lH (k)" P(k)H (k)J) is the trace of H (k)" P(k)H (k) and is denoted by h(k).

Plug (4.36) into the left side of (4.35):

1 h(k) +r(k) < A,, (B(k)) (4.37)
n

90

Plug (4.37) into (4.34):

1 n

A (B(k)™")< = (4.38)
m(()) lh(k)-i-r(k) h(k)+ nr(k)

n

Hence, the inequality (4.31) will be satisfied if

AV(K) <—1;||é(k)||2 32, Rk |E k] (4.39)
—h(k)+r(k)
n
Plug (4.34) into (4.39):
1 o 3 =2
AV < ool + s 5] (4.40)

— h(k)+r(k)
n

The training process is convergent if AV (k) < 0, which leads to the following

sufficient condition based on (4.40):

M el
r(k)>—1"1 -
e -3)|

(4.41)

Suppose ”é (k)H is bounded by & (k) (& (k)= Hé (k)||), consider the following two cases:

Case I: The output estimation error ||é(k)||2 is greater than 4& (k)*:
et > 4& (k)? (4.42)
then plug (4.42) in (4.41):

3hK) |z, 2
lew] _ 3h(k)

> _ 2 _ 2
dew) -3gwm]

r(k) (4.43)

91

It can be seen that if Inequality (4.43) holds true then (4.41) holds true, and then

AV (k) <0 as guided in (4.40), and the training process is convergent. & (k) , the upper

bound of the norm of & (k) in (4.42) should be known as a prior condition. As & (k) is

the residual of liner model of e(k) as shown in (4.15), it follows the normal distribution:

E(k)~N ([()]nxl ,r(k)I) based on the extended Kalman filter algorithm. Each element

nxn

of E(k), &, (k), follows the normal distribution as &, (k) ~ N(0,7(k)). Then the upper
bound of &, (k) can be approximated as nm . If n is selected as 4, then at least
99.99% &, (k) values are bounded by 4\/716) . As an approximation, & (k)* is taken as
(4/r(k))?n, which is 167(k)n.

Thus, (4.42) becomes:

)] > 4& (k) = 64r(ieyn (4.44)

Combine Inequalities (4.43) and (4.44), it is found that

) _ oy < JEE
n 64n

(4.45)

When (4.45) holds, both (4.42) and (4.44) hold which leads to AV (k) <0, and the

training should be convergent as guaranteed by the Lyapunov method.

92

To implement (4.45), the training error information at each step, e(k) , should be

,or (k)| > y/192h(k) , (41) is satisfied if r(k) is

_ 2
considered first. When 3h(k) < ||e(k)||
n

64n

3hk) o el

set as the average of as follows:
n 64n
1 30(k) e’
r(k) = 5{ W, ” } when [e (k)| > \/192h(k) (4.46)
n n

Under this circumstance AV (k) < 0, which means a convergent training process.

Case 2: The output estimation error ||é(k)||2 is less than 4& (k)*:

The training error is bounded and no adaption needs to be implemented at training
step k.
Under this circumstance, AV (k) <0 can always be satisfied using Equation
(4.46), which means a convergent training process. For some engineering applications
where there is only one output (n=1), the R adaption law can be further simplified as

follows:

) = % (3 HO POOH)+ 6’22J when |e(k)| > \[192H (k)" P(k)H (k) (4.47)

It should be pointed out that the above condition (Equations (4.46) or (4.47)) is
the sufficient condition for a convergent training process instead of as a necessary

condition.

93

The Development of O Adaption Law

In the previous section, a noise parameter R is adapted using Lyapunov method

to guarantee the convergence of training process. Furthermore, another noise parameter

Q is to be estimated to accelerate the training process. Estimation of Q falls in the region

of adaptive filtering technologies, which simultaneously estimate the statistics of the

noise and update the Kalman gain during the filtering process.

Generally four approaches are developed to estimate the noise covariance matrix:

1)

2)

3)

Bayesian estimation was applied as in [Alsp74], which requires an a priori
specification of a parameter density function, and sufficient statistical
information to infer such density function is often not available in real
applications. Also, usually prohibitive computation cost hurdle its wide
application, especially for online estimations,

For the correlation method, autocorrelation functions of innovation sequence
are constructed and the unknown covariance can be inferred by solving a set
of equations [Mehr70]. However, to apply this method, system is assumed to
be completely observable and controllable which is not valid for RNN
training system model,

Covariance matching method makes the residuals consistent with their
theoretical covariance and hereby solves the unknown matrices. The
covariance usually does not match the actual one and the convergence of the

method is therefore often doubtful. [Mehr72], and

94

4) The maximum likelihood method has been also used to adapt EKF. It can
generate efficient, unbiased, and consistent estimate.

In this study, the maximum likelihood method is applied to estimate Q because it

has the following advantages:

1) The maximum likelihood method can lead to an efficient estimate (an

unbiased estimate with the lowest covariance);

2) It is consistent. The likelihood equation has a solution that converges to the

true value of the variables as the number of sample grows to infinity; and

3) It is suitable for online application. On the other hand, the method may

generate biased estimate for small sample size. However, because the
maximum likelihood estimates tend to have the true value of the estimated
variable close to the center to their distributions, the bias is often negligible
[Mayb82].

To apply the maximum likelihood method, an appropriate likelihood function
should be chosen at first.

The following conditional density function is selected because it exploits all a
priori information available and can yield an effective and computationally feasible
estimator [Mayb82]. Consider the conditional density function and using Baye’s rule:

Faw.rang = Fawoirang Frog

= Jawomawng Srwnrwi
=/ WY (k)G f;(k)\Y(kfl),q -, Y (k-1)lg (4.48)

k
= W(k)\Y(k),qH f;(j)\y(j,l),q
j=1

95

where w(k) is the state vector (weight vector) at time step &, Y (k) is the measurement
history {)7(1),)7(2),...,)7(1()}, g 1is the vector composed of diagonal elements of matrix Q.

To simplify the calculation, instead of the whole measurement history Y (k), only
the n, most resent measurement history are considered. Thus a fixed sample size n, of
measurement history Y, (k) = {j/(k -n,+1),y(k—n, +2),.,y(k - 1),)7(k)} is used in
Equation (4.44), which leads to the new conditional density function:

fW(k),YN(k)IY(k—"w),f? - fW(k)IYN(k),Y(k—"w),f? ’ fYN(k)IY(k—"w),f?

fYN (k)Y (k=n,)lG

= fwk)lYN(k),Y(k—nw),q I
Y (k=n,)q

= f.

WY (k),q f
Y (k=ny,)lq

- f S sovig (4.49)
w(k)Y (k),q
fY(k—nw)If?

_ f f?(k)IY(k—l),f?'fY(k—l)lf?
= S wk)Y (k)q f
Y(k-n

w)ld

i
= ~f%<knY<kxq I_I ~f}<jMY<j—1xq

j=i-n, +1
Each of the densities in Equation (4.49) can be assumed as a Gaussian density function:

Sstowing W (k)| 6(k), p)

! L T ORI (4.50)
= - _ P _
Y P exp{ S =] Pio (k) w(k)]}
f;(/)\Y(/—l),q (77(]) | 6(] _1)a /_j)
1 1 . (4.51)
= exp{——[ﬂj)—H(j)wu—l)] B(j)" [7(1)—H(j)w(j—1)]}
(2r)"*[B()) 2

96

where y(k), 6(k), y(j) and p are the realization of random variables w(k), Y(k),
y(j) and g respectively, and m and n are the dimensions of the states and output
respectively, P(k) is the approximate covariance matrix, w(j) is the estimate of W,
H(j) is the orderly derivatives matrix, and B(j)=R(j)+H(j)" P(j)H(j) is the
covariance matrix of output.

The likelihood function is represented as L:In(f_ . To take

Ww(k),Yy (k)Y (k=n,,),q)
derivative of the likelihood function with respect to g and make it zero will give the

maximum likelihood equation as following:

”{P(k)la;m}‘z, > M HOT B G+ itrﬂA(f)‘—A(j)‘f(j)f(j)TBm‘j _o (4:32)
3 a=q (i)

where 7, =y, — H(t,)w(j —1) is a notation for simplicity.

To enhance online applicability, some less sensitive terms in Equation (4.52) are

neglected and thus form an approximated maximum likelihood equation as follows:

[P 1)+ 0 - 1) = P(j) - Aw(j)ai(/)" |=0 (4.53)

J=k—-N+1
where Aw(j) = w(j)—w(j—1) is the difference of estimated weights at k£ and -/ time
steps, and Q(k) is assumed constant over the period k—n +1 from to k [Mayb82]. Then

the O(k) matrix can be estimated as follows [Mayb82]:

O(k) = ni{ Zk: (AW AW()T |+ P(k) —P(k - nw)} (4.54)

w | j=k=n,+1

The R and Q adaption-based training is summarized in Figure (4.1). Training

parameters such as the window size N, the noise parameters Q(0) and R(0), and the error

97

covariance P(0) should be specified first. The adapted R(k) and Q(k) at each training step

are fed into the EKF training algorithm to update the network weights. The training

process iterates until the stop criteria are met, and the trained weights are obtained.

w(0),P(0),Q(0),R(0),and n,

L

v

(k)| >192n max(h, (k) No R(k) nochange

Yes

Adaption of R(k) using the Lyapunov method
Equation (4.46)

<

@ No Q(k) no change —
Yes

Adaption of Q(k) using the maximum likelihood method
Equation (4.54)

<

Training 3
data Application of extended Kalman filter algorithm training
Equations (4.11-4.13)

l

Stop criteria

Trained weights

Figure 4.1: Flow chart of the convergence study

Robustness Analysis of RNN

Robustness Analysis
In addition to the training convergence study, network estimation robustness is
also studied; a robustness measure is developed to quantify the robustness of a RNN

network.

98

The major part of the proposed method is to take uncertainty propagation analysis.
The two most commonly applied numerical approaches for uncertainty propagation
analysis are Monte Carlo analysis and Monte Carlo with Latin Hypercube analysis.
Monte Carlo analysis is numerical experimentation. Different from using closed form
analytical expression to assess the propagation of uncertainty, Monte Carlo method
repeatedly generates samples based on the probability distribution of the uncertain
parameters to characterize the uncertainty in propagation [Driv00]. Application of Monte
Carlo method in the NN robustness study often includes the following steps:

1) Define the domain of perturbation for each uncertain parameters (weight),

2) Draw a set of possible values of each of the uncertain parameters randomly

from the domain,

3) Calculate the output of NN that corresponds to these particular values of the

parameters

4) Repeat the above two steps and generate corresponding NN outputs, and

5) Aggregate the individual results from step (4) and get the statistics of NN

outputs.

However, if the dimension of parameters (weights in this study) is large, the
computation cost would make the method prohibitive to apply. To alleviate the problem,
in this study a deterministic sampling method, namely unscented transform, is applied.

Instead of Monte-Carlo method, unscented transform is chosen as the
computational method in this study due to its high efficiency that it can capture high

order information about distributions using only a small number of samples [Juli97].

99

Using uncertainty propagation analysis, a new robustness measure is proposed

here in two steps:

1) Input sample generation using the Latin hypercube sampling (LHS) method

[Helt03]; and
2) Robustness quantification using the unscented transform.

This procedure is shown in Figure (4.2) and elaborated as follows.

l Input space

Sampling using Latin hypercube method

Initial weights and v Input samples
their perturbation

» RNN

Sigma points
A 4

Computing RNN output covariances
and standard deviations

Output covariances
standard deviations

Taking L-1 norm

Local robustness measures

Averaging

l Global robustness of RNN

Figure 4.2: Proposed procedures for robustness quantification

The first step is to uniformly generate n samples ()?(l),)?(2),...,)?(n)) from the

whole input space. This is done by implementing an LHS method, which is a type of
stratified Monte Carlo sampling methods [Loh96] and can be nearly five times more

effective than other traditional sampling methods [Swid00O]. During the first step n

100

samples are generated, and they are to be fed into the trained network, which may
undergo certain weight perturbations.

The second step is to quantify the network robustness using the unscented
transform method based on the generated n samples. The proposed unscented transform-
based robustness quantification approach includes two measures: 1) local robustness for
network robustness for a given input only; and 2) global robustness to evaluate the
network robustness by collectively considering all possible inputs from the whole input
space. As RNN is a nonlinear function which maps both inputs and weights to network
outputs, outputs can be viewed as a function of weights for given inputs. As so, the local
robustness can be interpreted as follows: for a specific input, how much do the outputs
vary when the weights deviate from the trained value? It can be seen that the local
robustness is input dependent. In this study, the local robustness for any input is defined
as the L-1 norm of the output standard deviation vector.

During the second step, the distribution of perturbed weight vector should be
determined first. The trained weights are assumed to be contaminated with zero mean

finite variance multivariate normal distributed noises [Eick07], and the contaminated
weight vector i follows the normal distribution as W oc N(w*,Z), where W' is the

trained weight vector, which is a column vector transformed from the trained weight
matrix by cascading the rows of the matrix into a row vector and further taking transpose,

and X is the covariance matrix of w. The standard deviation of w,, which is the ith
element (weight) of w, is determined as follows:
(4.55)

* .
o, =Lw ,i=12,...,n

w; 1

101

where o, is the square root of the ith diagonal element of X, n, is the dimension of the

weight vector, and L is the perturbation level which is a constant specified based on
application needs.

