
Research Article
Inverse Optimal Control with Speed Gradient for a Power
Electric System Using a Neural Reduced Model

Alma Y. Alanis,1 Enrique A. Lastire,2 Nancy Arana-Daniel,1 and Carlos Lopez-Franco1

1 CUCEI, Universidad de Guadalajara, Apartado Postal 51-71, Col. Las Aguilas, 45079 Zapopan, JAL, Mexico
2 CINVESTAV, Unidad Guadalajara, Apartado Postal 31-438, Plaza La Luna, 45091 Guadalajara, JAL, Mexico

Correspondence should be addressed to Alma Y. Alanis; almayalanis@gmail.com

Received 5 November 2013; Revised 30 January 2014; Accepted 30 January 2014; Published 16 March 2014

Academic Editor: Hamid R. Karimi

Copyright © 2014 Alma Y. Alanis et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presented an inverse optimal neural controller with speed gradient (SG) for discrete-time unknown nonlinear systems
in the presence of external disturbances and parameter uncertainties, for a power electric systemwith different types of faults in the
transmission lines including load variations. It is based on a discrete-time recurrent high order neural network (RHONN) trained
with an extended Kalman filter (EKF) based algorithm. It is well known that electric power grids are considered as complex systems
due to their interconections and number of state variables; then, in this paper, a reduced neural model for synchronous machine is
proposed for the stabilization of nine bus system in the presence of a fault in three different cases in the lines of transmission.

1. Introduction

Many physical systems, such as electric power grids, com-
puter and communication networks, networked dynamical
systems, transportation systems, and many others, are com-
plex large-scale interconnected systems [1]. To control such
large scale systems, centralized control schemes are proposed
in the literature assuming available global information for
the overall system. Another problem in complex large-scale
interconnected systems is the effect of delays that typically
are unknown and time-variable [2, 3]. While using control
centralization has theoretical advantages, it is very diffi-
cult for a complex large-scale system with interconnections
due to technical and economic reasons [4]. Furthermore,
centralized control designs are dependent upon the system
structure and cannot handle structural changes. If subsystems
are added or removed, the controller for the overall system
should be redesigned. Therefore decentralized control for
interconnected power systems has also attracted considerable
attention of researchers in the field of complex and large-
scale systems like multiarea interconnected power systems.
Besides, due to physical configuration and high dimen-
sionality of interconnected systems, centralized control is
neither economically feasible nor even necessary. These facts

motivate the design of decentralized controllers, using only
local information while guaranteeing stability for the whole
system [1].

The main issue in this paper is the analysis of a fault in
the electric power system in different lines of transmission,
the recurrent high order neural networks (RHONN) allow
the identification of nonlinear systems, and then the RHONN
model can be used for the controller design. Recently, some
works have been published about synchronous generators
in which reduced models have been proposed, such models
are able to reproduce full order dynamics for synchronous
generators [1, 5]. The system under study consists of three
synchronous generators interconnected (nine bus system)
and there are cases of study of power electric system, where
a three-phase fault is introduced at the end of the line 7 [6];
in this paper, the analysis for the system is focused in other
lines, at the end of buses 8 and 9, the fault is proposed and
tested via simulation and the purpose is the production and
distribution of a reliable and robust electric energy.

On the other hand, a model in discrete time has been
proposed [7], in which a recurrent high order neural network
has been incorporated to implement a control law as this
reduced model allows the stabilization through the inverse
optimal control law SG. In this work, a neural model of
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the multimachine system is proposed, which results useful,
because it is focused in the variable states that are more rel-
evant for this paper: position, velocity, and voltage rotor [7];
further, the control law is implemented for the power electric
system that consists of three interconnected synchronous
generators. A solution is proposed for the destabilization
problem of multimachine power electric system in the pres-
ence of a fault in one of its lines of transmission that occurs
at 10 seconds of simulation. A system identification of the
complete multimachine power electric system model (nine
bus system) is presented through a neural reducedmodel and
this allows the design of a neural inverse optimal SG control
law. Finally the results obtained are shown, in which it can be
seen that the control law stabilizes the system in presence of
the fault in the three cases of fault that are presented.

In literature, there are works that report the parameter
identification for synchronousmachines for full ordermodels
[5] as well as for reduced order ones [8]; however, these
models are for nominal condition; that is, they do not
consider fault scenarios; in [1], a reduced order neural model
is considered; however, it is developed for continuous time;
nevertheless, the need to real-time implementations makes
necessary the use of digital models, besides, in [9], has
been developed a discrete-time neural controller, which is
proposed for a single machine system. Then, the paper main
contributions can be stated as follows: first a RHONN is
used to establish a discrete-time reduced order mathematical
model for amultimachine power electric systemmodel.Then
this neural model is used to synthesize an inverse optimal
SG control law to stabilize the system and, finally, three fault
scenarios are considered in order to illustrate the applicability
of the proposed scheme.

2. Mathematical Preliminaries

2.1. Discrete-Time High Order Neural Networks. The use
of multilayer neural networks is well known for pattern
recognition and for static systems modelling. The NN is
trained to learn an input-output map. Theoretical works
have proven that, even with just one hidden layer, a NN
can uniformly approximate any continuous function over a
compact domain, provided that the NN has a sufficient num-
ber of synaptic connections [10]. To implement the neural
network (NN) design, a RHONN is used [7] and this model
turns out to be very flexible because it allows incorporating
priory information to the model:
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𝑇 is the input vector to the neural network
and 𝑆(∙) is defined by

𝑆 (𝜍) =

1

1 + exp (−𝛽𝜍)
, 𝛽 > 0, (4)

where 𝜍 is any real value variable.

