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Abstract. While big data analytics is considered as one of the most important
paths to competitive advantage of today’s enterprises, data scientists spend a com-
paratively large amount of time in the data preparation and data integration phase
of a big data project. This shows that data integration is still a major challenge in
IT applications. Over the past two decades, the idea of using semantics for data
integration has become increasingly crucial, and has received much attention in
the AI, database, web, and data mining communities. Here, we focus on a spe-
cific paradigm for semantic data integration, called Ontology-Based Data Access
(OBDA). The goal of this paper is to provide an overview of OBDA, pointing out
both the techniques that are at the basis of the paradigm, and the main challenges
that remain to be addressed.

1 Introduction

Big data analytics is considered as one of the most important paths to competitive ad-
vantage of today’s enterprises. However, after years of focus on technologies for big
data storing and processing, many observers are pointing out that making sense of big
data cannot be done without suitable tools for conceptualizing, preparing, and integrat-
ing data1. Indeed, a common misconception about big data is that it is a black box: you
load data and magically gain insight. This is not the case: loading a big data platform
with quality data with enough structure to deliver value is a lot of work.

Thus, it is not surprising that data scientists spend a comparatively large amount
of time in the data preparation phase of a project. Whether you call it data wrangling,
data munging, or data integration, it is estimated that 50%-80% of a data scientists’
time is spent on preparing data for analysis. If we consider that in any IT (information
Technology) organization, data governance is also essential for tasks other than data
analytics, we can conclude that the challenge of identifying, collecting, retaining, and
providing access to all relevant data for the business at an acceptable cost, is huge.

Data integration is considered as one of the old problems in data management, and
the above observations show that it is a major challenge today. Formal approaches to
data integration started in the 90’s [37,17,48,34]. Since then, research both in academia
and in industry has addressed a huge variety of aspects of the general problem. Among
them, we want to focus on the idea of using semantics for making data integration

1 http://www.dbta.com/
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more powerful. Using semantics here means conceiving data integration systems where
the semantics of data is explicitly specified, and is taken into account for devising all
the functionalities of the system. Over the past two decades, this idea has become in-
creasingly crucial to a wide variety of information-processing applications, and has
received much attention in the AI, database, web, and data mining communities [41].
In this paper we focus on a specific paradigm for semantic data integration. Indeed,
about a decade ago, a new paradigm for modeling and interacting with a data integra-
tion systems, called “Ontology-Based Data Access” (OBDA), was proposed [18,14,43].
According to such paradigm, the client of the information system is freed from being
aware of how data and processes are structured in concrete resources (databases, soft-
ware programs, services, etc.), and interacts with the system by expressing her queries
and goals in terms of a conceptual representation of the domain of interest, called on-
tology.

OBDA aims at a radical solution to some of the major challenges that the complex
information systems software is throwing at us at its current stage of maturity: (i) the
increasing complexity of the solutions required, and the impossibility of formally ver-
ifying them; (ii) the fact that the lifespan of software technologies (not to talk about
hardware ones) is much shorter that the lifespan of the solutions and the applications
that use them; (iii) the obvious observation that legacy systems, or simply legacy com-
ponents, are everywhere, and realistically they will remain everywhere for a long time.
For all the above reasons, while the amount of data stored in current information sys-
tems and the processes making use of such data continuously grow, turning these data
into information, and governing both data and processes are still tremendously challeng-
ing tasks for Information Technology. The problem is complicated by the proliferation
of data sources both within a single organization, and in cooperating environments. The
following factors explain why such a proliferation constitutes a major problem with
respect to the governance goal:

– Despite the fact that the initial design of a collection of data sources is adequate,
corrective maintenance actions tend to re-shape them into a form that often diverges
from the original conceptual structure.

– It is common practice to change a data source (e.g., a database) so as to adapt it
to specific application-dependent needs, so that it often becomes a data structure
coupled to a specific application, rather than an application-independent database.

– The data stored in different sources and the processes operating over them tend to
be redundant, and mutually inconsistent, mainly because of the lack of central, co-
herent and unified data management tasks. This poses great difficulties with respect
to the goal of accessing data in a unified and coherent way.

A system realizing the vision of OBDA is constituted by three components:

– The ontology, whose goal is to provide a formal, clean and high level representation
of the domain of interest, and constitutes the component with which the clients of
the information system (both humans and software programs) interact.

– The data source layer, representing the existing data sources in the information
system, which are managed by the processes and services operating on their data.



