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Abstract 

The thesis builds upon the hypothesis that the spatial arrangement of topographic 

features, such as buildings, roads and other land cover parcels, indicates how land is 

used. The aim is to make this kind of high-level semantic information explicit within 

topographic data. There is an increasing need to share and use data for a wider range of 

purposes, and to make data more definitive, intelligent and accessible. Unfortunately, 

we still encounter a gap between low-level data representations and high-level concepts 

that typify human qualitative spatial reasoning. The thesis adopts an ontological 

approach to bridge this gap and to derive functional information by using standard 

reasoning mechanisms offered by logic-based knowledge representation formalisms. It 

formulates a framework for the processes involved in interpreting land use information 

from topographic maps. Land use is a high-level abstract concept, but it is also an 

observable fact intimately tied to geography. By decomposing this relationship, the 

thesis correlates a one-to-one mapping between high-level conceptualisations 

established from human knowledge and real world entities represented in the data. 

Based on a middle-out approach, it develops a conceptual model that incrementally 

links different levels of detail, and thereby derives coarser, more meaningful 

descriptions from more detailed ones. The thesis verifies its proposed ideas by 

implementing an ontology describing the land use ‘residential area’ in the ontology 

editor Protégé. By asserting knowledge about high-level concepts such as types of 

dwellings, urban blocks and residential districts as well as individuals that link directly 

to topographic features stored in the database, the reasoner successfully infers instances 

of the defined classes. Despite current technological limitations, ontologies are a 

promising way forward in the manner we handle and integrate geographic data, 

especially with respect to how humans conceptualise geographic space.  
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Foreword and Acknowledgements 

“In GIS, spatial context and general configuration can be used to make explicit some 

information which otherwise would have remained inaccessible. This project proposes 

to investigate the potentialities of such an approach to cartography data and map 

representation in order to extract different information from existing databases, i.e. 

information which is hidden or implicit, and therefore other than what the data were 

initially harvested for.” This brief paragraph is the introductory description of a CASE 

PhD studentship on cartographic data analysis and enhancement sponsored jointly 

between the Engineering and Physical Science Research Council (EPSRC) and 

Ordnance Survey (OS), the national mapping agency of Great Britain. It presents the 

starting point for this thesis with the assumption that specific land uses have their own 

specific organisational patterns that lead in turn to specific types of spatial 

configurations. A database often includes physical descriptions of features, but 

consistently lacks functional descriptions. The problem addressed here is how such 

functional information can be derived from OS data. After gathering enough evidence 

that meaningful functional information can indeed be derived from spatial 

configurations, because of the inherent relationship between spatial form and function, 

the quest continues to find a novel approach to exposing these kinds of information. It 

didn’t take long to discover the relevance and importance of spatial reasoning to 

interpret land uses from topographic map data, both from a human and machine-

interpretable point of view. In research, we often look first at ways how people solve a 

particular problem to translate such skill into a form comprehensible to the machine. If 

I, as a person, can easily interpret land use information from a topographic map, then it 

should be possible to access this information in an automated way. But is procedural 

knowledge encoded in a program flexible enough to achieve such a solution? A paper 

by Eva Klien and Michael Lutz (2005) raised my curiosity of alternative approaches 

such as ontology applied in geographic information science and its associated 

capabilities of logical reasoning and information retrieval. “John, the user of geospatial 

web services, is looking for information sources that will answer his question. His query 

for ‘low-lands adjacent to a river that are subject to flooding’ is formulated based on a 

geospatial ontology” (p.136). Klien and Lutz define a priori the spatial constraints of 

the floodplain as geospatial concepts of their domain ontology. The geometric 
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GR/T11364/01). Finally yet importantly, it is the support of my friends and family, and 
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further, that led me to endure the journey and not to give up. 
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Chapter 1 

Introduction 

“Schools and houses will be close to residential areas. Hospitals will be close to 

residential areas. Recreational areas will be inside of residential areas. Trains and 

tubes will link residential areas whilst factories and industries will be outside of or far 

from residential areas.” 

–A respondent’s view of the residential area 

 

Whenever you take a trip in an airplane and take a look outside the window, given that 

the weather permits sight, you can see patterns that emerge from the Earth's surface. 

You can identify agriculturally used parcels of land, forests, and splattered spots of 

houses and villages, or the dense located buildings in urban areas. The point is that the 

spatial arrangement and context of features within a landscape can tell you a lot about 

their purposes and uses. Indeed, many researchers have previously argued that space 

creates a special relation between function and social meaning, thereby relating spatial 

configuration to social structure (e.g. Lévi-Strauss, 1963; Hillier and Hanson, 1984).  

