160 research outputs found

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    Ontology population for open-source intelligence: A GATE-based solution

    Get PDF
    Open-Source INTelligence is intelligence based on publicly available sources such as news sites, blogs, forums, etc. The Web is the primary source of information, but once data are crawled, they need to be interpreted and structured. Ontologies may play a crucial role in this process, but because of the vast amount of documents available, automatic mechanisms for their population are needed, starting from the crawled text. This paper presents an approach for the automatic population of predefined ontologies with data extracted from text and discusses the design and realization of a pipeline based on the General Architecture for Text Engineering system, which is interesting for both researchers and practitioners in the field. Some experimental results that are encouraging in terms of extracted correct instances of the ontology are also reported. Furthermore, the paper also describes an alternative approach and provides additional experiments for one of the phases of our pipeline, which requires the use of predefined dictionaries for relevant entities. Through such a variant, the manual workload required in this phase was reduced, still obtaining promising results

    Informatics Approaches to Linking Mutations to Biological Pathways, Networks and Clinical Data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The information gained from sequencing of the human genome has begun to transform human biology and genetic medicine. The discovery of functionally important genetic variation lies at the heart of these endeavors, and there has been substantial progress in understanding the common patterns of single-nucleotide polymorphism (SNP) in humans- the most frequent type of variation in humans. Although more than 99% of human DNA sequences are the same across the population, variations in DNA sequence have a major impact on how we humans respond to disease; to environmental entities such as bacteria, viruses, toxins, and chemicals; and drugs and other therapies and thus studying differences between our genomes is vital. This makes SNPs as well other genetic variation data of great value for biomedical research and for developing pharmaceutical products or medical diagnostics. The goal of the project is to link genetic variation data to biological pathways and networks data, and also to clinical data for creating a framework for translational and systems biology studies. The study of the interactions between the components of biological systems and biological pathways has become increasingly important. It is known and accepted by scientists that it as important to study different biological entities as interacting systems, as in isolation. This project has ideas rooted in this thinking aiming at the integration of a genetic variation dataset with biological pathways dataset. Annotating genetic variation data with standardized disease notation is a very difficult yet important endeavor. One of the goals of this research is to identify whether informatics approaches can be applied to automatically annotate genetic variation data with a classification of diseases

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    NeXML: Rich, Extensible, and Verifiable Representation of Comparative Data and Metadata

    Get PDF
    In scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input–output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML
    corecore