The unscented transform is usually used to compute the statistics (mean and
covariance) of a random vector which undergoes a nonlinear transformation. In this study
the unscented transform is used to compute the statistics of RNN output due to

perturbations introduced into the trained weights. With / as the dimension of the trained

weight vector, 2/ +1 sigma vectors ¥, (/ =12,...,2/ +1) are generated around w based
on the mean (W’) and covariance (X) of the contaminated weight vectors:
Ko =W (4.56)

7= + [T+ 2)z) i=12,.] (4.57)

7o=w -+ 1) i=l+10+2,.21 (4.58)
where A =a’(L+c)—/ is a scaling parameter, a is a constant which determines the
spread of the sigma vectors around W and it is set as 0.1 in this study [Wan01], c is a
secondary scaling parameter and is set as 0 [WanO1], and ((l + /1)2)1_ is the ith column
of square root of matrix (/+A)X. Accordingly, 2/ +1 new RNNs are formed based on

the 2/ +1 sigma vectors.
To compute the local robustness measure for a jth sample input x(;), the sample
is fed into these 2/ +1 networks respectively, and the corresponding outputs are obtained

and called as the outputs of sigma vectors v, (j) (i=12,....2[+1).

102

v, () =1) i=0,.,2l (4.59)
where f(-) is RNN mapping function.
The mean of network output y(j) can be obtained by weighting the outputs of

sigma vectors:

21/
Y = 2w () (4.60)
i=0
where w™ is a weight used in the unscented transform. The covariance of y(j), ;;, is
obtained by:
2/ B B ;
5 = 2 W (P =V GG = () (4.61)
i=0

The weights in Equations (4.56) and (4.57) are given by

w" = L1+ 1)
w =2/ +) +(1—a’ +B) (4.62)
w™ =w =1/{2(1 + 1)}, i=1,..21

where [is a constant used to incorporate any prior knowledge of the distribution of
W' and is set as 2 for normal distributions [Wan01].
Suppose y(j) is RNN output vector for input sample x(j), the standard deviation

of its kth element (y, (/)) can be written as:

Oy = \lzﬁ(j)(k,k) (4.63)

where X _

5D k) denotes the kth diagonal element of X

¥ -

103

A vector composed of the standard deviations of all the elements of output vector

y(Jj) can be written as:

Oy = [Gyl 12320y, (1) J (4.64)

where 7, is the dimension of y(;).

The L-1 vector norm, which computes the summation of absolute value of all

elements of a vector, is used as the local robustness measure for the sample input x(j):
R() =[G, (4.65)

For finite dimensional vector spaces, all vector norms are equivalent [Horn90],
and the L-1 norm is selected here due to its robustness to outliers and its easiness for
implementation [Kwak08].

Finally, the global robustness measure which accounts for effects on all the input

samples from input space is defined as the average of the local robustness measures as

R, = lZR(j) , where n is the number of samples.

J=1

Conclusions
This chapter carries out two performance studies on the proposed network.
The study of training convergence is conducted by adapting the parameters of
process noise and measurement noise. The Lyapunov method has been applied to adapt
the covariance of measurement noise to guarantee training convergence. First, a candidate

Lyapunov function is selected and its rate of change is computed which is a function of

104

the concerned parameter. The adaption law is then derived by making the function
negative. In addition, the maximum likelihood method is applied to estimate the
covariance of process noise to accelerate the training process. A likelihood function is
formed by taking the joint probability density function of the weights estimation and
outputs of network given the concerned parameter of the process noise. The MLE
estimator of the parameter is derived by maximizing the likelihood function.

In addition to the training convergence, the study of estimation robustness of the
network due to perturbations in trained weights is also carried out. Gaussian noise has
been added into the trained weights which results in uncertainties in the network’s output.
An uncertainty propagation analysis is then conducted using the unscented transform to
quantify the uncertainties in the network’s output due to the perturbation. A robustness
measure is developed in the study to be compared with the existing sensitivity-based
measure and performance-loss based measure.

Both the performance studies are important in successful implementation of RNN

in modeling non-linear dynamical systems.

105

CHAPTER FIVE

MODELING OF A NON-LINEAR DYNAMICAL BENCHMARK SYSTEM

Abstract

In this chapter, the techniques and algorithms developed in Chapter three and
Chapter four are verified with a non-linear dynamical benchmark system. A RNN and an
optimized RNN are developed to model the system. Modeling capability, training
convergence, and robustness of the networks are investigated. Results show both
networks are capable of modeling the system. In addition, RNN are better than two
FFNN (a MLP and a FFCNN) in terms of training accuracy and speed. Furthermore, from
the study of training convergence, it is found that the proposed R adaption law can

guarantee the training convergence of the network and the proposed Q adaption law can

accelerate the training convergence. Finally, the proposed robustness quantification
method is also applied to the networks and is compared with another two methods.
Results show that the proposed robustness quantification approach is more efficient,
generic, and flexible to quantify the robustness of a recurrent neural network. All
together, the results show that the developed optimized RNN has advantages over FFNN
in modeling the non-linear dynamical benchmark system and the convergence study and

robustness study can further improve the network’s performance.

106

The Benchmark System

To validate the proposed adaption laws, a non-linear dynamical benchmark
system [Nare92], which represents a single-input single-output (SISO) non-linear plant,
has been modeled using RNN. Such a benchmark system (Equation (5.1)), as shown in
Fig. (4), has been selected due to its generality as well as analytical tractability:

It can be seen from Figure (5.1) that the output sequence is a piecewise function

which is composed of four regions: [1,250], [251-500], [501-750], and [751-1000].

y,(k+D)=f(y,(k),y,(k=1),y,(k=2),u(k),u(k -1)) (5.1
where lu(k), v, (k)J represents the input-output pair of the SISO plant at time step &,

XX, %, X5 (x; =)+ x
f(xl,xz,x3,x4’x5): 1 X X3 X5 (X5 .

> > , and
I+x," +x,

sin(7k/25), 0<k<250
1.0, 250 <k <500

u(k) =
-1.0, 500 <k <750
0.3sin(7k /25) + 0.1sin(7k /32) + 0.6 sin(k /10), 750 < k <1000
1
I
& (%0.6
0.5 W UU“
g.- O 240 260 Tirzniostesoo 320
(@)
05

0 200 400 600 800 1000 . @
Time step

Figure 5.1: The output of the non-linear dynamical benchmark system

107

Recurrent Neural Network Implementation

A RNN and an optimized RNN are formed to model the system and their
modeling result is compared with the measurements as well as the results of an FFCNN
and an MLP approaches. The following tasks are conducted to train a RNN to model the
benchmark system:

1) Training patterns preparation

In this study, a neural network is implemented to model the benchmark system, or

in other words, to predict the output at next time step y,(k +1) based on six inputs such
as current and previous outputs -y, (k),y,(k —1),y,(k —2), current and previous inputs -

u(k),u(k —1) and a constant bias 1.

1000 training patterns are formed using Equation (5.1) with the zero initial
condition. Each training pattern contains one set of inputs and corresponding output.
Usually training data need to be normalized to alleviate the risk of saturation. However,
in this case the training data are already within the region of [0, 1], hence the
normalization process is unnecessary here.

2) Training parameters configuration.

To train the RNN, some training parameters in the EKF algorithm such as P, O,
and R need to be initialized first. The training parameters configuration is referred from
a previous study [Pusk94] without considering the training divergence issue. Without any
specific note, in this study the error covariance matrix P , the covariance matrix of
process noise (, and the measurement noise covariance matrix R are all diagonal

matrices. Each of the diagonal elements of P is initialized as 100. Each diagonal element

108

of the covariance matrix of process noise Q is initialized as 0.01 and this value descends
linearly within 100,000 training patterns until Q0 reaches a minimum limit of 0.000001.

Similarly, each diagonal element of the measurement noise covariance matrix R is
initialized as 100 and it also descends linearly until it reaches a minimum value of 2. Both
the settings of R and Q help the training error converge to a global minimum.

3) Training Process Configuration.

First, each weight of the network is randomly initialized in the region of [-1, 1].
Training parameters are initialized as mentioned before. Training patterns are then fed
into the EKF training algorithm (Equations (3.47-3.49)) to train the network weights.
Single pattern training is used here so that the weights are updated after each training
pattern is presented. The training process stops when its stop criteria are satisfied. The
stop criteria is used to guarantee the final training error is small so that the network is
capable of modeling and at the same time not too small which leads to the over-fitting
problem. In this study, the stop criteria are determined by trial-and-error: i) the number of
training epochs (a complete pass through all of the training patterns) used should be less
than 100 and the training process stops after 100 steps if no other stop criteria are met; or
i1) if the training error is less than a predetermined case-dependent value (here is 3%) and
the difference between the current error and the error of 20 epochs before is less than
another predetermined case-dependent value (here is 0.03%).

4) Network structure determination

RNN network structure is first determined by setting the numbers of input

neurons, hidden neurons and output neurons. Six network inputs are selected as follows:

109

three outputs at the previous steps y,(k), y,(k—1), and y,(k—2), two control actions
u(k) and u(k—1), and a constant bias 1; and the network output is y,(k +1), which is

the output of the benchmark system at the next time step (k+7). The number of hidden
neurons is determined by a trial and error method, and the final training error results are
listed in Table (5.1). According to a rule of thumb [Scha97], 13 hidden neurons are
chosen first and the training error is found to be 3.2%. Afterwards, networks with fewer
hidden neurons are selected and the corresponding training errors are investigated. It is
found that RNN with more than 8 hidden neurons is able to adequately model the tool
wear progression (the final training error is less than 5%). For example, the training error
of the network (6-9-1) with 9 hidden neurons (3.7%) is quite close to that of the network
(6-13-1) with 13 hidden neurons (3.2%). However, for the network with 8 hidden
neurons, the training error becomes relatively large (5.7%). The training error results for
selected networks are shown in Figure (5.2). A simple network structure is always
preferred to reduce the risk of over-fitting, so the network with a 6-9-1 structure as shown

in Figure (5.3) is selected in this study.

110

Table 5.1: Training error with different network structure

Network structure Training error (%)
6-13-1 32
6-11-1 3.3
o1 3.7
es 1 5.7
0.16 | | ‘
—6-13-1 RNN
N 6-11-1 RNN |
e 5.9.1 RNN
ol = 6-8-1 RNN |
o
o 0.1 |
o
£
'E 0.08’: |
0.06/} . |
0.04/ " ?
0.02 ' | | ‘
! - 10 60 80 100

Training epoch

Figure 5.2: Training errors of RNN with typical structure configurations

111

State feedback loops
(dash lines)

y, ()3, (k=1),y,(k=2) |
u(k),u(k —1),1) / l \ iyp(k+1)

feedforward loops (solid lines)

6 input neurons | 9 hidden neurons 1 otitput neuron

Figure 5.3: Modeling the bench mark system by a 6-9-1 RNN

Modeling Performance of the Recurrent Network

An MLP, an FFCNN and a RNN are implemented to model the system. The
networks are trained using the training data which are assumed to be able to represent the
overall characteristics of the system being studied. Therefore, through the training
process, networks capable of modeling the training data are expected to represent the
dynamics of the benchmark system.

During the training process, the appropriate network architecture is determined
first as stated in the previous section. Using a similar trial and error approach, the MLP
has been found to be 6-11-1 and the other networks (FFCNN and RNN) are 6-9-1. The
same training data are used to train the networks. 400 training epochs are used since MLP
converges much slower. The modeling results for MLP, FFCNN, and RNN are shown in
Figures (5.4-5.6) respectively. Two discontinuous regions (250-300 and 500-550) are

magnified to see more details of network’s modeling performance no these complex part.

112

Output

Table 5.2: Training error with different types of network

Network Training error (%)
MLP 6.8
FFCNN 3.8
RNN 1.1
1 5 T T 1k — Desired output
—Desired output|| | } [MLP output
""""" MLP output || 08

260 280 300
Time step

— Desired output
----- MLP output
\A}’\NWNh
1 ‘ T , -0.8
0 200 400 600 800 1000 0.9 §
Time step 500 520 540
Time step
Figure 5.4: Training results of MLP
! L 0.9 :Desiredomput
— Desired output |- 08 FFCNN outpu
""""" FFCNN output =

260 270 280 290
Time step

= Desired output
""" FFCNN output

0 200 400 600 800
Time step

1000 sl

500 510 520 530 540 550
Time step

Figure 5.5: Training results of FFCNN

113

0.9 — Desired output

1r s — Desired output | | o Il 4 = RNN output
| S RNN output 07

250 260 270 280 290 300
Time step

Output

— Desired output
""" RNN output

0 200 400 600 800 1000
Time step 500 510 520 530 540 550

Time step

Figure 5.6: Training results of RNN

Moreover, to better compare these networks’ modeling accuracy, the modeling
errors are depicted in Figure (5.7). Training error and modeling error are two related but
different concepts. The former one is defined by Equation (3.51) which accounts for the
overall modeling error for all the training patterns of an epoch while the latter one
accounts for the difference between target value (measurement) and the corresponding
network output for a pattern. The sum of square errors in the four regions ([1-250] [251-
5001 [501-750] [751-1000]), and the overall region ([1-1000]) are listed in Table (5.3)

Table 5.3: Modeling errors of the networks

Network Sum of square of modeling error
1-250 251-500 501-750 751-1000 1-1000
MLP 0.3381 0.3173 0.0722 0.3654 1.0929
FFCNN 0.0435 0.2792 0.0093 0.0065 0.3385
RNN 0.0053 0.0021 0.0055 0.0024 0.0154

114

0.3f

0.2r

0.1

rrmretes

Modeling error

-0.1

-0.2r

0 200 400 600 800 1000
Time step

a) RNN

0.3f

0.2f

0.1

Modeling error
Modeling error

-0.1r

-0.2r

0 200 400 600 800 1000 0 200 400 600 800 1000
Time step Time step

b) MLP ¢) FCNN

Figure 5.7: Modeling errors of the networks

Some observations can be drawn from the results:

1) The largest modeling errors are distributed around the discontinuous regions
around time steps 250, 500, and 750 because theses regions contain abrupt
changes and are most difficult to be modeled.

2) For MLP, the error distribution is relatively even and there are large steady
errors (£0.1) in the first and last regions.