– The mapping between the two layers, which is an explicit representation of the
relationship between the data sources and the ontology, and is used to translate the
operations on the ontology (e.g., query answering) in terms of concrete actions on
the data sources.

Thus, OBDA is an advanced approach to semantic data integration, in which the
global schema is given in terms of an ontology, i.e., a formal and conceptual view of
the application domain, rather than simply a unified view of the data at the sources.

The goal of this paper is to provide an overview of the OBDA paradigm, pointing out
both the techniques that are at the basis of the paradigm, and the main challenges that
remain to be addressed. The paper is organized as follows. In Section 2 we illustrate
the general, formal framework underlying the paradigm. In Section 3 and Section 4
we deal with the main computational problem that has been studied so far in OBDA,
namely query answering. Section 5 concludes the paper with a discussion on various
aspects that are already the subject of current study, and will be increasingly important
in the near future.

2 Framework for Ontology-based Data Access

In this section we first provide a general framework for OBDA, and then we focus on
a notable framework instantiation that allows for practical application of the OBDA
paradigm.

Before proceeding further, we point out that here we abstract from the problem of
dealing with multiple and heterogeneous sources, by assuming that we have access to a
single relational database through an SQL interface. In practice, such a database might
be obtained through the use of off-the-shelf data federation tools which allow seeing a
set of data sources as if they were a single relational database. Note that this relational
database does not represent the integrated view of the various sources, but simply a
replication of the source schemas expressed in terms of a unique format.

A general framework for OBDA. An OBDA specification J is as a triple 〈O,S,M〉,
where O is an ontology, S is a relational schema, called source schema, and M is a
mapping from S to O. More precisely, O represents intensional knowledge about the
domain, expressed in some logical language. Typically, O is a lightweight Description
Logic (DL) TBox [7], i.e., it is expressed in a language ensuring both semantic richness
and efficiency of reasoning, and in particular of query answering. The mappingM is a
set of mapping assertions, each one relating a query over the source schema to a query
over the ontology.

An OBDA system is a pair (J , D) where J is an OBDA specification and D is
a database for the source schema S, called source database for J . The semantics of
(J , D) is given in terms of the logical interpretations that are models of O (i.e., satisfy
all axioms of O, and satisfy M with respect to D). The notion of mapping satisfac-
tion depends on the semantic interpretation adopted on mapping assertions. Commonly,
such assertions are assumed to be sound, which intuitively means that the results re-
turned by the source queries occurring in the mapping are a subset of the data that



instantiate the ontology. The set of models of J with respect to D is denoted with
ModD(J ).

In OBDA systems, the main service of interest is query answering, i.e., computing
the answers to user queries, which are queries posed over the ontology. It amounts to
return the so-called certain answers, i.e., the tuples that satisfy the user query in all
the interpretations in ModD(J ). Query answering in OBDA is thus a form of reason-
ing under incomplete information, and is much more challenging than classical query
evaluation over a database instance.

From the computational perspective, query answering depends on (1) the language
used for the ontology; (2) the language used for user queries; and (3) the language
used to specify the queries in the mapping. In the following, we consider a particular
instantiation of the OBDA framework, in which we choose each such language in such
a way that query answering is guaranteed to be tractable w.r.t. the size of the data. We
remark that the configuration we get is to some extent “maximal”, i.e., as soon as we
go beyond the expressiveness of the chosen languages, we lose this nice computational
behaviour (cf. Section 3).

A tractable OBDA framework. From the general framework we obtain a tractable one
by choosing appropriate languages as follows:

– the ontology language is DL-LiteA or its subset DL-LiteR;
– the mapping language follows the global-as-view (GAV) approach [34];
– the user queries are unions of conjunctive queries.

Ontology language
DL-LiteA[43] is essentially the maximally expressive member of the DL-Lite family of
lightweight DLs [14]. In particular, its subset DL-LiteR has been adopted as the basis of
the OWL 2 QL profile of the W3C standard OWL (Ontology Web Language) [39]. As
usual in DLs, DL-LiteA allows for representing the domain of interest in terms of con-
cepts, denoting sets of objects, and roles, denoting binary relations between objects. In
fact, DL-LiteA considers also attributes, which denote binary relations between objects
and values (such as strings or integers), but for simplicity we do not consider them in
this paper. From the expressiveness point of view, DL-LiteA is able to capture essentially
all the features of Entity-Relationship diagrams and UML Class Diagrams, except for
completeness of hierarchies. In particular, it allows for specifying ISA and disjointness
between either concepts or roles, mandatory participations of concepts into roles, the
typing of roles. Formally, a DL-LiteA TBox is a set of assertions obeying the following
syntax:

