85 research outputs found

    Development of a Hepatitis C Virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

    Get PDF
    Philosophiae Doctor - PhDTo ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and (ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. DESHCV is a text mining system implemented using named concept recognition and cooccurrence based approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance. Additionally, users can retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis. HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles. Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma (HCC) related genes, comprehensive reviews on HCV biology and drug development, functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers, gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via “string searches”. The utility of HCVpro has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin. Furthermore, eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their diagnostic potential. The data archived in HCVpro can be utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists.South Afric

    Development of a hepatitis C virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

    Get PDF
    Philosophiae Doctor - PhDTo ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and(ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/.DESHCV is a text mining system implemented using named concept recognition and cooccurrence based approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance.Additionally, users can retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis.HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles. Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma(HCC) related genes, comprehensive reviews on HCV biology and drug development,functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers,gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via “string searches”. The utility of HCVpro has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin. Furthermore,eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their diagnostic potential. The data archived in HCVpro can be utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor Protégé. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    Framework for collaborative knowledge management in organizations

    Get PDF
    Nowadays organizations have been pushed to speed up the rate of industrial transformation to high value products and services. The capability to agilely respond to new market demands became a strategic pillar for innovation, and knowledge management could support organizations to achieve that goal. However, current knowledge management approaches tend to be over complex or too academic, with interfaces difficult to manage, even more if cooperative handling is required. Nevertheless, in an ideal framework, both tacit and explicit knowledge management should be addressed to achieve knowledge handling with precise and semantically meaningful definitions. Moreover, with the increase of Internet usage, the amount of available information explodes. It leads to the observed progress in the creation of mechanisms to retrieve useful knowledge from the huge existent amount of information sources. However, a same knowledge representation of a thing could mean differently to different people and applications. Contributing towards this direction, this thesis proposes a framework capable of gathering the knowledge held by domain experts and domain sources through a knowledge management system and transform it into explicit ontologies. This enables to build tools with advanced reasoning capacities with the aim to support enterprises decision-making processes. The author also intends to address the problem of knowledge transference within an among organizations. This will be done through a module (part of the proposed framework) for domain’s lexicon establishment which purpose is to represent and unify the understanding of the domain’s used semantic

    Generation and Applications of Knowledge Graphs in Systems and Networks Biology

    Get PDF
    The acceleration in the generation of data in the biomedical domain has necessitated the use of computational approaches to assist in its interpretation. However, these approaches rely on the availability of high quality, structured, formalized biomedical knowledge. This thesis has the two goals to improve methods for curation and semantic data integration to generate high granularity biological knowledge graphs and to develop novel methods for using prior biological knowledge to propose new biological hypotheses. The first two publications describe an ecosystem for handling biological knowledge graphs encoded in the Biological Expression Language throughout the stages of curation, visualization, and analysis. Further, the second two publications describe the reproducible acquisition and integration of high-granularity knowledge with low contextual specificity from structured biological data sources on a massive scale and support the semi-automated curation of new content at high speed and precision. After building the ecosystem and acquiring content, the last three publications in this thesis demonstrate three different applications of biological knowledge graphs in modeling and simulation. The first demonstrates the use of agent-based modeling for simulation of neurodegenerative disease biomarker trajectories using biological knowledge graphs as priors. The second applies network representation learning to prioritize nodes in biological knowledge graphs based on corresponding experimental measurements to identify novel targets. Finally, the third uses biological knowledge graphs and develops algorithmics to deconvolute the mechanism of action of drugs, that could also serve to identify drug repositioning candidates. Ultimately, the this thesis lays the groundwork for production-level applications of drug repositioning algorithms and other knowledge-driven approaches to analyzing biomedical experiments

    Object-oriented data mining

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Synchronization Inspired Data Mining