2.2.The EKF Training Algorithm. The best well-known train-
ing approach for recurrent neural networks (RNN) is the
backpropagation through time learning [11]. However, it is a
first order gradient descent method and hence its learning
speed could be very slow [12]. Recently, Extended Kalman
Filter (EKF) based algorithms have been introduced to train
neural networks [7, 9, 13, 14]. With the EKF based algorithm,
the learning convergence is improved [14]. The EKF training
of neural networks, both feedforward and recurrent ones,
has proven to be reliable and practical for many applications
over the past years [14]. It is known that Kalman filtering
(KF) estimates the state of a linear system with additive
state and output white noises [15, 16]. For KF-based neural
network training, the networkweights become the states to be
estimated. In this case, the error between the neural network
output and the measured plant output can be considered as
additive white noise. Due to the fact that the neural network
mapping is nonlinear, an EKF-type is required (see [17] and
references therein). The training goal is to find the optimal
weight values whichminimize the prediction error.The EKF-
based training algorithm is described by [15]:
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state component, 𝜂
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is a design parameter, 𝐾
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3. Controller Design

Optimal control is related to finding a control law for a given
system such that a performance criterion is minimized. This
criterion is usually formulated as a cost functional, which
is a function of the state and control variables. The optimal
control problem can be solved using Pontryagin’s maximum
principle (a necessary condition) [18] and the method of
dynamic programming developed by Bellman [19, 20], which
can lead to a nonlinear partial differential equation called
the Hamilton-Jacobi-Bellman (HJB) equation (a sufficient
condition); nevertheless, solving the HJB equation is not a
feasible task [21, 22].

3.1. Inverse Optimal Control via CLF. In this paper, the
inverse optimal control and its solution by proposing a
quadratic control Lyapunov function (CLF) are used [23]
and the CLF depends on a fixed parameter in order to
satisfy stability and optimality condition. A posteriori, the
speed gradient algorithm is established to compute this CLF
parameter and it is used to solve the inverse optimal control
problem. Motivated by the favorable stability margins of
optimal control systems, a stabilizing feedback control law is
proposed, which will be optimal with respect to a meaningful
cost functional. At the same time, it is desirable to avoid the
difficult task of solving the HJB partial differential equation.
In the inverse optimal control problem, a candidate CLF is
used to construct an optimal control law directly without
solving the associated HJB equation [24]. Inverse optimality
is selected, because it avoids solving the HJB partial differen-
tial equations and still allows obtaining Kalman-type stability
margins [21].

In contrast to the inverse optimal control via passivity
approach, in which a storage function is used as a candidate
CLF and the inverse optimal control law is selected as the
output feedback, for the inverse optimal control via CLF, the
control law is obtained as a result of solving the Bellman
equation.Then, a candidate CLF for the obtained control law
is proposed such that it stabilizes the system and a posteriori
a meaningful cost functional is minimized.

In this paper, a quadratic candidate CLF is used to syn-
thesize the inverse optimal control law. The following

assumptions and definitions allow the inverse optimal control
solution via the CLF approach.

The full state of system
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is measurable.

Definition 1 (inverse optimal control law). Let us define the
control law [23]
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It is possible to establish the main conceptual differences
between optimal control and inverse optimal control as
follows.

(i) For optimal control, the meaningful cost indexes
𝑙(𝑥(𝑘)) ≥ 0 and 𝑅(𝑥(𝑘)) > 0 are given a priory;
then, they are used to calculate 𝑢(𝑥(𝑘)) and 𝑉(𝑥(𝑘))

by means of HJB equation solution.
(ii) For inverse optimal control, a candidate CLF𝑉(𝑥(𝑘))

and the meaningful cost index 𝑅(𝑥(𝑘)) are given a
priory, and then these functions are used to calculate
the inverse control law 𝑢(𝑘) and the meaningful cost
index (𝑥(𝑘)), defined as 𝑙(𝑥(𝑘)) := −𝑉(𝑥(𝑘)).

As established in Definition 1, the inverse optimal control
problem is based on the knowledge of 𝑉(𝑥(𝑘)). Thus, it
is proposed as a CLF 𝑉(𝑥(𝑘)), such that (1) and (2) are
guaranteed. That is, instead of solving (11) for 𝑉(𝑥(𝑘)), it is
proposed a control Lyapunov function 𝑉(𝑥(𝑘)) as
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for control law (9), in order to ensure stability of the
equilibrium point 𝑥(𝑘) = 0 of system (8), which will be
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achieved by defining an appropriate matrix 𝑃. Moreover, it
will be established that control law (9) with (13), which is
referred to as the inverse optimal control law, optimizes a
meaningful cost functional of the form:
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Consequently, by considering 𝑉(𝑥(𝑘)) as in (13), the
control law takes the following form:
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positive definite and symmetric matrices; thus, the existence
of the inverse in (15) is ensured.

3.2. Speed-Gradient SG Algorithm. Given that (15) 𝑃 is rede-
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compute a time variant value in time for 𝑃(𝑘), which ensures
stability to the system (8) by means of the algorithm SG.