B1 v B2 B1 v ¬B2 (concept inclusions)
R1 v R2 R1 v ¬R2 (role inclusions)

(funct R) (role functionalities)

where B1 and B2 are basic concepts, i.e., expressions of the form A, ∃P , or ∃P−,
and R, R1, and R2 are a basic roles, i.e., expressions of the form P , or P−. A and
P denote an atomic concept and an atomic role, respectively, i.e., a unary and binary
predicate from the ontology alphabet, respectively. P− is the inverse of an atomic role
P , i.e., the role obtained by switching the first and second components of P , and ∃P



(resp. ∃P−), called existential unqualified restriction, denotes the projection of the role
P on its first (resp. second) component. Finally ¬B2 (resp. ¬R2) denotes the negation
of a basic concept (resp. role). Assertions in the left-hand side (resp. right-hand side)
of the first two rows are called positive (resp. negative) inclusions. Assertions of the
form (funct R) are called role functionalities and specify that an atomic role, or its
inverse, is functional. DL-LiteA poses some limitations on the way in which positive
role inclusions and role functionalities interact. More precisely, in a DL-LiteA TBox an
atomic role that is either functional or inverse functional cannot be specialized, i.e., if
(funct P ) or (funct P−) are in the TBox, no inclusion of the form R v P or R v P−
can occur in the TBox. DL-LiteR is the subset of DL-LiteA obtained by removing role
functionalities altogether.

A DL-LiteA interpretation I = (∆I , ·I) consists of a non-empty interpretation do-
main∆I and an interpretation function ·I that assigns to each atomic conceptA a subset
AI of ∆I , and to each atomic role P a binary relation P I over ∆I . In particular, for the
constructs of DL-LiteA we have:

AI ⊆ ∆I (∃R)I = {o | ∃o′. (o, o′) ∈ RI}
P I ⊆ ∆I ×∆I (¬B)I = ∆I \BI
(P−)I = {(o2, o1) | (o1, o2) ∈ P I} (¬R)I = (∆I ×∆I) \RI

Let C be either a basic concept B or its negation ¬B. An interpretation I satisfies a
concept inclusion B v C if BI ⊆ CI . Similarly for role inclusions. Also, I satisfies
a role functionality (funct R) if the binary relation RI is a function, i.e., (o, o1) ∈ RI
and (o, o2) ∈ RI implies o1 = o2.

Mapping language
The mapping language in the tractable framework allows mapping assertions of the
following the forms,

φ(x) ; A(f(x)) φ(x) ; P (f1(x1), f2(x2)) (1)

where φ(x) is a domain independent first-order query (i.e., an SQL query) over S, with
free variables x, A and P are as before, variables in x1 and x2 also occur in x, and f ,
possibly with subscripts, is a function. Intuitively, the mapping assertion in the left-hand
side, called concept mapping assertion, specifies that individuals that are instances of
the atomic concept A are constructed through the use of the function f from the tuples
retrieved by the query φ(x). Similarly for the mapping assertion in the right-hand side
of (1), called role mapping assertion. Each assertion is of type GAV, i.e., it associates
a view over the source (represented by φ(x)) to an element of the global schema (in
this case the ontology). However, differently from traditional GAV mappings, the use
of functions is crucial here, since we are considering the typical scenario in which
data sources do not store the identifiers of the individuals that instantiate the ontology,
but only maintain values. Thus, functions are used to address the semantic mismatch
existing between the extensional level of S andO [43]. We notice that a mapping using
assertions of the form (1) is indeed expressible in R2RML, the W3C recommendation
for specifying mappings from relational database to RDF datasets [21]. Formally, we
say that an interpretation I satisfies a mapping assertion φ(x) ; A(f(x)) with respect



to a source database D, if for each tuple of constants t in the evaluation of φ(x) on D,
(f(t))I ∈ AI , where (f(t))I ∈ ∆I is the interpretation of f(t) in I, that is, f(t) acts
simply as a constant denoting an object2. Satisfaction of assertions of the form φ(x) ;
P (f1(x1), f2(x2)) is defined analogously. We also point out that DL-LiteA adopts the
Unique Name Assumption (UNA), that is, different constants denote different objects,
and thus different ground terms of the form f(t) are interpreted with different elements
in ∆I .3

