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Abstract 

 

This work presents the design of a dual extended Kalman filter (EKF) as a state/parameter estimator suitable for adaptive 
state-of-charge (SoC) estimation of an automotive lithium–iron–phosphate (LiFePO4) cell. The design of both estimators is based on 
an experimentally identified, lumped-parameter equivalent battery electrical circuit model. In the proposed estimation scheme, the 
parameter estimator has been used to adapt the SoC EKF-based estimator, which may be sensitive to nonlinear map errors of battery 
parameters. A suitable weighting scheme has also been proposed to achieve a smooth transition between the parameter 
estimator-based adaptation and internal model within the SoC estimator. The effectiveness of the proposed SoC and parameter 
estimators, as well as the combined dual estimator, has been verified through computer simulations on the developed battery model 
subject to New European Driving Cycle (NEDC) related operating regimes. 
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I. INTRODUCTION 

The transportation sector, as the second largest source of 
CO2 emissions [1], has a substantial effect on the alarmingly 
increasing level of greenhouse gases [2]. Moreover, the 
sensitivity of the automotive/transportation industries to oil 
prices variability [3] has initiated a gradual shift toward 
electrified powertrain vehicles, such as plug-in hybrid electric 
vehicles and battery electric vehicles (BEVs) [1], [3], which are 
considered to be the key enablers of the more economical and 
less oil-dependent transport compared to conventional one [3]. 

However, battery pack size and supporting power 
electronics systems should be carefully optimized to minimize 
vehicle electrification and hybridization costs, thereby 
facilitating a favorable battery range of BEVs and improved 
fuel efficiency of hybrid electric vehicles (HEVs) [4]. 
Moreover, to ensure correct battery operation under various 
operating regimes, the state of charge (SoC) of batteries should 
be continuously monitored by means of dedicated battery 

management system [5], which also needs to provide 
state-of-health (SoH) monitoring, charge balancing, and 
thermal management at cell, module, and battery pack level 
(See [6]-[9] and references therein). 

The dynamic model used for battery monitoring is typically 
nonlinear with respect to SoC and temperature [10]-[15]; thus, 
a nonlinear or online adaptive estimator may be required for 
precise SoC estimation over a wide range of battery operating 
conditions. In references [16] and [17], impedance 
spectroscopy approach has been used to identify multivariable 
battery models suitable for utilization within a state estimator, 
such as the Kalman filter [18]. Comparative reviews presented 
in [19]-[21] have shown that several other estimator structures 
may also be suitable for SoC estimation, such as the following: 

1) a Luenberger estimator, which may be implemented in its 

basic form or extended by an integral term to improve 

SoC tracking ability [20];  

2) a sliding-mode observer, which results in robust 

estimation in the presence of model uncertainties [22]; 

3) an extended Kalman filter (EKF), which is frequently 

used for SoC estimation [15], [23]-[25] but may also be 

prone to model linearization error [26]; and 

4) a sigma-point Kalman filter [27], unscented Kalman 

filter [26], [28], or cubature Kalman filter [29], which 
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may facilitate improved response speed and SoC 

tracking accuracy when compared to EKF. 

In the above approaches, the SoC estimator design is 

typically based on the parameter analytical relationships of a 

priori known (offline identified) battery equivalent model or 

parameter maps. However, variations in aging and operating 

conditions (e.g., temperature) variations may affect the 

accuracy of the battery model within the state estimator, which 

may, in turn, result in pronounced SoC estimation error. To 

mitigate the effect of battery model parameter uncertainties to 

SoC estimation, state estimator may be extended with a 

parameter estimator utilizing sliding-mode [22] or Kalman 

filtering [15], [30]-[32] approach, which is then used for state 

estimator online adaptation. As an additional benefit, 

monitoring of online battery parameters may also be useful for 

battery SoH evaluation [14], [31], through monitoring of 

battery internal resistance [24] or charge capacity [33] with 

respect to the benchmarks based on battery-accelerated aging 

tests [34]. 

