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High-throughput experimental protocols have revealed thousands of relationships

amongst genes and proteins under various conditions. These putative associations

are being aggressively mined to decipher the structural and functional architecture

of the cell. One useful tool for exploring this data has been computational network

analysis. In this thesis, we propose a collection of novel algorithms to explore the

structure and evolution of large, noisy, and sparsely annotated biological networks.

We first introduce two information-theoretic algorithms to extract interesting pat-

terns and modules embedded in large graphs. The first, graph summarization, uses

the minimum description length principle to find compressible parts of the graph. The

second, VI-Cut, uses the variation of information to non-parametrically find groups

of topologically cohesive and similarly annotated nodes in the network. We show

that both algorithms find structure in biological data that is consistent with known

biological processes, protein complexes, genetic diseases, and operational taxonomic

units. We also propose several algorithms to systematically generate an ensemble



of near-optimal network clusterings and show how these multiple views can be used

together to identify clustering dynamics that any single solution approach would miss.

To facilitate the study of ancient networks, we introduce a framework (called

“network archaeology”) for reconstructing the node-by-node and edge-by-edge arrival

history of a network. Starting with a present-day network, we apply a probabilistic

growth model backwards in time to find high-likelihood previous states of the graph.

This allows us to explore how interactions and modules may have evolved over time.

In experiments with real-world social and biological networks, we find that our al-

gorithms can recover significant features of ancestral networks that have long since

disappeared.

Our work is motivated by the need to understand large and complex biological

systems that are being revealed to us by imperfect data. As data continues to pour

in, we believe that computational network analysis will continue to be an essential

tool towards this end.
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Preface

This thesis is organized into three parts. In Part I, we present algorithms to extract

meaningful patterns and clusters from networks and hierarchical tree decompositions.

In Part II, we explore the clustering dynamics of networks using ensembles of near-

optimal solutions. In Part III, we present a framework to reconstruct the growth

history of a present-day network. Each part begins with an introduction to the

problems and solutions discussed in the subsequent chapters. The thesis concludes

with thoughts about the future of biological network analysis.

Listed below are some Thesis Stats that document my time as a graduate student.

Average # of hours spent:

Day Working Sleeping Socially Alone

Mon. 8.0 7.9 4.4 3.7
Tue. 7.5 8.1 4.9 3.5
Wed. 7.9 8.3 4.4 3.4
Thu. 7.7 8.0 4.9 3.4
Fri. 6.0 8.0 6.7 3.3
Sat. 3.1 8.7 8.3 3.9
Sun. 4.3 8.5 6.6 4.6

Inspired by my friend Rohan Murty, every night before sleeping I recorded a 4-tuple
describing the dynamics of the day. Here, work actually means “work” — not “surfing
the web” or “chatting in the lab”. I logged daily counts until February 28th 2010.

# of talks attended > 235. I started to document after my first year and I did
not count talks attended for which an email was not sent (e.g. some group meetings).

# of SVN commits: 1,505. This includes all revisions made by directory owners
and covers 18 projects.

# of emails sent: 11,614. This includes 664 email threads with my advisor (count-
ing only those in which I sent at least one message).

# of runs to the border: 157 ($771.91). Taco Bell.

# of trips/vacations: 40. This includes 11 flights home to Miami and 6 out-
of-region conferences.
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Part I:

The Modular Structure of Biological Networks

Graphs are a fundamental abstraction that have been employed for centuries to model

real-world systems and phenomena. Today, relational data from many scientific dis-

ciplines is growing in size and availability. From web networks to social networks

to protein interaction networks, there is a pressing need to efficiently mine massive

amounts of data that involves interactions between entities.

Many complex networks are rich with interesting patterns and structural features

that can help reveal how the network operates. One organizational principle common

to many networks is modularity. The precise definition of a network module can

vary from application to application; however, modules are typically thought of as

sets of tightly linked or topologically equivalent nodes. These sets of nodes serve as

the structural organs of the network, which lay the foundation for many processes

occurring over (or depicted by) these networks.

In general, pattern mining and clustering (also known as “community detection”;

for reviews, see Schaeffer [264], Porter et al. [242], and Fortunato [81]) have important

applications in a variety of contexts:

Web graphs. The World Wide Web (WWW) has a natural graph structure with

a node for each web page and a directed edge representing each hyperlink. The link

structure of the WWW has been used to rank and order web pages [33], to identify

web communities [66, 170] and potential link spam [100], and to help automatically

build web directories [246].

Social networks. Social networking websites maintain information about each user

(nodes) and their friends (edges). Mining these networks can be used to reveal so-

cial relationships and groups [105, 321], to understand how knowledge propagates
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through the network [181, 288], and to disclose private user information [324]. Mobile

phone networks can also be probed to uncover intrinsic laws governing human motion,

including group formation and dissipation [107, 228].

Image segmentation. Identifying objects in images is a fundamental problem in

computer vision with many applications, such as face recognition [323], traffic mon-

itoring [164, 269], and brain network reconstruction [188, 301]. Often, an image is

represented by a graph, where nodes are pixels and edges connect adjacent pixels.

Pixels or regions are also annotated with several features, such as intensity value,

texture, and shape. The goal of segmentation algorithms is to output a partitioning

of the pixels into feature-coherent groups that represent meaningful objects. Classi-

cally, this has been done via k-means, normalized cuts [274], or general agglomerative

merging techniques [22, 41, 77, 121, 223], though many more sophisticated approaches

exist. The large size of the images (e.g. 4k × 4k = 16 million pixels for a typical elec-

tron microscope image) and the various levels of natural and unnatural noise present

several algorithmic challenges.

Market basket data. Market basket data can be modeled as a bipartite graph with

edges indicating that a product was purchased by a customer. Mining this graph

to find groups of customers with similar buying patterns can help with customer

segmentation, targeted advertising [305], and recommendations [265].

Traffic monitoring. Internet protocol (IP) routers export records containing infor-

mation (e.g. source and destination IP addresses, number of bytes transmitted, and

duration) for each communication packet sent across its gateway. A graph can be

extracted from these network traces, where each node corresponds to an IP address

and edges imply that two IP addresses have sent traffic to each other [132]. Such

graphs can be used to visualize and detect principal communication patterns that
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might help assess bottlenecks and optimize network usage. They can also be used to

detect anomalous communication patterns [43], which might correspond to security

vulnerabilities or malicious attacks against machines.

Network visualization. Network analysis by visual exploration is increasingly be-

coming a popular technique to understand large and complex networks. For smaller

networks, several sophisticated and feature-rich applications have been developed [237,

270]. However, as network sizes approach the number of available screen pixels, new

methods will be needed to efficiently summarize graph complexity [275].

In Part I of this thesis, we describe novel algorithms to understand the structure

and function of biological networks. High-throughput experimental protocols have

revealed thousands of relationships amongst genes and proteins under various condi-

tions. Due to its inherently relational nature, computational network analysis, and

in particular network clustering, has emerged as a crucial tool for exploring how this

data encodes for biological function (for reviews, see Aittokallio and Schwikowski

[7], Sharan et al. [273], Zhu et al. [325]). In transcription factor networks, for exam-

ple, where nodes are genes and edges imply regulation (activation or suppression) of

expression, clustering has been used to identify functionally enriched classes of genes

that respond in coordinated ways to various stimuli [9, 88, 90, 131]. In metabolic net-

works, where nodes are chemical substrates and edges correspond to an enzyme that

catalyzes the corresponding reaction, module detection has been used to ascertain

the role of metabolites and to understand their evolutionary relationship in differ-

ent organisms [112, 317]. In genetic or synthetic-lethal networks, nodes correspond

to genes and edges exist between genes if knocking out both genes significantly de-

creases the mutant’s fitness, but knocking out one or the other produces little effect.

Modules in such networks has led to hypotheses about the existence of redundant
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cellular pathways [30, 153, 154, 295].

Protein-protein interaction (PPI) networks are composed proteins (nodes) con-

nected to other proteins that they physically bind to (edges). High-throughput ex-

perimental protocols, such as yeast two-hybrid [78] and TAP-MS [97, 165], have pro-

vided a basis for exploring these physical interactions at a proteome-wide scale. One

central computational problem is to derive from these networks the principles that

control how proteins form functional units in the cell. Typically, proteins in the cell

do not function in isolation, but rather congregate into groups to collectively exe-

cute tasks. Thus, a common approach to this task is to partition the interaction

graph into modules — subsets of proteins — based on the connectivity pattern of the

nodes [14, 35, 161, 186, 215, 233]. These modules can then be mined to uncover the

physical, logical, and evolutionary organization of the cell.

A central obstacle to mining biological networks is noise. Although high-throughput

protocols are generating data quickly, the networks they produce are largely imper-

fect and incomplete: at least 30–40% of the edges are false positives, and an equal

or more number of edges are missing (false negatives) [128, 283]. Extracting inter-

esting patterns and modules from such unpolished networks can be a daunting task.

One technique to help overcome noise is to leverage known properties of the network

nodes. For example, it is well known that proteins with similar cellular roles tend

to lie closer to each other in the network than otherwise [38, 112, 119, 123, 258].

Leveraging these protein annotations can therefore aid the module-finding process.

However, the known annotations themselves are sparse; even in the widely studied

yeast interactome, 70–80% of proteins belong to no known complex [113]. Further, it

is not immediately obvious how to integrate these two criteria into a single framework.

Network size is another challenge to mining biological networks. Even moderately

sized biological networks today can contain tens of thousands of edges. The human

PPI network, for example, contains 13,488 proteins and 111,229 interactions [36].
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These networks are not nearly complete and many more networks for other species

will soon follow. Thus, scalability and efficiency are crucial requirements.

In Part I of this thesis, we describe two general, information-theoretic algorithms

to unveil structural patterns and modules embedded in large, noisy graphs. In chap-

ter 1 [214], we introduce graph summarization (GS), a novel framework for comput-

ing compressed graph representations using a two-part minimum description length

(MDL [257]) code. The first part is an aggregate summary graph, which captures

the high-level structure of the input graph by collapsing nodes with similar edge-

connectivity patterns into supernodes connected by superedges. This definition gen-

eralizes many common graph motifs, such as cliques and bicliques. The second part is

a corrections list of edges that must be added to or subtracted from the summary to

reconstruct the original graph. We propose lossless and lossy compression algorithms

with theoretical bounds on the error introduced. When tested on large social, web,

and information networks, we find that the compressed representations produced by

GS are much more compact than those produced by competing algorithms. We also

demonstrate the visual appeal of the reduced summary graph when compared to the

larger and much hairier uncompressed network. In chapter 2 [215], we apply GS to

both noisy and high-confidence PPI networks for the yeast S. cerevisiae and in both

cases find modules that are significantly more functionally enriched than modules

returned by other popular graph clustering algorithms. We also find that the correc-

tions list produced by GS can be used to repair the network by predicting missing

and false interactions.

Graph summarization is an unsupervised approach that merges clusters in each

step to produce a hierarchical tree decomposition. Most hierarchical clustering algo-

rithms, including graph summarization, ignore any known annotations on the nodes

and instead return a clustering (or node-cut) from the tree based on a threshold or

topological optimization function. The annotations, however, provide a secondary
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criteria (in addition to the tree itself) for choosing a good clustering that can help

alleviate the effect of noise. In chapter 3 [216, 311], we introduce a semi-supervised

framework called VI-Cut that allows any hierarchical clustering algorithm to seam-

lessly integrate known annotations into the cluster-finding process. By superimposing

known annotations onto the leaves of the tree, VI-Cut finds the tree-induced cluster-

ing that optimally “matches” the set of known annotations. We show that VI-Cut

better extracts protein complexes from PPI networks compared to existing unsuper-

vised and semi-supervised approaches. To show its generality, we also apply it to a

very different problem — estimating the composition and diversity of bacterial species

in metagenomic samples, which is based on hierarchically clustering DNA sequences

— and find that the VI-Cut clusters more closely resemble the known truth than the

clusters of other heuristic approaches.

In chapter 4 [213], we consider a biomedical application of biological module-

finding: predicting gene-disease associations. Often, mutations in gene-coding se-

quences result in increased susceptibility to certain diseases. Mining the relationship

between genetic diseases and their causal genes is thus an incredibly important prob-

lem concerning human health. Genes related to a disease are also known to have

protein products that physically interact. PPI networks have therefore provided sci-

entists with a new avenue through which these associations can be inferred. We assess

the utility of physical interactions for determining disease-gene associations by study-

ing the benefits and drawbacks of seven computational network-mining algorithms

(plus several of their variants). Much like finding functional modules, here we seek

to find “disease modules” corresponding to genes whose mutation leads to similar

diseases. Although random-walk approaches individually outperform clustering ap-

proaches, most methods make correct predictions not made by any other method. We

show how combining these methods into a consensus method yields Pareto optimal

performance. We also quantify how a diffuse topological distribution of proteins nega-
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tively affects the quality of predictions and are thus able to identify diseases especially

amenable to network-based predictions and others for which additional information

sources are absolutely required.

As biological datasets grow in size and availability, the demand for robust and ef-

ficient algorithms will continue to grow. In the next several chapters, we will demon-

strate how our algorithms meet this demand by mining data from several domains

with several types of annotations. In all cases and under various validation metrics, we

find that our algorithms outperform or remain competitive with exsting approaches.
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1. Graph Summarization with Bounded Error

S. Navlakha, R. Rastogi, and N. Shrivastava. In Proc. 33rd ACM Intl.

Conf. on Management of Data (SIGMOD). 419–432, 2008.

In this chapter, we introduce graph summarization, a MDL-based graph compression

framework that extracts principle patterns and clusters present in large graphs by

searching for highly compressible regions. Our compressed representation has two

parts: a composite summary graph, in which each supernode corresponds to a set

of original nodes, and each superedge represents edges between all pairs of nodes in

the two supernodes; and a list of corrections that can be applied to the summary

to recreate the original graph. Our representation allows for both lossless and lossy

compression with bounds on the introduced error. We develop a collection of algo-

rithms to compress graphs and validate our approach through an extensive set of

experiments on multiple large social, web, and information networks. In all cases, we

find that our representations result in better compression than existing methods.

1.1 Introduction

Data mining is often thought of as a problem in data compression [73]. Highly regular

data points are viewed as driving signal and non-redundant points are deemed outliers

or noise. In large complex networks, topological redundancy is often indicative of some

underlying importance. For instance, it is well known that link copying in web graphs

produces clusters of topically similar pages with similar adjacency lists [251, 254].

Likewise, people in a social network group likely have mutual friends, and proteins

in a protein-protein interaction network likely share interaction partners if they are

involved in a similar biological process [215]. By grouping together nodes with similar

neighbors and collapsing their common edges into single edges, we can not only reduce
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the number of edges needed to represent the graph, but we also naturally uncover the

dominant structural patterns in the graph.

Rissanen’s Minimum Description Length (MDL) principle [257] is an information-

theoretic criterion widely used for data compression problems. Its two-part formu-

lation roughly states that the best model to infer from a dataset is the one which

minimizes the sum of (a) the size of the model, plus (b) the size of the data when

encoded with the help of the model [257]. The goal of graph summarization (GS) is

to provide a principled MDL-based framework to compress graphs. Given an input

graph G = (VG, EG), our representation consists of a graph summary S = (VS, ES), a

list of edge corrections C, and an onto mappingM from VG to VS. The graph summary

S is an aggregated graph; each node u ∈ VS is called a supernode and corresponds to

a set Au of one or more original nodes from VG collapsed into a single node. Edges

between supernodes u and v in ES are called superedges and imply an edge between

all pairs of nodes in Au and Av in G. In other words, superedge (u, v) implies all

edges M−1(u)×M−1(v) exist in the original graph. The corrections consist of a set

of edges from the original graph G that need to be added to (‘+’) or subtracted from

(‘–’) the summary to exactly recreate G.

To understand how these two structures work together, consider the process of

reconstructing the original graph given a compressed representation. The first step is

to expand the summary S: for each supernode v ∈ VS, create the nodes in the set Av

(usingM), and for each superedge (u, v) ∈ ES, add edges between all node pairs (x, y)

s.t. x ∈ Au and y ∈ Av. The requirement for complete cliques or bicliques, however,

is often too stringent to be useful in practice. For example, in social networks, while

two friends often have mutual friends, they also likely have distinct friends in different

geographical locations. Hence, it is possible that only a subset of the expanded edges

were actually present in G or that some edges in G were left uncovered in S. To

account for errors that would be introduced by this superedge expansion rule, our
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Figure 1.1: A generic two-part MDL graph representation. (A) The original graph. (B)
The graph summary (S), corrections (C), and the supernode mapping (M). The original
cost is 11 (number of original edges); the summarized cost is 6 (4 superedges + 2 edge
corrections).

representation includes a list C of edge corrections. Edges that are implied by a

superedge but that are missing from G are recorded as edges to subtract (negative

corrections). For such edges, C contains entries of the form ‘−(x, y)’. Atypical edges

that do exist in G but that are not covered by any superedge are recorded as edges

that must be added (positive corrections). For such edges, C will contain entries of

the form ‘+(x, y)’.

Formally, we define the function f(R) that maps a representationR(G) = (S, C,M)

to an expanded and corrected graph such that an edge (x, y) is present in G iff either

C contains an entry ‘+(x, y)’, or S contains a superedge (u, v) s.t. x ∈ Au and y ∈ Av

and C does not have an entry ‘−(x, y)’. Together the supernodes and superedges

reveal the major topological structure of the original network, while the corrections

list reveals the noise or exceptions to that overall structure.

As per the MDL principle, the goal is to minimize the cost of representing the

graph. In our setting, the data is the input graph G, the model is the summary S,

and the corrections C represent the encoding of the data in terms of the model. We

define the cost of a representation R(G) = (S, C,M) to be the sum of the number of
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superedges plus the number of corrections, i.e. cost(R) = |ES| + |C|, corresponding

to (a) and (b), respectively, in the MDL definition. For example, if G is composed of

two nearly complete cliques of size m and n, each missing one edge, and connected

by a single edge, then G can be compressed into two supernodes with self-edges,

and a corrections list containing the two missing edges from the cliques (negative

corrections) and the individual edge between the cliques (positive correction). The

cost of the representation is the number of superedges (2) plus the number of edges in

the corrections list (3) giving a dramatic saving over the original cost of
(
m
2

)
+
(
n
2

)
−1.

In practice, we also store the node-to-supernode mapping function M as a hash-table

so that the original graph can be reconstructed. Here, we will ignore the cost of

storing M because it has a constant cost of exactly 1 per node and will generally be

much smaller compared to the storage costs of the edge sets ES and C.

If R∗(G) = (S∗, C∗,M∗) denotes a true minimum cost representation, then the

MDL principle says that R∗ is the most compressed representation of G, and S∗

is the “best possible” summary of the graph. Our MDL approach is unique among

graph compression schemes (see §1.2) because our compressed structure includes a

summary graph, which offers a conceptually cleaner visualization of the data and

provides insight into the main groupings and the important relationships between the

groups. Of course, the “best graph summary” is a subjective notion based on the task

at hand; however, in the language of information theory, it is the summary which

allows for the greatest compression of the data.

Problem 1.1: Given a graph G, compute its MDL representation, R∗(G).

Example 1.1. Figure 1.1 shows a sample input graph (A) and its compressed rep-

resentation (B). The graph is compressed from size 11 (number of original edges)

to 6 (4 edges in the summary + 2 edge corrections). To reconstruct the neighbor-

hood of node g, first, we find the supernode (y) that contains g; then we add edges

from g to all the nodes in a supernode that is a neighbor of y. This gives the edges
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{(g, a), (g, d), (g, e), (g, f)}. Next, we apply the corrections: we delete all edges with

a ‘−’ entry (edge (g, d)), and add edges with a ‘+’ entry (none in this example).

The final neighborhood of g is thus {(g, a), (g, e), (g, f)}, which is the same as in the

original graph. By repeating this process for all supernodes in S we can recover the

entire original graph.

For many of the applications described earlier, recreating the exact graph may not be

necessary. Consider the following simple but key graph operation: Given a node, find

its set of neighbors in G. In many cases, it can be acceptable to return an approximate

list of neighbors that is reasonably close to the exact list. For example, it is likely

still possible to discern protein complexes in biological networks, and to obtain an

approximate PageRank [33] of a web page knowing only an approximate set of each

node’s neighbors.

Motivated by this insight, we introduce ε-approximate MDL representations, de-

noted by Rε(G), that can recreate the original graph within a user-specified bounded

error ε, where 0 ≤ ε ≤ 1. The structure of Rε is identical to the exact representation

R discussed earlier; it too consists of a summary and corrections pair. But unlike R,

it provides the following weaker guarantee for the reconstructed graph Gε = f(Rε):

for every node v ∈ G, if Nv and N ′v denote the set of v’s neighbors in G and Gε,

respectively, then:

error(v) = |Nv 4N ′v| = |N ′v \ Nv|+ |Nv \ N ′v| ≤ ε|Nv|. (1.1)

The error term counts the number of neighbors that are in Nv or N ′v, but not in

both (symmetric difference). In other words, for each node in G, the ε-approximate

representation Rε retains at least (1− ε) fraction of the original neighbors correctly,

while erring in (adding or deleting) at most ε fraction of neighbors. Because Rε
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is permitted to contain some error, it will be more compact than the exact, lossless

representation, R. To get the best compression ratio, we want to find the approximate

representation R∗ε with the smallest cost.

Problem 1.2: Given a graph G and ε, where 0 ≤ ε ≤ 1, compute the

ε-approximate MDL representation of G, R∗ε .

Example 1.2. Consider the graph in Figure 1.1 and suppose ε = 1/3. From the

corrections C, if we remove the entry ‘+(a, e)’, then the approximate neighbor sets for

a and e would be N ′a = {b, c, g, h} and N ′e = {g, h}. Since the neighbor sets for a and

e in the original graph G are Na = {b, c, e, g, h} and Ne = {a, g, h}, the approximate

neighbor sets N ′a and N ′e satisfy Equation (1.1). So we can remove the entry ‘+(a, e)’

from C and thus reduce the cost without violating the error bounds.

1.1.1 Our contributions

We present a novel framework for compressing graphs based on the MDL principle.

Our representation includes a graph summary, which provides a high-level glimpse of

the structure of the network, and a set of corrections, which fixes inaccuracies in the

summary and are used to reconstruct the original graph. Our graph representations

are highly compact and allow for both lossless and lossy graph compression with

bounds on the introduced error.

We develop two parameter-less algorithms, Greedy and Randomized, to com-

pute exact MDL representations. Greedy is a hierarchical algorithm that iteratively

picks the globally best pair of nodes to merge until no further merge decreases the

representation cost. Randomized is a lightning-fast localized alternative that repeat-

edly performs the best merge on a randomly selected node, until no further merge

decreases the cost. Randomized produces slightly less compact representations than

those produced by Greedy, but is substantially faster in practice.
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We also propose two algorithms, ApxMDL and ApxGreedy, to compute ε-

approximate MDL representations. The first uses a graph matching technique to

remove the maximum number of correction edges from the exact MDL representation

while still satisfying each node’s neighborhood constraints. If further leeway remains

after processing the corrections, superedges from the summary are greedily removed

to further reduce the cost. The second technique incorporates ε into each step of

Greedy itself.

Through extensive experimental evaluation on real-world datasets, we show the

effectiveness of our algorithms in practice. On web and internet networks we produce

representations that are < 30% and 40% of the original size, respectively. We also find

that cost reduces almost linearly as we increase the value of ε (i.e. 10% cost reduction

when ε = 0.1) On all datasets, both of our algorithms produce more compact repre-

sentations than other competing graph compression algorithms, including reference

encoding [29], Graclus [62], AutoPart [43], and edge sampling. We also display the

appeal of the summary as a means for visual data mining.

To the best of our knowledge, this is the first work to compute graph summaries

using the MDL principle, and use the summaries (along with corrections) to compress

graphs with bounded error.

1.2 Related Work

The graph compression problem, in one form or another, has been studied in a num-

ber of diverse research areas.

Web graph compression. The most extensive literature exists in the field of web

graph compression, which aims to minimize the space required to store the link struc-

ture of the web. Much of the work has focused on lossless compression so that the

graph can be effectively stored and retrieved, and so measures such as PageRank [33]
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or authority vectors [162] can be computed quickly.

Several studies [2, 29, 49, 251, 254, 284] start with the observation that many links

on the Web are formed by copying links from an existing page. Web pages with similar

adjacency lists are encoded using a technique called reference encoding in which the

adjacency list of one page is represented in terms of the adjacency list of the other.

Adler and Mitzenmacher [2] capture the reference encoding costs between pages in an

affinity graph, in which nodes are web pages and the weight along each edge (i, j) is the

cost of compressing node i using j as a reference. A dummy root node is also connected

to each node u and weighted by the cost of representing u without a reference. A

minimal spanning tree on this graph corresponds to the optimal reference encoding of

the graph. Most studies, however, only focus on reducing the number of bits needed

to encode a link, and none explicitly compute graph summaries. Therefore, these

methods provide little insight into the structure of the graph.

An exception is the S-Node representation for web graphs introduced by Ragha-

van and Garcia-Molina [251] who compute graph summaries by grouping web pages

based on URL similarity and k-means clustering [138]. Our graph representations are

similar to theirs, however, there are some differences. First, we allow supernodes to

have self-edges, which as we saw above, can be very effective for coalescing cliques

into a single supernode. Raghavan and Garcia-Molina [251] compress edges within a

supernode using a very different reference encoding scheme. Second, Raghavan and

Garcia-Molina [251] add a superedge between supernodes u and v if there is even a

single edge between nodes in Au and Av in the graph. In contrast, we store a su-

peredge between supernodes u and v only if the nodes in Au are densely connected to

nodes in Av (see §1.3). Thus, our representations are less cluttered, smaller in size,

and more visually appealing. Finally, our representations allow for lossy compression

and are computed using the MDL principle, which has sound information-theoretic

underpinnings; Raghavan and Garcia-Molina [251] use URL-specific information to
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only losslessly compress web graphs, and thus is not as general as our approach.

Clustering. In the data mining community, graph clustering has been widely used

as a tool for summarization and trend analysis [81, 138, 242, 264]. Clustering aims

is to group similar nodes together, where the similarity of nodes can be defined us-

ing measures such as shortest-path profiles [258] or the Jaccard coefficient of neigh-

bor sets [138], amongst others [26]. Although graph partitioning algorithms may

provide insight into how nodes are grouped together, they typically do not employ

information-theoretic principles [14, 219, 241, 297], do not try to minimize the space

required to represent the graph, and do not reveal inter-cluster relationships [326]

(which our superedges provide). Another issue with many clustering algorithms,

such as METIS [149], Graclus [62], k-means, and others [10, 102, 138, 221, 259, 326],

is that they require the user to specify parameters, such as the number of parti-

tions beforehand, which is typically hard to estimate and not required in our set-

ting. Algorithms have been proposed to extract large dense subgraphs from web

graphs [100, 158, 169], as these typically correspond to online communities or link

spam, however, our graphs need not contain large, dense subgraphs. Other graph

clustering algorithms [14, 219, 297] have objective functions that are very different

from ours, and which are not suitable to compactly represent graphs.

In the biological networks community, power graphs [260] have been proposed

based on a similar edge reduction principle, though the hierarchical clustering scheme

they employ is a heuristic very different from ours and is not MDL-based. They also

do not consider lossy compression.

Like us, AutoPart [43] uses the MDL principle to compute a disjoint grouping of

nodes such that the number of bits required to encode the graph’s adjacency matrix

is minimized. However, the algorithm employs an expensive top-down scheme that

iteratively splits node groups starting with a single node group. Further, Autopart
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only compresses losslessly, so its performance relative to our algorithms degrades even

further when the compressed graph is permitted to have bounded error.

Finally, others have applied the MDL principle to summarize cells of interest in

OLAP data by computing a region covering [39, 173]. However, their methods exploit

the inherent data hierarchy and spatial properties of database tables, and thus cannot

be used to compress general graph structures.

Block modeling and structural equivalence. In the social networks literature,

block modeling has been used to identify clusters of nodes that are structurally equiv-

alent [308]. Typically, the problem is considered on the graph’s adjacency matrix,

where the goal is to reorder the rows and columns of the matrix such that there are

dense blocks of 1’s along the diagonal and 0’s everywhere else. Algorithms to find

blocks, however, are typically very restrictive; sets of nodes are only placed together

in a block if all the nodes share the exact same neighbors [308]. Other extensions

require the nodes to share at least α-percent of their neighbors, where α is an input

parameter provided by the user. None of these approaches view the problem in terms

of compression, as we do, and none use MDL to find blocks.

Approximate query processing. There is a vast body of work on maintaining

synopses like samples [125], histograms [133], and wavelets [44] to provide approxi-

mate answers to relational queries. However, these have limited applicability to our

graph scenario for several reasons. First, many of the approximation techniques, like

sampling, are more suitable for estimating aggregate quantities (e.g. counts or aver-

ages) as opposed to set-valued answers (e.g. a node’s neighbors). Second, many of

the real-world graphs are typically sparse, which complicates the task of synopses

construction. Third, histograms and wavelets do not produce high-level graph sum-

maries that can be visualized to find interesting patterns. Further, since graphs are
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traditionally represented as a two-column relation with one tuple per edge, relational

compression techniques like fascicles [137] will not work well.

1.3 Methods

In this section, we present several algorithms for finding MDL representations for in-

put graphs. The first two algorithms — Greedy and Randomized— produce exact

MDL representations. The second two algorithms — ApxMDL and ApxGreedy—

produce ε-approximate MDL representations. Our representations are equally appli-

cable to directed and undirected graphs. However, for simplicity of exposition, we

will only consider undirected graphs here.

1.3.1 The Greedy algorithm

There may be many pairs of nodes in a graph that can be merged to reduce the

description length (Example 1.1). Typically, any two nodes that share a common

neighbor can give a cost reduction, with more common neighbors usually implying a

higher reduction. Based on this observation, we define the cost reduction s(u, v) (see

below) for any given pair of nodes (u, v). In Greedy, we agglomeratively merge the

pair (u, v) in the graph with the maximum value of s(u, v) until only negative cost

reductions remain, at which point the algorithm terminates.

The superedges ES and corrections C (and hence, the cost of R), are determined

solely on the supernodes VS contained in the summary S. To understand how these

are computed for a fixed VS, consider any two supernodes u and v in VS. Let Πuv

be the set of all the pairs (a, b), such that a ∈ Au and b ∈ Av; this set represents all

possible edges of G that may be present between the nodes in the two supernodes.

Let Auv ⊆ Πuv be the set of edges actually present in the original graph G; i.e.

Auv = Πuv ∩EG. We have two ways of encoding the edges in Auv using the summary

and correction structures. The first way is to add the superedge (u, v) to S and the
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edges Πuv−Auv as negative corrections to C. The second is to add the edges in the set

Auv as positive corrections to C. The cost for these two alternatives is (1+|Πuv−Auv|)

and |Auv|, respectively. To encode the edges Auv, we choose the alternative with

the smaller cost; i.e. the cost of representing Auv between supernodes u and v is

cuv = min{|Πuv| − |Auv| + 1, |Auv|}. Further, the superedge (u, v) will be present in

the graph summary S if Auv > |Πuv |+1
2

; the positive and negative corrections are then

chosen accordingly. Given the set of supernodes VS, the cost of the representation

can be computed by considering every pair of supernodes and making a simple choice

as described above.

To actually find the set of supernodes VS for the MDL representation, the Greedy

algorithm uses an agglomerative clustering strategy. To start, each node in G is placed

in a supernode by itself. For any supernode v ∈ VS, we define the neighbor set Nv to

be the set of supernodes u ∈ VS, such that there exists an edge (a, b) in G for some

node a ∈ Av and b ∈ Au. Let the cost cv of supernode v to be the sum of the costs of

all its superedges: cv =
∑

x∈Nv
cvx. Given a pair of supernodes (u, v) in VS, the cost

reduction s(u, v) is defined as the ratio of the reduction in cost as a result of merging

u and v (into a new supernode w) to the combined cost of u and v before the merge:

s(u, v) = (cu + cv − cw)/(cu + cv). (1.2)

We normalize by the original cost instead of taking the absolute cost reduction because

the latter would in each step merge the node pair with the highest number of common

neighbors, even if the pair also has many uncommon neighbors, and even if there exists

two lower degree nodes with an identical set of neighbors. Such normalization does

not make the cost of any pair switch from positive to negative (or zero), or vice-versa.

The maximum value that s(u, v) can take is 0.5, which occurs when the neighbor sets

of two nodes are identical. Its minimum can be very large and negative.

The Greedy algorithm (Algorithm 1.1) can be subdivided into three phases —
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Initialization, Merging, and Output. In the Initialization phase, we find all pairs of

nodes in VS that are exactly 2 hops apart and compute their s(·, ·) value. We only

need to consider pairs that are exactly 2 hops apart through a common neighbor

because other pairs will not share a neighbor and therefore will not yield a positive

cost reduction. To efficiently find the node pair with the maximum s(·, ·) value in

each step, we use a standard max-heap structure H. In the initialization phase, all

node pairs with s(u, v) > 0 are found and inserted into H.

Algorithm 1.1 Greedy (G)
1: — INITIALIZATION PHASE —
2: VS = VG; H = ∅;
3: for all pairs (u, v) ∈ VS that are 2 hops apart do
4: if s(u, v) > 0 then insert (u, v, s(u, v)) into H; // Populate heap
5: end for
6:
7: — MERGING PHASE —
8: while H 6= ∅ do
9: Choose pair (u, v) ∈ H with the largest s(u, v) value;
10: w = u ∪ v; //Merge supernodes u and v into w
11: VS = VS \ {u, v} ∪ {w}; // Remove u and v from the graph
12: for all x ∈ VS that are within 2 hops of u or v do
13: Delete (u, x) and (v, x) from H;
14: if (s(w, x) > 0) then insert (w, x, s(w, x)) into H; // Update heap
15: end for
16: for all pairs (x, y), such that x or y is in Nw do
17: Delete (x, y) from H;
18: if (s(x, y) > 0) then insert (x, y, s(x, y)) into H; // Update heap
19: end for
20: end while
21:
22: — OUTPUT PHASE —
23: ES = C = ∅;
24: for all pairs of supernodes u, v ∈ VS do
25: if (|Auv| > (|Πuv|+ 1)/2) then
26: Add (u, v) to ES ;
27: Add −(a, b) to C for all (a, b) ∈ Πuv −Auv;
28: else
29: Add +(a, b) to C for all (a, b) ∈ Auv;
30: end if
31: end for
32: return R = (S = (VS , ES), C);
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In each step of the Merging phase, we pick the pair with the maximum s(·, ·)

value from the heap. Call the pair (u, v). We then remove supernodes u and v from

VS, merge them into a new supernode w, and add w to VS. Since u and v are no

longer in the graph, we remove all pairs in H containing either one of them, and

then insert into H any pair containing w with a positive cost reduction (lines 12–15

in Algorithm 1.1). There may still be some more pairs (not containing u, v, or w)

whose s(·, ·) values have changed. Consider a supernode x ∈ Nw that was previously

a neighbor of u. The cost of representing the edge (x, u) may change due to the merge

of u and v. This in turn could change the cost of x (cx), and the cost reduction of

any pair containing x. Hence, we must recompute the costs of all the pairs containing

x ∈ Nw and update their entries in H.

In each step, we merge the pair with the greatest cost reduction until all remaining

pairs have negative cost reductions, in which case we naturally stop.
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Figure 1.2: The steps for the Greedy algorithm on the example graph shown above. We
show the summary (S) and the corrections (C) at the end of each step.
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Example 1.3. Figure 1.2 shows the steps of the Greedy algorithm on the graph

shown in Figure 1.1A. We refer to the supernode formed by merging nodes x and y

as the concatenated string “xy”. In the first step, we merge the pair (b, c), which has

the highest cost reduction (originally, cb = 2 and cc = 2; supernode bc has cost cbc = 2

because it has a self-edge and a superedge to a. Hence, s(b, c) = 0.5). In the next

step, we merge (g, h) with s(g, h) = 3/7. Nodes g and h have 3 and 4 incident edges,

respectively, and so originally, cg = 3 and ch = 4. After g and h are merged to form

supernode gh, there are 3 superedges between supernode gh and nodes a, e and f , and

one correction ‘+(h, d)’. Thus, cgh = 4 and s(g, h) = 3/7. In the next twp steps we

merge (e, f) with cost reduction 1/3 and (d, ef) with cost reduction 0. The last merge

does not decrease the cost, but only reduces the number of supernodes in the summary,

resulting in a more compact visualization. After these merges, the cost reduction is

negative for all pairs, and so Greedy terminates.

During the Output phase, we create the summary edges and correction entries based

on the supernodes in VS. Recall that the superedge (u, v) will be present in the graph

summary if |Auv| > (|Πuv| + 1)/2, in which case we add correction entries ‘−(a, b)’

for all pairs (a, b) ∈ Πuv − Auv; otherwise, we add the corresponding ‘+(a, b)’ entries

for all pairs (a, b) ∈ Auv.