User queries
In our tractable framework for OBDA, user queries are conjunctive queries (CQs) [2],
or unions thereof. With q(x) we denote a CQ with free variables x. A Boolean CQ
is a CQ without free variables. Given an OBDA system (J , D) and a Boolean CQ q
over J , i.e., over the TBox of J , we say that q is entailed by (J , D), denoted with
(J , D) |= q, if q evaluates to true in every I ∈ ModD(J ). When the user query q(x)
is non-Boolean, we denote with certD(q(x),J ) the certain answers to q with respect
to (J , D), i.e., the set of tuples t such that (J , D) |= q(t), where q(t) is the Boolean
CQ obtained from q(x) by substituting x with t.

Query answering
Although query answering in the general framework may become soon intractable or
even undecidable, depending on the expressive power of the various languages involved,
the tractable framework has been designed to ensure tractability of query answering. We
end this section by illustrating the basic idea for achieving tractability.

In the tractable OBDA framework previously described, one can think of a simple
chase procedure [2] for query answering, which first retrieves an initial set of concept
and role instances from the data source through the mapping, and then, using the ontol-
ogy axioms, “expands” such a set of instances deriving and materializing all the logi-
cally entailed concept and role assertions; finally, queries can be evaluated on such an
expanded set of instances. Unfortunately, in DL-LiteA (and in DL-LiteR already) the in-
stance materialization step of the above technique is not feasible in general, because the
set of entailed instance assertions starting from even very simple OBDA specifications
and small data sources may be infinite.

As an alternative to the above materialization strategy, most of the approaches to
query answering in OBDA are based on query rewriting, where the aim is to first com-
pute the perfect rewriting q′ of a query q w.r.t. an OBDA specification J , and then
evaluate q′ over the source database. Actually, the above described OBDA framework
allows for modularizing query rewriting. Indeed, the current techniques for OBDA con-
sist of two phases: a phase of query rewriting w.r.t. the ontology followed by a phase of
query rewriting w.r.t. the mapping. In the first phase, the initial query q is rewritten with
respect to the ontology, producing a new query q1, still over the ontology signature:
intuitively, q1 “encodes” the knowledge expressed by the ontology that is relevant for
answering the query q. In the second phase, the query q1 is rewritten with respect to the

2 As usual, we assume to deal with pre-interpreted data types, and thus we can harmlessly use t
to denote both the values and the constants representing them.

3 In fact, if we restrict to DL-LiteR, then UNA becomes immaterial and can be dropped, as done
in OWL 2 QL.



mappingM, thus obtaining a query q2 to be evaluated over the source data. Thus, the
mapping assertions are used for reformulating the query into a new one expressed over
the source schema signature.

In the following two sections we delve into the details of the two phases constituting
the rewriting-based query answering algorithm described above.

3 Query rewriting with respect to the ontology

In order to isolate the properties of ontology rewriting, in this section we assume that
all relevant data in the sources have been stored, using the mappingM, in a database
whose schema coincides with the ontology signature (in DL jargon, such database is
called ABox database). Note that the ABox database can be constructed by computing,
for each mapping assertion, the tuples returned by the query on the left-hand side of
the assertion, and then inserting into the ABox databases all the facts as sanctioned by
the right-hand side of the assertion. According to this scenario, the phase of rewriting
a query q with respect to the ontology aims at deriving a query q1 still expressed over
the signature of the ontology such that evaluating q1 over the ABox database returns
the set of certain answers to q with respect to the whole specification. The goal of this
section is to discuss the techniques for the ontology rewriting phase, including their
computational complexity.

Most of the proposed techniques [14,42,19] start from a CQ or a UCQ (i.e., a set of
CQs), and end up producing a UCQ that is an expansion of the initial query. They are
based on variants of clausal resolution [31]: every rewriting step essentially corresponds
to the application of clausal resolution between a CQ among the ones already generated
and a concept or role inclusion axiom of the ontology. Each such step produces a new
conjunctive query that is added to the resulting UCQ. The rewriting process terminates
when a fix-point is reached, i.e., no new CQ can be generated.