In [25] a discrete-time application of the SG algorithm
is formulated to find a control law 𝑢(𝑘) which ensures the
control goal:
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where 𝑄 is a control goal function, a constant Δ > 0, and
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ensures stability if it is a positive definite function.
Based on the SG application proposed in [25], the control

law given by (15) is considered, with Δ in (16) a state depend-
ent function Δ(𝑥(𝑘)).

Consider the control law redefined for the speed gradient
algorithm which at every time depends on the matrix 𝑃(𝑘).
Let us define the matrix 𝑃(𝑘) at every time 𝑘 as
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a scalar parameter to be adjusted by the SG algorithm. Then
the control law is transformed as follows:
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The SG algorithm is now reformulated for the inverse optimal
control problem.

Definition 2 (SG goal function). Consider a time-varying
parameter 𝑝(𝑘) ∈ P ⊂ R+ with 𝑝(𝑘) > 0 for all 𝑘, and P

is the set of admissible values for 𝑝(𝑘) [23]. A nonnegative
function 𝑄 : R𝑛 ×R → R of the form

𝑄 (𝑥 (𝑘) , 𝑝 (𝑘)) = 𝑉SG (𝑥 (𝑘 + 1)) , (20)
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as defined in (8), is referred to as SG goal function for system
(8), with 𝑄(𝑘(𝑝)) := 𝑄(𝑥(𝑘), 𝑝(𝑘)).

Definition 3 (SG control goal). Consider a constant 𝑝∗ ∈ P.
The SG control goal for system (8) with (18) is defined as
finding 𝑝(𝑘), so that the SG goal function 𝑄(𝑘(𝑝)) [23], as
in (20), fulfills
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definite function Δ(𝑥(𝑘)).
To conclude, the SG algorithm is used to calculate 𝑝(𝑘) in

order to achieve the SG control goal defined above.

Proposition 4. Consider a discrete-time nonlinear system of
the form (8)with (18) as input [23]. Let𝑄 be a SG goal function
as defined in (2) and denoted by 𝑄(𝑘(𝑝)). Let 𝑝, 𝑝∗ ∈ P be
positive constant values and let Δ(𝑥(𝑘)) be a positive definite
function withΔ(0) = 0 and let 𝜖∗ be a sufficiently small positive
constant. Assume the following.

(i) There exist 𝑝∗ and 𝜖∗ such that

𝑄 (𝑘 (𝑝

∗
)) ≤ 𝜖

∗
≪ Δ (𝑥 (𝑘)) ,

1 − 𝜖

∗

Δ (𝑥 (𝑘))

≈ 1.

(23)

(ii) For all 𝑝(𝑘) ∈ P,

(𝑝

∗
− 𝑃 (𝑘))

𝑇
∇ (𝑝)𝑄 (𝑘 (𝑝)) ≤ 𝜖

∗
− Δ (𝑥 (𝑘)) < 0,

(24)

where ∇(𝑝)𝑄(𝑘(𝑝)) denotes the gradient of 𝑄(𝑘(𝑝)
with respect to 𝑝(𝑘). Then, for any initial condition
𝑝(0) > 0, there exists a 𝑘∗ ∈ R+ such that the SG con-
trol goal (16) is achieved by means of the following
dynamic variation of parameter 𝑝(𝑘):

𝑝 (𝑘 + 1) = 𝑝 (𝑘) − 𝛾

𝑑(𝑘)
∇ (𝑝)𝑄 (𝑘 (𝑝)) (25)

with

𝛾

𝑑(𝑘)
= 𝛾

𝑐
𝛿 (𝑘)

󵄨

󵄨

󵄨

󵄨

∇ (𝑝)𝑄 (𝑘 (𝑝))

󵄨

󵄨

󵄨

󵄨

−2

0 < 𝛾

𝑐
≤ 2Δ (𝑥 (𝑘)) ,

𝛿 (𝑘) = {

1 𝑓𝑜𝑟 𝑄 (𝑝 (𝑘)) > Δ (𝑥 (𝑘))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(26)
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Finally, for 𝑘 ≥ 𝑘

∗, 𝑝(𝑘) becomes a constant value denoted by
𝑝 and the SG algorithm is completed.

With𝑄(𝑝(𝑘)) as defined in (20), the dynamic variation of
parameter 𝑝(𝑘) in (25) results in

𝑝 (𝑘 + 1) = 𝑝 (𝑘) + Θ

∗
, (27)

where

Θ

∗
= 8𝛾

𝑑(𝑘)

×

𝑓

𝑇
(𝑥 (𝑘)) 𝑃

󸀠
𝑔 (𝑥 (𝑘)) 𝑅(𝑥 (𝑘))

2
𝑔

𝑇
(𝑥 (𝑘)) 𝑓 (𝑥 (𝑘))

(2𝑅 (𝑥 (𝑘)) + 𝑝 (𝑘) 𝑔

𝑇
(𝑥 (𝑘)) 𝑃

󸀠
𝑔 (𝑥 (𝑘)))

3

(28)

which is positive for all time 𝑘 if 𝑝(0) > 0. Therefore
positiveness for 𝑝(𝑘) is ensured and requirement 𝑃(𝑘) =

