868 research outputs found

    Study of Novel Power Semiconductor Devices for Performance and Reliability.

    Get PDF
    Power Semiconductor Devices are crucial components in present day power electronic systems. The performance and efficiency of the devices have a direct correlation with the power system efficiency. This dissertation will examine some of the components that are commonly used in a power system, with emphasis on their performance characteristics and reliability. In recent times, there has a proliferation of charge balance devices in high voltage discrete power devices. We examine the same charge balance concept in a fast recovery diode and a MOSFET. This is crucial in the extending system performance at compact dimensions. At smaller device and system sizes, the performance trade-off between the ON and OFF states becomes all the more critical. The focus on reducing the switching losses while maintaining system reliability increases. In a conventional planar technology, the technology places a limit on the switching performance owing to the larger die sizes. Using a charge balance structure helps achieve the improved trade-off, while working towards ultimately improving system reliability, size and cost. Chapter 1 introduces the basic power system based on an inductive switching circuit, and the various components that determine its efficiency. Chapter 2 presents a novel Trench Fast Recovery Diode (FRD) structure with injection control is proposed in this dissertation. The proposed structure achieves improved carrier profile without the need for excess lifetime control. This substantially improves the device performance, especially at extreme temperatures (-40oC to 175oC). The device maintains low leakage at high temperatures, and it\u27s Qrr and Irm do not degrade as is the usual case in heavily electron radiated devices. A 1600 diode using this structure has been developed, with a low forward turn-on voltage and good reverse recovery properties. The experimental results show that the structure maintains its performance at high temperatures. In chapter 3, we develop a termination scheme for the previously mentioned diode. A major limitation on the performance of high voltage power semiconductor is the edge termination of the device. It is critical to maintain the breakdown voltage of the device without compromising the reliability of the device by controlling the surface electric field. A good termination structure is critical to the reliability of the power semiconductor device. The proposed termination uses a novel trench MOS with buried guard ring structure to completely eliminate high surface electric field in the silicon region of the termination. The termination scheme was applied towards a 1350 V fast recovery diode, and showed excellent results. It achieved 98% of parallel plane breakdown voltage, with low leakage and no shifts after High Temperature Reverse Bias testing due to mobile ion contamination from packaging mold compound. In chapter 4, we also investigate the device physics behind a superjunction MOSFET structure for improved robustness. The biggest issue with a completely charge balanced MOSFET is decreased robustness in an Unclamped Inductive Switching (UIS) Circuit. The equally charged P and N pillars result in a flat electric field profile, with the peak carrier density closer to the P-N junction at the surface. This results in an almost negligible positive dynamic Rds-on effect in the MOSFET. By changing the charge profile of the P-column, either by increasing it completely or by implementing a graded profile with the heavier P on top, we can change the field profile and shift the carrier density deeper into silicon, increasing the positive dynamic Rds-on effect. Simulation and experimental results are presented to support the theory and understanding. Chapter 5 summarizes all the theories presented and the contributions made by them in the field. It also seeks to highlight future work to be done in these areas

    Analysis of performance of SiC bipolar semiconductor devices for grid-level converters

