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ABSTRACT 

Brain imaging data are incredibly complex and new information is being learned as approaches to 

mine these data are developed. In addition to studying the healthy brain, new approaches for using 

this information to provide information about complex mental illness such as schizophrenia are 

needed. Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are 

two well-known neuroimaging approaches that provide complementary information, both of 

which provide a huge amount of data that are not easily modelled. 

Currently, diagnosis of mental disorders is based on a patient’s self-reported experiences and 

observed behavior over the longitudinal course of the illness. There is great interest in identifying 

biologically based marker of illness, rather than relying on symptoms, which are a very indirect 

manifestation of the illness. The hope is that biological markers will lead to earlier diagnosis and 

improved treatment as well as reduced costs. Understanding mental disorders is a challenging task 

due to the complexity of brain structure and function, overlapping features between disorders, 

small numbers of data sets for training, heterogeneity within disorders, and a very large amount of 

high dimensional data. 



vii 

 

This doctoral work proposes machine learning and data mining based algorithms to detect 

abnormal functional network connectivity patterns of patients with schizophrenia and distinguish 

them from healthy controls using 1) independent components obtained from task related fMRI 

data, 2) functional network correlations based on resting-state and a hierarchy of tasks, and 3) 

functional network correlations in both fMRI and MEG data. The abnormal activation patterns of 

the functional network correlation of patients are characterized by using a statistical analysis and 

then used as an input to classification algorithms.  

The framework presented in this doctoral study is able to achieve good characterization of 

schizophrenia and provides an initial step towards designing an objective biological marker-based 

diagnostic test for schizophrenia. The methods we develop can also help us to more fully leverage 

available imaging technology in order to better understand the mystery of the human brain, the 

most complex organ in the human body. 
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1.1. Motivation 

Functional magnetic resonance imaging (fMRI) and Magnetoencephalography (MEG) are two 

well-known neuroimaging approaches that have been used to understand various mysteries related 

to the brain. These technologies have provided opportunities to scientists to investigate the 

integrity of neural circuits and map physical and cognitive actions to different regions within the 

brain. Also, these neuroimaging approaches enable scientists to examine the joint information 

between tasks that are obtained from different functional domains. Previous work has yielded 

information across a wide range of topics including basic sensory processing, tobacco and alcohol 

use, neurodegenerative diseases, longitudinal studies and neuropsychiatric illnesses. 

The number of people affected by mental disorders such as schizophrenia, is substantial and has a 

significant long term cost both economically and in terms of human suffering. The general 

approach for the diagnosis of mental disorders is based on a patients self-reported experiences and 

observed behavior over the longitudinal course of the illness. There is great interest in identifying 

biologically based marker of illness, rather than relying on symptoms because the current approach 

may postpone the diagnosis of the disorder whereas early diagnosis can improve treatment 

response and reduce associated costs (Kubicki, M. et al., 2007). But understanding mental 

disorders is a challenging task due to the complexity of brain structure and function, overlapping 

features between disorders, small training subjects, the heterogeneity within disorders and a very 

large amount of high dimensional data. 

The brain regions that show significant differences between patients and healthy individuals can 

be identified based on activation patterns obtained from rest-state or tasks with certain stimuli such 

as audio and visual stimuli. These differences motivate us to investigate the abnormal activity of 

patients with schizophrenia on functional regions of the brain by using machine learning and data 

mining algorithms. In this work, we propose several approaches to detect abnormal functional 

network connectivity patterns of patients with schizophrenia and improve the individual prediction 

of schizophrenia patients. Therefore, we may help to design an objective biological marker-based 

diagnostic test for schizophrenia. 
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1.2. Thesis Statement 

This doctoral work proposes machine learning and data mining based research algorithms to detect 

abnormal functional network connectivity patterns of patients with schizophrenia and distinguish 

them from healthy controls by using time series of non-artifactual independent components 

obtained from task related fMRI data, functional network correlation data based on resting-state 

and task hierarchy fMRI experiment, functional network correlation data obtained with fMRI and 

MEG methods. The abnormal activation patterns of functional network correlation of patients are 

characterized by using a statistical analysis and these abnormal activation patterns are used as an 

input data to classification algorithms. The framework presented in this doctoral study lay the 

groundwork towards methods to achieve a better characterization of schizophrenia to design an 

objective biological marker-based diagnostic test for schizophrenia. 

1.3. Research Goals & Perspective 

The general approach for the diagnosis of schizophrenia is primarily based on a patients self-

reported experiences and observed behavior over the longitudinal course of the illness. There is 

great interest in identifying biologically based marker of illness, rather than relying on symptom 

assessment because the current approach may postpone the diagnosis of the disorder, whereas early 

diagnosis can improve treatment response and reduce associated costs (Kubicki, M. et al., 2007). 

But small numbers of training subjects and high dimensional datasets make it challenging to design 

robust and accurate classifiers for schizophrenia. Functional connectivity shows promise in 

predicting individual patients. Seed-based functional connectivity approaches assess the temporal 

correlation between a seed region and individual brain voxels (Cordes D et al., 2002; Fox MD et 

al., 2005). Independent component analysis (ICA) based functional network connectivity (FNC) 

is a correlation value that summarizes the overall connection between independent brain maps over 

time (Allen EA et al., 2012; Calhoun VD et al., 2001a, 2008; Cetin, MS., et al., 2014; Jafri MJ et 

al., 2008). Therefore, the FNC feature gives a picture of the connectivity pattern over time between 

independent components. 
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Examination of intrinsic functional connectivity using functional MRI (fMRI) with resting-state 

has provided important findings regarding dysconnectivity in schizophrenia. However, exclusive 

reliance on fMRI to generate such networks may limit inference on dysconnectivity: Whilst the 

blood oxygenation-level dependent (BOLD) response measured by fMRI allows high spatial 

resolution maps, it is limited by being an indirect and slow physiological signal (Kim SG, et al., 

1997). Neural oscillatory activity, which comprises rhythmic electrical activity in cell assemblies, 

is thought to underlie BOLD responses. This occurs in the ∼1-900Hz band; such rapid electrical 

signals cannot be assessed using fMRI but can be measured directly by techniques such as 

magnetoencephalography (MEG). The integration of MEG and fMRI should allow us to 

interrogate this disconnection with high spatiotemporal resolution. 

To date, most studies have focused only on the analysis of functional connectivity during 

performance of a single task. Changes in connectivity between extended rest and multiple tasks 

have not been used in the discrimination of schizophrenia patients from healthy controls. Such an 

approach does not take advantage of the within-subject pattern of response which likely occurs 

across tasks, and which can be of benefit in a number of applications (Calhoun VD and Adali T, 

2009; Calhoun VD et al., 2006, 2008). Only a few studies (Arbabshirani MR et al., 2013a; Cetin, 

MS., et al., 2014; Repovš G and Barch DM, 2012) have investigated how cognition changes under 

an established progression of task manipulation, but these studies have not focused on individual 

subject measures in the context of classification. To gain a broader understanding of brain function 

and dysfunction as a dynamic process, we must examine how cognition changes under an 

established progression of task manipulations. 

The results of this study lay important groundwork for developing clinical tools that can detect 

abnormal activation patterns of mental disorders such as schizophrenia. The contributions of this 

doctoral work are briefly listed and discussed as follows:  

 Improving fast candidate evaluation algorithm using multi-length indexing scheme. As a 

first step of this study, we will use shapelet algorithm to investigate time series of non-

artifactual independent components obtained from task related fMRI data for classification 
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of schizophrenia patients from healthy controls. Time series shapelets are small segments 

of time series that distinguish between classes based on existence of such segments in the 

classes. Despite numerous works on shapelet discovery, mostly on efficient algorithms, 

shapelets for multi-dimensional time series data are yet to be explored because of the added 

computational requirement for multiple dimensions of time series data. In the simplest 

form, if we wish to discover shapelets for each of the dimensions separately, the original 

exact algorithm (Lexiang, Y. and Keogh, E., 2009)  takes months while the fastest 

approximate algorithm would take ten hours on our target neuroimage dataset. First, we 

plan to overcome the barrier of computational requirements by using fast candidate 

generation and evaluation. A typical shapelet discovery algorithm works in two phases. 1) 

the algorithm generates a set of candidate shapelets and 2)  the candidates are evaluated for 

the information gain they achieve when used as classification features. Surprisingly, all of 

the speed-up techniques in the literature prune the candidate pool by admissible heuristics 

(Abdullah, M. et al., 2011) or by random projections (Rakthanmanon, T. and Keogh, E., 

2013). In chapter 3, we will describe a fast candidate evaluation algorithm using multi-

length indexing scheme, which can be used in conjunction with any prior algorithm.  

 

 Determining whether cortical connectivity patterns remain stable or change across a 

hierarchy of sensory tasks. To the best of our knowledge there has been no study to 

investigate this issue in a variety of different FNC networks in a multi-task hierarchy with 

a relatively large number of subjects. In this study, we examined FNC across a hierarchy 

of sensory tasks with varying levels of sensory load in chapter 4. Data for each participant 

were gathered across multiple fMRI scanning sessions over the course of up to two months 

(1~2 months) with prospective randomization of task presentation and close monitoring of 

SPs to ensure clinical stability. Our goal is to track connectivity changes in schizophrenia 

patients and healthy controls as sensory load increased. Using multiple tasks in addition to 

multiple conditions within a single task allows us to recognize that individuals’ reactions 

to sensory stimuli are conditioned by the circumstances in which such stimuli are presented 

and measurements at separate time points allows us to better assess state versus trait group 

differences. We sought to determine whether schizophrenia patients and healthy controls 
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showed significant FNC differences among brain regions across the task hierarchy by 

modeling the temporal dependency between functional networks derived from fMRI data. 

The tasks defined a natural hierarchy related to sensory load and included a rest task, two 

levels of auditory sensory gating, and two levels of multisensory perception with auditory 

and audio-visual stimuli. We remain skeptical of the notion that rest differences necessarily 

equate to characteristic differences in cognition between schizophrenia patients relative to 

healthy controls. We hypothesized that data collected using a sensory load task hierarchy 

including rest will provide evidence of both stable (static functional network connectivity 

effects) and state-based differences (dynamic functional network connectivity effects).  

 

 Investigating hypothesis that the static functional network connectivity effects contain 

valuable trait-based information that can be used for individual prediction of mental illness 

such as schizophrenia. In chapter 5, we used a group ICA approach (Calhoun VD and Adali 

T, 2012; Erhardt EB et al., 2011a), excluded non-artifactual brain networks (Jafri MJ et al., 

2008), then conducted a classification study of schizophrenia and healthy subjects using 

static functional network connectivity effects and compared results with dynamic 

functional network connectivity effects by examining across a hierarchy of sensory tasks 

with varying levels of sensory load (including resting-state only). Data for each participant 

were gathered across multiple fMRI scanning sessions and both FNC analyses were 

examined across a hierarchy of sensory tasks with varying levels of sensory load.  

 

 Improving a method to use both fMRI and MEG together to investigate healthy normal 

volunteers and schizophrenia patients. Whilst the blood oxygenation-level dependent 

(BOLD) response measured by fMRI allows high spatial resolution maps, it is limited by 

being an indirect and slow physiological signal (Kim SG, et al., 1997). Neural oscillatory 

activity, which comprises rhythmic electrical activity in cell assemblies, is thought to 

underlie BOLD responses. This occurs in the ∼1-900Hz band; such rapid electrical signals 

cannot be assessed using fMRI but can be measured directly by techniques such as 

magnetoencephalography (MEG) (Cohen D., 1968). The purpose of the chapter 6 is to use 

both fMRI and band limited envelope correlation metrics in MEG to interrogate functional 
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connectivity in the resting state in a sample of healthy normal volunteers and schizophrenia 

patients. Using methods based on group spatial ICA, for the first time we estimate networks 

from both MEG and fMRI and compare and contrast the networks and findings from the 

three modalities, with the hypotheses that 1) Patients and controls would differ significantly 

on both MEG and fMRI measures of among-network connectivity, called functional 

network connectivity (FNC), 2) MEG and fMRI spatial maps would show substantial 

overlap and 3) Using both MEG and fMRI measures of among-network connectivity would 

show improvement to classification of schizophrenia patients 

1.4. Innovations and Contributions  

This doctoral work will help researchers in better understanding abnormal activation patterns of 

functional network correlation and disconnection hypothesis of patients with schizophrenia. A list 

of the primary innovations and contributions of this dissertation includes: 

 Investigate time series of non-artifactual independent components obtained from task 

related fMRI data for classification by using a shapelet algorithm. 

 

 Compare and question the applicability of various frameworks for classification of 

schizophrenia patients and healthy control subjects based on the fMRI data obtained from 

a hierarchy of sensory tasks with varying levels of sensory load (including rest-state only). 

 

 Combining both fMRI and MEG are used to interrogate functional connectivity in the 

resting state individual prediction of schizophrenia. 

1.5. Organization 

The rest of this dissertation describes concepts, techniques, and results we have implemented and 

analyzed in the course of developing the proposed frameworks to detect abnormal functional 

network connectivity patterns of patients with schizophrenia and increase the individual prediction 

of schizophrenia patients. This dissertation is organized as follows:  
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Chapter 2 provides a brief background description regarding the some of the building blocks of 

this thesis including fMRI mechanism, MEG mechanism, schizophrenia, independent component 

analysis and functional network correlation.  

Chapter 3 introduces a shapelet based classification algorithm. Time series shapelets are small 

segments of time series that distinguish between classes based on existence of such segments in 

the classes. The proposed shapelet algorithm uses time series of independent components of fMRI 

data.  

Chapter 4 describes a novel functional network connectivity analysis by examining across a 

hierarchy of sensory tasks with varying levels of sensory load to determine whether cortical 

connectivity patterns remain stable or change across a hierarchy of sensory tasks. 

Chapter 5 presents a classification study of schizophrenia patients and healthy subjects using static 

FNC and compared results with dynamic FNC by examining across a hierarchy of sensory tasks 

with varying levels of sensory load (including resting-state only). 

Chaplet 6 describes a novel functional network connectivity analysis by combining both fMRI and 

MEG methods. They are used to interrogate functional connectivity in the resting state individual 

prediction of schizophrenia. Chapter 6 also presents a multi-model classification study of 

schizophrenia patients and healthy subjects by using FNC data obtained from fMRI and MEG 

Chapter 7, features conclusions, future works, and recommendations. 
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Chapter 2: Background 
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In this chapter, we will provide a brief background description regarding the some of the building 

blocks of this thesis including fMRI mechanism, MEG mechanism, schizophrenia, independent 

component analysis and functional network correlation 

2.1. fMRI 

Functional magnetic resonance imaging (fMRI) is a type of specialized neuroimaging MRI-related 

technique. It has a temporal resolution of about one second and spatial resolution of 1-3mm3 

(which is known a voxel) also it is used to capture the functional activation of brain regions (Smith, 

S.M., 2004). See Figure 2 - 1. Although brain activity known as a transfer of electrical and 

chemical energy between the different regions of the brain, fMRI measures indirect levels of brain 

activity associated with a physical or mental action.  

 

Figure 2 - 1: Surface renderings of 3D brain images. (a) High resolution image (1×1×1) voxels 

and (b) low-resolution (7×7×7) image of the same brain (Smith, S.M., 2004). 

The hemodynamic response of a neural activity at a certain brain region that obtains additional 

oxygen consumption and oxygen present in the neighborhood of that brain region is imaged by 

fMRI. The neurovascular linkage between networks of neurons and blood vessels results in the 

exchange of energy that further causes change in oxygenated hemoglobin (Huettel, S., et al., 2004). 

Blood oxygenation-level dependent (BOLD) activations are considered an acceptable indicator of 

bundled neural activity by scientists.  
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When the brain supplies an active brain region with oxygenated blood, it causes a drop in the 

deoxyhemoglobin concentration around the active region and change the ratio of oxyhemoglobin 

and deoxyhemoglobin. See Figure 2 - 2. This change the activity of magnetic properties of the 

environment around the activated brain region. While a subject is asked to perform a task such as 

pressing a button, the scanner records BOLD changes of different brain regions. In other words, 

during an fMRI experiment, fMRI measures changes in deoxyhemoglobin concentrations in 

nearby (to neurons) blood vessels. 

 

Figure 2 - 2 : Physiologic principle of fMRI signals; (a) increasing the oxygen consumption, then 

(b) hemodynamic response in a second scale (Astolfi, L., et al., 2004) 

fMRI results have been used in the identification of neuropsychological disorders such as 

schizophrenia. Pathophysiology of schizophrenia investigated with fMRI, in particular to assess 

the disconnection hypothesis of schizophrenia (Friston KJ and Frith CD, 1995; Woodward ND, 

2012). fMRI allows researchers to investigate groups of patients with schizophrenia and healthy 

controls and identify differential brain activation between these groups. 
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Figure 2 - 3 : An MRI scanner. Siemens magnetom trio scanner at the Mind Research Network. 

 

2.1.1. fMRI Experiment 

The goal of the fMRI experiment is recording the activity of brain regions. During an fMRI 

experiment, the subject is requested to lie in a MRI scanner (See Figure 2 - 3), not move his/her 

head since motion is one of the main artifacts in an fMRI experiment and performs a task while 

the scanner captures the hemodynamic response from different brain regions as neural activity. If 

it is necessary for the experiment, tools such as a projector, speaker, headphones, button boxes and 

microphones may be used together with the MR machine with special settings due to a very strong 

magnetic field. See Figure 2 - 4. 

Generally there are two types of experiments: (1) in the resting-state experiments, participants 

performed a simple rest task. Their eyes were open during the scan and they gazed passively at a 
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central fixation cross. (2)  In a task-based experiment, subjects need to attend to a task and respond 

if it is required. There are two main types of task-based fMRI designs: (a) in a block design task 

experiment, conditions are alternated in order to determine the differences among them. (b) In an 

event related design task experiment, conditions are randomized throughout the course of the 

experiment to simulate a real world experiment. 

During any kind of fMRI experiment the main coil in the MRI machine makes high steady 

magnetic field in the chamber of the scanner. Then the gradient coil creates small changes in the 

steady magnetic field. In the final stage, radio frequency coil that emits radio frequency signals to 

excite the protons that are spinning at a certain frequency  

 

Figure 2 - 4 : Experimental fMRI setting for testing of responses to visual stimuli 

(http://www.ece.unm.edu/~vcalhoun/courses/fMRI_Spring12)  

 

2.2. MEG 

Magnetoencephalography (MEG) is increasingly available and is regarded as one of the most 

popular imaging methods. MEG is a noninvasive neuroimaging technique for detecting the 
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magnetic fields associated with the intracellular current flow within neurons and recording this 

brain activity (D. Cohen, 1972) which allows real-time investigation of cortical activity. See Figure 

2 - 5.  

In the MEG method, even very small magnetic field signals are amplified by using 

superconducting quantum interference devices. The millisecond temporal and spatial resolution of 

MEG, distinguish it from fMRI techniques. MEG involves the measurement of neuromagnetic 

signals emanating from the brain. Magnetic activity measured outside the head is produced 

primarily by intracellular electrical currents within the dendrites of pyramidal cells in neo- and 

archeo-cortical brain structures.  

Although MEG provides some advantages to investigate cognitive activity such as millisecond 

temporal and spatial resolution, it comes with some limitations which are listed below:  

 MEG measurements have to be taken in a magnetically shielded laboratory environment 

due to the neuromagnetic signals being very weak compared to the magnetic fields in a 

laboratory environment. 

 

 In order to produce activation maps, MEG data requires to be combined with MR data into 

a composite image of function overlaid on anatomy. Due to lack of anatomical or structural 

information in MEG data. 

 

 Obtaining reliable information regarding the subcortical sources of brain activity is one of 

the main challenges. Due to the existence of the spherical symmetry of the head and 

distance to the source.  

 

 Localization of the sources of activity within the brain from magnetic measurement outside 

the head and helmed is another challenge with MEG. 
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Figure 2 - 5: Experimental MEG setting for testing of responses, (a) MEG scanner, (b) helmet-

shaped array and magnetometer coils (Braeutigam, S., 2013). 

 

2.2.1. MEG Experiment 

The goal of the MEG experiment is recording the activity of the brain regions. During an MEG 

experiment, the subject is requested to sit under the MEG scanner and performs a task while a 

helmet-shaped array captures the magnetic fields via 3 pick-up coils which are called a channel. 

There are 360 channels in a helmet-shaped array (Braeutigam, S., 2013).  

If it is necessary for the experiment, tools such as a projector, speaker, headphones, button boxes 

and microphone may be used together with the MEG scanner with special settings due to magnetic 

field.  
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2.3. Schizophrenia 

Schizophrenia is a mental disorder, affecting one’s thoughts, feeling and acts. It has been widely 

accepted as a neurodevelopmental disorder substantially affecting the neuroanatomy and brain 

function, including functional networks during resting-state and task (Bullmore E and Sporns O, 

2009; Millier, A., et al., 2014; Van Den Heuvel MP., and Hulshoff Pol HE., 2010; Van DKR et 

al., 2010). Schizophrenia is a complex disease that affects 1% of the population and across all 

cultures, genders and socioeconomic groups (Bhurga D., 2005; Leucht S, et al., 2007; Millier, A., 

et al., 2014). It was reported as the 5th leading worldwide cause of global disease burden in 2004 

by The World Health Organization.  

Although the root cause of schizophrenia is still unclear, many recent research studies have pointed 

to the combination of environmental and genetic factors as possible contributing causes to the 

disease. The most accepted hypothesis regarding what causes schizophrenia is the disconnection 

hypothesis (Friston K., 1998). It is based on disturbances in white matter connectivity between 

different brain regions. Fiber number or density differences of white matter (See Figure 2 - 7) 

between schizophrenia patients and healthy controls are possibly due to abnormalities in the 

myelin sheaths around the axons (Foong J, et al., 2002; Minami T, et al., 2003). Also, some early 

researchers have found the existence of diminished white matter anisotropy in some areas of 

schizophrenic brain such as the prefrontal region (Buchsbaum M, et al., 1998). See Figure 2 - 6. 

In conclusion, the diminished white matter differences in schizophrenia patients are not 

circumscribed and are characterized by a deficit of interconnections between different parts of the 

brain (Allen EA et al., 2012; Breakspear M, et al., 2003; Calhoun VD and Adali T, 2009; Calhoun 

VD et al., 2006, 2008; Friston K., 1998; Kubicki, M. et al., 2007). 

General symptoms of schizophrenia include hallucinations, emotional dysregulation disorganized 

behavior and difficulty in separating between reality and delusional formations. Symptoms of 

schizophrenia are divided into 3 subgroups (Andreasen N, et al., 1998; Andreasen NC, et al., 2005). 

 Positive symptoms are manifestations of the disorder and include delusions, auditory 

hallucinations, thought disorder and disorders of movement.  
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 Negative symptoms are considered the loss of normal traits and abilities and include 

symptoms such as lack of emotion, lack of motivation, poverty of speech and failure to 

experience pleasure.  

 Disorganization Symptoms are categorized affective incongruity, attentional impairment 

such as problems with working memory and executive functions that needed to plan and 

organize. 