In our representation, each node in G belongs to exactly one supernode in S;

hence nodes in VS form disjoint subsets of nodes whose union covers the set VG. Our

approach can also be extended to take advantage of overlapping supernodes to get

better compression (see §1.5); however, in the main text we will only consider the

disjoint case for simplicity and ease of visualization.

Time Complexity. During every merge step in Greedy, we consider each neighbor

x of the supernode w, and recompute the costs of all the pairs containing x. The
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number of such pairs is roughly equal to the number of nodes that are at most 2

hops away from x (call this number 2Hop(x)). Now, summing for all the neighbors

of w, this becomes roughly equal to 3Hop(w). Further, recomputing the cost requires

iterating through all the edges of both the nodes (adding another hop), and updating

the heap H for each pair, which takes O(log |H|) time. If G contains n nodes, then

the size of the heap |H| = n·2Hop(w). Hence, the total time complexity of each merge

step is O(4Hop(w) + 3Hop(w)·(log n + log 2Hop(w))). Assuming an average degree

of davg � n for each node, this becomes O(d3
avg(davg + log n+ log davg)). In the worst

case, there are n − 1 merges required (though the average degree does not remain

constant across all merges).

Optimizations. In our experiments, we found that the time to update the heap

dominates the running time, due to its large size. To update more efficiently, we ran

the Greedy algorithm in rounds. First, we fixed a threshold τ and only processed the

node pairs whose cost reduction was > τ . Starting the first round with a high value

of τ , we ran the thresholded Greedy procedure and kept reducing τ in successive

rounds until in the final round τ = 0. Because the resulting heap only contains pairs

with cost reduction > τ , the size of the heap is reduced and allows us to avoid entire

heap operations for pairs with low cost reductions that are initially inserted into the

heap but that never merged. At the start of every round, we have to re-run the

Initialization phase, which processes the entire graph; hence having too many rounds

can also slow down the overall runtime. In our experiments, we found that starting

with τ = 0.50 and reducing it by 0.05 in each subsequent round yields good results.

The thresholded Greedy procedure produces strictly the same output as the original

Greedy procedure since it merges node pairs in exactly the same order. We also

found that prefacing the Initialization phase with a bulk merging of all nodes with

exactly the same neighbors reduced running time. This circumvented the process of
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Algorithm 1.2 Randomized (G)
1: U = VS = VG; F = ∅;
2: while U 6= ∅ do
3: Pick a node u randomly from U ;
4: Find the node v within 2-hops of u with the largest value of s(u, v);
5: if (s(u, v) > 0) then
6: w = u ∪ v;
7: U = U \ {u, v} ∪ {w};
8: VS = VS \ {u, v} ∪ {w};
9: else
10: Remove u from U and put it in F ;
11: end if
12: end while
13:
14: — OUTPUT PHASE is the same as Greedy—

computing pairwise cost reductions for each pair and avoided the subsequent heap

operations after each merge.

1.3.2 The Randomized algorithm

Greedy has high complexity because after each merge, it updates the cost reductions

for all node pairs in the 3-hop neighborhood of the merged pair. These updates cannot

be avoided because Greedy merges the pair in each step that yields the globally

highest cost reduction. Next, we describe our Randomized algorithm which is a local

randomized merging procedure that trades-off compactness for reduced computational

complexity. In Randomized, we randomly select a node and merge it with the best

node in its 2-hop neighborhood. Randomized does not require any heap structure,

which makes the merge operations considerably faster than Greedy and enables it

to scale to even larger-sized input graphs.

Randomized (Algorithm 1.2) maintains two categories of supernodes: F (fin-

ished) and U (unfinished). The finished category tracks the nodes that will not reduce

the cost when merged with any other node; i.e. s(x, ·) < 0 for all pairs containing

x ∈ F . The unfinished category contains the remaining nodes still under considera-
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tion. Initially, all the nodes are in U . In each step, we choose a node u uniformly at

random from U and find the node v in its 2-hop neighborhood that yields the largest

cost reduction when merged with u: v = argmaxv∈Nu
s(u, v). If s(u, v) > 0, we merge

u, v into a supernode w. We then remove u and v from VS (and U) and add w to

VS (and U). If s(u, v) < 0, merging u with any other node will only increase the

cost, and hence we move u to F . We repeat these steps until all the nodes are in F .

Finally, the graph summary and corrections are constructed from VS.

Time Complexity. In each merge step, we compute the cost reductions for all the

2Hop(v) pairs containing v; this requires a total of O(3Hop(v)) time. Again, assuming

an average degree of davg, this becomes O(d3
avg) per merge step.

1.3.3 The ApxMDL algorithm

Greater cost reduction can be obtained if exact reconstruction is not required. In

ApxMDL (Algorithm 1.3), we start with the exact representation R(G) = (S, C,M)

produced by either Greedy or Randomized, and then compute an ε-approximate

MDL representation Rε by removing edges from C and S that do not violate the

approximation guarantee of Equation (1.1) for any node v ∈ G.

To see how this is done, consider a similar problem starting from the original

graph. Given an input graph G, suppose there exists a graph G′ = (VG′ , EG′), where

VG′ = VG and EG′ ⊆ EG, such that the neighbor setN ′v for every node v in G′ satisfies

Equation (1.1) and G′ has the minimum number of edges. One possible strategy to

construct G′ is to find the set B ⊆ EG of maximum size such that removing B from the

graph does not violate the approximation guarantee for any node. If we denote the

degree of a node v in G as dv, then at most bεdvc edges incident on v are present in B.

It is easy to see that with bv = bεdvc, finding B is equivalent to finding the maximum

b-matching in G, defined as follows [93]: Given a vector b = {b1, b2, · · · , b|VG|}, find

25



Algorithm 1.3 ApxMDL (G,R = (S, C))
1: Construct a graph H, with VH = VG and EH = C;
2: Compute the maximum b-matching B for H with bv = bεdvc ∀v ∈ VG;
3: Sε = S; Cε = C \ B;
4: for all superedges (u, v) ∈ Sε (in order of increasing |Πuv| value) having no entry in Cε

do
5: if removing (u, v) does not violate the ε guarantee for any node in Au ∪Av then
6: Remove the edge (u, v) from Sε;
7: end if
8: end for
9: return Rε = (Sε, Cε);

the largest set B ⊆ EG s.t. the number of edges in B incident on v is at most bv.

When all bv = 1 (i.e. εdv = 1), then this reduces to the standard maximum matching

problem. The b-matching problem can be solved in O(m · min{m log n, n2}) time

using Gabow’s algorithm [93], where n in the number of nodes and m is the number

of edges in G.

To find the maximum number of corrections to remove from C, we construct a

new graph H with VH = VG and with the set of edges present in C. Specifically,

for any (positive or negative) edge correction (x, y) ∈ C, we add an edge between

nodes x and y in H. For node v, we set bv = bεdvc, where dv = |Nv|, the number

of neighbors of v in G. The b-matching B in this new graph H corresponds to the

maximum number of edge corrections in C that can be removed without violating the

approximation guarantees. This is because each edge correction contributes an error

of 1 to the neighbor sets of its two endpoints. We remove all the corrections in B

from C to get Cε. Because we included ‘+’ and ‘–’ edge corrections in H, the new

neighbor set of a node can include both false and missing neighbors.

In our experiments, we found that the corrections C typically constitute a ma-

jor portion (70–80%) of the representation R. Thus, reducing the corrections from

C to Cε yields substantial savings in space. However, additional saving can still be

obtained by reducing the size of the graph summary S (Algorithm 1.3, lines 4–8).

Unfortunately finding the maximum number of superedges to remove from S is dif-

26



ficult because removing a superedge corresponds to a bulk removal of all the edges

incident on the nodes contained in the corresponding supernodes. Each node has a

different neighborhood-size constraint based on its original degree and the number of

corrections already removed in the first step, hence deleting superedges does not map

cleanly to an instance of the b-matching problem.

Instead, we use a greedy heuristic. For each superedge (u, v) ∈ ES, we deter-

mine whether removing it will violate the ε-approximation constraint of any node in

Au ∪ Av. If deleting the edges in Πuv does not violate any such constraint, then the

superedge can be removed from S. We consider superedges to remove from ES in

order of increasing |Πuv| because the size of Πuv is proportional to the total error that

will be introduced when superedge (u, v) is removed, and we would like to introduce

the least additional error in every step (so more superedges can possibly be removed).

We can reduce the computation time by only checking superedges for removal that

have no corrections in Cε. This is because if there was such a correction (x, y), then

the error at node x or y must have already reached its maximum value, otherwise we

would have removed (x, y) in the first step.

Time Complexity. We first process the corrections and then the summary. By

Gabow’s algorithm [93], the time complexity of the first step is

O(|C| · min{|C| log |VG|, |VG|2}). The second step requires O(|ES||VG|) time in the

worst case to check, for every superedge, whether deleting it will violate the error

constraint of any node in the two incident supernodes.

1.3.4 The ApxGreedy algorithm

In the previous section, we described how to compute an ε-approximate MDL rep-

resentation from a given exact MDL representation. ApxMDL provides a princi-

pled way to compute approximation representations for different ε values as a post-
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processing step. However, because it is oblivious to ε when computing the exact MDL

representation, ApxMDL could potentially fail to take the maximum advantage of

the leeway provided by the approximation constraint.

Our next scheme, ApxGreedy, integrates the ε constraint within the Greedy

algorithm itself. The steps of ApxGreedy are exactly the same as Greedy; the

only difference is in the way we compute the node costs cv. Instead of representing

the cost to exactly represent node v, we use a new cost c′v defined as the minimum

number of edges in S and C that are required to satisfy v’s ε-constraint. An example

of how cv and c′v differ is given below:

Example 1.4. Consider again the graph in Figure 1.1. For ε = 1/3, the new cost for

the node h in G is c′h = 3 (instead of ch = 4), because we can remove up to 1 incident

edge on h and still satisfy the ε-approximation constraint. On the other hand, any

edge deletion from w will violate the ε-constraints of nodes b or c contained in it.

Thus, its cost remains 2.

Our strategy for computing c′v for a supernode v is to deduct from its exact cost

cv the number of edges incident on nodes Av that can be deleted without violating

their ε-constraints. If ea represents the number of edges that can be deleted for node

a ∈ Av, then c′v = cv −
∑

a∈Av
ea. Intuitively, some of the edges previously placed in

the corrections list will now be consumed by the approximation factor.

The approximate cost reduction s′(u, v) when nodes u and v are merged into

supernode w is then given as before by (c′u + c′v − c′w)/(c′u + c′v). Thus, s′(u, v) is the

difference in the cost of approximately representing nodes u and v when separate,

and when merged together. ApxGreedy runs exactly the same steps as Greedy,

but uses the new cost reduction values s′(·, ·) to select the next node pair to merge.

Because we have to consider constraints for every node, we do not actually remove
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the unnecessary edges during ApxGreedy. Rather, when ApxGreedy finishes, we

use the returned set of supernodes VS to compute an exact MDL representation R

similar to Greedy. We then run the ApxMDL algorithm on R to get the final

approximate representation. The key difference here is that ApxGreedy takes into

account the ε-constraints when computing the exact representation R that is fed to

ApxMDL.

1.3.5 Other graph compression algorithms

We compare our techniques against the following existing algorithms:

Reference encoding (REF) [29]: Reference encoding is a popular technique for

compressing web graphs. It consists of two steps: the first reduces the size of the

neighbor lists for each node, and the second generates compressed representations of

these lists using complex bit-level encodings. The first step does not exactly produce

a graph summary with an explicit cost, so to compare we impose a separate cost on

edges and on references and sum them up. For a fair comparison, we disabled all the

bit-level encodings; the same encodings can be used to represent our summary and

correction summaries, however, that comparison is not the main focus of this study.

Graclus (GRAC) [62]: Graclus is a cut-based graph clustering algorithm that

divides the nodes of a given weighted graph into clusters such that the sum of weights

of the inter-cluster edges is minimized. GRAC does not explicitly focus on reducing

the representation cost of a graph. Therefore, we ran it on a graph derived from G

having the same set of nodes but with edges between any two nodes with a positive

cost reduction, weighted by the cost reduction. In this graph, GRAC will find dense

groups of nodes that have many pairwise (cost reduction) edges between them. We

compute the representation cost by creating supernodes from the clusters generated

by GRAC and then determining the minimum number of superedges and corrections
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needed to exactly define G, as detailed in §1.3. GRAC also requires the number

of clusters (k) as an input, which we vary in the range ±10% of the number of

supernodes returned by Greedy. The results shown are for the value of k that gave

the maximum compression. We also ran METIS [149], a predecessor to Graclus, but

since it returns clusters of roughly equal sizes, the compression quality was always

worse than Graclus. For brevity we omitted those results.

AutoPart [43]: This MDL-based clustering algorithm does not require any input

parameters and runs on the graph directly. It was, however, unable to handle very

large graphs due to the complex matrix operations it performs. For the smaller graphs,

it always returned fewer than 10 clusters, which means little or no compression.

Hence, we omitted these results, as well.

Sampling (SAMP): We used a simple edge sampling scheme to compare against

ApxMDL. In this scheme, we chose a fixed number of edges (equal to the cost of

the approximate representation) uniformly at random from the input graph. The

subgraph induced by these edges is taken as an approximation to the original graph.

1.3.6 Datasets

We used the following datasets to evaluate compression ratios and running times of

each approach.

CNR [28, 29]: This web graph dataset was extracted from a crawl of the CNR

domain. We replaced each directed edge by an undirected edge. To explore the

variation in running times and compression ratios, we also ran experiments with

subgraphs of this dataset. Specifically, the dataset CNR-x is the subgraph induced by

the node indices [0, x). For example, CNR-5k corresponds to the subgraph induced by

nodes 0–4999. The largest dataset, CNR-100k has 100,000 nodes and 405,586 edges.
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RouteView [203]: This graph represents the autonomous system topology of the

internet. Each node is an autonomous system with edges implying physical linkage.

This dataset is collected by the University of Oregon Route Views Project and consists

of 10,515 nodes and 21,455 edges.

WordNet [20, 74]: WordNet is a large lexical database of English words often

used in natural language processing applications. We extract a graph from the data

where nodes correspond to English words and an edge (u, v) exists if u is a hypernym,

entailment, meronym, or attribute of v, or if u is similar or causal to v (or vice-versa).

This graph has 76,853 nodes and 121,307 edges.

Facebook [327]: This dataset was extracted in 2005 from a crawl of the Cornell

University community of the Facebook social networking website and contains 14,562

nodes and 601,735 edges. Nodes correspond to profiles of students at Cornell and an

edge exists between two students if they are friends.

In chapters 2, 3, and 4, we apply and extend graph summarization for use with

biological networks.

1.4 Results and Discussion

We implemented the proposed algorithms for finding both the exact (Greedy and

Randomized) and approximate (ApxMDL) representations. The running time for

Randomized are summed over 10 seeds for the random number generator. Although

we saw very little variation in both running time and cost for different seeds, the

compression ratio we show is the worst (i.e. highest) cost returned over the 10 runs.

This provides a rough lower bound on the compression ratio obtained in practice.

All the experiments were run on a Linux machine with a dual-core 3.00 GHz Intel

processor and 2 GB of RAM.
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1.4.1 Compression quality and anatomy of MDL representations

Figure 1.3: Comparison of Greedy and Randomized on varying sizes of the CNR dataset
(x-axis). The y-axis in (A) is the representation cost and in (B) is the running time. Greedy
produces lower cost (more compressed) representations, but is slower than Randomized.

Figure 1.3A shows that Greedy consistently produces compressed representations

with cost roughly 10% lower than Randomized. Randomized never yielded a cost

that was lower than Greedy in any of the 10 runs, and furthermore, its variation in

compression ratio across runs using different seeds was very low (relative standard de-

viation = 1% for CNR-100k). Randomized, however, is much faster than Greedy,

finishing in a fraction of the time required for the latter on the same graph (Fig-

ure 1.3B). For example, for CNR-100k, a single run of Randomized takes less than

1 minute, whereas Greedy takes close to 30 minutes. This gives a clear trade-off

between the two algorithms.

The cost of a representation is highly skewed towards the correction entries. In

Figure 1.4, we show the breakup of the description length produced by Greedy,

amongst supernodes, superedges, and corrections. The size of the corrections is by

far the most dominant factor in the representation cost; only about 25–30% of the

representation cost is due to the summary (superedges). Consequently, the compact

summary serves as a useful means to visualize the network and find trends. Figure 1.5

shows a visualization of the original input and the corresponding summary for the
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Figure 1.4: Breakup of the cost of representation returned by Greedy on the CNR dataset.
The x-axis is the size of the CNR dataset; the y-axis is the cost of representation for each
entity. Corrections dominate the representation cost.

CNR-10k dataset. Apart from being much smaller in size and less cluttered, there

are many interesting patters that emerge. One such example is highlighted in the

middle boxes. In the original graph, a horde of nodes surround and connect to a

single obfuscated node in the center. In the summary, this bipartite subgraph is

clearly visible as two supernodes connected via a superedge.

1.4.2 Comparison with other graph compression techniques

We next compared our techniques against Reference Encoding (REF) and Graclus

(GRAC). Figure 1.6 shows that Greedy obtains the best compression among all

the schemes and all datasets, especially for the RouteView and CNR100k datasets,

where its compression ratio is more than twice as good as that of REF or GRAC.

Randomized also performs better than REF and GRAC on all datasets.

On the Facebook dataset, no algorithm yields better than 80% compression.

Chierichetti et al. [49] independently observed that social networks are typically much

less compressible than web graphs. This could be because individuals in social net-

works link to diverse groups of people (friends, co-workers, family members), which
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Figure 1.5: Comparison of the CNR-10k web graph (left) and its summary (right) com-
puted by Greedy. The size of a supernode is shown proportional to the number of nodes
included in it. The zoom boxes highlight several nodes connected to a single node, which is
hard to identify in the original graph. In the summary, however, these nodes are condensed
into a single (large) supernode in the summary that distinctly stands out.

can render the neighbor sets of two linked-users to be quite different. Among the

competing techniques, REF mostly gets decent compression on the graphs with more

redundancy in the link structure (CNR and RouteView), but performs even worse

than GRAC on the Facebook dataset.

1.4.3 Further compression with ε-approximate MDL representations

To gauge how much additional compression can be obtained when exact reconstruc-

tion is not required, we ran the ApxMDL algorithm on CNR-40k and varied the

value of ε in the range [0.0, 0.5]. Figure 1.7 shows that as ε increases, the cost re-

duces almost linearly, down to approximately 50% of the lossless MDL cost when

ε = 0.5. Thus, the ε parameter allows us to strike a trade-off between accuracy of

representation and memory required for storage (compression).

Figure 1.8 shows the superior performance of ApxMDL compared to SAMP with

respect to the error percentage of reconstructed neighbors. For a fair comparison, we

fixed the sample size in SAMP to be same as the cost of Rε. As expected, SAMP does
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Figure 1.6: Comparison of graph compression algorithms. The x-axis shows the compres-
sion ratio (%), defined as the ratio of the final representation cost to original cost (lesser
percentage implies better compression). Greedy and Randomized beat all other algo-
rithms on all datasets.

Figure 1.7: Evaluation of approximate representation computed by ApxMDL for CNR-
40k. The x-axis shows the value of ε; the y-axis shows the compression ratio. When ε = 0.0,
the cost of Rε is the same as the exact MDL representation. Cost reduces almost linearly
as ε increases.

35



Figure 1.8: Comparison of Rε (ApxMDL) and SAMP on CNR-40k. The x-axis shows
the cost of the approximate representation. The y-axis shows the error percentage of recon-
structed neighbors, defined as the ratio of error(v) to |Nv| in Equation (1.1). The line shows
the average error percentage over all nodes and the bars indicate the maximum error per-
centage for any single node. ApxMDL produces lower cost representations with validated
bounds on the introduced error.

not guarantee any bound on the maximum error, which is 100% in every case (i.e.

there is always some node whose neighbor set is completely lost); the average error

of ApxMDL is also always lower than that of SAMP. Further, the maximum error

in ApxMDL also always abides by the ε-constraint, as we guarantee. For example,

when ε = 0.5 (leftmost point), there is a 13.1% average error with a maximum of 50%

on any single node. When ε = 0.1 (rightmost point), there is a 1.1% average error

with a maximum of 10%. Hence, the leeway provided by ε allows us to construct

significantly lower representations with bounds on the resulting error.

1.5 Conclusions and Future Work

We presented an intuitive two-part representation R(G) = (S, C,M) of an input graph

G based on the MDL principle. The summary S is an aggregated graph structure that

gives a high-level graph summary of the important clusters and interaction patterns

in G. The corrections C consist of a list of edges that can be applied to S to recre-

ate G. We presented algorithms to compute compact representations that allow for
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both lossless and lossy reconstruction of graphs with bounds on the introduced error.

Finally, we showed that our algorithms were more effective than several competing

algorithms for compressing large, real-world datasets.

Many avenues for applied and theoretical future work exist:

Proving hardness. We proposed heuristics for both the exact (Greedy and Ran-

domized) and approximate (ApxMDL and ApxGreedy) MDL representations.

Are these algorithms provably optimal, or is computing a true minimum cost MDL

representation NP-hard? If nodes are allowed to belong to more than one supernode,

the problem becomes NP-hard based on a reduction from clique-finding problems [94].

This follows from the fact that, with overlapping supernodes, there is always a cost

benefit to forming a clique. If overlapping supernodes are not allowed, this is not

necessarily true; for example, consider a triangle clique in which one of the nodes

x has k � 3 additional edges to other nodes in the graph (which themselves have

no other edges). Despite being the largest clique in the graph, the triangle will not

be returned as a single supernode because the bipartite graph formed by x and the

k other nodes (collapsed into a single node) will result in greater space savings. If

overlaps are allowed, then the clique and the bipartite graph will both be in the sum-

mary, with x belonging to two supernodes. Hence, finding the maximum size clique

in the graph amounts to iterating through each supernode and reporting the largest

one with a self-edge.

Overlapping supernodes. In our framework, nodes are only allowed to belong to

a single supernode. Overlapping communities, however, can be prevalent in many

networks [1]. How can our algorithms be modified to return supernodes that share

nodes? How much additional compression can be achieved? The only change to

the framework is that the mapping table M can contain multiple entries per node.

A different approach is to cluster edges instead of nodes [6, 234] and then create
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supernodes from the clusters consisting of nodes that have an edge in that cluster.

This can produce non-disjoint supernodes because two edges incident on a node can

be placed in two different clusters.

Weighted edges. We assumed every edge to have an equal weight of 1, but in

many cases edge weights are used to denote confidence or strength of interaction.

Our approach can be extended to handle weighted graphs by using the weight of

the edge as its cost. The only complication arises when defining Πuv, the number of

possible edges between nodes u and v, but the standard definition can be used if edge

weights are normalized to lie within the range [0, 1]. A probabilistic interpretation of

edge weights was also proposed by Kelley and Kingsford [153].

Queries. Running complex graph algorithms on large networks can be an expensive

task. Several algorithms for quickly returning approximate answers to queries, such

as the PageRank of a node [34, 83], have been proposed. Our summary provides a

natural graph on which such queries can also be run. What is the trade-off between

the goodness of approximation and the time to compute the answer to a query? Using

both the summary and corrections, can shortest-path queries be made much faster

by locally decompressing supernodes as required?

Entity resolution. Entity resolution refers to the problem where several variants of

the same entity exist in a graph and the goal is to collapse these variants into a single

node [24]. For example, “J. Navlakha”, “Jai Navlakha”, and “Jainendra Navlakha” all

refer to the same person, even though they might exist as separate entities in the

graph. Because each variant refers to the same underlying person, the neighbors of

each variant are likely to overlap considerably. GS supernodes, therefore, might be

natural candidates for resolving these inconsistencies.
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Incorporating annotations. Many real-world graphs include information besides

just the presence or absence of edges. For example, nodes in web graphs have topical

content, packets in IP traffic have attributes such as port-numbers and traffic type,

and proteins in interaction networks have functional annotations. Can annotations

be modeled as part of the MDL framework [291], or as an additional criteria by itself?

We investigate this idea further in chapter 3.

Hierarchical compression. Having a representation that includes an aggregate

summary graph S and a list of edges C (which also corresponds to a graph) is advan-

tageous because both S and C can be recursively compressed. Repeating the process

iteratively results in a hierarchical tree decomposition of representations which can

be iteratively unfolded to reconstruct the original graph. Such a hierarchical com-

pression could not only bestow storage benefits, but could also unveil the hierarchical

structure of the network [52]. We further investigate this idea in chapter 4.
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2. Revealing Biological Modules via Graph

Summarization

S. Navlakha, M. C. Schatz, and C. Kingsford. J. Comp. Biol., 16(2):253–

264, 2009. Presented at the 4th RECOMB Systems Biology Satellite Con-

ference, 2008.

We now shift our focus to the study of biological networks. One of the chief chal-

lenges in systems biology is to uncover the structural basis of biological function.

Protein-protein interaction (PPI) networks, in which nodes correspond to proteins

and edges connect proteins found to physically bind to one another, provide one win-

dow through which cellular modality can be observed. In this chapter, we investigate

the application of graph summarization (GS) to the problem of finding functional

modules in PPI networks. The method is motivated by defining a biological mod-

ule as a set of proteins that have similar sets of interaction partners. We show this

definition, put into practice by the Greedy GS algorithm, reveals modules that are

more biologically coherent with known protein complexes and biological processes

than modules returned by existing clustering methods. We also use the corrections

structure produced by GS to more accurately predict false positive and false negative

edges in the network compared to a clique-finding algorithm. Our results indicate

that the model of compressibility employed by graph summarization is relevant for

extracting meaningful interaction patterns and modules in noisy biological graphs.

2.1 Introduction

High-throughput experimental assays such as yeast two-hybrid [78] and co-

immunoprecipitation [97, 165] have revealed thousands of putative protein-protein

interactions (PPIs) in the cell [325]. These networks encode the logical machinery

detailing how congregations of interacting proteins perform their cellular roles. In
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particular, embedded within these networks are protein complexes, i.e. stable groups

of interacting proteins that perform critical biological functions, such as protein degra-

dation (proteasome) or replication. Complex membership is known for some proteins,

but even for well-studied species like S. cerevisiae, 70–80% of proteins have no an-

notation according to MIPS [113] due to the high cost required to perform wet-lab

experiments. As a result, computational approaches have flourished as a means to

determine protein-complex associations. Classically, this has been done via sequence

homology, gene expression profiles, or similar 3D structure (for review, see Pandey

et al. [230]). With the arrival of PPI networks, a new avenue has emerged to make

these associations. Protein complexes in PPI networks often appear as dense sub-

graphs; hence, clustering methods can be used to transfer annotations by considering

common known annotations within a protein’s cluster [14, 21, 161, 186, 215, 233].

This leads to the following problem:

Problem 2.1: What definition of a PPI network module is most appli-

cable for predicting membership of proteins into protein complexes and

biological processes?

Despite intense interest [53, 141, 170, 249, 259, 273, 281, 303, 304, 326] the proper

definition of a network module has remained elusive. One problem is that the data

produced by high-throughput methods is very noisy. It is well known that at least 30–

40% of the edges are false positives [128, 283], with an equal or more amount missing

(some claim that the false positive rate is closer to 90% [122]). It is also likely that

the appropriate definition of a module must be motivated by the application domain

on a case-by-case basis. In the context of uncovering functional modules within PPI

networks, however, a natural definition of a module is a set of proteins that all have

a similar set of interaction partners. If two proteins interact with similar partners,

they likely have related cellular roles. For example, proteins belonging to a stable

complex interact with nearly exactly the same set of proteins: the other members of
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the clique. Conversely, unrelated proteins are more likely to be widely separated in

the network and to thus share few, if any, common interaction partners.

Motivated by this intuition, we investigate the application of graph summarization

(GS) to the problem of biological module detection in PPI networks. As discussed

in §1.1, GS seeks to produce a minimal cost representation of an input graph by

compressing it according to the minimal description length (MDL [257]) ideology. It

reduces the cost of storing a graph by representing nodes with common edge pat-

terns as supernodes connected by superedges in a summary graph, in conjunction

with a corrections list of topologically inconsistent or missing edges. In our context,

supernodes are composed of proteins with similar patterns of interactions. These

supernodes are thus natural candidates for biologically meaningful modules. The ‘+’

and ‘–’ corrections, on the other hand, are used to filter out noisy edges and predict

co-complexed pairs, respectively.

2.1.1 Our contributions

Using a PPI network of S. cerevisiae, we show that GS produces modules that

are enriched for a higher percentage of MIPS complexes [113] and Gene Ontology

annotations [12, 209] than other popular clustering methods, such as MCL [297],

MCODE [14], and Newman’s spectral partitioning algorithm [219].

GS modules are also more useful for annotating proteins with unknown mem-

bership in complexes and biological processes. Using leave-one-out cross-validation

testing, we evaluate several different schemes for labeling unannotated proteins within

a module based on transferring the majority, plurality, or statistically-enriched anno-

tations. With nearly every approach for both complexes and biological processes, GS

has the highest F1-score, which demonstrates its ability to make precise predictions

covering large portions of the proteome.

These improvements hold for both an unfiltered yeast PPI network derived from
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IntAct [157] and generally for a higher-confidence PPI network constructed by elim-

inating edges that have weaker support in the literature. Further, while our GS

approach works well overall, its predictions are not a strict superset of those found

by MCL or MCODE; a large fraction of predictions are made only by one method.

Thus, a combination of multiple methods may be useful to maximize coverage.

Finally, in addition to identifying modules, the corrections list produced by GS

can be used to remove false positive edges from the network and predict missing edges

that are indicative of co-complexed pairs. This use of GS generalizes the defective

cliques method (DCC [320]) of predicting missing edges. We show that GS is more

precise than DCC over a wide range of parameters for DCC and, unlike DCC, GS

can predict edges to remove from the network, as well.

2.2 Related Work

Several algorithms have been developed to detect putative complexes embedded

within PPI networks. The molecular complex detection algorithm (MCODE [14]) is a

graph-theoretic clustering algorithm specifically designed to find complexes by iden-

tifying densely connected subgraphs in networks. The Markov clustering algorithm

(MCL [297]) is based on simulating flow expansion and flow contraction on graphs

and has been applied to the detection of protein families [72]. In a recent comparison

of graph clustering algorithms [35], MCL was also shown to be the most robust at re-

covering MIPS [113] complexes implanted within a simulated interaction graph with

noise, outperforming MCODE, restricted neighborhood search clustering [161] and

superparamagnetic clustering [281]. Recently, Newman’s spectral algorithm [219] has

become a popular choice for community detection, especially within social networks

(though there is evidence that this definition prefers modules of a certain characteris-

tic size [82]). It is based on modularity [219, 220] — a measure of the number of edges

falling within a module minus the expected number in a random Erdös-Rényi network
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— coupled with a version of the Kernighan-Lin heuristic [156] to greedily improve

the partition. Other clustering algorithms based on highly connected subgraphs [244]

and on identifying nodes with similar neighbors [10, 260] have also been proposed

for biological networks, though none are parameter-free and compression-based, like

graph summarization. Some graph compression schemes have been previously sug-

gested [259, 285, 326], though they typically require the user to input the number

of desired clusters or have not previously been applied to biological networks. All

of these algorithms use the graph topology only, an approach we follow here as well.

This allows us to assess the ability to extract biological information using only inter-

action data. Any improved network-based analysis can subsequently be incorporated

into a more comprehensive, integrative system [139, 248, 287, 293].

2.3 Methods

2.3.1 Graph summarization

We used the Greedy GS algorithm to find a clustering of the yeast PPI network. As

described in §1.3.1, the Greedy algorithm is an agglomerative clustering algorithm

that merges the pair of nodes that yields the greatest positive reduction in description

length, and naturally terminates when such a pair no longer exists. In the context

of finding modules within PPI networks, we added a self-edge to each node before

compression so that every member of a clique will have exactly the same neighbors

(otherwise, the neighbor sets of any two interacting proteins will be different). Once

the compressed graph is found, the supernodes of proteins were taken to represent

biological modules.

2.3.2 PPI network

We constructed a PPI network called Yppi for the yeast S. cerevisiae from data de-

posited in the IntAct [157] database. The Yppi network contains 5,492 proteins with
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40,332 interactions. Most of these interactions were derived from yeast two-hybrid

and tandem affinity purification (TAP) experiments, while a smaller number were

obtained through traditional low-throughput assays.

2.3.3 Protein complex and biological process annotations

We assessed the biological quality of the modules found by GS by their ability to

recapitulate known protein complexes and biological processes. We used known an-

notations for assessment and prediction only — no annotations were used when con-

structing the modules.

Yeast protein complex annotations were taken from the MIPS [113] complex cat-

alog. This set of complexes has been widely used to assess computational meth-

ods [139, 248, 320]. We ignored complexes from the “550” section of the MIPS tree,

which represent computationally inferred annotations. To make predictions that are

as specific as possible, we used the set of complexes at the leaves of the tree. The leaf

set contains 267 complexes, of which 266 are represented by at least one protein in

the Yppi network.

We obtained known biological process annotations from the Saccharomyces

Genome Database (SGD [48]) corresponding to the biological process sub-ontology

of the Gene Ontology database (GO [12]). We used the ancestor relationships of GO

to determine which proteins participate in each biological process. To ensure that we

detected processes at a sufficient level of specificity, we focused on a comprehensive,

expert-curated subset of biologically interesting annotations selected by Myers et al.

[209]. All analysis of biological processes in this paper is done using this set of 295

terms, 182 of which are represented in the Yppi network by at least one protein.

2.3.4 Measuring enrichment of annotations

One goal of module-detection algorithms is to discover modules from an interaction
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network that are “enriched.” In other words, proteins in a module should mostly be

part of the same complex or biological process. We measured the enrichment of a

given annotation F in a given moduleM using the hypergeometric P-value, computed

by:
∑m

i=k

(f
i)(

n−f
m−i)

(n
m)

, where n is the number of nodes in the network, m is the number of

nodes in M , f is the number of nodes in the network annotated with F , and k is the

number of nodes in M annotated with F . The computed hypergeometric P-values

were Bonferroni-corrected to account for multiple testing.

Using these enrichment statistics, we computed two scores to assess the qual-

ity of the modules. The first is the percentage of complexes or biological processes

that are enriched in at least one module. This measures the diversity of annotations

present in the modules, with large values indicating that a wide spectrum of biology

is represented. Small values, in contrast, suggest the modules recapitulate only a few

biological annotations (such as the ribosome). Conversely, we measured the percent-

age of modules enriched for at least one annotation, as used previously by Ulitsky

and Shamir [294].

2.3.5 Predicting new annotations

Ultimately, the goal of clustering is to generate hypotheses about the cellular role of

uncharacterized proteins. Given a decomposition of proteins into sets of modules, we

employed three module-assisted prediction rules to infer new complex or biological

process annotations for proteins. Each rule is based on transferring an annotation

that is common to many proteins in a module to every protein in the module.

The first approach, majority, transfers an annotation to a protein if more than

50% of the other annotated proteins in the module have that annotation. If no anno-

tation exists on more than 50% of the proteins (or if there exists only one annotated

protein in the module), no predictions were made. Relaxing the requirement for a

strict majority leads to the second method of annotation transfer, here called plural-

ity. Under this scheme, a protein is predicted to have the most common annotation
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within its module. The third approach, hypergeometric, transfers all annotations that

are statistically enriched within a module to every protein in the module. An anno-

tation with a Bonferroni-corrected hypergeometric P-value of < 0.001 was considered

enriched. In all cases, modules consisting of a single protein are ignored. These

schemes are applied separately for MIPS and GO annotations.

We tested the efficacy of these schemes for each module detection algorithm (see

§2.3.6) using leave-one-out cross-validation. For every annotated protein p, all of its

annotations were forgotten, the majority, plurality, or enriched annotations were com-

puted for its module and then transferred to p as predicted annotations. If multiple

annotations were transferred, each transferred annotation was considered one pre-

diction. A prediction was correct if the protein is known to belong to that complex

or biological process, and incorrect if it is only known to belong to other complexes

or processes. Naturally, given the incomplete state of knowledge, some “incorrect”

predictions may in fact represent correct, new biology.

We measured performance using precision and recall. Precision is the percent of

predicted annotations that are correct. Recall is the number of correct annotations

made divided by the total number of possible correct annotations. There are a large

number of possible annotations over all the proteins in the network, which generally

leads to low recall for all methods. Even relatively low recall values, however, represent

hundreds of correct annotations inferred using only interaction topology. We also

report the widely used F1-score to evaluate a method’s balance between precision and

recall. The F1-score lies between 0 and 1 (the larger the better) and is computed as

the harmonic mean of the precision and recall: 2 ·precision · recall/(precision+ recall).

2.3.6 Parameter variation for clustering algorithms

We compared the GS modules with those obtained by MCL [297], MCODE [14],

and Newman’s spectral partitioning algorithm (NSP [219]). Both MCL and MCODE
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make use of parameter values that can affect the clustering they produce. MCL

uses a single parameter I that indirectly controls the sizes of the obtained modules.