𝑃

𝑇
(𝑘) > 0 para 𝑉(𝑥(𝑘)) = (1/2)𝑥

𝑇
(𝑘)𝑃(𝑘)𝑥(𝑘) with 𝑃(𝑘) =

𝑃

𝑇
(𝑘) > 0 is guaranteed. When SG control goal (21) is

achieved, then 𝑝(𝑘) = 𝑝 for 𝑘 ≥ 𝑘

∗. Thus, matrix 𝑃(𝑘) in (18)
is considered constant and 𝑃(𝑘) = 𝑃 where 𝑃 is computed
as 𝑃 = 𝑝𝑃

󸀠, with 𝑃

󸀠 a design positive definite matrix. Under
these constraints, we obtain

𝛼 (𝑥 (𝑘)) := 𝑢 (𝑘) = −

1

2

(𝑅 (𝑥 (𝑘)) + 𝑃

2 (
𝑥 (𝑘)))

−1
𝑃

1 (
𝑥 (𝑘)) ,

(29)

where 𝑃

1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃𝑓(𝑥(𝑘)) and 𝑃

2
(𝑥(𝑘)) =

(1/2)𝑔

𝑇
(𝑥(𝑘))𝑃𝑔(𝑥(𝑘)).

3.3. Tracking Reference. In the case of tracking reference, the
control law is defined as follows [23]:

𝑢 (𝑘) = −

1

2

(𝑅 (𝑥 (𝑘)) + 𝑃

2 (
𝑥 (𝑘)))

−1
𝑃

1 (
𝑥 (𝑘)) , (30)

where 𝑃

1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃𝑓(𝑥(𝑘) − 𝑥ref(𝑘 + 1)) and

𝑃

2
(𝑥(𝑘)) = (1/2)𝑔

𝑇
(𝑥(𝑘))𝑃𝑔(𝑥(𝑘)).

4. Multimachine Power System Control

4.1. Multimachine Power System Complete Model. In this
work, the proposed decentralized identification and control
scheme is tested with the Western System Coordinating
Council (WSCC) 3-machine, 9-bus system [6, 26]. The
differential and algebraic equations which represent the 𝑖th
generator dynamics and power flow constraints respectively
[1, 6] are given by

𝑥̇

1𝑖
= 𝑥

2𝑖
− 𝜔

𝑠

𝑥̇

2𝑖
= (

𝜔

𝑠

2𝐻

𝑖

) (𝑇

𝑚𝑖
− (𝜓

𝑑𝑖
𝐼

𝑞𝑖
− 𝜓

𝑞𝑖
𝐼

𝑑𝑖
))

𝑥̇

3𝑖
= (

1

𝑇

󸀠

𝑑0𝑖

) (−𝑥

3𝑖
− 𝑋

𝑑𝑑
)

× [𝐼

𝑑𝑖
− 𝑋

∗

𝑑𝑖
(𝑥

5𝑖
+ 𝑋

𝑑𝑙𝑠
)] + 𝐸

𝑓𝑑𝑖
)]

𝑥̇

4𝑖
= (

1

𝑇

󸀠

𝑞0𝑖

)(−𝑥

4𝑖
− 𝑋

𝑞𝑞
)

× [𝐼

𝑞𝑖
− 𝑋

∗

𝑞𝑖
(𝑥

6𝑖
+ 𝑋

𝑞𝑙𝑠
)] + 𝐸

󸀠

𝑑𝑖
)

𝑥̇

5𝑖
= (

1

𝑇

󸀠󸀠

𝑑0𝑖

)(−𝑥

5𝑖
+ 𝑥

3𝑖
− (𝑋

󸀠

𝑑𝑖
− 𝑋

𝑙𝑠𝑖
) 𝐼

𝑑𝑖
)

𝑥̇

6𝑖
= (

1

𝑇

󸀠󸀠

𝑞0𝑖

)(−𝑥

6𝑖
− 𝑥

4𝑖
− (𝑋

󸀠

𝑞𝑖
− 𝑋

𝑙𝑠𝑖
) 𝐼

𝑞𝑖
) ,

(31)

where 𝑥

1
is the power angle of the 𝑖th generator in rad, 𝑥

2

is the rotating speed of the 𝑖th generator in rad/s, 𝑥
3
is the

𝑞-axis internal voltage of the 𝑖th generator in p.u., 𝑥
4
is the 𝑑-

axis internal voltage of the 𝑖th generator in p.u., 𝑥
5
is the 1𝑑-

axis flux linkage of the 𝑖th generator in p.u., 𝑥
6
is the 2𝑞-axis

flux linkage of the 𝑖th generator in p.u., 𝐸
𝑓𝑑𝑖

is the excitation
control input, and 𝜓

𝑑𝑖
and 𝜓

𝑞𝑖
are the 𝑑-axis flux linkage and

𝑞-axis flux linkage of the 𝑖th generator in p.u., respectively;𝜔
𝑠

is the synchronous rotor speed in rad/s, 𝐼
𝑑𝑖
and 𝐼

𝑞𝑖
are the 𝑑-

axis and 𝑞-axis currents of the 𝑖th generator in p.u., and 𝐸

󸀠

𝑑𝑖

is the transient voltage in d-axis of the 𝑖th generator. Besides,
(4.1) is complemented with

𝑋

∗

𝑑𝑖
=

𝑋

󸀠

𝑑𝑖
− 𝑋

󸀠󸀠

𝑑𝑖

(𝑋

󸀠

𝑑𝑖
− 𝑋

𝑙𝑠𝑖
)