 

Figure 2 - 6: A lateral/sagittal view of the human brain with locations of frontal, temporal, motor, 

sensory, parietal, occipital, and medulla oblongata lobes. (http://www.smartketing.net/?p=49) 

Studies separately analyzing structural and functional images have found that multiple brain 

regions appear to be affected in schizophrenia (Allen EA et al., 2012; Cetin, MS., et al., 2014; 

Goldstein JM, et al., 1999; Honea R, et al., 2005). Functional images studies showed that the 

population mean of schizophrenia patients perform at least one standard deviation below then 

healthy controls in various areas such as attention, memory, motor speed, executive functions, 

ability to acquire skills, problem solving and community functioning (Green M, et al., 2000). Also, 
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structural image studies reported that there is structural brain differences in schizophrenia patients 

and healthy controls such as larger ventricles in patients and, overall gray matter volume can be 

lower in patients. 

There are also social and medical negative impact of this disorder such as personality changes, 

social isolation, occupational disability, cognitive impairment, susceptibility to suicidal behavior 

and poor health (Carlborg A, et al., 2010). There are currently no generally accepted curative 

treatments for schizophrenia (Andreasen NC, et al., 2005; Van Os J, et al., 2006).  

The costs of the disease’s management remain large for individuals and society. While literature 

on the economic impact of schizophrenia is abundant, few studies have focused on its humanistic 

burden. Estimated the schizophrenia-associated direct medical costs at $2.13 billion (Desai et al., 

2013; McDonald et al., 2005). This does not only concern patients, but also caregivers, relatives, 

neighbors and others in a patient’s daily life(Abouzaid S, et al., 2010; de Silva J, et al., 2012; 

Millier, A., et al., 2014; Willis M, et al., 2010). 
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Figure 2 - 7: A lateral/sagittal and axial slice of a structural human brain map; gray matter, white 

matter and ventricles. 

 

2.4. Independent Component Analysis 

ICA is a technique that separates multivariate signals into statistically independent components. It 

is used as a data-driven approach for resting-state and task-related fMRI data (Beckmann C et al., 

2005; Biswal, B., et al., 1995; Calhoun VD et al., 2001a, 2001b, 2001c; Cetin, MS., et al., 2014; 

Houck JM, et al., 2015; Jafri MJ et al., 2008; McKeown MJ. et al., 1998).  

ICA assumes a generative model that identifies the components (cluster of voxels) from fMRI 

data. The observations are linear mixtures of independent sources. In fMRI data, since each 

component reflects brain regions which exhibit temporal coherence components are maximally 

independent and linearly mixed. Also, ICA is used to discover differences in temporal dynamics 
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and changes with respect to spatially distributed brain networks (Calhoun VD et al., 2001a, 2001b, 

2001c). Mathematically ICA formulation can be written as: 

 푋 = 퐴푆  

Where A is the unknown mixing matrix, S is the spatial component map whose elements are 

independent sources, and X is the observed vector from the fMRI data by using all subjects. The 

ICA technique used with fMRI data has two categories (Calhoun VD et al., 2001a) : (1) Temporal 

ICA (tICA) that decomposes the fMRI data into independent time-series and (2) spatial ICA 

(sICA) decomposes the data into independent spatial maps which is the most common application 

of ICA since it recovers independent specialized networks in the brain and their corresponding 

time-courses.  

Also, it is possible to use ICA with a group of subjects. The intuition behind this technique is 

finding the activation maps of voxels that are correlated to each other while maximally independent 

of other sets of voxels. Then, each subject’s spatial activation patterns can be found by using back-

reconstruction. The details of ICA and its implementation can be found in previous studies 

(Calhoun VD et al., 2001a, 2001b, 2001c), they are not covered here. 
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Figure 2 - 8: Illustration of two types of ICA on fMRI data: a) Spatial ICA, b) Temporal ICA and 

c) Back-reconstruction (Calhoun VD et al., 2001a, 2001b, 2001c).  
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2.5 Functional Network Connectivity 

Functional connectivity shows promise in providing individual subject predictive power. Seed-

based functional connectivity approaches assess the temporal correlation between a seed region 

and individual brain voxels (Cordes D et al., 2002; Fox MD et al., 2005). Independent component 

analysis based on functional connectivity, also known as functional network connectivity is 

considered a high level functional connectivity. Functional network connectivity (FNC) is a 

correlation value that summarizes the overall connection between independent brain maps over 

time (Arbabshirani MR et al., 2013a; Jafri MJ et al., 2008). Therefore, the FNC feature gives a 

picture of the connectivity pattern over time between independent components.  

The provided FNC information was obtained by using fMRI and MEG methods from a set of 

schizophrenia patients and healthy controls, using GICA. The GICA decomposition of the 

preprocessed fMRI data resulted in a set of brain maps, and corresponding timecourses. These 

timecourses indicated the activity level of the corresponding brain map at each point in time. The 

FNC features were the pair-wise correlations between these timecourses, for each subject. FNC 

indicates a subject's overall level of 'synchronicity' between brain areas. Because this information 

is derived from fMRI and MEG scans, FNCs are considered a functional modality feature (i.e., 

they describe patterns of brain function). Figure 2 - 9 shows an example of functional network 

connectivity of fMRI scans among seven brain networks for 28 heathy controls (Jafri MJ et al., 

2008). 



23 

 

 

Figure 2 - 9 : Functional network connectivity of 28 heathy controls (Jafri MJ et al., 2008).  
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Chapter 3: Shapelet Ensemble for Multi-
dimensional Time Series 
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Time series shapelets are small subsequences that maximally differentiate classes of time series. 

Since the inception of shapelets, researchers have used shapelets for various data domains 

including anthropology and health care, and in the process suggested many efficient techniques 

for shapelet discovery. However, multi-dimensional time series data poses unique challenges to 

shapelet discovery that are yet to be solved. 

We show that an ensemble of shapelet-based decision trees on individual dimensions works better 

than shapelets defined over multiple dimensions. Generating a shapelet ensemble for multi-

dimensional time series is computationally expensive. Most of the existing techniques prune 

shapelet candidates for speed. In this chapter, we propose a novel technique for shapelet discovery 

that evaluates remaining candidates efficiently. Our algorithm uses a multi-length approximate 

index for time series data to efficiently find the nearest neighbors of the candidate shapelets. We 

employ a simple skipping technique for additional candidate pruning and a voting based technique 

to improve accuracy while retaining interpretability. Not only do we find a significant speed 

increase, our techniques enable us to efficiently discover shapelets on datasets with multi-

dimensional and long time series such as hours of brain activity recordings. We demonstrate our 

approach on a biomedical dataset and find significant differences between patients with 

schizophrenia and healthy controls. 

3.1. Introduction 

Time series shapelets are small segments of time series that distinguish between classes based on 

existence of such segments in the classes. Figure 3 - 1 shows an example of a shapelet in real ECG 

data. The idea of shapelet discovery has gained popularity for its intuitive classification rules. 

Shapelets are not just useful for classification purposes, any dataset of long time series can 

potentially be represented by a set of shapelets as such the shapelets perform an empirical basis 

(Jason Lines et al., 2012). Shapelets have also been used for unsupervised knowledge discovery 

such as clustering (Jesin, Z. et al., 2012). 
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Figure 3 - 1 : An example of shapelet. (left) Heartbeats of a 67 year old male in two different days 

shown in blue and red. Red has a higher peak than the blue at the T wave. (middle) The shapelet 

(P) that distinguishes the classes most. (right) A highly accurate decision tree using the shapelet 

P. 

Despite numerous works on shapelet discovery, mostly on efficient algorithms, shapelets for multi-

dimensional time series data are yet to be explored because of the added computational 

requirement for multiple dimensions of time series data. In the simplest form, if we wish to 

discover shapelets for each of the dimensions separately, the original exact algorithm (Lexiang, Y. 

and Keogh, E., 2009) takes months while the fastest approximate algorithm would take ten hours 

on our target dataset of Electroencephalogram. In this chapter, we overcome the barrier of 

computational requirements by fast candidate generation and evaluation. The new algorithm 

allows us to generate a simple ensemble of shapelets from individual dimensions. In Figure 3 - 2, 

we show test accuracies on a dataset (functional MRI) of 540 dimensions recorded from 43 healthy 

controls and 32 schizophrenic patients. Individual shapelet classifiers perform similar to a random 

classifier for lack of enough information, while the ensemble achieves a significant accuracy. Our 

experiments show that ensemble of shapelet classifiers for individual dimensions of a multi-

dimensional time series data is promising for electrical sensors such as EEG and Accelerometers. 

Is P within τ?

yes noP
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Figure 3 - 2 : Ensembling can achieve better accuracies than all individual trees on unseen test 

data. (left) Shift in the distribution of classifiers when shapelet trees are ensemble. (right) Each 

blue point is the accuracy from an ensemble of all the individual trees to its left. 

A typical shapelet discovery algorithm works in two phases. First, the algorithm generates a set of 

candidate shapelets and next, the candidates are evaluated for the information gain they achieve 

when used as classification features. Surprisingly, all of the speed-up techniques in the literature 

prune the candidate pool by admissible heuristics (Abdullah, M. et al., 2011) or by random 

projections (Rakthanmanon, T. and Keogh, E., 2013). In this chapter, we describe a fast candidate 

evaluation algorithm using multi-length indexing scheme, which can be used in conjunction with 

any prior algorithm. 

Our algorithm, named mc2, uses a dynamic stepping technique for massive candidate pruning. It 

achieves an order of magnitude speed-up (up to 9.58x) over current state of the art algorithm 

(Rakthanmanon, T. and Keogh, E., 2013) and several order of magnitude speed-ups (up to 281x) 

over the original algorithm (Lexiang, Y. and Keogh, E., 2009) without having a significant 

difference in accuracy. Moreover, the increased speed allows us to train shapelet classifiers for 

every dimension of a multi-dimensional time series for an ensemble classifier and thus, achieve 

increased accuracy and reduced variance. 

30 35 40 45 50 55 60 65 70 75 80
0

20

40

60

80

100

120

140

160

180
Individual
Ensemble

0 100 200 300 400 500 600
30

35

40

45

50

55

60

65

70

75

80

Shapelet Trees

A
cc

ur
ac

y

Accuracy

C
ou

nt
 o

f C
la

ss
ifi

er
s

Ensemble
Individual



28 

 

The chapter is structured as follows. Section 3.2 introduces the definitions and notations. In section 

3.3, we described previous and related work. In section 3.4, the skeleton of the shapelet algorithm 

is discussed. Section 3.5-6 describes the changes we have made to the shapelet algorithm and 

propose a way to speed up shapelet algorithm, and section 3.7, we demonstrate the performance 

and accuracy of our algorithm with 44 data sets. Section 3.8 shows the case studies. Finally, in 

Section 3.9, we form our conclusions. 

3.2. Definition and Notation 

We start with defining shapelets and the other notations used in the chapter. 

A Time Series T is a sequence of real numbers t1, t2, . . . , tm. A time series subsequence Si,l = ti, 

ti+1, . . . , ti+l−1 is a continuous subsequence of T starting at position i and length l. A time series of 

length m can have m(m+1)/2 subsequences of all possible lengths from one to m. If we are given 

two time series X and Y of the same length m, we can use the Euclidean norms of their difference 

(i.e. X −Y) as a distance measure. To achieve scale and offset invariance, we must normalize the 

individual time series before the actual distance is computed and we can do this via z-

normalization. Normalization is a critical step; even tiny differences in scale and offset rapidly 

swamp any similarity in shape (Abdullah, M. et al., 2009). In addition, we normalize the distances 

by dividing with the length of the time series. This allows comparability of distances for pairs of 

time series of various lengths. We call this length-normalization. 

The normalized Euclidean distance is generally computed by the formula ∑ (푥 − 푦 ) . 

Thus, the time for computing a distance value is linearly related to the length of the time series. In 

contrast, we compute the normalized Euclidean distance between X and Y using five numbers 

derived from X and Y. These numbers are denoted as sufficient statistics in (Yasushi, S. et al., 

2005). The numbers are ∑푥 ,∑푦,∑푥 ,∑푦  and ∑푥푦. As it was made clear in (Abdullah, M. et 

al., 2011), computing the distance in this manner enables us to reuse computations and reduce the 

amortized time complexity from linear to constant. 
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The sample mean and standard deviation can be computed from these statistics as 휇 =

∑푥and 휎 = ∑푥 −  휇 , respectively. The positive correlation and the normalized Euclidean 

distance between X and Y can then be expressed as 푑푖푠푡(푥, 푦) =  2(1 − C(x, y)) where 

퐶(푥,푦) =  ∑ ). 

Many time series data mining algorithms (k-NN classification, clustering, density estimation, etc.) 

require only comparisons of time series that are of equal lengths. The major reason is because the 

underlying distance metrics they rely upon do not allow varying lengths. In contrast, time series 

shapelets require us to test if a short time series (the shapelet) is contained within a certain 

threshold somewhere inside a much longer time series. To achieve this, the shorter time series is 

slid against the longer one to find the best possible alignment between them. We call this distance 

measurement the subsequence distance and define it as 푠푑푖푠푡(푥, 푦) =  2(1− C (x, y)) where x 

and y are the two time series with lengths m and n, respectively, and for m ≤ n. 

퐶 (푥, 푦) = 푚푖푛
∑ 푥 푦 − 푚휇 휇

푚휎 휎  

In the above definition µy and σy denote the mean and standard deviation of m consecutive values 

from y starting at position l + 1. Note that, sdist is not symmetric. 

Assume that we have a dataset D of n time series from C different classes. Let us also assume, 

every class i (i = 1, 2, . . . ,C) has ni labeled instances in the dataset where ∑ 푛 = 푛. An instance 

time series in D is also denoted by Di for i = 1, 2, . . . ,n. The entropy of a dataset D is defined as 

퐸(퐷) = −∑ 푙표푔( ). 

If the smallest time series in D is of length m, there are at least 푛 ( )subsequences in D that are 

shorter than every time series in D. We define a split as a tuple (s, τ) where s is a subsequence and 

τ is a distance threshold. A split divides the dataset D into two disjoint subsets or partitions Dleft = 
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{x : x ∈ D, sdist(s, x) ≤ τ} and Dright = {x : x ∈ D, sdist(s, x) > τ}. We use two quantities to measure 

the goodness of a split: information gain and separation gap. 

Definition 1. The information gain of a split is  

퐼(푠, 휏) = 퐸(퐷) −
|퐷 |
푁 퐸 퐷 −

|퐷 |
푁 퐸 퐷  

Definition 2. The separation gap of a split is 

퐺(푠, 휏) =  
1

|퐷 | 푠푑푖푠푡(푠, 푥)
∈

−   
1

|퐷 | 푠푑푖푠푡(푠, 푥)
∈

 

Definition 3. The shapelet for a dataset D is a tuple (푠, 휏) of a subsequence of an instance in D and 

a distance threshold (i.e. a split, 휏) that has the maximum information gain while breaking ties by 

maximizing the separation gap. 

We visually summarize the concept of shapelets with our toy example shown in Figure 3 - 3. 

Shapelets can be organized in a decision tree format until the training set achieves desired level of 

representation. 

To extend the definition of shapelets to multi-dimensional time series data, several aspects should 

be addressed. Do we find shapelets in all dimensions or in some of them? Will the shapelets be 

time aligned? Will they be equally long? And most importantly, how do we build a classifier using 

the shapelets? We answer these questions with an independence assumption among the dimensions 

of the time series. Under this assumption, it is sufficient to discover shapelets of arbitrary size and 

location for every dimension and ensemble them instead of one giant tree containing them. 

Definition 4. Shapelets for a multi-dimensional time series data D is a set of shapelet-based 

decision trees on individual dimensions that maximizes training accuracy upon ensembling. 
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3.3. Previous and Related Work 

Since the inception of shapelets, various shapelet discovery algorithms have been proposed to 

improve brute force approach. Lexiang et.al. (Lexiang, Y. and Keogh, E., 2009) introduced the 

first improvement by proposing a technique for abandoning some unfruitful entropy computations 

early. However, this does not improve the worst case complexity. Mueen et al.(Abdullah, M. et 

al., 2011) reduced the worst case complexity by caching distance computations for future use and 

using a triangular inequality based pruning strategy that achieves an order of magnitude speedup 

over the method of Lexiang et al. (Lexiang, Y. and Keogh, E., 2009). Both of these methods 

achieved admissible pruning and thus retained the exactness of the gain maximization. 

Rakthanmanon, T. et al. (Rakthanmanon, T. and Keogh, E., 2013) used a random projection 

technique (Rakthanmanon, T. and Keogh, E., 2013; Tompa, M. and Buhler, J., 2002) using the 

SAX representation (Lin, J. et al., 2007; L.  Wei, et al., 2006) to find potential shapelet candidates 

sacrificing the exactness for speed. This algorithm separates the candidate generation and 

evaluation process by first generating a constant number of candidates and then, evaluating them 

for an overall computation time of O(nm2) while retaining significant accuracy. Our proposed 

algorithm builds upon the FastShapelet (Rakthanmanon, T. and Keogh, E., 2013) algorithm. Our 

algorithm skips candidates in the candidate generation process heuristically while improving the 

candidate evaluation process to reduce running time significantly. We compare our algorithm with 

the FastShapelet algorithm as it is the current state of the art for shapelet discovery. 

Chang, K.-W. et al. (Chang, K.-W. et al., 2012) improved a dynamic programming algorithm for 

highly parallel Graphics Process Units (GPUs). Results showed that the proposed GPU 

implementation significantly reduces the running time of the shapelet discovery algorithm. Lines, 

J. et al.(Jason Lines et al., 2012) have used several features based on shape-similarity and named 

it as shapelet transformation. Although shapelet transform has competitive classification accuracy, 

it loses the interpretability of the decision tree based classifiers over individual shapes. 

To the best of our knowledge, ours is the first attempt to generalize shapelet discovery to multi-

dimensional time series data. Our multi-length indexing scheme for time series data is the first of 
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its kind. Previous work in multi-resolution indexing for images (Ljosa, V. et al., 2006) use more 

space to cache different resolution while our method does not use any extra space. 

Table 3 - 1 : Brute Force Algorithm 

Algorithm 1 Shapelet_Discovery(D) 

Require : A dataset D of time series 

Ensure : Return the shapelet 

1: max_length = maximum length of a time series in D 

2: max_gain = 0, min_gap = 0, m = maximum shapelet length 

3: for j = 1 to |D| do {every time series in D} 

4:  S = Dj 

5: for l = 1 to m do {every possible length} 

6: for i = 1 to |S| − l + 1 do {every start position} 

7: for k = 1 to |D| do {compute distances of every time series to the candidate shapelet Si,l} 

8:  Lk = sdist(Si,l, Dk) 

9: sort(L) 

10: [gain,gap] = CalculateInfoGain(L) 

11 if (gain > max_gain) or ((gain == max_gain) and  

     (gap > min_gap))  

12:         then max_gain = gain, min_gap = gap,  

13:   bestshapelet = Si,l, bestτ = τ 

 

3.4. One Dimensional Shapelet Discovery 

In order to properly explain our contribution, we define the brute-force algorithm for shapelet 

discovery and refine the algorithm in progression. 
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The brute force shapelet discovery algorithm shown in Table 3 - 1 is a simple algorithm that 

generates and tests all possible candidates and returns the best one. The final shapelet can be of 

any length, all subsequences of every length in the dataset D is generated as candidate 

subsequences Si,l in the three loops in lines 3, 5, and 6 of algorithm 1. In lines 7-9, an array L is 

created which holds the points in D in the sorted order of their subsequence distance from the 

shapelet candidate. Finally, the information gain is computed in line 10 and returns the candidate 

with maximum information gain. 

For each of the candidates, we need to compute subsequence distances to each of the n time series 

in D (line 8) by using a distance function sdist which essentially finds the nearest neighbor distance 

between the candidate and subsequences of the instance time series. Note that sdist is the inner-

most statement of the above algorithm and thus, a slight improvement in efficiency will give us a 

large payoff. Figure 3 - 3 shows how the sdist between a candidate and n (=8) instances are 

organized in the array L. 

As shown in Table 3 - 1, in line 7-9, an array L is created which holds the points in D in the sorted 

order of their distance from the shapelet candidate. The ideal shapelet is the one that orders the 

data as such all instances of one class are near the origin, and all instances of the other classes are 

to the far right, with no interleaving of the classes. 
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Figure 3 - 3 : Instances are sorted based on the 1NN distance (sdist) from the candidate. A split 

point is found to group the instances maximizing the information gain. 

A distance computation between a candidate and an instance time series may take O(m2) time in 

the worst case and for all the instances it can take up to O(nm2) time. Once we know the distances, 

the computation of the information gain takes a linear scan to try different split points. Therefore, 

the candidate evaluation process is dominated by the O(nm2) complexity for the subsequence 

distance computation. Since there are at least 푛 ( ) shapelet candidates in the dataset, total 

number of all candidates in the D is O(nm2). Being brute force, the algorithm generates and 

evaluates all the candidates and thus, needs O(n2m4) running time. Such computational cost makes 

the brute-force algorithm infeasible for long time series. 

The state-of-the-art algorithm reduces the candidate generation phase to a simple linear scan with 

random-projection (Rakthanmanon, T. and Keogh, E., 2013) and thus, the overall complexity 

reduces to O(nm2). 

0
∞
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3.5. Speed-up Techniques 

In order to speed up the state of the art, we propose two techniques. First, we improve the candidate 

evaluation phase by variable length indexing. Second, we reduce the computation in the candidate 

generation part by dynamic stepping. 

3.5.1. Multi-length Indexing 

The candidate evaluation process needs O(nm2) time to compute the distances between the 

candidate and the instances of the data. A distance between a candidate and an instance is 

essentially identical to finding the nearest neighbor of the candidate among the subsequences of 

the instance. There have been numerous research studies on how to use indexing techniques to 

efficiently search for the nearest neighbor of a time series (Christos, F. et al., 1994; Jin S. and 

Eamonn, K., 2008). Yet indexing is not adopted for shapelet discovery because it requires querying 

nearest neighbors for different lengths of time series. There is no efficient technique to build a data 

structure that can serve multiple length queries in runtime and therefore, the cost of building 

indexes for every length becomes unrealistic. In this chapter, we introduce a very efficient multi-

length indexing scheme that can be used across queries of multiple lengths. Multi-length index 

reduces the number of distance computation significantly from the state of the art. We start 

explaining the technique with the description of a very simple indexing structure, order-line. 

3.5.1.1. Order-Line 

An order-line is a sorted sequence of Euclidean distances of the subsequences of an instance from 

a random pivot point R. In the Figure 3 - 4, we show a schematic view. The idea behind choosing 

a pivot point, R and projecting the objects (time series in our case) to a 1-D line has already been 

used by a plethora of dimensionality reduction algorithms (Faloutsos, C and Lin, K.-I., 1995) and 

specifically for searching in time series data. This ordering of the objects about R provides us with 

some useful heuristic information to find minimum distance for a candidate shapelet. The intuition 

is that if two objects are close in the original space, they must also be close in this ordering or two 

objects can be arbitrarily close in the linear ordering but very far apart in the original space. More 
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precisely, the ordering has two very useful properties. First, we can use triangular inequality 

(centered at R) to produce a lower bound for the distance between any pair of points. Second, there 

is an implicit order of the objects based on lower bounds. For example, the lower bound between 

Q and C (i.e.  √25 − √18 ) is more than the lower bound between Q and D (i.e.  √18 − √10). The 

order lines for each instance time series can be calculated during the first candidate evaluation 

assuming the candidate as the pivot point and thus, it requires no additional cost. 

 

Figure 3 - 4 : Projection of subsequences of a toy time series 2 1 3 4 4 to one-dimensional ordering. 