3) For FFCNN, the modeling error at time step 500 is the largest among all the

results, although its average modeling error is smaller than the MLP.

115

4) The distribution of modeling errors of RNN are similar to that of FFCNN
within the four regions, while in the discontinuous regions the modeling
errors of RNN are much smaller which indicates that RNN works better in
modeling non-linear dynamical systems.

Comparing all the modeling results, RNN can most accurately model the

benchmark system.

Training Convergence Study of Recurrent Neural Network

Apart from the modeling accuracy, some other aspects of RNN are also studied.
Training convergence and estimation robustness are studied and results are shown in the
following sections. Training convergence studies are conducted for two objectives:

1) To make the training process convergent, and

2) To make the training process converges faster.

In this study, the first objective is achieved by adapting the covariance matrix of
process noise R of the EKF training algorithm, while the second one is achieved by

adapting the covariance matrix of measurement noise O of the EKF.

R Adaption Law for Convergence Guarantee
The R adaption law is verified with the case study first. As mentioned in Chapter
four, training divergence of RNN may occur due to improper choice of training noise
parameters. Figure (5.8) shows the result of a modeling scenario as 7 is first initialized as

5 and it then decreases linearly to 0.5 at —4.5x10-5 per training pattern during first

116

100,000 training patterns. The corresponding modeling error is also shown in Figure
(5.8), which diverges right after 50 patterns even before finishing a training epoch. At
that time, » has been linearly reduced from 5 to 4.9978 as in Figure (5.9). The modeling
error for a certain training pattern is defined as the difference between its desired output

and RNN output.

.80

‘ — Desired output .-
"""" RNNoutput |-~ g0}

40
20r

Output

-20

Modeling error
o

40t

-60p

T80

-800 20 40 60 80 100 0 10 20 30 40 50 60 70
Time step Time step

Figure 5.8: Training result and modeling error without R adaption law

5.001

5.0005¢

4.9995
4.999¢
4.9985
4.998¢

4.9975 ' ‘ ‘ ‘
0 10 20 30 40 50
Training pattern

Figure 5.9: r values during training without R adaption law

117

To verify the effectiveness of the R adaption law in stabilizing the training
process, RNN is further trained by applying the proposed R adaption law. As shown in

Equation (4.43), the R adaption law takes effect when the modeling error is beyond a

certain boundary (|e(k)| > \/ 192H (k)" P(k)H (k)). As in the aforementioned divergent

case, the r is first initialized as 5 and gradually reduced whereas the R adaption law is
concurrently implemented. Corresponding to Figure (5.8), Figure (5.10) shows the
convergent training results. Using the R adaption law, the training process is finally
convergent and the modeling errors are much smaller and its final training error =3.6%
which is comparable to the stable RNN training error, 3.7% in the previous case shown in
Table (5.1).

Figure (5.11) shows the magnitude of modeling errors gradually decreases from 2
to 0.015 during the training process. Corresponding to Figure (5.9), the r values during
training for this convergent case are shown in Figure (5.12). It can be seen that when the
precondition in R adaption law (Equation (4.43)) is met, R adaption law takes effect —
the » values deviate away from the straight line as shown in Figure (5.9). The
oscillations in Figures (5.11) and (5.12) are the outcomes of the R adaption law. From
Figure (5.11), it can be seen that relatively big modeling errors (about +2) are generated
in the oscillation region, while with the R adaption law the error gradually decreases
during the training process and finally reach a stable small value 0.015. From these
results it is clear that the R adaption law make the previously divergent training process

become convergent.

118

Output

0.5]

— Desired output | |
"""" RNN output

— Desired output |
"""" RNN output

250

270 280 290 300
Time step

260

400 600
Time step

200

Figure 5.10:

800

1000

— Desired output
"""" RNN output |]

Training results with R

520 530 540 550
Time step

510

adaption law

B +— Oscillation

Modeling error
o

-2

-3

2 4 6

Training pattern

o
-
o

x10

Figure 5.11: Modeling error during training with R adaption law

119

40 T T T T

+«— (Qscillation

2 4 6 8 10
Training pattern % 10*

Figure 5.12: r values during training with R adaption law

Q Adaption Law for Convergence Speed
In addition to the R adaption law, a QO adaption law derived from the maximum

likelihood estimation method is applied to speed up the training convergence process.

Four simulation scenarios are studied to appreciate the importance of the QO adaption law:
1) The Q matrix is set as a null matrix, which means a zero covariance matrix of
process noise or the process noise is removed from the EKF training
algorithm;
2) RNN is trained using constant Q (Q = 0.011);
3) RNN is trained as follows: each diagonal element of Q is initialized as 0.01

and this value decreases linearly during 100,000 training patterns until it

reaches a limit o 0.000001; and

120

4) The proposed Q adaption law is implemented during the training process. In
all the cases r is initialized as 100 and it is reduced linearly until » reaches a
limit of 2 as in a previous study [Pusk94]. It should be pointed out that the
diagonal elements of O under the third scenario are always the same whereas
they might be different under the fourth scenario.

For the above four scenarios, the training process is found always stable and
Figure (5.13) illustrates the effecting of introducing the Q adaption law during training.
The final training error after the training process is listed in Table (5.4). As seen from
Figire (5.13), the Q adaption law has helped achieve the best convergence performance
with a minimum final training error (3.2%) and fastest training speed, followed by the
decreasing Q setting (Scenario 3 with a 3.7% error), the constant Q setting (Scenario 2
with a 3.9% error), and the zero Q setting (Scenario 1 with a 4.8% error). Different from
the other cases, in Scenario 1, the training error fluctuates during the training process.
The fluctuation is due to that the update of weight is only driven by the measurement

noise and the modeling error fluctuates during the training process.

121

01 T T T

0.08 Q=0.011]
S 0.07 /%
2

Decreasing Q

2 0.06

Trainin

0.05¢
0.04¢

0.03¢

0'020 20 40 60 80 100

Training epoch

. Figure 5.13: Comparison of RNN training with different QO settings

Similarly, to show the effectiveness of the proposed Q adaption law, same sets of
simulations have been conducted for the optimized RNN network. The training error
results are listed in Table (5.4). As shown in Figure (5.14), the results are similar to those
in Figure (5.13) except that the training errors decrease much faster owning to the
connectivity optimization process mentioned in Chapter three. Again, the Q adaption law
has helped achieve the best convergence performance with a minimum final training error

(3.0%) and fastest training speed, followed by the decreasing O setting (Scenario 3 with
a 3.6% error), the constant Q setting (Scenario 2 with a 3.8% error), and the zero Q

setting (Scenario 1 with a 4.3% error).

122

0.065 ; ; :

0.06

J
1

0.0557

0.057 Q=0.011

fe—— |
1 L

Decreasing Q

0.045/ '
' Q adaption law

]
1

Training error

0.04

..-':’.-'Ull. i y

0.035¢

0.03 L\

0'0250 20 40 60 80 100

Training epoch

T
<

Figure 5.14: Comparison of optimized RNN training with different O settings

0.09

— OptRNN with Q adaption law
oo | RNN with Q adaption law

o o
o o
o) ~
T T
1 1

o

o

a
1

Training error

0 20 40 60 80 100
Training epoch

Figure 5.15: Comparison of training process of RNN and optimized RNN with QO

adaption law

123

Figure (5.15) is drawn to better illustrate the effectiveness of O adaption law on
RNN and corresponding optimized RNN. Although the training speed of optimized RNN

is much faster, the final training errors of both cases are comparable (3.1% for RNN and

3.0% for the optimized RNN).

Table 5.4: Final training errors of different Q settings

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
RNN 3.1% 3.9% 3.7% 4.8%
OptRNN 3.0% 3.8% 3.6% 4.3%

Figure (5.16) shows the trace of Q during training for Scenario 1 and Scenario 3.
Trace of Q is drawn versus training patterns. For Scenario 3, the diagonal elements of Q
linearly decrease during training process while for Scenario 1, the trace value reduce
dramatically first and then staying on a periodical-like feature. To watch the details of
Part (b), the region of training patterns [S001, 7000] is depicted in Figure (5.17). The
training patterns [5001, 6000] account for training epoch 5 and the training patterns [6001,

7000] account for training epoch 6. It can be seen that in each training epoch, trace of Q

is relatively high in the discontinuous regions, such as regions close to training pattern

5000, 5250, 5500, 5750 etc.

124

0.4

0.4

Trace(Q)
o o
N @
©
w

Trace(Q)
o
N

0.1 0.1 |
0 ‘ : : : OM
0 2 4 6 8 10 "o 2 4 6 8 10
Training pattern x 10" Training pattern «10*
(a) Trace of Q during training for Scenario 3

(b) Trace of Q during training for Scenario 1

Figure 5.16: Trace of O during training processes of Scenarios 1 and 3

Epoch 5 Epoch 6
0.04f .
0.03f
g
(0]
S 0.02
=
0.01}]
o- , , ,
5000 5500 6000 6500

7000
Training pattern
Figure 5.17: Trace of Q in training epochs (5 and 6)

Q is diagonal matrix. The diagonal element of Q after the training process is
shown in Figure (5.18). In the training Scenario 3 the diagonal elements are equal while

in the training Scenario 1 the diagonal elements are varied. It is obvious that training

Scenario 1, which uses the proposed O adaption law, has more freedom in setting Q.

125

Qk,k

1 x 10 8 x 10
*
0.8¢ 1
6 L i
0.6 1
ox' 4 L 4
0.4¢ 1
W e A A A e o e e Ak ek ek ek ek e ek R ok
2 L i
0.2 : *
o * + R
*
0 . . . 0l + * ***1&*;* bl S L L Y
0 10 20 30 40 0 10 20 30 40
k k

(a) Diagonal elements of Q after training for
Scenario 3

(b) Diagonal elements of Q after training for
Scenario 1

Figure 5.18: Diagonal elements of Q after training scenarios 1 and 3

From the training convergence study, the following conclusion can be drawn as:

1) The R adaption law can stabilize the training process by increasing R values
when modeling error in training is large. Generally small R value put more
confidence to the measurement hence it is possible to make the training
process converge fast. However, too small R value may make the training
process diverge. Hence it is critical to use the R adaption law to guarantee the
training convergence.

2) The Q adaption law can adapt Q during training which can accelerate the

training convergence. It is further found that when the modeling error is

relatively large, the Q values are enlarged to drive the training process more
efficiently; when the modeling error is very small, the Q values are adjusted

to be small, which means there is no need to change the weights too much.

126

Altogether, the weight update is driven by the two noises; the developed adaption
laws can adapt these noises and hence stabilize NN training process, increase its training

accuracy, and accelerate the training process.

Robustness Study of the Recurrent Neural Network

In a pervious section, A RNN and an optimized RNN are applied to model the
non-linear dynamical benchmark system. The architectures of these two networks are

both 6-9-1. Six inputs are the current and previous outputs y (k),y,(k—1), and
,¥,(k—=2), two control actions u(k),u(k—1) and a constant bias 1; the output of the
networkis y, (k+1).

In this section, the proposed robustness quantification method is applied to
quantify the robustness of the trained RNN and the optimized RNN. Here two robustness
measures are considered: the local robustness measure, which is input-dependent, for any
specific input sample based on Equations (4.61) and the global robustness measure for
overall network robustness based on the average of local robustness measures. Generally,
the perturbation level should be determined based on experimental observations as the
hardware/software might have during the implementation of ANN. Here the perturbation
level L in Equation (4.51) has been taken as 1% for simplicity and 100 input samples
have been used if not mentioned otherwise. Based on the proposed approach a smaller
robustness value means higher system robustness to external perturbations.

Figure (5.19) shows the varying local robustness measures of NN using 100

sample inputs. Each point represents a local robustness measure for the nth input sample.

127

The global robustness measure is found to be 0.0136 by averaging the local robustness
measures. Similar varying local robustness measure tendency has been observed with
optimized RNN, and its global robustness measure is found to be 0.0067, which is

smaller than that of NN.

Local robustness

0 20 40 60 80 100
nth input sample

Figure 5.19: Local robustness measures for RNN using 100 input samples

The proposed global robustness measure is dependent on the two factors: the
number of input samples and the perturbation level applied. The following sections study
the effects of the two factors on the global robustness value.

Effect of Number of Input Samples on Global Robustness Measure

In general, the more input samples are used, the more reliable the global
robustness measure represents the system robustness performance over the whole input
space. Unfortunately, it is impossible to compute the global measure based on an

exhaustive way by sampling all possible inputs. As so, a minimum amount of input

128

samples, which are needed for global robustness quantification, should be determined
first. To find this minimum amount in this study, different numbers of input samples have
been selected and their corresponding global robustness measures for both RNN and the

optimized RNN are computed and shown in Figure (5.20).

0.02

——RNN
""" & Optimized RNN

0.0153 ,

Global robustness measure

0.01F 1
B
%ﬂm} & B B) 2 & T} &]
0.005} 1
O I i I i
0 20 40 60 80 100

Number of input samples

Figure 5.20: Robustness of RNN and optimized RNN (perturbation level = 1%)

It can be seen that for each network the robustness measures converge to a steady
value quickly after more than 10 uniformly generated input samples are used. Based on a
conservative consideration, 100 input samples are used here and in the following
sections. Based on the 100 input samples, optimized RNN has a global robustness value
of 0.0067, which is smaller than that of RNN (0.0136), implying that optimized NN is

more robust than the regular NN [Kris93].

129

Effect of the Perturbation Level on Global Robustness Measure
The perturbation levels ranging from 1% to 20% have been applied to the trained
network weights to study the network robustness under perturbed weights; and the results
are shown in Figure (5.21). It can be seen from Figure (5.21) that the optimized RNN is
more robust than the regular RNN for all the perturbation levels, which indicates the
connectivity optimization process has improved the network robustness as observed

before [Kris93].