2
, 𝑋

∗

𝑞𝑖
=

𝑋

󸀠

𝑞𝑖
− 𝑋

󸀠󸀠

𝑞𝑖

(𝑋

󸀠

𝑞𝑖
− 𝑋

𝑙𝑠𝑖
)

2

𝑋

𝑑𝑑
= 𝑋

𝑑𝑖
− 𝑋

󸀠

𝑑𝑖
, 𝑋

𝑞𝑞
= 𝑋

𝑞𝑖
− 𝑋

󸀠

𝑞𝑖

𝑋

𝑑𝑙𝑠
= (𝑋

󸀠

𝑑𝑖
− 𝑋

𝑙𝑠𝑖
) 𝐼

𝑑𝑖
, 𝑋

𝑞𝑙𝑠
= (𝑋

󸀠

𝑞𝑖
− 𝑋

𝑙𝑠𝑖
) 𝐼

𝑞𝑖

(32)

being parameters for each synchronous generator. It is impor-
tant to consider that each machine model considered is a flux
decay model (one axis model) given in [1, 6]; exciters and
governors are not included in this model [1, 8].

4.2. Reduced Neural Model of Multimachine Power System.
The model mentioned above [1] is in continuous time and
due to this fact, we proceed to discretize the states using Euler
methodology;with the state variables discretized, the reduced
neural model is proposed [7] as follows:

𝑥

1 (
𝑘 + 1) = 𝑓

1 (
𝑘)

𝑥

2 (
𝑘 + 1) = 𝑓

2 (
𝑘)

𝑥

3 (
𝑘 + 1) = 𝑓

3 (
𝑘) + 𝑤

34
𝑢 (𝑘)

(33)

𝑓

1 (
𝑘) = 𝑤

11 (
𝑘) 𝑆 (𝑥1 (

𝑘)) + 𝑤

12 (
𝑘) 𝑆 (𝑥2 (

𝑘))

𝑓

2 (
𝑘) = 𝑤

21 (
𝑘) 𝑆(𝑥1 (

𝑘))

6
+ 𝑤

22 (
𝑘) 𝑆 (𝑥2 (

𝑘))

+ 𝑤

23 (
𝑘) 𝑆 (𝑥3 (

𝑘))

𝑓

3 (
𝑘) = 𝑤

31 (
𝑘) 𝑆 (𝑥1 (

𝑘)) + 𝑤

32 (
𝑘) 𝑆 (𝑥2 (

𝑘))

+ 𝑤

33 (
𝑘) 𝑆 (𝑥3 (

𝑘)) ,

(34)
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where 𝑥
𝑖
estimates 𝑥

𝑖
(𝑖 = 1, 2, 3). Given the neural reduced

model, the inverse optimal SG control law is applied to the
reduced neural model to each synchronous generator, that is,
in a decentralized way. Thus, the control law is established
from (30) where the matrix 𝑃 is given for different values for
each fault as follows: in the case of the fault at the end of bus
7 (100 × 𝐼, 5 × 𝐼, 20 × 𝐼), in the case of the fault at the end of
bus 8 (80 × 𝐼, 5 × 𝐼, 700 × 𝐼), and in the case of the fault at the
end of bus 9 (100 × 𝐼, 5 × 𝐼, 10 × 𝐼) for generators 1, 2, and 3
respectively, where 𝐼 is an identity matrix of 3 × 3.

From (33) (𝑥(𝑘)), 𝑓(𝑥(𝑘)), the control law for the neural
network is defined as

𝑔 (𝑥 (𝑘)) =

[

[

0

0

𝜔

34

]

]

𝑓 (𝑥 (𝑘)) =

[

[

𝑓

1 (
𝑘)

𝑓

2 (
𝑘)

𝑓

3 (
𝑘)

]

]

.

(35)

It is important to note, that [5] proves that low-order
models are well-suited for stability analysis and feedback
control design for industrial power generators. Moreover, the
use of neural networks allowsmodelling system interconnec-
tions using only local information, as well as not modeled
dynamics for the reduced model [1].

5. Preliminary Calculations for Faults

For the design of the fault, a system data preparation is
required and the following preliminary calculations are taken
from [6],considering the parameters of the generators given
in Tables 7 and 8.

(1) All system data are converted to a common base; a
system base of 100MVA is frequently used.

(2) The loads are converted to equivalent impedances
or admittances. The needed data for this step are
obtained from the load-flow study. Thus if a certain
load bus has a voltage 𝑉

𝐿
, power 𝑃

𝐿
, reactive power

𝑄

𝐿
, and current flowing into a load admittance 𝑌

𝐿
=

𝐺

𝐿
+ 𝑗𝐵

𝐿
, then

𝑃

𝐿
+ 𝑗𝑄

𝐿
= 𝑉

𝐿
𝐼

∗

𝐿
= 𝑉

𝐿
[𝑉

∗

𝐿
(𝐺

𝐿
− 𝑗𝐵

𝐿
)] = 𝑉

2

𝐿
(𝐺

𝐿
− 𝑗𝐵

𝐿
) .