A potential bottleneck of the rewriting approach is caused by the size of the rewrit-
ten query, and several research works aim at optimization techniques addressing this
issue. For example, the first algorithm for query rewriting w.r.t. a DL-Lite ontology [14]
has been improved in [42,19] by refining and optimizing the way in which term unifi-
cation is handled by the above resolution step. Notice that the sentences corresponding
to the ontology axioms may be Skolemized (e.g., due to the presence of existentially
quantified variables in the right-hand side of a concept inclusion): to compute perfect
rewritings, the unification of Skolem terms during resolution can actually be constrained
in various ways with respect to standard resolution.

Some recent proposals for optimizing query rewriting w.r.t. the ontology
(e.g., [47,19,26]) are based on the use of Datalog queries besides CQs and UCQs, to ex-
press either intermediate results or the final rewritten query. The same idea has also been
used to extend query rewriting to more expressive, not necessarily first-order rewritable
(see below) ontology languages [42,19,25,11]. Other approaches take a more radical
view, and propose strategies based on partial materialization of instance assertions [30].

The results in [14,43] show that, following the technique illustrated above, query
answering is first-order rewritable, i.e., for each union of CQ q over J , it is possible to
compute a first-order query qr such that, for each ABox database D, t ∈ certD(q,J )



iff t is in the evaluation of qr over D. Since qr can be effectively expressed as an
SQL query, this property is actually saying that CQ answering can be reduced to query
evaluation over a relational database (thus, it is in AC 0, a subclass of LOGSPACE), for
which we can rely on standard relational DBMSs. The above property also implies that
CQ answering is in AC 0 in ABox complexity, which is the complexity of evaluating a
first-order query over a relational database. Indeed, this is an immediate consequence
of the fact that the complexity of the above phase of query rewriting is independent
of the data source, and that the final rewritten query is an SQL expression. It can also
be shown that conjunctive query answering in the OBDA setting is NP-complete w.r.t.
combined complexity, i.e., the complexity of the problem with respect to the size of
the whole input (data source, OBDA specification, and query). This is the same as the
combined complexity of SQL query answering over the data source.

Finally, an important question is whether we can further extend the ontology spec-
ification language of OBDA without losing the above nice computational property of
the query rewriting phase. In [15] it is shown that adding any of the main concept
constructors considered in Description Logics and missing in DL-LiteA (e.g., negation,
disjunction, qualified existential restriction, range restriction) causes a jump of the data
complexity of conjunctive query answering in OBDA, which goes beyond the class
AC 0. This issue has been further investigated in [6].

As for the query language, we note that going beyond unions of CQs is problematic
from the point of view of tractability, or even decidability. For instance, adding negation
to CQs causes query answering to become undecidable [28].

4 Query rewriting with respect to the mapping

Next we discuss the second phase of query rewriting in OBDA; namely the phase of
rewriting with respect to the mapping. It is well-known by the studies on data integration
[34] that rewriting a query w.r.t. a GAV mapping boils down to a simple unfolding
strategy, which essentially means substituting every predicate of the input query with
the queries that the mapping associates to that predicate [34].

In OBDA, however, query rewriting w.r.t. mappings is complicated by the following
two issues: (i) OBDA mappings allow for constructing objects that are instances of the
ontology predicates from the values stored in the data source, in order to deal with the
mentioned impedance mismatch problem; (ii) the source queries in the mapping are
expressed using the full expressive power of SQL, which is needed to bridge the large
cognitive distance that may exist between the ontology and the source schema.

Solutions to issue (i) depend on the strategy adopted to construct objects from val-
ues. When functors applied to values are used, as in the OBDA framework instantiation
we presented above, logic terms constructed through such functors can be treated in the
standard way in the unifications at the basis of the unfolding procedure: see, e.g., the
algorithm proposed in [43], which relies on techniques from partial evaluation of logic
programs. In the R2RML standard [21], functors are realized through templates that
construct W3C compliant URIs for objects from the values returned by the SQL query
in the mapping assertion.



Instead, issue (ii) above heavily affects the performance of query answering. Indeed,
current SQL engines have hard times in optimizing the execution of queries expressed
over virtual views, like those introduced by the unfolding, that use complex SQL fea-
tures such as union, nesting, or aggregation. Performance problems are of course am-
plified when there are several SQL queries mapping the same ontology predicate. Due
to the above mentioned limitations, it is not realistic to group all such queries within a
single mapping assertion for each predicate. However, without such grouping, the map-
ping associates several queries to the same predicate, and therefore the size of the query
obtained by rewriting w.r.t. the mapping may be exponential in the size of the input
query. Indeed, in real-world applications, it may very well happen that the size of the
produced rewriting is too large to be handled by current SQL engines. Techniques to
avoid or mitigate these issues are currently under investigation (see Section 5).

