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The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured
directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method
of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The
proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and
dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the
most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.

1. Introduction

In recent years, energy conservation and emission reduction
have become a significant issue in uninterruptible power sys-
tem (UPS) industry. Due to the superior energy density, long
cycle life, and low pollution, lithium-ion batteries instead of
lead-acid batteries have become popular as energy storage
devices. Despite its overall advantages, lithium-ion batteries
require battery management systems (BMS) to choose the
control strategy of discharging or charging current in the
electrical circuit to safeguard the battery performance. The
state of charge (SOC) estimation is one of the most key
techniques in the BMS, since it is essential to enhance
the utilization efficiency of battery energy, lengthen the
battery lifetime, and prevent the permanent battery damage
[1]. However, SOC cannot be measured directly and it is
estimated from measurable quantities such as the battery
current and voltage.

Several methods of estimating the battery SOC have been
proposed including ampere-hour counting (Ah), open circuit
voltage (OCV), artificial neural networks (ANN), fuzzy logic
(FL), particle filter (PF), and improved Kalman filters [2–15].
Among them, Ah method is one of the most commonly used
methods. It can be simply implemented by integrating the
battery current over time [2]. However, the reliability of SOC
estimation cannot be maintained when errors accumulate

over the operation time or the initial value of SOC is
unknown. OCVmethod is another commonly used method.
However, it needs the battery to be rested for a long period
to estimate the battery’s OCV [3]. ANN and FL methods
can estimate SOC with an arbitrary initial SOC value [4, 5].
However, the SOC estimation accuracy strongly relies on the
quantity and quality of the training data set. A limited train-
ing data setmay give a poor result and reduce the applicability
of this method. In order to improve the accuracy of SOC
estimation, the model-based estimation methods have been
further developed.The extendedKalman filter (EKF)method
transforms the nonlinear system of charging and discharging
into a linear system by linearizing the nonlinear function
on the basis of the first-order Taylor series expansion [6].
However, not only the instability of the filter and the lack of
robustness due to the linearization process but also the error-
prone calculation of the Jacobian matrices can be listed as the
shortcomings of the EKF method. In order to make up for
the shortcomings of EKF, the unscented Kalman filter (UKF)
and cubature Kalman filter (CKF) methods are proposed,
based on the unscented transform [7] and radial-spherical
cubature rule [8], respectively. They need not to linearize the
nonlinear process and calculate the Jacobian matrix. Thus,
the two methods have a higher accuracy over the EKF in
SOC estimation. The PF method is a Monte-Carlo-based
approximation method that uses a set of weighted random
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samples to approximate the system states [9]. Although PF
method can improve accuracy effectively, its computational
complexity is enormous [10].Thus, PF method is not suitable
for on-line SOC estimation.The accuracy of themodel-based
methods depends on not only the establishment of the battery
equivalent model but also the battery model parameters. In
the process of charging and discharging, the battery model
parameters are not constant, which will lead to the drifting of
the SOC estimation result [11]. In order to solve the problem,
some researchers consider two Kalman filters structure to
estimate SOC [12–15]. The dual EKF (DEKF) method is a
combination of two EKFs, in which the SOC is estimated by
the first EKF, and the parameter is estimated by the second
EKF [12–14]. Compared with the single filter structure, the
SOC accuracy of two filters is improved greatly. The dual
square root UKF method is also proposed to estimate the
SOC and the battery parameters [15]. However, there is
no comparison about SOC estimation accuracy, execution
time, and convergence rate between the DEKF and DSRUKF
methods.

In this paper, in order to estimate the battery SOC with
parameters updating and give a balance method among the
SOC estimation accuracy, execution time, and convergence
rate, the dual square root cubature Kalman filter (DSRCKF)
method is proposed, which has not been mentioned in
the existing literature. The square root aspect of the filter
improves the numerical stability by ensuring that the state
covariance is always semipositive definite [16]. CKF only
requires 2𝑛 cubature points while UKF needs 2𝑛 + 1 sigma
points [17]. As a result, CKF seems to have a better compu-
tational speed than UKF theoretically. Therefore, proposed
method fusion frame in CKF.The SOC of battery is estimated
by the first square root cubature Kalman filter, and the battery
parameters are updated by the second square root cubature
Kalman filter. The proposed DSRCKF method has been ver-
ified experimentally compared with the widely used method
of DEKF and the recent research method of DSRUKF. It
has shown that proposed method owns the most balanced
SOC estimation result among them according to trade-offs
between accuracy, execution time, and convergence rate.