Subsequences are of length two. The pivot point is at the origin for simplicity. A candidate shapelet 

is Q. 

3.5.1.2. Finding the Minimum Distance 

Given the order-line, how can we use this as an index to find the nearest neighbors quickly? The 

generic idea can be found in (Faloutsos, C and Lin, K.-I., 1995; Yasushi, S. et al., 2005). 

Given a query, the algorithm first computes the one dimensional projection by taking a distance 

from R. To give an example, let’s assume the projection value of the query be Q in the Figure 3 - 

4. The algorithm will check points starting with the closest one in the line with an increasing order 
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Q
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Subsequences
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of distances from Q. In this example, the algorithm will check C, B, D and A, in this order. For 

each point, the algorithm computes the Euclidean distance with early abandoning and checks if the 

point is better than the closest discovered so far. If we encounter a point that has a distance less 

than the current best-so-far, we update the best-so-far. At any time, if the distance in one 

dimensional space (i.e. on the line) is larger than the best-so-far distance in original space, we stop 

checking (break point) as we have found the nearest neighbor exactly. Table 3 - 2 shows the steps 

for finding nearest neighbor of Q in the high dimensional space with some hypothetical distance 

values. 

Table 3 - 2 : Progress step of scanning 

 Dist 1D Dist MD Dist bsf 1D dist>bsf 

1 Q-C √25− √18 1 1 No 

2 Q-B √18− √10 2 1 Yes 

3 Q-D √32− √18 √2 1 Yes 

4 Q-A √18 − √5 √5 1 Yes 

 

3.5.1.3. Bounding Distances for Longer Queries 

In an order-line we have the lower-bounds of the distances between a candidate and the objects 

based on triangular inequality. The assumption is that the objects, R and the candidate are all in 

the same dimensionality or length. However, shapelet candidates can be of different lengths and 

for each of them, we will need its nearest neighbor distances to the instance time series as shown 

in Figure 3 - 4. Let’s assume that we have an order-line for dimensionality m where the points and 

the reference point R, are in an m-dimensional space. If we have a new candidate with a larger 

length (i.e. more dimensionality) of m+1, how are we going to use the order-line to quickly find 

the nearest neighbor? 

We take the first m-dimensions of the query and compute its position on the order-line. Let’s 

assume, without losing the generality, that the m-prefix of the candidate is the object A in the 
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Figure 3 - 4. We cannot simply say, as before, the lower bound between the subsequence D and 

the query Q in the m+1 dimensional space is √18− √10. The reason is that the normalized 

distance between D and A in the m+1 dimensional space does not increase or decrease 

monotonically with their normalized prefix distance in the m-dimensional or lower dimensional 

space. In a recent work (Abdullah, M., 2013) it has been shown that it is possible to lower bound 

distances upon extension. More precisely, if x and y are two time series of length m and x+1 and 

y+1 are the two one step extensions of them, respectively, then 

푑 (풙 ,풚 ) = 푑 (풙,풚) where 휎 = +
( )

푧  and z = max(abs(푿), abs(풀)) 

In the above equations, the X and Y are the original sequences while x and y are subsequences. The 

hat operator is describing the normalization operation. The variable z represents the highest 

possible value that can appear next. The bound is trivially trued for raw vectors without 

normalization. 

This result makes it possible to use one order-line for the next query length. In our running 

example, we know the lower bound distance between Q and D in the m-dimensional space and we 

can find a lower bound in the m+1 dimensional space by multiplying 2 with a fraction 1/휎 . Thus 

the algorithm to find the nearest neighbor can continue until this lower bound is larger than the 

best-so-far.  

Note that as we increase the level of extension such as s-step extension for s > 1, the lower 

bounding fraction can be repeatedly applied. For example, for 2-step extension, the lower bound 

can be 

푑 (풙 ,풚 ) <  
1

휎
푑 (풙 ,풚 ) =

1
휎

1
휎 푑 (풙,풚) <

1
휎 푑  (풙,풚) 
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Thus, for queries of length m+s, we can use the m-prefix of the query to find the spot in the order-

line. Once the spot is found, the lower bounds will be the distances on the order-line multiplied by 

the fraction as computed above.  

Example: Let’s take the example for lower bounding trick for longer queries without z-

normalization. Let us assume a 3D candidate Q1=(3,3,3) has a 2D prefix Q. The distance between 

Q and A is √5=2.2361 in Figure 3 - 4. The largest coordinate value z=4. Then σ = + ∗  = 

4.2156 and the lower bound between Q1 and A=(2,1,3) is √
√ .

= 1.089.   

The complete algorithm for finding the nearest neighbor using our multi-length indexing scheme 

is given in the Table 3 - 3. 

Table 3 - 3 : Finding Minimum Distance Algorithm 

Algorithm 2 findMinDist(D,candidate,OrderLine) 

Require:D : A dataset of time series 

candidate  : Shapelet candidate 

OrderLine : Distances of the subsequences toa reference 

Ensure:  Return the most similar subsequence to the candidate 

1: m=dimensionality of the OrderLine 

2: S=length(candidate)-m, 1D=0, bsf=∞ 

3: Find the location l of the m-prefix of the candidate 

 in the OrderLine 

4: fc = 1/휎 ∗  

5: for each Di in the OrderLine in order of distances from l 

6:  1D = (distance_in_Orderline between l and Di) * fc 

7: if bsf > 1D then bsf = EuclideanDistance(candidate,Di) 

8: if 1D > bsf then return (bsf) 
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For FECG data set, results showed that multi-length indexing (MLI) sped up 2.37 times the overall 

computation time which outperforms the Fast Shapelet algorithm. See Figure 3 - 5.  

 

  

Figure 3 - 5 : Execution time of distance computation for different subsequence length, FS(blue) 

and MLI(red). Total running time of the FS: 173.034 and MLI: 73.233.   

Even though, we were able to achieve a good speed up, performance of MLI depends on the 

characteristic of the data. Thus performance of MLI is not the same for all data sets. Figure 3 - 6 

shows execution time of Fast Shapelet and MLI algorithms for Beef data set (Keogh, E. et al., 

2012) which has 5 classes. The accuracy of our algorithm is 55.17% and Fast Shapelet achieved 

55.83% accuracy for this dataset while our algorithm is slightly faster (1.2x).  

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e(
se

c)

Subsequence Length

EEG Dist FS:173.034, MLI:73.233, SC:750, TC:750

 

 
FS
MLI



41 

 

 

Figure 3 - 6 : Execution time of distance computation for different subsequence length, FS(blue) 

and MLI(red). Total running time of the FS: 77.67 and MLI: 64.048. 

In conclusion, multi-length indexing can reduce the computation time. However it is not sufficient 

for the scale of the dataset we have. These results showed us that current shapelet algorithm still 

requires more improvements for execution time without sacrificing accuracy. 

3.5.2. Dynamic Stepping 

Multi-length indexing can reduce the computation time reasonably. We further improvise the 

algorithm with a very simple strategy without any significant accuracy degradation. Before we 

describe the technique, we introduce the complete mc2 algorithm in Table 3 - 4. 

Subsequence  
Lengths 

Subsequence  
Lengths 

… 
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The algorithm takes a time series dataset as input and three user defined parameters namely the 

minimum and maximum shapelet length and, the usr described later. The algorithm runs a loop 

over the possible lengths of the candidates in line 3 which is the outer-most loop. The algorithm 

generates a set of ten candidates for every length using the random projection technique described 

in the FastShapelet method (Rakthanmanon, T. and Keogh, E., 2013) in lines 4-7. The loop at line 

8 goes over each of the ten candidates to find the best one. 

Our dynamic stepping algorithm uses a certain step size for the outer-most loop running over the 

lengths. The step size can be constant or variable. Constant step size has a disproportionate effect 

on shorter shapelets. For example, a step size of 2 may generate as low as 0.5 overlap between 

successive candidates starting at a certain location. To have a uniform effect, we vary stepping 

strategy. 

Before we describe the strategy, we clarify that stepping is not the same as sampling the time series 

down to smaller size. If we down-sample, the dimensionality of the distances would change. In 

dynamic stepping, we skip some of the subsequences in systematic manner so the impact on 

accuracy is uniform. 

 

Figure 3 - 7 : Shapelet candidates of three arbitrary subsequence length j, j+1, j+2 for i. 
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Recall, we define a time series as a sequence of real numbers T = t1, t2, . . . ,tm and the subsequence 

of length j as the Si,j=ti,ti+1,…ti+j-1. It has been well observed that there is a large overlap between 

Si,j and Si,j+1 for any i making them very similar to each other (i.e. trivial matches). See Figure 3 - 

7. We define the ratio between two successive candidates starting at the same position as similarity 

ratio (sr) and use it to determine the size of the stepping. For a step size (sz), the similarity ratio is 

simply j/(j+sz) for any j within the minimum and maximum lengths specified by the user. 

Table 3 - 4 : mc2 Shapelet_Discovery Algorithm 

Algorithm mc2 :Shapelet_Discovery(D,min_length,max_length,usr) 

Require  : A dataset D of time series 

Ensure  : Return the shapelet 

1: maxGain = 0, maxGap = 0, k = 1, stp = 1 

2: [qsum,qsum2] = cumulativeSums(D,min_length,max_length) 

3: for sbsqlen = min_length : stp : max_length do  

{for every subsequence length at steps} 

4: SAXList = CreateSAXList(D,sbsqlen) 

5: RandomProjection(SAXList) 

6: ScoreAllSAX 

7: top_10_cand = FindBestSAX(10), max_gain = ∞, min_gap = 0 

8: for i=1:10 

9: cand = top_10_cand(i) 

10: if i == 1 {-----------Multi Length Indexing -------------------} 

11: fc = 1/휎 ∗  

12:  if (fc < 0.75 or fc ==1) then 

   OL=Linear_ordering(D,cand), fc=1 

13: Q = EuclideanDistance(cand,referance_query) 

14: for i = 1 to |D| 
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15:  if (Q == 0 and fc == 1) then L = min(OL) 

16:  else L = findMinDist(D,cand,OL,fc) 

   {--------------Multi Length Indexing-------------} 

17: [gain,gap] = CalInfoGain(L) 

18: if (gain > max_gain) or  

  ((gain== max_gain) and (gap>min_gap))  

 then 

19:  max_gain = gain, min_gap = gap,  

  Bestshapelet = cand, bestτ = τ 

20: If sr ≥ usr then stp = ⌊j(1-usr)/(2usr-1)⌋ {-Dynamic Stepping-} 

The initial step size is 1 and it increases by one whenever it crosses a user defined maximum 

threshold (usr). See Figure 3 - 8. As long as sr < usr, we use the same step size. When sr ≥ usr 

holds, we increase step size. For example, m=113, i=0, j=10, sz=1 and usr=0.95 then 

sr=j/(j+sz)=0.9091 and sr ≥ usr does not hold. Therefore we use subsequence length j=j+sz to 

create new shapelet candidates and keep on increasing j with sz until sr ≥ usr. When j =19, sr=0.95 

then we can increase sz. This operation can be easily implemented by setting sz= ⌊j(1-usr)/(2usr-

1)⌋.  

Without any skipping, the number of different lengths is m-minLength+1 which is the number of 

iteration for a time series of length m in the original algorithm. By using skipping technique we 

can reduce the number of iteration. We can define optimization rate as (m-minlng+1) / (total 

iterations in our algorithm). 

usr can be thought of as a control for the speedup-accuracy tradeoff. Using a lower usr value 

increases optimization rate but using very low usr value may cause missing the best shapelet 

candidate, especially for short subsequence lengths. Also dynamic stepping gives better 

optimization rate for longer subsequence length because sr needs less number of iteration to satisfy 

sr ≥ usr.  
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Figure 3 - 8: Increasing step size for short subsequences and more for long subsequences for 

maximum optimization 

3.6. Voting Based Ensembling 

With the speedup techniques described above, we could find a set of shapelet trees for each of the 

dimensions of a multidimensional time series. 

Dietterich TG. et al. (Dietterich TG. and Kong EB., 1995) have shown that teaming up a set of 

decision trees based on majority voting can reduce the machine learning bias of the classifier. We 

employ the same technique with an assumption that individual dimensions are independent. Thus 

counting votes from the classifiers is the way to generalize. 
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Figure 3 - 9 : Accuracy of all-ensemble method is higher on average. 

An important question is “Should we ensemble all the trees?” As shown in Figure 3 - 2, if we 

ensemble all of them we converge to a lower accuracy than what could be achieved by a smaller 

number of trees. We experiment to test if the training accuracies can guide us to find the smallest 

ensemble of highest accuracy. We find there is no strong correlation between training accuracy of 

individual trees with the overall accuracy of the ensemble. Therefore, we use random ordering of 

the shapelet trees and ensemble all trees for an average gain over individual trees. Figure 3 - 9 

shows two different orderings, where the left one achieves a tiny gain on average and misses the 

maximum gain. The right one achieves the maximum gain. 

Other than multi-dimensional data, we can also use ensembling for one-dimensional data. The 

random projection part for candidate generation introduces randomness in the accuracy of the 

decision tree unlike the exact methods. We can run the same algorithm on the same data to generate 

a set of trees. We investigate the accuracy for various datasets before and after we combine the 

classifiers via voting. We spend roughly the same amount of time to generate decision tree(s) by 

both of the algorithms. Since ours is faster, it generates more trees than the state of the art 

algorithm. The accuracies in these two sets show a significant difference just because of the 

number of trees. We claim that our algorithm can generate confident classifiers than the state-of-

the-art shapelet discovery algorithm by having lower variance. 
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There exists the method called shapelet transform, which finds k-shapelets in the first round to 

build a forest of single node trees. Shapelet transform has been shown to have larger accuracies 

than the exact method and it is faster because of no recursive decision tree building. However, our 

method is different from shapelet transform in that we produce multi-node trees, which are 

complete classifiers. Such trees retain the original motivation of shapelets, interpretability, while 

shapelet transform uses many shapelet candidates to transform the data to a new feature space, 

which makes it difficult to interpret in the original space. 

3.6.1. Complexity of the Algorithm 

Multi-length indexing reduces the time to search for nearest neighbor. Because of curse of 

dimensionality the worst case complexity is still O(nm2). On average, the complexity becomes 

better with large data making the method more scalable. Dynamic stepping does not reduce the 

worst case complexity either, although it speeds up the algorithm by a constant factor.  

3.7. Experimental Results 

In order to evaluate the performance of our algorithm, we present the results of our experiments 

and compare them with the current state of the art (FastShapelet) algorithm (a heuristic algorithm) 

(Lexiang, Y. and Keogh, E., 2009) and original shapelet algorithm (Lexiang, Y. and Keogh, E., 

2009). We use the code from the authors’ webpage (Lexiang, Y. and Keogh, E., 2009; 

Rakthanmanon, T. and Keogh, E., 2013) and run these algorithms and our algorithm on the same 

device. We use the same parameters as suggested to have maximum accuracy. All of the code and 

the datasets used in this chapter are available at (Cetin, MS., et al., 2015a). 

3.7.1. Time Series Datasets 

In this chapter, we introduce 2 new time series datasets collected at the Mind Research Network 

at University of New Mexico. The first dataset is from a pre-attentional sensory processing 

experiment using fMRI scans of 32 schizophrenia patients (SP) and 43 healthy controls (HC). The 

second dataset is from an experiment on multi-modal sensory integration for fMRI scan on the 
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same set of patients and control. To obtain the time series of components for first and second data 

sets, we use the GIFT Toolbox (http://mialab.mrn.org/software/gift/) and infomax algorithm (Bell 

AJ and Sejnowski TJ, 1995) for group independent component analysis (Calhoun VD and Adali 

T, 2012). We perform classification on both of these datasets to classify schizophrenia patients 

and healthy control. 
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Figure 3 - 10 : (a) Accuracy comparison between our algorithm and the current state-of-the-art algorithm (b) Accuracy comparison 

when we use voting based ensemble (c) Execution time comparison between our algorithm and the current state of the algorithm. 
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Table 3 - 5 : Accuracy and execution time comparison between our algorithm and the current state-of-the-art algorithm 

        mc^2 State-of-the-art algorithm 
Speed Up 

Data Sets Classes Train Test TC Length Execution Time Accuracy Accuracy (voting) StDev Execution Time Accuracy StDev 
Beef                  5 30 30 470 18.48 54.17 60 6.74 106.27 55.83 4.82 5.75 
CBF                   3 30 900 128 3.56 93.12 95.55 1.7 8.35 94.12 1.25 2.35 
ChlorineConcentration 3 467 3840 166 183.53 57.83 58.95 1.38 620.79 57.81 1.22 3.38 
CinC_ECG_torso        4 40 1380 1639 190.83 56.46 57.17 4.19 1053.3 58.18 2.58 5.52 
Coffee                2 28 28 286 3.16 90.71 96.43 2.43 15.55 91.96 3.04 4.92 
Cricket_X             12 390 390 300 1122.33 43.71 55.13 3.01 4941.33 45.08 4.28 4.40 
Cricket_Y             12 390 390 300 1399.22 47.65 58.21 3.08 4596.29 49.95 3.49 3.28 
Cricket_Z             12 390 390 300 1035.46 40.95 59.23 2.99 3798.16 41.85 2.56 3.67 
DiatomSizeReduction   4 16 306 345 1.97 92.45 93.46 1.59 14.34 90.21 2.46 7.28 
ECG2                   2 92 89 750 51.09 100 100 0 268.23 100 0 5.25 
ECG3                  3 92 89 750 177.78 100 100 0 688.22 100 0 3.87 
ECGFiveDays           2 23 861 136 1.95 99.82 99.42 0.4 4.22 99.61 0.23 2.16 
FaceAll               14 560 1690 131 377.21 62.21 68.22 1.31 1051.71 63.57 0.92 2.79 
FaceFour               4 24 88 350 15.23 90.85 94.32 2.91 86.19 91.19 1.6 5.66 
FacesUCR              14 200 2050 131 91.82 68.19 84.39 3.71 249.75 68.68 1.96 2.72 
fish                   7 175 175 463 63.6 80.51 83.43 2.28 415.76 80.91 1.37 6.54 
Gun_Point             2 50 150 150 2.62 93.33 93.33 0.3 8.07 93.77 1.64 3.08 
Haptics                5 155 308 1092 214.63 35.13 43.18 2.36 1464.48 35.18 3.69 6.82 
InlineSkate           7 100 550 1882 1556.7 25.16 29.27 2.41 4251.6 23.57 2.81 2.73 
ItalyPowerDemand      2 67 1029 24 0.25 90.27 92.23 3.07 0.25 91.64 2.21 1.00 
Lighting2             2 60 61 637 201.67 55.98 55.45 4.77 683.85 55.66 5.22 3.39 
Lighting7             7 70 73 319 82.56 55.89 68.49 5.12 292.87 57.05 3.65 3.55 
MALLAT                8 55 2345 1024 47.61 87.83 93.22 5.08 384.64 88.86 2.76 8.08 
MedicalImages         10 381 760 99 68.71 57.06 62.24 2.06 153.1 60.86 1.67 2.23 
MoteStrain            2 20 1252 84 0.53 79.69 79.79 0.46 1.16 79.27 0.92 2.19 
OSULeaf               6 200 242 427 163.16 66.03 77.28 3.03 1563.46 66.69 3.24 9.58 
OliveOil              4 30 30 570 5.93 70.33 76.67 3.4 43.2 71.5 4.65 7.28 
Sony                  2 601 20 70 31.91 93.5 95 2.86 53.62 92.75 3.43 1.68 
SonyAIBORobotSurface  2 20 601 70 0.57 68.55 96.34 0 1.04 69.82 5.69 1.82 
SonyAIBORobotSurfaceII 2 27 953 65 0.74 77.84 85.41 4.03 1.26 79.21 1.15 1.70 
StarLightCurves       3 1000 8236 1024 1344.15 89.93 91.88 1 10068.04 90.43 1 7.49 
SwedishLeaf           15 500 625 128 141.5 77.26 86.08 2.5 404.17 77.7 2.18 2.86 
Symbols               6 25 995 398 5.01 83.07 88.94 3.9 43.31 84.63 2.66 8.64 
synthetic_control     6 300 300 60 36.66 91.52 94.33 1.52 56.05 92.65 1.63 1.53 
Trace                 4 100 100 275 62.3 99.6 100 0.6 184.53 99.6 0.82 2.96 
TwoLeadECG            2 23 1139 82 0.42 91.9 92.45 2.27 0.91 92.74 1.03 2.17 
Two_Patterns          4 1000 4000 128 739.34 90.17 89.85 5.19 1980.66 92.39 1.37 2.68 
uWaveGestureLibrary_X 8 896 3582 315 921.62 63.96 73.45 1.23 5460.62 66.35 1.12 5.93 
uWaveGestureLibrary_Y 8 896 3582 315 1148.54 56.63 63.79 1.6 5934.02 57.36 1.22 5.17 
uWaveGestureLibrary_Z 8 896 3582 315 1128.92 61.28 65.8 1.81 5929.55 62.82 1.63 5.25 
wafer                 2 1000 6000 152 171.93 99.67 99.75 0.25 348.93 99.51 0.34 2.03 
yoga 2 300 3000 426 131.31 68.88 71.97 1.94 923.36 69.99 1.78 7.03 
fMRI Singe Task 2 50 25 145 19.89 67.6 76 8.5 125.31 62 6.68 6.30 
fMRI Multi Task 2 50 25 411 28.72 66.32 72 10.61 239 65.8 7.62 8.32 
MEG Rest 2 60 31 14000 13991.2 60.5 60 5.42 43280.08 63 6 3.09 
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Figure 3 - 11 : (a) Accuracy comparison between our algorithm and the original algorithm (b) Accuracy comparison when we use 

voting based ensemble (c) Execution time comparison between our algorithm and the original algorithm. 
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Table 3 - 6 : Accuracy and execution time comparison between our algorithm and original algorithm 

