33 research outputs found

    An integration bridge for heterogeneous e-service environments

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresHome automation has evolved from a single integration of services (provided by devices, equipment, etc.) in the environment to a more broad integration of these core services with others(external to the environment) to create some added-value services for home users. This presents a key challenge of how to integrate disparate and heterogeneous e-service networks. To this, there exist already some good approaches but with some deficiencies. First, they fail to put in place some expeditious integration approach for having services registered across service domains. And then, do not provide a good method for having target services be transparently invoked from within the source environment. Thus, an enhanced integration concept is needed for tackling these challenges. As a solution, this work proposes an integration bridge concept, composed of two key elements: one, an interoperability bridge to go from service descriptions in the target environment format to service announcement in the source environment; and two, a service bridge, to have an image of the target service exist in the source environment as a service in itself. The concept has been tested and validated in JXTA-P2P source and W3C-WebServices target environments that much relate to Home Automation scenarios

    Green Buildings and Ambient Intelligence: case study for N.A.S.A. Sustainability Base and future Smart Infrastructures

    Get PDF
    Con la diffusione delle smart infrastructures, espressione con cui ci si riferisce collettivamente ai concetti di smart cities e smart grid, i sistemi di building automation vedono il proprio ruolo espandersi oltre i tradizionali limiti degli ambienti isolati che sono progettati per gestire, supervisionare ed ottimizzare. Da sistemi isolati all’interno di edifici residenziali o commerciali, stanno iniziando ad ottenere un ruolo importante su scala più ampia nell’ambito di scenari più complessi a livello urbano o a livello di infrastruttura. Esempi di questa tendenza possono essere le attuali sperimentazioni in varie città del mondo per automatizzare l’illuminazione pubblica, complessi residenziali diffusi (spesso denominati smart connected comunities) e microgrid locali generate dalla federazione di varie unità residenziali a formare cosidette virtual power plants. A causa di questo processo, ci sono aspettative crescenti circa il potenziale delle reti di automazione di introdurre funzionalità sofisticate da un parte ed efficienza energetica dall’altra, ed entrambi gli aspetti su vasta scala. Sfortunatamente questi due obiettivi sono per diversi motivi in conflitto ed è dunque inevitabile individuare un ragionevole compromesso di progettazione. Questa ricerca realizza una caratterizzazione delle attuali tecnologie di automazione per identificare i termini di tale compromesso, con un’attenzione maggiormente polarizzata sugli aspetti di efficienza energetica, analizzata seguendo un approccio olistico, affrontando diversi aspetti del problema. Indubbiamente, data la complessità del vasto scenario tecnologico delle future smart infrastructures, non c’è una finalità sistematica nel lavoro. Piuttosto si intende fornire un contributo alla conoscenza, dando priorità ad alcune sfide di ricerca che sono altresì spesso sottovalutate. Il Green networking, ovvero l’efficienza energetica nel funzionamento di rete, è una di tali sfide. L’attuale infrastruttura IT globale è costruita su attrezzature che collettivamente consumano 21.4 TWh/anno (Global e-Sustainability Initiative, 2010). Questo è dovuto alla scarsa consapevolezza del fatto che le specifiche dei protocolli di comunicazione hanno varie implicazioni sull’efficienza energetica e alla generale tendenza ad una progettazione ridondante e sovra-dimensionata per il caso peggiore. Questo problema potrebbe essere riscontrato anche nelle reti di automazione, specialmente data la tendenza di cui si discuteva sopra, e in tal caso, queste potrebbero introdurre un ulteriore carbon footprint, in aggiunta a quello della rete internet. In questa ricerca si intende dimensionare tale problema e proporre approcci alternativi agli attuali modelli di hardware e protocollo tipici delle tecnologie di automazione in commercio. Spostandosi dalla rete di controllo all’ambiente fisico, altro obiettivo di questo lavoro è la caratterizzazione di sistemi di gestione automatica dei plug loads, carichi elettrici altrimenti non gestiti da alcun impianto di building automation. Per tali sistemi verranno mostrati i limiti e le potenzialità, identificando potenziali problematiche di design e proponendo un approccio integrato di tali sistemi all’interno di sistemi più ampi di gestione dell’energia. Infine, il meccanismo introdotto nella parte di green networking è potenzialmente in grado di fornire informazioni in tempo reale circa il contesto controllato. Si tratta di un potenziale sfruttabile per sviluppare soluzioni di Demand Side Management, allo scopo di effettuare previsioni di picco e di carico. Questa analisi è attualmente in corso, attraverso una partnership con Enel Distribuzione. With the advent of smart infrastructures, collective expression used here to refer to novel concepts such as smart cities and smart grid, building automation and control networks are having their role expanded beyond the traditional boundaries of the isolated environments they are designed to manage, supervise and optimize. From being confined within residential or commercial buildings as islanded, self-contained systems, they are starting to gain an important role on a wider scale for more complex scenarios at urban or infrastructure level. Example of this ongoing process are current experimental setups in cities worldwide to automate urban street lighting, diffused residential facilities (also often addressed to as smart connected communities) and local micro-grids generated by the federation of several residential units into so-called virtual power plants. Given this underlying process, expectations are dramatically increasing about the potential of control networks to introduce sophisticated features on one side and energy efficiency on the other, and both on a wide scale. Unfortunately, these two objectives are, in several ways, conflicting, and impose to settle for reasonable trade-offs. This research work performs an assessment of current control and automation technologies to identify the terms of this trade-off with a stronger focus on energy efficiency which is analyzed following a holistic approach covering several aspects of the problem. Nevertheless, given the complexity of the wide technology scenario of future smart infrastructure, there isn’t a systematic intention in the work. Rather, this research will aim at providing valuable contribution to the knowledge in the field, prioritizing challenges within the whole picture that are often neglected. Green networking, that is energy efficiency of the very network operation, is one of these challenges. The current worldwide IT infrastructure is built upon networking equipment that collectively consume 21.4 TWh/year (Global e-Sustainability Initiative, 2010). This is the result of an overall unawareness of energy efficiency implications of communication protocols specifications and a tendency toward over-provisioning and redundancy in architecture design. As automation and control networks become global, they may be subject to the same issue and introduce an additional carbon footprint along with that of the internet. This research work performs an assessment of the dimension of this problem and proposes an alternative approach to current hardware and protocol design found in commercial building automation technologies. Shifting from the control network to the physical environment, another objective of this work is related to plug load management systems, which will be characterized as to their performance and limitations, highlighting potential design pitfalls and proposing an approach toward integrating these systems into more general energy management systems. Finally, the mechanism introduced above to increase networking energy efficiency also demonstrated a potential to provide real-time awareness about the context being managed. This potential is currently under investigation for its implications in performing basic load/peak forecasting to support demand side management architectures for the smart grid, through a partnership with the Italian electric utility