 

The notion of a relationship between form and function in urban areas underpins much 

research in computational urban morphology, despite scepticism about its conceptual 

basis and potential application to determine urban land use from automated analysis of 

spatial data (Barr and Barnsley, 2004). Form, in this sense, relates to the urban structure 

and its manifestation in space. Topographic data, for example, accurately represent the 

shape of the Earth including the detailed location and morphology of features such as 

roads and buildings. Function, however, is a much more intricate and difficult concept 

to ascertain. It defines an activity, depended on socio-economic factors, that is natural to 

or the purpose of an object. According to Hillier and Hanson (1984), in addition to the 

practical and social portrayal of its object, function belongs above all to the realm of 

cultural identity or meaning. This meaning closely relates to land use – a term that refers 

to the human activity that takes place on, or makes use of, that land (Barnsley et al., 

2001). Such activity is intimately linked to what the environment affords, or has to 

offer. To Gibson (1979), affordances are relationships that point both ways, to the 

environment and to the observer. Along with cultural and other constraints and 
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conventions (Norman, 1999), we therefore find ourselves in a setting for our activities 

that includes schools, homes, the local shopping centre, friends’ houses, the pattern of 

streets and roads, restaurants, cinemas, parking lots, GPs, etc. These are important 

places that we use, need to know about, and need to represent mentally (Downs and 

Stea, 1977; Dey and Abowd, 1999).  

 

In this context, it sounds reasonable to posit that the understanding of space is anchored 

in the experience of people’s perception of space, and spatial cognition and behaviour. 

With the cognitive use of a priori knowledge, people can easily interpret and categorize 

new observational data, and infer new information by induction from repeated 

experiences. People employ methods of spatial reasoning almost constantly to infer 

information about their environment (Egenhofer and Mark, 1995). This also holds for 

the interpretation of geographic representations, such as topographic maps. If we want 

to bridge the current gap between existing deployed models of space and the way 

humans cognitively use spatial information, we must design representations that follow 

human intuition and are, therefore, easily accessible to a large range of users. By 

relating people’s experiences and knowledge about the functioning of the environment 

to spatial data, we can discover much richer, previously hidden descriptions. 

 

The importance of high-level semantic descriptions is becoming increasingly evident 

with the need to share and use data for many different purposes, and making data more 

definitive, intelligent and accessible. Especially to data providers, who are driven by 

demand and profit margins, a dataset’s insufficiency to meet specific requirements and 

task scenarios due to lack of higher-level semantic information is of primary concern 

(Lüscher et al., 2007). Often we face disaggregate and heterogeneous data that perhaps 

depict the same thing but semantically denote different things, prohibiting us to make 

efficient use of their sources. To match the different requirements that users expect from 

geospatial information, demands an understanding of the ontological aspects of 

geospatial data (Kulik et al., 2005). Function, relating to what an object affords, is one 

of the five basic ontological relations that make geographic information more explicitly 

meaningful. It is a key characteristic for defining objects in feature-attribute catalogues 

for geographic information (Rugg et al., 1997). For example, to facilitate on-demand 

mapping, that is, to extract only relevant information on the fly from a variety of data 

sources, higher-level entities are required. These need to be readily available as 
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components, such as urban extent or aggregated buildings, to aid the creation of new, 

custom and multi-resolution map products. Furthermore, by reflecting better the way 

people perceive the world, data become conceptually more useful and therefore can be 

exploited to their full potential (Mennis et al., 2000). 

 

The shortcomings of current data representations inspire disciplines such as knowledge 

discovery, information retrieval and ontology-driven information systems, and 

specifically this thesis. We embark on a journey to enrich spatial data conceptually by 

exposing functional information within topographic data using description logics, and 

by putting a conceptual model for residential area into operation with off-the-shelf 

technology. ‘Dwelling on ontology’, one part of the thesis title, relates to the definition 

and exposure of the dwelling – residence, accommodation, or house, and beyond – 

through an ontology. We will encounter why much recent research focus seems to dwell 

on ontology in its current fascination with the apparent ‘magic’ that ontology offers. 

The Conference on Spatial Information Theory (COSIT) series, for instance, draws 

heavily on work in linguistics and cognitive science, and crystallises around the term 

ontology. However, is ontology the solution to all our problems? We will discover what 

ontology can realistically offer, and find out if it is worth all this commotion. The 

second part of the title, ‘semantic reasoning over topographic maps’, is associated with 

the processes involved in discovering functional information from topographic maps. 

This incorporates the way humans differentiate and categorise, make sense of the world, 

and reason over information, and how we can translate such skills to reason logically 

within the computational environment. Not only is there the need to incorporate how 

humans cognitively process and use geographic knowledge, but to make data more 

intelligible and to provide automated access to implicit information that is contained 

within. 

1.1 Aims and contributions of the thesis 

The topography layer of Ordnance Survey MasterMap does not explicitly contain any 

kind of functional specifications at present. The lack of geographic meaning stored 

against the cartographic features that Ordnance Survey holds is an obstacle to changing 

its production systems in view of challenges evolving around data interoperability, user 

focus and system flexibility (Regnauld, 2006). The overall aim of the thesis is to 
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conceive and build a model of functional information that can be used to process a 

topographic database to derive a richer thematic content. The localisation of extents of 

land use information, for example residential areas, can exemplify typical hidden 

information within the spatial arrangement of features. Indeed, such information is 

available in various forms. For example, local authorities or the Office for National 

Statistics provide freely available data, either statistical or spatial, on a range of topics 

including land uses (ODPM, 2005). Then there are commercial products such as the 

GeoInformation Group’s Cities Revealed Image to Information database that consists of 

land use mapping, building height and building classification (GeoInformation Group, 

2004). Even Ordnance Survey caught on to the need of a national land use database that 

offers the necessary content, coverage, level of detail, accuracy, consistency and 

diversity of data formats (see chapter 2). However, previous attempts have been 

hindered by limited and unsuitable data structures, and suffered from time consuming 

solutions that require a lot of human interaction, for example on-site surveys or manual 

interpretations of aerial photography. With the assumption that land cover 

configurations imply land use information, there is opportunity for exploiting automated 

methods. The importance here lies with the development of a method for automated 

enrichment of data concepts rather than its type of derived concepts. 