Larger values of I favor smaller modules. We tried 9 different values of I between

1.8 and 4.6, and chose I = 3.8 because this value maximized the precision of the

predictions made by MCL on Yppi using both the majority and plurality rules. The

performance of MCL presented below should thus be considered trained. We also

report the predictive performance using the suggested default value of I = 2.0, which

was considerably worse. A recent survey [35] found I = 1.8 to be most effective under

a different testing framework, but we found that this value resulted in large clusters

that were not good for making predictions.

MCODE supports several parameters (degree cutoff, node score cutoff, haircut,

fluff, k-core, max depth). Experiments were run using both the default parameters

as well as the parameters suggested by Brohee and van Helden [35]. The latter set

of parameters was used because it produced clusters with the greatest predictive

precision using both the majority and plurality rules. The “node score cutoff” had

the greatest effect on the modules; it influences the cluster size and was set to 0.0

(as also done by Brohee and van Helden [35]) to favor small clusters. Again, because

parameters were selected based on their performance on the test set, the results for

MCODE should also be considered trained.

While an exhaustive search of parameter space may reveal a set of parameters for

which performance is improved, it is unclear in practice how these parameters should

be set without fitting to a training set.

GS and NSP require no parameters to be set.
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2.4 Results and Discussion

2.4.1 Application of graph clustering algorithms to the yeast PPI network

We ran MCODE, MCL, NSP, and GS on the Yppi network. In all cases, modules that

contained only a single protein were discarded. All numbers presented in this section

are for the tuned versions of MCL and MCODE.

The module decompositions were very different amongst the four algorithms. NSP

divided the entire network into only 8 modules, which is consistent with the previous

observation that the modularity statistic does not easily find small modules within

larger graphs [82]. While the large modules produced by NSP do yield some biological

information (see §2.4.2), they are generally difficult to interpret and do not likely

correspond to natural biological divisions of the graph. MCODE produced 80 modules

covering only 308 proteins (less than 6% of the total network) due to its strict density

requirements. MCL covered 4,383 proteins with 1,185 modules. GS produced the

largest number of modules (1,632) that covered 4,997 proteins. The average number

of proteins in a GS module was 3.1 and 1,043 of the modules contained only two

proteins. The largest GS module contained 129 proteins.

Figure 2.1 shows the visual appeal of the GS summary structure. Compared to

the characteristic hairball structure of the original network, GS effectively reduces the

complexity of the data by highlighting the major interaction patterns and modules.

2.4.2 Comparing the enrichment of complexes and biological processes

We used two measures to appraise the enrichment of the modules produced by each

method (see §2.3.4). Figure 2.2A shows that the GS modules cover the largest number

of complexes and biological processes. Out of the 266 complexes appearing at least

once in our network, 152 (57.1%) are enriched in at least one GS module. This

indicates that GS performs well on many different functional units and is not simply
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Figure 2.1: The main component of the original Yppi network (left) and the corresponding
summary structure returned by GS (right). Circles represent supernodes, with sizes pro-
portional to their member proteins. Lines represent superedges. For clarity, we only show
the summary induced by the supernodes containing at least two proteins and with at least
one superedge (which may be a self-loop). The summary is much easier to intuit than the
original network.

isolating a few large complexes. MCL has 40.9% of the complexes enriched in at least

one of its modules. MCODE only clusters 308 proteins and thus only covers 17.3%

of the complexes. Despite clustering all nodes, only 16.5% are enriched in some NSP

module.

Although NSP covered the fewest complexes, all 8 NSP modules are enriched for at

least one complex. This suggests that the partition produced by NSP does yield some

useful information. However, because the modules are so large (average size: 687) it

is not clear how to make use of them. Further, as we will see below, the percentage of

modules enriched is not a good indicator of a method’s ability to predict annotations.

A similar trend applies for biological processes (Figure 2.2B). GS has the largest

percentage (70.9%) of biological processes enriched in at least one module. MCL is the

second best-performing method with 63.7% of processes enriched. Again, this suggests

that GS provides the broadest perspective of the underlying functional organization

of the network.
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Figure 2.2: Comparison of the ability of each approach to identify modules that are
enriched for (A) protein complexes, and (B) biological processes. The modules returned by
GS are enriched for the greatest variety of annotations. NSP and MCODE have the greatest
percentage of modules enriched, but NSP only returns 8 modules, and MCODE only clusters
6% of the network. Moreover, it is not clear how meaningful it is to have a large module
that is only enriched for one annotation.

2.4.3 Improvement in module-assisted annotation prediction

Ultimately, the goal of dividing an interaction network into modules is to learn new

biology by making predictions. We tested the utility of each module decomposition

method for predicting new annotations using three annotation transfer schemes (see

§2.3.5). Figure 2.3 shows the performance of these prediction schemes for both types

of annotations. Because MCL and MCODE both require parameter tuning, we in-

clude in Figure 2.3 the results of both approaches with and without tuning. The

tuned versions are marked with a ‘+’ symbol and show a significant improvement in

performance when compared to the untuned versions. All numbers discussed below

apply to the tuned versions of MCL and MCODE.

Protein complexes. Figure 2.3A shows that the transfer schemes using the GS

modules are all Pareto optimal: no other method dominates them in both precision
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Figure 2.3: Precision-Recall plots showing the predictive performance of each approach for
(A) protein complexes and (B) biological processes, using the majority, plurality, and hy-
pergeometric transfer rules. The lines highlight the best performing methods. The versions
of MCL and MCODE with tuned parameters are marked with a ‘+’ sign following their
names. All transfer schemes for GS are Pareto optimal, meaning that no other method has
higher precision and recall.
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and recall. The most conservative annotation transfer technique is to label each

protein in a module with all the majority annotations within the module. Of the

three annotation transfer methods, the majority approach resulted in the highest

precision but lowest recall. For complexes, GS makes more correct predictions than

MCL (305 for GS compared with 241 for MCL) and has higher precision (91.9% vs.

79.3%). MCODE makes slightly more precise predictions than GS (92.7% vs. 91.9%)

but has a much lower recall (9.2% vs. 22.1%). Further, the predictions made by GS

cover a larger number of proteins than MCL or MCODE (265 for GS, 219 for MCL,

104 for MCODE). NSP performs the worst in all cases due to its large module sizes.

When the transfer rule is relaxed to permit predictions based on the most common

annotation within a module (plurality), many more correct predictions are made

covering roughly twice as many proteins, though the predictions are less accurate. GS

is again able to make more correct predictions (598) than MCL (436) and MCODE

(164). Although MCODE predictions are considerably more accurate than GS (86.8%

vs. 60.5%), GS’s recall is almost four times that of MCODE’s (11.9% vs. 43.4%), and

further, GS correctly predicts complexes for substantially more proteins than MCODE

(530 vs. 140). This indicates that MCODE is able to make a few, precise predictions,

but is not nearly as good as GS for covering a greater part of the proteome.

A better trade-off between precision and recall is obtained by using the hyperge-

ometric P-value. Using this method, the GS modules yielded 330 correct predictions,

more than any other algorithm. It also has the highest recall (23.9% compared with

MCL at 20.0%) and the highest precision (86.6% compared with MCODE at 83.6%).

For each transfer rule, GS also has the largest F1-score compared to any other

method. For example, using the majority rule, GS has a F1-score of 35.7% compared

to the next best at 28.7% for MCL.

Repeating the above experiments using more general protein complex annotations

from level 3 of the MIPS complex catalog tree showed little change in the results.
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Hence, GS appears to work well for complexes with varying levels of specificity.

Biological processes. Using the three annotation transfer schemes to predict bio-

logical process annotations (Figure 2.3B) reveals a similar pattern as with complexes.

All GS predictions under the transfer rules are again Pareto optimal. The accuracy

of both GS and MCL is slightly lower for predicting biological processes than for pre-

dicting protein complex membership. Interestingly, the hypergeometric rule makes

fewer biological process predictions than majority, but is slightly more accurate — the

opposite of what happens for complex prediction. Although always lower in accuracy,

the plurality rule has a larger coverage than majority or hypergeometric for both

biological processes and complexes. Thus, the choice of annotation transfer approach

must be made with a desired level of predictions, precision, and coverage in mind.

Comparing predictions. Is there a universally “correct” definition of a biological

module? Although we showed that the GS definition of a module yields the highest

quality predictions, the modules produced by the other methods could provide com-

plementary views of the network’s structure. To tesht this hypothesis, we calculated

the overlap in the prediction sets for each method. Of the 305 correct complex pre-

dictions made by GS using the majority rule, 135 (44%) of the predictions are not

made by either MCL or MCODE. Similarly, 39% of MCL’s predictions are not made

by either GS or MCODE. Of MCODE’s 127 predictions, 23% are unique. The trend

also applies to predicting biological processes: using the majority rule, 550 (40%), 371

(36%), 107 (17%) of the predictions made by GS, MCL, and MCODE, respectively

are unique. A similar breakdown was found using the hypergeometric transfer rule.

The large number of unique and correct predictions made by each method suggests

that each network clustering strategy captures different aspects of the underlying

biology. This suggests that no single approach to clustering is likely to be universally

applicable and that combining techniques from various methods may be useful.
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Clusters Majority Plurality Hypergeometric
Annotation Method n m prot R P prot R P prot R P

Complexes

GS 2336 807 321 31.1 87.2 589 56.3 77.4 312 30.0 85.4
MCL+ 2323 615 386 36.4 84.0 571 55.2 71.1 395 38.6 67.7
MCODE+ 293 72 132 13.0 88.4 166 16.0 87.3 129 12.0 88.1
NSP 2604 81 236 22.5 66.3 434 40.9 38.8 577 56.2 23.3
MCL 2570 466 440 41.8 77.1 606 57.3 60.5 582 57.3 50.8
MCODE 717 89 174 17.7 69.6 233 23.0 55.7 250 25.4 56.8

Processes

GS 2336 807 685 23.8 82.1 1308 41.9 51.9 345 8.9 86.3
MCL+ 2323 615 878 27.9 78.4 1328 37.7 53.4 632 18.9 82.6
MCODE+ 293 72 254 10.1 90.2 262 9.0 88.9 136 3.8 89.5
NSP 2604 81 568 13.9 66.2 1014 17.2 43.3 1061 29.0 30.2
MCL 2570 466 1048 31.6 75.6 1462 35.7 50.5 905 26.8 66.5
MCODE 717 89 439 14.7 81.9 507 13.6 74.3 382 10.9 64.1

Table 2.1: Predicting MIPS complexes and Gene Ontology biological processes in
Yhigh-conf. Columns list number of proteins clustered (n) and number of modules (m), dis-
carding singleton modules and unclustered proteins. For each annotation transfer method,
we show the number of proteins for which at least one correct prediction is made (prot),
the recall (R), and the precision (P). Methods marked with ‘+’ used tuned parameters.

2.4.4 Improvement over guilt-by-association

Recently, Song and Singh [280] found that a simple guilt-by-association rule outper-

forms many clustering methods for the function prediction problem. This rule makes

a prediction for a protein based on the majority annotation of the proteins in its

neighborhood (no clustering is required). We implemented the neighborhood rule to

see how well it fares under our testing framework (shown in Figure 2.3 as ‘NHOOD’).

Like Song and Singh [280], we found that NHOOD outperforms MCODE, MCL, and

NSP for both protein complexes and biological processes. Graph summarization,

however, is almost 10% more precise than NHOOD at roughly the same recall. This

further demonstrates the utility of defining modules as GS does.

2.4.5 Experiments with a high-confidence yeast PPI network

PPI networks derived from high-throughput experiments are known to be noisy.

To gauge the effect of noise, we constructed a high-confidence yeast PPI network,

Yhigh-conf, that includes edges from IntAct [157] that are associated with more than

one PubMed identifier. Two experiments are likely to both capture a true interaction,
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but are less likely to both return a false interaction. (If the same identifier was listed

twice by IntAct in support of an interaction, it was counted twice and thus included

in Yhigh-conf.) The Yhigh-conf network contains 2,604 proteins and 8,341 interactions,

fewer than half the proteins of the Yppi network. We repeated our experiments using

Yhigh-conf and found that the qualitative performance of each algorithm is similar to

its performance on the unfiltered network (Table 2.1). GS makes more accurate com-

plex predictions compared to MCL and NSP. MCODE generally makes more precise

predictions, but covers only a few proteins and hence has a much lower recall.

2.4.6 Predicting co-complexed pairs

GS has the benefit of producing both a summary (supernodes and superedges) and

a list of corrections to the summary. Negative corrections, where an edge must be

removed from the summary to match the original graph, are indicative of a likely

missing interaction because they are applied to superedges, which capture the dom-

inant edge-patterns in the network. Positive corrections, where an edge must be

added to restore the input graph, are edges that are not covered by the summary,

and therefore likely represent extraneous or atypical interactions that are false pos-

itives. The corrections thus have the highly desirable feature of making predictions

for both edges to add and edges to remove. GS applied this way can be thought of as

a generalization of the popular method of completing defective cliques (DCC [320])

for predicting edges within apparent protein complexes.

We compared the predicted GS co-complexed pairs (negative corrections) in

Yhigh-conf to a gold standard set of co-complexed pairs composed of 11,014 edges

between proteins annotated from the same MIPS complex. We compared the pre-

dicted false interactions (positive corrections) to a negative set of 2,705,720 edges

between proteins belonging to different subcellular localizations (taken from Yu et al.

[320]). For this test we used the unmodified GS algorithm that does not add self
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edges before compression.

The DCC algorithm takes two parameters k and l, which control the overlap and

size of defective cliques considered. We compared the results of GS to the results of

the DCC algorithm over a range of parameters for k (4 ≤ k ≤ 10) and l (2 ≤ l ≤ 5).

The precision of GS (66.7% for 224 predicted new edges) is better than DCC under

all parameters for DCC (between 37.1% for 2,317 predictions using k = 4, l = 5, and

62.5% for 39 predictions using k = 9, l = 2). Further, GS has very high specificity

for accurately filtering incorrect edges from the network (97.4% for 3,331 predicted

edges). Because DCC does not predict edges to filter from the network, it is not

possible to compute its specificity.

On the unfiltered Yppi network, DCC achieved higher precision for some parame-

ters than GS, although the precision of both GS and DCC was generally poor. This is

likely because the large number of false edges in Yppi obfuscated the true complexes.

2.4.7 Why is graph summarization successful?

The generally superior performance of GS compared to competing graph clustering

algorithms likely stems from the fact that its module-finding strategy closely re-

sembles the evolutionary process by which proteins putatively evolved. The general

duplication-divergence model [204, 232, 279, 300] is a evolutionary model by which a

protein u duplicates, with its duplicate v initially topologically equivalent to u, but

which over time loses and gains some new interaction partners (divergence). As a

result, u and v have similar (but not exactly the same) neighbors. Duplicates also

tend to remain functionally related, with each often specializing in slightly different

subtasks [236]. Thus, a natural definition of a functional module is a set of proteins

that contain similar (but not necessarily the same) interaction partners, which is ex-

actly what GS supernodes represent. Further, the GS corrections implicitly take into

account the divergence between proteins after duplication.
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2.5 Conclusions and Future Work

While the definition of a biological network “module” will likely remain unsettled for

some time, the results presented here suggest it is biologically informative to define a

module as a set of proteins that have similar interaction partners. Such a definition

generalizes cliques, bicliques, defective cliques, and other types of dense subgraphs.

Graph summarization is especially well-suited to analyze protein interaction data

because it can tolerate noisy edges, which are placed in the corrections list. Further,

the GS algorithm has no parameters to set, unlike both MCL and MCODE. Using GS

to predict membership in protein complexes and biological processes led to increased

performance compared with other approaches, even when their parameters are tuned

to fit the data. The GS modules also covered a larger fraction of complexes and

biological processes than other methods. Finally, the GS corrections were well-suited

to predict false positive and false negative interactions. These results suggest that GS

is a useful technique for extracting meaningful patterns and modules in PPI networks.

Examples of other applications and extensions of graph summarization to biolog-

ical networks are given below:

Compressibility as a measure of evolutionary distance. The relative descrip-

tion length corresponds to the number of bits required to describe one network given

the description of another and can be used to measure the distance between two net-

works [50]. Can the cost of a GS representation be reduced by describing it relative

to another representation? Can the resulting compression ratios serve as a proxy for

phylogenetic distance?

Evolutionary conserved modules. Proteins found to interact in S. cerevisiae

have orthologs in other species that also tend to interact [68, 272]. By clustering the

PPI network of each species, can we track the evolution of modules across the phylo-
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genetic tree? Modular conservation has also recently been used to improve network

alignment algorithms [68]. In general, this could greatly help transfer knowledge via

homology and further elucidate the mechanisms of evolution.

Motif mining. Finding motifs, or statistically overrepresented subgraphs, in bio-

logical networks is important because motifs hint at the functional building blocks

of networks [8, 51, 205, 231]. Identifying motifs efficiently, however, can be a daunt-

ing task because of the many subgraph-isomorphism queries required. Our summary

structure represents the original network in a smaller subspace — can it also be a

useful structure for faster motif-mining? It might also be possible to classify or dif-

ferentiate between different types of networks [204] by searching for specific patterns

in the summary.

Inter-module edges. In our study, predictions were made by considering each

module as a bag of nodes with no internal structure. Can the topology inside a module

be used to appraise the confidence in a prediction [59]? Perhaps some predictions

could be filtered out based on the density of connections or some other topological

features of the module.
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3. VI-Cut: Finding Biologically Accurate

Clusterings in Hierarchical Tree Decompositions

Using the Variation of Information

S. Navlakha, J. White, N. Nagarajan, M. Pop, and C. Kingsford. In

Proc. 13th Intl. Conf. on Research in Computational Molecular Biology

(RECOMB). 5541:400–417, 2009. Extended version published in J. Comp.

Biol. 17(3):503–516, 2010.

How do you take known labels or annotations into account when clustering a graph?

Consider a network where each node was also assigned a color, and the goal was to

find clusters that were not only topologically cohesive, but that also roughly con-

tained nodes with the same color. How do you integrate these two criteria non-

parametrically? All the algorithms employed thus far, including graph summariza-

tion, have searched for modules by only considering topological properties of the

network. Annotations, however, can be extremely informative to help disambiguate,

fine-tune, or delimit the boundary between putative clusters. They can also help

alleviate the effects of noise.

In this chapter, we present a novel, computationally efficient, and mathematically-

sound framework called VI-Cut for seamlessly integrating known annotations into any

hierarchical clustering algorithm. Our approach takes a hierarchical tree decomposi-

tion and decomposes it into a flat clustering that optimally matches a set of known

annotations, as measured by the variation of information metric [202]. Our approach

is general and does not require the user to enter any parameters, such as the number

of clusters desired, beforehand. We first apply it to a problem discussed in the pre-

vious chapter: detecting protein complexes within protein-protein interaction (PPI)

networks. To show its generality, we also use it to identify bacterial species within
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hierarchically clustered metagenomic DNA samples. For both applications, we test

the quality of our clusters by using them to predict complex and species membership,

respectively. We find that our approach generally outperforms the commonly used

heuristic methods.

3.1 Introduction

Hierarchical clustering is an important tool in many applications [124]. One such

application is predicting protein membership into complexes using PPI networks. As

we saw in the previous chapter, embedded within PPI networks are protein com-

plexes, i.e. stable groups of interacting proteins that perform some biological function

in the cell. Complex membership is known for some proteins, but even for well-

studied species like S. cerevisiae, 70–80% of proteins have no annotation according

to MIPS [113]. Consequently, computational methods for determining to which com-

plexes each protein belongs have recently been developed (e.g. [21, 186, 215, 233]).

A common approach to this problem is to identify clusters in the network. Often

these clusters are detected by hierarchically clustering the graph [11, 37, 258, 263]

based on a topological distance measure such as the Czekanowski-Dice [37] or Jaccard

distances, or a topological optimization function in the case of graph summarization.

An uncharacterized protein is then predicted to belong to a complex by considering

common annotations within the protein’s cluster. However, these approaches typi-

cally ignore the known annotations when constructing the clustering. This leads to

the following computational problem:

Problem 3.1: Given a hierarchical clustering of a PPI network and pro-

tein complex annotations for some of the proteins, how do you compute

a flat clustering of all the proteins such that the clusters are topologically

cohesive and closely overlap with the known complexes?
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A second application of hierarchical clustering is to determine the diversity of bacterial

life contained in environmental samples [266, 278, 307]. In the expanding field of

metagenomics, the composition of microbial communities is examined by sampling

DNA from the environment. A typical diversity study involves targeted 16S rRNA

gene sequencing using universal primers, a method that has successfully been used to

describe bacterial communities in environments ranging from the ocean to soil to the

human gut [69, 91, 267]. The standard methodology for 16S sequence analysis begins

with a multiple sequence alignment containing both the environmental samples and

several sequences of known origin. An evolutionary distance is computed between

every pair of sequences using a distance measure such as Jukes-Cantor [144], Kimura

2-parameter [160], or Felsenstein-84 [75]. A hierarchical clustering is then created

from these distances, which is analyzed to identify which operational taxonomic units

(OTUs; the more precise analog of “species” in the bacterial world) are in the sample.

Thus, the approach to this problem is similar to that for complex prediction from PPI

networks: uncharacterized sequences are clustered (along with some sequences from

known species) and are then assigned to species based on annotated sequences in the

same cluster. By estimating the composition of a microbial community, comparisons

can be made of the wealth of organisms present in different environments, leading

to estimations of the overall diversity. The accuracy of this analysis is vital for

researchers examining environments with unknown composition. This leads to the

following computational problem:

Problem 3.2: Given a hierarchical clustering of DNA sequences, some

of which are derived from known species, how do you predict the species

to which the uncharacterized sequences belong? Can the number of OTUs

also be closely estimated?

We give improved methods for applying hierarchical clustering to both of these bio-

logical problems.
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Hierarchical clustering algorithms are based on top-down splitting or bottom-up

merging. In top-down approaches, all nodes start in one cluster, and in each step,

a cluster from a previous step is split into two. In bottom-up approaches, each

node starts in its own cluster, and in each step a pair of clusters are merged into

a single, larger cluster. In the network clustering setting, for example, clusters may

be split based on modularity [219] or minimum cuts [63]. Clusters to merge may be

chosen based on distances such as the Czekanowski-Dice coefficient [37], the Jaccard

index [136], or the correlation of shortest-path profiles [258], among others. If the

merging process is carried out until no more splits or merges are possible, the result

is a hierarchical tree ranging from the root (all nodes in one cluster) to the leaves

(the nodes being clustered, each in its own cluster).

In order to apply most methods for predicting new annotations (either a complex

for a protein or a species for a sequence), the hierarchical clustering must be converted

into a flat grouping of the elements. Typically, this is done by choosing a set of nodes

in the tree (called a node-cut) such that the path from each leaf to the root of the tree

passes through exactly one chosen tree node. Each chosen tree node yields a cluster

consisting of all the leaves in the subtree rooted at that node. We refer to such a flat,

non-overlapping grouping of elements simply as a clustering. (To avoid confusion,

we refer to hierarchical clusterings as “hierarchical decompositions.”) Some hierarchi-

cal decomposition algorithms provide a natural stopping point that can be used to

choose a clustering. Newman’s spectral partitioning algorithm [219], for example, is a

top-down approach for decomposing a network that stops splitting clusters when any

split would decrease the modularity of the clustering. Graph summarization (GS),

a bottom-up approach, stops merging clusters when there is no longer any reduc-

tion in representation cost. However, many algorithms do not have natural stopping

points [11, 63, 149]. Instead, they require the user to estimate the number of clusters

beforehand, or they require a threshold and stop when no split or merge satisfying
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Figure 3.1: Example where using known annotations can produce a better clustering.
(A) An example PPI network consisting of two dense subgraphs that in most approaches
would result in the hierarchical decomposition shown. By looking at the topology of the
graph, it is reasonable to place proteins {1, 2, 3, 4, 5} into one cluster and proteins {6, 7, 8, 9}
into a separate cluster by choosing node-cut {b, d}. (B) If some annotations are known
(indicated in the figure by ♣,♠,�), we want to choose a cut that not only abides by the
topology, but also matches the known annotations as closely as possible. Here, cut {b, d} is
not ideal because it places proteins {1, 3} and {4, 5} together, which have different known
annotations (node 2 has no known annotation). The better cut is {c, x, d}, which induces
clusters {1, 2, 3}, {4, 5}, and {6, 7, 8, 9}. A method that only considers topology will be
unable to reconstruct this clustering.

the threshold can be found. In general, it is not clear how to choose the number

of clusters or an appropriate distance threshold. Therefore, choosing an appropriate

clustering implied by the hierarchy is generally a stumbling block. Fortunately, in

many applications, annotations are known for some of the elements being clustered,

and these subset of annotations can help determine which clustering compatible with

the hierarchical decomposition is the most reasonable. For example, Figure 3.1 shows

a small PPI network and its natural hierarchical decomposition. The network topol-

ogy alone suggests a different clustering than the one that makes the most sense when

the known annotations are taken into account.

3.1.1 Our contributions

We propose a novel method, VI-Cut, to choose a clustering from a hierarchical tree

decomposition based on how well the clusters induced by a node-cut in the tree match

known annotations, as measured by the variation of information (VI [202]) metric. We

develop a dynamic programming algorithm which, in the case where each node has at
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most 1 annotation, finds the optimally matching clustering. If some nodes have > 1

annotation, we show that it is NP-hard to find the optimal clustering and introduce a

reasonable heuristic. The cut places each node in a cluster; hence, unannotated nodes

can be placed together in a cluster with annotated nodes. We can thus test the quality

of a clustering based on how well we can use each cluster to predict annotations for

nodes with unknown annotations (e.g. node 2 in Figure 3.1B).

We apply VI-Cut to two different hierarchical decompositions of a PPI network

for the yeast S. cerevisiae. The first decomposition is created using the Czekanowski-

Dice distance between network nodes and a neighbor-joining algorithm, following the

approach of Brun et al. [37]. The second decomposition is created using GS. For

both decompositions, we compare against the methods proposed by Brun et al. [37],

Dotan-Cohen et al. [65], and an approach that chooses statistically enriched clusters.

We also compare against the clustering induced by the natural stopping point of the

GS algorithm. Unlike any other method, VI-Cut produces clusters which perform

well in terms of accuracy and coverage of predicted annotations on both trees.

We also apply VI-Cut to predict species annotations for a simulated metagenomic

sample consisting of 1677 real 16S rRNA gene sequences belonging to 49 species in

various proportions. DOTUR [266] is a commonly used software package for divid-

ing input sequences into OTUs. DOTUR takes as input a distance matrix (derived

from a multiple sequence alignment and distance correction) and a distance threshold

that defines when to stop merging clusters. We replicated six different methodolo-

gies for creating input to DOTUR that have been used in recent 16S rRNA stud-

ies [56, 91, 155, 267, 278, 307]. Each methodology uses a different multiple sequence

alignment algorithm, distance correction, and distance threshold. None of these meth-

ods, however, take known OTU annotations into account. We test the quality of the

VI-Cut clusters and the clusters produced by each of these six methodologies by using

them to predict OTUs. In each case, the clusters created by VI-Cut produce predic-
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tions with about the same accuracy as the previous methodologies, but with greater

coverage. Further, the VI-Cut clusters provide a much better estimate of the true

number of species embedded within the dataset.

3.2 Related Work

Several previous studies have applied semi-supervised clustering to gene expression

data. To produce a flat clustering from a hierarchically clustered microarray, several

methods assign an enrichment score to each internal tree node based on the known

annotations, signifying the functional coherence of the cluster [40, 286, 292]. Clusters

are then chosen by iteratively selecting high-scoring subtrees, subtrees with uniquely

enriched annotations, or other similar heuristics. Raychaudhuri et al. [256] mine

medical literature and assign a cluster coherence score based on documents which

relate genes. Of these methods, Tan et al. [286] were the only ones to predict protein

function from gene expression data. They report an accuracy of only 50–60%.

Recently, Dotan-Cohen et al. [65] proposed a semi-supervised approach based on

choosing a subset of edges in the tree decomposition; each chosen edge induces a

connected component in the tree which corresponds to a cluster. Their goal is to

choose the minimum number of edges such that each cluster consists of genes that all

share at least one annotation, allowing unannotated genes to take on any annotation.

After clustering, they predict Gene Ontology [12] biological processes for unannotated

genes by choosing the shared annotation in the gene’s cluster.

All of the above approaches are only applied to hierarchical clusterings derived

from gene expression and each use a different objective function compared to VI-Cut.

Brun et al. [37] hierarchically cluster a PPI network and extract clusters that have

a majority annotation (computed using the known annotations). Other heuristics

have been proposed to choose a clustering from a network decomposition [11, 258,

263], however, they either rely on manual inspection of the tree [258], require a
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similarity threshold to be input by the user [11, 27, 263], or fail to take annotations

into account [175]. No previous studies that we are aware of have predicted OTU

clusters using a semi-supervised approach.

Finally, there are semi-supervised clustering methods that take known annota-

tions into account in the form of “must-link” and “cannot-link” constraints, but these

algorithms typically use probabilistic approaches [167, 217], are not hierarchical, and

have not been applied in these domains.

3.3 Methods

3.3.1 Finding the clustering that optimally matches known annotations

Criteria for choosing a clustering. A hierarchical decomposition is specified by

a tree T where the leaves correspond to the elements being clustered. A node-cut is

a subset K of tree nodes such that the path from every leaf of T to Root(T ) passes

through some node in K and such that there is no pair of nodes x, y ∈ K where x is

an ancestor of y. Every node-cut K of the tree induces a clustering CK : each node

x ∈ K yields one cluster that contains the leaves in the subtree rooted at x. Despite

the simple structure, there are an enormous number of possible node-cuts even for

short, binary trees. For example, a complete binary tree of height 7 induces exactly

44,127,887,745,906,175,987,802 (i.e. 4× 1022) possible clusterings.

We assume that some (but not necessarily all) of the elements are annotated. Let

D be the partial clustering defined by grouping elements with the same annotation

together. Among all the possible choices for a node-cut K, we desire the one that

induces a clustering CK that best matches the known information D. A natural

measure for how well CK agrees with D is given by the variation of information

(VI [202]) distance metric between the two clusterings:

V I(CK , D)
.
= H(CK) +H(D)− 2I(CK , D) . (3.1)
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Other methods used to measure the distance between clusterings, include pair-

counting methods, such as the Rand [253], Mirkin [206], and Jaccard [136] indices.

VI is attractive because it is a metric, information-theoretic, and, crucially, can be

rewritten such that the total distance between clusterings is the sum of each cluster’s

contribution. Drawbacks associated with other measures are discussed by Meila [202].

In the definition of VI, the clusterings CK and D are represented as discrete

random variables taking on |CK | and |D| values, respectively (one value for each

cluster in the clustering). Each value corresponds to the probability that a random

element chosen belongs to that cluster, which is computed by dividing the number

of elements in the cluster by the total number of elements. In both clusterings,

we ignore unannotated elements. H(X) denotes the entropy of random variable X.

Intuitively, the entropy of a clustering tells us how uncertain we are about which

cluster a randomly chosen element lies in. For example, the entropy of a clustering

where all elements are placed in the same cluster is 0 because there is only one

cluster and hence no uncertainty regarding the cluster assignment of any element.

Conversely, if a clustering places all elements in separate clusters, its entropy is 1.

I(X, Y ) denotes the mutual information between the random variables X and Y .

Intuitively, the mutual information gives the reduction in uncertainty regarding the

cluster assignment of an element in D if its assignment in CK is given, summed over

all elements. In the following, we exploit the decomposability property of VI.

Because I(X, Y ) = H(X)+H(Y )−H(X, Y ), where H(X, Y ) is the joint entropy,

we can rewrite V I(CK , D) to be 2H(CK , D)−H(CK)−H(D). Over possible choices

of K, H(D) remains constant. Therefore, minK V I(CK , D) is achieved for the same

K that minimizes

min
K

2H(CK , D)−H(CK) . (3.2)

To find a node-cut that minimizes this function, we assign a quality score q(x) to

each node x in the hierarchical decomposition T . The function q(x) will be chosen
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so that the sum of the quality scores for nodes in a node-cut K will exactly equal

2H(CK , D) − H(CK). Define L(x) to be the set of leaves in the subtree rooted at

node x that are annotated with some known annotation, and let A(d) be the set of

leaves (from the whole tree) that have annotation d. Define n = |L(Root(T ))|, the

number of elements that have a known annotation. We then set q(x) to be

q(x)
.
= p(x) log p(x)− 2

∑
d∈D

p(x, d) log p(x, d) , (3.3)

where the probabilities are defined as

p(x) = |L(x)|/n , (3.4)

p(x, d) = |L(x) ∩ A(d)|/n . (3.5)

The value p(x) is the probability that an element with a known annotation would

fall into the cluster induced by x. The joint probability p(x, d) is the probability that

a random annotated element falls into cluster x and has annotation d. By definition,

H(CK) = −
∑

x∈CK
p(x) log p(x) and H(CK , D) = −

∑
x∈CK ,d∈D p(x, d) log p(x, d).

Hence, Equation (3.3) implies that
∑

x∈K q(x) = 2H(CK , D) −H(CK), which is the

value we are attempting to minimize in Equation (3.2). Therefore, the node-cut

whose quality scores sum to the smallest number corresponds to the clustering that

best matches the known annotations according to the VI distance.

Algorithm to find the best cut in a hierarchical tree decomposition. We

can find a node-cut K in a tree so that
∑

x∈K q(x) is minimized (a “min-node-cut”)

using dynamic programming. Let Children(x) denote the children of a tree node x.
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We can compute the minimum-weight node-cut recursively:

CutDist(x) = min


q(x) case I (default if x is a leaf)∑

y∈Children(x) CutDist(y) case II
(3.6)

The min-node-cut of a subtree S either chooses the root x of S with a weight of

q(x) (case I) or it does not choose the root and instead chooses the min-node-cut

of each of the subtrees rooted at the children of x (case II). If x is a leaf node,

the min-node-cut defaults to q(x). Therefore, the value of CutDist(Root(T )) is the

weight of the smallest weight node-cut. To find the actual choice of tree nodes

corresponding to the min-node-cut we can backtrack through which cases occurred

during the recursive calls. We have flexibility in how we break ties when the value

of case I equals the value of case II. If we always break ties in favor of case I, we

will choose the highest min-node-cut in the tree (corresponding to larger clusters).

Alternatively, if we always choose case II, we choose the lowest min-node-cut in the

tree (corresponding to smaller clusters). This algorithm does not require the user to

enter the number of clusters to return.

Running time analysis. The first step is to assign quality values to each tree

node. This can be computed recursively by starting at the leaves. Each tree node

is visited once in the recursion, hence the total time to compute the p(x) values is

O(n). The p(x, d) values can be computed similarly for each d, leading to an overall

O(n|D|) time to assign the q(x) values to the tree nodes. The second step is to

find the VI-minimizing cut, which considers each tree edge only once in the dynamic

programming. Therefore, the total time is O(n|D|), which scales linearly with the

number of elements.
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3.3.2 Handling multiple annotations on an element

Up to this point, we assumed that each element has at most one known annotation.

This is true by definition in the OTU clustering problem and, of all yeast proteins only

11% are annotated with more than one MIPS complex. Hence, for the applications

we consider in this paper, the assumption of a single annotation on each element

is mostly justified. On the other hand, multiple annotations are present in other

applications. They can be used to model either uncertainty in the truth or genuine

membership in multiple clusters. A natural way to handle multiple annotations

on each element is to look for the node-cut K that induces a clustering CK that

minimizes the VI distance between CK and the closest clustering compatible with a

choice of a single annotation for each element. Unfortunately, even computing the

minimum distance between a given clustering C and a clustering compatible with a

set of annotations is NP-complete. Further, computing the optimal node-cut under

this scoring function is also NP-complete. This is formalized and shown below.

Definition 3.1(annotation collection). Given a set of elements E and a set of

annotations L, an annotation collection is a collection of subsets A` ⊆ E for each

` ∈ L such that every e ∈ E is in at least one A`.

An annotation collection defines which annotations apply to each of the elements

of E. Each A` consists of the elements that are annotated with `. An annotation

collection implicitly specifies many possible clusterings for E: a choice of a single

annotation `(e) for every e ∈ E such that e ∈ A`(e) induces a clustering that groups

all elements with the same annotation together. Let Compatible(L) be the set of

clusterings induced in this way by an annotation collection L. The natural measure

of how well a given clustering C matches L is to compute the minimum VI distance

between C and some clustering in Compatible(L). Formally, we define:
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Problem 3.3 (Min-VI Annotation Choice). Given a set of elements E, a

clustering C of E, an annotation collection {A` ⊆ E : ` ∈ L} over a set of annotations

L, compute minD∈Compatible(L) V I(C,D).

Theorem 3.1. The decision version of Min-VI Annotation Choice is NP-

complete.