    Get PDF
    Recent commercialization of SiC bipolar devices, including SiC BJT, SiC MPS diode and SiC PiN diodes have enabled potential candidates to replace their SiC unipolar counterparts. However, the prospects of 4H-SiC power bipolar devices still need further investigation. This thesis compares the static and dynamic performance and reliability for the commercial SiC bipolar devices including SiC BJT, SiC MPS diode and SiC PiN diode and their similarly rated Silicon counterparts mainly by means of experimental measurements.Through comprehensive double-pulse measurements, the turn-on and turn-off transition in Silicon BJT is seen to be much slower than that of the SiC BJT while the transient time will increase with temperature and decreases with collector currents. The common-emitter current gain (β) of SiC BJT is also found to be much higher than its Silicon counterpart. Significant turn-off delay is observed in single Si BJT which becomes worse when in parallel connection as it aggravates the current mismatch across the two devices, while this delay is almost non-existent in SiC devices. The current collapse seen in single SiC BJT is mitigated by parallel connection. These are dependant on temperature and base resistance, especially in the case of Silicon BJT. The static performance of power Silicon and SiC BJT has also been evaluated. It has been found that the higher base-emitter junction voltage of SiC BJTs enables quasi-saturation mode of operation with low on-resistance, which is also the case for Silicon BJTs only at high base currents. In terms of DC gain measured under steady state operation, the observed negative temperature coefficient (NTC) of β in SiC BJTs and the positive coefficient (PTC) in Silicon BJTs can make the β of SiC BJT lower than that in Silicon at high temperatures. It has been found that parallel connection promotes both the on-state conductivity and current gain in Silicon BJTs and conductivity in SiC BJTs.The characterization of power diodes reveals that the superior switching performance of the SiC MPS & JBS diode when compared with the Si PiN diode is due to the absence of the stored charge. This also leads to the larger on-state voltage in both SiC diodes and becomes worse at high currents under high temperatures. Through comprehensive Unclamped Inductive Switching (UIS) measurements, it is seen that the avalanche ruggedness of SiC MPS & JBS diodes outperform that of the closely rated Silicon PiN diode taking advantage of the wide-bandgap properties of SiC. Higher critical avalanche energy and thus better avalanche ruggedness can also be observed in SiC JBS diode compared with the SiC MPS diode. SiC MPS diodes can compete with Si PiN diodes in terms of the surge current limits, while the SiC JBS diode failed under a lower electrothermal stress. This is observed by the dramatic increase in its reverse leakage current at lower voltages.The 15 kV SiC PiN diodes feature smaller device dimensions, less reverse recovery charge and less on-resistance when compared to the 15 kV Silicon PiN diodes. Nevertheless, when evaluating its long-term reliability by using the aggravated power cycling configuration, the high junction temperature together with the dislocation defects in the SiC PiN diode accelerate its degradation. Such degradations are not observed in Silicon PiN diodes for the same junction temperature and high-temperature stress periods

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Modeling of Ultra Low Capacitance Transient Voltage Suppression Diode for High ESD Protection

    Get PDF
    To improve key properties such as ultra-low capacitance (ULC) and high-voltage (HV) breakdown, we have performed a simulation work about transient voltage suppression (TVS) diodes. ULC-TVS diode was designed to employ a double deep trench to cut off the various parasitic effects that may degrade the device performance. The electrostatic discharge (ESD) protection is the targeting for the best applications in high-frequency and high-speed ICs. In this work, the device could present excellent performance in terms of very responsive ESD properties, high breakdown voltage, low leakage current, and very low capacitance level. The double trenches are aligned to the top electrode contact to restrict field crowding effects by the strong electric field intensity. The performance would be sufficient for the robust ESD nature up to IEC61000-4-2 (30 kV) and compatible with strong surge protection IEC61000-4-5 (10A). Their electrical properties have been evaluated for structure from simulation and the results are obtained at the device parameters. Several process of device design related effects on the electrical capability and can be optimized. Keywords: ULC-TVS diode, simulation (TCAD), characteristics, capacitance, ESD protection

    The 2018 GaN Power Electronics Roadmap

    Get PDF
    Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here

    GaN-based power devices: Physics, reliability, and perspectives

    Get PDF
    Over the last decade, gallium nitride (GaN) has emerged as an excellent material for the fabrication of power devices. Among the semicon- ductors for which power devices are already available in the market, GaN has the widest energy gap, the largest critical field, and the highest saturation velocity, thus representing an excellent material for the fabrication of high-speed/high-voltage components. The presence of spon- taneous and piezoelectric polarization allows us to create a two-dimensional electron gas, with high mobility and large channel density, in the absence of any doping, thanks to the use of AlGaN/GaN heterostructures. This contributes to minimize resistive losses; at the same time, for GaN transistors, switching losses are very low, thanks to the small parasitic capacitances and switching charges. Device scaling and monolithic integration enable a high-frequency operation, with consequent advantages in terms of miniaturization. For high power/high- voltage operation, vertical device architectures are being proposed and investigated, and three-dimensional structures—fin-shaped, trench- structured, nanowire-based—are demonstrating great potential. Contrary to Si, GaN is a relatively young material: trapping and degradation processes must be understood and described in detail, with the aim of optimizing device stability and reliability. This Tutorial describes the physics, technology, and reliability of GaN-based power devices: in the first part of the article, starting from a discussion of the main proper- ties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail to provide guidance in this complex and interesting field. The second part of the paper focuses on trapping and reliability aspects: the physical origin of traps in GaN and the main degradation mechanisms are discussed in detail. The wide set of referenced papers and the insight into the most relevant aspects gives the reader a comprehensive overview on the present and next-generation GaN electronics