 

The first objective is to define and specify the problem of enriching spatial data. The 

thesis investigates the potential meaning associated with the spatial arrangement of 

features represented in a topographic database. An object on its own does not mean 

much, but seen in its context to other objects it reveals a lot more information. This 

information shall be exposed with the help of knowledge representation. We need to ask 

if this has been possible before, what evidence there is that spatial configurations imply 

land use, and how this information can be determined through automated analysis. This 

includes the identification of functions that would add value to a topographic database, 

because its use is ultimately driven by what users want. 

 

Second, this thesis analyses the process of map interpretation from a conceptual 

viewpoint to understand the problem and to specify a solution. The analysis takes into 

account spatial perception, cognition and categorisation to develop a suitable way for 

knowledge acquisition and elicitation. A questionnaire survey serves as a tool to impose 

a more rigorous structure on the process of eliciting cartographic knowledge. Together 
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with other human experiential accounts of cognitive geography, this investigation will 

indicate what types of knowledge are required for the inference of functional 

information. This knowledge then needs to be encapsulated in a semantic model for 

processing a topographic database. The survey provides the background for estimating 

the performance of any practical application to automated interpretation of land use 

information. Further, it is identified how the specified solution is a new step and 

whether it is an isolated effort.  

 

The third objective is to design a conceptual framework that allows expressing and 

modelling any functional concept. It is important that the model accounts for the 

different types of properties and objects needed to discriminate different classes of 

functional information. These will be defined in a hierarchy of different levels of 

abstraction with the help of an ontology. The question is how can we achieve a link 

between the conceptual model, grounded in the conceptualisation of human physical 

experience, and the underlying spatial data representation? Will knowledge 

representation alone suffice for a solution so that we can completely abstain from using 

any black box, procedural knowledge? With that in mind, I propose representations for 

the new types of information, and ways to generate them automatically from the data 

through semantic reasoning. 

 

The fourth objective is to implement and verify the solution by modelling the high-level 

concept ‘residential area’ within the conceptual framework. A concrete application of 

the axiomatisation of the required knowledge will be developed with the help of first-

order predicate logic that provides the formal definition for the inference problem. The 

aim is to illustrate how the model pulls out implicit information from Ordnance 

Survey’s topographic database using Protégé. Protégé is a free open-source Java 

Ontology Editor that provides an extensible architecture for the creation of customized 

knowledge-based applications (Gennari et al., 2003). From this, we learn more about 

this particular contribution in terms of its limitations, both conceptual and technical, its 

purposes and potential uses. 

 

Ontology has been among the most thriving themes in geographic information science 

over the last couple of years. The popularity of the research topic is highlighted by the 

share of papers published in competitive GIScience research outlets that deal with 
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research in geo-ontologies. According to the UCGIS research agenda of 2006,  

predominant issues are (a) the design of geo-ontologies from upper-level ontologies to 

domain-specific application ontologies, (b) methods for exploiting geo-ontologies for 

spatial querying, in particular spatial similarity searches, (c) the role of geo-ontologies 

within the geospatial semantic web,  (d) and methods to manipulate geo-ontologies such 

as aligning and fusing them. Ontology is not a purely esoteric topic, but one of 

immediate interest to industry. For example, Ordnance Survey invests much research in 

this field in terms of enabling data integration by describing its data to their users’ 

understanding and providing a framework for specifying product content. Ontology is 

also exploited to formalise the language of cartographic elements and to implement 

formalised mechanisms to enrich cartographic representations for on-demand mapping. 

 

The value of using ontological descriptions lies in the ability to formalise knowledge 

and representations. The thesis addresses the intuitive understanding of relationships 

between geographic features and their meaning. Despite the difficulty to articulate and 

therefore to formalise this relationship, the use of an expressive representation language 

offers flexibility and explicit modelling of the problem. The conceptual framework is 

designed to dissociate itself from the underlying spatial data, and therefore can be 

applied to different datasets. The model not only extends easily by incorporating new 

concepts, hence facilitating data interoperability, but its derived concepts enrich the 

source data for further exploitation. To summarise, the proposed method contributes 

conceptually in the following ways: 

1. The thesis studies and defines special issues that arise in processing a 

topographic database for the inference of higher-level information. It describes a 

framework centred on description logics for concept-based instance retrieval. 

The novelty lies in the method’s conceptual and technical abstractions that 

facilitate the interpretation of functional information within topographic data.  