0.35

——RNN
o3- |- & Optimized RNN |

0.251

0.2r

0.151

0.1y

Global robustness measure

0.05r

0O 2 4 6 8 10 12 14 16 18 20
Perturbation level (%)

Figure 5.21: Network robustness values under different perturbation levels

It can also be seen that the relationship between the robustness measure and the
perturbation level can be approximated as linear. This linear pattern is attributed to the
following reason. All the input and output neurons use a linear activation function, only
hidden neurons which adopt a sigmoid activation function that may generate nonlinearity.

However, most hidden neurons work in the linear region of their activation functions

130

under small perturbations, which may lead to a linear mapping between the perturbation

and the robustness measure.

Comparison among Robustness Measures

The proposed robustness quantification approach is further compared with the
performance loss-based and sensitivity matrix-based approaches. The performance loss-
based and sensitivity matrix-based measures are computed based on the training data
mentioned in the previous section. To fairly compare the three approaches, the same
training data are also used to compute the proposed robustness measure, and the LHS
input sampling process is not applied here to generate input samples for the proposed
approach.

For both the performance loss-based and the proposed approaches, the 1%
perturbation level is used. For the performance loss-based approach, 10,000 networks are
generated based on the perturbed weights, and the network output is then compared with
the corresponding desired outputs to compute MSE. The resulting maximum MSE is
taken as the performance loss-based measure. For the sensitivity matrix-based approach,
the sensitivity matrices for all the training inputs are obtained during the training process
and the spectral norm [Kris99] for each matrix is computed as the local robustness
measure. It should be emphasized that the output of the non-linear dynamical benchmark
system is a scalar, so the sensitivity matrix is actually a vector. It is known that the matrix

norm corresponding to the Euclidean vector norm is the spectral norm [Baks80],

131

therefore the spectral norm of a vector is the same as its Euclidean norm. The average of
these norms is used as the sensitivity matrix-based measure.

It should be pointed out that the three robustness measures cannot be directly
compared against each other because they are computed using different criteria. Instead,
the ratio of robustness measures between RNN and optimized RNN is studied to indicate
the effectiveness of any quantification approach. A larger robustness ratio means that this
quantification approach is more sensitive in quantifying the robustness difference.

Table 5.5: Comparison of robustness quantification approaches

Robustness Optimized RNN Robustness
quantification approach RNN robustness (rl) r(l))bustness (r2) ratio (rl1/r2)
Performance loss-based 0.0395 0.0342 1.16
Sensitivity matrix-based 2.7163 1.9988 1.36

Proposed 0.0138 0.007 1.97

Table (5.5) lists the comparison results. For all the three quantification
approaches, the optimized RNN is found to be more robust than RNN. It is found that the
proposed approach (1.97) has the largest robustness ratio than those of the performance
loss-based approach (1.16) and the sensitivity matrix-based approach (1.36). As the
largest robustness ratio value is associated with the most sensitive quantification
approach, it is concluded that the proposed robustness quantification approach is the most

effective one among these three approaches.

Relationship between Proposed and Sensitivity Matrix-based Approaches
Under a small perturbation level the uncertainty propagation analysis used in this

proposed approach can also be related to the sensitivity matrix—based approach. Each

132

element (H, :%) of the weight—output Jacobian sensitivity matrix H represents the

Wi

derivative of an output (y,) with respect to a weight (w,). Using the uncertainty
propagation analysis under a small weight perturbation such as 0.01%, this 7, can be

)
approximated by the standard deviation ratio S, _std(y;") , where std(*) is a standard

std(w);)
deviation operator and std(y!”) represents the standard deviation of output y under a
perturbation with weight w, . This standard deviation ratio S describes the dependence
of the output variation on the weight variation. It should be pointed out that different

from the proposed robustness quantification approach where perturbations are added to

all the weights simultaneously to compute & here each time perturbation is only

¥
added into a specific weight w, to compute std(y”) while all the other weights remain
the same.

Table (5.6) lists the sensitivity matrix-based robustness measures averaged based

on their spectral norms [Kris99], which are computed using the traditional method (H,,)
and the uncertainty propagation analysis (S,), respectively. It is found that the two

results quite match each other; therefore the proposed analysis can also be used to
compute the sensitivity matrix-based measure.

Table 5.6: Sensitivity matrix-based robustness of RNN and optimized RNN

RNN robustness | Optimized RNN robustness
Robustness (H matrix based) 2.7163 1.9988
Robustness (S matrix based) 2.7274 1.9946

133

Efficiency of the Proposed Robustness Quantification Method

The unscented transform is efficient to quantify the uncertainties in RNN output;
to verify that, another uncertainty propagation method using Monte Carlo analysis is
carried out. A set of weight vectors are randomly generated based on the Gaussian
distribution of the perturbed weight vector used before, and each of them form a RNN.
The inputs are fed into these RNN, and the standard deviation in networks’ output are
used as the local robustness measure, which further forms the global robustness measure
by averaging. Different numbers of RNN are generated and the computation times are
recorded in Table (5.7). It is found that to reach the same robustness result (0.0138), 2000
RNN need to be generated and the computation time is about 6 times of the proposed
method, whose corresponding results are shown in Table (5.8). The experiment is carried
out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz
and 3.0 G RAM.

Although the proposed robustness measure is developed based on the assumptions
that same level of perturbation is introduced to all the weights, in real applications the
perturbation level for weights can be specified based on measurements and the same

procedure can be applied.

134

Table 5.7: Robustness results of RNN from a Monte Carlo method

Number of RNN generated Robustness measure Computation time (second)
10 0.0099 9.21
100 0.0132 95.82
500 0.0133 464.28
1000 0.0137 960.07
2000 0.0138 1895.31

Table 5.8: Robustness results of RNN from the proposed UT-based method

Number of RNN generated

Robustness measure

Computation time (second)

301

0.0138

284.91

From these results in robustness study, it can be seen that:

1) The proposed robustness quantification method is flexible and viable. It can
study robustness of a network under different levels of perturbation level. It
does not need the training data, instead it is an uncertainty propagation
method and only a few amounts (100) of input samples are required to
quantify network’s robustness.

2) As an uncertainty propagation based method, because of the application of
the unscented transform, it is more efficient than the Monte Carlo simulation
based method.

3) The proposed robustness quantification is more effective compared with the
other two methods.

4) The optimized RNN is more robust than RNN.

135

Conclusions

From this case study, some conclusions can be drawn that:

1) RNN network is capable of modeling the non-linear dynamical benchmark
system.

2) The modeling capability of RNN is enhanced through the connectivity
optimization process and the optimized RNN excels RNN in training speed
and modeling accuracy.

3) The proposed R and Q adaption laws can further improve a RNN’s training
convergence performance - to stabilize and accelerate its training process.

4) The developed uncertainty propagation analysis based robustness measure is
more flexible and effective than the other two methods.

All of the results prove that the developed RNN modeling approach is powerful in

terms of accuracy, speed, and stability.

136

CHAPTER SIX

MODELING OF CBN TOOL WEAR IN HARD TURNING

Abstract

In addition to the benchmark system, another application is used to test
performance of the developed RNN modeling tool. Hard turning with Cubic Boron
Nitride (CBN) tools has been proved to be more effective and efficient in turning
hardened steels than traditional grinding operations. However, rapid tool wear is always a
problem which hurdles the wide implementation of hard turning in industry. Therefore, a
better understanding of the CBN tool wear progression will help optimize cutting
conditions and tool geometry to reduce tool wear, which may make hard turning a viable
technology. The goal of this case study is to use the optimized RNN to model the tool
wear progression and further investigate the network’s performance in training
convergence and robustness. The results show that the developed optimized RNN have
advantages over FFNN in modeling the tool wear progression in hard turning and the

convergence study and robustness study can further improve the network’s performance.

137

CBN Tool Flank Wear

Based on a typical CBN tool wear observation [Daws02], CBN tool flank wear
length or wearland (VB), as shown in Figure (6.1), is generally regarded as the tool life
criterion or an important index to evaluate the tool performance in hard turning [Taka83]
[Abra95] [Dewe96]. The tool wear rate is assumed uniform across the width of cut as

shown in Figure (6.1).

Figure 6.1: Typical tool wear picture in CBN hard turning

Figure (6.2) shows a typical tool wear progression process which is to be modeled
by the proposed RNN and the optimized RNN. Usually many factors would affect the
process. For a given tool and workpiece combination, the capability to estimate the tool
wear as a function of cutting conditions as cutting speed, feed rate, and depth of cut, is
critical to the overall optimization of a hard turning process. The objective of this case

study is to model the tool wear progression process using proposed RNN networks.

138

250

200f

1507

100}

501

Flank wear (micro meter)

0 20 40 60 80 100
Time (second)

Figure 6.2: A Typical tool wear progression in hard turning

Experimental Setup

The Data are collected from an experiment [Huan04]. In that experiment,
hardened AISI 52100 bearing steel with a hardness 62 HRc was machined on a horizontal
Hardinge lathe using a low CBN content tool insert (Kennametal KD050) with a -20° and
0.1 mm wide edge chamfer and a 0.8 mm nose radius. The ISO DCLNR-164D tool
holder was used, which introduced a negative 5° rake angle. No cutting fluid was applied.
Flank wear length was measured using an optical microscope (Zygo NewView 200). The
experiment was stopped when a sudden force jump was observed signaling a chipping or

broken tool condition.

139

Table 6.1: Cutting conditions of the experiments [Huan(04]

Condition | Speed Feed Depth of

index (m/s) (mm/re) | cut (mm)
1 3.05 0.152 0.203
1.52 0.152 0.203
3.05 0.076 0.203
2.29 0.114 0.203
1.52 0.076 0.203
3.36 0.114 0.203
2.29 0.114 0.203
2.29 0.061 0.203
2.29 0.168 0.203
1.21 0.114 0.203
2.29 0.114 0.203
1.52 0.076 0.102
1.52 0.076 0.152

ool la b= =T I BN EC N AV NI ORI

Machining test was performed based on a standard central composite design test
matrix with an alpha value of 1.414. The center point (0,0) was determined based on the
tool manufacturer’s recommendation [Huan04]. A typical depth of cut was suggested as
0.203 mm, which was used in the test matrix. To further investigate the effect of depth of
cut on tool wear, experiments with various depths of cut were also studied. Ten different
cutting conditions [Huan04], namely conditions 1-5, 8-10, a, and b are listed in Table
(6.1). Conditions 7 and 11 are not utilized here since they are the same as condition 4,
and condition 6 (cutting speed = 3.36 m/s) is also not used since the break-in period
accounted for a large portion of tool flank wear and microchipping was a dominant factor
of tool life under such an aggressive cutting speed. Uncertainty characterization is not

offered here due to the size of the experimental data set.

140

Recurrent Neural Network Implementation

In this study, a RNN and an optimized RNN are formed to model the CBN tool
wear progression based on the data from Huang et al’s study [Huan0O4] and their
modeling performance is compared with the measurements as well as that of FFNN
approaches from previous studies [Wang08a] [Wang08b]. The following tasks need to be
conducted to train a RNN modeling the tool wear progression:

1) Training and testing data preparation

As shown in Table (6.1), there are total 10 groups of data available from the hard
turning experiment. Among them data of conditions 1, 5, 9, 10, and a are used for
network training. The training data contain 48 training patterns. The rest of the data (44
patterns) are used to test the generalization ability of the proposed RNN model.

2) Training parameters configuration
To train RNN, some training parameters such as P, 0 , and R need to be

initialized first. The training parameters configuration is referred from a previous study
[Pusk94] without considering the training divergence issue. Without any specific note, in
this study, the error covariance matrix P is initialized as a diagonal matrix and each of its
diagonal elements is initialized as 100. Each diagonal element of the covariance matrix of
process noise Q is initialized as 0.01 and this value descends linearly within 100,000

training cycles until O reaches a minimum limit of 0.000001. Similarly, each diagonal

element of the measurement noise covariance matrix R is initialized as 100 and it also

descends linearly until it reaches a minimum boundary of 2. Both the settings of R and

0 help the training error converge to a global minimum.

141

3) Training Process Configuration

First, each weight of the network is randomly initialized in the region of [-1, 1].
Training parameters are initialized as mentioned before. Training data are then fed into
the EKF training algorithm (Equations (3.47-3.49)) to train the network weights. During
the training process, the training data are used for each training epoch and the weights are
updated accordingly. The procedure of training using all the training patterns once is
called a training step or epoch. The training process stops when the stop criteria are
satisfied. The stop criteria are determined by trial-and-error: i) the number of training step
should be less than 500 and the training process stops after 500 steps if no other stop
criteria are met; or ii) if the training error is less than 3% and the difference between the
current error and the error of 20 epochs before is less than 0.03% [Wang09].

4) Network structure determination

RNN network structure is first determined by setting the numbers of input
neurons, hidden neurons and output neurons. Four independent variables - cutting speed,
feed rate, depth of cut and machining time and a constant bias 1 are used as the inputs.
The output of the network is the tool flank wear length. The number of hidden neurons is
determined by a trial and error method, and the training error results are listed in Table
(6.2). According to a rule of thumb [Scha97], 12 hidden neurons are chosen first and the
training error is found to be 4.2%. Afterwards, networks with fewer hidden neurons are
selected and the corresponding training errors are investigated. It is found that RNN with
more than 1 hidden neuron is able to adequately model the tool wear progression. For

example, the training error of the network (5-2-1) with 2 hidden neurons (4.5%) is quite

142

close to that of the network (5-12-1) with 12 hidden neurons (4.2%). However, for the
network with 1 hidden neuron, the training error becomes relatively large (12.8%). The
training results for typical networks are shown in Figure (6.3). The simple network
structure would reduce the risk of over-fitting, so the network with a 5-2-1 structure as
shown in Figure (6.4) is selected in this study.