        mc^2 Original algorithm 
Speed Up 

Data Sets Classes Train Test TC Length Execution Time Accuracy Accuracy(voting) StDev Execution Time Accuracy StDev 
Beef                  5 30 30 470 18.48 54.17 60 6.74 242.29 56.67 0 13.11 
CBF                   3 30 900 128 3.56 93.12 95.55 1.7 66.86 88.56 0 18.78 
ChlorineConcentration 3 467 3840 166 183.53 57.83 58.95 1.38 36402.28 61.85 0 198.35 
CinC_ECG_torso        4 40 1380 1639 190.83 56.46 57.17 4.19 2149.95 69.86 0 11.27 
Coffee                2 28 28 286 3.16 90.71 96.43 2.43 621.91 96.43 0 196.81 
Cricket_X             12 390 390 300 1122.33 43.71 55.13 3.01 Not completed   
Cricket_Y             12 390 390 300 1399.22 47.65 58.21 3.08 Not completed   
Cricket_Z             12 390 390 300 1035.46 40.95 59.23 2.99 Not completed   
DiatomSizeReduction   4 16 306 345 1.97 92.45 93.46 1.59 184.34 80.07 0 93.57 
ECG2                   2 92 89 750 51.09 100 100 0 Not completed   
ECG3                  3 92 89 750 177.78 100 100 0 Not completed   
ECGFiveDays           2 23 861 136 1.95 99.82 99.42 0.4 47.64 99.42 0 24.43 
FaceAll               14 560 1690 131 377.21 62.21 68.22 1.31 16255.48 65.86 0 43.09 
FaceFour               4 24 88 350 15.23 90.85 94.32 2.91 561.18 48.86 0 36.85 
FacesUCR              14 200 2050 131 91.82 68.19 84.39 3.71 2528.52 66.24 0 27.54 
fish                   7 175 175 463 63.6 80.51 83.43 2.28 11153.03 77.71 0 175.36 
Gun_Point             2 50 150 150 2.62 93.33 93.33 0.3 266.1 89.33 0 101.56 
Haptics                5 155 308 1092 214.63 35.13 43.18 2.36 Not completed   
InlineSkate           7 100 550 1882 1556.7 25.16 29.27 2.41 Not completed   
ItalyPowerDemand      2 67 1029 24 0.25 90.27 92.23 3.07 4.92 93.59 0 19.68 
Lighting2             2 60 61 637 201.67 55.98 55.45 4.77 5297.6 42.62 0 26.27 
Lighting7             7 70 73 319 82.56 55.89 68.49 5.12 8619.35 54.79 0 104.40 
MALLAT                8 55 2345 1024 47.61 87.83 93.22 5.08 1254.91 65.63 0 26.36 
MedicalImages         10 381 760 99 68.71 57.06 62.24 2.06 19325.2 58.68 0 281.26 
MoteStrain            2 20 1252 84 0.53 79.69 79.79 0.46 6.87 83.23 0 12.96 
OSULeaf               6 200 242 427 163.16 66.03 77.28 3.03 14186.53 68.6 0 86.95 
OliveOil              4 30 30 570 5.93 70.33 76.67 3.4 502.27 83.33 0 84.70 
Sony                  2 601 20 70 31.91 93.5 95 2.86 Not completed   
SonyAIBORobotSurface  2 20 601 70 0.57 68.55 96.34 0 4.56 86.02 0 8.00 
SonyAIBORobotSurfaceII 2 27 953 65 0.74 77.84 85.41 4.03 9.76 84.58 0 13.19 
StarLightCurves       3 1000 8236 1024 1344.15 89.93 91.88 1 Not completed   
SwedishLeaf           15 500 625 128 141.5 77.26 86.08 2.5 11953.61 81.28 0 84.48 
Symbols               6 25 995 398 5.01 83.07 88.94 3.9 894.26 64.32 0 178.50 
synthetic_control     6 300 300 60 36.66 91.52 94.33 1.52 3667.43 47 0 100.04 
Trace                 4 100 100 275 62.3 99.6 100 0.6 4626.86 100 0 74.27 
TwoLeadECG            2 23 1139 82 0.42 91.9 92.45 2.27 14.29 85.6 0 34.02 
Two_Patterns          4 1000 4000 128 739.34 90.17 89.85 5.19 65783.11 53.9 0 88.98 
uWaveGestureLibrary_X 8 896 3582 315 921.62 63.96 73.45 1.23 Not completed   
uWaveGestureLibrary_Y 8 896 3582 315 1148.54 56.63 63.79 1.6 Not completed   
uWaveGestureLibrary_Z 8 896 3582 315 1128.92 61.28 65.8 1.81 Not completed   
wafer                 2 1000 6000 152 171.93 99.67 99.75 0.25 34653.13 99.88 0 201.55 
yoga 2 300 3000 426 131.31 68.88 71.97 1.94 11388.99 74 0 86.73 
fMRI Singe Task 2 50 25 145 19.89 67.6 76 8.5 Not completed   
fMRI Multi Task 2 50 25 411 28.72 66.32 72 10.61 Not completed   
MEG Rest 2 60 31 14000 13991.2 60.5 60 5.42 Not completed   
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In addition to the novel datasets, we use 41 datasets from the UCR time series archive (Keogh, E. 

et al., 2012) to compare the efficiency of our algorithm to the state-of-the-art algorithm. See Figure 

3 - 10 and Table 3 - 5. We test on all the 43 datasets on original algorithm; however, we abandoned 

the experiments (14 data sets) in which the original algorithm (Lexiang, Y. and Keogh, E., 2009) 

had not finished after 18 hours. Comparison with the original algorithm is presented in Figure 3 - 

11 and Table 3 - 6. For UCR time series data sets, we used a train and test split ratio as suggested 

in their webpage (Keogh, E. et al., 2012). For the two new datasets, we used 66% for training (66% 

SP and 66% HC) and 33% for testing (33% SP and 33% HC). Subjects in the training and testing 

sets are chosen randomly. 

3.7.2. Experimental Settings 

For all the experiments, we used the same hardware (Intel(R) Core(TM) i7 CPU 860@ 2.80 GHz, 

1.59GHz, 2.96 GB of RAM). The parameters, minimum length and maximum length, are set to 10 

and 250, respectively (If the length of the time series is less than 250, maximum shapelet length is 

set to the length) and the upper bound of similarity rate (usr) is 0.95. 

3.7.3. Performance Comparison on One Dimensional Data 

We use accuracy and execution time parameters to compare performance of our algorithm. We 

used the average of 20 runs for all data sets and for both algorithms. More detailed results are 

available at (Cetin, MS., et al., 2015a). 

3.7.3.1. Accuracy 

We perform the experiment on the 43 datasets for FastShapelet (current state of the art) algorithm 

and 30 data sets for the original algorithm. Our speedup techniques do not target improvement in 

accuracy and we do not expect any significant change in accuracy due to skipping some of the 

lengths. Figure 3 - 10(a) shows the comparison between our algorithm and the FastShapelet 

algorithm.  
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We use paired t-tests on the accuracy results. The cut off P-value for all of the tests is set at P < 

0.05. The results confirm no significant difference in accuracy. 

We perform an experiment to validate the goodness of the voting based ensembling we propose. 

In Figure 3 - 10(b), the comparison is shown and the paired t-tests on the accuracy results showed 

significant increase in accuracy at P ≥ 0.05 for FastShapelet algorithm and the original algorithm.  

3.7.3.2. Execution time 

On all of the 43 data sets, we record the running time of the algorithms and compare them in the 

Figure 3 - 10(c) with log scale. As claimed before, we achieved an order of magnitude (up to 9.58x) 

speeds up over the current state of the art algorithm and several order of magnitude speeds up (up 

to 281x) over the original algorithm. 

 

Figure 3 - 12 : Individual execution time (sec) of three different data sets for the current state of 

art algorithm and our algorithm with just Multi-length indexing (MLI), Dynamic Stepping (DS) 

and union of MLI and DS (mc2). 
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In addition to the comparison on total running time, we analyze the speedup achieved by the 

individual techniques, multi-length indexing and dynamic stepping, over the current state of the 

art algorithm. We measured the individual speedup for each of the techniques while deactivating 

the other. The results for three datasets are shown in Figure 3 - 12. 

The multi-length indexing technique and the dynamic stepping technique sped up overall running 

time for all data sets individually. The union of these 2 techniques showed maximum speed up 

performance for all the data sets. 

Table 3 - 7 : Accuracy comparison between concatenation based and ensemble based method. 

Dataset Concatenation Ensembling 
(max individual) 

Merge 
and 

Ensembling 
Single-Task 66% 76% (72%) 

80% 
Multi-Task 64% 72% (64%) 

 

3.7.4. Accuracy on Multi-dimensional Data 

We test our shapelet ensemble in comparison to the method described in (Abdullah, M. et al., 

2011) which suggests a concatenation of the dimensions to convert a multi-dimensional data into 

a one-dimensional data. We use the two fMRI datasets described above. Shapelet ensemble 

achieves an unprecedented accuracy on these datasets. See Table 3 - 7. Note that the ensembling 

can achieve more accuracy than the maximum individual accuracy of the participating trees. This 

shows a huge potential of shapelet ensembles for sensory data from high frequency electrical 

sensors. 

3.8. Case Studies 

We have studied four datasets in the medical domains. Case 3 and Case 4 are multi-dimensional 

datasets where shapelet ensemble achieve higher accuracy than current state of art algorithm. We 

detail the cases in this section. 
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3.8.1. Fetal Electrocardiogram (2 sensor)  

A non-invasive fetal electrocardiogram (FECG) dataset has been collected from Physionet.org 

(Goldberger AL et al., 2000). It contains a series of 2 multichannel abdominal FECG recordings, 

taken from a single subject between 21 to 40 weeks of pregnancy. The records have variable 

durations, and were taken weekly. The training set contains a balanced (42/50) mix of 92 time 

series of two abdominal channels. The testing set also contains a balanced (45/44) mix of time 

series. The length of each time series is 750. 

 

Figure 3 - 13 : (a-b) Training set of FECG data for all classes. (c) Average of the classes (d) 

Shapelet is shown in green. It classifies the sesnsor-1 and sesnsor-2 

The accuracy of both FastShapelet and our algorithm for FECG data set is 100%. However for the 

same data set, we sped up 5.25 times the overall computation time which outperforms the 

FastShapelet algorithm. The shapelet classified the sensor-2 that is shown in green in Figure 3 - 

13d.  
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3.8.2. Fetal Electrocardiogram (3 sensor)  

Also we used 3 multichannel abdominal FECG recordings, The training set contains a balanced 

(45/44/46) mix of 135 time series of three abdominal channels. The testing set also contains a 

balanced (42/50/42) mix of 134 time series. The length of each time series is 750. 

 

Figure 3 - 14 : (a) Training set of FECG data for all classes. (b) Shapelets are shown in green. 

First shapelet classifies the sesnsor-1, Second shapelet classifies the sesnsor-3. 

The accuracy of both FastShapelet and our algorithm for FECG data set is 100%. However for the 

same data set, we sped up 3.87 times the overall computation time which outperforms the 

FastShapelet algorithm. The First shapelet classified the sensor-1 and the second shapelet 

classified the sensor-3. They are shown in green in Figure 3 - 14b.  

3.8.3. Sensory Gating task for functional MRI (fMRI) 

The dataset contains the results of pre-attentional sensory processing experiment for fMRI scan of 

the schizophrenia patients (SP=32) and healthy controls (HC=43). The task represented cognitive 

paradigm that was analyzed separately in (Mayer AR et al., 2012). The original study hypothesizes 

that the SP would have deficits at multiple levels including pre-attentive sensory processing, 

integration of sensory information across modalities and impaired working memory performance. 
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The task was a variant of the paired click paradigm for testing sensory gating. The participants 

were presented with paired tones that are either identical 2 kHz tones or a 2 kHz tone followed by 

a 3 kHz tone. The task was passive in that a response was not required. 

We use the time series of the sensory motor (putamen) component. There are 50 (SP=23, HC=27) 

time series for training data sets and 25 (SP=9, HC=16) time series for testing data sets. The length 

of each time series is 145. 

 

Figure 3 - 15 : The decision tree from concatenated signals is shown in the top. Three trees from 

the three sessions are shown in the bottom. Shapelets and nodes in the trees have matching colors. 

Label 0 represents controls and 1 represents patients. Signals in red are from patients and in blue 

are from healthy subjects (best viewed in color). 
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If we concatenate dimensions and run FastShapelet we achieve a shapelet tree shown in Figure 3 

- 15, which gives us 66% accuracy. Note the shapelets that span two successive sessions are 

meaningless. When we treat each dimension independently, the algorithm provides one tree for 

each of the three sessions. The ensemble achieves 76% accuracy. Interestingly, no significant class 

difference is reported in Mayer et al. (Mayer AR et al., 2012) for sensory gating task (same data) 

while shapelet ensemble achieves a significant accuracy. 

If we were to generate the same ensemble using FastShapelet algorithm, we would need 6.3x more 

time. 

3.8.4. Multi-modal sensory integration task for functional MRI 

The data set contains the results of multi-modal sensory integration task for fMRI scan of the 

schizophrenia patients (SP=32) and healthy controls (HC=43). The task represented a cognitive 

paradigm that was analyzed separately in (Stone DB et al., 2011). 

Task was designed to test multisensory integration and employed a simple forced choice 

behavioral task. A perspective digital drawing was used as a visual background with a fixation 

point, and participants were instructed to maintain fixation throughout the task (Stone DB et al., 

2011). An auditory stimulus (500 Hz tone) was presented to participants at two different volumes, 

80dB to simulate a sound near the participant (NEAR) and 64dB to simulate it being farther away 

(FAR). Also, the auditory stimulus was presented synchronously with a visual stimulus - an image 

of a soccer ball appeared in one of two possible positions (NEAR or FAR) in the participant’s 

lower visual field with size and position consistent with the perspective drawing. The NEAR visual 

stimulus was presented in the participant’s peripheral visual field and the FAR stimulus was 

presented closer to fixation in the central visual field. The participants underwent fMRI scanning 

while deciding whether the stimuli presented were NEAR or FAR with a button press. 
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Figure 3 - 16 : The decision tree from concatenated signals is shown in the top. Six trees from the 

six sessions are shown in the bottom. Shapelets and nodes in the trees have matching colors. Label 

0 represents controls and 1 represents patients. Signals in red are from patients and in blue are 

from healthy subjects (best viewed in color). 
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We use the time series of frontal network component. There are 50 (SP=23, HC=27) time series 

for training datasets and 25 (SP=9, HC=16) time series for test data sets. The length of each time 

series is 411. 

On the concatenated signals, the algorithm finds a very compact tree with 62% accuracy (Figure 

3 - 16 (top)). The shapelets span over multiple sessions and mostly focus on the first three sessions 

and thus, one cannot learn from all the dimensions. In contrast, shapelet ensemble algorithm finds 

six trees from six sessions and ensemble them using majority voting. The ensemble achieves 72% 

accuracy. However, for the same data set, we decreased by 8.32x the overall computation time 

over the FastShapelet algorithm. Note that, individual trees combine information from both red 

(SP) and blue (HC) subjects while the tree from concatenated signals only contains blue signals. 

The group differences shown in these case studies provide motivation for understanding how 

connectivity patterns differ in response to these different stimulus conditions and the current 

analysis approach may provide enhanced sensitivity to identify group differences of SPs and HCs. 

3.9. Conclusion 

In this chapter, we proposed an algorithm to speed up the current shapelet algorithms without 

decreasing accuracy, especially for multi-dimensional and longer time series. The experiments 

showed that our algorithm is significantly faster for all data sets that we tested which makes our 

shapelet discovery algorithm more suitable for real life problems. 
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Chapter 4: Inter-network connectivity at 
rest and across sensory paradigms in 
schizophrenia 
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Although a number of recent studies have examined functional connectivity at rest, few have 

assessed differences between connectivity both during rest and across active task paradigms. 

Therefore, the question of whether cortical connectivity patterns remain stable or change with task 

engagement continues to be unaddressed. We collected multi-scan fMRI data on healthy controls 

(N = 53) and schizophrenia patients (N = 42) during rest and across paradigms arranged 

hierarchically by sensory load. We measured functional network connectivity among 45 non-

artifactual distinct brain networks. Then, we applied a novel analysis to assess cross paradigm 

connectivity patterns applied to healthy controls and patients with schizophrenia. To detect these 

patterns, we fit a group by task full factorial ANOVA model to the group average functional 

network connectivity values. Our approach identified both stable (static effects) and state-based 

differences (dynamic effects) in brain connectivity providing a better understanding of how 

individuals’ reactions to simple sensory stimuli are conditioned by the context within which they 

are presented. Our findings suggest that not all group differences observed during rest are 

detectable in other cognitive states. In addition, the stable differences of heightened connectivity 

between multiple brain areas with thalamus across tasks underscore the importance of the thalamus 

as a gateway to sensory input and provide new insight into schizophrenia.  

4.1.  Introduction 

Functional connectivity is an approach that helps to assess the integrity of neural circuits by 

examining the covariance in activity across brain regions and can be assessed using a seed-based 

analysis approach or independent component analysis (ICA) (Calhoun VD and Adali T, 2012; 

Erhardt EB et al., 2011b). Seed-based approaches assess the temporal correlation between a seed 

region and individual brain voxels (Cordes D et al., 2002; Fox MD et al., 2005) whereas ICA is a 

data-driven approach which identifies spatially distinct but temporally related brain networks 

(Calhoun VD et al., 2001c). 

To date, most studies have focused only on the analysis of functional connectivity during 

performance of a single task. Such an approach does not take advantage of the within-subject 

pattern of response which likely occurs across tasks, and which can be of benefit in a number of 

applications (Calhoun VD and Adali T, 2009; Calhoun VD et al., 2006, 2008). However, one of 
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the challenges associated with studying the resting state is that connectivity changes could reflect 

differences dependent on the cognitive states of the individual’s brain, rather than consistent 

structural or functional-based differences in brain connectivity (Repovš G and Barch DM, 2012). 

The results reported by previous studies limit our ability to understand whether observed cortical 

connectivity deficits in schizophrenia represent consistent characteristics rather than differences 

in cognitive state or task response. 

Functional MRI (fMRI) results have been used to better understand the pathophysiology of 

schizophrenia, in particular to assess the disconnection hypothesis of schizophrenia (Friston KJ 

and Frith CD, 1995; Woodward ND, 2012). These differences include a link between prefrontal 

cortex activation and vulnerability to psychosis (Fusar-Poli P, 2007), reduced network activation 

during executive task performance (Minzenberg MJ, 2009), and abnormal activation patterns in 

working memory tasks (Glahn DC et al., 2005). There has been growing interest in investigating 

the integrity of the neural circuits in schizophrenia that work together to support sensory, cognitive, 

and emotional processes (Calhoun VD et al., 2009; Liu H. et al., 2012; Yu Y. et al., 2013). 

Previous seed-based and ICA studies (Allen EA et al., 2011a; Bassett DS et al., 2011; Cole MW 

et al., 2011; Garrity AG et al., 2007; Woodward ND et al., 2011) that examined functional 

connectivity in schizophrenia during rest found reduced connectivity for schizophrenia patients 

(SPs) within the default mode network, frontal network, cingulo-opercular network and cerebellar 

network. Several other studies (Anticevic A et al., 2011; Diaconescu AO et al., 2011; Fornito A et 

al., 2011) examined task-related functional connectivity in schizophrenia that largely focused on 

specific brain networks. These studies have also provided evidence for alterations in functional 

connectivity across a range of tasks where each task was studied separately. ICA provides 

measures of functional connectivity (within component coherence) as well as functional network 

connectivity (FNC) which measures changes in connectivity across networks (Jafri MJ et al., 

2008).  

To gain a broader understanding of brain function and dysfunction as a dynamic process, we must 

examine how cognition changes under an established progression of task manipulations. Dynamic 
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changes across tasks have been investigated with FNC and functional connectivity. Arbabshirani 

et al. (Arbabshirani MR et al., 2013a) compared dynamic FNC changes across two tasks including 

resting state and an auditory oddball task in 28 healthy controls (HCs). Results of this chapter 

showed decreased FNC during task relative to rest among numerous network pairs. Also, Repovš 

et al. (Repovš G and Barch DM, 2012) examined differences in functional connectivity during rest 

and a working memory task with increasing memory loads; SPs and their siblings had reduced 

connectivity between the frontal network and cingulo-opercular network with cerebellar network 

relative to HCs and their healthy siblings demonstrating network differences related to genetic 

risk. These group differences did not change as a function of task state or memory load. Although 

Arbabshirani et al. (Arbabshirani MR et al., 2013a) compared FNC across two task in HC and 

Repovš et al. (Repovš G and Barch DM, 2012) identified group differences in functional network 

across tasks, none of these studies evaluated changes in FNC across a hierarchy of tasks between 

the HC and SP groups. 

The goal of this chapter is to determine whether cortical connectivity patterns remain stable or 

change across a hierarchy of sensory tasks. To the best of our knowledge there has been no study 

to investigate this issue in a variety of different FNC networks in a multi-task hierarchy with a 

relatively large number of subjects. This present chapter examined FNC across a hierarchy of 

sensory tasks with varying levels of sensory load. Data for each participant were gathered across 

multiple fMRI scanning sessions over the course of up to two months (1~2 months) with 

prospective randomization of task presentation and close monitoring of SPs to ensure clinical 

stability. Our goal was to track connectivity changes in SPs and HCs as sensory load increased. 

Using multiple tasks in addition to multiple conditions within a single task allows us to recognize 

that individuals’ reactions to sensory stimuli are conditioned by the circumstances in which such 

stimuli are presented and measurements at separate time points allows us to better assess state 

versus trait group differences. We sought to determine whether SPs and HCs showed significant 

FNC differences among brain regions across the task hierarchy by modeling the temporal 

dependency between functional networks derived from fMRI data. The tasks defined a natural 

hierarchy related to sensory load and included a rest task, two levels of auditory sensory gating, 

and two levels of multisensory perception with auditory and audio-visual stimuli. We remained 
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skeptical of the notion that rest differences necessarily equate to characteristic differences in 

cognition between SPs relative to HCs. We hypothesized that data collected using a sensory load 

task hierarchy including rest will provide evidence of both stable (static effects) and state-based 

differences (dynamic effects).  

4.2. Methods and Materials 

4.2.1. Participants 

The study in this chapter combined existing data from 95 subjects. Informed consent was obtained 

from all subjects according to institutional guidelines at the University of New Mexico Human 

Research Protections Office, and all data were anonymized prior to group analysis. Inclusion 

criteria for patient selection included diagnosis of schizophrenia or schizoaffective disorder 

between 18 to 65 years of age. Each SP completed the Structured Clinical Interview for DSM-IV 

Axis I Disorders (First MB et al., 2002a) for diagnostic confirmation and evaluation for co-

morbidities. The imaging sessions (three cumulative hours) were completed in 1-2 sessions within 

up to two months (1~2 months) to reduce subject fatigue. SP had to demonstrate retrospective and 

prospective clinical stability to be included in this investigation. The Clinical Core (COBRE 

Stability Clinic) affiliated with this project determined retrospective stability from relevant 

psychiatric records documenting no change in symptomatology or type/dose of psychotropic 

medications occurred during the three months prior to the referral. The Clinical Core assessed 

prospective stability during three consecutive weekly visits and during each imaging assessment. 

Prospective stability was defined as no change in clinical symptoms > 2 points from the positive 

symptom items on the Positive and Negative Syndrome Scale (Kay SR et al., 1987). No score of 

“worse” or “much worse” on the Clinical Global Impression (Guy W, 1976) no suicidal or violent 

ideation, and no psychiatric or medical hospitalizations. The doses of antipsychotic medications 

were converted to olanzapine equivalents (Gardner DM et al., 2010). SPs with a history of 

neurological disorders including head trauma (loss of consciousness > 5 minutes), mental 

retardation, or history of active substance dependence or abuse (except for nicotine) within the 

past year were excluded. All SPs had a negative toxicology screen for drugs of abuse at the start 

of the study. HCs were recruited from the same geographic location and completed the Structured 
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Clinical Interview for DSM-IV Axis I Disorders – Non-Patient Edition to rule out Axis I conditions 

(First MB et al., 2002a). SPs and HCs were matched on parental educational level (p<0.05), a less 

biased estimate of pre-morbid educational attainment potential (Saykin, AJ et al., 1991).We 

assessed symptom variability among each item of the PANSS positive symptom scores. Consistent 

with our inclusion criteria, the included subjects had minimal variance (< 2) associated with each 

symptom measure. Table 4 - 1 provides demographic characteristics of the participants and Table 

4 - 2 lists the medications of the patient group. 