2. The thesis defines the conceptual, or semantic, generalisation of the concept 

residential area. It describes how higher-order concepts are deduced from 

simpler ones by linking rich knowledge to spatial data in support of reasoning 

and inference. The specialised knowledge and reasoning skills of persons are 

emulated with a knowledge-based system to support automated map 

interpretation and information extraction. The thesis exploits existing work from 
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the fields of computer vision (e.g. Neumann and Möller, 2008), but contributes 

with its transparent, derived data concepts for cartographic representation. 

3. The conceptual framework is dissociated from the data, but allows for a direct 

link. This ensures the framework will not be affected when changes occur to the 

source data. The described concepts within the framework serve as hooks to the 

data and can be easily related to concepts from other domains, hence 

contributing towards data interoperability. This is particularly relevant to 

research at national mapping agencies, which looks at ways to bind together 

different components of an on-demand mapping system facilitating the 

integration with third party data. 

 

From a technical viewpoint, the thesis contributes by illustrating the solution with an 

off-the-shelf software application – the standard ontology editor and knowledge 

acquisition system Protégé 4 Alpha. More specifically, the contribution is an 

implementation that follows the structure recommended in the conceptual framework. 

This includes the following aspects: 

1. A description logic application study is valuable per se due to the intellectual 

complexity of the field. The study formalises higher-level concepts enabling 

logical reasoning. It provides alternative solutions for overcoming the spatial 

representation problem within description logics, by linking concept definitions 

to spatial analysis methods.  

2. The thesis defines a systematic approach of converting measurable spatial 

database properties into high-level semantic information. An expert system 

formalises data hierarchies for the interpretation and identification of regions 

with associated functions at different levels of abstraction. The conceptual 

definition of classes allows for the flexible extraction of instances, and provides 

an illustrative and explicit modelling of information. 

3. The thesis demonstrates how aggregate concepts are inferred from lower level 

specifications using semantic rules and definitions. It implements these for the 

transformation of topographic data at different levels of abstraction. 

 

Considering that GIS represents an abstraction of the real world in digital form, there 

are critical issues regarding the inclusion or exclusion of different forms of knowledge. 

Ontology, in its philosophical meaning, refers to the theory of existence. It asks the 
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fundamental question what exists, what are accepted facts and what can be known. In 

the context of GIS, ontological issues refer to what GIS researchers believe exist and 

how to represent this existence inside a computer. From an epistemological viewpoint, 

how space or place is defined inside a GIS affects not only what we can know, but how 

we know it (Sui, 1996). The world has been represented in various systems of GIS and 

geographic information that have evolved and been fashioned over time. However, GIS 

is a Cartesian model of space that excludes certain forms of representations. There is a 

strong argument that the focus of GIS needs to shift from representation and analysis of 

the form of the Earth’s surface to a much stronger concern for the processes that define 

its dynamics (Goodchild, 2004). This means we need to distinguish between 

representation, a description of a given geographical location in space, and 

interpretation, a description of the displayed scene or mapping. On an ontological level, 

interpretation relates to different worldviews that give rise to a variety of visualisations 

and representations. We need to focus on the interpretive value of geographic 

information. 

1.2 A guiding example 

“He who searches for methods without having a particular problem in mind will most 

probably search in vain.” 

–David Hilbert 

 

Urban areas encapsulate a wide differentiation between social, functional and 

morphological characteristics. From different classes and social groups, and different 

types of human activities and land uses, to the varying physical and spatial qualities – 

the relation between these factoring processes is evident. No matter how cities form, 

their spatial patterns are a reflection of physical, ecological and socio-economic 

processes within their boundaries and beyond (Luck and Wu, 2002). Therefore, the 

central object of theoretical thinking should be the physical and spatial form of our 

landscape, which yields important information in the form of indicators of attributes 

such as population density and composition, environmental impact, historical 

development and a range of cultural and symbolic dimensions (Pesari and Bianchin, 

2000). To demonstrate this intricate relationship between spatial and functional patterns, 

figure 1 gives a concrete example from remote sensing and cartographic mapping. Both 
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the aerial photograph and the topographic map depict the same geographic location in 

an urban area. The objective is to derive a description of the scene based on our generic 

knowledge about the world and its types of objects and their characteristics. These traits 

can be identified as reoccurring patterns and are used to derive the function of the 

represented entities. The question to you, as the reader is, if you can identify the types 

of land uses depicted in the scene. The aerial photograph will yield familiar information 

in terms of texture, colour and representation, whereas the map is an accurate, but more 

abstract representation of the same features. Whether one is acquainted with mapping or 

not, by searching for familiar spatial configurations, it should not be too difficult to get 

an idea of the kinds of land uses present in the scene. 
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Figure 1 What land uses do you interpret in this scene? 

 

©2008 Google - Imagery 

Ordnance Survey ©Crown Copyright. All rights reserved. 
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The combination and interaction of simple patterns – whether presented in a continuous 

model of pixels, i.e., the image, or in an object-oriented view of vector data, i.e., the 

database – can lead to higher-ranking patterns or explicit new information that are 

hidden in the data (Heinzle et al., 2005). Image interpretation is a long established 

discipline, especially in computer vision, artificial intelligence and remote sensing. It 

has produced many standard applications to recognise structures in pictures (e.g. 