This work aims to develop and verify an adaptive SoC 
estimation framework for a LiFePO4 battery cell, which might 
subsequently be extended for battery modules and stacks. For 
that purpose, the study initially presents the results of 
experimental characterization and validation of the dynamic 
model of a state-of-the-art automotive lithium–iron–phosphate 
(LiFePO4) battery cell [35]. The proposed equivalent electrical 
circuit battery model is then used as a basis for the design of a 
dual EKF adaptive battery SoC estimator, whose parameters 
can either be supplied by the internal battery model or updated 
online via dedicated parameter estimator. The effectiveness of 
the adaptive SoC estimator is verified through simulations 
based on the experimentally validated LiFePO4 cell model. 

This study is organized as follows: The equivalent electric 
circuit-based model of LiFePO4 battery cell and the results of 
the map identification of battery model parameters are 
presented in Section II. Section III presents the design of dual 
Extended Kalman filter (EKF) suitable for battery state and 
parameter estimation, and the weighting-based method of 
integration of the battery internal model within the state 
estimator and the battery parameters identified online. The 
results of detailed simulation verification of the proposed 
battery state/parameter estimator are presented in Section IV. 
Concluding remarks are given in Section V. 

 

II. BATTERY MODELING 
 

This section presents the equivalent electrical circuit-based 
battery model and the results of experimental characterization 
of the considered automotive LiFePO4 cell. 

A. Equivalent Circuit Model of the Battery 

Fig. 1 shows the considered equivalent electrical circuit  

 
 

Fig. 1. Quasi-static battery equivalent electrical circuit model. 
 

 
 

Fig. 2. Principal schematic of battery experimental test bed. 

 
battery model comprising battery series resistance, electrolyte 
polarization effects, and open-circuit voltage [36]. The model 
features a voltage source corresponding to the battery 
open-circuit voltage Uoc; a parallel resistive-capacitive (RC) 
circuit corresponding to electrolyte polarization effects, and 
characterized by equivalent polarization resistance Rp and 
capacitance Cp; and a series resistor Rb related to battery 
resistive losses. The above model results in the following 

voltage ub versus current ib relationship in the s-domain (p = 
RpCp is the polarization time constant): 
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In the above battery model, all parameters are dependent on 
the battery SoC, which is defined as [10]:  
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where Qb = –ibdt is the overall discharged battery charge, and 
Qmax is the battery charge capacity.  

Moreover, the polarization and battery resistive effects are 
dependent on the battery current and may also exhibit notable 

dependence on battery operating temperature b, as shown in 
[10], [11], [13], and [37]. 

B. Experimental Test Bed of the Battery 

The battery model in Fig. 1 is parameterized by recording the 
model parameter maps for a wide range of battery operating 
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points through an instrumented test bed [38], whose principal 
schematic is shown in Fig. 2. The battery test setup operation is 
controlled by the National Instruments CompactRIO data 
acquisition and control system, which performs the following 
tasks:  

 

1) Collection of battery measurement signals (current ib, 

terminal voltage ub, and operating temperature b) and 
common direct-current (DC) link voltage udc of the 
setup. These signals are low-pass filtered to remove the 
noise caused by the switching action of the dedicated 
DC power converter (DC chopper) of the battery.  

2) Generation of suitable current reference profiles for 
battery characterization purposes, which are supplied 
to the low-level current control system implemented on 
the low-cost programmable logic controller 
commanding the battery power converter. 
 

The setup also comprises an auxiliary DC chopper, which is 
used during battery discharging for DC link voltage control 
through excess DC link energy dissipation at external load 
resistors.  

C. Experimental Characterization Results of the Battery 

The experimental characterization procedure, outlined in 
[39] and [40], has been used to estimate the battery model 
parameter maps for the considered 3.3 V/100 Ah LiFePO4 
battery cell (type SE100AHA [35]), distinguished by a slightly 
narrow range of terminal voltage values and extremely low 
internal resistance. The final battery identification results, 
obtained over a relatively narrow range of battery temperature 

b (between 24 °C and 32 °C), are shown in Fig. 3. 
Fig. 3(a) and 3(b) show the static maps of the recorded 

internal resistance Rb(, ib) and polarization resistance Rp(, ib). 
These maps have been reconstructed based on charging/ 
discharging experiments featuring low-magnitude battery 
current ib and terminal voltage ub perturbations with a 
frequency of 1 Hz, excited under closed-loop control of battery 
current [39], [40]. The quasi-steady-state portions of the 
experiments (characterized by negligible dynamic effects of 
polarization voltage up) have been used to fit the internal 
resistance map data based on a simple battery voltage 
perturbation model (k, sampling step): 