The outline of this paper is as follows. Section 2 presents
the popular model of lithium-ion battery and the method of
parameter updating. Section 3 presents the proposed DSR-
CKF method for SOC estimation and parameters updating
in detail. Section 4 presents the experimental setup and the
discussions of the proposedmethod. Section 5 concludes this
paper.

2. Battery Modeling and Parameter Updating

2.1. Battery Modeling. The second-order RC equivalent cir-
cuit model is used as the battery model in this paper.
This model is simple and effective which can be applied
easily in engineering [18]. Figure 1 shows the equivalent
circuit model which consists of a voltage source, a series
resistor, and two sets of parallel resistor-capacitor circuits.𝑈oc represents the battery OCV, 𝑅0 represents the battery
internal resistance, 𝑅1 and 𝐶1 are the charge-transfer resis-
tor and electric double-layer capacitor, respectively, which
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Figure 1: The second-order RC equivalent circuit model.

represent the charge-transfer reaction, and 𝑅2 and 𝐶2 are
the diffusion resistor and diffusion capacitor, respectively,
which represent the diffusion phenomenon caused by the
grade of the concentration of the electrolyte near the
electrode.

According to the battery circuit equations and SOC
model definition, the discrete state space equation of battery
model can be expressed as follows [19]:

[[
[

SOC𝑘+1
𝑈1,𝑘+1
𝑈2,𝑘+1

]]
]
=
[[[[[[
[

1 0 0
0 1 − 𝑇𝑠

𝑅1𝐶1 0
0 0 1 − 𝑇𝑠

𝑅2𝐶2

]]]]]]
]

⋅ [[
[

SOC𝑘
𝑈1,𝑘
𝑈2,𝑘

]]
]

+
[[[[[[[[[
[

−𝜂𝑇𝑠𝐶𝐴
𝑇𝑠
𝐶1
𝑇𝑠
𝐶2

]]]]]]]]]
]

⋅ 𝑖𝑘 + 𝑤𝑘

𝑈𝑘 = 𝑈OC (SOC𝑘) − 𝑈1,𝑘 − 𝑈2,𝑘 − 𝑖𝑘 ⋅ 𝑅0 + V𝑘,

(1)

where 𝑤𝑘 and V𝑘 represent the process noise and measuring
noise of the battery system, respectively. 𝑈OC(SOC𝑘) can be
obtained by experiment of the relation between OCV and
SOC.

2.2. Parameter Updating. According to Kirchhoff voltage
law, the electrical behavior of the equivalent circuit in the
frequency domain can be expressed as follows:

𝐺 (𝑠) = Δ𝑈 (𝑠)
𝐼 (𝑠) = 𝑈oc − 𝑈

𝐼 (𝑠)
= 𝑅0 + 𝑅11 + 𝑅1𝐶1𝑠 +

𝑅21 + 𝑅2𝐶2𝑠 .
(2)

By using the bilinear transformation as shown in (3) for
the transfer function 𝐺(𝑠), the discrete transfer function of
the Battery system with sampling time 𝑇 can be expressed as
(4).

s = 2
𝑇 ⋅ 1 − 𝑧−11 + 𝑧−1 , (3)
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where 𝑧 is the discretization operation.

𝐺(𝑧−1) = 𝑅0 + 𝑅1𝑇 (1 + 𝑧−1)
(𝑇 + 2𝑅1𝐶1) + (𝑇 − 2𝑅1𝐶1) 𝑧−1

+ 𝑅2𝑇 (1 + 𝑧−1)
(𝑇 + 2𝑅2𝐶2) + (𝑇 − 2𝑅2𝐶2) 𝑧−1

= 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2
1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 .