Haralick and Shapiro, 1992). The human ability to account for context and to interpret 

information has been the inspiration for such undertakings. From the example above, it 

is clear that we can establish a direct relationship between socio-economic information 

and the spatial distribution of land cover parcels. You may have guessed correctly, the 

scene in figure 1 includes land uses such as residential area, including detached, semi-

detached and terraced houses, green spaces such as a park to the right hand side, and 

some sort of industrial complex with large open-spaces such as car parks and grass 

areas. What you probably have not been able to infer is that, more specifically, the scene 

shows Ordnance Survey’s headquarters in Southampton on Romsey Road.  

 

The usefulness and necessity of interpreting vector data is still undervalued (Heinzle et 

al., 2005). Land use data generally use parcel databases as a spatial framework 

(Wiegand et al., 2002). The topographic polygons in Ordnance Survey MasterMap 

provide such a basis for defining and classifying individual units of land use. For 

instance, the text names and descriptions associated with real-world objects in OS 

MasterMap provide already a rich source of information that can be used to help derive 

land use descriptions (Wyatt, 2004). A land use theme would allow users to extract a set 

of features that are members of the theme definition allowing the selection of whole 

land use areas. Still, the main issue is that geographic extents of land use activities do 

not form a neat two-dimensional mosaic of polygons. In reality, a land use activity may 

encompass a complex of land and building polygons that are interrupted by roads and 

other infrastructure, such as an airport. Alternatively, there may be several different uses 

on different floors of a single building, such as a ground floor retail unit with residences 

above. The segmentation of continuous data representations, by dissecting heterogeneity 

between pixel values, equally suffers from the non-homogeneous distribution of land 

use patterns. The outcome is often low interpretation accuracy (Mesev, 2003; Hansen, 

2003). As our environment becomes increasingly modified resulting in an ever more 

fragmented landscape of more and smaller patches, quantitative as well as qualitative 
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spatial analysis methods are needed (Luck and Wu, 2003). Based on economical 

principles and conceptualisations by humans, typical patterns can emerge in the spatial 

arrangement of land cover parcels. We can use these patterns to find regularities and to 

combine different rules or occurrences of special structures to determine general land 

use types. This raises a number of questions. 

Research Questions 

1. What can spatial context and its configuration tell us about the functioning of its 

features? – This question is important to identify if additional information can 

be inferred from spatial representations. However, the study of architectural 

form and spatial pattern within societies is far from simple, due to the 

bewildering distribution of similarities and differences that cause variations 

among spatial form of settlement structures, and hence prohibit their 

categorisation and generalisation. By answering this question, we will learn 

about the theoretical implications and existing practical applications that derive 

land use information from spatial data. We will identify why it is important to 

enrich spatial data in such way, and discern existing options, their limitations 

and how we can improve upon those, in chapter 2. 

2. What can we learn from our own abilities to interpret land use information from 

topographic maps? What kind of knowledge and reasoning processes are 

required? – The interpretation of information is a knowledge intensive task. By 

finding persons with a reasoning skill that is important to the problem at hand, 

talking to them to determine what specialised knowledge they have and how 

they reason, we can embody that knowledge and reasoning in a program. The 

relevant material will be provided by a questionnaire survey aiming to derive 

consistent cognitive information from human experience of geographical space 

in chapter 3. This kind of investigation will elicit the key processes and factors 

involved in deriving information, and we will learn how people conceptualise 

this type of information. This is crucial for knowing what needs to be 

represented in a model for processing this kind of knowledge.  

3. How can people’s knowledge be captured and transformed into machine-

readable format? – Implicit information exists on the level of the relationships 

between geographical features, their extent, density, uniqueness and more. This 

knowledge often is well known by humans with their cognitive abilities, but has 
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to be made explicit for the computer. Whereas many spatial inferences may 

appear trivial to us, they are extremely difficult to formalise so that they could 

be implemented on a computer system.  Translating those key processes and 

factors into a machine-comprehensible form requires knowledge representation 

formalisms. Ontology is a formal conceptualisation of the world. It specifies a 

vocabulary that uses a set of assumptions regarding the intended meaning of its 

words. These concepts can be formalised in machine interpretable way through 

description logic languages that provide formal foundations and reasoning 

support for expressing axioms and constraints on the concepts in the ontology. 

In chapter 4, we will learn how this translation can be achieved and how spatial 

data can benefit from such an approach. 

4. How can we bridge the gap between knowledge, i.e. conceptualisation, and 

geographic data, i.e. representation? – Once the knowledge is available in 

machine interpretable form, it needs to be linked to the topographic database so 

it can be used for processing. This is not an easy task considering the principle 

of databases has been storage of non-redundant data to avoid potential 

inconsistencies. In addition, there are technical issues in regards to linking 

ontologies directly with a spatial database. However, the concepts and methods 

people use to infer information about geographic space become increasingly 

important for the interaction between users and computerised GIS. There is a big 

gap between what a human user wants to do with a GIS, and the spatial concepts 

offered by the GIS. Although formalised spatial data models have been 

extensively discussed in the context of databases and geographic information, 

there are no models for a comprehensive treatment of different kinds of spatial 

concepts and their combinations that are cognitively sound and plausible 

(Egenhofer and Mark, 1995). Therefore, from studying human spatial reasoning, 

we can deduce a conceptual hierarchy of different levels of representations that 

tie higher-level knowledge to the geographic data. In chapter 5, we will learn 

about the mapping between knowledge and data using the example of the high-

level concept residential area. 