 

)()()( kRkiku bbb  ,            (3) 

where the terminal voltage of the battery and current variations 
can be expressed through respective time differences: 

 
Fig. 3. Experimentally recorded battery internal (series) resistance and polarization resistance maps for charging (a) and discharging (b), 

open-circuit voltage static curve (c), and characteristic result of constant identification experiment of polarization time (d). 
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)1()()(  kukuku bbb ,           (4) 

)1()()(  kikiki bbb .            (5) 

The above model of terminal voltage variations can be 
rewritten in the form of regression model suitable for 
parameter estimator design [48]: 

)()()()( kekkky   ,            (6) 

where y is the measurement characterized by Gaussian noise e,  
 is a regression variable (regressor), and  is the parameter to be 
estimated, treated as a random walk stochastic process: 

)1()1()(  kkk  ,           (7) 

characterized by a Gaussian perturbation (noise) source . 
The internal resistance estimator has been implemented in 

the form of Kalman filter, whose design has been presented 

in [39]; the internal resistance map Rb(, ib) can be built for 

the operating points of the selected battery SoC  and 
steady-state battery currents Ib, as shown in Figs. 3(a) and 
3(b). Based on the above internal resistance reconstruction, the 
battery electromotive force can be represented by (Fig. 1): 

bbbpocb iRuuUE  .           (8) 

Based on this relationship, the steady-state maps of 
polarization voltage have been obtained by subtracting Eb maps 

from the open-circuit voltage map Uoc() from Fig. 3(c), which 

is ultimately used to reconstruct the polarization resistance Rp(, 
ib) map points as ratios between the steady-state polarization 
voltage up and the charging/discharging current average value 
Ib for the particular battery SoC operating point. 

The results in Figs. 3(a) and 3(b) show that internal 
resistance Rb undertakes significantly low values (between 0.62 

and 0.85 m), and neither exhibit notable variation with SoC  
nor significant dissipation with respect to battery current ib. 
Conversely, the polarization resistance Rp shows notable 

increase when the battery is being overcharged (SoC   1, 
Fig. 3(a)) and tends to undertake larger values for lower current 
values in the case of discharging (Fig. 3(b)).  

As expected, the open-circuit voltage curve (Fig. 3(c)) is 
rather flat over the large range of battery SoC values (as 
indicated in [35] and [36]). To capture the Uoc curve nonlinear 

trends at fully charged and discharged states, Uoc() points have 
been collected more densely therein compared to the middle of 
the operating region.  

Fig. 3(d) shows the result of identifying the polarization time 

constant p = RpCp based on zero-current voltage transient 
(under “fast” battery current control). The resulting voltage 
response is then approximated in the least-squares sense by a 
first-order lag term response [39]:  

)/exp())0(()( pbssbbssb tuuutu  ,      (9) 

where ub(0) and ubss are the initial and final battery voltages, 
respectively (Fig. 3(d)). The polarization time constant does 
not exhibit notable dissipation with respect to SoC, and its 

average value p = 24 s (cf. Fig. 3(d)) has been used in the final 
battery model. 

 
(a) 

 

 
(b) 

 

Fig. 4. Battery cell simulation model (a) and results of battery 
model experimental validation test (b). 

 

Fig. 4(a) shows the block diagram representation of the 
battery simulation model with battery current as input, where 

the extracted (discharged) charge Qb is treated as the model 

principal state variable, used for battery SoC () calculation 

according to Equ. (2). The SoC  (discharged charge Qb) is 
used alongside the filtered (averaged) battery current value Ib 