(36)

The equivalent shunt admittance at that bus is given
by

𝑌

𝐿
=

𝑃

𝐿

𝑉

2

𝐿

− 𝑗(

𝑄

𝐿

𝑉

2

𝐿

) . (37)

(3) The internal voltages of the generators 𝐸
𝑖
∠𝛿

𝑖0
are cal-

culated from the load-flow data.These internal angles
may be computed from the pretransient terminal
voltages 𝑉∠𝛼 as follows. Let the terminal voltage be
used temporarily as a reference, as shown in Figure 1.
If 𝐼 = 𝐼

1
+ 𝑗𝐼

2
, then, from the relation 𝑃 + 𝑗𝑄 = 𝑉 𝐼

∗

+

−

𝛿󳰀E

I

P

(Q)
+

−
V

x 󳰀
d

𝛼 = V 0

𝜃󳰀

Figure 1: Generator representation for computing 𝛿
0
.

it is possible to obtain 𝐼

1
+ 𝑗𝐼

2
= (𝑃 − 𝑗𝑄)/𝑉. Since

𝐸∠𝛿

󸀠
= 𝑉 + 𝑗𝑥

󸀠

𝑑
𝐼, then

𝐸∠𝛿

󸀠
= (𝑉 +

𝑄𝑥

󸀠

𝑑

𝑉

) + 𝑗(

𝑃𝑥

󸀠

𝑑

𝑉

) . (38)

The initial generator angle 𝛿

0
is then obtained by

adding the pretransient voltage angle 𝛼 to 𝛿󸀠, or

𝛿

𝑜
= 𝛿

󸀠
+ 𝛼. (39)

(4) The𝑌matrix for each network condition is calculated.
The following steps are usually needed.

(a) The equivalent load impedances (or admit-
tances) are connected between the load buses
and the reference node; additional nodes are
provided for the internal generator voltages
(nodes 1, 2, . . . , 𝑛 in Figure 2) and the appropri-
ate values of 𝑥󸀠

𝑑
are connected between these

nodes and the generator terminal nodes. Also,
simulation of the fault impedance is added as
required, and the admittance matrix is deter-
mined for each switching condition.

(b) All impedance elements are converted to admit-
tances.

(c) Elements of the 𝑌 matrix are identified as
follows:𝑌

𝑖𝑗
is the sumof all the admittances con-

nected to node 𝑖, and 𝑌

𝑖𝑗
is the negative of the

admittance between node 𝑖 and node 𝑗.

(5) Finally, all the nodes except for the internal generator
nodes are eliminated and obtain the 𝑌matrix for the
reduced network. The reduction can be achieved by
matrix operation recalling all the nodes that have zero
injection currents except for the internal generator
nodes. This property is used to obtain the network
reduction as shown below. Let

𝐼 = 𝑌𝑉, (40)

where

𝐼 = [

𝐼

𝑛

0

] . (41)
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Figure 2: Representation of a multimachine system (classical model).
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Figure 3: Nine bus system.

Now the matrices 𝑌 and 𝑉 are partitioned accordingly to
get

[

𝐼

𝑛

0

] = [

𝑌

𝑛𝑛
𝑌

𝑛𝑟

𝑌

𝑟𝑛
𝑌

𝑟𝑟

] [

𝑉

𝑛

𝑉

𝑟

] , (42)

where the subscript 𝑛 is used to denote generator nodes and
the subscript 𝑟 is used for the remaining nodes. Thus for the

network in Figure 2, 𝑉
𝑛
∈ R𝑛×1 and 𝑉 ∈ R𝑟×1. Expanding

(42),

𝐼

𝑛
= 𝑌

𝑛𝑛
𝑉

𝑛
+ 𝑌

𝑛𝑟
𝑉

𝑟
, 0 = 𝑌

𝑟𝑛
𝑉

𝑛
+ 𝑌

𝑟
𝑟𝑉

𝑟 (43)

from which we eliminate 𝑉
𝑟
to find

𝐼

𝑛
= (𝑌

𝑛𝑛
𝑉

𝑛
− 𝑌

𝑛𝑟
𝑌

−1

𝑟𝑟
𝑌

𝑟𝑛
)𝑉

𝑛
. (44)
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Figure 4: Generator 1 response with a fault at bus 7.
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Figure 5: Generator 2 response with a fault at bus 7.

Thematrix (𝑌
𝑛𝑛
𝑉

𝑛
−𝑌

𝑛𝑟
𝑌

−1

𝑟𝑟
𝑌

𝑟𝑛
) is the desired reduced matrix

𝑌 ∈ R𝑛×𝑛, where 𝑛 is the number of the generators. The
network reduction illustrated by (43)-(44) is a convenient
analytical technique that can be used only when the loads
are treated as constant impedances. If the loads are not
considered to be constant impedances, the identity of the load
buses must be retained. Network reduction can be applied
only to those nodes that have zero injection current.

Once the preliminaries calculations are made to obtain
the 𝑌 matrix for each fault in the correspondent bus, the
network reduction for each fault is applied. For the first
case of the analysis, the fault occurs at bus 7 and then the
correspondent 𝑌matrix is obtained as shown in Tables 9, 10,
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Figure 6: Generator 3 response with a fault at bus 7.

−0.5

0

0.5

340

360

380

400

0.5

1

1.5

0 5 10 15 20 25 30

Time (s)

0 5 10 15 20 25 30

Time (s)

0 5 10 15 20 25 30

Time (s)

x
3

(v
ol

ts)
x
2

(r
ad

/s
)

x
1

(r
ad

)

Figure 7: Generator 1 response with a fault at bus 8.

and 11 included at the Appendix.Then the network reduction
of 𝑌matrix is applied and is defined as in Table 1.