    Integrador de Servicios Domóticos (ARUSTO)

    Get PDF

    The Internet of Things and The Web of Things

    Get PDF
    International audienceThe Internet of Things is creating a new world, a quantifiable and measureable world, where people and businesses can manage their assets in better informed ways, and can make more timely and better informed decisions about what they want or need to do. This new con-nected world brings with it fundamental changes to society and to consumers. This special issue of ERCIM News thus focuses on various relevant aspects of the Internet of Things and the Web of Things

    A transformation grammar-based methodology for housing rehabilitation: meeting contemporary functional and ICT requirements

    Get PDF
    This research starts from the premise that the future of the real estate market in Portugal will require the rehabilitation of existing residential areas in order to respond to new life-styles and dwelling requirements that have emerged in an era in which information plays a structuring role in society. The goal of this research is the definition of design guidelines and a rehabilitation methodology to support architects involved in the process of adapting existing dwellings, allowing them to balance sustainability requirements and economic feasibility with new dwelling trends such as the incorporation and updating of Information Communication and Automation Technologies and the need to solve emerging conflicts affecting the use of space prompted by the introduction of new functions associated with such technologies. In addition to defining a general methodology applicable to all the building types, the study focuses on a specific type, called “rabo-de-bacalhau” (“cod-tail”), built in Lisbon between 1945 and 1965 for which a specifc methodology has been generated. Both shape grammar and space syntax were used as part of the rehabilitation methodology as tools to identify and encode the principles and rules behind the adaptation of existing houses to new requirements.FCT PhD Gran

    Information modelling for the development of sustainable construction (MINDOC)

    Get PDF
    In previous decades, controlling the environmental impact through lifecycle analysis has become a topical issue in the building sector. However, there are some problems when trying to exchange information between experts for conducting various studies like the environmental assessment of the building. There is also heterogeneity between construction product databases because they do not have the same characteristics and do not use the same basis to measure the environmental impact of each construction product. Moreover, there are still difficulties to exploit the full potential of linking BIM, SemanticWeb and databases of construction products because the idea of combining them is relatively recent. The goal of this thesis is to increase the flexibility needed to assess the building’s environmental impact in a timely manner. First, our research determines gaps in interoperability in the AEC (Architecture Engineering and Construction) domain. Then, we fill some of the shortcomings encountered in the formalization of building information and the generation of building data in Semantic Web formats. We further promote efficient use of BIM throughout the building life cycle by integrating and referencing environmental data on construction products into a BIM tool. Moreover, semantics has been improved by the enhancement of a well-known building-based ontology (namely ifcOWL for Industry Foundation Classes Web Ontology Language). Finally, we experience a case study of a small building for our methodology