Table 6.2: Training error with different network structure

Network structure Training error (%)
5-12-1 4.2
5-2-1 4.5
5-1-1 12.8
0.4 ‘ l
——5-12-1 RNN
........... 5-5-1 RNN
sl |- 5-2-1 RNN
s | = 5-1-1 RNN
)
g’ 0.2}
£
©
|—

0 100 200 300 400 500
Training epoch

Figure 6.3: Training errors of RNN with typical structure configurations

143

State feedback loops

cutting speed, feed rate, | (dash lines) .
depth of cut, machining time, / \
bias 1 5 B C ETool wear length
::' \‘; [. '// \“ : T VB

feedforward loops (solid lines)

5 2 1
Input neurons ~ Hidden neurons Output neuron

Figure 6.4: Modeling the tool wear progression by a 5-2-1 RNN

Modeling Performance of the Recurrent Network

An MLP, an FFCNN, an optimized FFCNN (OptFFCNN), a RNN, and an
optimized RNN (OptRNN) are applied to model the process. Both the training
performance and testing performance are studied.

Training results indicate the fitness of the network model in modeling the training
data. Training data are assumed to be able to represent the overall characteristics of the
system being studied. Therefore, from the training process, a network capable of
modeling the training data is expected to represent the system dynamics.

During the training process, the appropriate network architecture should be
determined first as stated in a previous section. The MLP has been found to be 5-5-1 and
the other networks (RNN and OptRNN) are 5-2-1. The same training data (conditions 1,
4,5, 9, and a) have been used to train these networks. 500 training epochs are used for

RNN and OptRNN training while 100000 training epochs are used for MLP training

144

since MLP converges much slower. The final training error results are listed in Table
(6.3).

Table 6.3: Training error with different types of networks

Network Training error (%)
MLP 4.8
RNN 4.5
OptRNN 4.4

From the results, all the training errors are smaller than 5% (MLP: 4.8%, RNN:
4.5%, and OptRNN: 4.4%). Figure (6.5) shows some representative training result
comparisons. It can be seen that the modeling performance of these investigated NN are
close in modeling the training data and all the networks are able to accurately represent
the training data and model the tool wear progression.

From Figure (6.5), it should be pointed out that the training results of conditions
10 and a are more accurate than those of conditions 1 and 5. It is because that during this
pattern learning process the network is trained orderly from condition 1 to condition a. As
a result, more training effort has been put to the most recent training patterns. While the
overall training error of the OptRNN is generally smaller than that of MLP, the OptRNN
may have large errors for some specific training patterns.

The trained networks are further tested for their generalization ability. Conditions
2, 3, 4, 8, and b have been used as the testing cases, which are unseen in the above

network development process.

145

—
—

Wear lenght (micor mete

Wear lenght (micor meter)

140
120

1007

80r

60

401

20

2507

2007

15071

1007

501

T

Condition 1

+ Desired output
—>—MLP output
——RNN output
' —©—OptRNN output

2 3
Time (min)

4

T

Condition 10

T T

+ Desired output
—>—MLP output
—o—RNN output
—©—OptRNN output

Figure (6.6) shows the testing results from the MLP, RNN, and OptRNN. It can

be seen that:

1) Except for a few testing patterns in condition 4, RNN is more capable of

accurately modeling this non-stationary and dynamical tool wear progression

40 60 80
Time (min)

Wear lenght (micor meter)

Wear lenght (micor meter)

100

150

1007

)]
o

T

Condition 5

* Desired output
—>—MLP output
——RNN output
—©—OptRNN output

200

10

15
Time (min)

20 25 30

15071

1007

)]
o

Condition a

L

+ Desired output
—>—MLP output
—o—RNN output
’ —e—O'ptRNN‘output

-50
0

10

30 40 50 60
Time (min)

Figure 6.5: Training results for training cases

than the MLP;

2) For most cases, the discrepancy between the network prediction and its

desired output (the experimental measurement) increases with time;

146

3)

4)

RNN and OptRNN have the similar modeling performance in this tool wear
study mainly due to their inherent recurrent architectures; and

The MLP tends to over estimate the tool wear length for all the testing cases
which implies its limitation in modeling this non-stationary and dynamical

system.

The modeling performance is further compared with those of an FFCNN approach

and an OptFFCNN approach [Wang08a]. Table (6.4) shows the testing errors for these

networks which better illustrate their overall modeling capability. Some observations can

be drawn as follows:

1)

2)

3)

The average testing errors of optimized networks (the optimized FFCNN and
the optimized RNN) are smaller than those of their corresponding regular
networks (FFCNN and RNN);

The average testing errors of recurrent networks (RNN and the optimized
RNN) are smaller than those of purely forward networks (MLP and FFCNN);
and

From the variance of errors, the MLP has the largest variation which means it
is the least robust network while the optimized networks have smaller
variances (8.0 and 6.1) which indicates the optimization process can improve

network’s robustness as well as their modeling accuracy.

147

200 ; 140 :
Condition 2 Condition 3
- =120}
))
% 150+ % 100}
8 8
— — 80;
€ 100/ £
-§’ -§’ 601
2 ¢ + Desiredoutput | 2 44l + Desired output ||
3 50/ /9 —>—MLP output 3 —>—MLP output
= r’ ——RNN output = 20t ——RNN output
' ' —e—OptRNN output ' ' —9—OptR'NN output
0 10 20 30 40 0 1 2 3 4
Time (min) Time (min)
200 140 ;
Condition 4 Condition 8
- =120
))
g 1507 £ 100
8 8
2 2 80
€ 100} £
-§’ -§’ 601
o + Desired output 9 40 + Desired output ||
g 50 —>—MLP output 5 —>—MLP output
= ——RNN output < 2 ——RNN output ||
—Q—thRNN output ’ ’ ’ —e—O’ptRNN’output
0 10 15 0 2 4 6 8 10 12
Time (min) Time (min)
Figure 6.6: Modeling results for testing cases
Table 6.4: Modeling error for testing cases
Condition o o Optimized o Optimized
Index MLP (%) | FEFCNN (%) | pponn o) | RN OO 1 paN (o)
2 8.37 10.65 10.29 10.63 7.65
3 39.45 26.32 12.77 16.42 10.27
4 17.94 22.03 11.51 16.09 12.62
8 15.57 15.27 13.71 9.35 8.65
B 5.96 6.50 5.60 5.84 5.29
Avg. of error 17.46 16.15 10.78 11.67 8.90
Var. of error 140.4 52.4 8.0 16.5 6.1

148

Training Convergence Study of RNN

In the previous study, parameter setting of EKF training algorithm is borrowed
from [Pusk94]. The parameter R represents the confidence of noised measurement, the
smaller the value the more confidence would put on the measurements. From Equation
(3.48), small R also leads to high learning rate. However, too small R may lead to
excessively large learning rate which cause the training instability problem. On the other
hand, the covariance matrix of measurement noise, R, also indicates the amount of noise
added in the measurements. In the beginning stage of training process, the network output
is far from the desired output. The network output can be viewed as the estimation result
of a measurement with large noise. Hence, the diagonal element of R is supposed to set
as a large number (100) at the beginning stage. During the training process, the modeling
error become smaller and the network output can be viewed as the estimation of a
measurement with small noise. Follow this intuition, the R setting in [Pusk94] provides
an empirical guide for R configuration. However, the R setting can’t guarantee the
convergence of a training process. In contrast the R adaption law is proposed in this

study and the results are presented in the following section.

R Adaption Law for Convergence Guarantee
The R adaption law is first verified in this case study. Similarly as in the
benchmark system case study, a divergent case is first illustrated and the R adaption law
is applied to make the process convergent. A divergence training case is shown in Figure

(6.7). The r in Equation (4.32) is initialized as 0.45 and linearly reduced to 0.1 during

149

training with 100000 training patterns and the modeling error goes to infinite after 922

patterns.

1.5

—
T

o
&)
T

Modeling error
o
(6)] o

-

1
-
T

N
ey

200 400 600 800 1000
Training pattern

Figure 6.7: A divergent training processes

For the above case, its modeling results have big errors. The final modeling
performance (trained with 922 training patterns) of case b) is shown in Figure (6.8).
Large modeling errors (more than 1000 times of the magnitude of the measurements) are
observed in Figure (6.8).

Correspondingly, the » values during the training process are shown in Figure

(6.9) as below. This R setting leads to the divergence problem indicated in Figure (6.8).

150

—+— Desired output
—©—RNN output

L

20
Time (min)

30

T T T N

—+—Desired output
—©—RNN output

05x10" X107
Condition 1 Condition 5
E O4——— + + *] E
g 05 —+— Desired output | g 0.5
g Al —S—RNNoutput | g
£ 15 1 5
C C
s Ll | o
g) g 05
; -2.5" > © — o 1 ;
B0 1 2 3 4 o 10
Time (min)
8 A X 10"
Condition a
= 6f =
% —+— Desired output % 2
g 4l esired outpui || g
5 —6—RNN output 5
2 ot 1 8
£ £
-g.’ O ot + + 4 + + 4 + 4 -g.’
C C
o) o)
= -2r 1 =
5 8
= 4} I
-o&e L L L L
0 20 40 60 80 100
Time (min)

Figure 6.8: Modeling performance for tool wear progression without R adaption law

Time (min)

0.452 ; .

0.451¢

0.45

= 0.4497

0.448¢

0.4477

0'4460 200 400
Training

600 800
pattern

1000

Figure 6.9: r values during training without R adaption law

151

RNN is also trained using the proposed R adaption law. The r value is initialized
as in the aforementioned divergent case, and the R adaption law takes effect when the
modeling error is beyond the certain threshold as specified by Equation (4.43). Under the
R adaption law, the training process became convergent as shown in the modeling error
during training plot, Figure (6.10). It is found that two groups of big oscillations occur in
the beginning region of the plot. But the training error hasn’t blow up to infinity during
the training process and finally it converge to a small value, 4.1%.

In addition to modeling errors, the training results under adaption are also shown
in Figure (6.11). Comparing to the divergent case in Figure (6.7), the modeling errors

here are relatively small.

<+— Qscillation

Modeling error

0 0.5 1 1.5 2 25
Training pattern % 10"

Figure 6.10: Modeling error during training with R adaption law

152

150

Condition 1

1007

(=]

Wear lenght (micor meter)
(&)
(=]

—+—Desired output
—©—RNN output

Wear lenght (micor meter)
(&)
(=]

150

1007

Condition 5

L

—+—Desired output
—©—RNN output

L L

-50 L L

15 20 25 30

0 1 2 3 0 5 10
Time (min) Time (min)
250 ; 200 ;
Condition 10 Condition a
@ i | ® 1
< 200 % 150
1S 1S
8 150} 1 8 100t
E E
= =
2 1007 12 50r
K} K}
® ®
2 501 - 19 : f
= —+— Desired output || = —+—Desired output
—©—RNN output ——RNN output
0 20 40 60 80 100 500 10 20 30 40 50 60

Time (min)

Time (min)

Figure 6.11: Training results for tool wear progression with R adaption law

To show the effect of the adaption law on R, the adapted » during the training
process is drawn in Figure (6.12). Again, the big variations account for the effect of R
adaption law. It can be also seen that the oscillations in Figure (6.12) are coherent with

oscillations in the modeling error plot Figure (6.10). When the modeling error is beyond
the boundary in Equation (4.43) (le(k)|> J192H (k)" P(k —1)H (k)), the adaption law

takes effect to generate a larger » to draw the training process to be convergent. From

these results of training in Figure (6.7-6.12), a conclusion can be drawn that the R

adaption law can draw the training process from divergence to convergence.

153

<+— Qscillation

[I

0.5 1 1.5 2 25
Training pattern x10*

Figure 6.12: r values during training with R adaption law

QO Adaption Law for Convergence Speed
In addition to the R adaption law, the Q adaption law (Equation (4.43))
developed in Chapter four is applied in this case study as well. The effect of the QO
adaption law is also tested in tool wear modeling under the same representative cutting
conditions. As in the benchmark validation chapter, the four simulation scenarios are
studied to appreciate the importance of the O adaption law:
1) The Q matrix is set as a null matrix, which means a zero covariance matrix of
process noise or the process noise is removed from the EKF training
algorithm;

2) RNN is trained using constant O (Q = 0.011);

154

3) RNN is trained as follows: each diagonal element of Q is initialized as 0.01
and this value decreases linearly during 100,000 training patterns until it
reaches a limit of 0.000001; and

4) The proposed Q adaption law is implemented during the training process. In
all the cases 7 is initialized as 100 and it is reduced linearly until 7 reaches a
limit of 2 as in a previous study [Pusk94]. It should be pointed out that the
diagonal elements of O under the third scenario are always the same whereas
they might be different under the fourth scenario.

The results for RNN training are shown in Figure (6.13) and the final training

errors are listed in Table (6.5). It can be seen that the O law is most effective to minimize
training error and accelerate the training process. The training process with Q=0 has the

largest training error. For the other two scenarios, they are overlap in some regions and it
is difficult to compare their effectiveness.

Table 6.5: Final training errors of different Q settings

Scenario 1 Scenario 2 | Scenario 3 Scenario 4
RNN 3.8% 4.4% 4.5% 5.4%
OptRNN 3.6% 4.2% 4.0% 4.5%

155

0.2 x \ : \

Q=0 Decreasing Q Q=0.011
0.1 Q adaption law|

Training error

0.05

0 100 200 300 400 500
Training epoch

Figure 6.13: Comparison of RNN training errors with different Q settings

To investigate how the Q law affects the training process, Figure (6.14) shows
the trace of Q during training processes under Scenarios 3 and 1. It is clear that the trace
of O decrease linearly in Scenario 3, while the trace of Q in Scenario 1 decreases more

dramatically in the beginning region. A sub-section of Figure (6.14) is detailed in Figure
(6.15) which reveals the periodicity feature for training patterns. It can be seen that the

Q’s are specified for training patterns in each training epoch. Further comparing this
figure to the training patterns, it is found that the high Q’s correspond to big changes in
training patterns. It means the adaption law generates big Q’s for high variation in the
training patterns. High Q represents high Kalman gain hence the law put more effort to

model these patterns. This is the first factor that contributes to the improvement in

modeling performance in Scenario 3.