Proof. We reduce from Exact Cover by 3-Sets (X3C) [94]. Let I be an instance

of X3C specified by a set XI and a collection of 3-tuples RI = {(x, y, z) : x, y, z ∈ XI}.

An I is a “yes” instance if there is a subcollection M of RI such that every element

in XI belongs to exactly one set in M . We construct an instance of Min-VI An-

notation Choice as follows. Take E = XI , and let C = {E} be the clustering

consisting of a single cluster. For every (x, y, z) ∈ RI , we create an annotation

A` = {x, y, z} containing only those 3 elements. The annotation collection LI con-

sists of these A` sets. We show that there is a clustering D ∈ Compatible(LI)

with V I(C,D) ≤ log(|E|/3) if and only if I belongs to X3C. Because C = {E},

we have H(C) = 0, and V I(C,D) = 2H(C,D) − H(C) − H(D) = H(D). If

there is an exact cover D, it consists of a set of |E|/3 clusters of size 3, yielding

H(D) = −(|E|/3) [(3/|E|) log(3/|E|)] = log(|E|/3). If there is no exact cover, then

any clustering D induced by L must contain some clusters of size ≤ 2. Because

−(3/n) log(3/n) < −(2/n) log(2/n)− (1/n) log(1/n) < −(3/n) log(1/n) for all n, the

presence of clusters of size 2 or 1 yields a larger entropy than grouping those elements

into sets of size 3. Hence, if there is no exact cover, H(D) > log(|E|/3) for all D

induced by L. In fact, it can be shown that the difference between the minimum VI

distance for an instance with an exact cover and an instance without an exact cover

is at least 1/|XI |, so this difference can be encoded using a polynomial number of

bits.
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Problem 3.4 (Min-VI Tree Cut With Annotation Choice). Given a

set of elements E, a hierarchical decomposition T of E, and an annotation collection

L = {A` ⊆ E : ` ∈ L} over a set of annotations L, compute minCK ,D V I(CK , D),

where K ∈ Cut(T ) and D ∈ Compatible(L).

Theorem 3.2. The decision version of Min-VI Tree Cut With Annotation

Choice is NP-complete.

Proof. As above, we reduce from Exact Cover by 3-Sets (X3C) [94] (using

the same notation). We construct an instance of Min-VI Tree Cut With An-

notation Choice as follows. Take E = XI ∪ Y where Y is a set of new elements

such that |Y | = 2|XI | and let the hierarchical decomposition T have a star topol-

ogy (all leaves connected to the root) with the elements of E as leaves. For every

(x, y, z) ∈ RI , we create an annotation A` = {x, y, z} containing only those 3 ele-

ments. The annotation collection LI consists of these A` sets and Y . We show that

there is a clustering D ∈ Compatible(LI) and node-cut K for T which induces a

clustering CK , with V I(CK , D) ≤ 1/3 log(|E|/3) + 2/3 log 3/2 if and only if I belongs

to X3C. It is easy to verify that if there is an exact cover D′ then with D = D′∪{Y }

and CK = {E} we get V I(CK , D) = 1/3 log(|E|/3) + 2/3 log 3/2. Conversely, if there

is no exact cover, then any clustering D induced by L must contain some clusters of

size ≤ 2. Using a similar argument as before, we can show that V I(D∪{Y }, {E}) >

1/3 log(|E|/3) + 2/3 log 3/2. The only other node-cut possible is the one which puts

every node in E in a separate cluster and the corresponding optimal annotation choice

gives a VI distance ≥ 2/3 log |E| − 2/3 log 3/2 > 1/3 log(|E|/3) + 2/3 log 3/2 (in the

ideal case every element in RI will have its own annotation), for |E| > 2. The differ-

ence between the minimum VI distance for an instance with an exact cover and an

instance without an exact cover is still ≥ 1/|XI | and hence can be encoded using a

polynomial number of bits.
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Given these hardness results, we are forced to consider heuristics to handle the few

proteins that belong to multiple MIPS complexes. We cannot use Equation (3.5)

directly to compute p(x, d) because it will not yield a probability distribution. Instead,

if protein i has ki annotations, we count each of its annotations as 1/ki. In other words,

p(x, d) = (1/n)
∑

i∈L(x)∩A(d) 1/ki. This way p(x, d) defines a probability distribution

even if proteins belong to multiple complexes, and we can use the heuristic method of

the previous section to find a clustering that closely matches the given annotations.

This is the approach we follow for predicting protein complexes.

3.3.3 Predicting new annotations

We test the quality of our clusters by using them to predict protein membership

within complexes and sequence membership within OTUs. A common approach,

called majority, transfers an annotation A to every unannotated element in a cluster

if more than 50% of the annotated elements in the cluster are annotated with A. If

no such annotation exists, no predictions are made. Clusters consisting of a single

annotated element are ignored.

To test the efficacy of the various clustering methods, we omit the known anno-

tations from a fraction of the elements. The omitted annotations are the “test set,”

and the remaining annotations are the “training set.” Each method finds its clusters

based only on the annotations in the training set. We vary the size of the training set

from 10% to 90% of the total number of elements with known annotations. For each

element x in the test set, the majority annotation is computed and then transferred to

x as a predicted annotation. If multiple annotations are transferred, each transferred

annotation is counted as one prediction. A prediction is correct if the protein or se-

quence is known to belong to that complex or OTU, and incorrect if it is only known

to belong to other complexes or OTUs. For each size of the training set, we measure

performance by the accuracy and coverage of the predictions made over 500 random

74



samplings. (For the Dotan-Cohen et al. [65] approach we only took 10 samplings).

Accuracy is the probability that a predicted annotation is correct. Coverage is the

average number of elements in the test set for which a correct annotation was made

divided by the total number of elements in the test set.

3.4 Results and Discussion

3.4.1 Better prediction of protein complexes

We first describe the experimental setup, followed by a discussion of our results.

PPI networks. We constructed a PPI network for S. cerevisiae using all edges

in the IntAct [157] database. This network contains 5,492 proteins with 40,332

interactions. For the hierarchical decomposition, we considered only the largest

connected component of the network (which we refer to as Y
′

ppi), which con-

tains 5,462 proteins and 40,311 interactions. Most of these interactions were

determined using yeast two-hybrid [78] or TAP assays [97, 165], while a smaller

number were derived from traditional, low-throughput experiments. Interactions

obtained from high-throughput assays, however, are typically very noisy [122].

Hence, we created a high-confidence yeast interaction network from IntAct that

only includes edges supported by at least two experiments. The high-confidence

network contains 2,604 proteins and 8,341 interactions. Its largest connected

component, which we call Y ′high-conf, contains 2,378 proteins and 8,189 interactions.

We performed our experiments on both of these networks to probe the effects of noise.

Protein complexes. Annotations for yeast protein complexes were taken from

MIPS [113], ignoring the “550” section of the catalog, which represent computa-

tionally inferred complexes. This set of complexes has been widely used to assess

computational methods [139, 248, 320]. To make the most specific predictions
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possible we used the lowest-level complexes in the catalog. Of the 5,462 and 2,378

proteins in Y ′ppi and Y
′

high-conf, 1,191 and 930 proteins, respectively, have some known

complex annotation. Of the 267 complexes, 266 and 230 are represented by at least

one protein in the Y ′ppi and Y
′

high-conf network, respectively. The average number

of proteins per complex in Y ′ppi is 5.2 (min = 1, max = 78), and in Y ′high-conf is 4.7

(min = 1, max = 67).

Hierarchical decompositions of the PPI networks. We generated two hier-

archical tree decompositions for each PPI network. The first tree, called TDice, is

built by applying the BIONJ neighbor-joining algorithm [95] to distances between

proteins computed using the Czekanowski-Dice [37] distance. Self-loops were added

to each protein to decrease the distance between proteins that interact. This is the

approach followed by Brun et al. [37]. The second tree, called TGS, is built using the

Greedy GS algorithm. The GS process has a natural stopping point that occurs

when there is no longer any compression benefit to merging two nodes. We modified

the algorithm so that it continues to merge the pair of nodes that give the least

negative benefit until all nodes are placed in a single cluster.

Previous methods. For the TDice tree, we compared VI-Cut against three other

methods. Brun et al. [37] extract clusters from their hierarchical decomposition by

selecting the largest subtrees that contain at least 3 proteins that all share the same

annotation and that make up the majority annotation in the subtree. Brun et al.

[37] also filter false edges from their PPI network by removing proteins which take

part in fewer than 3 interactions. In our setting, we simply use the high-confidence

network, Y ′high-conf. Dotan-Cohen et al. [65] choose the minimum number of edges

in the tree to “snip” such that each cluster induced by the snip contains proteins

that all share at least one annotation. We also tested against a popular approach
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that uses the hypergeometric P-value to assign an enrichment score to each internal

node in the tree. We then do a breadth-first walk down the tree from the root and

choose clusters if they are enriched past a pre-defined threshold (P ≤ 0.01). The

computed P-values are Bonferroni corrected to account for multiple testing. We refer

to these methods by Brun, Snip, and Enrich, respectively. For Brun and Enrich, if

a protein is not assigned to any chosen subtree, it is placed in a cluster by itself.

When considering TGS, we also compared with the clustering induced by the natural

stopping point of the unmodified Greedy GS process. For the VI-Cut on both trees

we select the lowest min-node-cut.

Results. Figure 3.2A shows the accuracy and coverage of predictions for each method

on the TDice tree. Over all tested sizes of the training set, the predictions made by VI-

Cut are more accurate than any other method. Further, when the number of known

annotations is very small, the improvement of VI-Cut is even greater: at the fewest

number of known annotations (90% annotations excluded) VI-Cut is almost 30% more

accurate in its predictions than any other method. Compared to Brun, VI-Cut is more

accurate by at least 22% and predicts more correct annotations (larger coverage) over

all sizes for the training set. Enrich is less accurate than Brun and with a significantly

lower coverage. This is largely because the enrichment approach returns a few number

of large modules for which very few predictions can be made. Snip yields a higher

coverage than VI-Cut but with a greater loss in accuracy (the latter is typically more

important in biological applications due to the cost of conducting experiments).

The robustness of VI-Cut is not limited to hierarchical decompositions that are

derived from the Czekanowski-Dice distance. We repeated the prediction experi-

ments using the tree TGS built by the Greedy GS technique. Figure 3.2B shows

that the predictions made by VI-Cut are almost always more accurate than every

other method. The clusters produced by the natural stopping point of the graph
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Figure 3.2: Accuracy and coverage for protein complex predictions for various sizes of
training sets on (A) the TDice tree and (B) the TGS tree. The x-axis shows the percentage of
annotations (protein complexes) that were excluded when choosing a clustering; larger values
indicate tests where there are fewer known annotations. The y-axis shows the accuracy and
coverage of the predictions — in both cases, larger numbers are preferred. VI-Cut performs
well on both trees, unlike any other method.
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summarization algorithm (shown in Figure 3.2B as ‘GS’) are the same regardless of

the training set because annotations are not considered when the GS algorithm is

applied. Accuracy and coverage can still vary, however, as predictions in majority

annotations change within each cluster. The Snip method has a larger coverage, but

this is again negated by its poorer accuracy.

In general, the predictions made on TGS are much more accurate than those

made on TDice. This suggests that the hierarchical decomposition defined by GS

better represents the underlying protein complexes within the PPI. Enrich especially

benefits by choosing smaller, more reasonable clusters. Overall, VI-Cut makes

accurate predictions covering many proteins on both trees, unlike any other method.

Variations. Experiments on the unfiltered Y ′ppi network echoed the results obtained

on the Y ′high-conf network. Further, we tested two other annotation transfer rules

in addition to the majority rule: plurality and the hypergeometric P-value [273].

The plurality method transfers the most common annotation within a cluster and

the hypergeometric P-value method transfers annotations based on their statistical

enrichment in a cluster (see §2.3.5 for a detailed discussion of these transfer rules).

Though the performance of these two rules was not generally preferable over the

majority rule, VI-Cut still continued to outperform the other methods. The hyperge-

ometric P-value (P ≤ 0.01) approach was always less accurate than the majority rule,

and, of the correct predictions made, 94% and 98% were also made by the majority

rule for Brun and VI-Cut, respectively (averaged over all sizes of the training set and

over both trees). For Brun and VI-Cut, 97% and 99.5% of the predictions made by

plurality were also made by the majority rule, averaged the same way. For the natural

GS clusters, the plurality rule resulted in a 15–16% higher coverage but with a loss

of 14–16% in accuracy with respect to VI-Cut. We also tried creating clusters by

successively moving down the tree level-by-level until the number of tree nodes in the
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current level equals a certain predefined number of clusters, which we varied. This

method, however, induced clusters which proved to make few correct predictions and

consistently achieved less than 50% accuracy.

3.4.2 Better prediction of OTUs

Next, we describe the application of VI-Cut to predicting OTUs in metagenomic

samples. We first describe our simulated data set and the six other methods we

compare against, followed by a discussion of our results.

Creation of simulated 16S sample. We obtained 1,860 partial 16S rRNA gene

sequences from the Ribosomal Database Project II (release 9.57 [55]) with complete

taxonomic identification. These sequences were screened for conflicting annotation

information using the RDP Bayesian classifier [306] and selected for length and

quality, resulting in a final set of 1677 sequences. This dataset is designed to

simulate a microbial environment of moderate complexity spanning seven phyla

with several dominant and rare species. Nine species are only observed once in

the data, while eight species have more than 90 observations. Though no single

species represents more than 6% of the sample, 66% of the sample is Proteobacteria

with roughly equally distributions of Alpha-, Beta-, and Gamma-proteobacteria.

The other 34% of the sample comes from the following six phyla: Actinobac-

teria, Bacteroidetes, Chlamydiae, Fibrobacteres, Firmicutes, and Spirochaetes.

By using real 16S rRNA sequences, we accurately model the nucleotide diver-

gence we expect to see within any species. This approach has been successfully used

to provide high-quality benchmarks for metagenomic assembly and gene-finding [200].

Hierarchical decomposition of OTU sequences. Sequences were oriented

and subsequently aligned using the ClustalW [290], NAST [61], or MUSCLE [70]
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multiple-sequence alignment (MSA) algorithm. MSAs were trimmed so that each

sequence spanned the entire alignment. For the NAST MSA, columns containing

only gaps were removed. From the alignment, we then used DNADIST with default

parameters from the PHYLIP package [75] to compute distance matrices using the

Felsenstein-84 [75] or Jukes-Cantor [144] distances. The distance matrices were then

fed into DOTUR [266], an OTU clustering algorithm, which assigns sequences to

OTUs using furthest-neighbor clustering. The clusters returned by DOTUR depend

on a user-defined distance threshold. If the threshold is set to 0.03, for example,

an OTU cluster is defined as a set of sequences which are each no more than 3%

different from each other. We modified DOTUR to output the full hierarchical tree

decomposition, which we use to find the VI-Cut clusters (OTUs) based on a subset

of known annotations.

Previous methods. We considered six published methods for identifying OTUs

that illustrate the current range of OTU analysis used in the field of metagenomics.

These methods differ in the MSA, distance correction, and distance threshold used

to define OTUs. The six methods we consider are: Kennedy et al. [155], Fulthorpe

et al. [91], Schloss and Handelsman [267], Corby-Harris et al. [56], Sogin et al. [278],

and Warnecke et al. [307]. We refer to each by their first author. See Table 3.1 for

their parameters. The Corby-Harris approach yielded nearly identical results as the

Kennedy method and is therefore omitted from the table. For each method, we

built a separate phylogenetic tree based on the method’s chosen MSA and distance

correction. For each tree, we compared the VI-Cut clusters, obtained using the

highest min-node-cut, with the threshold-derived clusters of the six methodologies

based on their predictive ability and estimation of the number of OTUs present in

the sample. Predictions were made in the same way as with protein complexes,

but instead of predicting membership into protein complexes, we used known OTU
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annotations and transferred them using the majority rule to 16S DNA sequences

with no OTU annotation.

Results. Figure 3.3 shows that VI-Cut generally outperforms Kennedy (which had

the best overall coverage) and Warnecke (which had the best accuracy). Compared to

Kennedy (Figure 3.3A), VI-Cut typically makes more accurate predictions and covers

a larger number of OTUs. In part due to their very stringent threshold, Warnecke

makes slightly more accurate predictions (average gain of 2%), however, VI-Cut has

significantly greater coverage (Figure 3.3B). For example, with 80% of the sequences

in the test set, VI-Cut makes correct predictions for 1256 sequences, compared to just

1093 by Warnecke.

For all six trees, VI-Cut yields not only a closer VI distance to the true clustering,

but also a much closer approximation to the true number of OTUs. There are 49

true OTUs in the sample and the VI-Cut estimates between 42 and 45, depending on

which tree is used. This is a far better and more robust estimate of the diversity of

the population than the estimates of the other methods, which range between 70 and

386 (Table 3.1). While our method starts with known annotations that hint at the

number of true OTUs present in the sample beforehand, the average number of unique

OTUs in the training set was only 35. Yet, VI-Cut was still able to identify that other

OTUs exist, based on their topological non-compatibility with known annotations in

the tree.

3.4.3 Forbidden nodes

VI-Cut performs best when known annotations are evenly dispersed in the tree. In

practice, however, there could be large subtrees with multiple species that may not
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Figure 3.3: Accuracy and coverage of VI-Cut compared to the (A) Kennedy and (B) War-
necke OTU clustering methods. Although Kennedy and Warnecke produce the same clusters
regardless of the training set, the predictions they make vary due to differences in the ma-
jority annotation within each cluster. VI-Cut performs mostly better than Kennedy in both
accuracy and coverage. VI-Cut is slightly less accurate than Warnecke, but has substantially
higher coverage.
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Method # OTUs Acc. Coverage Avg. VI

Tree 1: ClustalW, Felsenstein
Kennedy (0.03) 70 97.6 85.5 0.087
VI-Cut 42 96.9 89.4 0.050

Tree 2: NAST, Felsenstein
Fulthorpe (0.00) 386 98.9 49.6 0.646
VI-Cut 45 95.6 87.9 0.073

Tree 3: NAST, Jukes-Cantor
Schloss (0.03) 99 97.5 80.5 0.157
VI-Cut 42 95.6 88.2 0.073

Tree 4: NAST, Jukes-Cantor
Warnecke (0.01) 185 99.2 71.1 0.320
VI-Cut 42 95.6 88.2 0.073

Tree 5: MUSCLE, Jukes-Cantor
Sogin (0.03) 96 97.5 78.2 0.190
VI-Cut 43 96.1 88.2 0.046

Table 3.1: Comparison of VI-Cut with other OTU clustering approaches applied to trees
constructed from DOTUR with various parameters and distance thresholds, shown in paren-
theses. Performance is presented for 90% annotations excluded, average over 100 trials.
# OTUs shows the average number of OTUs predicted by each method. The correct num-
ber of OTUs is 49. Acc. and Coverage show the accuracy and coverage for each approach.
Avg. VI shows the VI distance of the clustering to the actual OTUs. By incorporating a
few known annotations, VI-Cut is much more accurate and robust to parameter changes
than the other methodologies.

have many known annotations. In such cases, instead of choosing the highest-or

lowest min-node-cut, we can use the default thresholding technique to home in on a

more reasonable clustering. In an extension to this work [311], we modified the VI-

Cut algorithm to disallow certain tree nodes from being cut. In particular, we mark

a tree node x as “forbidden” if its diameter (the largest pairwise distance between two

sequences in the cluster induced by x) is greater than a predefined distance threshold,

τ . We incorporated forbidden nodes into the VI-Cut procedure by setting q(x) =∞,

for all forbidden nodes x. The dynamic programming algorithm will then find the

best clustering (in terms of VI distance) that does not include any forbidden node.

A similar idea could be applied in the network clustering setting, where instead of τ

some other cluster attribute is used.

In our follow-up work, we performed a more thorough sweep of the parameters
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Figure 3.4: Performance of VI-Cut using forbidden nodes for clustering OTUs. (A) Com-
parison of VI-Cut against standard methodologies using the shown MSA and furthest-
neighbor clustering. The x-axis shows the number of OTUs; the y-axis shows the VI distance
to the true clustering. Minimizing the VI-distance occurs near the true number of OTUs
(49). For the threshold-based procedures we varied the distance correction and threshold
used (each shown as a different point). The corresponding tree was fed as input to VI-Cut
along with a random 10% of annotations (repeated 20 times). All VI-Cut points cluster
around 49 OTUs, which testifies to the accuracy and stability of VI-Cut strategy. (B) The
match between distances within true OTUs and within the OTUs defined by VI-Cut. The
x-axis shows the distance cut-off; the y-axis shows the frequency, or number of species whose
true OTU cluster is defined by the corresponding cut-off. Singleton clusters are not shown.
There is considerable variation (0.01–0.07) in the distance threshold that corresponds to a
true species. While standard methodologies cut the tree at a single threshold, VI-Cut allows
for variable cutting distances, which allows it to adapt to the varying rates of evolution for
each species.

involved in clustering OTUs (MSA, distance correction, hierarchical clustering al-

gorithm, and distance threshold) to study how their choice can effect conclusions

about species diversity. We found that threshold-based clustering procedures were

extremely sensitive to small changes in algorithm parameters, often inflating OTU

estimates. VI-Cut, on the other hand, was much more robust to parameter changes

(Figure 3.4A). Further, threshold-based procedures inherently do not account for di-

verging rates of evolution across the phylogenetic tree. Because VI-Cut allows for

variable cutting distances with respect to different parts of the tree, it can closely

match the true clusters (Figure 3.4B). Thus, VI-Cut provides more flexibility when

delineating OTUs.
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3.5 Conclusions and Future Work

We introduced an information-theoretic semi-supervised framework, called VI-Cut,

that gives a principled way to select a flat clustering from a hierarchical tree decom-

position that optimally matches known annotations, as measured by the variation

of information [202]. VI-Cut generally outperforms all other approaches in its abil-

ity to extract protein complexes from PPI networks and its ability to characterize

OTUs from metagenomic samples. The demonstrative success of VI-Cut in two very

different domains is evidence of the technique’s generality.

There are many related extensions to this work. For example:

Multiple annotations and overlapping clusters. We showed that finding the

optimal VI-Cut in the case where elements have multiple annotations is NP-hard —

can we bound the error introduced by our proposed heuristic? Is there a different

technique that provides an approximation guarantee? Further, the VI measure as-

sumes that each element belongs to exactly one cluster, but proteins could belong

to multiple complexes simultaneously. Could the framework be extended to return

overlapping clusters?

DAGs. Is it possible to find a VI-minimizing cut if, instead of a hierarchical tree

decomposition, we had a directed acyclic graph (DAG)? Let D = (V,E) be a DAG.

Can we efficiently maximize
∑

v∈K q(v) where K ∈ Node-Cut(D)? One approach

is to think of the DAG as a partially ordered set. Let C(D) be the comparability

graph consisting of vertices V (same as the vertices in D) and edges of the form

{(x, y) | x < y ∈ D}. Let q(v) be a non-negative weight on each vertex (in the

VI setting, this weight will be log(n) minus the VI contribution of the cluster). To

maximize
∑

v∈K q(v) we have to find a maximum weighted independent set in C(D).

In general, this problem is NP-hard, but C(D) is always a perfect graph and it is well-
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known that maximum weighted independent set has a polynomial time algorithm on

perfect graphs [111]. Such a method could be useful for finding clusterings induced by,

e.g., the Gene Ontology [12, 196]. By combining multiple trees into a DAG (where V

and E in the DAG are the union of all the nodes and edges in the trees, respectively),

this approach can also be used to find a consensus clustering amongst many trees.

Continuous-valued annotations. The annotations we used were all discrete and

had no relationship with each other. Real-valued annotations or, more generally, an-

notations which themselves can be embedded in a space, however, are also prevalent.

For example, if annotations were gene expression vectors, then we would like to find

clusters of topologically related proteins that are also co-expressed under the same

conditions or at similar times. In population genetics, phylogenetic trees are built

from sequences of individuals and clusters of people are sought who share similar

sequences and who are also close-knit geographically (where annotations are latitude-

longitude pairs corresponding to the individual’s physical location). Could VI-Cut be

extended to handle such non-categorical data? One potential approach is to use other

information-theoretic measures such as the Akaike- or Bayesian-information criteri-

ons [57], which provide information-theoretic means to balance between the goodness

of fit of a model and the model’s complexity (number of clusters). The general issue

of handling annotations that have a distance metric defined between them would also

be interesting to consider.

Near-optimal clusterings. In all of our experiments, we only considered a single

clustering from the tree that optimally matched the known annotations. Is it possible

to generate an ensemble of provably near-optimal tree-derived clusterings? How can

these clusterings be used in conjunction to reveal deeper structure in the data? We

consider this problem in detail in chapter 6.
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4. The Power of Protein Interaction Networks for

Associating Genes with Diseases

S. Navlakha and C. Kingsford. Bioinformatics, 26(8):1057–1063, 2010.

In the previous chapters, we presented algorithms to extract modules in protein-

protein interaction (PPI) networks and hierarchical tree decompositions that accu-

rately captured various functional properties of proteins. Functionally similar genes

have also been shown to cause similar diseases when mutated [104]. In this chapter, we

apply our algorithms to a related biomedical problem — uncovering “disease modules”

in PPI networks — under the premise that disease-related genes produce proteins that

physically interact. Like function prediction, unlabeled genes in a disease module can

be predicted to cause the same or similar disease as other genes in the module. We

compare our methods with several other network mining algorithms, such as those

based on random walks and guilt-by-association. Although random-walk approaches

individually outperform clustering and neighborhood approaches, most methods make

correct predictions not made by any other method. We show how combining these

methods into a consensus method yields Pareto optimal performance. We also quan-

tify how a diffuse topological distribution of disease-related proteins negatively affects

the quality of predictions, and thus are able to identify diseases especially amenable

to network-based predictions, and others for which additional information sources are

absolutely required.

4.1 Introduction

To understand the molecular basis of genetic diseases it is important to discover

their causal genes. Typically, a disease is associated with a linkage interval on the

chromosome if single nucleotide polymorphisms (SNPs) in the interval are significantly

correlated with an increased susceptibility to the disease [25, 151]. These linkage
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intervals define a set of candidate disease-causing genes. Genes related to a disease

often have protein products that physically interact [104, 130, 146, 225]. A class of

computational approaches have recently been proposed that exploit these two sources

of information — physical interaction networks and linkage intervals — to predict

associations between genes and diseases [46, 47, 163, 172, 226, 299, 314, 315]. This

raises the following problem:

Problem 4.1: How much information is encoded in PPI networks for

the problem of predicting disease-causing genes? Which diseases are best

represented by the network?

Previous studies [163, 172, 226, 315] typically begin with a query disease and test

how well they can identify a known causal gene from among a fixed number of genes

in an artificial disease subinterval. In our work, instead of only ranking genes in the

subinterval, we rank all genes in all intervals related to a query disease. This more

stringent approach is advantageous because it allows us to find disease-causing genes

that lie in existing disease intervals but that were previously not associated with the

disease. Consequently, we can gauge a gene’s relatedness to any query disease.

Several techniques for uncovering gene-disease associations take an integrative

approach, leveraging Gene Ontology annotations [3, 85, 96, 238, 250, 262], gene ex-

pression [3, 85, 96, 147, 191], protein sequence [98, 238, 250], known biological path-

ways [3, 85, 98], text-mining [227, 298], transcription factor binding sites [3], and

various phenotypic traits of diseases [89]. Recent studies [172, 314] have suggested

that network-based predictions can be of comparable quality to current integrative ap-

proaches. We focus here on isolating PPI networks and linkage intervals to determine

how much information is readily extractable from them for predicting gene-disease

associations. Any improved network-based analysis can subsequently be incorporated

into a more comprehensive, integrative system [187].
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4.1.1 Our contributions

We compare approaches based on direct network neighbors (Oti et al. [226]

and neighborhood-based), unsupervised graph partitioning (Graph summariza-

tion [214] and MCL [297]), semi-supervised graph partitioning (VI-Cut [216]), random

walks [163], and network-flow [299], plus several of their variants (see Table 4.1 and

§4.2.2). Trends in the precision and recall achieved by these computational methods

yield several insights about the utility of PPI networks for uncovering gene-disease as-

sociations. We find that random-walk approaches outperform all other tested classes

of methodologies, with performance ranging from high precision and low recall (92%

and 1%, respectively) to low precision and mediocre recall (17% and 38%, respec-

tively). The graph clustering methods, which have not previously been tested in this

domain, mostly perform better than the neighborhood approaches.

When only using linkage interval information (without the network), we find sub-

stantially lower performance, as is the case when using only the network (without

linkage intervals). However, in this latter scenario graph clustering methods can be

more precise than the other methodologies. This suggests that the proper choice of

method depends on the setting.

We also quantify the relationship between the quality of predictions for a disease

and the topological distribution of its related proteins in the network. As one would

expect, we obtain better predictive performance for diseases whose proteins are sit-

uated near one another in the network. The measured relationship between network

clustering (homophily) and predictive performance can be used to estimate precision

and recall per disease a priori. The lower precision observed on diseases whose genes

are spread apart in the network also suggests that making high-quality predictions

for these diseases warrants the integration of other information sources and is where

future computational efforts should be directed.

We compare the actual predictions made by each method and find that most
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methods make some correct predictions not made by any other method, and that

there are very few incorrect predictions made by multiple methods. Consequently, we

show that combining these methods using a consensus Random Forest classifier results

in Pareto optimal performance. Given the wide range of approaches considered, the

consensus method may be considered the current performance of the network itself

for determining gene-disease associations.

4.2 Methods

4.2.1 Human PPI network and gene-disease annotations

We constructed a PPI network from the Human Protein Reference Database (HPRD

Release 7 [243]). The entire network contained 9,182 proteins and 36,169 interactions.

We considered only its main component, which consisted of 8,776 proteins and 35,820

interactions. A second network was constructed from the Online Predicted Human

Interaction Database (OPHID [36]). This larger network contained 9,842 proteins and

73,130 interactions, more than twice as many interactions as HPRD. Neither of these

databases provided weights associated with their interactions, hence we considered

them unweighted.

Diseases were associated with genes and linkage intervals using annotations from

the Online Mendelian Inheritance in Man (OMIM [201]) morbid-map file. Diseases

that roughly shared the same first name were grouped into disease families as pre-

viously done [163, 226]. In the remainder of this text, we refer to a “disease family”

simply by “disease”. Diseases currently associated with only one gene were discarded

in order to facilitate cross-validation testing. Loci for 8,470 of the 8,776 genes were

obtained from Uniprot [16]. In the HPRD network, 1,415 genes were associated with

at least one of the 450 diseases. There were 189 genes associated with diseases accord-

ing to OMIM but which did not lie in any of the disease’s recorded linkage intervals

according to UniProt. We resolved these incompatibilities by assigning those genes to
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some linkage interval associated with the disease. Of the annotated genes, an average

of 4.60 genes were associated with each disease, and on average 1.46 diseases were

associated with each annotated gene. Each disease defined a set of intervals which

covered an average of 397 genes.

4.2.2 Network-based algorithms to predict gene-disease associations

Neighborhood. A widely used [210, 268] network-based approach predicts for a

protein p the annotations that are associated with more than θ percent of p’s network

neighbors (where θ is the prediction threshold). This method serves as the basis of

many other approaches we consider [172, 226, 299, 314].

Oti. The method of Oti et al. [226] associates a gene with a disease if it lies within a

linkage interval associated with the disease and interacts with≥ 1 gene annotated with

the disease. We refer to this method as ‘Oti1.’ Our variants (‘Oti2’ and ‘Oti3’) require

≥ 2 and ≥ 3 such genes, respectively, which should each strengthen the likelihood of

association. None of the Oti methods depend on the prediction threshold, θ.

Random walks. Kohler et al. [163] define a random walk starting from genes known

to be associated with a query disease d. Let p0 be the distribution that gives equal

probability of starting from each protein known to be associated with d, and 0 to all

other proteins. The probability distribution at time step t+1 is recursively computed

as pt+1 = (1− r)Wpt + rp0, where W is the column-normalized adjacency matrix of

the network and r is the restart parameter. We set r = 0.75 (as done by Kohler et al.

[163]), meaning that in each step, with probability 0.75 the random walk returns

to the starting proteins in p0 before continuing. We iteratively calculated pt and

defined convergence to be when the L2 norm between pt and pt−1 is < 10−6. After

convergence, we predict d for all proteins that lie in an interval related to d and that

have a visitation probability greater than θ, which we varied from 0.01–9%. Higher
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thresholds should result in more accurate predictions. We refer to this method as

‘RW’.

Propagation. Vanunu and Sharan [299] use a similar flow-based approach that

spreads flow starting from proteins known to be associated with a query disease d.

The flow at node u at time step t is defined as F (u)t = αW ′F (u)t−1 +(1−α)Y . Here,

W ′ is a weight matrix such that W ′
ij = Wij/

√
DiiDjj, where Wij gives the reliability

of the interaction between proteins i and j. In our case, each edge is weighted

equally, hence W is the adjacency matrix of the network. Dii equals the sum of row

i in W . Y is a vector of prior-information; its ith entry is 1 if the corresponding gene

is known to be associated with a disease, and 0 otherwise. Essentially, the algorithm

pumps flow starting from proteins known to be associated with d to their neighbors

iteratively. The α parameter controls the percentage of new flow added from the

starting set of proteins in each iteration. In our implementation of their method,

we set α = 0.6 because Vanunu and Sharan [299] found that the algorithm is not

sensitive to the choice of α as long as it is set to be > 0.5. We stopped iterating when

the L2 norm between F t and F t−1 was < 10−6 and then applied the propagation step

with α = 1 to smooth the distribution of F , as done by Vanunu and Sharan [299].

As with RW, we predicted d for all proteins that lie in an interval related to d and

that have a visitation probability greater than θ, which we varied from 1–90%. We

refer to this method as ‘Prop’.

Graph partitioning is a promising technique for predicting gene-disease associations

because it can uncover functional modules in PPI networks, and phenotypically simi-

lar diseases are often caused by proteins that have similar biological function [87, 314].

We tested three graph partitioning algorithms that were shown [35, 215, 216] to

find biologically coherent modules: graph summarization [214], MCL [297], and VI-
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Cut [216].

Graph summarization. Graph summarization [214, 215] (‘GS1’) losslessly com-

presses the input network, producing a smaller summary network and a list of cor-

rections to over-generalizations in the summary (see chapter 1). The supernodes

in the summary correspond to modules in the input network and each consist of a

set of nodes with similar interaction partners. The edges in the summary highlight

dominant interaction patterns between two supernodes. The summary graph can

be further compressed by discarding the list of corrections and re-applying graph

summarization, resulting in fewer but larger modules (‘GS2’). This process can be

repeated i times, yielding a ‘GSi’ method. The ‘GS-All’ method makes the union of

the predictions made by GS1, GS2, and GS3. Combining supernodes across each of

these methods is an indirect way of forming overlapping clusters, which are useful

to make predictions for genes associated with more than one genetic disease. As an

implementation step, we added self-loops to each protein in the network to reduce

the cost of merging proteins that interact.

MCL. The Markov clustering algorithm (MCL [297]) is a popular graph partition-

ing technique based on random walks on a graph. It attempts to find regions in the

graph with high flow concentration, separated by bridge edges. MCL requires setting

a parameter (inflation, I) by the user. We performed a parameter sweep that tried

to optimize the F1-measure of the predictions made by the resulting clusters using a

prediction threshold of θ = 5%. The value maximizing the F1-measure was I = 2.0,

which is also the default inflation value.

VI-Cut. The previous two clustering methods described only use the known

annotations to make predictions; the known annotations are not used as part of the

graph partitioning process itself. VI-Cut is a semi-supervised technique that starts
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Method Reference Type of analysis

Neighborhood Network neighbors
Oti1 [226] Network neighbors
Graph Summarization (GS) [214, 215] Unsupervised clustering
Markov Clustering (MCL) [297] Unsupervised clustering
VI-Cut [216] Semi-supervised clustering
Random walks (RW) [163] Random walks with restarts
Flow-propagation (Prop) [299] Network-flow with priors

Table 4.1: The primary methods compared in this study. Several variations are also
considered, including requiring more corroborating interactions than Oti1 (Oti2, Oti3), hi-
erarchically summarizing the graph (GS2, GS3, GS-All), and choosing larger (VI-CutL) and
smaller (VI-CutS) clusters.

with a hierarchical tree decomposition and finds the clustering from the tree that

best matches the annotations from a training set (see chapter 3). We tested two

variants of VI-Cut, dubbed ‘VI-CutS’ and ‘VI-CutL’, that break ties by favoring

small and large modules, respectively. The hierarchical tree decomposition used

comes from the Greedy graph summarization merging algorithm (see §1.3.1).

Because code is not available for the machine-learning methods of Wu et al. [314] and

Lage et al. [172], we were unable to test their algorithms on our framework. Both

methods predict human genetic diseases drawn from the OMIM database, but differ

slightly in the exact diseases, interactions, and validation methodology used. They

also each define a similarity measure between diseases, which allows them to include

diseases in the test set for which only one causative gene is known.