    Diseño de sistemas activos para viviendas de carácter social en el trópico caribeño

    Get PDF
    El trabajo descrito a continuación consiste en diseñar e implementar soluciones domóticas destinadas a adaptar viviendas de carácter social para personas con discapacidad. El reto ha consistido en crear un sistema modular y transportable, que utilizando tecnologías de comunicación inalámbricas Z-wave y una central controladora basada en CastleOS, se adecuaran viviendas sociales de producción en masa, a las necesidades de específicas de personas con discapacidad. La propuesta domótica se diseña para ser implementada en el proyecto habitacional Nuevo Asentamiento La Barquita en República Dominicana. La descripción de la solución incluye especificaciones de funcionamiento de módulos de asistencia domótica para distintos tipos de discapacidad al igual que una estimación de los costos de instalación.ENGLISH: The work described below is to design and implement automation solutions for adapting social housing for people with disabilities. The challenge has been to create a modular and transportable system, using Z-wave technology and a controlling wireless communication station based on CastleOS, to adapt mass production social housing to the specific needs of people with disabilities. Home automation proposal is designed to be implemented in the new settlement housing project La Barquita in the Dominican Republic. The description of the solution includes modules operating specifications for home automation assistance in various types of disability and an estimate of installation costs

    Smart data management with BIM for Architectural Heritage

    Get PDF
    In the last years smart buildings topic has received much attention as well as Building Information Modelling (BIM) and interoperability as independent fields. Linking these topics is an essential research target to help designers and stakeholders to run processes more efficiently. Working on a smart building requires the use of Innovation and Communication Technology (ICT) to optimize design, construction and management. In these terms, several technologies such as sensors for remote monitoring and control, building equipment, management software, etc. are available in the market. As BIM provides an enormous amount of information in its database and theoretically it is able to work with all kind of data sources using interoperability, it is essential to define standards for both data contents and format exchange. In this way, a possibility to align research activity with Horizon 2020 is the investigation of energy saving using ICT. Unfortunately, comparing the Architecture Engineering and Construction (AEC) Industry with other sectors it is clear how in the building field advanced information technology applications have not been adopted yet. However in the last years, the adoption of new methods for the data management has been investigated by many researchers. So, basing on the above considerations, the main purpose of this thesis is investigate the use of BIM methodology relating to existing buildings concerning on three main topics: • Smart data management for architectural heritage preservation; • District data management for energy reduction; • The maintenance of highrises. For these reasons, data management acquires a very important value relating to the optimization of the building process and it is considered the most important goal for this research. Taking into account different kinds of architectural heritage, the attention is focused on the existing and historical buildings that usually have characterized by several constraints. Starting from data collection, a BIM model was developed and customized in function of its objectives, and providing information for different simulation tests. Finally, data visualization was investigated through the Virtual Reality(VR) and Augmented Reality (AR). Certainly, the creation of a 3D parametric model implies that data is organized according to the use of individual users that are involved in the building process. This means that each 3D model can be developed with different Levels of Detail/Development (LODs) basing on the goal of the data source. Along this thesis the importance of LODs is taken into account related to the kind of information filled in a BIM model. In fact, basing on the objectives of each project a BIM model can be developed in a different way to facilitate the querying data for the simulations tests.\ud The three topics were compared considering each step of the building process workflow, highlighting the main differences, evaluating the strengths and weaknesses of BIM methodology. In these terms, the importance to set a BIM template before the modelling step was pointed out, because it provides the possibility to manage information in order to be collected and extracted for different purposes and by specific users. Moreover, basing on the results obtained in terms of the 3D parametric model and in terms of process, a proper BIM maturity level was determined for each topic. Finally, the value of interoperability was arisen from these tests considering that it provided the opportunity to develop a framework for collaboration, involving all parties of the building industry

    Uma proposta de ontologia para residências inteligentes buscando a integração de dispositivos