(see Equ. (1)) as input into model static maps Rb(Qb, Ib) and 

Rp(Qb, Ib), whereas the open-circuit voltage Uoc depends only 

on  (Qb). The comparative responses of battery simulation 
model and experimental results are shown in Fig. 4(b) for the 
case of highly dynamic test profile corresponding to a New 
European Driving Cycle (NEDC) (cf. e.g., [41]), wherein the 
model has been implemented within Matlab/SimulinkTM using 
ODE45 numerical integration method with absolute tolerance of 
10−3, relative tolerance of 10−6, and minimum integration step of 
0.01 s. The particular current demand (current reference) of the 
battery has been obtained through vehicle simulation model [42], 
wherein the battery load has been scaled to the single battery 
cell. The results in Fig. 4(b) indicate that the battery model can 
track both the quasi-steady-state and transient profiles of the 
experimentally recorded battery terminal voltage ub profile. 
However, a relatively small dynamic error may be present due 
to measurement quantization error over the slightly narrow cell 
voltage range (less than 0.1 V) [40]. 
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III. ADAPTIVE SOC ESTIMATOR DESIGN 
 

This section outlines the design of combined state/parameter 
estimator implemented in the form of a dual EKF for the 
purpose of adaptive battery SoC estimation. 

A. Structure of the Adaptive SoC Estimator 

Fig. 5 shows the principal block diagram of the adaptive 
SoC estimator based on dual EKF. In contrast to [15], 
[30]–[32], the proposed dual EKF system is arranged so the 
EKF-based state estimator can utilize either the parameters of 
the internal nonlinear battery model or those obtained by the 
second EKF, which estimates the key battery model parameters 
online.  

The parameter estimator accurately estimates the battery 
model parameters provided that battery measurements ib and ub 
are characterized by sufficient dynamic content (also known as 
excitation persistence condition) [43]. Otherwise, the parameter 
estimation should be held, and the state estimator would instead 
rely on the internal battery model during poor excitation periods 
(otherwise characterized by estimated parameters drift). A 
weighting scheme is employed herein based on the error 
covariance of the parameter estimator used as the measure of 
external excitation persistence to facilitate a seamless (smooth) 
transition between the internal model and parameter 
estimator-supplied battery parameters [43]. The weighting 
factor used for such “soft” transition between the internal 
battery model and online parameter estimation is calculated as 
follows [40]: 

 

2

))(tanh(1 01  


Str
w ,           (10) 

with coefficients 1 and 0 chosen empirically based on the 
properties of matrix trace of the error covariance of the 
parameter estimator tr(S) (See next section and Appendix). 

The parameter maps of the equivalent circuit model of the 
battery within the state estimator may also be periodically 
refreshed as updated parameter estimates become available. 
Thus, the internal model of the battery in Fig. 5 can be adapted 
with respect to relatively slow temperature variations (which are 
emphasized for resistance-related parameters Rb and Rp [13], 
[44]), and even more gradual variations related to battery cycle 
and calendar life (inevitably affecting all of the parameters of 
the battery electric circuit [34], [46], [47]). Hence, utilizing 
battery temperature measurement or estimation [45] and 
collecting the test results of battery aging [34], [46] may be 
avoided for parameter map correction. Naturally, precise 
information about the discharged charge Qb should also be 
available for online updates of the parameters of the internal 
model map, e.g., by using a precise current sensor and charge 
counting approach (Equ. (2)), while considering the battery 
Coulombic efficiency [32].  

B. Design of the Parameter Estimator 

The parameter estimator design is based on the following 
discrete-time counterpart of the equivalent circuit input–output 
model of the battery in Equ. (1) [40]: 
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    (11) 

 

where a = exp(–T/p), b1 = Rb, b0 = Rp – a(Rp + Rb), and T is the 
discrete-time model sampling time. 

In the battery model in Equ. (11), random variations of the 
model parameters are again represented by a random walk 

 
Fig. 5. Principal block diagram representation of the dual EKF-based adaptive SoC estimator. 
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stochastic process model [48]: 

)1()1()(  kkk pνθθ ,           (12) 

where  = [b1 b0 a Uoc]
T is the vector of a priori unknown 

model parameters of the battery, and p = [b1 b0 a Uoc]
T is 

the vector of independent stochastic Gaussian perturbations in 
the model parameters, characterized by the diagonal covariance 
matrix of model perturbations Qp(k) = diag([qb1 qb0 qa qUoc]). 