    High-speed silicon electro-optic modulator for electronic photonic integrated circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 173-184).The development of future electronic-photonic integrated circuits (EPIC) based on silicon technology critically depends on the availability of CMOS-compatible high-speed modulators that enable the interaction of electronic and optical signals. This thesis investigates electrically driven Mach-Zehnder modulators based on high-index contrast silicon waveguide technology and electronic carrier injection. Modulators based on four different structures are investigated: the forward-biased PiN diode with and without lifetime reduction, the reverse-biased PIN/PN diode and a metal-oxide-semiconductor (MOS) structure. These devices are compared with each other in terms of achievable performance. A modulator based on the forward-biased PIN diode with lifetime reduction is designed to reach 34GHz bandwidth and a low figure of merit V -. L = 0.6V - cm using a carrier lifetime reduction and a graded doping profile. A bandwidth of 1-2GHz has been demonstrated so far which is considerably smaller than the design bandwidth due to high series resistance. Modulators based on the forward-biased PIN structure without lifetime reduction have a low figure of merit, very low voltage and extremely low power consumption in the low frequency regime.(cont.) The measurements demonstrate a RF power consumption of 100mW for 25% modulation depth and a figure of merit of V, - L = 0.28V - cm at frequencies up to 10GHz. A pre-compensation technique, using a high pass filter which consists of a parallel resistor and capacitor, extends the modulator bandwidth from 100MHz to 5GHz experimentally. Further it is shown that, modulators based on the reverse-biased structure can in principle reach very high speed, up to 40-80GHz in design but it's difficult to reduce V, - L values close to or even below 1V - cm and the necessary drive voltage is higher than the voltage provided by the CMOS technology. For the measured bandwidth of the fabricated devices so far only 1-2GHz has been demonstrated. This discrepancy is caused by the RC delay due to the experimental setup and high contact resistance. Finally, the performance of the modulator based on the metal-on-semiconductor (MOS) structure is analyzed. Furthermore, an electrically driven Mach-Zehnder waveguide modulator based on a high-index contrast silicon split-ridge waveguide (SRW) technology and electronic carrier injection is proposed.(cont.) The excellent optical and carrier confinement possible in high-index contrast waveguide devices, together with the forward biased operation and the good thermal heat sinking due to the silicon slab close to the waveguide, enables high speed modulation with small signal modulation bandwidths beyond 20GHz, a V, times length figure of merit of V, - L = 0.5Vcm and an insertion loss of about 5.3 dB. Finally, all-optical switches based on optical carrier-injection in high index contrast Si/Si02 split-ridge-waveguide (SRW) couplers are proposed. The waveguide devices are suitable for the construction of low-loss optical switch matrices as well as fast optical switching. These devices exhibit robustness against fabrication tolerances, improved heat sinking, good carrier confinement and high uniformity in transmission over the entire C-band of optical communications in contrast to comparable devices based on buried or ridge waveguides. A reasonably low electrical switching power of 1-10mW is predicted for switching frequencies in the 1MHz-1GHz range. Faster switching speed can be achieved by carrier lifetime reduction.by Fuwan Gan.Ph.D