Table 4 - 1 : Demographic and clinical variables for SPs and HCs. Abbreviations: PANSS= 

Positive and Negative Syndrome Scale. CGI = Clinical Global Impression. PCEL: Primary 

caregiver education level.CODEM-6: Highest Level of Education for Primary Caretaker until 18 

years old. CODEM-7: Highest Level of Education for Secondary Caretaker until subject was 18 

years old. Educational levels as follows 1: grade 6 or less, 2: grade 7-12, 3: graduated high school, 

4: part college, 5: graduated 2 year college, 6: graduated 4 year college, 7: graduate or 

professional school, 8: completed graduate or professional school. 

 

SP (SD) 

(n=42) 

HC(SD) 

(n=53) 

t or x2 

(p-value) 

Demographics    

Age 37.38 (13.44) 35.92 (11.97) -0.56 (0.57) 

Gender (M/F) 33/9 39/14 0.32 (0.57) 

Age on onset 20.04 (8.03)   

Illness duration 16.22 (12.91)   

Calgary 

Depression CGI 

PCEL 

   CODEM-6 

   CODEM-7 

3.25 (1.01) 

 

 

4.4 (2.11) 

4.93 (2.24) 

 

 

 

4.75 (1.89) 

4.97 (2.27) 

0.082(0.41) 

0.082(0.93) 

PANSS    

Positive 14.35 (5.27)   

Negative 13.95 (5.28)   
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General 28.71 (9.63)   

Medications 

16.78 (12.95)   OE(mg/day) 

 

Table 4 - 2 : Medication list for the patient group. *Eight of the 28 patients were treated with 

multiple antipsychotics. This table lists either the long acting injection or the antipsychotic with 

the higher olanzapine equivalents. ** mg/day or dose of long acting injection 

Antipsychotics* Dosage Range** 

Aripiprazole (n = 3) 10 - 15 mg 

Clozapine (n = 4) 50 - 400 mg 

Fluphenazine (oral, n = 1) 10 mg 

Haloperidol (oral, n = 1) 5 mg 

Haloperidol decanoate (n = 2)  50 mg 

Olanzapine (n = 1) 20 mg 

Perphenazine (n = 1) 8 mg 

Quetiapine (n = 1) 200 - 800 mg 

Risperidone (oral, n =6) 1 - 4 mg 

Risperidoneconsta (n =6) 12.5 - 50 mg 

Thiothixene (n = 1) 60 mg 

Ziprasidone (n = 1) 160 

 

4.2.2. Task Hierarchy 

The tasks represented cognitive paradigms that were analyzed separately (Mayer AR et al., 2012; 

Stone DB et al., 2011). Each task represented a different cognitive demand: resting state, pre-

attentional sensory processing and multisensory processing. These studies were embedded in a 

larger study that explicitly proposed that SP would have deficits at multiple levels including pre-
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attentive sensory processing, integration of sensory information across modalities and impaired 

working memory performance. For the present investigation, we arranged the sensory tasks into 

five levels according to the amount of sensori-motor processing required by participants during 

the task. A subset of the subjects (SPs:22/42, HCs:23/53) were reported previously in Mayer et al. 

(Mayer AR et al., 2012) based on the original hypotheses of the sensory gating response. The Stone 

et al. (Stone DB et al., 2011) paper describes the paradigm but reports on event related potential 

results and does not include the fMRI results presented here. 

 Resting state fMRI: On the first level, participants performed a simple rest task. Subjects 

were instructed to keep their eyes open during the scan and stare passively at a central 

fixation cross, as this is suggested to facilitate network delineation compared to eyes-closed 

conditions (Mayer AR et al., 2012).  

 Sensory gating: Tasks on the second and third levels were variants of the paired click 

paradigm for testing sensory gating (Van DKR et al., 2010). On the second level, 

participants were presented with a 5ms tone at either 2 kHz or 3 kHz. On the third level, 

participants were presented with paired tones - either identical 2 kHz tones or a 2 kHz tone 

followed by a 3 kHz tone. Both of these tasks were passive in that a response was not 

required.  

 Multi-modal sensory integration: Tasks on the fourth and fifth levels were designed to test 

multisensory integration and employed a simple forced choice behavioral task (Stone DB 

et al., 2011). A perspective digital drawing was used as a visual background with a fixation 

point, and participants were instructed to maintain fixation throughout the task. On the 

fourth level, an auditory stimulus (500 Hz tone) was presented to participants at two 

different volumes, 80dB to simulate a sound near the participant (NEAR) and 64dB to 

simulate it being farther away (FAR). On the fifth level, the above auditory stimulus was 

presented synchronously with a visual stimulus - an image of a soccer ball appeared in one 

of two possible positions (NEAR or FAR) in the participant’s lower visual field with size 

and position consistent with the perspective drawing. The NEAR visual stimulus was 
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presented in the participant’s peripheral visual field and the FAR stimulus was presented 

closer to fixation in central visual field. Participants underwent fMRI scanning while 

deciding whether the stimuli presented were NEAR or FAR with a button press. 

Participants all performed the task at a high level of performance more than 88% percent 

correct in both groups across task conditions. 

Since data acquisition across the tasks takes 3 hours, fMRI data collection occurred across 1-2 

scanning sessions completed within up to two months. During this time participants underwent 

clinical, functional, and neuropsychological assessment as well as magnetoencephalography data 

acquisition across 1-3 visits. As mentioned above, a brief clinical stability questionnaire was 

obtained at each study visit to ensure stability across the multiple study visits. Task order for the 

MRI scan sessions was randomized and there is no significant group differences in the task 

randomization at p<0.05 level. 

4.2.3. Data Acquisition 

All images were collected on a single 3-Tesla Siemens Trio scanner with a 12-channel radio 

frequency coil. High resolution T1-weighted structural images were acquired with a five-echo 

MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s, TI = 1.2 s, flip angle = 

7°, number of excitations = 1, slice thickness = 1 mm, field of view = 256 mm, resolution = 

256×256. T2*-weighted functional images were acquired using a gradient-echo EPI sequence with 

TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm, slice gap = 1.05 mm, field of 

view 240 mm, matrix size = 64×64, voxel size = 3.75 mm×3.75 mm×4.55 mm. Resting state scans 

consisted of 149 volumes. Tasks on the second (19 trials/condition) and third levels (20 

trials/condition) acquired 111 volumes and tasks on the fourth (17 trials/condition) and fifth levels 

(17 trials/condition) acquired 181 volumes per run.  

4.2.4. Data Preprocessing 

For preprocessing the MATLAB-based (www.mathworks.com) SPM-5 toolbox 

(www.fil.ion.ucl.ac.uk/spm/software/spm5) was used. To remove T1 equilibration effects, the first 
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four volumes were discarded. Next, the INRIalign algorithm (Freire L et al., 2002) was used to 

realign the images, and slice-timing correction was applied using the middle slice as the reference 

frame in the functional data pipeline. The data was then spatially normalized to the standard 

Montreal Neurological Institute space (Friston KJ et al., 1995) using a nonlinear (affine + low 

frequency direct cosine transform basis functions) registration, resampled to 3 mm × 3 mm × 3 

mm voxels, and smoothed using a Gaussian kernel (FWHM=5mm) with a full-width at half-

maximum of 10 mm. The preprocessed time series data was scaled to a mean of 100. This intensity 

normalization improves the test-retest reliability of the Group Independent Component Analysis 

(GICA) (Allen EA et al., 2011b). See Figure 4 - 1, step 1. 

 

Figure 4 - 1 : Schematic of the analysis pipeline 
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4.2.5. Group Independent Component Analysis (GICA) 

We used the GIFT Toolbox (http://mialab.mrn.org/software/gift/) and infomax algorithm (Bell AJ 

and Sejnowski TJ, 1995) for GICA. We performed a subject-specific data reduction principle 

component analysis retaining 100 principal components (PC) using a standard economy-size 

decomposition (Allen EA et al., 2011a). The relatively large number of subject-specific PCs has 

been shown to stabilize subsequent back-reconstruction (Erhardt EB et al., 2011b). Then reduced 

data from all subjects and all sessions were concatenated together and put through another 

reduction step. To use memory more efficiently, further group data reduction was performed using 

an expectation maximization (EM) principle component analysis algorithm (Roweis S., 1998) and 

75 PCs were retained.  

We used a relatively high model order ICA (number of components, C = 75), since such models 

yield refined components that correspond to known anatomical and functional segmentation 

(Abou-Elseoud A et al., 2010; Kiviniemi V et al., 2009). In order to estimate the reliability of the 

decomposition (Himberg J et al., 2004), the Infomax ICA algorithm was applied repeatedly in 

Icasso (http://research.ics.aalto.fi/ica/icasso/) and resulting components were clustered.  

The ICA results, once estimated and fixed, can be considered as a set of weighted seed maps (Joel 

SE et al., 2011). The ICA algorithm is trying to identify maximally independent sets of maps 

(which can overlap) each of which are represented by a strongly coherent (correlated) time-course. 

In the case of a distributed set of regions, there are multiple locations which are highly correlated 

to one another, and thus can be considered a node in this sense. Indeed, this is a major strength of 

multivariate approaches like ICA, as one knows that all the voxels with strong weights in a given 

component are highly correlated, and thus it makes sense to consider them a node and use FNC to 

evaluate the inter-relationship among these nodes. In contrast, for a seed-based approach, one 

knows the correlation to the seed region, but the correlation between any two voxels which are 

correlated to the seed may not be correlated with one another (Erhardt EB et al., 2011a). Thus, 

biologically, we would argue it is more interpretable to work with ICA-defined regions than it does 

seed-derived regions. Another benefit to the ICA approach is the artifact components have some 
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overlap, and this provides spatial filtering or ‘cleaning’ of the remaining variance which can 

improve our ability to, e.g. classify groups based on the results (Erhardt EB et al., 2011a). 

All rest and task data were analyzed in one group ICA instead of separate ICAs so that a tighter 

comparison between rest and tasks could be performed without introducing additional variability 

from the required matching of components if separate ICA analyses were performed. It has been 

shown in multiple previous papers that group ICA characterizes individual variation such as might 

occur across sessions quite well (Allen EA et al., 2011a; Calhoun VD and Adali T, 2012; Erhardt 

EB et al., 2011b). Since the ICA model constrains the fluctuations of each voxel in a given 

component to have the same time course, each ICA component can be considered a temporally 

coherent network (Erhardt EB et al., 2011a). Next we calculate the within session cross-correlation 

among ICA timecourses (called FNC) and subsequently model the cross-session effects as 

described in the paper. Therefore, comparing the time-courses of different components in the 

resting state and during the tasks provides insights into the change in dynamics across the task 

hierarchy between the independent component networks. See Figure 4 - 1, step 2. 
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Figure 4 - 2 : Maps of the components identified as non-artifactual in static FNC or dynamic FNC analysis: Of the 75 components 

returned by the GICA, 45 were identified as non-artifactual components. Only 34 of these non-artifactual components showed static 

FNC or dynamic FNC effects. 34 non-artifactual components are divided into groups based on their anatomical and functional 

properties and include visual network, thalamic network, cerebellar network, frontal network, attentional network, default mode 

network, sensory motor network, and auditory networks. 
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4.2.6. Feature Identification 

We used a two-step process to identify non-artifactual components that contain features associated 

with resting state networks and task performance on a sensory task (Robinson S et al., 2009). See 

Figure 4 - 1, step 3. In the first step we examined the power spectra with two criteria in mind: 

dynamic range and low frequency/high frequency ratio. See Figure 4 - 3a .Dynamic range refers 

to the difference between the peak power and minimum power at frequencies to the right of the 

peak in the power spectra. Low frequency to high frequency power ratio is the ratio of the integral 

of spectral power below 0.10 Hz to the integral of power between 0.15 and 0.25 Hz (Allen EA et 

al., 2011a). For the second step, three expert reviewers evaluated the components for functional 

relevance. See Figure 4 - 3b .In this evaluation, if a component exhibited peak activation in gray 

matter, low spatial overlap with known vascular, ventricular, motion, and susceptibility artifacts, 

and time courses dominated by low frequency fluctuations (Cordes D et al., 2000), it was classified 

as a non-artifactual component. At the end of the evaluation, the components were separated into 

two broad classes: artifactual and non-artifactual components. Of the 75 components returned by 

the GICA, 45 were identified as non-artifactual components. See Figure 4 - 2. 
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Figure 4 - 3 : Two-step processing to identify non-artifactual components; a) visual inspection, b) 

dynamic range and low frequency/high frequency ratio. 

 

4.2.7. Timecourse convolution 

To get FNC scores during the resting state scan, time courses (TC) of separate components in the 

resting state were correlated with one another by using a cosine similarity measure that can be 

computed as follows: 
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Corr( , ) =
푇퐶  .푇퐶

‖푇퐶 ‖ . 푇퐶
=  

∑ 푇퐶  푥 푇퐶

∑ 푇퐶  푥 ∑ 푇퐶
 

Where TCCx and TCCy are time courses of two separate components and n is length of time courses. 

For other tasks in the analysis, we isolated activations related to particular tasks within an fMRI 

scanning session. Figure 4 - 4 shows timecourse convolution of fMRI task data. The design matrix 

denoting stimulus presentation (when the stimuli occur for each task) during fMRI scanning 

sessions were convolved with a hemodynamic response function. The resulting function was 

normalized on a zero-to-one scale. These functions were termed hemodynamic predictor functions. 

A hemodynamic predictor function models the expected pattern of activation associated with a 

task and can be thought of as a weight expressing the degree to which component activation at a 

particular time would associate with a given task. Each task’s hemodynamic predictor function 

was then convolved with the component time courses from the GICA to yield a task-related 

component time course. A task-related component time course indicates the activation of a 

particular GICA component solely as it pertains to a given task performed in the fMRI scanner, 

and is zero where the task does not influence activity. Task-related component time courses for 

separate components within a task were then correlated with one another exclusively over non-

zero areas of the hemodynamic predictor function using a cosine similarity measure to yield task-

related FNC scores for pairs of components. See Figure 4 - 1, step 4. The statistical tests described 

below were performed on these FNC scores. 
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Figure 4 - 4 : Timecourse convolution of fMRI task data. 

 

4.2.8. Data Structure 

For each pair of components identified by the GICA, a vector of FNC results was created with 

values for every task performed by every subject. This allowed us to address questions about FNC 

effects between SPs and HCs at distinct levels of the hierarchy. We evaluated effects in two FNC 

categories. First, static FNC component pairs (see Figure 4 - 5A) showed consistency between SP 

and HC groups across levels of the task hierarchy (see Figure 4 - 5C). Second, dynamic FNC 

showed differences in connectivity between SP and HC groups at different levels of the task 

hierarchy (see Figure 4 - 5D). By using these two categories, we were able to identify static and 

dynamic group differences for SPs and HCs across task. 
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4.2.9. Data Analysis 

We maintained an interest in where we observed static and dynamic connectivity effects, and how 

this analysis approach may provide insights about current findings on connectivity in 

schizophrenia. To detect differential (state-dependent) connectivity effects, we fit a 2x5 (Group x 

Task) full factorial ANOVA model to the group average FNC values. To assess medication effects, 

we repeated the analysis for significant component pairs from the static FNC and dynamic FNC 

effects with a median split of the olanzapine equivalents. See Figure 4 - 1, step 5. With 45 non-

artifactual components in our data set, 990 pairwise comparisons were performed. 

We examined component pairs that showed static FNC offset between groups throughout the 

hierarchy of tasks by using a factorial ANOVA model at α > 0.001 level. The retained pairs 

demonstrated a main effect of group but did not show signs of a diagnosis-by-task interaction. We 

then averaged FNC values across tasks to control for individual subject effects and performed two-

sample t-tests to identify those component pairs that showed significant static FNC effects 

(p<0.001) (see Figure 4 - 5C).  

Decisions about whether a particular component pair showed significant dynamic FNC effects was 

based on an F-test of the model including the task-by-diagnosis interaction term (factorial ANOVA 

model at α ≤ 0.001 level)(see Figure 4 - 5D). We defined the results as a significant diagnosis-by-

task interaction. According to our hierarchy of tasks these component pairs have FNC differences 

between SPs and HCs as a function of task level. 

To determine the proportion of false discoveries in the set of declared discoveries, we used a 

method as described in Soric et al. (Soric B, 1989). For n number of experiments with r discoveries, 

α is the probability of wrong null-hypothesis rejections where r/n> α and for r rejections of null 

hypotheses the proportion of fallacies Q has least upper bound: Qmax= (n/r-1)α /(1-α)<1. In our 

study, Qmax (dynamic FNC) = 0.06 and Qmax(static FNC) = 0.05. Based on this analysis, at least 

94% of dynamic FNC and 95% of static FNC discoveries are true. 
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4.3. Results 

4.2.1. Static Functional Network Connectivity Effects 

We obtained 18 significant pairs (see Figure 4 - 5A lower-left portion of the connectivity image) 

that showed static FNC effects. The significant static effects with a main effect of group and no 

interaction between group and task are shown in Figure 4 - 5C, D denoted by the solid blue or red 

squares. We present our component pair results by first specifying the anatomic representation 

followed by the independent component(IC) number. 

Our study found higher static FNC in SP relative to HC (solid red squares) between the following 

thalamic network pairs (see solid red blocks in Figure 4 - 5A): thalamus (IC12) / auditory networks 

(IC28), thalamus (IC51) / auditory networks (IC28), thalamus (IC12) / auditory networks (IC38), 

and the thalamus (IC51) / auditory networks (IC62), thalamus (IC51) / sensory motor network 

(putamen)(IC15) and the thalamus(IC51) / visual network (extrastriate cortex)(IC53). The 

thalamic FNC are the only network pairs that show increased static FNC in SP relative to HC with 

only one exception, attentional network (IC33) / visual network (IC21). 

The remaining static FNC results describe higher connectivity in HC relative to SP (solid blue 

squares). These static FNC effects were observed in the default mode network, in particular, 

connectivity relating to the posterior cingulate cortex (IC54) / cingulate cortex (IC68). While we 

did not find overall static FNC patterns governing the interaction of the default mode network with 

other component networks, we found a number of individual brain regions showing stable 

differences between SPs and HCs. The posterior cingulate cortex showed reduced connectivity for 

SPs in the following pairs: default mode network(IC54) / auditory networks (IC62), dorsal 

precuneus, default mode network(IC68) /attentional network (IC32), post-central gyrus; default 

mode network (IC54) / sensory motor network (IC31), default mode network (IC54) / visual 

network (IC69) and lingual gyrus; default mode network(IC68) / visual network (IC49). We also 

observed static FNC effects in other parts of the default mode network (IC48) / frontal network 

(IC30) and default mode network (IC48) / visual network (IC29). 
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Other component pairs showing static FNC effects at the α> 0.001 level are summarized in Figure 

4 - 5A.  
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Figure 4 - 5 : A) static FNC matrix(lower part). Pairwise correlations of component pairs showed static FNC effects at the α> 0.001 

level. B) dynamic FNC matrix(upper part). Pairwise correlations of component pairs showed dynamic FNC effects at the α≤ 0.001 level. 

C-D) Samples for static FNC; thalamus (IC12) / auditory networks (IC38), attentional network (IC32) / default mode network (IC68).E-

F-G-H) Sample for dynamic FNC; attentional network (IC26) / cerebellar network (IC24), frontal network (IC01) / visual network 

(IC69), attentional network (IC35) / auditory network (IC71), visual network (IC35) /cerebellar network(IC24)
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4.2.2. Dynamic Functional Network Connectivity Effects 

We obtained 16 significant pairs (see Figure 4 - 5B) that showed dynamic FNC effects. Component 

pairs that yielded a significant dynamic FNC effect showed different patterns of interaction (and 

often negligible FNC differences) across the active tasks (See Figure 4 - 5D, F, G, H) and resting 

state measures also showed considerable differences.  

We found significant dynamic FNC in the thalamus, posterior cingulate cortex, and posterior 

temporal area for the following pairs: thalamus (IC12) / frontal network (IC08); default mode 

network (cingulate cortex) (IC54) / visual network (extrastriate cortex) (IC53); auditory networks 

(posterior temporal area) (IC38) /default mode network (orbito frontal cortex) (IC36); and auditory 

networks (posterior temporal area) (IC38) /visual network (extrastriate cortex)(IC04). SPs showed 

significantly higher FNC than HCs in resting state on the thalamus (IC12) and frontal network 

(IC08) pair, while HCs FNC was higher with the task-related paradigms. 

Unlike the observed static FNC effects, SPs had higher FNC than HCs in the resting state relative 

to task activated conditions in the following pairs of networks: thalamus (IC12) / frontal network 

(IC08), attentional network (IC26) / cerebellar network (IC24), frontal network (IC01) / visual 

network (IC69) and frontal network (Broca’s area) (IC50) / visual network (IC02). 

Some visual network components had the opposite pattern. For example, two visual network 

components: visual networks (extrastriate cortex) (IC53) / visual networks (IC49) which is located 

close to the calcarine fissure. Also, they showed significant dynamic FNC effects with the 

cerebellar network (IC24)/ visual networks (IC49) and cerebellar network (IC24)/ visual networks 

(IC53). Both showed positive FNC among SPs and HCs throughout the hierarchy, although HCs 

showed more FNC than SPs at resting state. Other component pairs showing dynamic FNC effects 

at the α≤ 0.001 level are summarized in Figure 4 - 5B.  

We, also, used a paired t-test to check the effect of antipsychotic dose (olanzapine equivalents), 

PANSS score, age and gender to the FNC values at p<0.05 and did not detect any significant effect 

on the significant static or dynamic effects reported in this chapter. 
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4.3. Discussion 

The method used in this study identifies static and dynamic differences in cortical networks by 

determining whether SPs and HCs showed significant FNC differences among brain regions across 

the task hierarchy. To detect these differences, we fit a group by task full factorial ANOVA model 

to the group average FNC values. This method provides a better approach of recognizing the 

reactions of SPs and HCs to simple sensory stimuli that are conditioned by the circumstances. The 

present study highlights a number of FNC differences between SPs and HCs, indicative of both 

stable abnormalities (static FNC) and task-dependent effects (dynamic FNC). Static FNC 

differences in SPs impacted multiple networks involving the thalamus, posterior cingulate, and 

posterior temporal cortices. Dynamic FNC differences in SPs affected similar anatomic locations, 

but the affected number of components was less. 

Among the regions where we observed significant static FNC effects, the thalamus and posterior 

temporal area (centered on posterior superior temporal gyrus but extending into middle temporal 

gyrus) deserve particular mention (see cluster of red boxes denoting Thalamus/Auditory FNC in 

Figure 4 - 5A). The temporal lobe has long been implicated in schizophrenia including multiple 

studies demonstrating auditory-related deficits (Hamm JP et al., 2011; Meda SA et al., 2012) in 

addition to structural changes in posterior temporal regions (Cullen AE et al., 2012; Mathiak K et 

al., 2011). This is consistent with differences identified in the posterior temporal lobe region in 

response to unisensory auditory stimuli during the multisensory integration paradigm; only the 

response to multisensory stimuli showed enhanced responses in SP compared to HC as reported 

in Stone et al. (Stone DB et al., 2011). These group differences provide motivation for 

understanding how connectivity patterns differ in response to these different stimulus conditions. 

Interestingly, no significant group differences were reported in Mayer et al. (Mayer AR et al., 

2012) for sensory gating, indicating that the current analysis approach may provide enhanced 

sensitivity to identify group differences through the comparison across task thereby identifying 

both stable abnormalities (static FNC) and task-dependent effects (dynamic FNC). 