For the second case of the analysis, the fault occurs at
bus 8 and then the correspondent 𝑌 matrix is obtained as
shown in Tables 12, 13, and 14 included at the Appendix after
the network reduction of 𝑌 matrix is realized to obtain the
reduced networks defined as in Table 2.

For the third case of the analysis, the fault occurs at
bus 9 and then the correspondent 𝑌 matrix is obtained as
shown in Tables 15, 16 and 17 included at the Appendix after
the network reduction of 𝑌 matrix is realized to obtain the
reduced networks defined as in Table 3.
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Table 1: Reduced 𝑌Matrices at bus 7.

Type of network Node 1 2 3

Pre-fault
1 0.846 − 𝑗2.988 0.287 + 𝑗1.513 0.210 + 𝑗1.226

2 0.287 + 𝑗1.513 0.420 − 𝑗2.724 0.213 + 𝑗1.088

3 0.210 + 𝑗1.226 0.213 + 𝑗1.088 0.277 − 𝑗2.368

Faulted
1 0.657 − 𝑗3.816 0.000 + 𝑗0.000 0.070 + 𝑗0.631

2 0.000 + 𝑗0.000 0.000 − 𝑗5.486 0.000 + 𝑗0.000

3 0.070 + 𝑗0.631 0.000 − 𝑗0.000 0.174 − 𝑗2.796

Fault cleared
1 1.181 − 𝑗2.229 0.138 + 𝑗0.726 0.191 + 𝑗1.079

2 0.138 + 𝑗0.726 0.389 − 𝑗1.953 0.199 + 𝑗1.229

3 0.191 + 𝑗1.079 0.199 + 𝑗1.229 0.273 − 𝑗2.342

Table 2: Reduced 𝑌Matrices at bus 8.

Type of network Node 1 2 3

Pre-fault
1 0.938 − 𝑗2.798 0.325 + 𝑗1.588 0.251 + 𝑗1.315

2 0.325 + 𝑗1.588 0.436 − 𝑗2.694 0.230 + 𝑗1.123

3 0.251 + 𝑗1.315 0.230 + 𝑗1.123 0.296 − 𝑗2.325

Faulted
1 0.736 − 𝑗3.569 0.082 + 𝑗0.535 0.063 + 𝑗0.534

2 0.082 + 𝑗0.535 0.146 − 𝑗4.128 0.006 + 𝑗0.058

3 0.063 + 𝑗0.534 0.006 + 𝑗0.058 0.122 − 𝑗3.115

Fault cleared
1 0.850 − 𝑗3.252 0.334 + 𝑗1.346 0.075 + 𝑗0.569

2 0.334 + 𝑗1.346 0.687 − 𝑗2.061 0.032 + 𝑗0.148

3 0.075 + 𝑗0.569 0.032 + 𝑗0.148 0.124 − 𝑗3.111
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Figure 8: Generator 2 response with a fault at bus 8.

6. Fault Simulation

The power electric system used in this paper is presented in
Figure 3. It corresponds to the nine bus system. Figure 3 also
includes the bus interconnection and the related parameters
in the transmission lines. Data for simulation is given in
Tables 7 and 8, respectively [6], where the modeling of the
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Figure 9: Generator 3 response with a fault at bus 8.

system is explained and the related parameters for each
synchronous generator are described.

In this paper, the 18 state variables related to 3 syn-
chronous generators are stabilized, using the neural reduced
model [7], reaching stabilization for the system with the fault
in three different lines of transmission, for simulation the
sample time is fitted to 0.005ms.
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Table 3: Reduced 𝑌Matrices at bus 9.

Type of network Node 1 2 3

Pre-fault
1 0.938 − 𝑗2.798 0.325 + 𝑗1.588 0.251 + 𝑗1.315

2 0.325 + 𝑗1.588 0.436 − 𝑗2.694 0.230 + 𝑗1.123

3 0.251 + 𝑗1.315 0.230 + 𝑗1.123 0.296 − 𝑗2.325

Faulted
1 0.727 − 𝑗3.735 0.135 + 𝑗0.787 −0.004 + 𝑗0.001

2 0.135 + 𝑗0.787 0.263 − 𝑗3.377 −0.002 + 𝑗0.000

3 −0.004 + 𝑗0.001 −0.002 + 𝑗0.000 −0.010 − 𝑗4.168

Fault cleared
1 1.271 − 𝑗1.980 0.290 + 𝑗1.247 0.102 + 𝑗0.344

2 0.290 + 𝑗1.247 0.380 − 𝑗2.957 0.149 + 𝑗0.702

3 0.102 + 𝑗0.344 0.149 + 𝑗0.702 0.209 − 𝑗2.853
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Figure 10: Generator 1 response with a fault at bus 9.
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Figure 11: Generator 2 response with a fault at bus 9.
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Figure 12: Generator 3 response with a fault at bus 9.

Table 4: Admittance loads.

Load Admittance
𝐴 𝑦

𝐿5
= 1.2610 − 𝑗0.5044

𝐵 𝑦

𝐿6
= 0.8777 − 𝑗0.2926

𝐶 𝑦

𝐿8
= 0.9690 − 𝑗0.3391

Table 5: Initial conditions of the generators.