We observe that, beside sound mapping assertions, the literature on data integration
has also considered complete or exact mapping assertions, in order to deal with the
cases in which the data that satisfy the global schema or ontology are respectively either
a superset of or the same set as the data returned by the source queries. However, both
such assumptions soon lead to intractable query answering, as shown in [1,16].

Also, as for the query language to be adopted in the mapping, we notice that while
our framework already allows for very expressive queries over the source schema,
queries over the ontology are less expressive. Hence, in the rest of this section, we con-
sider the impact of enabling GLAV mapping assertions [34] in our framework, where a
GLAV mapping allows CQs (with existentially quantified variables) on the right-hand
side of the assertions. At a first glance, a mapping specified through assertions of the
form (1) might be considered a pure GAV mapping [34], since no existentially quanti-
fied variables occur in the right-hand side of mapping assertions. In the following we
show that, in fact, the presence of object terms of the form f(x) allows the above map-
ping to be more expressive, in the sense that, under certain conditions, OBDA specifi-
cations with GLAV mappings can be transformed into specifications having mappings
of the form (1) shown in Section 2, which have an analogous behaviour with respect to
query answering.

First of all, we formally define a GLAV mapping from a source schema S to a TBox
O as a set of assertions of the form

φ(x) ; ψ(x,y) (2)

such that φ(x) is as before, i.e., a domain independent first-order query over S, and
∃y.ψ(x,y) is a CQ over O that may contain terms of the form f(x′), where variables
x′ also occur in x. Given a database instance D for S, an interpretation I satisfies
a GLAV mapping assertion if for each tuple t in the evaluation of φ(x) over D, the
Boolean CQ ∃y.ψ(t,y) evaluates to true in I.

Given a mapping assertionm of form (2), with y = {y1, . . . , yn}, we compute from
m a setMm of mapping assertions of the form (1) as follows:

1. substitute each yi with the term fi(x), such that fi 6= fj for each i, j ∈ {1, . . . , n};
2. for each atom α occurring in m after the above substitution, add toMm the map-

ping assertion φ(x) ; α.



For example, if m is the GLAV mapping assertion

T (x) ; A1(f(x)), P (f(x), y), A2(y)

the above procedure returns the three mapping assertions

T (x) ; A1(f(x)) T (x) ; P (f(x), g(x)) T (x) ; A2(g(x))

We denote with τ(m) the set of mapping assertions of the form (1) obtained from
m through the above procedure. Given a GLAV mapping ML, we define τ(ML) =
{τ(m) | m ∈ML}4.

Theorem 1. Let J = 〈O,S,ML〉 be an OBDA specification, where O is a DL-LiteR
TBox and ML is a GLAV mapping, let Jτ = 〈O,S, τ(ML)〉, and q a Boolean CQ
over O. For each source database D for J we have that (J , D) |= q iff (Jτ , D) |= q.

Proof. Given a database instance D, it is easy to see that ModD(Jτ ) ⊆ ModD(J ).
Indeed, to satisfy mapping assertions inML, different existential variables can be as-
signed with the same object of the interpretation domain, whereas this is not possible
in τ(ML), due to the fact that different existential variables are denoted in τ(ML) by
terms using different functions, and due to the UNA. Thus, if J |= q, then obviously
Jτ |= q. For the other way round, note that for each model I ∈ ModD(J ) there exists
a model Iτ ∈ ModD(Jτ ) such that I satisfies all joins satisfied by Iτ . Therefore, since
each Iτ satisfies q then each I satisfies q, thus showing the thesis. ut

For non-Boolean queries, further work is needed. For example, consider the same
GLAV mapping assertion as before, an empty TBoxO, the non-Boolean CQ q(x, y)←
A(x)∧P (x, y), and the source databaseD = {T (d)}. Then, certD(〈O,S, {m}〉) = ∅,
whereas certD(〈O,S, τ(m)〉) = {〈f(d), g(d)〉}. For non-Boolean queries, however,
it is easy to see that certD(〈O,S,ML〉) ⊆ certD(〈O,S, τ(ML)〉), for any GLAV
mapping ML. More precisely, for this setting it is possible to show that in each
t ∈ certD(〈O,S, τ(ML)〉) such that t 6∈ certD(〈O,S,ML〉) some function sym-
bol introduced by the transformation τ occurs. Thus, one might think to filter out all
such tuples from the set certD(〈O,S, τ(ML)〉) to obtain the certain answers to the
query over the original GLAV system. In our example, this means dropping the tuple
〈f(d), g(d)〉. These results indeed say that query answering over an OBDA system hav-
ing GLAV mapping can be reduced to query answering over an OBDA system using
mapping of the form (1), where no existential variables occur. This means that systems
like Mastro [24] or Ontop [12], which manage mapping assertions of the form (1), can
be used (with minimal adaptations) to answer queries in the presence of GLAV map-
pings.