5. How can geographic space be modelled in terms of its context and 

arrangement? – Not only do people employ several different concepts when 

thinking about geographic space, but spatial representations have several levels 

of granularity, i.e., scales. Reasoning in geographic space must typically deal 
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with incomplete information that requires one to intelligently compensate for 

missing information and to apply default rules based on common-sense 

reasoning. To capture any form of conceptualisation requires therefore sufficient 

representational power of a given representation language to model geographic 

space in all its complexity. Especially land use is a difficult concept to model 

because of its semantic and spatial ambiguities. Nevertheless, in chapter 6 we 

will learn how a representation language deals with spatial relations by 

interpreting concepts as sets of individuals, and roles, i.e., relations, as sets of 

pairs of individuals. 

6. What type of functional information can be derived from topographic data 

alone? – This question is important in two ways. First, we need to identify 

which land uses can potentially be derived from their spatial configuration 

through a visual analysis based on the interpretative capabilities of people. 

Secondly, this knowledge is then represented in a conceptual model to 

computationally process topographic data. Chapter 7 discusses how implicit 

information is practically inferred from Ordnance Survey’s OS MasterMap 

topography layer, and analyses how successful the approach is. 

Answers to the above questions will aid to solve the overall research problem of 

enriching spatial data semantically through the exposure of new, previously implicit 

information. It is already becoming apparent that the thesis is stepping on terrae 

incognitae. It falls in between many, and yet squarely within none, of the social 

sciences. Perhaps the closest is cognitive science, which is itself a combination of other 

sciences like psychology, philosophy, linguistics, computer science, neuroscience and 

anthropology (Miller, 2003). In any case, more questions will rise from the thesis while 

we substantially develop and explore how categories of functional information and their 

levels of granularity can be inferred and represented within topographic data. 

Summary of the thesis argument 

1. Urban studies argue that space creates a special relation between function and 

social meaning, thereby relating spatial configuration to social structure. Spatial 

representations, such as topographic maps, thus implicitly store functional 

information through the spatial arrangement of its features. 

2. The tradition of constructive spatial representation fails to match common human 

representations of the spatial world. Efforts to construct new spatial representations 
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that successfully match human cognitive perceptions, rest on the ability to relate 

people’s subjective interpretations with an artificial machine understanding of land 

use. The semantic enrichment of spatial data, therefore, improves accessibility, 

definition and suitability to a wider range of applications. 

3. Human experiential accounts of cognitive geography exist, and are available for 

machine collection, aggregation and semantic interpretation through commonsense 

understanding. Together with a specific investigation of how people interpret land 

uses from topographic maps, this indicates the required reasoning processes and 

knowledge for enriching topographic data. 

4. Ontology provides the foundation for knowledge bases. It implements through 

logical theory as a conceptual system for data integration and information retrieval. 

With its ability to structure and organise knowledge, to provide communication 

between humans and machines, and to reason by inference, we can use ontology as 

the mediating instance between the represented world’s reality, i.e., spatial data, 

and the information that is required according to human understanding. 

5. A conceptual model of residential area, grounded in the concept of affordance and 

the interpretation of generalised human experiential accounts, constructs new 

representations of space. Its hierarchy of concepts captures the semantic 

distinctions necessary for generating land use information from topographic data. 

6. Representational formalisms with appropriate expressiveness for capturing the 

necessary facts, properties and constraints, translate knowledge into a formal and 

machine manipulable model. Due to the language’s logic based semantics, a 

machine can reason about the asserted knowledge and infer higher-level, initially 

implicit information. 

7. The conceptual model is implemented in OWL-DL with Protégé 4 Alpha to infer 

different types of dwellings and their extents from Ordnance Survey’s topographic 

database. The link between data model and conceptual model is achieved by having 

the application classify the data’s knowledge (i.e., facts) in terms of the general 

semantic categories that the conceptual model (i.e., ontology) provides. 

8. This approach is shown to offer powerful means for enriching spatial data, enabling 

reasoning over its asserted facts, integrating with other data sources, and providing 

concepts that follow human intuition and understanding. With the ontology’s 

expressive power, there is indeed potential to derive land use information from 

topographic data alone. 
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1.3 Thesis structure 

In the following chapter, known approaches to deriving land use information from 

spatial data are reviewed in the literature, and the problem that this thesis addresses is 

further defined. Chapter 3 then analyses the problem from a human conceptual point of 

view, reviewing implications from spatial cognition and categorisation, to understand 

the types of knowledge required for inferring hidden information from topographic 

maps. Thereupon, a methodology is proposed to automate this process in chapter 4, 

which introduces ontology and evaluates how this approach benefits spatial data in 

terms of data enrichment and integration. In chapter 5, a conceptual model is deduced 

that defines a theoretical hierarchy of concepts and rules that allow inference of higher-

level semantics from a topographic database. Because the functional geography is too 

complex to be modelled as a whole within the scope of this thesis, the model and 

implementation thereafter focuses on the concept residential area. Both conceptually 