Initial conditions Generator 1 Generator 2 Generator 3
𝑥

01
0.0396 0.3444 0.23

𝑥

02
377 377 377

𝑥

03
1.056 1.0502 1.0170

𝑥

04
0 0.622 0.624

𝑥

05
1.0478 0.7007 0.7078

𝑥

06
−0.0425 −0.7568 −0.7328

There are three cases contemplated in the system simula-
tion.

(1) The fault occurs near bus 7 at the end of the lines
5–7. Results are depicted in Figure 4 for generator 1,
Figure 5 for generator 2, and Figure 6 for generator 3.
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Table 6: References for the system.

References Generator 1 Generator 2 Generator 3
𝑥

1ref 0.0396 0.3444 0.23
𝑥

2ref 377 377 377
𝑥

3ref 0.5 1.0502 1.0170

(2) The fault occurs near bus 8 at the end of the lines
8-9. Results are depicted in Figure 7 for generator 1,
Figure 8 for generator 2, and Figure 9 for generator 3.

(3) The fault occurs near bus 9 at the end of the lines 6–
9. Results are depicted in Figure 10 for generator 1,
Figure 11 for generator 2, and Figure 12 for generator
3.

For the cases above mentioned, the fault is incepted at 10
seconds of simulation and then it is possible to see that the
system has a prefault state (before 10 seconds), a fault state
(at 10 seconds), and a postfault state (after 10 seconds). The
admittances for the loads are given in p.u. in Table 4.

The initial conditions for the system are given in Table 5.
It is important to note that initial conditions of the

generators are defined by their respective parameters [1];
however, in order to test the NN approximation capabilities,
it is common to use signals that can represent a wide range of
frequencies; then, it is possible that plant signals can exhibit
a high frequency behavior [10].

The control goal is to stabilize the power electric system
and this is why the references given for each state variable of
the neural reduced model for the multimachine system are
proposed as in Table 6.

7. Conclusions

In this paper a SG discrete-time inverse optimal controller is
synthesized for a reduced order neural model to stabilize a
multimachine power electric system in the presence of a fault
at line 7, at line 8, and at line 9; from simulation results, it
can be seen that the proposed controller allows stabilizing the
state in an efficient way in the three different cases, allowing
the system stabilization after the fault occurs. As future work
authors are considering the stability analysis including the
neural decentralized controller, besides the analysis of control
delay for closed loop system.

Appendix

In this appendix, parameters used for simulations are pre-
sented. Tables 7 and 8 show the parameters for generators and
transmission lines, respectively. Tables 9, 10 and 11 display the
𝑌matrix of network with fault near to bus 7 for prefault, fault,
and fault cleared conditions. Tables 12, 13 and 14 show the 𝑌
matrix of network with fault near to bus 8 for prefault, fault,
and fault cleared conditions. Tables 15, 16 and 17 present the𝑌

Table 7: Parameters of the generators.

Parameter Generator 1 Generator 2 Generator 3
𝐻 (sec) 23.6400 6.4000 3.0100
𝑇

𝑚
(pu) 0.7160 1.6300 0.8500

𝑇

󸀠

𝑑0
(sec) 8.9600 6.0000 5.8900

𝑇

󸀠󸀠

𝑑0
(sec) 0.2000 0.3000 0.4000

𝑇

󸀠

𝑞0
(sec) 0.3100 0.5350 0.6000

𝑇

󸀠󸀠

𝑞0
(sec) 0.2000 0.3000 0.4000

𝑋

𝑑
(pu) 0.1460 0.8958 1.3125

𝑋

󸀠

𝑑
(pu) 0.0608 0.1198 0.1813

𝑋

󸀠󸀠

𝑑
(pu) 0.0200 0.0500 0.0800

𝑋

𝑞
(pu) 0.0969 0.8645 1.2578

𝑋

󸀠

𝑞
(pu) 0.0969 0.1969 0.2500

𝑋

󸀠󸀠

𝑞
(pu) 0.0200 0.500 0.0800

𝑋

𝑙𝑠
(pu) 0.0336 0.0521 0.0742

Table 8: Parameters of the transmission lines.

Bus 𝑖 Bus 𝑗 𝑅

𝑖𝑗
𝑋

𝑖𝑗
𝐺

𝑖𝑗
𝐵

𝑖𝑗

1 4 0.000 0.1184 0.000 −8.4459
2 7 0.000 0.1823 0.000 −5.4855
3 9 0.000 0.2399 0.000 −4.1684
4 5 0.0100 0.0850 1.3652 −11.6041
4 6 0.0170 0.0920 1.9522 −10.5107
5 7 0.0320 0.1610 1.1876 −5.9751
6 9 0.0390 0.1700 1.2820 −5.5882
7 8 0.0085 0.0720 1.6171 −9.7843
8 9 0.0119 0.1008 1.1551 −9.7843
5 0 0.000 0.000 1.2610 −0.2634
6 0 0.000 0.000 0.8777 −0.0346
8 0 0.000 0.000 0.9690 −1.1601
4 0 0.000 0.000 0.000 0.1670
7 0 0.000 0.000 0.000 0.2275
9 0 0.000 0.000 0.000 0.2835

matrix of network with fault near to bus 9 for prefault, fault,
and fault cleared conditions.
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[21] M. Krstić andH.Deng, Stabilization of Nonlinear Uncertain Sys-
tems, Springer, Berlin, Germany, 1998.
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