Based on Equs. (11) and (12), the nonlinear relationship of 
the model output can be redefined in the following form: 
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where (k) = [ib(k) ib(k−1) ub(k−1)] represents battery current 
and voltage measurements arranged in a row vector form, and 

(k) is the additive Gaussian measurement noise characterized 
by noise variance rp(k). 

The EKF-based parameter estimator for the above 
input–output model formulation is provided by [48]: 
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where I is the identity matrix, Kp(k) is the gain matrix of the 
parameter estimator, and S(k) is the covariance matrix of the 
parameter estimation error, whereas Hp(k) is the gradient of the 
output of Equ. (16) in the vicinity of estimated parameter 

vector θ̂ : 

 14131211
)1(ˆ

)0),1(ˆ),((
)( hhhh

k

kk
kp 





θ

θχ
H


, (17) 

 

where h11 = ib(k), h12 = ib(k – 1), h13 = ub(k – 1) – )1(ˆ kU oc , 

and h14 = 1 – )1(ˆ ka .  

The measurement noise variance rp can be obtained from the 
steady-state measurements of the battery voltage; thus, diagonal 
Qp matrix elements represent the estimator-tuning parameters of 
the EKF-based parameters. Their choice is usually a tradeoff 
between the tracking ability of parameter variations and noise 
attenuation. 

C. Design of the State Estimator 

The battery SoC can be estimated in an open-loop manner 
based on the battery model alone, such as in [11] and [37]; 
however, utilizing the state estimator approach offers distinct 
advantages in terms of (i) the mismatch compensation of the 
initial condition via state correction feedback and (ii) the ability 
to tune the estimator response speed and the suppression ability 
of the measurement noise. In addition, utilizing the Kalman 
filter-based estimator also provides dynamic estimation error 
bounds via update of the state error covariance [23]. 

The design of the state estimator is based herein on the 
following state–space representation of the equivalent circuit 
model of the battery (Equ. (1)) and discharged charge within the 
SoC model (Equ. (2)). The overall model, including stochastic 
perturbations in system states and measurement (output) noise, is 
given as follows: 
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eiRUuu bbocpb  ,           (19) 

where the stochastic perturbations  = [u Q]T in the state vector 

x = [up Qb]
T and a scalar noise source e in the battery voltage 

output equation are assumed to be mutually independent, 
zero-mean Gaussian processes, and characterized by covariance 
matrix Q = diag([qu qQ]) and variance r, respectively. 

The discrete-time counterpart of the above model is 
provided in the following matrix–vector form: 

 

)1()1()()1()()(  kkikkkk b ΩνGxFx ,   (20) 
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where F, G, and  are discrete-time state–space model system, 
input, and disturbance gain matrix, respectively, defined as: 
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with the coefficient a(k) defined in Equ. (11), and the input 
matrix G coefficient b(k) yielded by 
 

)()()()())(1()( 10 kbkakbkRkakb p  .   (23) 

The latter definition is well suited for the EKF 
implementation utilizing discrete-time process parameter 
values obtained from the parameter estimator. 

Finally, the vector function of the process output ub = h(x, ib, 
e) is given as (note that Rb = b1 in the discrete-time formulation 
of the process model in Equ. (11)) 

 

)()()())(()()( 1 kekikbkQUkuku bbocpb  . (24) 

The EKF-based state estimator for the above nonlinear 
model formulation is defined as [48] 
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where )1|(ˆ kkx  and )|(ˆ kkx  are the a priori and a 
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posteriori state estimates, respectively; )1|(ˆ kk  is the 

estimated a priori prediction error for measurement correction; 
P(k|k–1) and P(k|k) are a priori and a posteriori covariance 
matrices of the state estimation error, respectively; K(k) is the 
EKF estimator gain matrix; Q(k–1) is the state perturbation 
covariance matrix; and H(k) is the gradient of the nonlinear 
output model with respect to the estimated state x in the 
vicinity of the a priori state estimate: 


















)1|(ˆ
))1|(ˆ(

1)(
kkQ

kkQU
k

b

bocH .          (31) 

Again, the noise variance of the battery voltage (model 
output) ub can be determined from steady-state measurements; 
thus, the covariance matrix Q becomes the EKF tuning 
parameter. Its diagonal elements (anticipated-state perturbation 
variances) are typically chosen as a tradeoff between the 
estimator tracking ability and suppression of noise in the 
estimated states. 