and spatially, residential area is a straightforward concept with typical, easily 

discernable patterns that are ideal for illustrating the proposed solution. Chapter 6 then 

addresses how this conceptual model can be formalised with the help of representational 

languages such as description logics. The use of long-established theories such as logic 

provides a sound foundation for translating the acquired knowledge into machine-

readable format with which topographic data can be processed. The inference of 

implicit information is achieved through concept-based instance retrieval, one of the 

basic reasoning tasks that a representational language can easily perform. Chapter 7 

evaluates the proposed approach with the freely available ontology editor Protégé. The 

conceptual model is implemented with the Web Ontology Language (OWL) and is 

applied to OS MasterMap topography layer. With the facts from the topographic 

database asserted in the knowledge base, topographic instances can then be classified 

according to the concept definitions given in the model. The results are analysed and the 

approach is assessed in terms of its strengths and weaknesses. Chapter 8 closes the 

thesis with the recapitulation of its contributions as well as an outlook for possible 

future investigations. 
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Chapter 2 

Definitive, Intelligent and Accessible Data 

“…GP surgeries, large food shops, primary schools and post offices. These are all key 

services that are important for peoples’ day to day life. In this sense wherever you live, 

having to travel a long distance to such places can be described as an access 

deprivation.” 

–Office of the Deputy Prime Minister (2004, p.31) 

 

The growth of cities is dependent on responsible and sustainable use as well as efficient 

and ethical planning to ensure that our land can cope with the increasing populations in 

future. The growing out flow from cities to the edge of town and the countryside, the 

dispersion of key services, and neighbourhood deprivation in general, are challenging 

tasks for the government of today. Geographic information forms an essential part not 

only for studying urban form and the spatial distribution of poverty (Vaughan et al., 

2005), but to combat exclusion and update the indices of deprivation, such as the 

‘Barriers to Housing and Services Domain’ (ODPM, 2004). Relevant, up-to-date, 

consistent, detailed and geo-referenced information are required to target solutions more 

effectively on the most deprived neighbourhoods. For example, Ordnance Survey 

(Harding, 2003) acknowledges that new concepts including land use, social resources, 

and neighbourhood, as well as new geographical entities, for instance GP surgeries, 

pharmacies, food shops, etc., are required to meet the needs of social policy makers. 

 

This illustration highlights the importance of definitive, intelligent and accessible data. 

Access is linked to skill and knowledge, and therefore addresses both the lack of 

interpretive skills by individuals as well as data sources with insufficient thematic 

content. Most GIS, for example, require extensive training, not only to familiarise the 

users with terminology of system designers, but also to educate them in formalisations 

used to represent geographic data and to derive geographic information (Egenhofer and 

Mark, 1995; Haklay and Zafiri, 2008). The question is when we access data, what are 

the capabilities and possibilities for empowerment? Data alone only present symbolic 

representations of realities. It forms the most elementary level where data contexts are 

merely considered as formal set structures without any content (Stenmark, 2001). 



Definitive, Intelligent and Accessible Data 

 

29

Information is a collection of related data that have been processed into a format that is 

understandable by its intended audience and presented in a form that is suitable for 

human interpretation. It is information, ‘data endowed with relevance and purpose’ 

(Jerome, 2003), that makes data useful and ultimately leads to knowledge, the ability to 

utilise the information effectively. Knowledge is what enriches the use of data the most 

by assigning meaning. In technical terms, knowledge comprises a body of organised 

information in a context that guides action based upon insights and experiences. 

 

In the context of the thesis, spatial data refers to geographic information, and semantics 

refers to the processing of knowledge using declarative languages to define what entities 

mean with respect to their roles in a given system. There is a lot of potential knowledge 

stored within spatial datasets, both explicitly in terms of collected geometrical features 

and associated non-spatial attributes, and implicitly in terms of topological information, 

typical structures between features and relations of their attributes (Heinzle et al., 2005). 

Knowledge forms the crucial element to expose new information by modelling the 

structures we want to recognise in the data (Lüscher, 2007). Consequently, by defining 

the semantics of functional information in relation to their spatial configuration and 

other clues stored in the data, we can augment existing databases with new knowledge 

and thus increase their value. 

 

To achieve data enrichment, one needs to understand the theoretical and practical 

implications of what can be inferred from existing spatial data. This chapter investigates 

the relation between the spatial arrangement of land cover parcels, i.e., topographic 

features, and functional information. From the conceptual viewpoint, this chapter 

reviews studies from urban morphology and structural anthropology to learn more about 

the form and spatial pattern within societies. From an application viewpoint, the chapter 

discusses existing methods from the fields of knowledge discovery, generalisation and 

remote sensing to identify if land use information can be derived from an analysis of its 

land cover distribution, and how we can improve on this. Section 2.2 defines inference 

as a configuration problem, and what implications this holds for defining a solution. 