    Get PDF
    Advances of modern technologies produce huge amounts of data in various fields, increasing the need for efficient and effective data mining tools to uncover the information contained implicitly in the data. This thesis mainly aims to propose innovative and solid algorithms for data mining from a novel perspective: synchronization. Synchronization is a prevalent phenomenon in nature that a group of events spontaneously come into co-occurrence with a common rhythm through mutual interactions. The mechanism of synchronization allows controlling of complex processes by simple operations based on interactions between objects. The first main part of this thesis focuses on developing the innovative algorithms for data mining. Inspired by the concept of synchronization, this thesis presents Sync (Clustering by Synchronization), a novel approach to clustering. In combination with the Minimum Description Length principle (MDL), it allows discovering the intrinsic clusters without any data distribution assumptions and parameters setting. In addition, relying on the dierent dynamic behaviors of objects during the process towards synchronization,the algorithm SOD (Synchronization-based Outlier Detection) is further proposed. The outlier objects can be naturally flagged by the denition of Local Synchronization Factor (LSF). To cure the curse of dimensionality in clustering,a subspace clustering algorithm ORSC is introduced which automatically detects clusters in subspaces of the original feature space. This approach proposes a weighted local interaction model to ensure all objects in a common cluster, which accommodate in arbitrarily oriented subspace, naturally move together. In order to reveal the underlying patterns in graphs, a graph partitioning approach RSGC (Robust Synchronization-based Graph Clustering) is presented. The key philosophy of RSGC is to consider graph clustering as a dynamic process towards synchronization. Inherited from the powerful concept of synchronization, RSGC shows several desirable properties that don't exist in other competitive methods. For all presented algorithms, their efficiency and eectiveness are thoroughly analyzed. The benets over traditional approaches are further demonstrated by evaluating them on synthetic as well as real-world data sets. Not only the theory research on novel data mining algorithms, the second main part of the thesis focuses on brain network analysis based on Diusion Tensor Images (DTI). A new framework for automated white matter tracts clustering is rst proposed to identify the meaningful ber bundles in the Human Brain by combining ideas from time series mining with density-based clustering. Subsequently, the enhancement and variation of this approach is discussed allowing for a more robust, efficient, or eective way to find hierarchies of ber bundles. Based on the structural connectivity network, an automated prediction framework is proposed to analyze and understand the abnormal patterns in patients of Alzheimer's Disease

    Algorithms to Explore the Structure and Evolution of Biological Networks

    Get PDF
    High-throughput experimental protocols have revealed thousands of relationships amongst genes and proteins under various conditions. These putative associations are being aggressively mined to decipher the structural and functional architecture of the cell. One useful tool for exploring this data has been computational network analysis. In this thesis, we propose a collection of novel algorithms to explore the structure and evolution of large, noisy, and sparsely annotated biological networks. We first introduce two information-theoretic algorithms to extract interesting patterns and modules embedded in large graphs. The first, graph summarization, uses the minimum description length principle to find compressible parts of the graph. The second, VI-Cut, uses the variation of information to non-parametrically find groups of topologically cohesive and similarly annotated nodes in the network. We show that both algorithms find structure in biological data that is consistent with known biological processes, protein complexes, genetic diseases, and operational taxonomic units. We also propose several algorithms to systematically generate an ensemble of near-optimal network clusterings and show how these multiple views can be used together to identify clustering dynamics that any single solution approach would miss. To facilitate the study of ancient networks, we introduce a framework called ``network archaeology'') for reconstructing the node-by-node and edge-by-edge arrival history of a network. Starting with a present-day network, we apply a probabilistic growth model backwards in time to find high-likelihood previous states of the graph. This allows us to explore how interactions and modules may have evolved over time. In experiments with real-world social and biological networks, we find that our algorithms can recover significant features of ancestral networks that have long since disappeared. Our work is motivated by the need to understand large and complex biological systems that are being revealed to us by imperfect data. As data continues to pour in, we believe that computational network analysis will continue to be an essential tool towards this end