D. Integration of the State and Parameter Estimators 

As illustrated in Fig. 5, the state estimator utilizes the 
battery model parameters provided by the internal model or 
dedicated parameter estimator. The accuracy of parameter 
estimator is affected by the excitation conditions, indicated 
by the matrix trace of the error covariance of the parameter 
estimator tr(S) [43]. Hence, more weight should be given to 
parameter estimates when tr(S) is low, and vice versa, 
through the weighting function in Equ. (10). The open-circuit 

voltage characteristic of Uoc(Qb) is assumed to be changing 
very slowly (e.g., due to aging [34], [46], [47]); thus, it can, 
be sporadically updated. Conversely, the relatively more 

pronounced variations of the parameter set r = [b1 b0 a]T, 
corresponding to temperature-dependent internal resistance 
and polarization effects, may be weighed between the internal 
model and parametric estimation as follows (Fig. 5): 

)(ˆ))(1()()()( kkwkkwk rrw θθθ  ,     (32) 

where r(k) and )(ˆ krθ  correspond to parameters obtained 

from internal model and parameter estimator, respectively.  
The above approach results in the following modified forms 

of EKF-based state estimator (Equs. (25), (26), and (29)): 
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The above result indicates that the proposed weighting 
scheme results in a single state estimator, whose parameters are 
seamlessly switched between the internal model and the 
parameter estimator, further resulting in a smooth gain 
scheduling-type adaptation of the state and gain update 
equations and measurement correction update. 

 

IV. SIMULATION RESULTS 

The experimentally verified battery simulation model and the 
proposed dual EKF adaptive SoC estimator for a LiFePO4 cell 
have been implemented within Matlab/Simulink software 
environment. Both estimators have been verified through a 
realistic simulation scenario corresponding to a battery model 
subjected to an NEDC driving cycle-based load profile, as 
illustrated in Section II, and used as the source for state and 
parameter estimator inputs (measurements). 

Fig. 6 shows the results of the non-adaptive EKF-based SoC 
estimator (w = 1) tested during four consecutive NEDC-like 
battery load cycles (See battery current trace in Fig. 6(a)), with 
the parameters of EKF-based state estimator listed in the 
Appendix. The steady-state and dynamic behavior of the 
EKF-based SoC estimator has been validated for the nominal 
case, and the cases of notable battery model series resistance Rb 
and polarization resistance Rp discrepancies (modeling errors) 
with respect to parameter maps used within the EKF-based 
SoC estimator: 

1,,  simbEKFbRb RR ,            (39) 
 

1,,  simpEKFpRp RR ,           (40) 

where Rb,sim and Rp,sim are series and polarization resistance maps 
used within the battery simulation model, respectively, and 
Rb,EKF and Rp,EKF are corresponding maps used within 
EKF-based state estimator. 

The comparative simulation results presented in Figs. 6(b) 
and 6(c), and the SoC estimation tracking error defined as 

)(ˆ)()( kkk   ,            (41) 
 

and shown in Fig. 6(d), indicate that polarization and series 
resistances Rp and Rb mismatch within the estimator may result 
in notable SoC estimation error when compared to the nominal 
case (up to 15-fold steady-state error increase). Moreover, the 
parameter error may result in estimator response slowdown 
during the initial response transient from the initial condition of 

the intentionally mismatched estimator state of charge (0)  
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(d) 

Fig. 6. Results of simulation verification of EKF-based SoC 
estimator: battery simulation responses (a), estimator responses in 
presence of Rp error (b) and Rb error (c), and corresponding SoC 
estimation tracking errors (d). 
 

(See initial response details in Fig. 6(b)). SoC  overestimation 
occurs when the resistance parameters within the estimator are 
overestimated with respect to the actual battery resistance 
values Rb and Rp, and vice versa. Conversely, the increase in 

polarization resistance Rp within the state estimator tends to 
produce steady-state overestimation of the polarization voltage 
according to Equ. (18), whereas the increase in series resistance 
Rb within the estimator results in the underestimation of the 
polarization voltage due to the error of the measurement 
(output) model in Equ. (19) and related correction action 
according to Equs. (29) and (30). 

