131 research outputs found

    Comparison of Nonlinear Filtering Methods for Battery State of Charge Estimation

    Get PDF
    In battery management systems, the main figure of merit is the battery\u27s SOC, typically obtained from voltage and current measurements. Present estimation methods use simplified battery models that do not fully capture the electrical characteristics of the battery, which are useful for system design. This thesis studied SOC estimation for a lithium-ion battery using a nonlinear, electrical-circuit battery model that better describes the electrical characteristics of the battery. The extended Kalman filter, unscented Kalman filter, third-order and fifth-order cubature Kalman filter, and the statistically linearized filter were tested on their ability to estimate the SOC through numerical simulation. Their performances were compared based on their root-mean-square error over one hundred Monte Carlo runs as well as the time they took to complete those runs. The results show that the extended Kalman filter is a good choice for estimating the SOC of a lithium-ion battery

    IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology

    Get PDF
    A lava flood disaster is a volcanic hazard that often occurs when heavy rains are happening at the top of a volcano. This flood carries volcanic material from upstream to downstream of the river, affecting populous areas located quite far from the volcano peak. Therefore, an advanced early warning system of cold lava floods is inarguably vital. This paper aims to present a reliable, remote, Early Warning System (EWS) specifically designed for lava flood detection, along with its disaster communication system. The proposed system consists of two main subsystems: lava flood detection and disaster communication systems. It utilizes a modified automatic rain gauge; a novel configured vibration sensor; Fuzzy Tree Decision algorithm; ESP microcontrollers that support IoT, and disaster communication tools (WhatsApp, SMS, radio communication). According to the experiment results, the prototype of rainfall detection using the tipping bucket rain gauge sensor can measure heavy and moderate rainfall intensities with 81.5% accuracy. Meanwhile, the prototype of earthquake vibration detection using a geophone sensor can remove noise from car vibrations with a Kalman filter and measure vibrations in high and medium intensity with an accuracy of 89.5%. Measurements from sensors are sent to the webserver. The disaster mitigation team uses data from the webserver to evacuate residents using the disaster communication method. The proposed system was successfully implemented in Mount Merapi, Indonesia, coordinated with the local Disaster Deduction Risk (DDR) forum. Doi: 10.28991/esj-2021-SP1-011 Full Text: PD

    On the vehicle sideslip angle estimation: a literature review of methods, models and innovations

    Get PDF
    Typical active safety systems controlling the dynamics of passenger cars rely on real-time monitoring of the vehicle sideslip angle (VSA), together with other signals like wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, known as the yaw rate. The VSA (aka attitude or “drifting” angle) is defined as the angle between the vehicle longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory therefore it is a vital piece of information enabling directional stability assessment, in transients following emergency manoeuvres for instance. As explained in the introduction the VSA is not measured directly for impracticality and it is estimated on the basis of available measurements like wheel velocities, linear and angular accelerations etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e. Observer-based and Neural Network-based, focusing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. Advantages and limitations of each technique have been highlighted and discussed

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter

    Get PDF
    The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    An accurate time constant parameter determination method for the varying condition equivalent circuit model of lithium batteries.

    Get PDF
    An accurate estimation of the state of charge for lithium battery depends on an accurate identification of the battery model parameters. In order to identify the polarization resistance and polarization capacitance in a Thevenin equivalent circuit model of lithium battery, the discharge and shelved states of a Thevenin circuit model were analyzed in this paper, together with the basic reasons for the difference in the resistance capacitance time constant and the accurate characterization of the resistance capacitance time constant in detail. The exact mathematical expression of the working characteristics of the circuit in two states were deduced thereafter. Moreover, based on the data of various working conditions, the parameters of the Thevenin circuit model through hybrid pulse power characterization experiment was identified, the simulation model was built, and a performance analysis was carried out. The experiments showed that the accuracy of the Thevenin circuit model can become 99.14% higher under dynamic test conditions and the new identification method that is based on the resistance capacitance time constant. This verifies that this method is highly accurate in the parameter identification of a lithium battery model

    Kalman Filtering and its Application to On-Line State Estimation of a Once-Through Boiler

    Get PDF
    This thesis contributes to non-linear continuous-discrete Kalman filtering of multiplex systems through the development of two main ideas, namely, integration of the unscented transforms with linearly implicit methods and incorporation of simulation errors in the state estimation problem. The newly developed techniques are then applied to the technically relevant problem of state estimation on the main components of a utility boiler. State estimators in industrial systems are used as soft-sensors in monitoring and control applications as the most cost effective and practical alternative to telemetering all variables of interest. One such example is in utility boilers where reliable and real-time data characterising its behaviour is used to detect faults and optimise performance. With respect to the state-of-the-art, state estimators display limitations in real-time applications to large-scale systems. This motivates theoretical developments in state estimation as a first part in this thesis. These developments are aimed at producing more practical and efficient algorithms in non-linear continuous discrete Kalman filtering for stiff large-scale industrial systems. This is achieved using two novel ideas. The first is to exploit the similarities between the extended and unscented Kalman filter in order to estimate the Jacobian required for linearly implicit schemes, thereby tightly coupling state propagation and continuous-time simulation. The second is to account for numerical integration error by appending a stochastic local error model to the system's stochastic differential equation. This allows for coarser integration time steps in systems that are otherwise only suited to relatively small step sizes, making the filter more computationally efficient without lowering its potential to construct accurate estimates. The second part of this thesis uses these algorithms to demonstrate the feasibility of on-line state estimation on the main components of a once-through utility power boiler that require in excess of a hundred state variables to capture its behaviour with adequate fidelity. Two separate models of the boiler are developed, a MATLAB® and a Flownex® model, comprising the economiser, evaporators, reheaters, superheaters and furnace. The mathematical MATLAB® model is better suited to real-time execution and is used in the filter. The more sophisticated model is based on a commercial thermal-hydraulic simulation environment, Flownex® , and is used to validate the mathematical modelling philosophies and construct filter observation data. After validating the performance of the filter against ground-truth data provided by the Flownex® model, the filter is demonstrated on historical plant data to illustrate its utility
    • …
    corecore