156

0.2 14l |
0.19 1

g g3 |

$0.18 13

o o

[= = 2f 1
0.17 1
0.16f . 1MWMMM 1
0'150 0.5 1 1.5 2 25 0O 0.5 1 1.5 2 2.5

Training pattern x 10" Training pattern x 10"

(a) Trace of Q during training for Scenario 3 (b) Trace of Q during training for Scenario 1

Figure 6.14: Trace of O for Scenarios 1 and 3 during training process

0.07: Epoch 91 . Epoch 92

4400 4420 4440 4460 4480
Training pattern

Figure 6.15: Trace of Q in training epochs (91) and (92)

Figure (6.16) shows the diagonal elements of Q after training under Scenario 3
and 1. For Scenario 3, the elements have the same values while for Scenario 1 different

values are assigned to the elements of O and hence different training strengths are to be

157

put on different weights based on needs. This is the second factor that contributes to the

higher modeling capability of Scenario 3.

0.04 ; y " ' 0.01
*
0.03k | 0.008f
» 0.006¢
~ 0.02F >
0.004
OO0+ dd4 444+ +rrtttettetsss 1 + + *
0.002 *** +
+ tat,a 4
0 : . : - . * . .
0 5 10 15 20 25 o s T s 20 o5
k k

(a) Diagonal elements of Q after training for (b) Diagonal elements of Q after training for
Scenario 3 Scenario 1

Figure 6.16: Diagonal elements of Q after training for Scenarios 3 and 1

025 T T T

0.15}]
Q=0 Q=0.01I Decreasing Q) adaption law

0.1} .

Training error

,,,,,,,,,

0.05 s

&

e ——

0 100 200 300 400 500
Training epoch

Figure 6.17: Comparison of OptRNN training errors with different O settings

158

The four Q configurations are also applied on the optimized RNN. Figure (6.17)
shows the results. From these results, the proposed O adaption law generates the smallest

training error compared to other Q control schemes.

Robustness of Neural Networks

In a pervious section, A RNN and an optimized RNN are applied to model the
non-linear dynamical benchmark system. The architectures of these two networks are
both 5-2-1. Five inputs are cutting speed, feed rate, depth of cut and machining time and a
constant bias 1 are used as the inputs. The output of the network is the tool flank wear
length.

In this section, the proposed robustness quantification method is applied to
quantify the robustness of the trained RNN and the optimized RNN. First local robustness
measure for input samples are computed based on Equations (4.61) and the global
robustness measure for overall network robustness based on the average of local
robustness measures. Generally the perturbation level should be determined based on
experimental observations as the hardware/software might have during the
implementation of ANN. Here the perturbation level L in Equation (4.51) has been taken
as 1% for simplicity and 100 input samples have been used if not mentioned otherwise.
Based on the proposed approach a smaller robustness value implies higher system
robustness to external perturbations. In the following sections, similar tasks have been
conducted as the robustness study of RNN in modeling the benchmark system in Chapter

5.

159

Corresponding to Figure (5.19), Figure (6.18) shows the varying local robustness
measures using 100 sample inputs. Each point represents a local robustness measure for
the nth input sample. The global robustness measure is found to be 0.0412 by averaging
the local robustness measures. Similar varying local robustness measure tendency has
been observed with the optimized RNN, and its global robustness measure is found to be

0.0232, which is smaller than that of RNN.

0.044 x \ \ \

0.043;]

0.0421

Local robustness

0.041F

.04 ' ' ' '
0.0 0 20 40 60 80 100
nth input sample

Figure 6.18: Local robustness measures for RNN using 100 input samples

The effects of the number of input samples and the perturbation level to the global

robustness measure are studied as follows.

Effect of Number of Input Samples on Global Robustness Measure
In general, the more input samples are used, the more reliable the global

robustness measure represents the system robustness performance over the whole input

160

space. Unfortunately, it is impossible to compute the global measure based on an
exhaustive way by sampling all possible inputs. As so, a minimum amount of input
samples, which are needed for global robustness quantification, should be determined
first. To find this minimum amount in this study, different numbers of input samples have
been selected and their corresponding global robustness measures for both RNN and

optimized RNN are computed and shown in Figure (6.19).

—+—RNN
0.045¢ —&— Optimized RNN

0.047

0.035¢]

0.03r]

Global robustness measure

©
o
N
a

ME—E =) =) =) =) =) =) £

0'020 20 40 60 80 100

Number of input samples

Figure 6.19: Robustness of RNN and optimized RNN (perturbation level = 1%)

It can be seen that for each network the robustness measures converge to a steady
value quickly after more than 10 uniformly generated input samples are used. Based on a
conservative consideration, 100 input samples are used here and in the following
sections. Based on the 100 input samples, optimized RNN has a global robustness value
of 0.0232, which is smaller than that of RNN (0.0412), implying that optimized NN is

more robust than the regular NN [Kris93].

161

Effect of the Perturbation Level on Global Robustness Measure

Similar to the robustness study in Chapter five, the perturbation levels ranging
from 1% to 20% have been applied to the trained network weights to study the network
robustness under different level of perturbed weights; and the results are shown in Figure
(6.20). It can be seen from Figure (6.20) that the optimized RNN is more robust than the
regular RNN for all the perturbation levels, which indicates the connectivity optimization
process has improved the network robustness as observed before [Kris93].

It can also be seen that the relationship between the robustness measure and the
perturbation level can be approximated as linear. This linear pattern is again attributed to

the network mapping feature discussed in Chapter five.

——RNN
—8—Optimized RNN

o)

£ 0.8

n

@©

3]

S

o 0.6

0

o)

[

2

-5 0.4

©

Keo]

)

O 0.2r

00 5 10 15 20

Perturbation level (%)

Figure 6.20: Network robustness values under different perturbation levels

162

Comparison among Robustness Measures

The proposed robustness quantification approach is further compared with the
performance loss-based and sensitivity matrix-based approaches. The performance loss-
based and sensitivity matrix-based measures are computed based on the training data
mentioned in the previous section. To fairly compare the three approaches, the same
training data (condition 1, 5, 9, 10, and a) are also used to compute the proposed
robustness measure, and the LHS input sampling process is not applied here to generate
input samples for the proposed approach.

For both the performance loss-based and the proposed approaches, the 1%
perturbation level is used. For the performance loss-based approach, 10,000 networks are
generated based on the perturbed weights, and the network output is then compared with
the corresponding desired outputs to compute MSE. The resulting maximum MSE is
taken as the performance loss-based measure. For the sensitivity matrix-based approach,
the sensitivity matrices for all the training inputs are obtained during the training process
and the spectral norm [Kris99] for each matrix is computed as the local robustness
measure. The average of these norms is used as the sensitivity matrix-based measure.

It should be pointed out that the three robustness measures cannot be directly
compared against each other because they are computed using different criteria. Instead,
the ratio of robustness measures between RNN and optimized RNN is studied to indicate
the effectiveness of any quantification approach. A larger robustness ratio means that this

quantification approach is more sensitive in quantifying the robustness difference.

163

Table 6.6: Comparison of robustness quantification approaches

Robustness Optimized RNN Robustness
quantification approach RNN robustness (rl) r(l))bustness (r2) ratio (rl1/r2)
Performance loss-based 0.1118 0.0954 1.1719
Sensitivity matrix-based 2.3821 2.1164 1.1255

Proposed 0.0412 0.0232 1.7835

Table (6.6) lists the comparison results. For all the three quantification
approaches, optimized RNN is found to be more robust than RNN. It is found that the
proposed approach (1.78) has the largest robustness ratio than those of the performance
loss-based approach (1.17) and the sensitivity matrix-based approach (1.12). As the most
sensitive quantification approach is associated with largest robustness ratio value, it is
concluded that the proposed robustness quantification approach is the most effective one

among these three approaches.

Relationship between Proposed and Sensitivity Matrix-based Approaches
Under a small perturbation level the uncertainty propagation analysis used in this

proposed approach can also be related to the sensitivity matrix—based approach. Each

element (H, :%) of the weight—output Jacobian sensitivity matrix H represents the
70

Wi

derivative of an output (y,) with respect to a weight (w,). Using the uncertainty

propagation analysis under a small weight perturbation such as 0.01%, this 7, can be

std(y(")
std(w);)

approximated by the standard deviation ratio S, = , where std(*) is a standard

deviation operator and std(y!”) represents the standard deviation of output y under a

164

perturbation with weight w, . This standard deviation ratio S describes the dependence

of the output variation on the weight variation. It should be pointed out that different

from the proposed robustness quantification approach where perturbations are added to

all the weights simultaneously to compute & here each time perturbation is only

30
added into a specific weight to compute std(y”) while all the other weights remain the

same.
Table (6.7) lists the sensitivity matrix-based robustness measures averaged based

on their spectral norms [Kris99], which are computed using the traditional method (H,)
and the uncertainty propagation analysis (S,), respectively. It is found that the two

results quite match each other; therefore the proposed analysis can also be used to
compute the sensitivity matrix-based measure.

Table 6.7: Sensitivity matrix-based robustness of RNN and optimized RNN

RNN robustness | Optimized RNN robustness
Robustness (H matrix based) 2.3821 2.1164
Robustness (S matrix based) 2.3799 2.1105

Efficiency of the Proposed Robustness Quantification Method
The unscented transform is efficient to quantify the uncertainties in RNN output;
to verify that, another uncertainty propagation method using Monte Carlo method is
carried out. A set of weight vectors are randomly generated based on the Gaussian
distribution of the perturbed weight vector used before, and each of them form a RNN.
The inputs are fed into these RNN, and the standard deviation in networks’ output are

used as the local robustness measure, which further forms the global robustness measure

165

by averaging. Different numbers of RNN are generated and the computation times are
recorded in Table (6.8). It is found that to reach the same robustness result (0.0422), 1500
RNN need to be generated and the computation time is about 32 times of the proposed
method, whose corresponding results are shown in Table (6.9). The experiment is carried
out on a computer with the configuration of Intel(R) Core(TM) 2 Duo CUP @ 2.8GHz
and 3.0 G RAM.

Table 6.8: Robustness results of RNN from a Monte Carlo method

Number of RNN generated Robustness measure Computation time (second)
10 0.0413 0.30
100 0.0429 2.65
500 0.0426 13.25
1000 0.0425 26.15
1500 0.0422 38.16

Table 6.9: Robustness results of RNN from the proposed UT-based method

Number of RNN generated Robustness measure Computation time (second)

43 0.0422 1.16

It should be pointed out that the robustness measure 0.0422 in Table (6.9) is
slightly different from the result 0.0412 in Table (6.6). The difference is due to that
different input sets are applied in these two computation processes. In Table (6.6), 100
uniformly generated input samples are used while in Table (6.9) the training input data
are applied.

Similar results have been obtained in this tool wear modeling application. The
following conclusions can be drawn based on this robustness study:

1) The proposed robustness quantification method is flexible and viable.

166

2) The proposed method is more efficient than another Monte Carlo simulation
based uncertainty propagation analysis based method.

3) The proposed robustness quantification is more effective compared with the
other two methods, the performance loss-based and the sensitivity matrix-
based approaches.

4) All the three methods show that the optimized RNN is more robust than RNN.

Conclusions

In this chapter, modeling performance, training convergence, and robustness of
the developed RNN are studied using a tool wear progression process. The modeling
capability for an MLP, a RNN, and an optimized RNN are compared using the training
data. It can be seen that all the networks can accurately model the training data.
Furthermore, the generalization capability of RNN, the optimized RNN, MLP, FFCNN,
and the optimized FFCNN are studied. It is found that the generalization ability of the
optimized RNN is the best among these networks. The training convergence is also
studied in this case, and the R adaption law is able to make the training process
convergent while the Q adaption law can accelerate the training convergence speed.
Finally, the robustness of the RNN and the optimized RNN are studied. It is found that
the proposed uncertainty propagation based method is more effective, flexible, viable and
efficient than other two existing methods in quantifying RNN’s robustness.

Some conclusions can be drawn from the case study:

167

1) The applied RNN structure, training algorithm, and optimization method can
make the developed RNN modeling approach more accurate, robust and fast.

2) The proposed adaptive training algorithm can make the training process of
RNN more stable and faster.

3) The proposed robustness measures are effective and efficient to quantify the
robustness of RNN.

All of the results prove that the developed RNN modeling approach is powerful in

terms of accuracy, speed, and stability.

168

CHAPTER SEVEN

CONCLUSIONS

In this study a RNN is developed based on an FFNN by adding recurrences in its
hidden neuron section. The added recurrences are found to be beneficial in modeling non-

linear dynamics and hence can improve the network’s modeling performance.

Challenges Addressed

This study endeavors to address the following challenges:

Network Structure Determination and Training

How to form an optimal network structure and how to efficiently train networks
are common problems in neural network study. A network is defined from two sides, its
structure and values of its weights. A structured network is actually a parametric model.
The procedure of determining network structure is to find the functional form of the
model and the procedure of training is to determine its parameters.

As for the structure, the prototype of RNN is an FFCNN which has three sections
of neurons (input neuron section, hidden neuron section and output neuron section), and
information flows strictly feedforward in only one direction, from input units to output
units. RNN network can be viewed as the summation of a FFCNN and recurrent
connections added in its hidden neuron section. The recurrent connections can introduce
state feedback into the network structure and improve the network’s modeling

performance. A network with optimal structure is desirable in training speed, training

169

accuracy, generalization ability, and robustness. However, the optimal topology of a
RNN is case dependent. A pruning method is seamlessly embedded into the training
process to optimize the network structure. The optimized RNN is found to be most
capable of modeling non-linear dynamical systems.