Furthermore, thalamic abnormalities in schizophrenia are well-documented (Goff DC and Coyle 

JT, 2001; Shenton ME et al., 2001; Woodward ND, 2012). Recent research suggests that these 
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regions play a role related to production of auditory verbal hallucinations (Hoffman RE. and 

Hampson M., 2012) along with the putamen, which also showed a significant static thalamic 

connectivity effect.  

The present study is consistent with previous results suggesting that in addition to cortical deficits, 

the thalamus plays an important role in the cortical abnormalities of schizophrenia. We found static 

FNC effects between the thalamus and posterior temporal area, the putamen, and extrastriate 

cortex. In all cases, SPs had significantly higher connectivity than HCs, across all levels of the 

sensory load hierarchy. 

In this chapter, we used a high noise model of schizophrenia instead of a direct measure of brain 

signal variability. The use of the high noise model (Daniel PK et al., 2006; Rolls ET et al., 2008; 

Susan WG et al., 2009; Tononi G and Edelman GM, 2000) here is referring to the dampened 

stimulus evoked responses, similar to the previous descriptions that indicate default mode activity 

is not sufficiently dampened during stimulus presentation in SZ relative to HC. The group 

differences in static FNC may represent an inability for brain connectivity to be modulated by 

external stimuli consistent with the high noise model of schizophrenia (see Figure 4 - 5D). 

Interestingly, these areas are not only a part of the default mode network they may also represent 

broader group differences signifying a lack of flexibility in SP. Our data supports the conclusion 

that these effects, along with other differences involving the posterior cingulate and the default 

mode network, represent stable characteristics underlying schizophrenia. 

We also found significant static FNC differences involving elements of the default mode network, 

particularly the posterior cingulate. This provides support for the hypothesis (Dosenbach NUF et 

al., 2007; Garrity AG et al., 2007; Jafri MJ et al., 2008) that aberrant default mode network 

connectivity in resting state reflects the existence of a stable static FNC characteristic that does not 

depend on cognitive state or task response in a particular default mode network sub-region. Future 

studies can also focus on changes in the dynamics of functional connectivity, a new area of 

investigation which provides interesting results in the healthy brain (Allen EA et al., 2012). 
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Our study identified dynamic FNC group differences across the active tasks between both the 

Fronto-Parietal networks (frontal network (IC08)) / cingulo-opercular network (thalamus (IC12) 

and Fronto-Parietal networks (attentional network (IC26)) / cerebellar network (IC24). These 

results show differences in connectivity in a similar network as the previous study by Repovš et 

al. (Repovš G and Barch DM, 2012) showing group differences in connectivity with increasing 

working memory load between the Fronto Parietal networks. Furthermore, connectivity patterns 

varied across components including in some cases differences in connectivity with increasing 

sensory load. While this study did not employ a working memory paradigm, the similar pattern of 

dynamic connectivity changes suggests that the dynamic connectivity patterns form a more general 

pattern across sensory and cognitive paradigms. In addition, we also found other dynamic FNC 

effects which are summarized in Figure 4 - 5B. Although, 990 comparisons limit our ability to 

fully describe the results, we feel this approach provides a novel method for assessing trait-based 

and state-based differences between clinical groups. 

The majority of the previous studies that examined functional connectivity in schizophrenia during 

rest, found reduced connectivity for SPs while some other studies found stronger connectivity 

during the performance of the task (Harrison et al., 2008; Shirer et al., 2012). Most of these studies 

were limited to a few preselected brain regions using a seed-based approach. In this chapter, we 

used an ICA approach (FNC) to extract all measurable non-artifactual brain networks (Jafri MJ et 

al., 2008). The results of this study support the previous studies described above by identifying 

group differences in commonly reported networks including: the attentional network, auditory 

networks, default mode network, frontal network, sensory motor network, visual network, 

thalamus and cerebellar network. Also, our results provide additional information about how each 

of these networks responds to different sensory loads through testing both static FNC and dynamic 

FNC changes. Our study extends the previous results by identifying group differences in 18 static 

FNC and 16 dynamic FNC in 8 different networks in a multi task hierarchy with a large number 

of subjects. 

There are likely some spatial differences in the networks across tasks. For ICA analyses, we have 

two options. The first option is using separate ICA analyses for each task which then requires 
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component matching to make any statements regarding task hierarchy. This is a time consuming 

and error prone process (especially for large numbers of subjects) which is less robust to noise 

(Du, Y. et al., 2014). The second option is incorporating all rest and task data in one group ICA 

which eliminates the need to match components across ICA analyses due to a common analytic 

model and thereby allows for tighter comparisons between rest and tasks. It has been shown in 

multiple previous papers that group ICA characterizes individual variation such as might occur 

across sessions quite well (Allen EA et al., 2011b; Calhoun VD and Adali T, 2012; Erhardt EB et 

al., 2011a). Next we calculate the within subject/within session (task) cross-correlation among ICA 

timecourses (called FNC) and subsequently model the cross-session effects as described in the 

paper. Such an approach thus allows for each component to have a distinct timecourse for each 

task/subject.  

4.4. Limitations and Future Work 

We consider the current results a first step in developing more sophisticated models to map 

hierarchical patterns across different brain regions to better understand how information content 

influences brain function at all levels of cortical functioning. Furthermore, the task hierarchy 

defined in the current study was based on a study designed to assess function across the sensory to 

cognitive hierarchy by sampling differences at pre-attentional sensory levels, multisensory 

integration with motor response, and working memory performance. In the current study we 

limited the analysis to the sensory tasks based in part on the recent results linking sensory deficits 

to cognitive impairments in schizophrenia. Furthermore, the current design attempts to 

systematically assess the perceptual/arousal state of participants which is included as a sub-domain 

of the Research Domain Criteria established to recognize the variability within diagnostic 

categories and the similarities across diagnostic categories. Additional task hierarchies are likely 

to yield different results within the dynamic FNC framework. In this section we discuss limitations 

of the current study and future work. 

One challenge with performing a multi-task analysis is to determine the expected hierarchal 

relationship between these tasks. Here, we chose the two simplest assumptions: static versus 

dynamic along the preselected hierarchical arrangement. There are a number of possible reasons 
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that this assumption may fail with the current dataset, including the following examples: (a) levels 

4 and 5 require a response, whereas levels 2 and 3 do not. So from the broader cognitive 

perspective, levels 4 and 5 clearly require higher cognitive load than levels 2 and 3 suggesting that 

higher order brain areas may follow a relationship across the established hierarchical framework. 

(b) Similarly, the change from level 4 to 5 represents an addition of a visual stimulus with 

presentation of the exact same auditory stimulus in both levels which, again, one might argue, 

would add complexity at the cognitive level, but the auditory cortex response might be expected 

to remain constant from level 4 to 5. Despite these considerations, we identified a natural 

hierarchy(linearly increased) in some of the IC pairs, such as, static FNC effects: attentional 

network (IC33) / visual network (IC21), thalamus (IC51) / auditory networks (IC62), default mode 

network (IC48) / visual network (IC29) and dynamic FNC effects: visual network (IC49) / visual 

network (IC53), auditory networks (IC38) / visual network (IC04), auditory networks (IC62) / 

attentional network(IC61). 990 comparisons limit our ability to fully describe the results, but we 

feel this approach provides a novel method for assessing trait-based and state-based differences 

between clinical groups. 

Only subjects able to complete all tasks were retained in the final analysis. Such a rigorous research 

protocol inevitably excluded more symptomatic subjects who were unable to complete the entire 

protocol, as confirmed by comparing our final sample with the entire sample that began this study. 

Thus, our results may have limited generalizability to the entire spectrum of symptom severity 

across schizophrenia. Second, all of our SPs were taking antipsychotic medications (as noted in 

our inclusion criteria) whereas HCs were not. Antipsychotic dose and type did not change for the 

duration of the research protocol (up to two months). As mentioned above we found no relationship 

between medication dose and FNC measures, however, a main effect of medication cannot be 

eliminated in this study. 

Another challenge is performing a timecourse convolution with a multi-task analysis. While the 

entire resting-state task time course was analyzed, for other tasks, a hemodynamic predictor 

function was convolved with the component time courses from the GICA to yield a task-related 

component time course. Although, this causes some loss of data in the time course, it helps to 
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reduce noise and improve the correctness of the correlation results between the component pairs 

(Arbabshirani MR et al., 2013a; Mayer AR et al., 2012). Based on the different questions that are 

being asked in rest versus task-based activations, it is unclear how to better address these 

differences.  

In future studies, we intend to explore aspects that may improve the current methodology. An 

important extension to the current study is to include cognitive tasks with established 

pathophysiology in schizophrenia, such as working memory, delayed match-to-sample, 

reinforcement learning, or Go/No-Go tasks. 

4.5. Conclusion 

In conclusion, we used a novel analysis to investigate cross paradigm connectivity patterns applied 

to a large dataset of patients with schizophrenia contrasted with healthy controls. The results 

provided evidence of both static FNC differences between SPs and HCs and differences modulated 

by the rest and task hierarchy. This suggests that FNC differences observed only at rest or during 

performance of particular tasks are not necessarily indicative of the fundamental characteristics of 

cognition in schizophrenia. 
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Schizophrenia is currently diagnosed by physicians through evaluation of their clinical assessment 

and a patient’s self-reported experience over the longitudinal course of the illness. There is great 

interest in identifying biologically based markers at illness onset, rather than relying on the 

evolution of symptoms across time. Functional connectivity shows promise in providing individual 

subject predictive power. However, the majority of previous studies considered only the analysis 

of functional connectivity during resting-state or performance of a single task. Changes in 

connectivity between rest and multiple tasks have not been used in the discrimination of 

schizophrenia patients from healthy controls. In this work, we propose a framework for 

classification of schizophrenia patients and healthy control subjects based on functional network 

component pairs which show consistency between patients and controls across levels of the 

resting-state data and task hierarchy. Our results show that these functional network components 

as a function of task contain valuable information for individual prediction of schizophrenia 

patients. Such information is useful for training and replicates in testing. Performance was 

improved significantly (up to ~20%) relative to a single FNC (resting-state) measure. 

5.1. Introduction 

The general approach for the diagnosis of schizophrenia is based on a patients self-reported 

experiences and observed behavior over the longitudinal course of the illness. There is great 

interest in identifying biologically based marker of illness, rather than relying on symptom 

assessment because the current approach may postpone the diagnosis of the disorder, whereas early 

diagnosis can improve treatment response and reduce associated costs (Kubicki, M. et al., 2007). 

But small numbers of training subjects and high dimensional datasets make it challenging to design 

robust and accurate classifiers for schizophrenia. Functional connectivity shows promise in 

providing individual subject predictive power. Seed-based functional connectivity approaches 

assess the temporal correlation between a seed region and individual brain voxels (Cordes D et al., 

2002; Fox MD et al., 2005). Independent component analysis based functional network 

connectivity (FNC) is a correlation value that summarizes the overall connection between 

independent brain maps over time (Allen EA et al., 2012; Calhoun VD et al., 2001c, 2008; Cetin, 

MS., et al., 2014; Jafri MJ et al., 2008). Therefore, the FNC feature gives a picture of the 

connectivity pattern over time between independent components. 
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Most of the previous studies have focused only on the analysis of functional connectivity during 

performance of a resting-state or single task for classification. Changes in connectivity between 

extended rest and multiple tasks have not been used in the discrimination of schizophrenia patients 

from healthy controls. Such an approach does not take advantage of the within-subject pattern of 

response which likely occurs across tasks, and which can be of benefit in a number of applications 

(Calhoun VD and Adali T, 2009; Calhoun VD et al., 2006, 2008). Only a few studies (Arbabshirani 

MR et al., 2013a; Cetin, MS., et al., 2014; Repovš G and Barch DM, 2012) have investigated how 

cognition changes under an established progression of task manipulation, but these studies have 

not focused on individual subject measures in the context of classification. 

 

Figure 5 - 1 : Static FNC pair (left), dynamic FNC pair (right) 

Some studies (Dosenbach NUF et al., 2007; Garrity AG et al., 2007; Jafri MJ et al., 2008) suggest 

that aberrant default mode network connectivity during the resting state reflects the existence of a 

stable FNC characteristic that does not depend on cognitive state or task response in a particular 

default mode network sub-region. Results of previous chapter supports this hypothesis by showing 

the existence of significant FNC patterns that remain stable between schizophrenia patients (SPs) 

and healthy control (HCs) across a hierarchy of sensory tasks. We reported these differences in 

two categories (See Figure 5 - 1) (1) static functional network connectivity (sFNC) pairs showed 

consistency between SPs and HCs groups across different tasks/levels and (2) dynamic FNC 

showed differences in connectivity between SPs and HCs groups for different tasks/levels. 
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Based on this, we hypothesized that the sFNC components contain valuable trait-based information 

that can be used for individual prediction of mental illness such as schizophrenia. In this chapter, 

we used a group ICA approach (Calhoun VD and Adali T, 2012; Erhardt EB et al., 2011a), 

excluded non-artifactual brain networks (Jafri MJ et al., 2008), then conducted a classification 

study of schizophrenia and healthy subjects using sFNC and compared results with dFNC by 

examining across a hierarchy of sensory tasks with varying levels of sensory load (including 

resting-state only). Data for each participant were gathered across multiple fMRI scanning sessions 

and both FNC analyses were examined across a hierarchy of sensory tasks with varying levels of 

sensory load. To the best of our knowledge there has been no study to investigate this issue in a 

variety of different FNC networks in a multi-task hierarchy with a relatively large number of 

subjects (n=95).  

5.2. Materials and methods  

Details of demographic characteristics and clinical variables of the participants can be found in 

previous chapter.  

5.2.1. Data Acquisition and Preprocessing  

All images were collected on a single 3-Tesla Siemens Trio scanner with a 12-channel radio 

frequency coil with a repetition time of 2 sec. After initial standard preprocessing (Allen EA et al., 

2012; Cetin, MS., et al., 2014) the imaging data was decomposed into functionally homogeneous 

cortical and subcortical regions exhibiting temporally coherent activity using a high model order 

(100) group-level spatial independent component analysis (GICA).  
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Figure 5 - 2 : Schematic of the analysis pipeline 

Of the 75 components returned by the GICA, 45 were identified as non-artifactual (see Figure 5 - 

3) independent components (IC) using a combination of two methods (Allen EA et al., 2011a). In 

the first method we examined the power spectra with two criteria in mind: dynamic range and low 

frequency/high frequency ratio. Dynamic range refers to the difference between the peak power 

and minimum power at frequencies to the right of the peak in the power spectra. Low frequency 

to high frequency power ratio is the ratio of the integral of spectral power below 0.10 Hz to the 

integral of power between 0.15 and 0.25 Hz. To verify the results, three expert reviewers evaluated 

the components for functional relevance. In this evaluation, if a component exhibited 1) peak 

activation in gray matter, 2) low spatial overlap with known vascular, ventricular, motion, and 

susceptibility artifacts, and 3) TCs dominated by low frequency fluctuations, it was classified as a 

non-artifactual component. Schematic of the analysis is presented in Figure 5 - 2.  
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Figure 5 - 3 : Thresholded group mean spatial maps of 45 non-artifactual independent components 

Subject specific time courses (TCs) and spatial maps (SMs) were obtained using back 

reconstruction (Erhardt EB et al., 2011a). The FNC for each subject was estimated from the TC 

matrix as a C×C sample covariance matrix by using a cosine similarity measure. For tasks in the 

analysis, we isolated activations related to particular tasks within an fMRI scanning session. Task-

related component time courses for separate components within a task were then correlated with 
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one another exclusively over non-zero areas of the hemodynamic predictor function using a cosine 

similarity measure to yield task-related FNC scores for pairs of components.  

5.2.2. Task Hierarchy  

The tasks represented cognitive paradigms that were analyzed separately (Mayer AR et al., 2012; 

Stone DB et al., 2011) and together (Cetin, MS., et al., 2014). Each task represented a different 

cognitive demand: resting state, pre-attentional sensory processing and multisensory processing. 

Level 1: Resting state fMRI: On the first level, participants performed a simple rest task. Their 

eyes were open during the scan and they gazed passively at a central fixation cross.  

Level 2-3: Sensory gating: Tasks on the second and third levels were variants of the paired click 

paradigm for testing sensory gating (Van DKR et al., 2010). On the second level, participants were 

presented with a 5ms tone at either 2 kHz or 3 kHz. On the third level, participants were presented 

with paired tones - either identical 2 kHz tones or a 2 kHz tone followed by a 3 kHz tone. Both of 

these tasks were passive in that a response was not required.  

Level 4-5: Multi-sensory integration: Tasks on the fourth and fifth levels were designed to test 

multisensory integration and employed a simple forced choice behavioral task (Stone DB et al., 

2011). On the fourth level, an auditory stimulus (500 Hz tone) was presented to participants at two 

different volumes, 80dB to simulate a sound near the participant (NEAR) and 64dB to simulate it 

being farther away (FAR). On the fifth level, the above auditory stimulus was presented 

synchronously with a visual stimulus. Participants underwent fMRI scanning while deciding 

whether the stimuli presented were NEAR or FAR with a button press. Participants all performed 

the task at a high level of performance more than 88% percent correct in both groups across task 

conditions. 

A brief clinical stability questionnaire was obtained at each study visit to ensure stability across 

the multiple study visits. Task order for the MRI scan sessions was randomized and there were no 

significant group differences in the task randomization at p<0.05 level. For rest of the chapter “task 
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hierarchy” refers to the fMRI scans in the following order: resting-state, sensory gating, multi-

sensory integration.  

5.2.3. Static Functional Network Connectivity 

To find dFNC and sFNC, we followed the steps of our previous chapter (Cetin, MS., et al., 2014). 

We fit a 2 × 5 (Group × Task) full factorial ANOVA model to the group average FNC values hence 

we detect differential (state-dependent) connectivity effects. With 45 non-artifactual components 

in our data set, 990 pairwise comparisons were performed. We examined component pairs that 

showed dFNC diagnosis by task interaction throughout the hierarchy of tasks by using a factorial 

ANOVA model at α ≤ 0.001 level. The retained pairs that demonstrated a main effect of group but 

did not reveal a diagnosis-by-task interaction were then evaluated further by averaging FNC values 

across tasks to control for individual subject effects and performed two-sample t-tests to identify 

those component pairs that showed significant sFNC effects (p<0.001). For the rest of the chapter, 

IC pairs that show dFNC or sFNC properties will be called significant IC pairs. 

To determine the proportion of false discoveries in the set of declared discoveries, we used a 

method as described in Soric et al. (Soric B, 1989). For n number of experiments with r discoveries, 

α is the probability of wrong null-hypothesis rejections where r/n> α and for r rejections of null 

hypotheses the proportion of fallacies Q has least upper bound: Qmax= (n/r-1)α /(1-α)<1 which 

hold when we have at least 18 significant IC pairs across levels of the task hierarchy. 

5.2.4. Classification 

We performed 3 well known classification algorithms; linear discriminant classifier (LDC), Naïve 

Bayes classifier (NBC) (Duda RO, et al., 2001) and non-linear SVM (nSVM) with Gaussian radial 

bases function kernel (Burges,  C.  J.  C., 1998) to test the initial hypothesis. 

80% of the SPs and HCs datasets were used for classifier training, which returned at least 18 IC 

pairs across levels of the task hierarchy and rest of the data were used for the testing data set. 
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Members of each data set were selected randomly. Each subject has a feature vector containing 

990 × 5 (IC pairs × tasks) elements and each IC pair has 5 features.  

We used a repeated random sub-sampling validation (Kohavi, Ron., 1995) strategy to estimate the 

accuracy scores for each of the IC pairs. In each validation run, 80% of the SP and HC in the 

training set were used to train significant IC pairs and each of them were tested individually on 

validation data which is 20% of the SPs and HCs in training set and their accuracy scores were 

recorded. Members of each data set were selected randomly. We repeated a random sub-sampling 

validation process 1000 times and used the average scores of each IC pair to select the best half of 

the IC pairs. Then each IC pair in the best half was used to classify the testing data set individually. 

Majority voting of these individual classifications was used to compute the estimated accuracy 

scores of classification (Es Acc).  

The entire process was repeated 100 times and the average accuracy score was recorded as a final 

classification accuracy score. 

5.3. Results 

In order to assess the advantages of using sFNC for classification of SPs and HCs, we examined 

metrics such as: comparison of the estimated accuracy scores with real accuracy scores (Real Acc) 

of the IC pairs, examination across a hierarchy of sensory tasks with varying levels of sensory load 

and comparison of sFNC results with dFNC. 

By using repeated random sub-sampling validation we estimated the accuracy score of each 

significant IC pair and sorted them based on this score and used the best half of these pairs. We 

compared our accuracy scores with maximum accuracy scores (Max Acc) that used the best half 

of IC pairs based on real accuracy scores obtained from testing data set. Figure 5 - 4 shows that 

repeated random sub-sampling validation was successfully used to estimate the individual 

accuracy sores of IC pairs. The most accurate half of pairs identified in the training set (Best half) 

were used to classify the testing data set individually then majority voting of these individual 

classifications was used to compute the final classification score. 
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Figure 5 - 4 : Estimated order of significant IC pairs based on accuracy scores obtained from 

training data set (labelled Es Acc - and colored red) and real order of IC pairs based on accuracy 

scores obtained from testing data set (labelled Real Acc - and colored blue). Correlation score of 

Es Acc and Real Acc of all significant IC pairs is 0.67. 

As mentioned before, we used 3 different classification algorithms to exam the success of the 

described method. We repeated the proposed method across varying levels of sensory load; resting 

state (R), resting state - sensory gating (S) and resting state - sensory gating – multisensory 

integration (M). 

Table 5 - 1 summarizes the average accuracy scores of 100 runs on the testing dataset for estimated 

accuracy (Es Acc), maximum accuracy scores (Max Acc) and average correlation scores (Corr) 

of estimated order of significant IC pairs based on accuracy scores obtained from training data set 

and real order of IC pairs based on accuracy scores obtained from testing data set. Also we 

compared accuracy of our method with the accuracy (Acc) obtained from all significant IC pairs.  
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Table 5 - 1: sFNC performance for classification 

sFNC 
Best half of IC pairs All IC pairs 

Es Acc Max Acc Corr Acc 
LD

C
 

R 66.12 73.45 0.42 60.5 

R+S 70.00 76.05 0.54 65.25 

R+S+M 72.90 77.25 0.53 66.45 

N
BC

 

R 72.75 76.72 0.47 61.8 

R+S 77.12 80.25 0.55 65.75 

R+S+M 80.10 83.37 0.6 69.25 

nS
V

M
 R 64.05 74.85 0.36 62.6 

R+S 74.50 79.28 0.54 65.55 

R+S+M 80.93 84.45 0.62 65.75 

Results showed that using all levels of the task hierarchy improve the accuracy scores significantly 

(p < 0.05, FDR corrected for multiple comparisons) compared to resting-state and resting state - 

sensory gating sensory loads. Also, we obtained improvement by using estimated best half of the 

significant IC pairs instead of using all significant IC pairs (p < 0.05, FDR corrected for multiple 

comparisons) for all hierarchy level. The best accuracy score was obtained by using nSVM 

algorithm with best half (estimated) of the features and all levels of the task hierarchy (R+S+M). 