    Get PDF
    A smart home is able to acquire and apply knowledge about the environment and autonomously adapt to its inhabitants. These spaces contain a diversity of devices that need to interact and there are also many commercial protocols for automation. This heterogeneity hinders the interoperability between devices turning the application dependent on a single technology for an effective communication. In the same way, domotic systems have dynamic services and the mobility of new devices from time to time requires the ability to discovery when a new service have been added and, when necessary, establish a new communication related to this new context. Finally, automation systems also need to perceive the real world and interpret it. The signals received from sensors have no value unless they are interpreted against the context of the residence. Ontologies can help to solve these three problems formally representing the domain. It enables a common understanding of information through a semantic model and enables the execution of explicit assumptions to the context of residence. Thus, this dissertation proposes integration ontology for a smart house that represents the environment, devices, people and software agents creating the relationships and reasoning about rules for interaction. The consistency of the ontology was assessed in relation to its competence and a prototype was created to validate the practical application of the model.Uma residência inteligente é capaz de adquirir e aplicar conhecimentos sobre um ambiente e, de forma autônoma, adaptar-se aos seus habitantes. Estes espaços contêm uma diversidade de dispositivos que precisam interagir, porém, também existem no mercado diversos padrões para automação. Esta heterogeneidade dificulta a interoperabilidade entre dispositivos tornando a aplicação dependente de um único fornecedor para que a comunicação seja efetiva. Da mesma forma, sistemas domóticos possuem serviços dinâmicos e a adição ou mobilidade de novos dispositivos ao longo do tempo requer não somente que aplicações possam comunicar-se, mas também identificar que novos serviços foram adicionados e, quando necessário, estabelecer uma comunicação pertinente ao novo contexto. Finalmente, sistemas de automação também precisam de alguma forma perceber o mundo real e interpretá-lo. Os sinais recebidos por sensores não possuem qualquer valor se não forem interpretados em relação ao contexto da residência. Ontologias podem auxiliar a resolver estes três problemas representando formalmente o domínio. Ela permite uma compreensão comum das informações através de um modelo semântico e possibilita a execução de suposições explícitas para o contexto da residência. Assim, esta dissertação propõe uma ontologia para integração em uma residência inteligente que representa o ambiente, seus dispositivos, indivíduos e os agentes de software permitindo que sejam criadas as relações para a interação. A consistência da ontologia foi avaliada em relação às questões de competência e um protótipo foi criado para validar a aplicação prática do modelo

    Concevoir des applications internet des objets sémantiques

    Get PDF
    According to Cisco's predictions, there will be more than 50 billions of devices connected to the Internet by 2020.The devices and produced data are mainly exploited to build domain-specific Internet of Things (IoT) applications. From a data-centric perspective, these applications are not interoperable with each other.To assist users or even machines in building promising inter-domain IoT applications, main challenges are to exploit, reuse, interpret and combine sensor data.To overcome interoperability issues, we designed the Machine-to-Machine Measurement (M3) framework consisting in:(1) generating templates to easily build Semantic Web of Things applications, (2) semantically annotating IoT data to infer high-level knowledge by reusing as much as possible the domain knowledge expertise, and (3) a semantic-based security application to assist users in designing secure IoT applications.Regarding the reasoning part, stemming from the 'Linked Open Data', we propose an innovative idea called the 'Linked Open Rules' to easily share and reuse rules to infer high-level abstractions from sensor data.The M3 framework has been suggested to standardizations and working groups such as ETSI M2M, oneM2M, W3C SSN ontology and W3C Web of Things. Proof-of-concepts of the flexible M3 framework have been developed on the cloud (http://www.sensormeasurement.appspot.com/) and embedded on Android-based constrained devices.Selon les prévisions de Cisco , il y aura plus de 50 milliards d'appareils connectés à Internet d'ici 2020. Les appareils et les données produites sont principalement exploitées pour construire des applications « Internet des Objets (IdO) ». D'un point de vue des données, ces applications ne sont pas interopérables les unes avec les autres. Pour aider les utilisateurs ou même les machines à construire des applications 'Internet des Objets' inter-domaines innovantes, les principaux défis sont l'exploitation, la réutilisation, l'interprétation et la combinaison de ces données produites par les capteurs. Pour surmonter les problèmes d'interopérabilité, nous avons conçu le système Machine-to-Machine Measurement (M3) consistant à: (1) enrichir les données de capteurs avec les technologies du web sémantique pour décrire explicitement leur sens selon le contexte, (2) interpréter les données des capteurs pour en déduire des connaissances supplémentaires en réutilisant autant que possible la connaissance du domaine définie par des experts, et (3) une base de connaissances de sécurité pour assurer la sécurité dès la conception lors de la construction des applications IdO. Concernant la partie raisonnement, inspiré par le « Web de données », nous proposons une idée novatrice appelée le « Web des règles » afin de partager et réutiliser facilement les règles pour interpréter et raisonner sur les données de capteurs. Le système M3 a été suggéré à des normalisations et groupes de travail tels que l'ETSI M2M, oneM2M, W3C SSN et W3C Web of Things. Une preuve de concept de M3 a été implémentée et est disponible sur le web (http://www.sensormeasurement.appspot.com/) mais aussi embarqu
    corecore