(4)

According to (4), the relation between the battery
parameters (𝑅0, 𝑅1, 𝑅2, 𝐶1, 𝐶2) and the indirect parameters(𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2) is as follows:

𝑅0 = 𝑏0 − 𝑏1 + 𝑏2
1 − 𝑎1 + 𝑎2

𝑅1𝐶1𝑅2𝐶2 = 1 − 𝑎1 + 𝑎2
4 (1 + 𝑎1 + 𝑎2)𝑇

2

𝑅1𝐶1 + 𝑅2𝐶2 = 1 − 𝑎21 + 𝑎1 + 𝑎2𝑇
𝑅2 (𝑅1𝐶1) + 𝑅1 (𝑅2𝐶2) + 𝑅0 (𝑅1𝐶1 + 𝑅2𝐶2)

= 𝑏0 − 𝑏2
1 + 𝑎1 + 𝑎2𝑇

𝑅0 + 𝑅1 + 𝑅2 = 𝑏0 + 𝑏1 + 𝑏2
1 + 𝑎1 + 𝑎2 .

(5)

Equation (4) can also be transformed to the following
differential equation:

Δ𝑈 (𝑘) = −𝑎1Δ𝑈 (𝑘 − 1) − 𝑎2Δ𝑈 (𝑘 − 2) + 𝑏0𝐼 (𝑘)
+ 𝑏1𝐼 (𝑘 − 1) + 𝑏2𝐼 (𝑘 − 2) ,

(6)

where 𝐼(𝑘) and Δ𝑈(𝑘) indicate the system input and output,
respectively.

For lithium-ion batteries, the battery parameters change
very slowly [11]. So we model them as constants with some
small perturbations. Due to the fact that the state space
equation of battery parameters cannot be directly established
for filtering, it needs to solve the indirect parameters in order
to obtain the battery parameters. The state space equation of
indirect parameters estimation can be expressed as follows:

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝑟𝑘
Δ𝑈 (𝑘) = 𝐶𝑘𝜃𝑘 + 𝑒𝑘

(7)

where 𝜃 = [−𝑎1, −𝑎2, 𝑏0, 𝑏1, 𝑏2]𝑇, 𝐶𝑘 = [Δ𝑈𝑘−1, Δ𝑈𝑘−2, 𝐼𝑘, 𝐼𝑘−1,𝐼𝑘−2], and 𝑟𝑘 and 𝑒𝑘 represent the small perturbations and
measuring noise, respectively.

3. SOC Estimation by Using DSRCKF Method

The DSRCKF framework contains two square root cubature
Kalman filters (SRCKFs).The first SRCKF is a state filter used

for estimating the SOC, the second SRCKF is a weight filter
used for updating the battery parameters (𝑅0, 𝑅1, 𝑅2, 𝐶1, 𝐶2).
Due to the difficulty in establishing the state space equation
of battery parameters directly, this paper uses the weight filter
to estimate the indirect parameters (𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2) by the
state space equation (7), then the updating battery parameters
are solved by transform equation (5). Finally, this paper uses
the state filter to estimate the SOC with battery parameter
updating by state space equation (1).

The whole structure of SOC estimation has been shown
in Figure 2. Firstly, the relation between OCV and SOC
should be established for the state space equation (1). And
initialize the SOC value and battery parameters for the state
filter. At the same time, the initial battery parameter should
be transformed to initial indirect parameters used for the
weight filter by equation (5). After the initialization, two
filters interact in each iteration loop. In each iteration step, the
state filter uses the last iteration value of the weight filter, and
the weight filter also uses the last iteration value of the state
filter. By following this procedure, the estimation accuracy
can bemaintained even if the battery parameters have shifted.

The DSRCKF detailed algorithm is described from (8)
to (37). The state space equation of the SOC and indirect
parameters are presented by (8) and (9), respectively. Equa-
tion (10) represents the relation between battery parameters
and indirect parameters. The detailed DSRCKF method by
using the cubature rule [8] is presented as follows.

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝜀 (𝑘)) + 𝑤𝑘
𝑦 (𝑘) = ℎ (𝑥 (𝑘) , 𝑢 (𝑘) , 𝜀 (𝑘)) + V𝑘

(8)

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝑟𝑘
𝑑 (𝑘) = 𝑔 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝜃 (𝑘)) + 𝑒𝑘

(9)

𝜀 (𝑘) = 𝜑 (𝜃 (𝑘)) , (10)

where 𝑤𝑘, V𝑘, 𝑟𝑘, 𝑒𝑘 are independent, zero-mean, and Gaus-
sian noises with covariance matrices 𝑃𝑤, 𝑃V, 𝑃𝑟, 𝑃𝑒, respec-
tively.