Subsequently, an online adaptation based on parameter 
estimator has been investigated based on the same simulation 
scenario and for the case of nominal battery model parameters 
to address the above tracking error problem of state estimator. 
Fig. 7 shows the results of the proposed EKF-based parameter 
estimator, whose tuning parameters are also listed in the 
Appendix, and the corresponding state estimator adapted from 
the parameter estimator (no reliance on the internal model). 
The response of the matrix trace of the error covariance of the 
parameter estimator tr(S) in Fig. 7(a) indicates that battery ub 
and ib measurements in Fig. 6(a) are characterized by 
substantial periods of favorable excitation (characterized by 
low tr(S) values), interspersed with intervals of low excitation 
(indicated by high tr(S) values). The resulting responses of the 
EKF-based parameter estimator in Fig. 7(a) are characterized 
by a relatively accurate tracking performance of key battery 
model parameters Rb, a, b, and Uoc (see Equs. (22)-(24)) during 
favorable excitation intervals. Conversely, the parameter 
estimation is stopped (held) during low-excitation periods (i.e., 
when tr(S) becomes notably larger) to avoid the drift of 
parameter estimates [43]. The responses of the corresponding 
adaptive state estimator (dual EKF estimator) are shown in Fig. 
7(b). These results indicate that the proposed adaptive state 
estimation scheme, with state estimator parameter update via 
parameter estimator alone (corresponding to w = 0 case in Equs. 

(36)–(38)), can provide estimation accuracies of SoC  and the 
polarization voltage up that are comparable to the case of 
EKF-based state estimator based on internal battery model 
under nominal conditions (cf. Figs. 7(b) and 6(d)). This finding 
is also reflected by the traces of the comparative SoC tracking 
error of the model-based EKF (Fig. 6) and dual-EKF-based 
adaptive state estimator, as shown in Fig. 7(c). In particular, the 
SoC error of the adaptive state estimator is remarkably close to 
the model-based EKF for the nominal case, which indicates 
accurate capturing of key battery model parameters. 

Fig. 8 shows the result of “slow” updates of open-circuit 

voltage curve Uoc() and the resistance parameter Rb and Rp 
maps based on parameter estimation and discharged charge 
from battery model during complete battery discharging under 
highly dynamic battery load (Fig. 8(a)). The parameter and 
SoC estimates have been averaged through a low-pass filter 

with BW = 0.04 rad/s bandwidth to suppress the noise (cf. Uoc 
response in Fig. 7(a)), thereby obtaining smooth parameter map 

estimates. Fig. 8(b) shows that the resulting Uoc() curve 
updates (dotted trace in Fig. 8(b)) obtained during favorable 
excitation conditions of parameter estimator (tr(S) < 2.5)  
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(b) 

 
(c) 

 

Fig. 7. Results of simulation verification of EKF-based parameter 
estimator (a), corresponding adaptive state estimator for the case of 
nominal battery model parameters (b), and comparative SoC 
tracking error of model-based EKF estimator (c). 

 
indeed match the actual open-circuit voltage map data over a 
wide range of battery SoC. Furthermore, the comparison of 
actual (battery model) and online reconstructed Rb and Rp maps, 
shown in Fig. 8(c), also indicate that the proposed algorithm  

 
 

Fig. 8. Battery current and voltage traces during complete discharging 
(a), and related results of the curve update of the open-circuit voltage 
(Uoc) (b). Comparative assessment of resistance parameter Rb and Rp 
maps and their online update values (c). 

 
for parameter map update can capture the static map parameter 
trends for the considered range of battery operation (averaged 
current ranging from −10 A to −16 A and SoC ranging from 
0% to 100% under mostly favorable excitation conditions). 

Fig. 9 shows the comparative response of non-adaptive and 
dual EKF-based adaptive state estimator (state estimator 
updated from parameter estimator only, w = 0) for the case of 
notable series and polarization resistance mismatch compared to 

internal model within the non-adaptive state estimator (Rp = 

-25% and Rb = -50%). As expected, the non-adaptive state 
estimator is characterized by a significant SoC tracking error 
and related polarization voltage steady-state error due to 
resistance parameter variation. The SoC tracking error is 
substantially reduced when the parameter estimator is used for  
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Fig. 9. Comparative responses of non-adaptive and adaptive state 
estimators updated from the parameter estimator only, subject to 
the parameter variations of the battery model (Rp = −25% and 
Rb = −50%). 

 
online state estimator adaptation. 