As for the network training, the EKF is an efficient and powerful state estimation
algorithm and applied in the study. The training process can be viewed as a state (weights)
estimation problem and the EKF is used to estimate the state from the training patterns.
The most time consuming part in EKF training implementation is the formation of the
orderly derivatives of network’s outputs with respect to weights considering the effect of

all contributive connections.

Training Convergence
Training divergence can occur if training parameters are not selected properly.
Furthermore, RNN are more vulnerable to training divergence than FFNN due to their
recurrent connections. To solve the problem, a parameter R of EKF training algorithm is
adapted to guarantee the training convergence while another parameter Q is adapted to
accelerate the training. Q is estimated by maximum likelihood method to accelerate

training speed and R is adapted by Lyapunov method to ensure training convergence.

Network Robustness Quantification

In addition to training convergence, robustness is another important issue of RNN

for its successful implementation. The robustness study considering perturbations in

170

trained weights is vital for network’s implementation. Various networks can be
developed for an application. But to select the best fault tolerant network is important for
successful application of a RNN. A uncertainty propagation analysis based robustness

measures using the unscented transform is proposed.

Methodology Validation and Performance Evaluation

For methodology validation and performance evaluation, two non-linear
dynamical systems, a benchmark system and a tool wear progression process in CBN
hard turning, are used to verify the modeling performance of the network. From the two
case studies, some observations are found as follows:

1) The developed RNN is better than FFNN such as FFCNN and MLP in

training accuracy, generalization ability, and training speed.

2) The connectivity optimization can improve a network’s performance in terms

of training speed, computation cost, and network robustness.

3) The developed R adaption law can guarantee convergence of the training

process, while the O adaption law can speed up RNN training process.

4) The proposed robustness measures have advantages over the other two
existing measures developed from the differential analysis and performance

loss analysis, respectively.

171

Contributions

This research can contribute to the current research state of the art as follows:

Develop and Apply RNN in Modeling Applications
A RNN is developed which is better than the commonly used MLP network in
modeling applications. This study investigates RNN’s modeling performance and
compares it with FFNN including FFCNN and MLP. In addition, structure optimization
is applied to the networks and forms corresponding optimized networks. Training speed,
training accuracy and generalization ability are studied for each network. The results
show that RNN surpass FFNN and the connectivity optimization process further

improves a network’s performance.

Training Convergence Study of RNN

When NN is applied in modeling, training convergence is seldom studied and
researchers just train networks without justifying the convergence property first. Training
convergence is carried out in this study. Improperly selection of training parameters
would result in training divergence, so that the outputs of the network turn to out of
bounds. The training convergence include two levels, how to guarantee training
convergence and how to accelerate training process. To solve the problem, Lyapunov
method is applied to form an R adaption law to guarantee the convergence of training,

while maximum likelihood method is used to adapt Q to speed up the training process.

172

Robustness Study of RNN

An unscented transform based robustness quantification measure for RNN has
been developed in this study. The unscented transform is applied in the uncertainty
propagation analysis owning to its advantages in efficiency and computation cost saving.
Uncertainty propagation analysis is conducted to assess the robustness of the network
considering perturbations in network’s trained weights. The proposed quantification
method is found to have advantages over two other methods.

To summarize, the study proposes the developments of:

1) RNN architecture implementation,

2) the EKF-based training algorithm for RNN,

3) the connectivity optimization algorithm for RNN,

4) the convergence study of developed RNN, and

5) the robustness analysis of RNN.

Future Work
While a thorough study has been carried out for RNN to model non-linear
dynamical systems, some work still needs to be carried out which can further improve the

study in the future.

To Study the Coupled Effects of Developed Adaption Laws

It should be pointed out that the R adaption law may also affect the training speed.

To further optimize the training convergence speed, R needs to be adapted to guarantee

173

convergence as well as to accelerate the training speed. Future work should
mathematically investigate the coupled effects of the two noise parameters on EKF

training and further improve the training convergence performance.

To Study the Robustness of RNN in Training Process
In this study the robustness of trained networks is investigated and a method to
quantify robustness is proposed. However, evaluation of the robustness of RNN during
training is more useful. Combining the robustness study into the training process needs to
be carried out in the future. The study includes how to select a training technology and
how to select training parameters to improve the network’s robustness. To accomplish
that, the cost function of robustness for a network which relates robustness to training

parameters should be proposed and further studied.

To Study the Robustness of RNN Due to Architecture Variation
Current study only considers robustness of network due to perturbation in trained
weights, although the developed method can also apply to assessing robustness due to
perturbation in inputs. However, consideration of perturbation in architecture level, for
example missing/fault of neuron and connections is also another important aspect of
robustness study which needs to be conducted in the future. This problem is correlated
with the above one, because the network’s structure is determined through the

connectivity optimization process.

174

REFFERENCES

A. M. Abrao, M. L. H. Wise, and D. K. Aspinwall, “Tool Life and Workpiece Surface
Integrity Evaluations when Machining Hardened AISI 52100 Steels with
Conventional Ceramic and PCBN Tool Materials,” SME Technical Paper, MR95-159,
pp-1-9, 1995.

A. Alessandri, M. Cuneo, S. Pagnan, and M. Sanguineti, “On the Convergence of EKF-
based Parameters Optimization for Neural Networks,” 42nd IEEE Conference on
Decision and Control, pp. 6181-6186, 2003.

C. Alippi and M. Milena, “A Poly-time Analysis of Robustness in Feedforward Neural
Networks,” IEEE International Workshop on Virtual and Intelligent Measurement
Systmes, pp. 76-80, Budapest, Hungary, May 19-20, 2001.

C. Alippi, “Selecting Accurate, Robust, and Minimal Feedforward Neural Networks,”
IEEFE Trans on Circuits and Systems -1: Fundamental Theory and Applications, Vol.
49(12), pp. 1799-1810, 2002.

C. Alippi, D. Sam, and F. Scotti, “A Training-time Analysis of Robustness in Feed-
Forward Neural Networks,” 2004 IEEE International Joint Conference on Neural
Networks, Vol. 4, pp. 2853- 2858, 2004.

D. L. Alspach, “A Parallel Filtering Algorithm for Linear Systems with Unknown Time
Varying Statistics,” IEEE Trans. Automatic. Control., Vol. AC-19, pp. 552-556, 1974.

S. Arik, “Global Robust Stability of Delayed Neural Networks,” IEEE Trans. on Circuits
and Systems—I: Fundamental Theory and Applications, Vol. 50(1), pp. 156-160,
2003.

A. Assoum, M. Geagea, and R. Velazco, “Influence on ANNs Fault Tolerance of Binary
Errors Introduced during Training,” International Conference on Information and
Communication Technologies: From Theory to Applications, pp. 435-436, 2004.

A. F. Atiya and A. G. Parlos, “New Results on Recurrent Network Training: Unifying the
Algorithms and Accelerating Convergence,” IEEE Transactions on Neural Networks,
Vol. 11(3), pp. 697-709, 2000.

J. K. Baksalary and R. Kala, “A New Bound for the Euclidean Norm of the Difference

between the Least Squares and the Best Linear Unbiased Estimators,” The Annals of
Statistics, Vol. 3, pp. 679-681, 1980.

175

K.D. Boese and A.B. Kahng, “Simulated Annealing of Neural Networks: The "Cooling"
Strategy Reconsidered,” IEEE International Symposium on Circuits and Systems,
Vol. 4, pp. 2572-2575, 1993.

J. Cao and J. Wang, “Global Asymptotic Stability of a General Class of Recurrent Neural
Networks with Time-varying Delays,” IEEE Transactions on Circuits and Systems
Part I, Vol. 50, pp. 34-44, 2003.

C. Chiu, K. Mehrotra, C. K. Mohan, and S. Rankat, “Robustness of Feedforward Neural
Networks,” IEEE International Conference on Neural Networks, Vol.2, pp. 783-788,
1993.

M. Chow and J. Teeter, “Analysis of Weight Decay as A Methodology of Reducing
Three-Layer Feedforward Artificial Neural Networks for Classification Problems,”

IEEFE International Conference on Neural Networks - Conference Proceedings, Part
1 (of 7), pp. 600-605, Orlando, FL, 27th-29th June, 1994.

G. Chryssoluouris and M. Guillot, “A Comparison of Statistical and Al Approaches to the
Selection of Process Parameters in Intelligent Machining,” ASME, Journal of
Engineering for Industry, Vol. 112, pp. 122-131, 1990.

S. Das, A. B. Chattopadhyay and A. S. R. Murthy, “Force Parameters for On-line Tool
Wear Estimation: A Neural Network Approach,” Neural Networks, Vol. 9, pp. 1639-
1645, 1996.

T. Dawson, Machining Hardened Steel with Polycrystalline Cubic Boron Nitride Cutting
Tools, Ph.D. Thesis, GIT, Atlanta, GA, 2002.

R. C. Dewes and D. K. Aspinwall, “The Use of High Speed Machining for the
Manufacture of Hardened Steel Dies,” Trans. of NAMRI, Vol. 24, pp. 21-26, 1996.

D. E. Sr. Dimla and P. M. Lister, “On-Line Metal Cutting Tool Condition Monitoring. II:
Tool-State Classification Using Multi-layer Perceptron Neural Networks,”

International Journal of Machine Tools & Manufacture, Vol. 40, pp. 769-781, 2000.

J. Driver, S. R. Baker, and D. McCallum, Residential Exposure Assessment: A
Sourcebook, Springer, 2000.

G. Dundar and K. Rose, “The Effects of Quantization on Multilayer Neural Networks,”
IEEFE Trans on Neural Networks, Vol. 6(6), pp. 1446-1451.

R. Eickhoff and U. Ruckert, “Robustness of Radial Basis Functions,” Neurocomputing,
Vol. 70, pp. 2758-2767, 2007.

176

J. L. Elman, “Finding Structure in Time,” Cognitive Science, Vol. 14(2), pp. 179-211,
1990.

E. O. Ezugwu, S. J. Arthur, and E. L. Hines, “Tool-wear Prediction Using Artificial
Neural Networks,” Journal of Materials Processing Technology, Vol. 49, pp. 255-264,
1995.

S. E. Fahlman and C. Lebiere, “The Cascade-Correlation Learning Architecture,”
Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), San
Mateo, CA: Morgan Kaufmann, pp. 524- 532, 1990.

Zhaoshu Feng and Anthony N. Michel, “Robustness Analysis of a Class of Discrete-Time
Recurrent Neural Networks under Perturbations,” IEEE Trans on Circuits and
Systems-1: Fundamental Theory and Applications, Vol. 46, No. 46, pp. 1482-1486,
1999.

R. Fitzgerald, “Divergence of the Kalman Filter,” IEEE Trans on Automatic Control, Vol.
16(6), pp. 736-747, 1971.

R. E. Haber, A. Alique, “Intelligent Process Supervision for Predicting Tool Wear in
Machining Processes,” Mechatronics, Vol. 13, pp. 825-849, 2003.

A. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter,
Cambridge University Press, New York, 1989.

B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal Brain Surgeon and General Network
Pruning,” IEEE International Conference on Neural Networks, San Francisco, CA,
Mar 28-April 1, 1993, pp. 293-299, 1993.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-Hall,
Upper Saddle River, NJ, 1999.

J. C. Helton and F. J. Davis, “Latin Hypercube Sampling and the Propagation of
Uncertainty in Analyses of Complex Systems,” Rliab. Eng. Syst. Safety, Vol. 81(1),
pp.23-69, 2003.

T. Hofling and R. Isermann, “Fault Detection Based on Adaptive Parity Equations and
Single-Parameter Tracking,” Control Engineering Practice, Vol. 4, pp. 1361-1369,
1996.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are
Universal Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990.

177

Y. Huang, Predictive Modeling of Tool Wear Rate with Application to CBN Hard Turning,
Ph.D. Thesis, Georgia Institute of Technology, GA, 2002.

Y. Huang and S. Y. Liang, “Modeling of CBN tool flank wear progression in finish hard
turning,” ASME J. of Manufacturing Science and Engineering, Vol. 126, pp. 98-106,
2004.

R. Iserman, “Process Fault Detection Based on Modeling and Estimation Methods — A
Survey,” Automatica, Vol. 20, pp. 387404, 1984.

M. L. Jordan, “Attractor Dynamics and Parallelism in A Connectionist Sequential
Machine,” Proceeding of the 1986 Connitive Science Conference, pp. 531-546, 1986.

S. Julier and J. K. Uhlmann, 1997, “A New Extension of the Kalman Filter to Non-linear
Systems”, Proc of AeroSense: The 1ith International Symposium on
Aerospace/Defence Sensing, Simulation and Control, Florida, 1997.

D. Jwo and T. Cho, “A Practical Note on Evaluating Kalman Filter Performance
Optimality and Degradation,” Applied Mathematics and Computation, Vol. 193(2),
pp. 482-505, 2007.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice
Hall, 1993.

N. Kwak, “Principal Component Analysis Based on L1-Norm Maximization,” /EEE
Trans on Pattern Analysis and Machine Intelligence, Vol. 30(9), pp. 1672-1680, 2008.

H. K. Khalil, Nonlinear Systems, Prentice Hell, New Jersey, 2002.

K. KrishnaKumar, “Optimization of the Neural Net Connectivity Pattern Using A
Backpropagation Algorithm,” Neurocomputing, Vol. 5, pp. 273-286, 1993.

K. KrishnaKumar and K. Nishta, “Robustness Analysis of Nueral Networks with An
Application to System Identification,” Journal of Guidance, Control and Dynamics,
Vol. 22, pp. 695-701, 1999.