(1) Time Updated for State

(1) Factorize the following:

𝑃+𝑥,𝑘−1 = 𝑆+𝑥,𝑘−1 (𝑆+𝑥,𝑘−1)𝑇 . (11)

(2) Obtain the cubature points (𝑖 = 1, 2, . . . , 2𝑁):

𝜉+𝑥,𝑖,𝑘−1 = 𝑆+𝑥,𝑘−1𝜉𝑥,𝑖 + 𝑥+𝑘−1. (12)

(3) Obtain the propagated cubature points:

𝛾−𝑥,𝑖,𝑘 = 𝑓 (𝜉+𝑥,𝑖,𝑘−1, 𝜀+𝑘−1) . (13)

(4) Estimate the predicted state:

𝑥−𝑘 = 1
2𝑛
2𝑛∑
𝑖=1

𝛾−𝑥,𝑖,𝑘, (14)

where 𝑛 is the dimension of the state vector.
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Figure 2: The framework of SOC estimation by using proposed DSRCKF method.

(5) Square root factor of the predicted error covariance is
as follows:

𝜑𝑥,𝑘 = 1
√2𝑛 [𝛾

−

𝑥,1,𝑘 − 𝑥−𝑘 𝛾−𝑥,2,𝑘 − 𝑥−𝑘 ⋅ ⋅ ⋅ 𝛾−𝑥,2𝑛,𝑘 − 𝑥−𝑘 ]
𝑆−𝑥,𝑘 = Tria ([𝜑𝑥,𝑘 √𝑄𝑥,𝑘−1]) ,

(15)

where 𝑄𝑥,𝑘−1 is the state system noise at time 𝑘 − 1.
Tria() is the function to compute the square root
factor of the matrix.

(2) Time Updated for Weight

(1) Factorize the following:

𝑃+𝜃,𝑘−1 = 𝑆+𝜃,𝑘−1 (𝑆+𝜃,𝑘−1)𝑇 . (16)

(2) Obtain the cubature points (𝑖 = 1, 2, . . . , 2𝑀):

𝜉+𝜃,𝑖,𝑘−1 = 𝑆+𝜃,𝑘−1𝜉𝜃,𝑖 + 𝜃+𝑘−1. (17)

(3) Obtain the propagated cubature points:

𝛾−𝜃,𝑖,𝑘 = 𝜉+𝜃,𝑖,𝑘−1. (18)

(4) Estimate the predicted weight:

𝜃−𝑘 = 1
2𝑚
2𝑚∑
𝑖=1

𝛾−𝜃,𝑖,𝑘, (19)

where 𝑚 is the dimension of the indirect parameter
vector.

(5) Square root factor of the predicted error covariance is
as follows:

𝜑𝜃,𝑘
= 1
√2𝑚 [ 𝛾−𝜃,1,𝑘 − 𝜃−𝑘 𝛾−𝜃,2,𝑘 − 𝜃−𝑘 ⋅ ⋅ ⋅ 𝛾−𝜃,2𝑚,𝑘 − 𝜃−𝑘 ]

𝑆−𝜃,𝑘 = Tria ([𝜑𝜃,𝑘 √𝑄𝜃,𝑘−1]) ,
(20)

where 𝑄𝜃,𝑘−1 is the weight system noise at time 𝑘 − 1.
(3) Measurement Updated for State

(1) Obtain the cubature points (𝑖 = 1, 2, . . . , 2𝑁):
𝜉−𝑥,𝑖,𝑘 = 𝑆−𝑥,𝑘𝜉𝑖 + 𝑥−𝑘 . (21)

(2) Obtain the propagated cubature points:

𝜒−𝑥,𝑖,𝑘 = ℎ (𝜉−𝑥,𝑖,𝑘, 𝜀+𝑘−1) . (22)

(3) Estimate the predicted measurement:

�̂�−𝑥,𝑘 = 1
2𝑛
2𝑛∑
𝑖=1

𝜒−𝑥,𝑖,𝑘. (23)

(4) Square root factor of the innovation covariance is as
follows:

𝜂−𝑥,𝑘 = 1
√2𝑛

⋅ [𝜒−𝑥,1,𝑘 − �̂�−𝑥,𝑘 𝜒−𝑥,2,𝑘 − �̂�−𝑥,𝑘 ⋅ ⋅ ⋅ 𝜒−𝑥,2𝑛,𝑘 − �̂�−𝑥,𝑘] ,
𝑆−𝑥,𝑧𝑧,𝑘 = Tria (𝜂−𝑥,𝑘 √𝑅𝑥,𝑘) .