    SiC MOSFET and GaN FET in high voltage switching applications

    Get PDF
    For several decades, silicon-based semiconductor devices, such as Si MOSFETs have been the main choice for switching applications. However, their level of performance is approaching its maximum potential, and further development becomes increasingly challenging. As a result, semiconductor manufacturers and the electronics industry are exploring new technologies to meet current requirements. One promising option is the use of WBG (Wide Band Gap) devices, such as GaN FETs and SiC MOSFETs, which have gained attention due to their superior performance characteristics. Compared to traditional Si transistors, WBG devices can withstand higher voltages and tem-peratures, are faster, can be packed in smaller sizes, and are more efficient. This study aims to serve as a guide for designers seeking information on the technology and usage of WBG transistors, particularly in high voltage switching applications. The study in-cludes an examination of the structures of SiC MOSFETs and GaN FETs, as well as their most important electrical characteristics. Additionally, the efficiency of an LCC converter was measured to compare the performance of various FET types, with a specific interest in the use of WBG devices in soft switching applications. Scientific articles, application notes, and datasheets were investigated to provide a thorough understanding of the theory behind SiC MOSFETs and GaN FETs. According to resources, the primary SiC MOSFET and GaN FET technologies suitable for high voltage switching are planar SiC MOSFET, trench SiC MOSFET, p-GaN FET and GaN/Si cascode transistor. These devices are currently available with breakdown voltages of 1700 V (planar SiC MOSFET), 2000 V (trench SiC MOSFET), 650 V (p-GaN FET) and 900 V (GaN/Si cascode transistor). The efficiency of an LCC converter with a maximum output power of 40 W was measured using 1500 V Si MOSFET, 1700 V planar SiC MOSFET, 1700 V trench SiC MOSFET, and 900 V GaN/Si cascode transistor. A constant load of 1 A was used, and the input voltage was incre-mentally increased from 300 V to 900 V in 100 V steps. According to results, using planar and trench SiC MOSFETs, LCC converter had the highest efficiency, reaching up to 89,6 % while Si MOSFET exhibited slightly lower efficiency, which was 87,7 % at its best. GaN/Si cascode tran-sistors showed comparable efficiency to SiC MOSFETs at lower input voltages but fell signifi-cantly behind as the voltage increased, having eventually much worse efficiency than Si MOSFET.Useiden vuosikymmenien ajan pii-pohjaiset puolijohteet, kuten pii MOSFETit, ovat olleet pääasiallinen teknologia katkojasovelluksissa. Niiden suorituskyky lähestyy kuitenkin ylärajaa, ja niiden kehittäminen käy yhä vaikeammaksi. Tämän vuoksi puolijohdevalmistajat ja elektroniikkateollisuus etsivät uusia teknologioita täyttää nykyiset vaatimukset. Yksi lupaava teknologia ovat laajan energiavyön puolijohteet, kuten galliumnitridi FETit ja piikarbidi MOSFETit. Viime vuosina ne ovat herättäneet paljon huomiota niiden ylivoimaisten ominaisuuksien vuoksi. Verrattuna perinteisiin pii MOSFETeihin, laajan energiavyön transistorit kestävät suurempia jännitteitä ja lämpötiloja, ovat nopeampia ja ne voidaan pakata pienempään kokoon. Lisäksi ne ovat tehokkaampia. Tämä diplomityö pyrkii toimimaan oppaana elektroniikkasuunnittelijoille, jotka etsivät tietoa laajan energiavyön transistoreista ja niiden käytöstä erityisesti suurjännitekatkojasovelluksissa.Työssä tarkastellaan piikarbidi MOSFETien ja galliumnitridi FETien rakenteita sekä niiden tärkeimpiä sähköisiä ominaisuuksia. Lisäksi mitattiin kelaan ja kahteen kondensaattoriin perustuvan LCC resonanssiteholähteen hyötysuhde eri FET-tyypeillä, koska haluttiin saada tietoa laajan energiavyön transistorien käytöstä pehmeässä jännitteen katkonnassa. Tiedon keräämiseksi tutkittiin tieteellisiä artikkeleita, sovellusohjeita ja datalehtiä. Lähdeaineiston perusteella pääasialliset piikarbidi MOSFETien ja galliumnitridi FETien teknologiat suurjännitesovellusten alueella ovat planaarinen piikarbidi MOSFET, erityiseen kaivanto teknologiaan (trench) perustuva piikarbidi MOSFET, p-tyypin galliumnitridi FET ja galliumnitridi/pii kaskadi transistori. Tällä hetkellä näitä teknologioita on kaupallisesti saatavilla enimmillään 1700 V (planaarinen piikarbidi MOSFET), 2000 V (kaivanto piikarbidi MOSFET), 650 V (p-tyypin galliumnitridi FET) ja 900 V (galliumnitridi/pii kaskadi transistori) jännitteillä. Nimellisteholtaan 40 W LCC resonanssi teholähteen hyötysuhde mitattiin 1500 V pii MOSFETeilla, 1700 V planaarisilla piikarbidi MOSFETeilla, 1700 V kaivanto piikarbidi MOSFETeilla ja 900 V gallium-nitridi/pii kaskadi transistoreilla. Kuormana käytettiin 1 A vakiokuormaa ja tulojännitettä nostettiin asteittain 300 voltista 900 voltiin 100 voltin nostoin. Tulosten mukaan paras hyötysuhde oli 89,6 %, joka mitattiin planaarisella piikarbidi MOSFETilla ja kaivanto piikarbidi MOSFETilla. Pii MOSFETien tapauksessa hyötysuhde oli hieman huonompi, ollen parhaimmillaan 87,7 %. Alhaisilla jännitteillä galliumnitridi/pii kaskadi transistorien hyötysuhde oli verrattavissa piikarbidi MOSFETeihin, mutta hyötysuhde laski jännitettä nostettaessa, ollen lopulta merkittävästi huonompi kuin pii MOSFETeilla
    corecore