R. J. Kuo and P. H. Cohen, “Intelligent Tool Wear Estimation System through Artificial

Neural Networks and Fuzzy Modeling,” Artificial Intelligence in Engineering, Vol.
12, pp. 229-242, 1998.

R. J. Kuo and P. H. Cohen, “Multi-sensor Integration for On-line Tool Wear Estimation

through Radial Basis Function Networks and Fuzzy Neural Network,” Neural
Networks, Vol. 12, pp. 355-370, 1999.

178

C. S. Leung and L. W. Chan, “Dual extended Kalman filtering in recurrent neural
networks source,” Neural Networks, Vol. 16(2), pp. 223-239, 2003.

X. Li, L. Huang, and J. Wu, “A New Method of Lyapunov Functionals for Delayed
Cellular Neural Networks,” IEEE Trans. Circuits Syst. I, Vol. 51(11), pp. 22632270,
2004.

X. B. Liang and J. Wang, “An Additive Diagonal Stability Condition for Absolute
Exponential Stability of a General Class of Neural Networks,” I[EEE Trans on
Circuits and Systems Part I, Vol. 48, pp. 1308-1317, 2001.

Y. Liguni, H. Sakai, and H. Tokumaru, “A Real-time Learning Algorithm for a
Multilayered Neural Network Based on the Extended Kalman Filter,” IEEE Trans.
Signal Process, Vol. 40(4), pp. 59-966, 1992.

D. Linkens and Y. Nyongesa, “Learning Systems in Intelligent Control: An Appraisal of
Fuzzy, Neural and Genetic Algorithm Control Applications”, IEE Proc. Control
Theory App., Vol. 134 (4), pp. 367-385, 1996.

D. Liu and A. N. Michel, “Robustness Analysis of a Class of Neural Networks,” Circuits
and Systems, 1993., Proceedings of the 36th Midwest Symposium, pp. 1077-1080,
1993.

D. Liu and A. N. Michel, “Robustness Analysis and Design of a Class of Neural
Networks with Sparse Interconnecting Structure,” Neurocomputing, Vol. 12, pp. 59-
76, 1996.

Q. Liu and Y. Altintas, “On-line Monitoring of Flank Wear in Turning with Multilayered
Feed-forward Neural Network,” [International Journal of Machine Tools &
Manufacture, Vol. 39, pp.1945-1959, 1999.

D. Liu, S. Hu, and J. Wang, “Global Output Convergence of a Class of Continuous-time
Recurrent Neural Networks with Time-varying Thresholds,” IEEE Trans. Circuits
Syst. II, Vol. 51(4), pp. 161-167, 2004.

W. Liu, L. Yang, and L. Hanzo, “Recurrent Neural Network based Narrowband Channel
Prediction,” IEEE 63rd Vehicular Technology Conference, Vol. 5, pp. 2173-2177,
2006.

J. T. Lo, “Synthetic Approach to Optimal Filtering,” IEEE Trans on Neural Networks, Vol.
5(5), pp. 803-811, 1994.

W. L. Loh, "On Latin Hypercube Sampling," Annals of Statistics, Vol. 24(5), pp. 2058-
2080, 1996.

179

L. Luo, C. Guo, G. Ma, and A. Ji, “Choice of Optimum Model Parameters in Artificial
Neural Networks and Application to X-ray Fluorescence Analysis,” X-Ray
Spectrometry, Vol. 26, pp. 15-22, 1997.

D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction: Learning
Algorithms, Architectures and Stability, Wiley, 2001.

M. B. Matthews, “Neural Network Nonlinear Adaptive Filtering Using the Extended
Kalman Filter Algorithm,” in Proceedings of the International Neural Networks
Conference, Vol. 1, pp. 115-119, Paris, 1990.

P. S. Maybeck, Stochastic Models, Estimation, and Control, Vol. 2, Academic Press, 1982.

P. S. Maybeck, The Kalman Filter: An Introduction to Concepts in Autonomous Robot
Vehicles, 1. J. Cox, G. T. Wilfong (eds), Springer-Verlag, 1990.

W. S. McCulloch and P. Walter, 1943, "A Logical Calculus of the Ideas Immanent in
Nervous Activity," Bulletin of Mathematical Biophysics, Vol 5, pp 115-133, 1943.

L. Medsker and L. C. Jain, Recurrent Neural Networks: Design and Applications, CRC,
1999.

R. K. Mehra, “On the Identification of Variance and Adaptive Kalman Filtering,” /IEEE
Trans. On Automatic Control, Vol. 15(2), pp. 175-184, 1970.

R. K. Mehra, “Approaches to Adaptive Filtering,” IEEE Trans. Automatic. Control, Vol.
17(5), pp. 693-698, 1972.

J. E. Moody, S. J. Hanson, and R. P. Lippmann, "The Effective Number of Parameters:
An Analysis of Generalization and Regularization in Nonlinear Learning Systems,"
Advances in Neural Information Processing Systems, Vol. 4, pp. 847-854, 1992.

K. S. Narendra, Adaptive Control of Dynamical System Using Neural Networks,
Handbook of Intelligent Control Neural, Fuzzy, and Adaptive Approaches, New York,
NY: Van Nostrand Reinhold, 1992.

T. Ozel and Y. Karpat, “Predictive Modeling of Surface Roughness and Tool Wear in
Hard Turning Using Regression and Neural Networks,” International Journal of

Machine Tools & Manufacture, Vol. 45, pp. 467-479, 2005.

D. S. Phatak and I. Koren, “Complete and Partial Fault Tolerance of Feedforward Neural
Nets,” IEEE Trans. Neural Networks, Vol.6 (2), pp. 446—456, 1995.

180

S. G Pierce, Y. B. Haim, K. Worden, and G. Manson, “Evaluation of Neural Network
Robust Reliability Using Information-Gap Theory,” IEEE Trans on Neural Neteorks,
Vol. 17(6), pp. 1349-1361, 2006.

D. Psaltis, A. Sideris, and A. Yamamura, “A Multilayered Neural Network Controller,”
IEEFE Control Systems Magazine, Vol. 8(2), pp. 17-21, 1988.

G. V. Puskorius and L.A. Feldkamp, “Neurocontrol of Nonlinear Dynamical Systems with
Kalman Filter Trained Recurrent Networks,” IEEE Trans. on Neural Networks, Vol. 5,
pp. 279-297, 1994.

T. Ragg, H. Braun, and H. Landsberg, “A Comparative Study of Neural Network
Optimization Techniques,” 13th International Conference on Machine Learning:
Workshop Proceedings on Evolutionary Computing and Machine Learning, pp. 111-
118, 1996.

B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2000.

F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain,” Psychological Review, Vol. 65(6), pp. 386-408, 1958.

J. D. J. Rubio and W. Yu, “Nonlinear System Identification with Recurrent Neural
Networks and Dead-zone Kalman Filter Algorithm,” Neurocomputing, Vol. 70, pp.
2460-2466, 2007.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations,
Cambridge, MA: MIT Press, 1986.

S. Samarasinghe, Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition, Auerbach Publications, 2006.

J. Santos and R. J. Duro, “Evolutionary generation and training of recurrent artificial
neural networks,” Proceedings of the First IEEE Conference on Evolutionary
Computation, Vol. 2, pp. 759-763, 1994.

S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer, 1999.

R. J. Schalkoff, Artificial Neural Networks, McGraw-Hill Inc., New York, 1997.

C. Scheffer, H. Kratz, P. S. Heyns, and F. Klocke, “Development of A Tool Wear-

monitoring System for Hard Turning,” International Journal of Machine Tools &
Manufacture, Vol. 43, pp. 973-985, 2003.

181

F.

U

R

D

S.

Q

S.

H

E.

X

X

H. Schlee, C. J. Standish, and N. F. Toda, “Divergence in the Kalman Filter,” 4744
Journal, Vol. 5, pp. 1114-1120, 1967.

. Seiffert, “Multiple Layer Perceptron Training Using Genetic Algorithms,” European
Symposium on Artificial Neural Networks ESANN, pp. 159-164, 2001.

. Setiono and W. K. Leow, “FERNN: an Algorithm for Fast Extraction of Rules from
Neural Networks, Applied Intelligence,” Vol. 12, pp. 15-25, 2001.

. Simon, Optimal State Estimation, John Wiley & Sons, New Jersey, 2006.

Singhal and L. Wu, “Training Feed forward Networks with Extended Kalman Filter
Algorithm,” Proceedings - ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1187-1190, Glasgow, Scotland, 23th-26th May,
1989.

. Song, Y. Wu, and Y. C. Soh, “Robust Adaptive Gradient-Descent Training Algorithm
for Recurrent Neural Networks in Discrete Time Domain,” IEEE Trans on Neural
Networks, Vol. 19(11), pp. 1841-1853, 2008.

. F. Swidzinski and C. Kai, “Nonlinear Statistical Modeling and Yield Estimation

Technique for Use in Monte Carlo Simulations,” /EEE Trans on Microwave Theory
and Techniques, Vol. 48(12), pp.2316-2324, 2000.

Takatsu, H. Shimoda, and K. Otani, “Effect of CBN Content on the Cutting
Performance of Polycrystalline CBN Tools,” International Journal of Refract. Hard
Mat., Vol. 2(4), pp. 175-178, 1983.

. Tang, K. C. Tan, and Z. Y1, Neural Networks: Computational Models and Applications,
Springer, 2007.

A. Wan and R. V. D. Merwe, Kalman Filtering and Neural Networks, Chapter 7 : The
Unscented Kalman Filter, Wiley Publishing, Eds. S. Haykin, 2001.

. Wang, W. Wang, Y. Huang, N. Nguyen, and K. Krishnakumar, "Design of Neural
Network-based Estimator for Tool Wear Modeling in Hard Turning," Journal of
Intelligent Manufacturing, Vol. 19(4), pp. 383-396, 2008.

. Wang, Y. Huang, N. Nguyen, and K. Krishnakumar, "CBN Tool Flank Wear Modeling

Using Hybrid Neural Network," International Journal of Mechatronics and
Manufacturing Systems, Vol. 1(1), pp. 83-102, 2008.

182

X. Wang and Y. Huang, "Optimized Recurrent Neural Network-Based Tool Wear
Modeling in Hard Turning," Transactions of NAMRI/SME, Vol. 37, pp. 213-220,
20009.

P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in The
Behavioral Sciences, Harvard University, Unpublished doctoral dissertation, 1974.

P. J. Werbos, “Back propagation through time: what it does and how to do it,” Proc. of the
IEEE, Vol. 78(10), pp. 1550-1560, 1990.

B. Widrow and J. Kolla, Quantization Noise, Prentice-Hall, NJ, USA, 2002.

R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running fully
Recurrent Neural Networks,” Neural Computation, Vol. 1 , pp. 270-280, 1989.

L. J. Xie, J. Schmidt, J. C. Schmidt, and F. Biesinger, “2D FEM Estimate of Tool Wear in
Turning Operation,” Wear, Vol. 258, pp. 1479-1490.

S. O. Yee and M. Y. Chow, “Robustness of an Induction Motor Incipient Fault Detector
Neural Network Subject to Small Input Perturbations,” [EEE Proceedings of
Southeastcon '91, Vol. 1, pp. 365-369, 1991.

Z.Yi, C. Jian, and L. Zhang, 2006, “Output Convergence Analysis for a Class of Delayed
Recurrent Neural Networks with Time-Varying Inputs,” IEEE Trans on Systems, Man,
and Cybernetics-Part B: Cybernetics, Vol. 36(1), pp. 87-95, 2006.

P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach,
AIAA, 2001.

L. Zhang, “Neural Network-based Market Clearing Price Prediction and Confidence
Interval Estimation with an Improved Extended Kalman Filter Method,” IEEE Trans
on Power Systems, Vol. 20 (1), pp. 59-66, 2005.

Z. Zhang, J. C. Lv, and L. Zhang, “Output Convergence Analysis for a Class of Delayed

Recurrent Neural Networks with Time-varying Inputs,” IEEE Trans on Systems, Man,
and Cybernetics—Part B: Cybernetics, Vol. 36(1), pp. 87-95, 2006.

183

APPENDICES

Appendix A

Program to train RNN - trainrnn.m

Get training patterns

v

Set network structure

!

Initialize weight (initialize.m)

»
>

Feed input and compute output of neural network (rnn.m)

v

Calculate H matrix (rnnsolveH.m)

v

Apply EKF training (nnEKF.m)

v

Compute and display training error

no

Stop criteria

yes
Trained weight and RNN output

184

Appendix B

Program to optimize RNN and train OptRNN - trainoptrnn.m

Get training patterns

!

Set network structure

v
Initialize weight (initialize.m)
v

Feed input and compute output of neural network (optrnnl.m)

Calculate the H matrix (optrnnsolveH1.m)

!

Apply the EKF training to weight (nnEKF.m)

!

Apply the EKF training to connectivity (nnEKF.m)

v

Compute and display training error

no

Stop criteria

es . ..
Y Optimized connectivity

Initialize weight of the optimized RNN (initialize.m)

»
>

Feed input and compute output of the optimized RNN (optrnn2.m)

!

Calculate the H matrix (optrnnsolveH2.m)

'

Apply the EKF training to weight (nnEKF.m)

!

Compute and display training error

no

Stop criteria

es
Y Trained weight of OptRNN and output

185

Appendix C

Program to apply R and Q adaption laws in training RNN — trainrnn_adrq.m

Get training patterns

v

Set network structure

!

Initialize weight (initialize.m)

\ 2
Feed input and get output of neural network (rnn.m)

v

Calculate H matrix (rnnsolveH.m)

Apply R adaption law
v
Apply Q adaption law

v

Apply EKF training (nnEKF.m)

v

Compute and display training error

no

Stop criteria

yes
Trained weight and RNN output

186

	Clemson University
	TigerPrints
	5-2010

	ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK
	Xiaoyu Wang
	Recommended Citation

	Dissertation18.doc