Finally, we considered a consensus method that incorporates all 13 tested methods

into a Random Forest classifier [32, 312]. For each tested gene-disease pair, we created

a 13-dimensional vector corresponding to each method’s score for the pair. A vector

was classed as yes if its gene was known to be associated with its disease, otherwise

it was classed as no. To predict a gene-disease association, we required a minimum

yes probability of θ, which we varied from 0.5 (default) to 0.9.
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4.2.3 Testing framework

?

θ

A(p,d)

(A) (B) (C)

Figure 4.1: (A) The disease annotations (if any) are discarded from one protein p (double-
circle node), and an attempt is made to predict these annotations as follows. (B) For each
disease d, an algorithm A is used to give a score A(p, d) measuring how much p appears to
be associated with disease d. If A(p, d) ≥ θ, the p-d association is considered a candidate.
(C) Finally, candidates are filtered based on genetic intervals known to be associated with
disease. A p-d association is predicted if A(p, d) ≥ θ and p lies in a chromosomic interval
known to be associated with disease d.

To test each potential protein-disease association p-d, we used leave-one-out cross

validation (Figure 4.1). The algorithms described above are used to compute a score

A(p, d) for each possible disease d that is associated with an interval containing p.

When scoring p-d, all disease associations known for p are discarded. The score A(p, d)

was then compared with a specified threshold θ, with higher thresholds yielding more

conservative predictions.

True positives (TP) are those p-d associations with A(p, d) ≥ θ, where protein

p is contained within an interval known to be associated with d and for which p is

known to be associated with disease d. False positives (FP) are those p-d associations

for which A(p, d) ≥ θ, with p contained in an appropriate interval, but for which

p is not currently known to be associated with d. We conservatively considered

predictions made for any of the 7,361 unannotated genes in the network as incorrect,

even though some of these predictions might in fact be novel associations. False

negatives (FN) are p-d associations for which p is known to be associated with d but

A(p, d) < θ. Precision is TP/(TP + FP), the number of correct predictions made
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divided by the total number of predictions. Recall is TP/(TP + FN), the number

of correct predictions divided by the total number of possible correct gene-disease

associations.

For neighborhood and clustering algorithms, A(p, d) was the percentage of p’s

neighbors or co-clustered proteins that were associated with disease d, and the thresh-

old θ was varied between 5% and 90%. For the random-walk and network-flow meth-

ods, A(p, d) was the visitation probability of p in the stochastic procedure started

from seed genes associated with d.

4.2.4 Quantifying homophily

We quantified the relationship between predictive performance and the topological

distribution of the disease proteins in the network using two measures. These mea-

sures are designed to assess whether a set of proteins (that are associated with a

given disease) is located in dense pockets in the network or is more uniformly dis-

tributed. The first, average pairwise distance, is the average number of interactions

separating two proteins associated with a disease. A similar idea was recently used

by Radivojac et al. [250] as one of many integrative features in an SVM to predict

disease annotations and by Lavallee-Adam et al. [176] to quantify the distribution

of Gene Ontology [12] annotations in a PPI network. This measure is reasonable

when all proteins are in one dense region, but is incorrectly large in instances where

the nodes are located in several dense but well-separated regions in the network. A

second measure, neighborhood homophily, does not suffer from this problem. The

neighborhood homophily of disease d is the average percentage of network neighbors

of a disease-d gene also known to be associated with d.

97



4.3 Results and Discussion

4.3.1 Quality of network-based predictions on the HPRD PPI network

There was a wide range of performance among all the methods tested (Figure 4.2 for

the HPRD [243] network). Prediction quality ranged from 17.0–92.3% precision and

1.2–37.6% recall.

The random-walk methods (RW [163] and Prop [299]) showed a clear dominance

over the clustering and neighborhood methods. The similar performance of RW and

Prop is not surprising because the prior-evidence vector used by Vanunu and Sharan

[299] is similar in principle to the restart probability in the random walk of Kohler

et al. [163]. Thus, although couched in different terms, RW and Prop are closely

related. The slight advantage to RW might be attributed to the fact that Prop’s

prior-evidence vector pumps one unit of flow along each edge, instead of normalizing

by a node’s degree. Hence, there may be a bias toward annotating high-degree nodes.

As the threshold increases both methods gain in precision, with RW plateauing at

92.3% precision, the highest of any single method. The generally superior performance

of the random-walk methods suggests that the neighborhood and clustering methods

are too restrictive when defining their locality.

The clustering methods (MCL [297], VI-Cut [216], and GS [214]), which have not

previously been appraised for the task of predicting gene-disease associations, per-

formed slightly worse than the random-walk methods, but better than the neighbor-

hood approaches. They achieve between 18.4–68.6% precision and 1.1–17.9% recall.

The performance of GS1 and GS2 was similar, though GS2 covered a wider range of

precision and recall. GS3 created too few modules and performed relatively poorly

by itself. Taking the union of GS1, GS2, and GS3 (GS-All) improved over GS1 and

GS2 by yielding a higher recall, and improved over GS3 in both precision and recall.

This suggests that iteratively compressing the PPI network yields informative mod-
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Figure 4.2: (A) Precision and recall on the HPRD PPI network. Lines connect connect the
performance for the same method using different prediction thresholds. Performance points
where recall dropped below one percent were removed. Of the individual methodologies,
the random-walk approaches perform the best, followed by the clustering and neighborhood
approaches. The consensus method, which combines predictions made by all methods using
a Random Forest classifier, results in Pareto optimal performance for all thresholds. (B) A
magnification of the dashed region corresponding to mostly the clustering methods.
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ules. MCL extended the range of precision and recall further than GS2, but still fell

within a tight linear band along which most clustering methods lie. VI-Cut incor-

porates known annotations when finding clusters, unlike graph summarization and

MCL, which are unsupervised approaches. VI-CutS breaks ties by choosing smaller,

more homogeneous clusters, and, as a result, yielded a high precision (average of

66.0%), albeit a very low recall (1.4% on average). VI-CutL breaks ties by choosing

larger clusters and therefore yielded a lower precision but a higher recall. Across all

clustering methods, smaller clusters produced more precise predictions. The similar

performance amongst the many clustering algorithms tested suggests that their utility

for predicting gene-disease associations lies within a well-defined range.

The Neighborhood and Oti [226] methods each make predictions by only consider-

ing the annotations of the neighbors of a protein. Predictions made by Neighborhood

ranged in precision from 23.5–40.1% and in recall from 2.1–23.7%, depending on the

prediction threshold θ used. The Oti methods do not vary with respect to θ and are

therefore shown as single points in Figure 4.2. Oti1 yielded a recall of 29.5% with a

relatively low precision (19.0%). Oti2 and Oti3 both drive up the predictive confi-

dence by requiring more seed proteins to interact with the candidate protein. Both

have successively higher precision than Oti1, but also successively lower recall. Oti4

showed no improvement over Oti3. For the clustering and neighborhood approaches,

precision improved as θ increased from 0% to 50%, but remained relatively stable for

θ ≥ 50%, indicating that a θ = 50% is appropriate and that there are few competing

majority annotations among the cluster or network neighbors of a protein.

4.3.2 Experiments with the OPHID human PPI network

To ensure that our results were robust across multiple networks, we repeated our

experiments on an additional human PPI network from the Online Predicted Hu-

man Interaction Database (OPHID [36]). OPHID incorporates data from BIND [13],
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Figure 4.3: Precision and recall using leave-one-out cross-validation on the OPHID net-
work. Performance for each method is similar to performance on the HPRD network.

HPRD [243], MINT [322], and predicted interactions based on interologs from other

model species. Figure 4.3 shows that each method’s performance is very similar to

its performance on the HPRD network. This suggests that the quality of predictions

was not simply an artifact of the HPRD network.

4.3.3 Interplay between linkage intervals and interaction information

A disease is typically associated with a linkage interval if SNPs in that interval result

in an increased susceptibility to the disease. The actual causal genes for the disease

could lie anywhere in the interval. To understand how much added benefit the network

provides in identifying the target genes, we considered two baseline genomic methods

that only used linkage intervals, ignoring the network entirely. The first method

predicted, for each disease d, x random genes within linkage intervals known to be

associated with d, where x is the known number of d-causing genes. This resulted in
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1.6% precision and 1.6% recall on average. The second method predicted a disease for

all genes contained within the disease’s intervals (i.e., A(p, d) =∞ for all p, d in related

intervals). This resulted in 100.0% recall but only a 1.2% precision. We also tested

the quality of the predictions made by each network-based method assuming linkage

interval information is not available. Again, we found a large drop in performance

compared to using linkage intervals and PPI networks in conjunction. At the most

stringent threshold, the random-walk methods had a precision of 37.1%, which is

55.2% less precise than when using the two information sources together. Some

clustering methods were more precise than random walk methods in this scenario

(VI-CutS, for example, had a precision of 48.0%), which suggests that some clusters

found represent viable disease modules, and that the random-walk methods benefit

more from the filter that linkage intervals provide. Undoubtedly, linkage intervals or

networks by themselves are not sufficient to make high-quality predictions; however,

such predictions can be anecdotally useful. Recent literature [25, 79, 151] reports

several gene-disease associations not currently in OMIM [201] but which one or more

of the methods we tested uncovered without filtering based on linkage intervals. These

novel predictions are summarized in Table 4.2.

4.3.4 Prediction quality per disease

Performance varied widely when assessed on a per-disease basis. For each disease d,

we computed the maximum precision and maximum recall for associations involving

d across the 13 methods. The number of diseases for which performance is within

each precision-recall range is given in Figure 4.4.

There were many diseases that were well-represented by the network. In particu-

lar, 124 diseases had maximum precision > 90% using some method. There were also

19 diseases for which at least half of the 13 methods achieved precision > 90%:

Albinism, Aldosteronism, Bradyopsia, C1r/C1s deficiency, Chronic gran-
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New association Reference Gene Computational method

Myocardial Infarction to 21q22 [151] PRMT2 (21q22.3) Neighborhood (0.1), Oti1 (1), GS3
(0.04), MCL (0.03), Prop (0.12), RW
(9.8e−5)

Myocardial Infarction to 1p13 [151] PSMA5 (1p13) GS1 (0.5), GS2 (0.5), MCL (0.8), VI-
CutL (0.1), Prop (0.18), RW (2.3e−4)

Myocardial Infarction to 1p13 [151] BCAS2 (1p13.2) Neighborhood (0.25), Oti1 (1), GS3
(0.04), MCL (0.03), Prop (0.17), RW
(9.3e−5)

Myocardial Infarction to 10q11 [151] ALOX5 (10q11.2) Neighborhood (0.2), Oti1 (1), GS1
(1.0), GS2 (1.0), MCL (0.5), VI-CutL
(1.0), Prop (0.18), RW (0.02)

Cleft lip to 8q24 [25] MYC (8q24.12-q24.13) Neighborhood (0.02), Oti1 (1), Prop
(0.009), RW (6.1e−4),

Melanoma to MDM2 [79] Neighborhood (0.02), Oti1 (1), Prop
(0.016), RW (8.2e−4)

Pancreatic cancer to ATM [184] Neighborhood (0.08), Oti1 (1), Oti2
(2), Oti3 (3), Prop (0.044), RW
(2.7e−3)

Table 4.2: Computational network-based predictions which concur with novel associations
found in the literature, but which are not currently in OMIM. The second column refers to
the study which linked a disease to either an interval or specific gene. The third column
shows the gene prediction made by the computational method(s) listed in the fourth column
along with its score in parenthesis.

Figure 4.4: Upper bound on achievable performance. Each (x, y) square is colored by
the number of diseases that had maximum recall x and maximum precision y across all
13 methods using the prediction threshold for each method corresponding to roughly 10%
recall. Row and column sums are shown at the margins. There were 124 diseases for which
the maximum precision is > 90% and 142 diseases for which maximum precision is < 10%.
Therefore, there are clearly some diseases amenable to network-based predictions, and other
diseases that are not.
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ulomatous disease, Cold-induced sweating syndrome, Dysfibrinogene-

mia, Exostoses, Gaucher disease, GM2-gangliosidosis, Griscelli syndrome,

Hemochromatosis, Liddle’s syndrome, Meckel syndrome, Nephronophthi-

sis, Omenn syndrome, Persistent Mullerian duct syndrome, Thyrotropin-

releasing hormone deficiency/resistance, and Trichothiodystrophy.

Further, there were 14 diseases that have at least 3 associated proteins and that

achieved maximum precision > 90% and maximum recall > 90%:

Bare lymphocyte syndrome, Bernard-Soulier syndrome, Dysfibrinogene-

mia, Elliptocytosis, Epidermolysis, Griscelli syndrome, Heinz body ane-

mia, Hemochromatosis, Mismatch repair cancer syndrome, MODY di-

abetes, Nephronophthisis, Ovarioleukodystrophy, Thalassemia, and Tri-

chothiodystrophy.

Fanconi anemia, which has been experimentally shown [192, 229] to have protein

products that interact, is also well-represented by the network (maximum precision

and recall of 100% and 69.2%, respectively), as expected.

Clustering methods individually hold their own: 60% of the time the maximum

precision for a disease amongst only clustering methods was within 1% of the highest

precision amongst all methods (52% of the time for recall). This further validates the

utility of clustering algorithms to uncover human disease modules.

Assuming the optimal method is chosen per disease, Figure 4.4 represents an

upper bound on the best performance possible. Figure 4.4 also shows that there were

142 diseases that had a maximum precision < 10%. These are the diseases for which

the network seems to provide little information and for which new computational

methods are absolutely required.

If proteins implicated in the same disease do not interact, predictive performance

for that disease is adversely affected [172]. We quantified the degree to which disease-
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Figure 4.5: The effect of disease homphily on prediction quality for that disease. The
x-axes correspond to homophily, measured via (A) neighborhood homophily and (B) the
average pairwise distance of a disease. The y-axes are the average F1-measure (harmonic
mean of precision and recall) of the predictions for the disease over all five methods. Least-
squares fit lines are shown for each method, with regression values in the legend. Error bars
indicate variance. Numbers in the bars give the count of diseases with the given level of
homophily. The trends uniformly indicate that higher quality predictions are significantly
correlated with more “clumpy” diseases.
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related proteins tend to be located near each other in the network using two measures

of homophily: neighborhood homophily and average pairwise distance (see §4.2.4).

Predictions made for more homophilic diseases were typically of higher quality than

those made for diseases that do not exhibit strong homophily. Figure 4.5A shows

how predictive performance varies as a function of neighborhood homophily for five

representative methods (Neighborhood, GS-All, VI-CutL, Prop, and RW) using the

prediction threshold for each method that corresponds to roughly 10% recall. Even

the methods that do not directly use network neighbors (i.e. GS-All, VI-CutL, and

RW) showed a significant correlation with neighborhood homophily. Similar results

are seen for precision and recall independently (not shown).

A similar dependence was seen for the average pairwise distance measure of ho-

mophily (Figure 4.5B). On average, as the distance between disease-related proteins

grew, performance worsened. Thus, homophily can be used to provide an a priori

estimate of the quality of network-based predictions for a given disease.

4.3.5 Consensus classifier improves predictions

The methods we considered used a variety of techniques to infer gene-disease asso-

ciations from the PPI network, and consequently each might be expected to make

successful predictions for genes not correctly handled by other methods. To quantify

this, we defined the uniqueness of method M to be the percentage of correct predic-

tions made by M that were not made by any other method. When more methods are

included in such an analysis, the uniqueness for each method will generally decrease.

We considered five representative methods (Neighborhood, VI-CutL, GS-All,

Prop, and RW), using the prediction threshold for each method that corresponds

to roughly 10% recall. Of the correct predictions made by these five methods, 18.9%,

7.6%, 5.0%, 3.1%, and 30.7% of them were unique, respectively. The incorrect pre-

dictions were also not shared across the methods. The five methods made 976 total
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predictions, yet only 19 (1.9%) were both wrong and made by all five methods.

These two insights imply that, although random-walks individually performed the

best, an aggregate method that combines several of the network analysis strategies

can likely compensate for deficiencies in individual methods. In Figure 4.2A, we

show the performance of a consensus method that combines predictions across all 13

methods using an ensemble of decision trees (see §4.2.2). All five of its performance

points are Pareto optimal over all other methods (meaning no other single method has

both higher precision and recall). The superior performance of the consensus method

indicates that many of the individual methods capture different kinds of structure in

the network and that these individual abilities can be used in tandem to make higher

quality predictions.

4.4 Conclusions and Future Work

We assessed the power of interaction networks for associating diseases with their

causal genes. Although random-walk approaches are superior to clustering and neigh-

borhood approaches, we showed that different graph mining strategies can be used

together to increase performance. We also quantified the interplay between interac-

tion networks and linkage intervals and found a strong symbiotic relationship between

the two. Finally, we quantified the relationship between disease homophily and pre-

diction quality and found certain diseases for which high-throughput PPI networks

were an especially useful source from which to make high-quality predictions. Dis-

eases that have little correlation with the interaction network call for higher quality

networks, or an integrative approach that considers sequence, functional annotations,

expression data, or other additional information.

Other algorithmic ideas to uncover gene-disease relations are listed below:
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Relationships between apparently unrelated diseases. There is evidence sug-

gesting that two diseases could be genetically coupled despite producing drastically

different phenotypes [104]. For the clustering algorithms, for example, this implies

that proteins in the same module might have multiple, disparate annotations. We

biased against making predictions for such proteins because we viewed the distinct

annotations as conflicting evidence. In light of this evidence [104], however, perhaps

these more subtle relationships could be taken into account by defining a distance

measure between diseases.

Designing novel network mining strategies. Given a set of nodes in a graph,

can we design a novel graph mining strategy that closely models the topological

relationship among the nodes in the set? The idea here is to derive a mechanism

(instead of using an existing one, such as random walks or clustering) that well-

represents the distribution of a given set of nodes in the graph. If this natural approach

also produced a random-walk-based algorithm, then the results presented here would

be further validated.
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Part II:

The Clustering Dynamics of Biological Networks

In Part I, we saw how computational algorithms can be used to extract meaningful

modules and interaction patterns from large, noisy networks. Both of our approaches,

however, reduced the complexity of the data down to a single summarization or

clustering. Most other approaches in the literature also follow this trend. Single

solution methods, however, have many disadvantages. First, they provide no measure

of confidence or significance in the returned partition and can easily be duped by noise.

Second, they do not report any secondary or tertiary clusterings that may represent

alternative views of the network’s structure. Third, they treat communities as bags

of nodes even though each node might have a varying strength of affiliation to its

community and to other neighboring communities.

Near-optimal solutions can help address all of these problems. For example, they

can help assess confidence in the optimal partition: if a near-optimal solution is nearly

as good as the optimal, we may be unsure whether it is the near-optimal or the optimal

partition that represents the true community structure. This is especially true in the

presence of noise, when the true community structure might be obscured and as a

result only emerge as some near-optimal solution. Locally, pairs of nodes that are

co-clustered in many near-optimal partitions can be confidently said to be members

of the same community. Equivalence classes of these frequently co-clustered nodes

can be considered the “core” members of a community. Others ought to be considered

tenuous or “peripheral” members. Thus, unlike single solution approaches that treat

each individual as an equivalent community member, near-optimal solutions provide

a way to measure the bond of members to each community. Further, by quantifying

inter- and intra-community interactions, we can identify communities that are resilient

to change. By taking such interactions into account, we transition from treating
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communities as static, independent blobs to dynamic blobs with varying memberships.

Finally, there is also theoretical and empirical evidence suggesting that single point

solutions in high-dimensional spaces do not represent the data as well as ensembles

of solutions [42]. This is particularly true in machine learning, where ensembles of

classifiers have been consistently shown to outperform single models [224, 240], as

demonstrated in the previous chapter.

In Part II of this thesis, we investigate the clustering dynamics of biological net-

works. In chapter 5 [211], we explore the space of near-optimal clusterings and discuss

how these clusterings can be used together to illuminate deeper, dynamical relation-

ships amongst groups of nodes. Using network modularity [219, 220] as a template,

we recast the modularity optimization problem as an integer linear program (ILP)

with diversity constraints. These constraints yield a set a clusterings that are each

highly modular but also dissimilar from one another. We apply our approach to four

social and biological networks and show how optimal and near-optimal solutions can

be used to differentiate between core and peripheral community members, to find

robust communities, and to study how communities interact with one another.

The strict ILP approach produces provably near-optimal clusterings, however, it

does not scale well. One approach for handling larger networks is to reduce the space

of possible clusterings into a structure that is more easily searchable. In chapter 6 [67],

we show how to find provably near-optimal modularity clusterings that are compatible

with any given hierarchical clustering of the network. We also propose a method to

find pairs of partitions that are highly modular and diverse; these partitions offer

complementary views of the network’s structure from different regions of the clustering

space. Finally, we formally map the space of solutions by counting the exact number

of solutions that lie within any given modularity range. In experiments with a PPI

network for yeast, we find that ensembles of near-optimal solutions better characterize

the functional modules of the network than any single solution does alone.
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5. Exploring the Clustering Landscape of Biological

Networks Using Integer Linear Programming

S. Navlakha and C. Kingsford. In Proc. 15th Intl. Pacific Symp. on Bio-

computing (PSB), 15:166–177, 2010.

Most graph partitioning algorithms only output a single decomposition of the network.

In this chapter, we generate and use the multitude of near-optimal clusterings to ex-

plore the clustering dynamics of nodes and how those dynamics relate to the structure

of the underlying network. To do this, we recast the modularity optimization prob-

lem as an integer linear program and include diversity constraints that systematically

force subsequent solutions to be different yet still highly modular. We apply our ap-

proach to a diverse collection of social and biological networks and show how optimal

and near-optimal solutions can be used in conjunction to identify inter-community

dynamics, robust communities, and core/peripheral community members.

5.1 Introduction

Many types of biological networks, such as protein-protein interaction (PPI) networks

and metabolic networks, are known to be modular in nature [123]. Uncovering the

functional building blocks of such networks can provide us with a systems-level un-

derstanding of how the cell is organized. Several graph partitioning algorithms have

been recently proposed for this purpose [14, 214, 216, 219, 297], but these algorithms

typically select only a single solution from the vast space of possible clusterings. The

chosen solution is meant to characterize the modular structure of the data, but it

ignores the horde of near-optimal solutions. This raises the following problem:

Problem 5.1: What can near-optimal clusterings reveal to us about the

structure of the underlying network that would be missed by single solution
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approaches? How do you generate an ensemble of provably near-optimal

network clusterings?

In this chapter, we look at a broad collection of social and biological networks and

show how near-optimal clusterings impart information into community dynamics that

would otherwise be missed using single solution approaches. We use the popular mod-

ularity criteria proposed by Newman and Girvan [220]. Modularity has received mixed

reviews regarding its relevance to biological networks. We showed that it performed

poorly at recovering functional modules from large PPI networks (see chapter 2), but

it has been found effective by others at finding modules in smaller metabolic net-

works [112]. We consider it here for smaller networks, but use it simply as a template

to investigate near-optimal solutions. It is likely that other approaches will also reap

similar benefits by considering ensembles of solutions.

5.1.1 Our contributions

We cast modularity optimization as an integer linear program (ILP), as has been done

before [4, 31], but add diversity constraints so that each subsequent clustering is not

only different from all previous solutions, but also has high modularity. This way, we

use a theoretically-sound approach to directly optimize for both diversity and quality

within the optimization itself. The collection of solutions returned constitute a partial

“modularity landscape” that represents overlaid decompositions of the network.

We explore four social and biological networks and show the types of insights that

can be extracted from ensembles of near-optimal solutions. We begin with Zachary’s

karate club social network [321], which documents the fission of a group of university

students after an internal dispute over the price of karate lessons. We find that the

clustering closest to the actual resulting fission of the club (i.e. the true clustering)

does not appear until the 31th near-optimal solution. We also show that exploring

near-optimal solutions can help identify fringe members of the two factions.
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We next look at the ERK1/ERK2 mitogen-activated protein kinase (MAPK [142])

signal-transduction pathway. We identify functional subunits that correspond well

to known submodules of the pathway, and we classify their robustness across the

modularity landscape. Two portions of the ERK pathway consistently remain tightly

bound, whereas all other components are eventually split. We also identify gatekeeper

nodes that lie between functional modules in the Integrin signalling pathway [198].

Finally, we consider a network of cortical-cortical connections in the human brain

and find that 53 of the first 60 near-optimal solutions have a modularity that is within

1% of the optimal modularity. Of these, 12 have a > 3% advantage in spatial coher-

ence over the optimal clustering, indicating that they might better represent the true

modules of the brain. Differentially classified nodes in these partitions represent spa-

tial outliers, which may play a crucial role in brain signalling. The immense number of

similar solutions also suggests tremendous uncertainty in the optimal partition [108].

In all four networks, we find insights conveyed by near-optimal partitions that

would otherwise be missed by any single solution approach.

5.2 Related Work

Several techniques have been proposed for finding ensembles of optimal and near-

optimal clusterings to similar ILP problems. For example, both randomly perturbing

objective function weights by a small amount [115, 210], or perturbing the input data

itself and re-clustering [126, 148], can help explore different regions of the clustering

space (though selecting the size of that perturbation can be difficult). Alternatively,

randomly rounding fractional ILP solutions to integral ones [4] can yield a slightly

different partition each time. In addition, heuristic techniques such as simulated

annealing [112, 199] can be used instead of ILPs to optimize modularity. Such ap-

proaches explicitly explore the state space, and an ensemble of partitions can be

generated by saving any good solutions observed. But these techniques are all based
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on the idea of randomization: perturbing the inputs or the outputs randomly, or

randomly transitioning between solutions. Such randomized procedures suffer from

at least three deficiencies. First, they often yield solutions very similar to the optimal

because large deviations are improbable to be generated at random. Second, there

is no guarantee that the perturbed solutions have high modularity. The randomized

procedure may in fact generate many diverse solutions of poor quality. Third, there

is no specification of where exactly the solutions lie in the clustering space. Other

approaches vary input parameters, such as the number of clusters to return [171],

though there can exist multiple reasonable clusterings that have the same number of

clusters. Qi and Davidson [247] systematically perturb the input data such that the

transformed and original data retain similar properties; an alternative clustering is

then found by clustering the transformed data. Here, we explicitly constraining for

diversity within the clustering process itself. This guarantees that each successive

solution is both sufficiently different from previously obtained solutions and achieves

the maximum possible modularity attainable under the given diversity criteria.

5.3 Methods

Below, we describe our procedure for generating an ensemble of distinct, high-

modularity partitions using integer linear programming (ILP). All superscripts used

below indicate indices, not exponentiation.

5.3.1 Integer linear programming for modularity

Intuitively, maximizing modularity corresponds to finding communities where the

number of edges lying within a cluster is much greater than we would expect by

chance (under an Erdös-Rényi null distribution), and the number of edges connecting

two different clusters is much less. Formally, the modularity q(G, C) of an undirected,
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unweighted network G with community decomposition C is defined as

q(G, C) :=
∑
u,v∈V

(
Auv −

kukv
2m

)
(1− xuv) , (5.1)

where Auv is an entry in the adjacency matrix for G (it is 1 if u and v interact and

0 otherwise), ku is the degree of node u, m is the total number of edges, and the

variables xuv describe C by indicating which vertices are in the same community.

Specifically, we have a variable xuv for every pair of nodes u < v, where xuv = 1 if

u and v belong to different clusters, and xuv = 0 otherwise. A pair of nodes u, v in

the same cluster contributes muv = Auv − kukv/(2m) to the total modularity (muv

may be negative). Hence, we seek to maximize
∑

u,vmuv(1− xuv) by setting the xuv

variables appropriately.

To ensure that the nodes identified as co-clustered are consistent with each other,

we must enforce the triangle inequality. This leads to the following integer linear

program, called Modu-ILP:

maximize
∑
u∈V

∑
v∈V

muv(1− xuv) (5.2)

subject to

xuv + xvw ≥ xuw for all u, v, w ∈ V (5.3)

xuv ∈ {0, 1} (5.4)

This ILP is identical to the one proposed by Agarwal and Kempe [4] for modu-

larity maximization and is similar to the ILP proposed for correlation clustering

by Charikar et al. [45] Another similar ILP, where instead xuv = 1 indicates that u

and v are in the same cluster and with consequently modified constraints, was pro-

posed by Brandes et al. [31]. Here, we use Modu-ILP as a tool to generate ensembles

of diverse community decompositions, as described in the next section. The ILP can
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be solved to optimality via branch-and-bound using an ILP solver such as glpk [194]

or CPLEX [129]. There are
(
n
2

)
variables and 3

(
n
3

)
constraints, where n is the number

of nodes. For large networks solving the ILP to optimality can be time consuming.

Hence, a rounding heuristic has been proposed [4] based on an approximation algo-

rithm for correlation clustering [45] (though this approach provides no approximation

guarantee for modularity). In this approach, the integrality constraints in (5.4) are

replaced by constraints requiring 0 ≤ xuv ≤ 1. The fractional solution is then rounded

by treating the fractional xuv values as pairwise distances between the nodes. In this

chapter, we focus on smaller networks that can be solved to optimality. However, for

larger networks the LP-relaxation of Modu-ILP (with subsequent rounding) can be

used, along with the same diversity constraints that are discussed next.

5.3.2 Diversity constraints

A solution to Modu-ILP reveals only one partition of the network. Suppose X0

is a
(
n
2

)
-vector 〈x0

uv〉 representing an optimal solution to Modu-ILP, and let ~1 be

the
(
n
2

)
-vector with every component equal to 1. The following constraints require a

vector X (representing a subsequent solution) to be different from vector X0:

X0 · (~1−X) ≥ d0
merge (5.5)

(~1−X0) ·X ≥ d0
split (5.6)

Here, · denotes the dot product between the vectors. Because X0, d0
merge and d0

split

are constants, the constraints represented in Equations (5.5) and (5.6) are linear. By

adding them to Modu-ILP and finding a new optimal, the ILP is forced to return

a solution X that is different from X0. The amount of difference is governed by

the parameters d0
split and d0

merge. Equation (5.5) requires that at least d0
merge variables

change from 1 to 0, thereby requiring d0
merge pairs of nodes formerly in separate clusters
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to become co-clustered. Similarly, Equation (5.6) requires at least d0
split pairs that were

co-clustered in X0 to be placed in separate clusters in X. The parameters d0
merge and

d0
split can be set to vary the level and type of diversity desired. The two constraints

balance between larger- and smaller-sized clusters, respectively. We can avoid setting

separate levels of each diversity type by consolidating these constraints:

X0 · (~1−X) + (~1−X0) ·X ≥ dchanges , (5.7)

where the left-hand side is equivalent to the Hamming distance, ∆(X,X0), between

vectors X and X0. Re-solving Modu-ILP with constraint (5.7) added will find an

alternative optimal (if one exists) or a second-best partition.

To speed up the ILP, we can use a heuristic algorithm to find a reasonable partition

and then supply that partition to the ILP solver as an initial basis. Here, this was

necessary only for the Integrin pathway and the human brain network, where we

used the partition found by Newman’s spectral method [219] as a starting basis. This

provided the solver a starting point for the branch-and-bound process and resulted

in convergence in minutes, as opposed to hours. Such an initial basis does not alter

the optimality of the solution found.

5.3.3 Modularity landscape

A partial “modularity landscape” of a network can be generated by iteratively solving

Modu-ILP including constraint (5.7) while increasing dchanges. If X i is the solution

of the ith iteration, in the (i+ 1)st iteration, we set

di+1
changes = ∆(X0, X i) + 1. (5.8)

In contrast to repeated sampling using, e.g. simulated annealing [112, 199], this ap-

proach guarantees that successive partitions maximize modularity while still being
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sufficiently different from the optimal, X0. We call this the distance-based method of

generating diverse solutions.

An alternative method for generating an ensemble of partitions is to repeatedly re-

solve Modu-ILP with the addition of several constraints of the form of Equation (5.7),

one for each previously uncovered solution. In other words, on the ith iteration, for

each previous solutionXj (0 ≤ j < i), we add a constraintXj ·(~1−X)+(~1−Xj)·X ≥ 1

to Modu-ILP. A new solution will have at least one difference from each previously

uncovered solution. We call this the point-based method because it is akin to avoiding

specific markers on the clusterings space. The point-based method produces cluster-

ings that are finer-grained than the distance-based approach because there can exist

many solutions having distance between dichanges and d
i+1
changes that the distance-based

method would miss. Using the point-based method, the ith solution returned is a

provably ith optimal modularity decomposition of the network (with clusterings hav-

ing identical modularity ordered arbitrarily). The distance-based method quickly

samples a more diverse collection of solutions. By setting dchanges > 1, the point-

based approach could also be adopted to more rapidly sample the solution space. In

the results described below, we experiment with the distance-based approach and the

point-based approach with dchanges = 1.

5.3.4 Determining core and peripheral community members

Nodes that travel together across the modularity landscape can be thought of as core

members of a community. Such nodes remain together despite the additional diversity

constraints added, which implies that their cohesion is stronger than that of other

pairs of nodes. Nodes whose co-clustered neighbors fluctuate across solutions can be

considered peripheral members that lie on the outskirts of the community. We find

core and peripheral members of communities by creating an n× n co-clustering ma-

trix whose entries equals the number of clusterings in the landscape in which nodes
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u and v are co-clustered. Dense blocks in the matrix correspond to core members;

cavities within dense blocks indicate peripheral activity or overlapping modules. Such

matrices have been previously investigated in a different context — consensus clus-

tering [103, 208] — where the goal is typically to return a centroid clustering that

lies centrally amongst a given set of input clusterings. Finding core and peripheral

proteins within dense subgraphs in PPI networks has also recently been shown to

be useful for protein complex identification [97, 182, 189]. We use the co-clustering

matrix to identify inter- and intra-module clustering dynamics.

5.4 Results and Discussion

We used Modu-ILP with diversity constraints to produce modularity landscapes for

Zachary’s karate club social network [321], the ERK1/ERK2 MAPK [142] and Inte-

grin [198] metabolic signalling pathways, and a coarse-level human brain connectivity

network [116]. For each network, we show how exploring ensembles of near-optimal

solutions reveals clustering dynamics that would otherwise be missed by single solu-

tion approaches.

5.4.1 Karate club network

We begin by studying the modularity landscape of Zachary’s karate club net-

work [321], shown in Figure 5.1. Due to an internal dispute over the price of karate

lessons, the group split into two factions, one corresponding to the club’s karate in-

structor, Mr. Hi, and the other to the club’s officers. Although not a network derived

from molecular biology, it has the advantage of being small enough to examine by

hand and to have hand-curated evidence regarding social interactions and community

membership.

Figure 5.2 shows the modularity landscape produced by Modu-ILP with distance-

based diversity constraints. There were 82 different clusterings found, after which no
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Figure 5.1: Zachary’s karate club social network [321]. The network consists of 34 nodes
and 78 edges. Red squares correspond to the officers’ faction. Blue circles correspond to
Mr. Hi’s faction.

more feasible clusterings existed. These clusterings had between 1 and 5 communities.

The number of communities does not monotonically decrease with lower modularity.

This implies that different components merge or split as dictated by the diversity

constraints and resulting modularity.

Although the true partition consisted of 2 communities, the optimal modularity

solution (with modularity 0.419790) had four clusters with each faction broken into

two communities. The network is not split into the two communities until the 31st

solution. This solution has modularity 0.343195 and corresponds closely to the actual

groups formed (with the exception of nodes 9, 10, 20, and 31 — all topologically

fringe, three of which were weak supporters of their faction leaders [321]). Such a

solution would never be found unless near-optimal solutions were considered. Further,

randomized rounding procedures would be unable to generate diverse solutions for

this network, because even when the integrality constraints were relaxed, allowing

xuv ∈ [0, 1], an integral solution was returned. This argues for the necessity of a

constraint-based approach.

The point-based method, which only constrains each solution to be minimally

different from all previous solutions, produced many more finer-grained solutions
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Figure 5.2: Modularity landscape of the karate club network. The x-axis in all panels
shows the community index (ordered list of solutions returned by iterative runs of Modu-
ILP with distance-based diversity constraints). The 0th community index corresponds to
the optimal modularity clustering. (A) The Hamming distance from each clustering to
the optimal modularity clustering. (B) The modularity of each clustering. There are 10
clusterings with modularity > 0.4, and 37 with modularity > 0.3. (C) The number of
communities in each clustering.

corresponding to incremental joining or breaking-off of communities. In fact, the

100th point-based solution still had a modularity above 0.4. Although this level of

detail could be useful for some applications, here we seek to more coarsely characterize

the clustering dynamics, and therefore only further considered the distance-based

solutions.