As discussed in Subsection III. D, the steady-state error of the 
SoC estimation of the dual EKF-based estimator may be further 
reduced if state estimator parameters would be provided from the 
accurate internal model during low-excitation intervals using the 
proposed parameter weighting scheme in Equ. (32). Figure 10 
shows the comparative result of the adaptation scheme of the 
parameter weighting-based state estimator for the simulation 
scenario in Fig. 9, assuming that ideal “error-free” battery Rp and 
Rb parameter maps would be available (i.e., refreshed online 
beforehand). The weighting scheme responses in Fig. 10(a) 
confirm that the parameter source is switched from the online 
parameter estimation to the internal model (w = 1) when 
excitation conditions become unfavorable (i.e., tr(S) becomes 
large). Once persistent excitation conditions are achieved (i.e., 
tr(S) is small), the parameter estimator is used instead (w = 0). 
The comparative state estimator responses in Fig. 10(b) show 
that dual EKF estimator with weighting can indeed improve SoC 

tracking ability (cf. SoC tracking error  traces in Fig. 10(c) 
without and with weighting scheme applied). 

 

V. CONCLUSIONS 

The work has presented the design of an adaptive battery 
state estimator based on dual EKF and the formulation of the 
equivalent electrical circuit battery model, which has been 
utilized for the estimation of a LiFePO4 battery cell SoC. The 
adaptive state estimator features a dedicated EKF-based state  

 
 

Fig. 10. Responses of the proposed parameter weighting scheme 
(a), dual EKF-based state estimator with parameter weighting (b), 
and comparative SoC tracking error without and with parameter 
weighting (c). 

 
estimator, which may either utilize the internal battery model, 
characterized by nonlinear parameter maps, or online 
parameter estimation via the second EKF-based estimator of 
battery model parameters. To address the persistence excitation 
issues of the parameter estimator, battery model parameters 
within the estimator are seamlessly switched between the 
internal model and online parameter estimation via a simple 
weighting scheme based on the covariance of the parameter 
estimator error. Finally, the parameter estimator may also be 
used to update the internal battery model maps periodically 
during intervals of favorable excitation. 

The effectiveness of the proposed dual EKF-based adaptive 
SoC estimator has been verified through extensive simulations 
utilizing experimentally verified LiFePO4 battery cell model. 
The results have shown that sensitivity of the EKF-based 
nonlinear state estimator to battery modeling errors can be 
successfully mitigated through online parameter estimation and 
related adaptation of state estimator. The second EKF-based 
estimator, utilized for that purpose, yields accurate parameter 
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estimates during conditions of sufficient excitation and can also 
be used to update battery parameter maps during those 
intervals. By combining the updated internal model within the 
state estimator and online parameter estimation via the 
proposed parameter weighting scheme, the state estimator can 
achieve additional improvement of the SoC tracking ability 
compared to utilization of non-updated internal model or online 
parameter estimation alone. In particular, the updated internal 
model within the EKF-based state estimator can provide the 
correct state estimation during battery quasi-steady-state 
operation (low-excitation conditions), whereas the parameter 
estimator provides accurate model parameter estimation during 
highly dynamic operating regimes (characterized by favorable 
excitation conditions). 

Future work may be directed toward the development of 
SoC estimators for battery modules comprising multiple cells 
and dedicated battery management system, and SoH estimation 
based on battery parameter estimator for aging assessment 
purposes. 

 

APPENDIX 

Parameter estimator tuning parameters (Section III.A):  
 T = 0.5 s 
 rp = 10−4 
 qb1 = 10−5 
 qb0 = 10−5 
 qa = 10−5 
 qUoc = 0.01 

 

State estimator tuning parameters (Section III. B): 
 T = 0.5 s 
 r = 104 
 qu = 3104 
 qQ = 0.03 

 

Tuning parameters of weighting function in Equ. (10): 
 1 = 2  
 0 = −12 
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