The above result has been shown for OBDA where the ontology is expressed in
DL-LiteR. Unfortunately it cannot be extended to full DL-LiteA which includes func-
tional roles. Indeed, it is not hard to see that the result stated in Theorem 1 does no
longer hold for full DL-LiteA ontologies. Consider for example the GLAV mapping
ML from a source schema S that contains the assertions

T1(x) ; P (f(x), y) and T2(x) ; P (f(x), y).

4 In ML, the sets of fresh function symbols introduced in each τ(m) are pairwise disjoint.



In this case, τ(ML) contains the assertions

T1(x) ; P (f(x), g1(x)) and T2(x) ; P (f(x), g2(x)).

Assume now to have an ontology O that contains the axiom (funct P ), and a source
database D = {T1(d), T2(d)}. Then ModD(〈O,S, τ(ML)〉) = ∅, since the individ-
uals g1(d) and g2(d) have to be interpreted with different objects, due to the UNA,
and this leads to the violation of (funct P ). On the other hand, it is not difficult to see
that instead ModD(〈O,S,ML〉) 6= ∅. Thus, in this case the transformation τ causes a
consistent system to become inconsistent, and, as a consequence, Theorem 1 is inval-
idated. Of course, one might think to renounce to the UNA on the fresh skolem terms
introduced by τ . This however would cause query answering to be no longer first-order
rewritable [13], which, as said, is a crucial requirement for practical applicability of the
OBDA approach. Indeed, [13] has shown that query answering for OBDA systems with
a DL-LiteA ontology and GLAV mapping is NLOGSPACE-hard in data complexity.

5 Current challenges

In this section we discuss the main challenges related to OBDA that are currently under
investigation.

Query rewriting optimization. As already mentioned in Section 3, despite the theo-
retical low complexity of query answering within the tractable OBDA framework de-
scribed inSection 2, experiments carried in real-world scenarios show that the behaviour
of current relational DBMS may be extremely disappointing when the queries to be ex-
ecuted at the source database are too complex, which turns out to be the case when the
ontology is conceptually different from the data source. In [46], the authors propose
an optimization based on the idea of compiling the ontology into the mappings, thus
enabling ignoring redundant rewritings. In [24], the authors propose to introduce view
predicates over the data sources, to split the mappings into low-level mappings, relating
view predicates to SQL queries over the source database, and high-level mappings, re-
lating the ontology elements to conjunctive queries over the view predicates. Hence, the
rewriting process is split into two rewriting phases, one producing a union of conjunc-
tive queries over the views, and another producing an SQL query over the data source.
This allows optimizing the size of each conjunctive query over the views without rea-
soning about SQL expressions and, by adding inclusions between views, eliminating
redundant conjunctive queries within the union. As a further optimization, the authors
introduce so-called perfect mappings, which are assertions logically entailed by the
OBDA specification, allowing for handling whole subqueries as single atoms both in
the ontology rewriting and in the mapping rewriting process.

Finally, in [10], the authors propose a query rewriting optimization strategy based on
searching within a set of alternative equivalent rewritings, one with minimal evaluation
cost when evaluated through a relational DBMS, where the cost depends both on prop-
erties of the data itself (e.g., value distribution), on the storage model (e.g., the presence
of indexes), and on the DBMS optimizer’s algorithm. Despite all the above mentioned
efforts, the evaluation of the final rewriting by the DBMS still seems the most critical
bottleneck of query answering within practical real-world OBDA scenarios.