Dynamics for individual nodes can be better understood by looking at near-

optimal solutions. For example, the solution with the provably second-best modular-

ity (which is also the clustering that is output by Newman’s spectral method [219])

consists of 4 clusters but with slightly smaller modularity (0.418803) than the opti-

mum. The difference lies in the classification of node 10, which, in the second-best

clustering is placed with Mr. Hi and in the optimal clustering is placed with the

officer’s faction. Zachary measures the strength of friendship between pairs of in-
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dividuals based on their interactions in other social contexts (e.g. academic classes,

student pubs, and other karate studios [321]) and finds that node 10 had nearly equal

interaction with members from both factions. Node 10 was also not a strong believer

in either faction’s ideology, although he ultimately chose the officer’s club after the

fission. Hence, it makes sense that node 10 was the first to jump from one clustering

to the other.

Similarly, node 20 lies in Mr. Hi’s faction in the optimal clustering, but in subse-

quent clusterings is co-clustered with members from the officer’s faction. According

to Zachary, node 20 ultimately chooses Mr. Hi’s club, but only weakly supported Mr.

Hi’s position in the dispute [321]. In the network, node 20 is connected to both fac-

tion leaders, plus an additional supporter of Mr. Hi. Topologically and anecdotally,

it appears that node 20 is a peripheral member of Mr. Hi’s karate club.

Trying to identify core and peripheral nodes by only looking at the neighbors of a

node, however, can be misleading. Node 3, for example, is a topologically fringe node

with 10 total edges, 5 to members in both factions. But, according to Zachary [321],

node 3 was a strong supporter of Mr. Hi, whose club he joined after fission. Using only

locality to classify a node as core or peripheral is therefore not always satisfactory.

In our ensemble, we only see node 3 switch from a Mr. Hi-dominant clustering to a

clustering dominated by officer members three times. These all occur near the end

of the landscape, at clusterings 72, 78, and 80, which have a very low modularity

(average = 0.030188). Thus, the landscape also provides a statistical way say what

groups of nodes do not belong together. A static analysis of the optimal clustering

will clearly be unable to understand these type of community dynamics.

5.4.2 Signalling networks

Next, we considered the ERK1/ERK2 mitogen-activated protein kinase (MAPK)

pathway [142] shown in Figure 5.3A. MAPK is a signal-transduction pathway that
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Figure 5.3: (A) The ERK1/ERK2 MAPK signalling pathway [142]. The network consists
of 32 nodes and 54 edges. The color of the node indicates the subcellular localization of the
signalling component (green = cytosol, orange = plasma membrane, gray = nucleus, blue
= plasma membrane translocation, and pink = mitochondrion). (B) Flip book showing the
clustering dynamics of the ERK1/ERK2 MAPK pathway. Each of the four blocks corre-
sponds to a clustering produced by Modu-ILP with distance-based diversity constraints.
The number of the clustering is shown at the top, and its modularity on the bottom. Each
cluster is blocked within a polygonal shape. A variety of near-optimal clusterings provide
alternative, legitimate decompositions of the network.

is highly conserved across eukaryotes. MAPKs phosphorylate serines and threonines

of target proteins and regulate a vast array of cellular functions, including gene ex-

pression, mitosis, and metabolism [143]. The extra-cellular signal-regulated kinases

(ERKs) play a functional role in cell division, in particular meiosis and mitosis [143].

Identifying functional modules in such pathways is important because modules are

often conserved across organisms, and thus can be used to generate new pathways

from reference pathways [145, 316].

Figure 5.3B shows four snapshots of the modularity landscape. The optimal mod-

ularity (clustering 1) consists of five clusters roughly corresponding to nodes sur-

rounding the Ras activation module, the Raf and MEK kinase modules, and the

larger ERK module (split into three) — all known submodules of the pathway. In

subsequent clusterings, modules are either split or merged together, corresponding to

finer-and coarser-grained functional subunits of the pathway. In clustering 4, for ex-
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ample, two of the ERK modules are merged into 1, which is also biologically accurate.

As in the karate network, we also find that the number of clusters does not simply

monotonically decrease or increase as the diversity constraint, dchanges increases.

Figure 5.4 shows a global view of how the affiliation between each pair of nodes

changes across clusterings. The intensity of cell (u, v) in the heatmap corresponds to

the number of clusterings in the landscape in which nodes u and v are co-clustered.

The outlines of the five optimal blocks in Figure 5.4 provide a basic hint about the

modular structure of the pathway, but it does not tell the whole story. For example,

nodes 20 (PKA) and 27 (Rap1a) travel together much more than 27 and 13 (Mos),

even though all three were placed together in the same optimal module. From the

layout shown in Figure 5.3A, this makes sense — PKA and Rap1a are connected to

each other and to the core Raf module by only one edge, whereas Mos lies central

in the Raf module. This suggests that PKA and Rap1a play a peripheral role in

the module, or perhaps that they should be placed together in their own module (as

occurred in clusterings 2 and 18 in Figure 5.3B).

The heatmap also provides a way to measure the confidence in a community by

looking at how groups of nodes change their membership with respect to each other.

For example, nodes 15, 17, 30, 31, and 32, corresponding to a portion of the ERK

module, were co-clustered across all clusterings, as indicated by the solid red block

in the upper-right corner of Figure 5.4. This implies that we are very confident in

this module, more so than any other. Other clusters vary greatly with respect to

how often their members travel together. An optimal clustering alone would yield

a heatmap with solid red blocks for all clusters, which is much less informative of

community membership strength.

We also looked at the Integrin signalling pathway [198], known to be vital for cell

migration and growth. This pathway is longer and less dense than the MAPK path-

way. The optimal modularity clustering found a reasonable decomposition consisting
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Figure 5.4: Co-clustering heatmap for the ERK1/ERK2 MAPK pathway [142], which
provides a broad view of how pairs of nodes traverse the modularity landscape. Each cell
(u, v) in the heatmap corresponds to the number of clusterings in which nodes u and v
were placed together. The nodes are ordered according to the optimal modularity clustering
found by Modu-ILP. A similar picture was obtained by setting the intensity of a cell
(u, v) to be the total modularity sum of all clusterings in which u and v were co-clustered.
Though outlines of the five optimal modules are present, the fluctuation of activity within
and between the five blocks reveal interesting inter- and intra-community interactions.

of modules with long chains of nodes. These long chains are often prefaced by gate-

keeper nodes that branch off multiple non-overlapping paths. Interestingly, many of

the near-optimal clusterings identified these gatekeepers by placing them into differ-

ent modules corresponding to the various branches. For example, the Cdc42 protein

acts as an in-between-module node that ultimately leads to activation of actin and

the c-Jun N-terminal kinases (JNK). It was first placed amongst nodes in the JNK

module, but later switches into the actin module. A similar dynamic was seen for

branches leading out of the focal adhesion kinase, which is involved in cellular ad-

hesion and migration. Network centrality measures have also been used to identify

“between” nodes [117, 319], though they do not typically take modules into account.
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Figure 5.5: The anatomical network of the human cerebral cortex [116]. The network con-
sists of 66 nodes (brain regions) and 2, 149 multiedges (dense axonal-pathways). The ‘r’ and
‘l’ prefixes correspond to the right and left hemispheres of the brain. The remaining portion
of the names correspond to cortical regions (e.g. ENT = entorhinal cortex, TP = tempo-
ral pole, PC = posterior cingulate cortex, CUN = cuneus, and PARH = parahippocampal
cortex). The layout is set to spatially agree with the actual positions of the regions in the
brain. Coordinates of the regions were estimated from Figure 6 in Hagmann et al. [116], as
well as from the Brede database [222].

5.4.3 Human brain network

Lastly, we investigated a network representing the axonal pathways within the cortex

of the human brain. Brain maps have typically been constructed using functional

magnetic resonance imaging (fMRI), which measures neural activity via blood flow

(e.g. [84, 109]). Recently, Hagmann et al. [116] used a technique called diffusion

spectrum imaging (DSI) which identifies neuronal fiber trajectories by looking at the

diffusion of water molecules in brain tissues. DSI produces a 3D water-flow gradient
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at specified positions in the brain to which tractography can be applied to recover the

underlying neural tracts. Tractography identifies, for each position, the diffusion of

water to that position from all other directions. Thus, we can determine the axonal

trajectories across white matter, i.e. the connectivity across different regions in the

brain. Regions are typically defined manually after white-gray matter segmentation

(white = nerve connections, gray = congregations of neurons). The resulting network

is composed of nodes (brain regions) and weighted edges, corresponding to the density

of the connections between brain regions.

Hagmann et al. [116] applied their technique to generate a brain “connectome” for

five human participants. Each connectome consists of 998 regions of interest (ROI).

Hagmann et al. [116] also created a coarser network by condensing the 998 ROI into

66 anatomical regions. An edge (u, v) in the anatomical network was weighted by

computing the average of all ROI edges that map to (u, v). To handle weighted

networks, we used an extended version of modularity that converts weighted edges to

unweighted, multi-edges [218]. In particular, in the multi-edged anatomical network

we created b1000 · w(u, v)c edges between nodes u and v, where w(u, v) is the weight

of edge (u, v) in the weighted anatomical network. The only change required in the

definition of modularity is with Auv, which is now the number of edges between u and

v, instead of just 0 or 1. The final anatomical network contained 66 nodes and 2,149

multiedges.

We ran Modu-ILP with distance-based diversity constraints on the first subject’s

human connectome (Figure 5.5). The similar modularity values of the near-optimal

solutions suggest extreme uncertainty in whether the optimal solution represents the

true partitioning (this is known as the modularity degeneracy problem [108]). Fig-

ure 5.6 shows the optimal clustering plus two near-optimal clusterings. The near-

optimal clusterings are only slightly less topologically modular. In fact, amongst the

first 60 solutions, we find that 53 are within 1% of the optimal modularity.
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Figure 5.6: Flip book showing the clustering dynamics of the anatomical brain net-
work [116]. Each of panel corresponds to a clustering produced by Modu-ILP with distance-
based diversity constraints. The number of the clustering is shown at the top, with mod-
ularity and spatial coherence (lower values are better) on the bottom. Co-clustered nodes
share the same color and shape. Black circles highlight nodes whose communities change
across at least one of the clusterings. The near-optimal modularity partitions better match
the spatial coordinates of the regions than the optimal partition.

The brain network is unique among those we consider because the nodes have

a fixed spatial position. Hagmann et al. [116] assigned spatial coordinates to each

region corresponding to its center of mass, but because not all spatial coordinates

were available, the layout in Figure 5.5 is taken from the layout drawn in Hagmann

et al. [116]. Three-dimensional spatial coordinates were directly available for 23 of

the 66 regions. An additional 15 regions were assigned spatial coordinates based on

averaging the coordinates from several studies for the relevant region using the Brede

neuroimaging database [222].

The spatial coordinates themselves define a rough clustering, which can be used

as an additional measure (along with modularity) to evaluate the plausibility of a

particular brain network partition. We defined the spatial coherence of a clustering as

the average Euclidean distance between anatomical regions placed in the same cluster.

The near-optimal clusterings shown in Figure 5.6 have a better spatial coherence than

the optimal solution at only a tiny decrease in modularity and despite having the same
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number of clusters. In fact, out of the 60 near-optimal solutions 30 of these solutions

have a > 1% advantage in spatial coherence, 24 have a > 2% advantage, and 12 have

a > 3% advantage. Naturally, nodes that do not match what is expected spatially

may be playing a special functional role in the brain and might warrant further

investigation. Such spatial outliers immediately become apparent when considering

ensembles of solutions.

5.5 Conclusions and Future Work

Using four social and biological networks, we showed how traversing the modularity

landscape by explicitly constraining for diversity can be used to reveal clustering dy-

namics that would otherwise be missed by single-solution or randomization-based pro-

cedures. Our ensembles of near-optimal network decompositions identified resilient

communities, core-peripheral community members, and hierarchical layers of commu-

nity structure. We also found cases where near-optimal solutions corresponded better

with known community structure than the optimal solution. Our study shows that

the insights provided by near-optimal solutions augment our current understanding

of community structure and dynamics and should not be ignored.

Several future directions exist for studying and generating multiple clusterings:

More efficient methods for larger networks. How can our techniques be

adapted for larger networks? One possibility is to use the linear relaxation of Modu-

ILP with subsequent rounding. Another possibility is to heuristically constrain the

clustering space and then find provably near-optimal solutions in the smaller, more

structured space. Further, we presented mostly anecdotal evidence regarding inter-

and intra-module dynamics. How can we test these notions on a large scale, such as for

the automated identification of core and peripheral proteins in functional biological

modules [97, 182, 189]? We investigate these ideas further in chapter 6.
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Application to graph summarization. Can we find near-optimal clusterings for

other objective functions, besides modularity? Graph summarization, for example,

has the following alternative ILP formulation:

min
all partitionings

∑
Vi≤Vj

min


1 + ΠViVj

− AViVj
superedge, ‘–’ corrections

AViVj
no superedge, ‘+’ corrections

, (5.9)

where ΠViVj
is the number of possible edges between supernodes Vi and Vj in the

candidate partition, and AViVj
is the number of actual edges between the supernodes.

The cost of a clustering equals the cost of representing all the edges between the

supernodes in the clustering. These edges can be represented by adding a superedge

and negative corrections, or by adding only positive corrections — whichever option

is less costly (see §1.3.1). Fortunately, to find the lowest cost representation, not

all possible partitions need to be enumerated because each supernode only contains

nodes that are all exactly two-hops from each other. Hence, the search space can be

massively pruned a priori.

Correlation with time-based dynamics. Do clustering dynamics across the

modularity landscape correspond to network dynamics over time? Perhaps

peripherally-connected nodes mediate dynamic processes in the cell or participate

in different modules based on the current cellular condition. This kind of analysis

can give the theory of near-optimal clusterings a more formal setting to define their

usage and test their utility.
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6. Uncovering Many Views of Biological Networks

Using Ensembles of Tree-derived Partitions

G. Duggal, S. Navlakha, M. Girvan, and C. Kingsford. In Proc. 1st Intl.

Workshop on Discovering, Summarizing, and Using Multiple Clusterings

at KDD, 2010.

In the previous chapter, we demonstrated the power of multiple clusterings for track-

ing the clustering dynamics of networks. However, the approach we proposed required

solving an integer linear program exactly, which was only reasonable for small net-

works. In this chapter, we describe algorithms to find ensembles of near-optimal

modularity partitions in larger networks. Instead of exploring the entire clustering

landscape, our approach traverses the landscape induced by a given hierarchical tree

decomposition and finds provably near-optimal partitions within this space. We also

propose efficient algorithms to exactly count the number of solutions in the space

and to generate highly modular and highly different partitions. When applied to a

protein-protein interaction (PPI) network for yeast, we find that the near-optimal

solutions we find better characterize the functional organization of the network than

any single solution does by itself.

6.1 Introduction

Near-optimal partitions can help expand our understanding of community structure in

a network. They can be used to differentiate core and peripheral community members

by looking at which nodes more readily change their cluster membership [97, 182];

they can be used to find robust communities, i.e. sets of nodes that remain co-clustered

across many partitions; they can be used to gauge confidence in the optimal solutions

based on the quality of nearby solutions; and they can be used to mitigate noise in

the network [211]. The ILP approach we proposed in the previous chapter, however,
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does not scale to large networks without employing additional heuristic techniques

(such as rounding the LP relaxation).

Due to the general difficulty of exactly optimizing clustering objective functions

(e.g. [31]), many clustering algorithms used for large networks are hierarchical; i.e.

they iteratively merge or split clusters in each step according to the optimization

criterion. The advantage of these pairwise operations is that they can typically be

done quickly and yield a reasonable set of clusterings encoded within a hierarchical

tree decomposition. It is at this intersection — between near-optimal clustering and

hierarchical tree decompositions — that this chapter lies:

Problem 6.1: How can we systematically uncover near-optimal solutions

in large networks that have been hierarchically clustered? How many so-

lutions exist? Can we find high-quality and diverse solutions?

6.1.1 Our contributions

We introduce several algorithms to find provably near-optimal partitions encoded

within a hierarchical tree decomposition. We use the modularity [219, 220] optimiza-

tion function as a template and add constraints when selecting successive solutions,

so that the ith solution found by our algorithm is a provably ith-best solution that is

compatible with the tree.

We also show how to count the number of tree-induced partitions that have a

modularity lying within a bounded range. Our results on a PPI network for the yeast

S. cerevisiae show that there exist an enormous number of nearly identical partitions

with similar modularity, which confirms the modularity degeneracy problem [108] for

this application.

Although these strictly near-optimal partitions can be used to identify robust

communities, it is also important to quickly sample highly modular and structurally

dissimilar partitions. We introduce a repulsion term into the modularity optimization
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function, which allows us to strike a balance between modularity and diversity of

solutions. When tested on the PPI network, we find that the diversified partitions are

indeed enriched for different biological functions, and therefore represent alternative

and complementary views of the network’s structure.

6.2 Related Work

In addition to the related work discussed in §5.2, a few other techniques have been

proposed to find multiple clusterings. Bae and Bailey [15] find alternative clusterings

in hierarchical data structures, but their technique requires that the alternative clus-

terings have the same number of clusters as the optimal clustering. Moreover, they

do not allow two nodes that are originally in the same cluster to be placed in the same

cluster in a subsequent clustering. This latter requirement can be too restrictive in

network clustering scenarios when certain sets of nodes (e.g. cliques) should not be

disturbed, or if the goal is to look for more subtle differences between solutions.

Gondek and Hofmann [106] use the coordinated conditional information bottle-

neck to find non-redundant clusterings. However, their approach is probabilistic, not

easily adaptable to network clustering problems (such as modularity), and requires

the number of clusters to be given a priori. Qi and Davidson [247] systematically

transform the input data so that the same algorithm applied to the transformed data

returns a new clustering. In contrast, we explicitly constrain for quality and diver-

sity in the clustering process itself. Furthermore, like many other approaches, they

report only a single alternate solution, whereas we are interested in generating large

ensembles.
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6.3 Methods

6.3.1 Generating provably near-optimal tree-induced partitions

We start with an input network G (e.g. Figure 6.1A) and a structured reduction of

the space of possible partitions in the form of the Fast Greedy (FG) [53] hierarchical

clustering of G (Figure 6.1B). The FG algorithm starts with each node in its own

cluster and in each step merges the pair of clusters that yields the largest positive gain

in modularity. Once there no longer exists a positive pair, the standard algorithm

stops and returns the current set of clusters and its modularity (which ranges from −1

to 1 [31]). By continuing to merge the pair of clusters that yields the least negative

modularity, we construct the entire hierarchical tree decomposition.

We now describe how the generalized VI-Cut framework introduced in chapter 3

can be used to generate optimal and near-optimal tree-induced modularity partitions.

Each internal tree node x corresponds to a cluster consisting of the leaves of the

tree rooted at x (denoted by L(x)). L(Root) contains all the nodes, and for leaves,

L(x) = x. We define a quality score, q(x), for each tree node x to equal the modularity

of the cluster induced by x. In particular:

q(x) =
1

2m

∑
u,v∈L(x)

(
Auv −

kukv
2m

)
, (6.1)

where A is the adjacency matrix of G, ku is the degree of node u in G, and m is the

number of edges in G [220]. The total modularity Q for a partition is decomposable

into the sum of each cluster’s modularity contribution. Any non-overlapping partition

of the nodes consistent with the tree corresponds to selecting a set of nodes in the tree,

called a node-cut, such that each leaf has exactly one ancestor among the chosen nodes.

Grouping together leaves with the same ancestor in the node-cut K corresponds

to a partition of the nodes into |K| non-overlapping clusters. To find an optimal

modularity partition from the tree we want to find the node-cut with the highest
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induced modularity:

argmax
K

∑
x∈K

q(x). (6.2)

Despite there being an exponential number of possible node-cuts in the tree, we can

find the one representing the highest modularity partition in linear time using the

same algorithm introduced in §3.3.1. The dynamic programming algorithm considers

a tree node x and either chooses it or chooses the best solution of each of the subtrees

rooted at the children of x, recursively. In particular, for each node x we set:

q∗(x) = max


q(x) case I (default if x is a leaf)

q∗(x`) + q∗(xr) case II.
(6.3)

Here, x` and xr indicate the left and right children of x, respectively. When x is a

leaf, only case I applies. By backtracking from the root node, we can find the nodes

chosen in the optimal cut, and can thus produce the optimal modularity clustering

compatible with the tree.

To find the second-best tree-compatible solution, the idea is to systematically

“rattle” the previous solution so that the subsequent solution is forced to have a

minimally lower modularity. Let the optimal tree-derived partition P1 consist of r

clusters {C1
1 , C

2
1 , · · · , Cr

1}. To find the next best solution (P2), we observe that at

least one cluster in P1 must not appear exactly in P2. That is, at least one cluster

of P1 must be perturbed in some way — either splitting the cluster into multiple

clusters, or by merging the cluster with another.

To explore each of these possibilities, we use the idea of forbidden nodes (which

was first introduced in §3.4.3 as a constraint to find better OTU clusterings). Let tree

node x be marked as forbidden if x is not allowed to be part of a node-cut (effectively

setting q(x) = −∞). By disallowing a node to be part of the next partition, the
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dynamic programming procedure will be forced to choose the best modification of

the partition that does not involve x. To deal with the uncertainty of which of

the r clusters to perturb, we try all of them; i.e. we iteratively mark each of the

r clusters of P1 as forbidden and re-cut. These solutions represent all the possible

ways to minimally offset the previous solution. Each of the r solutions found by

this procedure are placed on a priority queue U , ordered by their modularity. The

partition on the top of the queue is a second-best solution and it is dequeued from the

priority queue. Solutions not picked in the current step remain in U because these

solutions can emerge later as the next best solution.

Figure 6.1 shows an example of finding the second-best partition given a network

(Figure 6.1A) and the Fast Greedy hierarchical clustering tree (Figure 6.1B). Fig-

ures 6.1C–E show the three candidate partitions found by successively marking each

cluster in the optimal partition as forbidden and re-cutting the tree using the dynamic

programming algorithm. Notice that the candidate partitions are perturbed from the

optimal partition in different ways: in Figures 6.1C,E the next best solution chooses

the forbidden node’s descendants, whereas in Figure 6.1D it chooses the node’s an-

cestor (thereby merging two clusters). Amongst these candidates, we choose the one

with the highest modularity. In the example, the provably second optimal clustering

is the one shown in Figure 6.1C.

To find a provably ith-best partition, we iterate this process. We successively mark

each cluster in Pi−1 as forbidden (r, 4, s, t in the example when i = 3) in addition to

marking as forbidden the nodes that were forbidden when finding Pi−1 (b in the

example), and re-cut. This gives us |Pi−1| not necessarily unique new candidate

partitions which are added to U . We then report the solution at the top of U (the

one with the highest modularity). This may be one of the |Pi−1| solutions generated

in this step, or a solution generated in a previous step and which already lies in U .

Finding the ith solution takes O(|Pi−1|n+ |Pi−1| log(|U |)) time, where n is the number
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Figure 6.1: Overview of the Modu-Cut algorithm. (A) The input network. (B) The
hierarchical clustering of the network produced by the Fast Greedy algorithm [53]. Bold tree
nodes correspond to the optimal modularity node-cut. (C–E) Three candidate near-optimal
partitions considered by our method when finding the second-best solution. Each candidate
corresponds to marking a different cluster from the optimal clustering as forbidden. Solution
(D) has the highest modularity (0.331), which is the provably second best clustering from
the tree. (F) The modularity priority queue showing the solutions considered thus far along
with the corresponding nodes marked as forbidden.

of nodes in the network. The first term corresponds to the number of additional

candidates considered, each taking O(n) time to find. The second term corresponds

to the time required to add the candidates to the priority queue U .

Figure 6.1F shows the candidate solutions stored in U for the example. The

first row shows that initially no nodes were marked as forbidden, which resulted in

partition {b, s, t}. Rows 2–4 show the three candidates considered in Figure 6.1C–E.

Rows 5–8 and 9–12 shows the additional candidates considered when finding P3 and

P4, respectively.

So, the basic idea can be sung as such:

� Knock ’em out and cut �

� Knock ’em out and cut �

� If you have any doubt, just �

� Knock ’em out and cut. �
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Algorithm 6.1 Modu-Cut(T, s)
1: Partitions ← [ ] # List of near-optimal partitions
2: U ← [ ] # Modularity priority queue
3: i← 0
4: (q, cut-nodes)← cut(T, {}) # Optimal solution
5: U ← push(q, cut-nodes, {}) # Add solution to the queue
6: while i < s do
7: (q, cut-nodes,F)← U.pop() # Next best solution
8: P [i]← cut-nodes # Save the solution
9:
10: # Iteratively perturb the solution
11: for all u ∈ cut-nodes do
12: (q, cut-nodesu)← cut(T,F ∪ {u})
13: U ← push(q, cut-nodesu,F ∪ {u})
14: end for
15: i← i+ 1
16: end while
17: return Partitions
Note: The function cut(T,F) returns the modularity (q) and partition (cut-nodes)
of the best solution in T with nodes in F marked as forbidden.
Note: For brevity, we omit pseudocode for handling duplicate solutions.

We call this algorithm Modu-Cut. Pseudocode is shown in Algorithm 6.1 and

a proof of its correctness is given below. Although we focus on modularity, our

technique is applicable to finding near-optimal solutions from any hierarchical tree

decomposition where the objective function is decomposable into the sum of each

cluster’s contribution (e.g. partition stability defined using random walks [60, 174]).

Proof of correctness for Modu-Cut. The following is a sketch of the proof of

correctness of Algorithm 6.1. For simplicity, we ignore the complication of handling

ties. Let C(F ) denote the set of solutions compatible with the tree that do not use

any nodes in the set F . Let F(P ) be the set of forbidden nodes in effect when P

was added to the priority queue U . Let Expand(P ) = {F(P ) ∪ {x} : x ∈ P} for any

node-cut P .
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Lemma 6.1.
⋃
F∈Expand(Pi+1)C(F ) = C(F(Pi+1)) \ {Pi+1}.

Proof. The left-hand side is a subset of the right-hand side because

C(F(Pi+1) ∪ {x}) ⊆ C(F(Pi+1)) with the caveat that Pi+1 can not exist in

C(F(Pi+1)) by definition. Let Y be any solution in C(F(Pi+1)) \ {Pi+1}. Because

Y 6= Pi+1, there must exist some cluster x′ ∈ Pi+1 such that x′ /∈ Y . That means

Y ∈ C(F(Pi+1) ∪ {x′}), which corresponds exactly to one of the C(F ) terms on the

left-hand side.

Let S<Q(Pi) be the set of all solutions with modularity strictly less than Q(Pi).

Let L(U i) be the set of forbidden node sets in U after the ith step of the algorithm.

The next theorem shows that after each iteration, the set of solutions considered by

the algorithm includes the next-best solution.

Theorem 6.1.
⋃
F∈L(U i) C(F ) = S<Q(Pi). In other words, the set of solutions that

are compatible with the set of forbidden nodes in the queue U i is equivalent to the set

of all solutions with modularity < Q(Pi).

Proof by Induction.

Base case: i = 1. Let X =
⋃
x∈P1

C({x}), which is the left-hand side of the

theorem statement when i = 1. Let partition Z /∈ X . Z must not be in any C({x})

in the union defining X . Hence, for all clusters x ∈ P1, we have x ∈ Z, and therefore

Z = P1.

Induction step: We need to show that
⋃
F∈L(U i+1) C(F ) = S<Q(Pi+1). After pro-

cessing Pi, the Modu-Cut algorithm proceeds by removing F(Pi) from the priority

queue, and add the solutions associated with Expand(Pi) to U .⋃
F∈L(U i+1) C(F ) can be rewritten as:

 ⋃
F∈L(U i)\{F(Pi+1)}

C(F )

 ∪
 ⋃
F∈Expand(Pi+1)

C(F )
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Applying Lemma 6.1 and substituting, we can replace the second term with

C(F(Pi+1)) \ {Pi+1}:

 ⋃
F∈L(U i)\{F(Pi+1)}

C(F )

 ∪ C(F(Pi+1)) \ {Pi+1} (6.4)

The above expression equals
(⋃

F∈L(U i) C(F )
)
\ {Pi+1}. Applying the induction hy-

pothesis, this equals S<Q(Pi) \ {Pi+1}. By definition, this in turn equals S<Q(Pi+1).

The correctness of the algorithm follows immediately from Theorem 6.1. We

know that the (i+ 1)st solution Pi+1 is in S<Q(Pi). By Theorem 6.1, Pi+1 ∈ C(F ′) for

some F ′ ∈ L(U i). Since the heap contains the best solution compatible with every

F ∈ L(U i), the heap will contain the solution Pi+1.

6.3.2 Counting the number of solutions within a modularity range

The basic dynamic programming algorithm can be applied to count the number of

solutions compatible with the clustering tree T that have a modularity within a

bounded range (B`, Bu). To do this, assume all the node weights are integers. This

can be achieved by multiplying the modularity values by a large constant (e.g. 4m2

for unweighted networks).

Let the function Count(x, b) equal the number of node-cuts in the subtree of T

rooted at x that have weight equal to b. When x is a leaf, then Count(x, b) = χ(q(x) =

b), where χ(q(x) = b) is 1 if q(x) = b and 0 otherwise. When x is not a leaf, we have:

Count(x, b) = χ(q(x) = b) +

µ′∑
i=µ

Count(x`, i)× Count(xr, b− i), (6.5)

where x` and xr are the left and right children of node x, and where µ and µ′ are the

minimum and maximum possible modularities achievable for any partition of any sub-
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tree (computed using the same dynamic programming algorithm from §6.3.1 with min

and max, respectively). The right-hand side enumerates all possible ways of dividing

up the target modularity (b) between the left and right subtrees. The function Count

can be computed starting at the leaves and proceeding up to the root. The number

of solutions within a range (B`, Bu) can be computed by
∑Bu

i=B`
Count(Root, i). The

running time is O(n(µ′ − µ)2). We call this algorithm Modu-Count.

The dependence of the running time on the magnitudes of the modularities is un-

avoidable unless P = NP without exploiting additional properties of the modularity

function. This follows by reducing the Subset Sum problem to our problem of count-

ing the number of cuts of a given value in a binary, node-weighted tree (dubbed Tree

Weighted Cut Count). Given an instance “{x1, . . . , xN}, B > 0” of Subset Sum,

create an instance of Tree Weighted Cut Count with 2N leaves as shown in

Figure 6.2. (Although this is not a binary tree, it can be converted into one by re-

placing the root node with a large enough binary tree.) In the constructed tree, every

internal node u has weight q(u) = 0, and half the leaf nodes have q(u) = 0. This tree

has a node-cut of weight B if and only if there is a subset of {x1, . . . , xN} that sums

to B, solving the Subset Sum problem. Hence, the general Tree Weighted Cut

Count problem is NP-hard, and the pseudopolynomial Modu-Count algorithm is

justified. For the special case of a simple, unweighted network, the multiplicative

constant of 4m2 results in integers for all possible partitions of a network. Since

m can never be greater than n2, and the number of nodes in the tree is 2n − 1,

Modu-Count runs in polynomial time for simple, unweighted networks.

6.3.3 Constraining for more diverse solutions

If there are many near-optimal solutions to wade through, the techniques of §6.3.1 can

only be used to track minute differences between near-optimal partitions. Although

these differences can be exploited to uncover subtle structural differences between

solutions (see chapter 5), it would be difficult to use this technique to find highly
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Figure 6.2: The instance of Tree Weighted Cut Count used in the reduction from
Subset Sum.

modular and highly different solutions without slowly traversing the entire partition-

space. Diverse partitions, however, can offer alternative and meaningful views of the

network’s structure. In this section, we explicitly constrain for diversity of partitions

by introducing a repulsion term to Equation (6.1) that biases against solutions that

are too similar to the optimal solution, P1.

To define the distance between two solutions or partitions, we use the variation of

information (VI) [202]. We chose this measure among the many others proposed to

compare clusterings (see Meila [202] for review) because it is information-theoretic, a

true metric in partition-space (non-negative, symmetric, obeys the triangle inequal-

ity), and importantly, can be written such that the total distance between two parti-

tions is the sum of each cluster’s contribution. It is defined as follows:

VI(P1, PK)
.
= 2H(P1, PK)−H(P1)−H(PK), (6.6)

where H(PK) and H(P1) are the entropies associated with partitions PK and P1

(represented as random variables of cluster assignment), and H(P1, PK) is the joint

entropy of PK and P1. The measure ranges from 0 (identical partitions) to log(n),

where n is the number of nodes in the network. Because VI is decomposable (like

modularity), we can modify the function q(x) in Equation (6.1) to include x’s con-

tribution towards the VI distance from P1 to the cut-induced clustering PK . Over

all cuts K, H(P1) remains constant and therefore we can ignore it. A cluster x
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contributes

Node-VI(x)
.
= p(x) log p(x)− 2

∑
C∈P1

p(x,C) log p(x,C) (6.7)

towards the total VI distance, where p(x) = L(x)/n, which is the percentage of total

nodes in cluster x, and p(x,C) = |L(x)∩C|/n, which is the fraction of total nodes in

cluster L(x) that are also in cluster C. The two terms in Equation (6.7) correspond

to x’s contribution to the overall entropy of PK and x’s contribution to the joint

entropy of P1 and PK , respectively. We incorporate the node’s VI contribution into

Equation (6.1) as:

q′(x) = q(x) + αNode-VI(x)/ log(n), (6.8)

where q(x) is the modularity contribution of tree node x as given in Equation (6.1),

and where α is a parameter that governs how much weight we place on the VI term.

The Node-VI term acts as a force that pushes away from solutions that are too

similar to P1. We normalize the VI value by its maximum value (log(n)) so that the

modularity and VI measures lie on roughly the same scale.

We replace the q(x) values on the tree with these q′(x) values and use the dynamic

programming algorithm of Equation (6.3) to find the cut with the highest weight. For

any node-cut K, we have:

∑
x∈K

q′(x) = Q(PK) +
α

log(n)
VI(P1, PK). (6.9)

That is, the weight of a node-cut K equals the modularity of PK plus the normalized

VI distance of PK to P1, weighted by α. To generate an ensemble of diverse solutions,

we find a single solution at each value of α and iterate for varying values of α,

ignoring all previous solutions found. Each solution found is guaranteed to be one
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compatible with the tree that is optimal according to the chosen α trade-off. Though

not guaranteed, larger α values will typically yield solutions that are more distinct

from the optimal solution.

Equation (6.8) offers one approach to balance between the magnitude of modu-

larity of PK and its amount of difference from P1. An alternative formulation would

be to use hard constraints that forbid solutions that are too similar to previous so-

lutions. Here, we use soft constraints so that the algorithm naturally uncovers a

trade-off between the two optimization criteria.

We call this algorithm Modu-Mix.

6.4 Results and Discussion

We tested our algorithms on a high-confidence PPI network for the yeast S. cere-

visiae, whose largest connected component contains 1,647 proteins and 2,518 inter-

actions [318]. First, we show how our Modu-Cut algorithm discovers many similar

near-optimal solutions, which can be used in conjunction to differentiate between ro-

bust and non-robust communities. Second, we empirically quantify the modularity

degeneracy problem [108] by counting the number of partitions lying within a bounded

modularity range using our Modu-Count algorithm. Third, we incorporate a dis-

similarity term into the modularity maximization function to uncover ensembles of

high-quality and diverse partitions using our Modu-Mix algorithm. All experiments

were run on 2.4 Ghz machine with 4 GB of RAM.

6.4.1 Near-optimal partitions in the yeast PPI

We ran Modu-Cut on the largest component of the yeast PPI network. It took

6.4 minutes to generate the first 300 provably near-optimal tree-compatible solutions.

Figure 6.3A shows how slowly the modularity of near-optimal solutions decreases

with respect to the optimal partition (P1). P300 has a modularity that is only 0.00019

less than the optimal (0.73884 vs. 0.73865), suggesting extreme uncertainty in the
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Figure 6.3: Comparison of how modularity and VI distances change across the modular-
ity landscape for the Modu-Cut algorithm. (A) Modularity slowly decreases with each
subsequent near-optimal solution. (B) The near-optimal solutions are also structurally very
similar to the optimal solution, measured using the VI distance.

optimal solution, even when constrained by the FG tree. These solutions are also very

structurally similar: Figure 6.3B plots the normalized variation of information [202]

distance between P1 and Pi, where 1 ≤ i ≤ 300. The VI distance between the

near-optimal solutions and the optimal does not necessarily monotonically increase

because, from solution to solution, the perturbed cluster can be of different size and

can be either split or merged, each yielding different changes in VI. However, there is

a general trend of increasing VI distance with subsequent solutions, as expected.

Subtle differences in near-optimal solutions can be used to differentiate between

robust and non-robust communities. Figure 6.4 shows the percentage of times each

cluster in P1 appears exactly (Jaccard coefficient of 1) in the 300 near-optimal par-

titions. Clusters that remain exactly intact are suggestive of a resilient community

that has withstood the pressure of additional constraints. The yellow bars of the plot

highlight the clusters that remain unperturbed in 95% of the near-optimal partitions.