(24)
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(5) The cross-covariance matrix is as follows:

𝜒−𝑥,𝑘
= 1
√2𝑛 [𝜉

−

𝑥,1,𝑘 − 𝑥−𝑘 𝜉−𝑥,2,𝑘 − 𝑥−𝑘 ⋅ ⋅ ⋅ 𝜉−𝑥,2𝑛,𝑘 − 𝑥−𝑘 ] ,

𝑃−𝑥,𝑥𝑧,𝑘 = 𝜒−𝑥,𝑘 (𝜂−𝑥,𝑘)𝑇 .
(25)

(6) The estimated Kalman gain is as follows:

𝑊𝑥,𝑘 =
(𝑃−𝑥,𝑥𝑧,𝑘/ (𝑆−𝑥,𝑧𝑧,𝑘)𝑇)

𝑆−
𝑥,𝑧𝑧,𝑘

. (26)

(7) The estimated state vector is as follows:

𝑥+𝑘 = 𝑥−𝑘 +𝑊𝑥,𝑘 (𝑧+𝑥,𝑘 − �̂�−𝑥,𝑘) . (27)

(8) Square root factor of the related error covariance is as
follows:

𝑆+𝑥,𝑘 = Tria ([𝜒−𝑥,𝑘 −𝑊𝑥,𝑘𝜂−𝑥,𝑘 𝑊𝑥,𝑘√𝑅𝑥,𝑘]) . (28)

(4) Measurement Update for Weight

(1) Obtain the cubature points (𝑖 = 1, 2, . . . , 2𝑀):
𝜉−𝜃,𝑖,𝑘 = 𝑆−𝜃,𝑘𝜉𝑖 + 𝜃−𝑘 . (29)

(2) Obtain the propagated cubature points:

𝜒−𝜃,𝑖,𝑘 = 𝑔 (𝜉−𝜃,𝑖,𝑘) . (30)

(3) Estimate the predicted measurement:

�̂�−𝜃,𝑘 = 1
2𝑚
2𝑚∑
𝑖=1

𝜒−𝜃,𝑖,𝑘. (31)

(4) Square root factor of the innovation covariance is as
follows:

𝜂−𝜃,𝑘 = 1
√2𝑚

⋅ [𝜒−𝜃,1,𝑘 − �̂�−𝜃,𝑘 𝜒−𝜃,2,𝑘 − �̂�−𝜃,𝑘 ⋅ ⋅ ⋅ 𝜒−𝜃,2𝑚,𝑘 − �̂�−𝜃,𝑘] ,
𝑆−𝜃,𝑧𝑧,𝑘 = Tria (𝜂−𝜃,𝑘 √𝑅𝜃,𝑘) .

(32)

(5) The cross-covariance matrix is as follows:

𝜒−𝜃,𝑘
= 1
√2𝑚 [𝜉−𝜃,1,𝑘 − 𝜃−𝑘 𝜉−𝜃,2,𝑘 − 𝜃−𝑘 ⋅ ⋅ ⋅ 𝜉−𝜃,2𝑚,𝑘 − 𝜃−𝑘 ] ,

𝑃−𝜃,𝑥𝑧,𝑘 = 𝜒−𝜃,𝑘 (𝜂−𝜃,𝑘)𝑇 .
(33)

Table 1: Initial battery parameters.