Metamodeling and metaquerying. Recent papers point out the need of enriching con-
ceptual ontology languages with metamodeling and metaquerying features, i.e., fea-
tures for specifying and reasoning about metaclasses (also called metaconcepts) and
metarelations (also called metaproperties) [4,9]. Roughly speaking, a metaclass is a
class whose instances can be themselves classes, a metarelation is a relationship (or,
property) between metaclasses, and a metaquery is a query possibly using metaclasses
and metarelations, and whose variables may be bound to predicates. In OBDA scenar-
ios, metamodeling and metaquerying are essential both for correctly capturing com-
plex domains, and for performing interesting analyses, such as, for example, “find all
data sources that contribute, through mappings, to the instances of C, or any of its
superclasses”. Recently, a new semantics has been proposed for allowing metamodel-
ing and metaquerying over OWL2QL ontologies [36,35], which is both semantically
adequate and exhibits nice computational properties, being answering unions of con-
junctive metaqueries still AC 0 in data complexity, under certain realistic restrictions
for the queried ontologies. Hence, a new challenge is now ready to be tackled, namely
the problem of investigating how this new semantics can be combined with previous
work on OBDA with dynamic ontologies [23], where also the TBox is determined by
suitable mappings to a set of (relational) data sources.

Non-relational data sources. Most of the research on OBDA has focused on map-
pings between ontologies and data sources that either are natively relational, or can be
wrapped by means of any data federation or virtualization tool, able to provide access to
their contents through an SQL engine. Nevertheless, one may wonder whether the use
of such a federation intermediate layer affects query answering performances and it is
worth investigating query answering techniques within OBDA settings, where queries
in the left-hand side of the mapping assertions are expressed in the native language of
a non-relational data source. Among the wide variety of databases used within modern
applications, particularly popular are the so-called NoSQL (not only SQL) databases,
which are non-relational databases usually adopting one of four main data models,
namely the column-family, key-value, document, and graph data models. Thus, in [8],
after defining a uniform generalized framework for the access to arbitrary databases,
the authors propose a query rewriting algorithm by adapting the technique used for re-
lational databases and using relational algebra as an intermediate representation of the
queries. Also, they experiment their results by implementing an OBDA system to access
MongoDB 5 document databases.

OBDA methodology and tools. Devising an OBDA specification is likely to be a
hard and time-consuming task. Several different competencies are required to col-
laborate, and in order for the collaboration to be successful, it is crucial that a well-
defined methodology and appropriate tools are devised, for developing both the ontol-
ogy and the mappings. As for the ontology, several methodologies have been devised
(see e.g. [27]). Also, when it comes to OWL2 ontologies, a visual graphical language,
called Graphol [32], has been proposed and experimented in practice [5], that dras-
tically supports the ontology construction. Thus, besides the Protégé ontology editor
[40], ontology developers can currently use Eddy [33], an editor for Graphol ontolo-

5 https://docs.mongodb.com/manual/

https://docs.mongodb.com/manual/


gies. On the contrary, the problem of devising methodologies and tools for developing
mappings for OBDA is largely unexplored. Indeed, while we are not aware of any study
aiming at defining a methodology for developing mappings in data integration or OBDA
scenarios, schema mappings tools have been proposed (e.g., [44,38]) for supporting the
specification of mappings within data integration and data exchange systems. However,
none of such work is ready to be used in the OBDA scenario.

OBDA evolution. An OBDA specification is usually considered as a static piece of
information. However, it is certainly crucial to investigate how to face changes over the
TBox and/or the source schema. A natural assumption is to repair the mapping in such a
way that the semantics of the overall system changes “as little as possible”. While many
approaches exist for both ontology evolution [49] and database schema evolution [45],
to the best of our knowledge, no previous study has analyzed evolution in the presence
of a mapping connecting an ontology to a relational data source.

Beyond data access. OBDA is the problem of accessing data through an ontology.
However, the theoretical framework presented in Section 2 may offer many other chal-
lenging capabilities, among which we mention data quality assessment, instance-level
update, and open data publishing. As for data quality assessment, in [20] the authors
define a general framework for data consistency in OBDA, and present algorithms and
complexity analysis for several relevant tasks related to the problem of checking data
quality under the consistency dimension. The (instance-level) update over an OBDA
framework is the capability of the framework to react to the addition, removal or change
of logically implied assertions about ontology instances (aka individuals). Instance-
level update was tackled for DL knowledge bases (see e.g., [22,29]) and, recently, a
rewriting technique was proposed for SPARQL updates over (extended) RDFS knowl-
edge bases [3]. However, to the best of our knowledge, no work has focused yet on the
problem of updating the extensional level of the ontology, within the theoretical frame-
work proposed for OBDA. Finally, a natural use of OBDA is for publishing open data.
However, this requires to define a well-founded semantics of the “right open data set”
to be exported, which is far from being clear at the moment.
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