    Ontology-based similarity measures and their application in bioinformatics

    Get PDF
    Genome-wide sequencing projects of many different organisms produce large numbers of sequences that are functionally characterized using experimental and bioinformatics methods. Following the development of the first bio-ontologies, knowledge of the functions of genes and proteins is increasingly made available in a standardized format. This allows for devising approaches that directly exploit functional information using semantic and functional similarity measures. This thesis addresses different aspects of the development and application of such similarity measures. First, we analyze semantic and functional similarity measures and apply them for investigating the functional space in different taxa. Second, a new software program and a new database are described, which overcome limitations of existing tools and simplify the utilization of similarity measures for different applications. Third, we delineate two applications of our functional similarity measures. We utilize them for analyzing domain and protein interaction datasets and derive thresholds for grouping predicted domain interactions into low- and high-confidence subsets. We also present the new MedSim method for prioritization of candidate disease genes, which is based on the observation that genes and proteins contributing to similar diseases are functionally related. We demonstrate that the MedSim method performs at least as well as more complex state-of-the-art methods and significantly outperforms current methods that also utilize functional annotation.Die Sequenzierung der kompletten Genome vieler verschiedener Organismen liefert eine große Anzahl an Sequenzen, die mit Hilfe experimenteller und bioinformatischer Methoden funktionell charakterisiert werden. Nach der Entwicklung der ersten Bio-Ontologien wird das Wissen über die Funktionen von Genen und Proteinen zunehmend in einem standardisierten Format zur Verfügung gestellt. Dadurch wird die Entwicklung von Verfahren ermöglicht, die funktionelle Informationen direkt mit Hilfe semantischer und funktioneller Ähnlichkeit verwenden. Diese Doktorarbeit befasst sich mit verschiedenen Aspekten der Entwicklung und Anwendung solcher Ähnlichkeitsmaße. Zuerst analysieren wir semantische und funktionelle Ähnlichkeitsmaße und verwenden sie für eine Analyse des funktionellen Raumes verschiedener Organismengruppen. Danach beschreiben wir eine neue Software und eine neue Datenbank, die Limitationen existierender Programme überwinden und den Einsatz von Ähnlichkeitsmaßen in verschiedenen Anwendungen vereinfachen. Drittens schildern wir zwei Anwendungen unserer funktionellen Ähnlichkeitsmaße. Wir verwenden sie zur Analyse von Domän- und Proteininteraktionsdatensätzen und leiten Grenzwerte ab, um die Domäninteraktionen in Teilmengen mit niedriger und hoher Konfidenz einzuteilen. Außerdem präsentieren wir die MedSim-Methode zur Priorisierung von potentiellen Krankheitsgenen. Sie beruht auf der Beobachtung, dass Gene und Proteine, die zu ähnlichen Krankheiten beitragen, funktionell verwandt sind. Wir zeigen, dass die MedSim-Methode mindestens so gut funktioniert wie komplexere moderne Methoden und die Leistung anderer aktueller Methoden signifikant übertrifft, die auch funktionelle Annotationen verwenden

    New Approaches for Data-mining and Classification of Mental Disorder in Brain Imaging Data

    Get PDF
    Brain imaging data are incredibly complex and new information is being learned as approaches to mine these data are developed. In addition to studying the healthy brain, new approaches for using this information to provide information about complex mental illness such as schizophrenia are needed. Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are two well-known neuroimaging approaches that provide complementary information, both of which provide a huge amount of data that are not easily modelled. Currently, diagnosis of mental disorders is based on a patients self-reported experiences and observed behavior over the longitudinal course of the illness. There is great interest in identifying biologically based marker of illness, rather than relying on symptoms, which are a very indirect manifestation of the illness. The hope is that biological markers will lead to earlier diagnosis and improved treatment as well as reduced costs. Understanding mental disorders is a challenging task due to the complexity of brain structure and function, overlapping features between disorders, small numbers of data sets for training, heterogeneity within disorders, and a very large amount of high dimensional data. This doctoral work proposes machine learning and data mining based algorithms to detect abnormal functional network connectivity patterns of patients with schizophrenia and distinguish them from healthy controls using 1) independent components obtained from task related fMRI data, 2) functional network correlations based on resting-state and a hierarchy of tasks, and 3) functional network correlations in both fMRI and MEG data. The abnormal activation patterns of the functional network correlation of patients are characterized by using a statistical analysis and then used as an input to classification algorithms. The framework presented in this doctoral study is able to achieve good characterization of schizophrenia and provides an initial step towards designing an objective biological marker-based diagnostic test for schizophrenia. The methods we develop can also help us to more fully leverage available imaging technology in order to better understand the mystery of the human brain, the most complex organ in the human body
    corecore