Parameters Values
𝑅0 0.1766 Ω
𝑅1 0.0186 Ω
𝐶1 1432 F
𝑅2 0.0222 Ω
𝐶2 62303 F

(6) The estimated Kalman gain is as follows:

𝑊𝜃,𝑘 =
(𝑃−𝜃,𝑥𝑧,𝑘/ (𝑆−𝜃,𝑧𝑧,𝑘)𝑇)

𝑆−
𝜃,𝑧𝑧,𝑘

. (34)

(7) The estimated weight vector is as follows:

𝜃+𝑘 = 𝜃−𝑘 +𝑊𝜃,𝑘 (𝑧+𝜃,𝑘 − �̂�−𝜃,𝑘) . (35)

(8) Square root factor of the related error covariance is as
follows:

𝑆+𝜃,𝑘 = Tria ([𝜒−𝜃,𝑘 −𝑊𝜃,𝑘𝜂−𝜃,𝑘 𝑊𝜃,𝑘√𝑅𝜃,𝑘]) . (36)

(5) Transformation between Battery Parameter Vector and
Indirect Parameter Vector

𝜀+𝑘 = 𝜑 (𝜃+𝑘 ) . (37)

4. Experiments and Analysis

4.1. Experimental Setup. To validate the proposed method,
a battery test bench has been set up in Figure 3. It consists
of tested battery (18650 lithium-ion battery, 4.2 V/2.5 Ah), a
DC power supply for battery charging (IV-3605, IVYTECH,
China), aDC electronic load for battery discharging (LK-15A,
LUKANG Electronics, China), a control board for voltage
and current data acquisition, relays for switch of charging and
discharging, and a host computer for monitoring and storing
discharging voltage and current data.

4.2. Pretest for SOC Estimation. In order to estimate battery
SOC, the initial battery parameters (𝑅0, 𝑅1, 𝑅2, 𝐶1, 𝐶2) and
OCV-SOC equation need to be determined, respectively.
Reasonable initial parameter values will help the filter con-
verge faster. As shown inTable 1, the initial battery parameters
are extracted from a sequence of pulse discharging experi-
ments [20].

As shown in Figure 4, the relation between OCV and
SOC has been constructed by using pulse discharging experi-
mental data [20]. Considering the nonlinear relation between
OCV and SOC, this paper uses the fifth-order polynomial to
fit the relation curve [21]. It is clear that the relation between
OCV and SOC can be expressed well by the following:

𝑈oc (SOC) = 16.51 ∗ SOC5 − 46.48 ∗ SOC4 + 48.22
∗ SOC3 − 22.08 ∗ SOC2 + 5.077
∗ SOC + 2.962.

(38)
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Figure 3: Configuration of the battery test bench.
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Figure 4: The relation between OCV and SOC.

4.3. Result and Discussion. In this section, the battery is
discharging with constant load current (0.5 A) after the
battery has been fully charged up to 100% SOC. The battery
discharging is terminated when the battery terminal voltage
reaches the cut-off voltage. In the experiment, a set of voltage
data with 10 seconds sampling period were collected for anal-
ysis and the discharging curve has a nonlinear characteristic
as shown in Figure 5(a). Ampere-hour counting is considered
to calculate the reference value of the SOC estimation for the
performance comparison in Figure 5(b).

The proposed method is compared with the widely used
DEKF and the standard DSRUKF methods in terms of
estimation accuracy, computational complexity, and conver-
gence rate. To estimate the SOC accuracy, an initial SOC
value of 1 and the initial battery parameters in Table 1
were used for the DEKF, DSRUKF, and DSRCKF methods,
approximately equal to the real measure value. All three
methods by using DEKF (green line), DSRUKF (blue line),
andDSRCKF (red line) can be used to estimate the SOCvalue
well in Figure 6(a), but, in Figure 6(b), there is a difference
in accuracy compared with the reference SOC. As shown in
Figure 6(c), the SOC estimation values are changed rapidly
in the initial stage (from 0 to 50 s) of the estimation process
due to the drifting of the actual initial battery parameters.
But the SOC error has a trend to get smaller and more
stable in the middle stage due to the tracking characteristics
of Kalman filter. The SOC estimation values are fluctuated
in the final stage (from 12000 s to 16000 s) due to the
nonlinearity of the battery discharging which can be referred
to in Figure 5(a). As shown in Figure 6(d), the accuracies

of SOC estimation of DSRUKF and DSRCKF are similar
and the difference between them can be ignored. It can be
found that the DSRUKF and DSRCKF methods can reduce
the SOC estimation error in comparison with the DEKF
method. In addition, the proposed DSRCKF method can
reduce the fluctuation of SOC estimation compared with the
DEKF method. The execution time shows the computational
complexity of the applied nonlinear state estimationmethods
in the Matlab environment. Thereby, the execution time is
calculated as the time taken by the individual methods to
estimate the battery states during one full discharge scenario.
The SOC comparison results, including root mean square
error (RMSE), maximum absolute error, and execution time,
are summarized in Table 2.