The non-robust clusters (green bars) are likely to contain many nodes that are pe-
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Figure 6.4: Near-optimal solutions can be used to differentiate between robust and non-
robust communities. The x-axis shows the cluster ID of each cluster in the optimal solution,
P1. The y-axis shows the percentage of the first 300 near-optimal solutions that contain the
cluster exactly. The yellow bars highlight the clusters which appear exactly in ≥ 95% of the
near-optimal partitions.

ripherally connected to the core members of the cluster. Such dynamics would not

be captured by any single-solution approach.

6.4.2 Astronomical number of solutions in the yeast PPI

To understand how partitions of various quality are globally distributed in the mod-

ularity landscape, we used Modu-Count to count the number of solutions in the

yeast PPI that lie within a given range of modularity. Figure 6.5 experimentally

confirms the modularity degeneracy problem [108], which claims that there can be an

exponential number of equally valid, high modularity partitions. In particular, there

are exactly 4, 068, 367, 271, 231, 892, 000, 117, 969, 958, 274 (i.e. ∼ 4× 1030) tree-based

partitions with modularity between 0.700 and 0.739 (the maximum modularity). Fig-

ure 6.5 also shows that the degeneracy increases with lower modularity values before

decreasing again near the very non-modular solutions.

We contrasted the shape of the modularity-count curve for the PPI network with
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Figure 6.5: The Modu-Count algorithm applied with a multiplicative constant of 1000
to four networks of the same size and similar density: Barabási-Albert (γ = 1), Rewire, PPI,
and Erdös-Renyi (p = 0.0025). The optimal modularity for the PPI network corresponds
to > 30, 000 different solutions all with modularity 0.738∗, and this number increases sig-
nificantly as the modularity decreases. To contrast, there are only 4,032 solutions at the
optimal modularity for the Erdös-Rényi random graph, and < 1000 solutions at the optimal
modularity for the rewired graph. It took less than 2 minutes to generate these counts.

the curve for a Barabási-Albert (BA) [19] random network, a randomly rewired net-

work (“Rewire”), and an Erdös-Renyi (ER) random network with the same number

of nodes. The rewired network’s curve is similar to the PPI network’s curve, yet at

the optimal modularity only 768 solutions exist compared to 32,256 solutions for the

PPI network. The ER network has a much lower maximum modularity due to its

inherently random nature of adding links. Interestingly, the BA network’s curve is

similar to the PPI network’s, which is additional evidence of the coherence of the pref-

erential attachment model with PPI networks [71]; it also suggests that modularity

degeneracy is not intrinsic to the PPI network alone.

These results suggest that, for even one heuristically constrained search structure

(the FG tree), the modularity landscape offers a plethora of reasonable solutions and

that full confidence should not be placed in a single partition.

147



6.4.3 Many views of the yeast PPI

Finally, we ran Modu-Mix on the PPI network to discover a mélange of non-

redundant partitions. Following the procedure outlined in §6.3.3, we added a re-

pulsion term — the variation of information — to the quality score of each tree node

as a means to penalize solutions that are similar to the optimal. The level of diversity

is governed by a single parameter, α, which we varied from 0.0 to 3.0 in steps of 0.2.

Each value yielded a different partition. It took < 1 minute to generate the 15 total

partitions.

Figure 6.6 shows the change in modularity and VI of each solution with respect

to the optimal solution. The curve decays much more rapidly than the corresponding

plot for the Modu-Cut algorithm (Figure 6.3A), which shows that we can find diverse

and reasonable solutions much more quickly than before. In particular, with only a

10% drop-off in modularity, we can get a solution that is 25% different structurally

(α = 0.8).

A common method to gauge the value of a biological network partition is to test

each of its clusters for functional enrichment. Clusters consist of nodes (proteins)

that engage in one or more biological functions in the cell, such as protein synthesis,

regulation of metabolism, or transcription [113]. Sets of nodes engaged in a common

function often appear close together in PPI networks [38, 119, 258].

We tested how well the clusters found in each of our partitions match known

biological functions. This is a useful task because the function of many proteins,

even in well-studied species such as yeast, remains unknown. As a result, compu-

tational approaches have flourished as a means to hypothesize about the functional

annotations of an unannotated protein based on the annotations of its co-clustered

neighbors in the PPI network [35, 215]. We tested each cluster for enrichment of

MIPS functions [113] using the hypergeometric test (strict p-value < 10−7), ignoring

small clusters with < 3 proteins and correcting for multiple hypotheses. With this
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Figure 6.6: Comparison of how modularity and VI distances change across the modularity
landscape for the Modu-Mix algorithm: (A) Modularity decreases quickly as the diversity
constraint, α, increases. (B) Increasing α also yields structurally diverse solutions. Taken
together, with only a 10% drop-off in modularity, we can find a new solution that is 25%
different structurally (α = 0.8).

test, a cluster is said to be enriched for a biological function f if the probability of

obtaining the observed intersection size (or greater) between the set of genes in the

cluster and the set of genes known to be associated with f is less than 10−7.

Table 6.1 shows how the multiple partitions found by the Modu-Mix algorithm

provide different views of the PPI network’s functional organization. Each value

of α corresponds to a single solution derived using Equation (6.8). Interestingly,

the optimal modularity partition (α = 0) is enriched for only 3 protein functions

(lysosomal and vacuolar protein degradation, autoproteolytic processing, and cyclic

nucleotide binding). The solution at α = 0.2 is enriched for four functions, two

of which (endocytosis and general transcription activities) were new relative to the

enriched annotations in the optimal solution. The first several solutions each offer

only a few enriched functions; the spike in enriched annotations at α = 0.8 suggests

that the algorithm has found a new, perhaps more relevant, region in the modularity
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α Q VI Enriched(α) Cumulative(α)
0.0 0.7388 0.000 3 3
0.2 0.7304 0.099 4 5
0.4 0.7146 0.157 2 6
0.6 0.7061 0.174 3 7
0.8 0.6474 0.255 13 18
1.0 0.5868 0.323 24 27
1.2 0.5599 0.347 29 32
1.4 0.5309 0.369 32 35
1.6 0.5011 0.390 35 37
1.8 0.4465 0.421 37 39
2.0 0.4091 0.441 36 39
2.2 0.3794 0.455 38 42
2.4 0.3598 0.463 40 43
2.6 0.2679 0.499 10 43
2.8 0.2590 0.503 9 43
3.0 0.2544 0.504 11 44

Table 6.1: Ensembles of partitions can reveal multiple views of biological networks. The
first column is the value of the diversity constraint, α. The second and third columns
show the modularity of the solution and its VI distance from the optimal. The fourth col-
umn, Enriched(α), is the number of functions enriched in the solution. The fifth column,
Cumulative(α), is a cumulative sum of the number of unique functions enriched in all pre-
vious solutions up to that point. For example, the solution at α = 0.8 was enriched for 13
annotations, 11 of which were not enriched in any of the previous solutions (α < 0.8).

landscape that has high modularity and that corresponds better to the biological

processes underlying the network. This space is marked with a greater number of

smaller-sized modules, chosen by selecting more clusters lower in the tree. We also

found that the cumulative number of enriched functions levels off as α increases further

and that this happens when the modularity of the network is quite low. (However,

even by itself, the single solution at α = 3.0 has more enriched functions than the

optimal modularity partition.) Taken together, this ensemble of solutions provides

diverse hierarchical views [52, 255, 261] of how proteins form clusters to carry out

fundamental cellular tasks.

6.5 Conclusions and Future Work

We described two new methods to find ensembles of highly modular tree-derived net-

work partitions using a modified modularity maximization function. The proposed
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Modu-Cut algorithm can be used to enumerate provably near-optimal partitions

that are in agreement with a heuristically constructed tree. These partitions were

used collectively to distinguish between robust and non-robust communities. We also

showed how to count the number of solutions within a bounded modularity range

(Modu-Count) and found an astronomical number of highly modular solutions in

the yeast PPI, reconfirming and further quantifying the modularity degeneracy prob-

lem. To quickly uncover highly modular and highly different partitions, we incor-

porated diversity constraints (Modu-Mix) and showed how the resulting partitions

were more functionally enriched than the optimal modularity solution, which suggests

that alternative clusterings may be useful for improved function prediction. Overall,

our algorithms can produce ensembles of partitions that offer alternative and com-

plementary views of the network’s structure.

Several algorithmic ideas for future work are listed below:

Variations. We used soft constraints to balance between the modularity and VI

terms. Can hard constraints be used as an alternative way to forcefully uncover dif-

ferent partitions? How can other structured spaces, including alternative hierarchical

clustering trees, be used together to explore different regions of the clustering space?

Module-aware enrichment tests. Additional approaches for assessing the bio-

logical quality of various near-optimal partitions need to be developed. While the

hypergeometric test used here is a standard procedure used when considering func-

tion enrichment [92], we are unaware of a statistical test of cluster enrichment given

a partition.

Ensembles of near-optimal minimum spanning trees (MSTs). Our “knock

’em out and cut” framework can also be used to find ensembles of provably near-

optimal minimum spanning trees in graphs: We know there exists at least one edge
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in the optimal MST that is not present in the second-best MST. Which edge is it?

Try them all, i.e. iteratively set the weight of each to infinity and re-run Kruskal’s

algorithm [166]. The solution with the minimum weight is the next best. Finding low

weight and highly dissimilar MSTs by incorporating a VI-like term into the optimiza-

tion could yield alternative low-cost ways to maintain connectedness, which could

have applications to network design and wiring problems.
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Part III:

The Evolution of Biological Networks

Parts I and II of this thesis focused on the structure and function of static biologi-

cal networks. Biological networks, however, are also the product of an evolutionary

growth process. Understanding how networks change over time can help us answer

questions about how and why certain features and structures have been perpetuated.

For example: did the network always obey the small-world principle, or did that

emerge recently? Which interaction motifs have been lost or gained over time? In-

dividual nodes can also be closely scrutinized: how old is a given protein, how did it

arise, and how many duplications has it partaken in? Dynamic networks can also pro-

vide insight into the evolution of functional modules. We can investigate how different

protein complexes (or their parts) evolved, and how evolution has tinkered with the

underlying biological processes within and between species. In general, correlating

topological changes with biological changes opens the door to a new understanding

of evolution at the network level.

Unfortunately, network evolution in biology is difficult to probe because we do

not have access to ancestral networks. At best, we have a handful of representative

interaction networks from model organisms, but even these are arranged as a tree (not

linearly) and are widely separated in time. This raises the question: is it possible to

study network evolution if only a static, current snapshot of the network is available?

In chapter 7 [212], we propose a likelihood-based technique to reconstruct a com-

plete growth history of a present-day network given only a probabilistic model by

which the network putatively evolved. Our approach finds high-likelihood previous

states of the graph by decomposing the network backwards in time, as dictated by

the model. Through experiments on both synthetic and real-world data, we find that

our algorithms can estimate node arrival times, identify anchor nodes from which new
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nodes copy links, and can otherwise reveal significant features of networks that have

long since disappeared.

A network growth model must be specified in order to reconstruct the history of

a network. This model is most applicable to reversing a query network if random

networks grown according to the model have similar topological features as the query

network. In chapter 8, we extend the machine learning approach of Middendorf

et al. [204] to automatically infer the model and model parameters that were used

to construct a given network. In experiments with synthetic data, we find that we

can significantly differentiate between three popular network growth models based on

network features and statistics.

Our algorithms enable the study and generation of ancestral networks, which can

help us observe the effect evolution has had on network structure today.
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7. Network Archaeology: Uncovering Ancient

Networks from Present-day Interactions

S. Navlakha and C. Kingsford. Available at arxiv.org/abs/1008.5166.

What proteins interacted in a long-extinct ancestor species of yeast? How have dif-

ferent members of a protein complex assembled together over time? Our ability to

answer such questions has been limited by the unavailability of ancestral protein-

protein interaction (PPI) networks. To overcome this limitation, we propose several

algorithms to reconstruct the growth history of a present-day network. Our likelihood-

based method finds a probable previous state of the graph by applying an assumed

growth model backwards in time. This approach retains node identities so that the

history of individual nodes can be tracked. Using topology alone, we estimate pro-

tein ages in the yeast PPI network that are in good agreement with sequence-based

estimates of age and with structural features of protein complexes. Further, by com-

paring the quality of the inferred histories for several different assumed growth models

(duplication-mutation with complementarity, forest fire, and preferential attachment),

we provide additional evidence that a duplication-based model captures many features

of PPI network growth. Finally, we contrast the evolution of the yeast PPI network

with that of the Last.fm social network and find very different growth principles at

play. The success of these algorithms indicates that present-day networks are strongly

linked to their past, and that this past can be effectively excavated.

7.1 Introduction

Many biological, social, and technological networks are the product of an evolutionary

process that has guided their growth. Tracking how networks have changed across

time can help us answer questions about why currently observed network structures

exist and how they may change in the future [126]. Analyses of network growth dy-
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namics have studied how properties such as node centrality and community structure

change over time [105, 126, 228, 288], how structural patterns have been gained and

lost [168], and how information propagates in a network [181].

However, in many cases only a static snapshot of a network is available without

any node-by-node or edge-by-edge history of changes. Biology is an archetypical

domain where older networks have been lost, as ancestral species have gone extinct

or evolved into present-day organisms. For example, while we do have a few protein-

protein interaction (PPI) networks from extant organisms, these networks do not form

a linear progression and are instead derived from species at the leaves of a phylogenetic

tree. Such networks are separated by millions of years of evolution and are insufficient

to track changes at a fine level of detail. For social networks, typically only a single

current snapshot is available due to privacy concerns or simply because the network

was not closely tracked since its inception. This lack of data makes understanding

how the network arose difficult.

Problem 7.1: Can we infer a network’s growth history using only the

snapshot we have of it today? What can this history tell us about the

principles driving the network’s evolution?

Often, although we do not know a network’s past, we do know a general prin-

ciple by which the network grew forward. Several network growth models have

been widely used to explain the emergent features of observed real-world net-

works [19, 134, 168, 177, 179, 180, 300]. These models provide an iterative proce-

dure for growing random graphs that exhibit similar topological features (such as the

degree distribution and diameter) as a class of real networks. For example, prefer-

ential attachment (PA) has explained many properties of the growing World Wide

Web [19]. The duplication-mutation with complementarity (DMC) model was found

by Middendorf et al. [204] to best fit the D. melanogaster (fruit fly) PPI network. The

forest fire (FF) model was shown [180] to produce networks with properties, such as
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power-law degree distribution, densification, and shrinking diameter, that are similar

to the properties of real-world social networks. Although these random graph mod-

els by themselves have been useful for understanding global changes in the network,

there is no guarantee that a randomly grown graph will isomorphically match a target

network. Hence, the history of a random graph will not correspond to the history

of a real network, and so the former will be unable to track an individual, observed

node’s journey through time.

This problem can be avoided, however, if instead of growing a random graph for-

ward according to an evolutionary model, we decompose the actual observed network

backwards in time, as dictated by the model. The resulting sequence of networks

constitute a model-inferred history of the present-day network.

Reconstructing ancestral networks has many applications. The inferred histories

can be used to estimate the age of nodes, and to track the emergence of prevalent

network clusters and motifs [205]. In addition, proposed growth models can be val-

idated by selecting the corresponding history that best matches known histories or

other external information. Leskovec et al. [177] explore this idea by computing the

likelihood of a model based on how well the model explains each observed edge in a

given complete history of the network. This augments judging a model on its ability

to reproduce certain global network properties, which by itself can be misleading. As

an example, Middendorf et al. [204] found that networks grown forward according

to the small-world model [309] reproduced the small-world property characteristic of

the D. melanogaster PPI network, but did not match the true PPI network in other

aspects. Leskovec et al. [180] made a similar observation for social network models.

Ancestor reconstruction also can be used to down-sample a network to create a real-

istic but smaller network that preserves key topological properties and node labels.

This can be used for faster execution of expensive graph algorithms or for visual-

ization purposes. In the biological network setting, network histories can provide a
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complementary view of evolution with respect to the sequence-based view. In the

social network setting, if a network’s owner decides to disclose only a single network,

successful network reconstruction would allow us to estimate when a particular node

entered the network and reproduce its activity since being a member. This could

have privacy implications that might warrant the need for additional anonymization

or randomization of the network.

7.1.1 Our contributions

Here, we propose a likelihood-based framework for reconstructing predecessor graphs

at many timescales for the PA, DMC, and FF growth models. Our efficient greedy

heuristic finds high likelihood ancestral graphs using only topological information and

preserves the identity of each node, allowing the history of each node to be tracked.

Using simulated data, we show that network histories can be inferred for these models

even in the presence of some network noise.

When applied to a PPI network for S. cerevisiae (baker’s yeast), our reconstruction

accurately estimates the sequence-derived age of a protein when using the DMC

model. Assuming either the PA model [19] or the FF model [180] designed for social

networks results in a poorer estimate of protein age, which further confirms DMC as a

more reasonable mechanism to model the growth of PPI networks [204]. The inferred,

DMC-based history also identifies functionally related proteins as the product of

duplication events, estimates the number of duplication events in which each protein

is involved, and can distinguish between core and peripheral protein complex members

based on their arrival time.

To compare the growth of biological networks with that of social networks, we used

our algorithms to generate an approximate order in which users joined the Last.fm

music social network. As expected, the DMC model does not extend well to this

domain, where PA performs best. The FF model also outperforms DMC in identifying
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users who putatively mediated the network’s growth by attracting new members to

join.

The ability of these algorithms to reconstruct significant features of a network’s

history from topology alone further confirms the utility of models of network evo-

lution, suggests an alternative approach to validate growth models, raises privacy

concerns in social networks, and ultimately reveals that much of the history of a

network is encoded in a single snapshot.

7.2 Related Work

Some attempts have been made to find small “seed graphs” from which particular mod-

els may have started. Leskovec and Faloutsos [179], under the Kronecker model [178],

and Hormozdiari et al. [127], under a duplication-based model, found seed graphs

that are likely to produce graphs with specified properties. These seed graphs can be

thought of as the ancestral graphs at very large timescales, but the techniques to infer

them do not generalize to shorter timescales nor do they incorporate node labels. Pre-

vious studies of time-varying networks solve related network inference problems, but

assume different available data. For example, the use of exponential random graph

models [5, 114, 120] for inferring dynamic networks requires observed node attributes

(e.g. gene expression) at each time point. They are also limited because they use mod-

els without a plausible biological mechanism and require the set of nodes to be known

at each time point. Other techniques [207, 313] estimate the parameters of the growth

model, but do not reconstruct networks or do so by only modeling the loss and gain

of edges amongst a fixed set of nodes. There has been some recent work on inferring

ancestral biological networks using gene trees [68, 101]. These approaches “play the

tape” of duplication instructions encoded in the gene tree backwards. The gene tree

provides a sequence-level view of evolutionary history, which should correlate with

the network history, but their relationship can also be complementary. Further, gene
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tree approaches can only capture node arrival and loss (taken directly from the gene

tree), and do not account for models of edge evolution. Network alignment between

two extant species has also been used to find conserved network structures, which pu-

tatively correspond to ancestral subnetworks [80, 152, 277]. However, these methods

do not model the evolution of interactions, or do so using heuristic measures.

Finally, the study of ancestral biological sequences has a long history, supported

by extensive work in phylogenetics [76]. Sequence reconstructions have been used

to associate genes with their function, understand how the environment has affected

genomes, and to determine the amino acid composition of ancestral life. Answer-

ing similar questions in the network setting, however, requires significantly different

methodologies.

7.3 Methods

7.3.1 Network reconstruction framework

Suppose an observable, present-day network is the product of a growth process that

involved a series of operations specified by a model M (such as preferential attach-

ment). The modelM gives us a way to grow the network forward. We see now how

this process can be reversed to find a precursor network.

We start with a snapshot of the network Gt at time t, and we would like to infer

what the network looked like at time t − ∆t. One approach to find the precursor

network G∗t−∆t is to find the maximum a posteriori choice:

G∗t−∆t := argmax
Gt−∆t

Pr(Gt−∆t | Gt,M,∆t) . (7.1)

In other words, we seek the most probable ancestral graph G∗t−∆t, given that the

observed graph Gt has been generated from it in time ∆t under the assumed model

M. Our goal is to find an entire most probable sequence of graphs G1, G2, · · · , Gt−1
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that led to the given network Gt under modelM.

Because the space of possible ancestral graphs grows exponentially with ∆t for

all reasonable models, Equation (7.1) poses a challenging computational problem. A

heuristic simplification that makes inference more feasible is to set ∆t = 1 and greedily

reverse only a single step of the evolutionary model. While this will no longer find the

maximum a posteriori estimate for larger ∆t, it is much more tractable. Repeated

application of the single-step reversal process can derive older networks. We make the

first-order Markov model assumption (also made by the growth models) that Gt only

depends on Gt−1. In this case, applying Bayes’ theorem, we can rewrite Equation (7.1)

as:

G∗t−1 := argmax
Gt−1

Pr(Gt | Gt−1,M) Pr(Gt−1 | M)

Pr(Gt | M)
(7.2)

= argmax
Gt−1

Pr(Gt | Gt−1,M) Pr(Gt−1 | M), (7.3)

where the last equality follows because the denominator is constant over the range

of the argmax. This formulation has the advantage that the model M is being

run forward as intended. The formulation also has the advantage that the prior

Pr(Gt | M) in Equation (7.3) can be used to guide the choice of Gt−1. Computing

Pr(G | M) exactly for various models is an interesting computational problem in its

own right [23] with a number of applications beyond ancestral network reconstruction.

For computational simplicity, here we assume a uniform prior and therefore consider

the term a constant.

The ancestral reconstruction algorithm chooses the predecessor graph with the

largest conditional probability Pr(Gt | Gt−1,M) by searching over all possible prede-

cessors graphs, Gt−1. In all models we consider, a single new node enters the network

in each time step and connects to some existing nodes in the network. In the DMC

and forest fire models, the new node performs a link-copying procedure from a ran-
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Figure 7.1: (A) The probabilities governing the DMC model. (B) An example iteration of
the DMC model. Steps refer to those in §7.3.2.

domly chosen anchor node. Finding the most probable predecessor graph therefore

corresponds to finding and removing the most recently added node, identifying the

node it duplicated from (if applicable to the model), and adding or removing edges

that were modified when the most recently added node entered the network. In the

next sections, we explain how to do these steps efficiently for the DMC, PA, and FF

models.

7.3.2 The duplication-mutation with complementarity (DMC) model

The DMC model is based on the duplication-divergence principle in which gene du-

plication produces a functionally equivalent protein, which is followed by divergence

when the pair specialize into subtasks. Middendorf et al. [204] and Pereira-Leal et al.

[236] have provided support and an evolutionary basis for the general duplication

model, which has been widely studied as a route by which organism complexity has

increased [134, 183, 300, 302]. Though some questions remain about its exact role

in evolution [159], the DMC model appears to have a computational and biological

basis for reproducing many features of real PPI networks.

The forward DMC model begins with a simple, connected two-node graph. In

each step, growth proceeds as follows:

1. Choose a random anchor node u and create its duplicate, v, by connecting v to

all of u’s neighbors.
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2. For each neighbor x of v, decide to modify the edge or its compliment with

probability qmod. If the edge is to be modified, delete either edge (v, x) or (u, x)

by the flip of a fair coin.

3. Add edge (u, v) with probability qcon.

A schematic of the growth process is shown in Figure 7.1.

To reverse DMC, given the two model parameters qmod and qcon, we attempt to

find the node that most recently entered the current network Gt, along with the node

in Gt−1 from which it duplicated (its anchor). Merging this pair produces the most

likely predecessor graph of Equation (7.3). Formally, Gt−1 is formed by merging:

argmax
(u,v)

γuv
n

∏
N(u)∩N(v)

(1− qmod)
∏

N(u)4N(v)

qmod

2
, (7.4)

where n is the number of nodes in Gt−1, γuv equals qcon if u and v are connected by an

edge and 1− qcon if not, N(u) denotes neighbors of node u, and the pairs (u, v) range

over all pairs of nodes in Gt. The expression inside the argmax of Equation (7.4)

corresponds to Pr(Gt | Gt−1,M), which is what we are trying to maximize in Equa-

tion (7.3) by selecting Gt−1. The 1/n factor gives the probability that node u was

chosen as the node to be duplicated. The first product considers the common neigh-

bors between the two nodes. In the DMC model, a node and its duplicate ultimately

share a neighbor x if x was not modified in step 2 of the model. The probability of

such an event is 1− qmod. The second product involves the nodes that are neighbors

of u or v but not both (symmetric difference of N(u) and N(v)). Each such neighbor

exists with probability qmod/2.

If (u, v) is a pair that maximizes (7.4), the predecessor graph Gt−1 is formed by

removing either u or v. Let Gvu
t−1 correspond to the graph where v is removed. Due to

symmetry, both Guv
t−1 and Gvu

t−1 yield the same likelihood in Equation (7.4), and thus

we are forced to arbitrarily decide which node to remove. Assume we randomly choose
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to remove v; then u gains edges to all nodes in N(u) ∪N(v) that it does not already

have an edge to. This is because, according to the forward growth model, u originally

had these edges prior to the duplication event of v and subsequent divergence.

Any pair of nodes in Gt could correspond to the most recently duplicated pair,

including pairs with no common neighbors (which would happen if after duplication

all edges were modified in step 2 of the model). Thus, all
(
n
2

)
pairs of nodes must be

considered in Equation (7.4).

7.3.3 The forest fire (FF) model

The forest fire (FF) model was suggested by Leskovec et al. [180] to grow networks

that mimic properties of social networks. These properties include power-law degree,

eigenvalue, and eigenvector distributions, community structure, a shrinking diameter,

and network densification.

The forward FF model begins with a simple, connected two-node graph. In the

undirected case, in each step, growth proceeds according to the following procedure

with parameter p:

1. Node v enters the network, randomly selects an anchor node u, and links to it.

2. Node v randomly chooses x neighbors of u and links to them, where x is an

integer chosen from a geometric distribution with mean p/(1−p). These vertices

are flagged as active vertices.

3. Set u to each active vertex and recursively apply step 2. u becomes non-active.

Stop when no active vertices remain.

To prevent cycling, a node cannot be visited more than once. The process can be

thought of as a fire that starts at node u and probabilistically moves forward to some

nodes in N(u), then some nodes in N(N(u)), etc. until the spreading ceases. This

version of the model only contains one parameter: p, the burning probability. As in

164



the DMC model, the reversal process for the FF model attempts to find the node in

the current network Gt that most recently entered the network, along with its anchor.

Unfortunately, it appears to be difficult to write down an analytic expression

computing the likelihood of Gt−1. The main challenge is that for every w ∈ N(v) we

need to find the likely paths through which the fire spread from u to w. However, these

paths are not independent, and therefore cannot be considered separately. Analytic

evaluation of the global network properties produced by the model also appears to be

difficult [180]. Instead, we compute the likelihood of Gvu
t−1 via simulation as follows:

Forest Fire Simulation Procedure. We assume v does not exist in

the network and simulate the FF model starting from u. Each

simulation produces a set of visited nodes S(v) corresponding to

candidate neighbors of v. We use the fraction of simulations in which

S(v) exactly equals N(v) as the likelihood of Gvu
t−1.

In the FF model, the likelihood of Gvu
t−1 does not necessarily equal that of Guv

t−1 because

a forest fire starting at u could visit different nodes than a forest fire starting at v.

The advantage of non-symmetry here is that there is no uncertainty regarding which

node to remove. Also, unlike the DMC model, all candidate node/anchor pairs must

have an edge between them (because of step 1 of the model). After identifying the

node/anchor pair v, u that yields the most likely Gt−1, we remove v and all its edges

from the graph. No edges need to be added to u as per the model.

Leskovec et al. [180] also propose a directed version of the FF model where the fire

can also spread to incoming edges with a lower probability. Interestingly, reversing the

directed FF model is much easier than the undirected case because the node that most

recently entered the network must have exactly 0 incoming edges. Choosing which

of the nodes with a 0 in-degree to remove first can be difficult because several nodes

could have been added to distant, independent locations in the graph in separate

steps. A node’s anchor, however, can still be determined using our approach.
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7.3.4 The preferential attachment (PA) model

The preferential attachment (PA) model was proposed by Barabási et al. [19] in

the context of growing networks to emulate the growth of the Web. It follows the

premise that new pages make popular pages more popular over time by linking to

them preferentially. We consider the linear version of the PA model, which has been

shown to correspond closely with real network growth [177].

The PA model begins with a clique of k+ 1 nodes. In each step t, forward growth

proceeds with parameter k as follows:

1. Create a probability distribution histogram, where each node u is assigned prob-

ability du/(2m), where du is the degree of u and m is the total number of edges

in Gt−1.

2. Choose k nodes according to the distribution.

3. Add node v, and link it to the k nodes from step 2.

Unlike the DMC and FF models, there is no notion of a node anchor in PA. A new

node simply enters the network in each step and preferentially attaches to nodes with

high degree. The most recently added node must be of minimum degree in Gt because

all nodes start with degree k and can only gain edges over time. Let C be the set of

nodes with minimum degree. To produce Gt−1, we choose a node to remove from C

by computing:

argmax
v∈C

∏
u∈Gt−1


du/m if u ∈ N(v)

1− du/m if u 6∈ N(v)

. (7.5)

The two cases in the product correspond to whether edge (v, u) exists. The degree of

u (du) in Gt−1 can vary depending on which candidate node v is being considered for
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removal from Gt. Taking logs and simplifying turns Equation (7.5) into:

argmax
v∈C

∑
u∈Gt−1


log du − logm if u ∈ N(v)

log(m− du)− logm if u 6∈ N(v)

(7.6)

= argmax
v∈C

∑
u∈N(v)

log du +
∑

u6∈N(v)

log(m− du) (7.7)

The logm terms in Equation (7.6) can be ignored because they sum to n logm which

is a constant over all candidate nodes. Equation (7.7) seeks to remove the node with

minimal degree that links to the “hubbiest” set of nodes. The likelihood is independent

of k.

7.3.5 Reconstruction algorithms

The expression inside of the argmax of Equation (7.4) for DMC defines a score for

pairs of nodes. The corresponding score for PA is given in Equation (7.7) and for FF

in the simulation procedure. These scores corresponds to the conditional probability

Pr(Gt | Gt−1,M) for each model. Let LDMC(u, v), LPA(u), and LFF(u, v) denote

these computed scores. To reverse each model, we iteratively search for the nodes

that maximize these scores. If there are ties, we randomly choose among them. We

continue this process until only a single node remains in the graph. For example,

Algorithm 7.1 gives the pseudocode for reversing a network using the DMC model.

The algorithm takes a static, present-day graph G = (V,E) and values for parameters

qmod and qcon.

Algorithm 7.1 must be changed slightly for the FF and PA models. For the FF model,

the differences are: (1) LFF(u, v) is used instead of LDMC(u, v); and (2) the for-loop is

over all pairs of nodes connected by an edge. For the PA model: (1) LPA(u) is used;

(2) the for loop is over all nodes instead of all pairs of nodes; and (3) no anchor is

stored. For both FF and PA no new edges are added to v after node u is deleted.
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Algorithm 7.1 DeloreanDMC(G = (V,E),qmod, qcon)
1: Arrival ← { } # Arrival time for each node
2: Anchor ← { } # Anchor for each node
3: while |V| ≥ 2 do
4: Lbest ← -1; Plist ← [ ]
5: for all pairs of nodes u,v ∈ G do
6: L ← LDMC(u,v)
7: if L = Lbest then
8: insert (u,v) into Plist
9: else if L > Lbest then
10: Plist ← [(u,v)]; Lbest ← L
11: end if
12: end for
13: Choose a pair (u,v) from Plist uniformly at random
14: Set Anchor[v] ← u
15: Set Arrival[v] ← |V|
16: Add edges (u,x) ∀x ∈ N(v)-N(u) to E
17: Delete v from G
18: end while
19: return (Arrival, Anchor)

7.3.6 Validating node arrival times

Our reconstruction framework gives an ordered list of node arrival times, with the

first removed node corresponding to the node that most recently entered. Let Atrue

be the true arrival order of the nodes and let Apred be the computationally predicted

sequence. To quantify how well our reconstructed arrival times match the true node

arrival times, we compute the difference between Atrue and Apred using the popular

Kendall’s τ and Spearman’s footrule measures [18]:

Kendall’s tau: Kτ = (nc − nd)/
(
n
2

)
, where nc is the number of concordant pairs

in Apred, i.e. the number of pairs in Apred that are in the correct relative order with

respect to Atrue; and nd is the number of discordant pairs. Kτ = 1 if the two lists are

identical, and -1 if they are exactly opposite.
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Spearman’s footrule: SF ′ =
∑

i |Atrue(i)−Apred(i)|. A(i) is the node arrival time

for node i. This measure takes into account how far apart the arrival times are for

each node in the two lists. SF ′ has a maximum value of bn2/2c. We use a normalized

value of SF = 1− SF ′/b(n2/2)c, so that SF = 1 if the two lists are identical, and 0

if they are opposite of each other.

In both cases, the higher the value the better. The expected Kτ and SF similarity

between Atrue and a random ordering of the nodes is 0.00 and 0.33, respectively.

7.3.7 Validating node anchors

When a node enters the network under the DMC and FF models, it chooses an existing

node from which it copies links. We call this node its anchor. To assess our ability

to identify node/anchor relationships, we encode the true node/anchor relationships

in a binary tree. We can think of a node’s arrival as causing its chosen anchor node

to divide in two, producing a new node and a new copy of the old node. Figure 7.2A

shows a binary tree describing such a bifurcation process, with node anchors indicated

by dotted arrows. In this example, node 1 initially exists alone in the network, and

therefore has no anchor. Reading from top down, node 2 enters and chooses node

1 as its anchor. This spawns a new node 1, which is conceptually different from its

parent because the new node could have gained or lost edges due to the arrival of

node 2. Node 3 enters and chooses the new node 1 as its anchor. Finally, nodes 4

and 5 anchor from nodes 3 and 2, respectively.

Figure 7.2B shows an example sequence of merges predicted by our reconstruction

algorithms. Internal nodes in the tree are labeled with the concatenation of the

labels of its two children indicating an inferred node/anchor relationship between the

children.

Let Ttrue be the anchor tree derived from the true growth process (Figure 7.2A)
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Figure 7.2: Computing the similarity of node/anchor pairs in the true versus the recon-
structed histories.

and let Tpred be the reconstructed anchor tree (Figure 7.2B). To assess the quality of

the reconstruction, we compute the percentage of subtrees in Tpred found in Ttrue. This

measure (called Anchor) is closely related to the Robinson-Foulds distance metric

used to compare phylogenetic trees [76]. In the example of Figure 7.2, the similarity

between the trees is 3/4 = 75%.

This validation measure is advantageous because it evaluates if the relationship

between larger groups of nodes was correctly determined. In addition, it does not

unduly penalize the mis-ordering of arrival times for nodes that are far apart in the

network. It also does not depend on which node of the merged pair (u, v) was deleted

from the graph in the DMC model, because both choices lead to the same subtree in

Tpred. On the other hand, the measure is in some ways stricter than counting correct

node/anchor pairs. For example, in Figure 7.2 it would be incorrect to merge 1 and

2 in the first backward step because the extant nodes 1 and 2 are not the same as the

past nodes 1 and 2.
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Figure 7.3: Accuracy of node arrival times and node anchors using the DMC model. The
x- and y-axes show the DMC parameters (qmod, qcon) used to grow the synthetic network
forward. Each parameter varies from 0.1–0.9 in steps of 0.2. The intensity of each cell in the
heatmap represents the quality of the reconstruction validation measure (Anchor, Kendall,
Footrule) under optimal reverse parameters. (A) and (B) show results under varying levels
of noise. For many DMC-grown synthetic networks, accurate reconstruction is possible.

7.4 Results and Discussion

7.4.1 Model reversibility using the greedy likelihood algorithm

We first tested the algorithms in situations where the evolutionary history is com-

pletely known. This allows us to assess the performance of the greedy likelihood al-

gorithm and to compare the reversibility of various network models. For each model

(and choice of parameters), we grew 100-node networks forward according to the

model, and then supplied only the final network Gt=100 to our algorithm to recon-

struct its history. We repeated this process 100 times and averaged the results for

each combination.

For the DMC model under realistic choices of qmod and qcon, almost 60% of the

node/anchor relationships inferred are correct if the optimal choice of qmod and qcon

parameters are used in the reconstruction process. Figure 7.3A plots the perfor-
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Figure 7.4: Accuracy of node arrival times and node anchors when reverse parameters are
not known. Synthetic DMC-grown networks were constructed using qmod = 0.1, qcon = 0.9
and reversed using all 25 combinations of reversal parameters. The x- and y-axes show the
difference between the reversal parameters (rqmod and rqcon, respectively) and the forward
parameters (0.1 and 0.9, respectively). The intensity of each cell in the heatmap represents
the quality of the reconstruction validation measure (Anchor, Kendall, Footrule). Accurate
histories can be inferred as long as reverse parameters (in particular, rqmod) are in the rough
range of the forward parameters.

mance of the 3 validation measures for 25 combinations of forward (qmod, qcon) model

parameters. DMC-grown graphs are generally difficult to reverse because edges can

be modified over time. Thus, if an incorrect node/anchor pair is merged, new edges

will be added to the graph that were never originally present, which can have down-

stream effects on inference. Nonetheless, both the Spearman’s footrule and Kendall’s

τ measures of arrival-time correlation indicate that we can order nodes correctly sig-

nificantly better than random starting from the final graph alone.