Also, we repeated the same experiment with significant IC pairs that were obtained from dFNC 

analysis. See Table 5 - 2. The results showed a similar pattern as sFNC but were overall less 

accurate. Moreover, accuracy results were not changed significantly when we added a new 

hierarchy level.  
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Table 5 - 2 : dFNC performance for classification 

sFNC 
Best half of IC pairs All IC pairs 

Es Acc Max Acc Corr Acc 
LD

C
 

R 63.55 69.80 0.50 54.00 

R+S 63.60 70.40 0.52 53.35 

R+S+M 63.72 70.40 0.53 54.95 

N
BC

 

R 64.15 72.46 0.50 54.80 

R+S 64.67 73.13 0.52 56.07 

R+S+M 66.13 77.60 0.54 56.00 

nS
V

M
 R 63.55 70.30 0.59 56.80 

R+S 64.43 70.50 0.61 55.85 

R+S+M 64.80 71.96 0.62 56.10 

 

5.4. Discussion 

In this chapter, we present the initial exploratory effort to investigate the classification 

performance of sFNC based method that identifies static differences in cortical networks by 

determining significant IC pairs among all measurable non-artifactual brain networks (Jafri MJ et 

al., 2008) across the task hierarchy. We detected 8 different networks in a multi task hierarchy 

with 95 subjects. Results showed that sFNC entails valuable information for individual prediction 

of SPs and can be used to improve the accuracy of classification. 

The present study is consistent with previous results identifying group differences in networks 

commonly associated with altered FNC in SPs relative to HCs, including: the attentional network, 

auditory networks, default mode network, frontal network, sensory motor network, visual network, 

thalamus and cerebellar network.  
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Our results showed that using significant IC pairs from sFNC obtained from all hierarchical task 

structure improves the classification results compared to resting-state and resting state - sensory 

gating sensory loads. On the other hand, accuracy results obtained using significant IC pairs from 

dFNC were not changed significantly when we added a new hierarchy level. This may be due to 

the main cognitive differences between SPs and HCs being driven by one or more but not all levels 

of the hierarchy as shown in Figure 5 - 1. This shows that clearly some valuable information was 

ignored or missed when we used dFNC instead sFNC IC pairs. These results support our initial 

hypothesis. 

A potential explanation for the difference in sensitivity of the sFNC versus the dFNC IC pairs is 

that the sFNC ICs identified trait-based characteristics that were stable across both task 

presentation as well as across time. As mentioned above, data collection was performed across 

multiple days to maintain the attentional state of participants throughout the multiple tasks. We 

suggest that the features that show persistent group differences across these conditions represent 

stable characteristics associated with schizophrenia and may be less sensitive to variations in 

symptoms across time.  

In this study, we also used random sub-sampling validation to improve the generalizability and 

accuracy of the results. Results showed that such an approach helps to estimate accuracy success 

of each IC pair obtained from sFNC and dFNC. These estimation results were used to select the 

best half of the significant IC pairs. As reported in Table 5 - 1 and Table 5 - 2 this selection method 

significantly improved classification accuracy. 

The task hierarchy defined in the current study was based on a study designed to assess function 

across the sensory to cognitive hierarchy by sampling differences at pre-attentional sensory levels, 

multisensory integration with motor response, and working memory performance. In future 

studies, we intend to explore aspects that may improve the classification accuracy scores with 

current methodology by including cognitive tasks with established pathophysiology in 

schizophrenia. 
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5.5. Conclusion 

In conclusion, we used a novel method for prediction of SPs by using the best half of the significant 

IC pairs observed from sFNC which also showed consistency between SP and HC groups across 

levels of the task hierarchy. The results provided evidence that sFNC differences capture important 

information for classification that is missed in a dFNC approach. This suggests that sFNC 

differences provide valuable information that captures fundamental characteristics of brain 

network connectivity in schizophrenia across performance of a multi task hierarchy that increases 

the classification accuracy of the SPs and HCs and may help to design an objective biological 

marker-based diagnostic test for schizophrenia. 
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Examination of intrinsic functional connectivity using functional MRI (fMRI) has provided 

important findings regarding dysconnectivity in schizophrenia. Extending these results using a 

complementary neuroimaging modality (magnetoencephalography (MEG)) we present the first 

direct comparison of functional connectivity between schizophrenia patients and controls, using 

these two modalities combined. We develop a novel MEG approach for estimation of networks 

using MEG that incorporates spatial independent component analysis (ICA) and pairwise 

correlations between independent component timecourses, to estimate within- and among-network 

connectivity. This analysis enables group-level inference and testing of between-group 

differences. Resting state MEG and fMRI data were acquired from a large sample of healthy 

controls (n=45) and schizophrenia patients (n=46). Group spatial ICA was performed on fMRI and 

MEG data to extract intrinsic fMRI and MEG networks. Results: Similar, but not identical spatial 

independent components were detected for MEG and fMRI. Analysis of functional network 

connectivity (FNC) revealed a differential between-modalities pattern, with greater connectivity 

among occipital networks in fMRI and among frontal networks in MEG. Most importantly, 

significant differences between controls and patients were observed in both modalities. MEG FNC 

results in particular indicated dysfunctional hyperconnectivity within frontal and temporal 

networks in patients, while in fMRI FNC was always greater for controls than for patients. Results 

suggest that combining these two neuroimaging modalities reveals additional disease-relevant 

patterns of connectivity that were not detectable with fMRI or magnetoencephalography alone. 

6.1. Introduction  

More than 2000 neuroimaging papers examining the human “resting state” have been published 

since the first fMRI study (Biswal, B., et al., 1995; Calhoun VD et al., 2001b; Raichle ME, et al., 

2001). Analysis of resting state data has yielded information across a wide range of topics 

including basic sensory processing (Shostak VI, 1968), tobacco and alcohol use (Brown BB, 

1968), neurodegenerative diseases (Rosadini G, et al., 1974), and neuropsychiatric illnesses 

(Reeve A, et al., 1993). Resting state protocols are particularly advantageous for the study of 

disease states where patients may have difficulty responding or performing behavioral tasks due 

to compromised cognitive and/or physiological functions. Connectivity methods such as 

independent component analysis (ICA) are a set of powerful analysis techniques used to analyze 
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resting brain activity. Such approaches are particularly relevant to disease states such as 

schizophrenia, in which dysfunctional connectivity (“dysconnectivity”) is hypothesized to underlie 

patient symptoms (Bullmore ET, et al., 1997; Stephan KE, et al., 2006). Because this 

dysconnectivity is thought to be driven by aberrant synaptic plasticity (Stephan KE, et al., 2009), 

characterizing functional connectivity may be essential to understanding the disorder.  

Group independent component analysis (gICA) is an effective means of interrogating functional 

dysconnectivity in schizophrenia (Calhoun VD and Adali T, 2012). As typically applied to resting 

fMRI data, this technique identifies and reconstructs temporally-coherent, spatially-independent 

networks in groups of subjects (Calhoun VD et al., 2001a), where “networks” are defined as 

components identified via ICA. Spatial independence facilitates the comparison of topographies, 

or maps, between groups, while the property of temporal coherence permits the assessment of 

inter-regional, connectivity between spatially independent networks. However, exclusive reliance 

on fMRI to generate such networks may limit inference on dysconnectivity: Whilst the blood 

oxygenation-level dependent (BOLD) response measured by fMRI allows high spatial resolution 

maps, it is limited by being an indirect and slow physiological signal (Bandettini PA, et al., 1993; 

Kim SG, et al., 1997). Neural oscillatory activity, which comprises rhythmic electrical activity in 

cell assemblies, is thought to underlie BOLD responses. This occurs in the ~1-900Hz band; such 

rapid electrical signals cannot be assessed using fMRI but can be measured directly by techniques 

such as MEG (Cohen D., 1968), a noninvasive neuroimaging technique used to infer the cortical 

current distribution via assessment of the induced extra-cranial magnetic fields. Measurement of 

resting state brain activity using both fMRI and MEG, within a common sample of subjects, 

combines the strengths of each modality by allowing comparison of haemodynamic and 

electrophysiological effects. In this way we provide significant insight into functional connectivity, 

with special relevance for the study of schizophrenia and similar conditions. Significant progress 

towards integrating MEG and fMRI has been made in the past decade. MEG inverse solutions such 

now permit functional connectivity analysis in the same brain space as fMRI (Brookes MJ, et al., 

2005). This approach has already been used to evaluate intrinsic connectivity networks (ICNs) in 

MEG in a similar way to that typically used in fMRI (Brookes MJ, et al., 2011a). Neural 

oscillations are implicated strongly in this approach and in particular, multiple studies (Brookes 
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MJ, et al., 2011b; Luckhoo H, et al., 2012) have now shown that assessment of temporal correlation 

between the amplitude envelopes of oscillatory activity facilitates elucidation of distributed 

network structure that bears reasonable resemblance to fMRI.  

The purpose of the present chapter is to use both fMRI and band limited envelope correlation 

metrics in MEG to interrogate functional connectivity in the resting state in a sample of healthy 

normal volunteers and schizophrenia patients. Using methods based on group spatial ICA, for the 

first time we estimate networks from both MEG and fMRI and compare and contrast the networks 

and findings from the two modalities, with the hypotheses that 1) Patients and controls would 

differ significantly on both MEG and fMRI measures of among-network connectivity, called 

functional network connectivity (FNC), 2) MEG and fMRI spatial maps would show substantial 

overlap, and 3) Using both MEG and fMRI measures of among-network connectivity would show 

improvement to classification of schizophrenia patients. 

6.2. Materials and Methods 

6.2.1. Participants 

This investigation combined existing data from 91 participants, 46 schizophrenia patients and 45 

healthy controls. Informed consent was obtained from all participants according to institutional 

guidelines at the University of New Mexico Human Research Protections Office (HRPO). All 

participants were compensated for their participation. Patients with a diagnosis of schizophrenia 

or schizoaffective disorder were invited to participate. Each patient completed the Structured 

Clinical Interview for DSM-IV Axis I Disorders (First M, et al., 1997) for diagnostic confirmation 

and evaluation of co-morbidities. Patients with a history of neurological disorders including head 

trauma (loss of consciousness > 5 minutes), mental retardation, history of substance dependence, 

or active substance abuse (except for nicotine) within the past year were excluded, as were patients 

who were clinically unstable (e.g., in the previous month were discharged from the hospital or had 

any changes in their psychotropic medications). Stability was also monitored throughout the study 

to confirm that patients had no clinically meaningful symptom changes. All patients had a negative 

urine toxicology for drugs of abuse at the time of enrollment in the study. Patients were treated 
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with a variety of antipsychotic medications. The doses of antipsychotic medications were 

converted to olanzapine equivalents (Gardner DM et al., 2010) (see Table 6 - 1). Healthy controls 

were recruited from the same geographic location and completed the SCID – Non-Patient Edition 

to rule out Axis I conditions (First MB et al., 2002a). All participant smokers were instructed not 

to use tobacco during the two hours prior to each scan to minimize acute effects. This was 

confirmed via a breath carbon monoxide measure of less than 8 ppm. Each participant completed 

resting MEG and MRI scans. Scans were collected in counterbalanced order, with a median time 

between scans of approximately 22 days.  

Table 6 - 1: Demographic information. A/A: American Indian/Alaska Native, PCE: Primary 

caregiver education, SCE: Secondary caregiver education 

  

Mean (SD)  t or x2 

 Schizophrenia (n=44)  Control (n=47)   (p-value)  

Demographics       

Age 37. 28 (13.86) 35.18 (11.83) 0.78 (0.44) 

Gender (M/F) 37/7 34/13 0.27 (0.78) 

Ethnicity (H/NH) 23/21 26/21   

Race       

 A/A 2 2   

 Asian 2 0   

 African American 1 4   

 Pacific Islander 1 0   

 White 38 41   

 PCE 4.24 (2.11) 4.53 (1.18)   

 SCE 4.72 (1.83) 4.72 (1.84)   

PANSS       

Positive 15.13 (5.136)     

Negative 15.15 (5.013)     

General 29.79 (8.108)     
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6.2.2. fMRI Data Acquisition 

All fMRI data were collected on a 3-Tesla Siemens Trio scanner with a 12-channel radio frequency 

coil. High-resolution T1-weighted structural images were acquired with a five-echo MPRAGE 

sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR=2.53 s, TI=1.2 s, flip angle=7°, number of 

excitations=1, slice thickness=1 mm, field of view=256 mm, resolution=256×256. T2*-weighted 

functional images were acquired using a gradient-echo EPI sequence with TE=29 ms, TR=2 s, flip 

angle=75°, slice thickness=3.5 mm, slice gap=1.05 mm, field of view 240 mm, matrix size=64x64, 

voxel size=3.75 mm×3.75 mm×4.55 mm. Resting-state scans consisted of 149 volumes per run.  

6.2.3. fMRI Data Preprocessing  

An automated preprocessing pipeline and neuroinformatics system developed at MRN (Scott A, 

2011) was used to preprocess the fMRI data. The first four volumes were discarded to remove T1 

equilibration effects. Images were realigned and slice-timing correction was applied using the 

middle slice as the reference frame in the functional data pipeline. The data were then spatially 

normalized to the standard MNI space, resampled to 3×3× 3 mm voxels, and smoothed using a 

Gaussian kernel with a full-width at half-maximum (FWHM) of 10 mm. The preprocessed time 

series data were scaled to a mean of 100. 

6.2.4. fMRI Group Spatial Independent Component Analysis (gsICA)  

Following Allen et al. (Allen EA et al., 2011b), we performed a subject-specific data reduction 

PCA retaining 100 principal components (PC). In order to use memory more efficiently, group 

data reduction was performed using an EM-based PCA algorithm and C = 75 PCs were retained. 

The infomax algorithm (cf. 50) was used for GICA. It was performed using the GIFT Toolbox 

(http://mialab.mrn.org/software/gift/). We use this high model order ICA (number of components, 

Medications   

    OLZ(mg/day) 14.02 (12.39) 
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C = 75), since such models yield refined components that correspond to known anatomical and 

functional segmentation (Allen EA et al., 2011b). In order to estimate the reliability of the 

decomposition, the Infomax ICA algorithm was applied repeatedly via ICASSO (Himberg J, and 

Hyvarinen A., 2003) and resulting components were clustered.  

6.2.5. fMRI Feature Identification 

To identify non-artifactual components that contain features associated with resting state networks 

a combination of two methods was used (Allen EA et al., 2011b). In the first method we examined 

the power spectra with two criteria in mind: dynamic range and low frequency/high frequency 

ratio. See Figure 6 - 1. Dynamic range refers to the difference between the peak power and 

minimum power at frequencies to the right of the peak in the power spectra. Low frequency to 

high frequency power ratio is the ratio of the integral of spectral power below 0.10 Hz to the 

integral of power between 0.15 and 0.25 Hz. To verify the results, three expert reviewers evaluated 

the components for functional relevance. In this evaluation, if a component exhibited 1) peak 

activation in gray matter, 2) low spatial overlap with known vascular, ventricular, motion, and 

susceptibility artifacts, and 3) TCs dominated by low frequency fluctuations, it was classified as a 

non-artifactual component. Of the 75 components returned by the GICA, 39 were identified as 

BOLD-related component; see Figure 6 - 9.  
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Figure 6 - 1: fMRI component quality measures 

6.2.6. MEG data acquisition 

MEG data were collected in a magnetically and electrically shielded room (VAC Series Ak3B, 

Vacuumschmelze GmbH) using a whole-cortex 306-channel MEG array (Elekta NeuromagTM) at 

the Mind Research Network. Before positioning the participant in the MEG, four coils were affixed 

to the participant’s head: two on the forehead and one behind each ear. These coils allow 

determination of the position of the participant’s head relative to the position and orientation of 

the MEG sensors. Additional positioning data were collected using a head position device 

(Polhemus Fastrak) in order to permit co-localization of MEG activity with each participant’s 

anatomical MRI. Two channels of electro-oculogram (EOG), one vertical and one horizontal, and 

one channel of electrocardiogram (ECG) were collected simultaneously with MEG. MEG data 
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were sampled at a rate of 1000 Hz, with a bandpass filter of 0.10 to 330 Hz. Head position was 

monitored continuously throughout the MEG session. Raw data were collected and stored. 

Participants were instructed to keep their eyes open and maintain fixation during the 6-minute scan 

to minimize occipital alpha rhythm (Cohen D., 1968). 

6.2.7. MEG data preprocessing 

Artifact removal, correction for head movement, and downsampling to 250 Hz were conducted 

offline using Elekta Maxfilter software, with 123 basis vectors, a spatiotemporal buffer of 10 s, 

and a correlation limit of 0.95. To facilitate comparison with previous research (Brookes MJ, et 

al., 2011b), data were bandpass filtered into four frequency ranges of interest: delta (1-4 Hz), theta 

(5-9 Hz), alpha (10-15 Hz), and beta (16-29 Hz). For classification purpose, we used all MEG 

frequencies. 

6.2.8. MEG beamformer projection 

Covariance matrices were generated independently for each subject and frequency band, using all 

recorded data. Covariance matrices were regularized using a value of 4 times the minimum 

singular value of the unregularized matrix. Voxels were placed on a regular 6-mm grid spanning 

the brain image. Source orientation at each voxel was based on a nonlinear search for maximum 

projected signal-to-noise ratio. The forward solution was based on a dipole model (Sarvas J, 1987) 

and a single-shell boundary element model (Hamalainen MS, and Sarvas J, 1989). Beamformer 

projection was performed separately for each subject and frequency range. After beamformer 

projection, source-space signals were normalized by an estimate of projected noise (Hall EL, et 

al., 2013) and transformed to standard (MNI) space using FLIRT in FSL. A Hilbert transform was 

applied to the time course at each voxel time to derive the analytic signal. The absolute value of 

this analytic signal was computed to yield the Hilbert envelope, an amplitude envelope of 

oscillatory power. The Hilbert envelope at each voxel was downsampled to an effective sampling 

rate of 1 Hz (Brookes MJ, et al., 2011b). Source space envelope data were smoothed spatially (6 

mm at full-width half-maximum), and the voxel size was resampled to 3×3×3 mm to facilitate 

comparison with the fMRI data. Note that while strong and sustained correlations between brain 
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regions can lead to beamformer failure, this requires correlations that persist through 30-40% of 

the period analyzed (Hadjipapas A, et al., 2005), unlikely in resting data (Brookes MJ, et al., 

2011b). 

6.2.9. MEG Group Spatial Independent Component Analysis (gsICA)  

Group spatial ICA was applied to the individual subject data using the GIFT toolbox. The gsICA 

approach was selected over group temporal ICA (gtICA) for two reasons: 1) Because components 

produced by gsICA are not temporally independent, relations among network timecourses can be 

evaluated; and 2) gtICA of participant timecourses carries the assumption of temporal consistency, 

limiting its utility in group analysis of resting data. Each frequency range was treated as a session 

in GIFT to permit analysis of each band, as well as the mean across bands. MEG ICA processing 

generally followed the procedures applied to the fMRI. Reduction steps were applied using 

principal component analysis. First, subject-specific data reduction was applied, retaining 100 

principal components. Next, group level data reduction was applied to reduce the dataset to 75 

principal components. Infomax ICA was applied 20 times in ICASSO and the resulting 

components were clustered. Spatial maps were generated by decomposing the mixed MEG 

timecourses to yield a set of spatially independent and temporally coherent networks. As with 

fMRI, FNC was computed as the zero-lag cross-correlations among reconstructed timecourses. 

6.2.10. MEG feature identification 

Consistent with standard practice (Allen EA et al., 2011b; Robinson S et al., 2009), component 

quality was assessed both qualitatively, to remove components situated in white matter and 

ventricles, and quantitatively, using assessments of dynamic range and the ratio of low-frequency 

to high-frequency power in each component. Components were separated into artifactual and non-

artifactual components. Of the 75 components requested from the group ICA, 29 were retained as 

non-artifactual components; see Figure 6 - 2. In the present context these criteria, applied 

previously to fMRI ICA components (Allen EA et al., 2011b; Robinson S et al., 2009), also 

appeared to perform well for MEG.  
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Figure 6 - 2: MEG component quality measures 

 

6.2.11. Classification 

Determining a reliable biological feature for a mental disorder is an important step for developing 

a more accurate and reliable framework for diagnosis, and ultimately treatment (Keshavan, M. S., 

et al., 2013). Resting-state fMRI connectivity has been used in determining the differences based 

on biological features of mental disorders including schizophrenia. (Arbabshirani MR et al., 

2013b; Barnaly Rashid et al., 2014, 2015; Sakoğlu, Ünal et al., 2010). Using methods based on 

group spatial ICA, we estimate networks from both MEG and fMRI and findings from these two 
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modalities, with the hypotheses that using both MEG and fMRI measures of among-network 

connectivity would show improvement to classification of schizophrenia patients. In this chapter, 

we used dynamic FNC to determine reliable differences based on dynamic FNC differences of 

schizophrenia. 

6.2.11.1. Dynamic Functional Network Connectivity and Clustering 

Recent studies (Allen EA et al., 2012; Barnaly Rashid et al., 2014, 2015; Damaraju, E., et al., 2014; 

Sakoğlu, Ünal et al., 2010) show that connectivity dynamics can capture repetitive patterns of 

interactions among intrinsic networks during a rest or task related experiments that cannot be 

detected with FNC (static functional connectivity analyses). These repetitive patterns of 

interactions contain valuable information for individual prediction of schizophrenia patients. Such 

information is useful for training and replicates in testing.  

In order to obtain connectivity dynamics we follow the steps of a previous study (Damaraju, E., et 

al., 2014). First, we computed correlations between non-artifactual components’ time courses 

using a sliding window approach with a rectangular window of 25 TR (in steps of 1TR) convolved 

with Gaussian of sigma 3 TRs to obtain tapering along the edges. To characterize the full 

covariance matrix, we estimated covariance from regularized inverse covariance matrix (ICOV) 

(Smith S.M., et al., 2011) by using the graphical LASSO framework (Friedman J., et al., 2008). 

Then we placed a penalty on the L1 norm of the precision matrix to enforce sparsity. The 

regularization parameter was optimized for each subject separately by evaluating the log-

likelihood of unseen data of the subject in a cross-validation framework. Second, we selected 

group centrotypes by using k-means clustering algorithm from all of the dynamic windowed FNC 

matrices for each group. Then for each FNC time point, we regressed out the dynamic FNC matrix 

against these 2×k states and obtained the corresponding beta coefficients. We used the mean of 

these beta coefficients and finalized 2×k features for each subject for classification. See Figure 6 - 

3 for schematic description of dynamic FNC, clustering and regression of dynamic FNC matrices.  
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Figure 6 - 3: Schematic description of dynamic FNC, clustering and regression of dynamic FNC 

matrices 

In order to compute the most efficient cluster number, we used the elbow criterion of the cluster 

validity index, which is computed as the ratio between within-cluster distances to between-cluster 

distance. 



117 

 

6.3. Results 

6.3.1. Analytic approach 

Resting MEG and fMRI data were acquired in 45 healthy controls and 46 schizophrenia patients. 