Different initial SOC errors in terms of 10% SOC intervals
from 0 to 1 are considered for the proposedDSRCKFmethod.
The convergence criteria are 2% referenced the SOC error
fluctuation when the initial SOC error is 1 in Figure 6(b). For
example, the experimental results are shown in Figure 7(a)
when the initial SOC are reset to 0.8 (red dotted line), 0.6
(blue dotted line), and 0.4 (green dotted line), respectively.
The convergence rates are all fast in the early stage and then
slow down gradually with the convergence process, but the
convergence criteria are met in the end in Figure 7(b).

To further compare the convergence performance
between the DEKF (green line), DSRUKF (blue line), and the
proposed DSRCKF (red line) method, the initial SOC value
is reset to 0.6 in Figure 8, significantly different from the
experimental SOC values. In Figure 8(b), the convergence
rate of the DSRUKF and DSRCKF are slower than that of
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Figure 6: SOC estimation by DEKF (green line), DSRUKF (blue line), and DSRCKF (red line).

Table 2: Comparison of SOC estimation and execution time.

Method RMSE Maximum absolute error Execution time (s)
DEKF 0.0057 0.0170 0.3995
DSRUKF 0.0037 0.0119 1.1379
DSRCKF 0.0037 0.0119 0.8883
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Figure 7: Convergence analysis by using the proposed DSRCKF method.
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Figure 8: Comparison of convergence between the DEKF, DSRUKF, and DSRCKF methods.

the DEKF method. In Figure 8(c), The DSRUKF method has
a slight advantage in convergence rate compared with the
DSRCKF method, but the advantage can be ignored due to
the microscopic distinction.

A complete convergence analysis comparison between
DEKF, DSRUKF, and DSRCKF is summarized in Table 3.
It shows that all three methods have good convergent
performance. The convergence rates of the DSRCKF and

DSRUKF methods are approximate but slower than that of
DEKF method.

A complete analysis of advantages between DEKF,
DSRUKF, and DSRCKF method for SOC estimation is
summarized in Table 4. A, B, and Cmean the excellent classes
which from high to low, respectively. The DSRUKF and the
proposed DSRCKF methods have a higher SOC estimation
accuracy than the DEKF method. The DSRCKF method has
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Table 3: Comparison of convergence analysis.

Initial SOC Convergence iteration (step)
DEKF DSRUKF DSRCKF

100% 1 1 1
90% 195 233 233
80% 300 347 347
70% 351 396 396
60% 381 423 423
50% 404 444 444
40% 424 464 464
30% 441 491 491
20% 455 508 508
10% 480 518 518
0% 495 529 529

Table 4: Comparison of the overall performance analysis.

DEKF DSRUKF DSRCKF
SOC accuracy C A A
Execution time A C B
Convergence rate A B B

lower execution time than that of DSRUKF, but higher than
that of DEKF. The convergence rates of the DSRCKF and
DSRUKF methods are approximate, but a little slower than
that of DEKF method.

5. Conclusion

In this paper, a novel SOC estimation method with param-
eters updating by using the DSRCKF has been proposed.
The second-order RC equivalent circuit model is applied to
simulate the nonlinear behaviors of lithium-ion battery. The
state space equation of SOC estimation is utilized for the
first SRCKF.The state space equation of parameters updating
is utilized for the second SRCKF. In each iteration loop
process, the two filters interact with each other. The experi-
mental results demonstrate that the DSRCKF method has a
better overall performance than the DSRUKF method with
the lower execution time, the approximate SOC estimation
accuracy, and convergence rate. Despite the disadvantages
of the execution time and convergence rate, the DSRCKF
method has a higher SOC estimation accuracy than the
DEKF method. To sum up, if the accuracy of the SOC
estimation is the priority, the proposed DSRCKF method
would be the most balanced estimation method among them
according the trade-offs among accuracy, execution time, and
convergence rate.

In the future research, the influence of dynamic load
current will be further discussed. As an application, the
proposed method will also be considered under different
operating environments.
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