Reversibility varies drastically depending on the DMC model parameters used to

grow the network forward. Naturally, increasing qmod induces more random changes

in the network, which makes it more difficult to reverse the evolution. Conversely, as

qcon increases, the history generally becomes easier to reverse because more nodes are

directly connected to the node from which they duplicated.

Performance also depends on the match between the values of qmod and qcon used to

grow the network forward and those used to reverse the history (Figure 7.4). However,

even if the forward parameters are not known exactly, it is feasible to reconstruct a

meaningful history if the reversal parameters are chosen to be approximately equal to
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Figure 7.5: Accuracy of arrival times and node anchors using the forest fire model. (A–D)
The x-axis shows the FF parameter (p) used to grow the synthetic network forward. (Values
of parameter p > 0.5 resulted in mostly clique-like networks.) The y-axis shows the quality
of the 3 reconstruction validation measures under optimal reverse parameters. All FF-based
reconstructions are significantly better than random reconstructions, even when 30% of true
edges are replaced by random edges.

the forward parameters. There is often a hard transition at qmod = 0.5 or qcon = 0.5

when the bias towards having an edge and not having an edge tips to one side or the

other. Though optimal performance can correspond to reversing a network with the

same parameters used to grow the network, this need not be the case. For example,

suppose 30% of all nodes have edges to their anchors. This does not imply that setting

qcon = 0.3 will work best because the true pair sought will likely not be connected

and hence even lower values of qcon may lead to a more accurate reconstruction. We

consider a machine learning approach to infer reverse parameters in chapter 8.

We performed the same synthetic-data experiments using the forest fire model for
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Figure 7.6: Agreement with arrival times using the preferential attachment model. (A–D)
The x-axis shows the PA parameter (k) used to grow the synthetic network forward. The
y-axis show the quality of the 3 reconstruction validation measures. Compared to the DMC
and FF models, the PA model is easiest to reverse, even in the presence of substantial noise.

varying values of the parameter p, which controls the spread of the fire, ranging from

0.1 to 0.5. Figure 7.5A shows that between 25% and 64% of anchor relationships

can be correctly identified, and that the estimated node arrival ordering resembles

the true arrival order. As p increases, performance of all measures tends to decrease.

This is because as p increases, the degree of each node increases, thus making it more

difficult to pick out the correct anchor from among the set of neighbors. In general, it

is difficult to predict all arrival times correctly because unrelated duplications could

occur in successive steps in completely different parts of the graph.

Finally, we grew 1000-node networks using the linear preferential attachment

model for various choices of parameter k, the number of neighbors to which a new
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node initially connects (Figure 7.6). Of the three models we consider, PA is the most

easily reversible. As k increases, it becomes easier to distinguish amongst low de-

gree nodes connected to hubs because there is less statistical variation in the forward

process. This allows more opportunity for older and newer nodes to differentiate

themselves from one another, and hence the network becomes easier to reverse. Fig-

ure 7.6A shows that for the PA model we can achieve Kendall τ values of over 80

percentage points higher than random when k > 15. In the PA model, a new node

does not choose an anchor node to copy links from so only the arrival-time validation

measures are applicable.

7.4.2 Effect of deviation from the assumed model

To gauge robustness to deviations from the growth model, we repeated the exper-

iments on synthetic data after randomly replacing some percentage of edges in the

final graph with new edges. Under all models, reconstruction quality generally suf-

fers from a noisy view of the present-day graph but meaningful histories can still be

recovered.

DMC is the most sensitive to the addition of noise (Figure 7.3B), while PA is by

far the most resilient to noise. Even when 90% of the true edges are replaced with

random edges, reversibility of PA is still better than random (Figure 7.6D). DMC can

tolerate noise up to 30% before returning essentially random reconstructions. The

robustness of the forest fire model lies in between DMC and PA (Figure 7.5D).

Mis-identifying the model used to grow the network can also significantly reduce

the quality of the inferred history. To verify this, we grew networks forward using

DMC (qmod = 0.1, qcon = 0.9) and reversed it with the other models. The low qmod

value implies that a node has many reasonable anchors. A reversal using the FF

model cannot distinguish between these many reasonable anchors. In particular, FF

performs approximately 10 times worse than DMC according to both the Spearman’s
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footrule and Kendall’s τ measures. Further, FF is only able to uncover an average

of 4% of correct node/anchor relationships compared to 55% using DMC. PA also

performs poorly in this case because nodes with late arrival times can duplicate

from hubs and immediately become “hubby”. Hence, reversing DMC-grown networks

involves more than removing low-degree nodes. As qmod increases, FF and PA each

perform better at reversing DMC networks, but both still perform worse than DMC

(e.g. at qmod = 0.5, FF and PA have average Kendall τ values of 9% and 10%,

respectively, compared to 15% for DMC).

Random networks grown forward using PA are best reversed using PA as opposed

to DMC or FF. At k = 10, PA has a Kendall τ value of over 70% compared to only

36% for DMC and 20% for FF. At higher values of k, this difference is even more

pronounced. The reason DMC and FF perform so poorly is because, for each node,

they seek a single anchor from which the observed links can be explained. With PA,

however, a node can have neighbors that are far apart in the network.

7.4.3 Recovery of ancient PPI networks

We obtained a high-confidence protein-protein interaction (PPI) network for the yeast

S. cerevisiae from the IntAct database [157]. The network contains 2,599 proteins

(nodes) and 8,275 physical interactions between them. We applied the reversal algo-

rithm for 2,599 steps to estimate a complete history of the growth of the network.

Figure 7.7 shows the original network (Gt=2599) and an inferred ancestral network

with 1,300 nodes (Gt=1300).

Because PPI networks from the past are unavailable, we do not directly have true

node arrival times to which we can compare. Instead, we estimate protein arrival times

using sequence-based homology under the assumption that proteins that have emerged

after yeast diverged from other species will have fewer orthologs in these distantly re-

lated organisms [185]. In particular, we obtained data for the occurrence of orthologs
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Gt=1300Gt=2599

 Density   0.002         0.008 
 CC        0.247         0.274

 SPL       4.420         3.764 
 k-core    3.000         5.000 

Figure 7.7: The main component of the extant PPI network (Gt=2599) and an ancestral
version (Gt=1300). The density, clustering coefficient (CC), average shortest path length
(SPL), and average k-core number are shown for each network. The ancient network is
considerably denser than the extant network.

of yeast proteins in 6 eukaryotes (A. thaliana, C. elegans, D. melanogaster, H. sapiens,

S. pombe, and E. cuniculi) from the Clusters of Orthologous Genes database [289].

The number of species for which an ortholog was present was used as a proxy for the

arrival time. We grouped proteins into 6 classes and computed a class-based Kendall

τ value amongst proteins in different classes. A pair (u, v) was considered correctly

ordered if u was predicted to arrive before v and if u has more orthologs than v.

Reversing the network using the DMC model produced an estimated node arrival

order in greater concordance with the orthology-based estimates of protein age than

either the FF or PA models. Figure 7.8 shows the class-based Kendall τ value for

proteins in the 6 age classes for all three models. The results shown are the best for

each model over the tested parameter space and thus represent the limit of perfor-

mance using the proposed algorithm. The DMC model more accurately determines

the relative ordering of proteins in the age classes (P -value < 0.01 after Bonferroni

correcting for optimal parameter usage) than the FF or PA histories. This provides
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Figure 7.8: Predicting protein age groups by reversing the DMC and FF models on a
real PPI network for S. cerevisiae. The y-axis shows the class-based Kendall τ value of
the predicted ordering. The DMC model more accurately orders the proteins in the classes
compared to FF and PA.

additional evidence [204] that a DMC-like model is a better fit for PPI networks than

models such as FF and PA inspired by social networks.

7.4.4 Estimation of parameters governing network growth

The parameters that produced the history that best matched the sequence-based

estimates of protein ages provide hints about the relative importance of various pro-

cesses in network growth. For DMC, best performance was typically achieved with

low-to-medium values of qmod and medium-to-high values of qcon. We can use these

as estimates of the probability that an interaction is modified following a gene dupli-

cation (≈ 40%) and the probability that two duplicated genes interact (high, as also

found elsewhere [135, 215, 235]).

Interestingly, the optimal FF and DMC parameters create models that have many

similarities. Optimal performance was obtained for the FF model with parameter

p = 0.3, which implies that both the anchor and the arriving node will have similar
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neighborhoods because the simulated fire likely does not far spread beyond the imme-

diate neighbors of the anchor. The property of similar neighborhoods is also implied

by duplication step of DMC coupled with the moderate value of qmod = 0.4. Further,

in the FF model the arriving node is always linked to its anchor, and the high value

of qcon = 0.7 causes this to frequently happen in the DMC model as well. Thus,

based on their agreement with sequence-based estimates of protein arrival times, two

independent and very different base models both suggest that proteins should very

frequently interact with the protein from which they duplicated, and that the new

node should primarily interact with neighbors of their anchors.

7.4.5 Protein complexes and evolution by duplication

We can test correctness of the anchors identified by DMC and FF using protein an-

notations. A protein and its duplicate are often involved in similar protein complexes

in the cell [235, 236]. We expect then that the node/anchor pairs identified ought to

correspond to proteins that are co-complexed. Because it is difficult to model the gain

and loss of functional properties of ancient proteins, we only tested this hypothesis

among pairs of extant proteins.

Using the MIPS complex catalog [113], which contained annotations for 994 of the

proteins in the network, 84% of the testable node/anchor pairs predicted using the

DMC model shared an annotation. This is much higher than the baseline frequency:

only 55% of edges in the extant network connect nodes that share an annotation.

Under the FF model, 68% of node/anchor pairs share a MIPS annotation. So, while

the FF model under this validation measure again is performing much better than

expected by random chance, it does not perform as well as DMC. The high quality

of the DMC-based node/anchor pairs also supports the idea that a good definition

of a functional module in a PPI network is one which groups proteins with similar

neighbors together (rather than one based strictly on density) [215].
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Figure 7.9: (A) The distribution of duplication rates for extant proteins in the PPI
network. The x-axis of the histogram is the number of duplications, measured as the distance
from the root of the phylogeny to the extant protein. The y-axis is the percentage of
proteins lying in the tree depth bin. (B) The relationship between duplication and number
of interaction partners. The x-axis shows the average tree depth for proteins with the given
number of interaction partners (y-axis) in Gt=2599. Highly connected proteins tend to evolve
slower than proteins with fewer interaction partners.

The phylogeny of node/anchor relationships (Figure 7.10) can also help character-

ize how duplication has guided the evolution of the yeast proteome. We estimate the

number of times each extant protein was involved in a duplication (that becomes fixed

in the population) by computing the depth of the protein in the inferred node/anchor

tree. Figure 7.9A shows that most proteins are involved in a similar number of duplica-

tions (mean = 17), with fewer proteins involved in many more or many less. Proteins

involved in more duplications typically have fewer interaction partners (Figure 7.9B).

Using network histories alone, this confirms previous sequence-based findings that

the evolutionary rate of proteins is inversely proportional to its number of binding

partners [86, 195].

The arrival times of proteins can also tell us how different components of protein

complexes might have evolved. For every protein belonging to exactly one MIPS com-

plex, we computed its coreness, defined as the percentage of its annotated neighbors

that belong to the same complex. A large coreness value indicates that the protein

plays a central role in the complex; a small value suggests a peripheral role [97].
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Figure 7.10: The node/anchor phylogeny inferred by reversing the DMC model on the
yeast PPI network.

Amongst the 763 protein tested, there was a significant correlation between older

proteins and larger coreness values (R = 0.37, P -value < 0.01), a trend that Kim

and Marcotte [159] also independently reported by studying the evolution of protein

structure using a different measure of coreness.
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Figure 7.11: Predicting node arrival times for users in the Last.fm social network. The
PA model appears most applicable to reversing the network.

7.4.6 Recovery of past social networks

To contrast the evolution of biological networks with social networks, we applied our

algorithms to part of the Last.fm music social network. Edges in this network link

users (nodes) that are friends. We sampled a region of the network by performing

a breadth-first crawl starting from a random user ‘rj’. We recorded the date and

time of registration for each node visited, which corresponds to its arrival time into

the network. The resulting network consisted of the subgraph induced by the first

2,957 nodes visited (9,659 edges). Because only a subgraph of the complete network

was visited, some nodes have neighbors that are outside the induced subgraph. This

missing data makes the reconstruction problem even more difficult.

Figure 7.11 shows the performance of the models (using the best parameters) for

the node-arrival measures. The best performing model (preferential attachment) for

the Last.fm network was the worse performing model for the PPI network. Further,

the optimal DMC parameters (0.7, 0.3) indicate that new users in social networks form

links to a varied set of existing users that might be far apart in the network [180].
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An advantage of FF and DMC over PA is that the former return node anchors.

To validate these predicted relationships, we make the observation that node/anchor

pairs are likely to share similar taste in music. As a null baseline, we computed the

percentage of edges in the given network Gt=2957 that connect users who share a top-5

favorite artist. The pairs returned by FF are significantly more likely (13.8%) to share

a top-5 favorite artist over DMC (10.3%) and the baseline (10.8%). Most users act

as anchors to ≤ 1 new member, however, there were 9 users who (putatively) each

brought ≥ 30 new members into the network. Such popular anchors can be thought

of as members who are responsible for the network’s organic growth.

7.5 Conclusions and Future work

We presented a novel framework for uncovering precursor versions of a network given

only a growth model by which the network putatively evolved. Our approach works

backwards from a given network and is therefore network specific (not model generic)

and can retain individual node labels. Unlike heuristic approaches (such as ordering

node arrival times based on their static degree in the extant network), our approach

reconstructs edges in a principled way, provides a likelihood estimate for ancestral

graphs, identifies node anchors, and is driven by a formal mechanism describing net-

work evolution. Further, for most DMC-grown synthetic networks, removal by static

degree performs as poorly as PA, as is expected since PA is derived from the assump-

tion that degree distribution is correlated with age.

Using the proposed algorithms, we estimated protein ages from the topology of

a PPI alone that matched sequence-based estimates well. Further, we correlated

node/anchor pairs with co-complexed proteins and characterized the distribution of

duplications on a per-protein basis. We also found that older proteins tend to play a

more central role in protein complexes than newer (peripheral) proteins. Given the

noisy and incomplete status of the available PPI data and the simple network growth
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models, it is surprising that such high agreement with known biology can be obtained.

We also used the accuracy of history reconstruction as an optimization criterion

for choosing model parameters. We determined, via both the DMC and FF models,

that duplicated proteins are likely to interact and share many interaction partners.

The ability to correlate the model-inferred history to properties of the true history

provides an alternative way to validate models that goes beyond only comparing

statistics of the final extant network.

Our results show that present-day networks are strongly linked to their past, and

that this past can be effectively excavated.

Other ideas and questions for the study and generation of ancient networks are

listed below:

Model variations. How does the greedy likelihood approach perform on other

models, such as those that explicitly incorporate an estimate of a node’s age [159, 204],

those in which nodes can add edges at variable times [177], or those composed of a

mixture of growth models that fire at different times? Can other biological detail

be incorporated to produce more realistic reconstructions? For example, perhaps

we could create a DMC variant wherein edges that can be mediated by a known

domain-domain interaction are not allowed to be modified.

Improvement on the greedy algorithm. Ideally, we would like to find the en-

tire most-probable sequence of graphs that led to the extant network. Due to the

astronomical number of ancestral graphs, however, the greedy algorithm we proposed

only reversed the network one step at a time. What is the trade-off between time to

reconstruct and quality of the reconstruction if we considered k steps at a time? Can

we explicitly handle noise in the reconstruction (perhaps in an MDL-like framework),

or compute an expected reconstruction error? Our greedy algorithm also ignored the
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Bayesian prior term when computing the likelihood of a graph; how much additional

power do networks prior bestow on the reconstruction process?

Near-optimal histories. Near-optimal reconstructions can help quantify our con-

fidence in certain merges or help us decide when to consider more varied paths. One

way to investigate these solutions is to choose pairs according to their probabilities,

instead of choosing the single most probable pair in each step. Alternatively, we could

run the reconstruction process for various reasonable parameter values and see which

pairs are the most agreed upon. The latter approach yields, for each node, a count

for the number of times it was merged with each other node. The goal then is to

output a tree-preserving reconstruction with the most number of counts.

Model-based clustering. The inferred node/anchor phylogeny is a hierarchical

tree decomposition that can be viewed as a model-based clustering of the network.

What can we learn from this decomposition about the flow of functional information

across time (e.g. the evolution of protein families [68])?

Co-evolution of two networks. Say we had two networks on the same set of

nodes (e.g. a PPI network and a synthetic-lethal network). Could we study the co-

evolution of these networks by defining a joint likelihood on pairs on nodes in both

networks? Questions can then be asked about their joint histories. For example, did

redundant pathways evolved separately or all at once? How has this changed within

and across species?
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8. A Machine Learning Framework to Predict the

Growth Principle Driving a Network’s Evolution

In the previous chapter, we showed how to uncover the history of a present-day

network using a specified model and model parameters. Reconstruction quality varied

widely based on the reverse settings used, though decent reconstructions were possible

if reverse parameters were in the rough range of forward parameters. We, however,

did not attempt to infer reverse settings automatically. In this chapter, we propose a

machine learning method to distinguish between models and model parameters based

on the topological features of the random networks they produce. In experiments

with synthetic data, we show that the duplication-mutation with complementarity

(DMC), forest fire (FF), and preferential attachment (PA) models are all substantially

differentiable based on the properties of the random networks they generate. Our

approach serves as a stand-alone model testing paradigm and can be incorporated

into the existing network archaeology framework.

8.1 Introduction

Several models have been proposed to grow random graphs that mimic real-world

networks. These models attempt to capture observed global patterns of network

growth by using local principles. Depending on the principle used, the resulting

random graphs can have widely varying features. For example, the FF model [180]

generates networks with a shrinking diameter and many triangles, whereas in PA-

grown networks [19], the diameter increases and there are far fewer triangles.

In the previous chapter, we showed how it is possible to reconstruct the node-by-

node and edge-by-edge arrival history of a present-day network given a growth model

and model parameters a priori. Figure 7.4 in chapter 7 presented some rudimentary

analysis of how the usage of different reverse parameters affected the quality of the

reconstruction. In the DMC example where qmod = 0.1 and qcon = 0.9, reasonable
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reconstructions were possible as long as reverse parameters (in particular, qmod) were

approximately equal to forward parameters. However, choosing drastically differ-

ent parameters, or altogether misidentifying the model to reverse, can significantly

degrade the quality of a history.

In this chapter, we attempt to automatically infer the most applicable model

and model parameters to use when reversing a network. Middendorf et al. [204]

address a very similar problem; they use a machine learning approach to determine

which growth model produced a given network by learning discriminating topological

features (subgraphs) that appear in different proportions in random graphs grown

under different models. One limitation of their approach is that they uniformly sample

from the model’s parameter space to build their classifier. This assumes that graph

features are similar regardless of the model parameters used, but this is not necessarily

true. For example, consider DMC networks grown using qmod = 0.1, qcon = 0.9 versus

the opposite, qmod = 0.9, qcon = 0.1. The former set of parameters will produce graphs

that contain many more triangles than graphs grown with the latter set. Further, low

qmod values implies higher density and shorter paths between nodes. Hence, network

features are strongly dependent on the model parameters used. Here we refine the

framework developed by Middendorf et al. [204] to resolve the uncertainty regarding

parameter choices. This leads to the following problem:

Problem 8.1: Given a query network, which growth model and model

parameters were most likely used to construct the network? How well can

various models and their parameters be differentiated?

8.2 Methods

We first describe our framework for distinguishing among reverse DMC parameters

only (Figure 8.1). We vary qmod and qcon from 0.1–0.9 in steps of 0.2 resulting in 25

pairs of qmod, qcon values. For each pair, we grow 100 graphs of 100 nodes each. We
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Figure 8.1: Overview of our approach to infer reverse DMC parameters. For each pair
of qmod, qcon values, we create 100 graphs of 100 nodes each. For each graph, we extract
network features and build a decision tree classifier to attempt to predict the DMC model
parameters that were used to construct the input network.

characterize each graph using a vector of 10 network properties (Table 8.1), which

serve as classification features for the target pair. The resulting set of 25×100 =2,500

vectors are used as examples to train a C4.5 decision tree classifier [118].

For the FF model, we followed a similar pipeline, but vary the parameter p (which

governs the size of the forest fire) from 0.1–0.5 in steps of 0.2. For the PA model, we

vary k (which controls the number of neighbors a new node connects to) from 2–21

in steps of 1.

In all experiments, we used 10-fold cross-validation. Training data consists of

feature vectors and their known target pair. Test data consists of only the feature

vectors, and the goal is to predict the target pair. Precision is the percentage of

graphs for which the exact parameter setting is recovered.
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Feature Description

Density 2m
n(n−1) , where m = |E|, and n = |V |

Triangles 1
n

∑
v∈V T (v), where T (v) = # of triangles involving v.

CC 1
n

∑
v∈V

2T (v)
dv(dv−1) , where dv is the degree of v.

ASPD 1
n2

∑
u,v∈V spd(u, v), where spd(u, v) is the distance between u and v.

Modularity The modularity of G derived using the FastGreedy algorithm [53].
Motifs Counts of the 11 isomorphic connected motifs with 4 vertices [310].
k-core 1

n

∑
v∈V KC(v), where KC(v) is the highest order of a core that contains v.

PLE α in y = cxα where y is the cumulative degree distribution.
CCTY 1

n

∑
v∈V 1/(avg. distance to all other nodes)

DA Measures how likely high degree nodes connect to other high degree nodes.

Table 8.1: Network features used in the decision tree classifier. The input network G =
(V,E). CC = clustering coefficient; ASPD = average shortest path distance; PLE = power-
law exponent; CCTY = closeness centrality; DA = degree assortativity.

8.3 Results and Discussion

8.3.1 The duplication-mutation with complementarity (DMC) model

We achieved a precision of 67.2% when attempting to distinguish between DMC-

grown networks using various values of qmod and qcon. This means that for 1,679

out of 2,500 DMC examples we predicted the exact DMC parameters used to grow

the graph forward, given only the graph’s vector of features (Table 8.1). For the

incorrectly predicted cases, the average difference between the actual qmod and the

predicted qmod was 0.08; for qcon the average difference was 0.18. The parameter

qcon only governs the existence of a single edge in the growth procedure, whereas

qmod controls many more; the network therefore encodes more information about the

qmod value, which is reflected in the resulting network features. In chapter 7, we also

found that the reverse qmod value used was more important than the reverse qcon used,

for the same reason. Our close estimation of both values testifies to the promise of

this approach as a means to generate a network prior for the network archaeology

algorithms.

The decision tree returned by Weka [118] contained 264 leaves with motifs, tri-
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angles, and density appearing as the top-level discriminators. These features likely

emerged because low values of qmod and high values of qcon result in many triangles

formed between a node, its duplicate, and their common neighbors. Varying these

values thus has a direct effect on the values of these features.

We also experimented briefly with noise by first building a classifier on clean data,

and then creating test data by replacing 10% of the test-network edges with randomly

chosen edges. In this case, the precision went down to 51.7%, with a similar dynamic

amongst actual and predicted reverse parameters. DMC is the only model we tested

that has a parameter that explicitly controls the deletion of edges (qmod), which makes

it difficult to drive precision up further.

8.3.2 The forest fire (FF) model

We performed a similar experiment with the FF model by varying the parameter p

and achieved a precision of 86%. When we predicted p incorrectly, it was always off by

exactly 0.1. The resulting decision tree was much simpler than that for DMC; it only

contained 22 leaves with k-core being the top-level discriminator followed by density

and motifs. Low values of p result in small forest fires, which has a direct control

on the k-core value of a node. Density also appears to be a natural discriminator

because large values of p result in more edges added in the link-copying procedure.

As observed in the synthetic data experiments in §7.4.1, the FF model was more

robust to noise than DMC — when 30% of the true edges were replaced by randomly

chosen edges, precision only lowered to 78.6%. The probabilistic nature of the forest

fire likely made it difficult for higher precision values to be obtained.

8.3.3 The linear preferential attachment (PA) model

Next, we experimented with the PA model by attempting to recover the parameter

k, which we varied from 2–20 in steps of 1. Interestingly, we achieved a precision of

190



4

1890  /  6

0

0

404  /  75

21

17

15

1646 / 822

DMC FF PA

DMC

FF

PA

! !

! !

! !

Actual Model

P
r
e

d
ic

t
e

d
 M

o
d

e
l

Figure 8.2: The model confusion matrix. For 1,646 of the 2,500 DMC examples, we pre-
dicted the correct model and exact parameters; for 822 examples, we predicted the correct
model (DMC) but incorrect model parameters. There were also 15 cases where we misclas-
sified DMC as FF, and 17 cases where we predicted PA instead of DMC. The precision over
all three models was 80.4%.

100% with a decision tree with exactly 19 leaves, one corresponding to each parameter

setting. The tree only used one feature — density — and it is clear why: all the graphs

have exactly 100 nodes and k deterministically controls the number of edges in the

network. Hence, even with 90% of added noise (replacement of edges), the classifier

still returns 100% precision.

8.3.4 Testing all three models simultaneously

Finally, we attempted to classify both the model and the model parameters used

to grow a network. For each of the three models and each set of corresponding

parameters, we created 100 graphs of 100 nodes and extracted the network properties

for each graph. This resulted in 4900 examples (25 × 100 for DMC, 5 × 100 for FF,

and 19×100 for PA). Using 10-fold cross validation, we achieved a precision of 80.4%;

this means that for 3,940 examples, we not only predicted the correct model but also

the correct model parameters.

Figure 8.2 shows the confusion matrix for the three models. Most of the incorrect

predictions lied within the DMC model because of the fine-grained differences intro-

191



duced by small changes in qmod and qcon. As above, the average difference between

actual and predicted qmod and qcon values was 0.07 and 0.19, respectively. There were

36 examples where a DMC or FF model was classified as a FF or DMC model, re-

spectively. In the previous chapter, we remarked on the similarity of the DMC and

FF models for some parameter settings, so this mix-up is somewhat expected.

There were 75 instances where we predicted the FF model correctly, but not the

right FF parameters (average difference between actual and predicted p value was 0.1).

When PA was tested alone, we saw 100% precision, but in the joint model setting,

there were 6 examples where a PA network was misclassified as a DMC network. This

shows that density alone is not sufficient for differentiating multiple models.

These results suggest that we can significantly discriminate between three popu-

lar network growth models. Further, when incorrect, we tend to predict parameter

settings that are in the rough range of the truth. The machine learning approach

therefore serves as a viable prior for inferring which model and model parameters to

use in the reconstruction process.

8.4 Conclusions and Future Work

Determining the principles that govern a network’s growth is a core problem in the

field of dynamic network analysis. We showed how a simple extension to the machine

learning approach of Middendorf et al. [204] can robustly estimate the model and

model parameters that most likely gave rise to a network in question. This approach

naturally fits into the reconstruction framework introduced in the previous chapter.

Further questions and extensions regarding the modeling of graph structures are

listed below:

Analytic methods. Can we analytically compute the probability that a set of

reverse model parameters produced a given network? Closed-form expressions for PA
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have been developed given a node arrival ordering [23], however, is it unclear if more

complicated models can also be characterized analytically.

Better network features. What other network features provide high discriminat-

ing power? Are there better “hash” values to represent a network? Further, several

of the features we used (such as shortest path length) are highly dependent on the

size of the network. Developing a single classifier that is applicable to variable-sized

networks would greatly ease the burden of training.

Noise and real-world networks. Could performance increase if we train the clas-

sifier on both clean and noisy networks? What are the practical limits of our machine

learning approach with respect to noise? Can our approach predict the growth prin-

ciples underlying real-world networks?
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9. Conclusion

In this thesis, we presented algorithms to explore the structure, clustering dynamics,

and evolution of biological networks. Our work is motivated by the need to extract

biological signal embedded within large, noisy, and sparsely annotated data.

In Part I, we presented two information-theoretic graph clustering algorithms and

showed their applicability in uncovering modules that are coherent with known bi-

ological processes, protein complexes, genetic diseases, and operational taxonomic

units. In chapter 1 [214], we introduced graph summarization (GS), a MDL-inspired

graph compression framework that naturally finds dominant interaction patterns and

modules by searching for compressible regions in the graph. Our algorithms effi-

ciently summarized large web, social, and information networks using both lossless

and lossy representations. In chapter 2 [215], we used GS to reveal functional modules

in protein-protein interaction (PPI) networks by exploiting the property that proteins

with similar interaction partners tend to have related cellular roles. We also used the

corrections list to predict false positive and false negative edges in the PPI network.

In chapter 3 [216, 311], we introduced VI-Cut, a semi-supervised algorithm that gen-

eralized the notion of choosing a clustering from a hierarchical tree decomposition

by non-parametrically leveraging known annotations. VI-Cut accurately extracted

protein complexes from noisy PPI networks and also classified the diversity and com-

position of bacterial species in metagenomic DNA samples. In chapter 4 [213], we

considered a related biomedical problem — predicting the causal genes of genetic dis-

eases using PPI networks — and showed how our algorithms can uncover meaningful

human “disease modules”. Overall, under several testing frameworks, validation met-

rics, and datasets, our algorithms either remained competitive or outperformed other

popular approaches.

In Part II, we introduced algorithms to explore how interaction patterns and mod-

ules in biological networks vary across the clustering space. In chapter 5 [211], we
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recasted modularity optimization as an integer linear program with diversity con-

straints to generate an ensemble of near-optimal graph partitions for three diverse

social and biological networks. We showed how this ensemble could be used to high-

light inter-community cross-talk, resilient communities, and core/peripheral commu-

nity members. In chapter 6 [67], we scaled up our algorithms to find near-optimal

partitions in large networks by heuristically reducing the clustering space to only

include partitions induced by a hierarchical tree decomposition. We showed how to

generate near-optimal and diverse solutions in this space and how to count the num-

ber of solutions within a bounded modularity range. Quantitatively and qualitatively,

we found many instances where near-optimal solutions unveiled clustering dynamics

of the network that would be missed by any single solution approach.

In Part III, we introduced the problem of network archaeology. Unlike static net-

work analysis, tracking how networks change over time can help us better understand

the forces driving the emergence and perpetuation of network patterns and modules.

In biology, however, our ability to study dynamics has been stifled by the unavail-

ability of ancestral networks. In chapter 7 [212], we proposed a suite of algorithms to

uncover the node-by-node and edge-by-edge arrival history of a present-day network

given a generative model by which the network putatively evolved. We showed how

our algorithms could extract evolutionary principles from a present-day yeast PPI

network that agree with sequence and structural evidence. In chapter 8, we refined

the machine learning approach of Middendorf et al. [204] to automatically infer the

growth model and model parameters that most likely produced a given network by

learning the topological properties of random graphs relevant to each parameter set-

ting. The classifier fits well within the network archaeology framework as a model

prior.
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9.1 Themes

There were several common themes that stitched this thesis together.

Synthesizing data types that are not easily comparable is a common problem in

data mining. For example, should a point be classified as signal or as noise? How do

we integrate node topology and node annotations into a single clustering framework?

Parameterization is a popular technique to balance between alternatives, however,

is it often difficult to set parameters in practice, especially when training data is

limited. Throughout our work, we used information-theoretic principles to naturally

uncover a trade-off between two orthogonal options. Graph summarization used the

minimum description length (MDL) [257] ideology to classify a graph edge as either

part of a dominant interaction motif (summary) or as atypical (corrections) based

on the cost required to represent the edge in memory. VI-Cut used the variation of

information [202] to consolidate topology and annotations in a constrained clustering

space. In both cases, by using compression as the driving force behind data mining,

we let the data speak for itself.

Modeling is a powerful technique to determine how well a dataset fits a certain a

priori description. Graph summarization implicitly used the MDL model to define an

optimization criterion for compressing graphs. Network archaeology explicitly used

a growth model to generate a likelihood estimate for an ancestral graph. In both

cases, the model provided an understandable and quantifiable measure of how well

an underlying theory can explain the data — a feature that is notably absent from

heuristic techniques. Further, in our model test paradigm we characterized the ability

of each network growth model to explain the statistical features present in a query

network. Comparative modeling in this way can help develop intuition about the

strengths and weaknesses of assumptions.

We also made an effort to emphasize the importance of data mining using multi-

ple perspectives. Most clustering algorithms in the literature consider only a single
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solution to an optimization problem. In Part II, we showed many instances where a

single view of network structure is inferior compared to the view bestowed by multiple

solutions together. Similarly, in chapters 2 and 4, we showed how multiple network

mining strategies could be used in conjunction to illuminate different connectivity

principles of functional modules. Overall, there were many instances where the noisy,

dynamic, and multi-faceted nature of real-world data benefited from the integration

and reconciliation of multiple perspectives.

Finally, although we were mostly inspired by biological network analysis, we ap-

plied our algorithms to various other domains to gauge their relevance across settings.

For example, we used graph summarization to compress social, web, and information

networks and demonstrated the appeal of the summary structure as a tool for visual

data mining. The core VI-Cut framework was used to closely characterize the distri-

bution of OTUs in metagenomic DNA samples and to derive provably near-optimal

modularity clusterings from a hierarchical tree decomposition. Further, we applied

our Modu-ILP algorithm to friendship networks, metabolic pathway networks, and

brain networks, and in each case showed how ensembles of clusterings revealed in-

teresting clustering dynamics. Finally, we reconstructed a reasonable history of the

Last.fm music social network using our networking archaeology algorithms. The gen-

eralizability of our algorithms across these many domains testifies to their powerful

design.

9.2 The Future

The state of network analysis for biological networks is no longer in its infancy.

Since the emergence of high-throughput interaction data, numerous studies have

emerged that computationally probe the deep inner workings of the cell. These

analyses include network clustering for biological module detection and function pre-

diction [14, 21, 35, 141, 161, 186, 215, 216, 219, 300]; network polishing for disam-

197



biguating between experimental noise and true signal [122, 215, 283, 320] and for

predicting interactions [58, 99, 197, 276, 282]; network alignment to find conserved

substructures across muliple PPI networks [17, 64, 80, 152, 239, 271, 277]; network

searching to find overrepresented subgraphs (motifs) that are indicative of structural

building blocks [8, 110, 150, 205]; and network modeling to find plausible mechanisms

and principles of network evolution [134, 159, 183, 204, 212, 300, 302].

However, nearly all of these analyses have been conducted on static biological

networks. The cell, however, is not a static entity; interactions can vary widely based

on the time and condition when probed [190]. Unfortunately, typical high-throughput

methods (such as yeast two-hybrid [78] and co-immunoprecipitation [97, 165]) are

incapable of probing the dynamical nature of interactions in vivo. While new tagging-

based technologies are emerging to help bridge this gap [54, 140, 252], it remains to be

seen if they can be performed at a proteome level, under various conditions, and with

reasonable cost. Other approaches have attempted to probe dynamics by perturbing

the cell or by overlaying condition-specific gene expression data on top of interaction

networks (for review, see Przytycka et al. [245]). Although these methods do not

explicitly produce dynamic networks, they are a step in the right direction.

The theory of clustering, which has mostly focused on single graphs, also needs

to be extended into the realm of dynamics. There is much formalism on how to

algorithmically capture the intuitive notion of a good (single) network clustering, but

we have less experience in defining reasonable objectives for multiple time-varying

networks. We discussed some techniques to quantify space-varying module dynamics;

systematizing these ideas and correlating them with real time-based changes could

also help elucidate the logical rules and principles governing the evolution of biological

modules.

The study and generation of ancient networks holds the potential to expose bio-

logical network dynamics. With these networks, we can begin asking deeper questions
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about why the network structures we see exist, how they have been conserved across

life, and what mechanisms contribute to their perpetuation. Networks alone are likely

to only take us so far; incorporating sequence and other domain-based information

into the inference will be crucial to recover realistic network histories. We will also

need more sophisticated growth models that go beyond simply trying to capture

global network properties.

Finally, as technology improves, we will hopefully be able to ask more exciting

and holy-grail biological questions. For example, how do PPI networks differ before

and after the contraction of a brain disease? Can a drug be designed to mitigate the

effect of virus proteins attacking a host network [193, 296]? Can behavioral differences

in two humans be attributed to differences in their networks of interacting proteins

(personal proteomics)? What evolutionary and functional principles best characterize

the diversity of PPI networks across life and can we use these ideas to manufacture

a functional synthetic PPI network? What role do computational approaches play in

all of these problems?

To conclude, the algorithms developed in this thesis were motivated by the need to

address real-world biological problems involving large amounts of noisy and sparsely

annotated data. As data continues to expand in size, complexity, and type, we believe

that computational network analysis will further prove to be an indispensable tool.
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