MEG data were source space projected using beamforming, enabling subsequent processing in 

brain space, equivalent to fMRI. Source space MEG and fMRI data were decomposed based upon 

a standard group spatial ICA analysis. This approach produces two form of output: 1) network 

spatial maps and 2) network timecourses. Spatial maps reflect within-network connectivity (i.e., 

the extent to which the regions in a network tend to co-activate), while timecourses are used to 

assess among-network connectivity. Timecourses were Hilbert transformed in order to compute 

the analytic signal. The absolute analytic signal was then calculated generating an amplitude 

envelope timecourse. Functional network connectivity (FNC) among networks was then derived 

which here we define to be pairwise zero-lag correlation between amplitude envelope timecourses 

from spatially independent networks.  
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Figure 6 - 4: Functional network connectivity (FNC) for fMRI (top) and concatenation of MEG frequencies (bottom), for healthy controls 

(left column), Schizophrenia patients (center column), and FDR-corrected group differences (right column). ICA component numbers 

are on the diagonal. 
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Figure 6 - 5: Functional network connectivity of MEG-Alpha (top) and Beta frequencies (bottom), for healthy controls (left column), 

Schizophrenia patients (center column), and FDR-corrected group differences (right column). ICA component numbers are on the 

diagonal. 
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Figure 6 - 6: Functional network connectivity of MEG-Delta (top) and Gamma frequencies (bottom), for healthy controls (left column), 

Schizophrenia patients (center column), and FDR-corrected group differences (right column). ICA component numbers are on the 

diagonal. 
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Figure 6 - 7: Functional network connectivity of MEG-Theta for healthy controls (left column), Schizophrenia patients (center column), 

and FDR-corrected group differences (right column). ICA component numbers are on the diagonal. 
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6.3.2. Functional network connectivity (FNC) 

We hypothesized that patients and controls would differ significantly on MEG and fMRI measures 

of FNC. FNC was assessed for each modality. Note that in MEG, we analyse FNC using a mean 

timecourse encompassing all frequencies. Generally, we observed greater FNC in visual networks 

for fMRI components, and greater FNC in frontal networks for MEG components. Significant 

FNC differences between patients and controls are shown in Figure 6 - 4 and Figure 6 - 8. The 

images show the spatial signature of the FNC differences observed between groups. Those 

differences were evaluated using t-tests with a false discovery rate (FDR) correction. All results 

are rendered on a white matter surface. Within- and across-frequency FNC was also assessed for 

MEG in order to facilitate comparison with the fMRI networks. Figure 6 - 5 shows the detailed of 

MEG FNC matrices for alpha - beta frequencies, Figure 6 - 6 shows the detailed of MEG FNC 

matrices for delta - theta frequencies and Figure 6 - 7 shows the detailed of MEG FNC matrices 

for theta frequency. 

For fMRI, most group differences in among-network connectivity were detected among temporal-

occipital and frontal-occipital networks, and within the occipital networks (see Figure 6 - 4 and 

Figure 6 - 8). For MEG, fewer FNC group differences were detected, with the majority in frontal-

DMN networks and within the frontal networks. While fMRI FNC revealed no hyperconnectivity 

in SZ, approximately half of the MEG FNC relationships indicated higher connectivity in SZ than 

in HC, suggesting dysfunctional network connectivity in SZ networks revealed with MEG. 
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Figure 6 - 8: Summary of functional network connectivity (FNC) group averages and group 

differences for fMRI and MEG rendered on white matter surface. Only those regions involved in 

significant group differences are included. For networks showing a significant group difference, 

the rendered values represent the weighted sum of the five strongest correlations with label 

network. 

6.3.3. Spatial maps 

We hypothesized that there would be considerable spatial overlap in network maps between MEG 

and fMRI. Spatial maps for each modality were assessed across groups via one-sample t-tests of 

back-reconstructed subject maps. Identified networks included temporal, sensorimotor, parietal, 

occipital, frontal, subcortical, and DMN regions (See Figure 6 - 9).  
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Commonalities and differences can be seen across participant groups for fMRI and MEG. Spatial 

overlap between MEG and fMRI was initially assessed via visual inspection and subsequently 

verified quantitatively using spatial correlation. Individual subject-level spatial correlation among 

these optimal matches ranged from 0.12 to 0.50, with a mean of 0.31. Substantial overlap was 

detected across multiple networks including DMN as well as frontal, parietal, temporal, and 

occipital regions (See Figure 6 - 10).  
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Figure 6 - 9: fMRI (left) and MEG (right) network spatial maps 
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Figure 6 - 10: Spatial overlap in spatial maps detected using MEG and fMRI. 
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6.3.4. Multi-Model Classification 

We evaluated the performance improvement of classification based on dynamic FNC and 

combination estimated networks from both MEG and fMRI methods. Our main focus was to 

extract reliable features from the dynamic FNC matrices and combine these features to perform 

the best classification results. 

First, we used fMRI dynamic FNC matrixes and MEG dynamic FNC matrixes separately (for each 

frequency) for classification (See Table 6 - 2) then we combined fMRI (subject × time × FNC = 

91 × 119 × 703) and MEG (frequency × subject × time × FNC = 5 × 91 × 270 × 496) dynamic 

FNC matrixes as a data set for classification (See Table 6 - 3). And we compared results to show 

the improvement of combining fMRI and MEG methods for classification. 

We used leave-one-out cross validation method. One subject for testing and the rest of the data (90 

subjects) were used as a training data set. And this process is repeated for each subject. In each 

cross-validation run, we obtained 5 cluster centroids for each group and regressed out the dynamic 

FNC matrix against these 10 centroids (5 centroids for each group) and computed the 

corresponding beta coefficients for all dynamic FNC for each subject. Then, we used the mean of 

these beta coefficients across the subjects and finalized 10 features for each subject for 

classification. 

Table 6 - 2: Classification accuracy obtained from fMRI data, MEG data for each frequency and 

combination of all MEG data frequencies by using majority voting method 

  fMRI MEG 
Alpha 

MEG 
Beta 

MEG 
Delta 

MEG 
Gamma 

MEG 
Theta 

MEG MJ 
Voting 

NBC 82.42% 65.93% 71.43% 71.43% 51.65% 53.85% 65.93% 

nSVM 83.52% 69.23% 72.53% 69.23% 51.65% 58.24% 69.23% 

LDF 82.42% 65.93% 68.13% 71.43% 52.75% 53.85% 65.93% 

We performed leave one out method with three well known classification algorithms; linear 

discriminant classifier (LDC), Naïve Bayes classifier (NBC) (Duda RO, et al., 2001) and non-
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linear SVM (nSVM) with Gaussian radial bases function kernel (Burges,  C.  J.  C., 1998) to test 

the hypothesis.  

Table 6 - 2 reports the classification results that were obtained from fMRI data, MEG data for each 

frequency and combination of all MEG data frequencies by using majority voting method. Results 

show that the classification accuracy obtained from fMRI data (nSVM - 83.52%) provides better 

classification performance than MEG data for all frequencies and combination of all MEG data 

frequencies by using majority voting method. Comparison of internal MEG frequencies shows that 

beta (nSVM– 72.53%) frequency has better performance than other frequencies and combination 

of all MEG data frequencies. Similarly, FDR-corrected group differences of MEG-beta and MEG 

– delta frequencies show more significant differences than other frequencies.  

Table 6 - 3: Classification accuracy obtained from the combination of fMRI data and MEG data 

for each frequency and the combination of all by using majority voting method. 

  fMRI fMRI fMRI fMRI fMRI  

  MEG 
Alpha 

MEG 
Beta 

MEG 
Delta 

MEG 
Gamma 

MEG 
Theta 

MJ 
Voting 

NBC 83.52% 87.91% 86.81% 83.52% 85.71% 90.11% 

nSVM 82.42% 85.71% 84.62% 82.42% 81.32% 87.91% 

LDF 82.42% 83.52% 83.52% 82.42% 83.52% 85.71% 

Table 6 - 3 summarized the classification accuracy obtained from the combination of fMRI data 

and MEG data for each frequency and the combination of all by using majority voting method. 

Combination of features obtained from dynamic FNC of fMRI and MEG-Beta frequency provided 

better results (NBC – 87.91%) than other frequencies. Best performance is provided by the 

combination of all by using majority voting method (NBC – 90.11%).  

We repeated the clustering method by using different distance functions such as Euclidian, 

correlation, cosine similarities. We did not find any performance differences. 
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6.4. Discussion 

FNC group differences evident for MEG shows greater functional connectivity across widespread 

frontal and temporal regions. Three interesting network patterns are seen in the MEG FNC results 

(See Figure 6 - 4 and Figure 6 - 8). First, within the DMN we see that the dorsal anterior 

cingulate/superior frontal region appears hyperconnected for SZ compared to HC (blue regions) 

while posterior cingulate/precuneus is hypoconnected in SZ (red/orange regions). For HC, bilateral 

posterior cingulate is hyperconnected with an adjacent parietal component. Other recent studies of 

schizophrenia similarly showed hyperconnectivity within anterior cingulate for SZ (Jafri MJ et al., 

2008; Skudlarski P, et al., 2010). Hyperconnectivity has also been detected within one 

subcomponent of the DMN (i.e., anterior cingulate and portions of posterior cingulate) while the 

other subcomponent of the DMN revealed hypoconnectivity (bilateral parietal and dorsolateral 

prefrontal) for SZ (Skudlarski P, et al., 2010). These investigators identified the posterior cingulate 

as being the focus of decoupling found between anatomical (DTI) and functional (fMRI) 

connectivity. They emphasized that the DMN should not be viewed as a single unit; it is composed 

of substructures that all contribute to resting state activation but vary substantially in connectivity 

patterns.  

For MEG, we see widespread hyperconnectivity between perisylvian and frontal regions (see 

Figure 6 - 4 and Figure 6 - 8) which closely resemble that seen in fMRI resting state of SZ patients 

who reportedly experience auditory hallucinations (Diederen KMJ, et al., 2013; Sommer IE, et al., 

2012). These regions include bilateral superior temporal gyri (i.e., auditory cortex) and middle 

temporal gyrus, along with supramarginal gyrus, and the right hemisphere homologue of 

Wernicke’s area (Jardri R, et al., 2010; Sommer IE, et al., 2012). Stephen and colleagues (Stone 

DB, et al., 2014) have examined multisensory integration in SZ and find that SZ benefit from 

multisensory (auditory/visual) integration more than do HC. They relate these results to the “high 

noise” theory where increased activity during rest is attributed to impaired responsiveness to 

external stimuli. This widespread hyperconnectivity involving auditory and speech-perception 

regions may provide important support for the “high noise” theory; this widespread network 

appears to be hyperconnected for SZ, compared to HC, during normal resting state. Therefore, 

additional stimulus intensity and/or additional attention resources may be required for SZ to direct 



131 

 

their attention to the external environment. In support of this interpretation, the attentional parietal 

regions are hyperconnected in HC. These patterns of functional connectivity lead us to speculate 

that SZ are directed inward more during resting state while HC are directed toward the external 

environment, ready to respond. Altogether our results indicate that multimodal methods are 

essential to understanding the mechanisms of inter-regional brain connectivity (Brookes MJ, et al., 

2011b).  

Recent meta-analytic work on fMRI of the resting state in schizophrenia has revealed that 

schizophrenia patients tend to show hyperactivation bilaterally in lingual gyrus and broad 

hypoactivity elsewhere, with decreases in resting state activity observed in VMPFC, left 

hippocampus, PCC, and precuneus (Kühn S, and Gallinat J., 2013). Other implicated regions with 

lower connectivity include paracingulate cortex, bilateral thalamus, fusiform, left caudate, and left 

thalamus (Argyelan M, et al., 2013), with greater hypoactivity generally related to worse 

functioning. Larger studies of functional network connectivity in schizophrenia have indicated 

dysfunction across a range of networks, with schizophrenia-specific deficits in midbrain/cerebellar 

and fronto-temporal paralimbic networks (Khadka S, et al., 2013). Our data suggest that patterns 

of connectivity involving hippocampus, fusiform, and middle frontal regions are particularly 

relevant to the level of functioning within the sample patient group, a finding consistent with the 

observed patient-control differences in frontal and temporal networks. Notably, in each 

neuroimaging modality we examined contributed both common and unique findings. 

Our MEG analysis of within-frequency FNC showed multiple group differences in inter-regional 

connectivity in the beta (16-29 Hz) range (See Figure 6 - 5), particularly in the frontal-cerebellar, 

frontal-DMN, and frontal-auditory networks. Nearly all FNC group differences in the beta range 

suggested hyperconnectivity in patients. Beta band has previously been implicated in long-range 

cortical synchrony (Stein A von, et al., 1999; Tallon-Baudry C, et al., 2004; Thatcher RW, et al., 

2008), notably in visual processing (Sehatpour P, et al., 2008) and working memory (Piantoni G, 

et al., in press) networks observed in the present data. Consistent with the present study, research 

in schizophrenia has indicated abnormal synchronization in the beta and gamma ranges (Uhlhaas 

PJ, and Singer W, 2010, 2011), particularly in the beta band (Siebenhühner F, et al., 2013). 
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Synchrony between the two hippocampi, regions with particular relevance for schizophrenia 

(Hanlon FM, et al., 2011, 2012), has also been linked to the beta band (Lee H, et al., 2014).  

What do we learn about functional connectivity in schizophrenia from this dual modality study? 

By combining both MEG and fMRI we are able to interrogate both network structure (maps) and 

network dynamics (FNC) in schizophrenia, revealing patterns of connectivity impossible to detect 

with either modality alone. In particular, MEG appeared more sensitive to hyperconnectivity in 

frontal and temporal networks among patients. On the whole, our resting fMRI FNC findings 

converge with the schizophrenia literature, which reports hypoactivation across multiple regions, 

including the prefrontal cortex (Kühn S, and Gallinat J., 2013). However, prefrontal FNC with 

MEG was increased in our patient group. This suggests abnormally increased synchronous firing 

from neuronal populations in prefrontal networks in our chronically ill schizophrenia subjects. 

Whether these hyper-synchronous networks underlie core deficits of the illness or represent 

compensation to overcome other primary functional defects, we cannot say. However, we did not 

find correlations with positive symptoms, which have been reported to be associated with fMRI 

functional hyper-connectivity (Ford JM, et al., 2014). Our results suggesting hyper-synchronous 

prefrontal networks are consistent with the dysconnectivity model of schizophrenia (Stephan KE, 

et al., 2006) and suggest that these represent a deficit at the synaptic/neuronal level and not just in 

the coupling of vascular/neuronal function. 

One recent study also applied beamformer analysis and group spatial ICA to resting MEG data 

collected from a very small sample (n=9) of healthy volunteers (Ramkumar P, et al., in press). This 

work varied somewhat from other recent studies (Brookes MJ, et al., 2005, 2011b) in that a Hilbert 

transform was not applied; instead, Fourier-transformed sensor data were inverted using a 

cortically-constrained minimum norm solution. This work also did not directly assess component 

quality; instead, two MEG scans were performed for each subject, and components that emerged 

in both scan sessions were retained. In addition, fMRI data were not collected, prohibiting any 

direct comparisons. These methods indicated similar spatial patterns and detected both within- and 

cross-frequency networks, complementing the present effort.  
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In the present study, the combination of data from multiple modalities, collected at different times, 

conveys additional confidence in our results. For instance, one critique of resting fMRI data from 

populations with mental illness or disease is that patients may respond differentially to auditory 

scanner noise (Skouras S, et al., 2013). We observed bilateral temporal components in fMRI, 

which has substantial background noise during scans, and unilateral temporal components in 

MEG, which is silent, providing some support for this critique. Similarly, schizophrenia patients 

have well-known autonomic nervous system dysregulation (Bär K-J, et al., 2007; Rachow T, et 

al., 2011; Toichi M, et al., 1999) related to variability in heart rate and respiration (Paterson AS, 

1935; Whitehorn JC, and Richter H, 1937; Wittkower E, 1934) which can directly affect the BOLD 

response (Cohen ER, et al., 2002). However, the electromagnetic signal detected by MEG is less 

affected, particularly when the cardiac signal has been removed as in the present study. 

Overlapping MEG-fMRI components can reasonably be assumed to be free of such influences, 

revealing only the underlying dysregulation. Finally, eye movements also differ between controls 

and patients (Clementz BA, and Sweeney JA, 1990), again directly affecting the BOLD signal, 

where changes in the flow of vitreous humor during eye movement increase signal variance from 

nearby regions (Beauchamp MS, 2003). The corneo-retinal potential can affect 

electrophysiological signals (Kolder H, and North AW, 1966), but generally would appear as a 

source between the eyes. Frontal and occipital components that are in common for MEG and fMRI 

are arguably free of such modality-specific artifacts.  

Also, our results provided evidence that the combination of fMRI and MEG modalities captures 

important information for classification that is missed by using only one modality. This suggests 

that the combination of these two methods provides valuable information that captures 

fundamental characteristics of brain network connectivity in schizophrenia. These results may help 

to design an objective biological marker-based diagnostic test for schizophrenia. 

6.5. Conclusion  

The present study employed a novel approach to estimate intrinsic connectivity networks from 

group spatial ICA of fMRI and MEG data to evaluate spatial patterns and functional connectivity 

in a sample of schizophrenia patients and healthy volunteers. This is the first study to use group 
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spatial ICA with resting MEG data, and also the first to apply these methods to directly compare 

a patient population to healthy volunteers. We observed substantial spatial overlap in multiple 

intrinsic connectivity networks as assessed using spatial correlation. We also observed 

intermodality differences in functional network connectivity of ICNs, with more instances of high 

frontal FNC for MEG and high occipital FNC for fMRI. In addition, while group differences in 

network spatial topography were observed primarily in frontal regions for fMRI, in MEG these 

differences were observed more broadly in frontal and temporal networks. The results suggest 

hyper-synchronous prefrontal networks in schizophrenia with deficits at the synaptic/neuronal 

level and not merely in neurovascular coupling. The combination of data from MEG and fMRI, 

collected on different days, also allows us to rule out multiple alternative explanations for the 

observed results, including scanner noise, artefacts from autonomic nervous system activity, 

motion, and eye movements. Also, the combination of data from MEG and fMRI increase the 

discrimination of schizophrenia patients from healthy controls. Results suggest that the application 

of group spatial ICA to multimodal neuroimaging using MEG and fMRI provides important 

information about complex mental illnesses such as schizophrenia that would have been missed 

otherwise. 
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Chapter 7: Conclusion and Future Works 
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7.1.  Conclusion 

In this doctoral dissertation, we developed and presented machine learning and data mining 

algorithms to detect abnormal functional network connectivity patterns of patients with 

schizophrenia and distinguish them from healthy controls using functional network correlation 

data based on resting-state and task hierarchy fMRI data, time series of functional networks during 

the resting state fMRI and functional network correlation data obtained with fMRI and MEG 

methods. 

In this thesis, we introduced a shapelet algorithm that can be used for individual prediction of 

schizophrenia patients by using multi-dimensional time series in chapter - 3. We showed that an 

ensemble of shapelet-based decision trees on individual dimensions work better than shapelets 

defined over multiple dimensions. Generating a shapelet ensemble for multi-dimensional time 

series is computationally expensive. Most of the existing techniques prune shapelet candidates for 

speed. In chapter 3, we proposed a novel technique for shapelet discovery that evaluates remaining 

candidates efficiently. Our algorithm uses a multi-length approximate index for time series data to 

efficiently find the nearest neighbors of the candidate shapelets. We employed a simple skipping 

technique for additional candidate pruning and a voting based technique to improve accuracy while 

retaining interpretability. Not only did we find a significant speed increase, our techniques enabled 

us to efficiently discover shapelets on datasets with multi-dimensional and long time series such 

as hours of brain activity recordings. We demonstrated our approach on a biomedical dataset and 

found significant differences between patients with schizophrenia and healthy controls. 

Furthermore, we introduced a novel approach which identified both stable (static effects) and state-

based differences (dynamic effects) in brain connectivity. Results of chapter-4 provided a better 

understanding of how individuals’ reactions to simple sensory stimuli are conditioned by the 

context within which they are presented. Our findings suggest that not all group differences 

observed during rest are detectable in other cognitive states. In addition, the stable differences of 

heightened connectivity between multiple brain areas with the thalamus across tasks underscore 

the importance of the thalamus as a gateway to sensory input and provide new insight into 

schizophrenia. 
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We proposed a framework for classification of schizophrenia patients and healthy control subjects 

based on functional network component pairs which show consistency between patients and 

controls across levels of the resting-state data and task hierarchy in chapter 4. Our results showed 

that these functional network components as a function of task contain valuable information for 

individual prediction of schizophrenia patients. Such information is useful for training and 

replicates in testing. Performance was improved significantly (up to ~20%) relative to a single 

FNC (resting-state) measure. 

We developed a novel MEG approach for estimation of networks using MEG in chapter 5 that 

incorporates spatial independent component analysis (ICA) and pairwise correlations between 

independent component timecourses, to estimate within- and among-network connectivity. This 

analysis enables group-level inference and testing of between-group differences. Resting state 

MEG and fMRI data were acquired from a large sample of healthy controls (n=45) and 

schizophrenia patients (n=46). Group spatial ICA was performed on fMRI and MEG data to extract 

intrinsic fMRI and MEG networks. Results: Similar, but not identical spatial independent 

components were detected for MEG and fMRI. Analysis of functional network connectivity (FNC) 

revealed a differential between-modality patterns, with greater connectivity among occipital 

networks in fMRI and among frontal networks in MEG. Most importantly, significant differences 

between controls and patients were observed in both modalities. MEG FNC results in particular 

indicated dysfunctional hyperconnectivity within frontal and temporal networks in patients, while 

in fMRI FNC was always greater for controls than for patients. Results suggest that combining 

these two neuroimaging modalities reveals additional disease-relevant patterns of connectivity that 

were not detectable with fMRI or MEG alone. 

It is also important to remark that combining these two neuroimaging modalities provides better 

classification scores that were not achievable with fMRI or MEG alone. This suggests that the 

combination of these two methods provides valuable information that captures fundamental 

characteristics of brain network connectivity in schizophrenia. 
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The published results (Cetin, MS., et al., 2014, 2015a, 2015b, 2015c; Houck JM, Cetin, et al., 

2015), presented in this dissertation showed considerable improvement over existing methods and 

have provided new and important biomarkers. We sincerely hope that this doctoral work 

contributes to detecting abnormal functional network connectivity patterns of patients with 

schizophrenia and distinguishes them from healthy controls and decodes the mysteries related to 

the human brain as the most complex self-sustaining system. 

7.2. Future work 

Future work and suggestions were mentioned individually at the end of the relevant chapters 

(chapter – 3, 4, 5, and 6). In this section, I briefly discuss some additional directions of future 

research.  

One of the suggested future works of this study is applying higher resolution imaging (7 Tesla 

scanner) to smaller brain regions. It is possible that detailed investigation of the certain regions of 

the brain can provide researchers more detailed information regarding the abnormal functional 

network connectivity patterns of patients with schizophrenia. 

The shapelet algorithm was successfully applied to the time series of non-artifact components and 

results were published (Cetin, MS., et al., 2015a). Dynamic FNC time series provide researchers 

a higher dimensional time series domain. Using the shapelet algorithm mentioned in chapter 3 may 

allow us to achieve higher accuracy.  

Sensory load task hierarchy experiment with fMRI provided valuable information regarding how 

individuals’ reactions to simple sensory stimuli are conditioned by the context within which they 

are presented. An important extension to the current study is to include cognitive tasks with 

established pathophysiology in schizophrenia, such as working memory, delayed match-to-

sample, reinforcement learning, or Go/No-Go tasks. This extension would also increase the 

accuracy classification and diagnosis of patients with schizophrenia.  
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Lastly, results obtained from resting state MEG and fMRI data suggest that combining these two 

neuroimaging modalities reveal additional disease-relevant patterns of connectivity that were not 

detectable with fMRI or MEG alone. In addition to using just resting state data, it also may be 

helpful to use sensory load task hierarchy experiment to discover the details of schizophrenia. 
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