Section 2.3 relates the thesis to research at Ordnance Survey (OS), the national mapping 

agency of Great Britain. With the help of previous research carried out at OS, this thesis 

identifies which types of functional information would add value to a topographic 

database. 
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2.1 The functional landscape: From land cover to land use 

The understanding of the messy irregularity that characterises the patterning of the real 

world is challenging to any model. Urban areas are considered as organisational entities 

with all kinds of intricate interrelations between their elements. We are interested in the 

interrelationships between land cover and land use. Land cover refers to the surface 

cover on the ground, whether vegetation, water, build-up areas or other. Land use refers 

to the purpose the land serves such as agriculture, industry or recreation (Hansen, 2003). 

The starting point is the assumption that land uses have specific organisational patterns. 

Theories 

The notion that space creates a special relation between function and social meaning has 

been long established in urban geography. Cities are socio-economic systems, and urban 

analysis therefore is at least as much about human activity patterns as it is about the 

built environment (Longley and Mesev, 2000a). The study of the social patterning of 

urban areas developed in the Nineteenth Century around typologies of the structure and 

configuration of society (Pesaresi and Bianchin, 2000). Morphological analysis was 

intended to be an explanatory tool, a means of relating spatial form to generating 

process (Longley and Mesev, 2000a). Many classic theories have blossomed from urban 

analysis with an attempt to study the morphology and evolution of cities, including 

concentric zone theory, sector theory, multiple nuclei theory, as well as recent theories 

such as catastrophe theory, chaos theory, dissipative structure theory, fractals, cellular 

automata, and self-organisation (Luck and Wu, 2002). Judgement about what 

constitutes ‘good’ urban theory is relative to what is known already. It is evident that 

better measures of urban phenomena based upon a better digital data infrastructure can 

lead to better description and thence to better theory (Longley and Mesev, 2000b). This 

has evolved from dealing with problems of simplicity, via the ability to deal with 

problems of disorganised complexity, to the analysis of cities as organised complexity 

problems (Pol, 2002). For example, the urban modelling tradition of the 1970s was 

neither able to come to terms with the countless forms of human agency, nor the 

serrated irregularity of urban morphology that arises out of urban growth dynamics in 

the real world (Longley and Harris, 1999). This meant traditional models became 

increasingly irrelevant to understanding city systems, and with that the quest to relate 

form to function, patterning to social process, was largely abandoned. Since that time, 

urban geography has arguably been overwhelmed by the task of representing the statics 
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and dynamics of spatial structure. The more recent history of urban modelling has been 

of more successful prediction and forecasting, achieved through the analysis of 

relationships between a considerable and manageable number of variables that target a 

specific problem (Longley and Mesev, 2000b; Pol, 2002). Only when the complicated 

social, economic and cultural interrelations within urban regions are understood and 

analysed, can we soundly tackle urban problems. Unfortunately, our ability to develop 

understanding of physical and socio-economic distributions through urban modelling 

remains limited by the quality and scope of data available (Longley and Mesev, 2000b). 

 

Complex theories have developed from the obscurity of the problem. They are a clear 

indicator of the challenging prospect to study architectural form and spatial pattern 

within societies, due to the bewildering distribution of similarities and differences that 

cause variations among spatial form of settlement structures, and hence prohibit their 

categorisation and generalisation. As researchers describe their acceptable designs as fit 

between urban form and its context, many disputes have risen over the description of 

the urban structure. For example, Alexander (1965) sees the city as much more than a 

simple system of units, or sets of elements, that neatly divides functions from each 

other. Instead, the city portrays the overlapping nature of activities with all kinds of 

intricate interrelations between their elements that indicate a living system. Therefore, 

he greatly opposes the hierarchism of the city, and questions the approach of reducing 

cities to hierarchical classifications and graph-theoretic sub-divisions of urban elements, 

because the structural simplicity and lack of interconnection between units within a tree 

confines, and in fact cripples our conceptions of the city. According to Alexander, land 

uses in cities are composed of overlapping areas whose order is more lattice- than tree 

like. He reasons that the cause for an adoption of the tree structure by so many is the 

limited capacity of the mind to form intuitively accessible structures that cannot 

encompass the complexity of the semi-lattice in a convenient form and single mental 

act. Further, the tree conception leads to compartmentalisation and the dissociation of 

internal elements and, hence, implies separation and destruction. Although Alexander 

does not give much credit to the human conceptual capacity, he is right in one point. 

Many idealised concepts of urban configurations developed by city planners and 

developers, such as the Garden City (Ebenezer Howard), the Radiant City (Le 

Corbusier), and the Broadacre City (Frank Lloyd Wright) adopt an underlying tree-like 

structure to their functioning. In reality, however, we are dealing with diversified cities, 



Definitive, Intelligent and Accessible Data 

 

32

where activities can be of primary or secondary use, and some are even combined (Pol, 

2002). This reflects the obscurity of the problem, that function can be perceived 

differently, i.e., for some an activity is primary while for others is secondary, and 

therefore emphasizes Alexander’s argument of overlapping activities and that cities 

should be treated as problems of organised complexity. However, the quest to 

understand function has involved ideas of hierarchies and networks, and the search for 

functions that are consistent with the shape of cities and their evolution. Many models, 

such as spatial discrete choice models, spatial interaction-entropy models, and standard 

multivariate cluster-type techniques therefore employ the notion of hierarchical urban 

structures (Batty and Longley, 1994). In fact, difficulties in obtaining objective and 

consistent definition of categories of urban land uses have been identified, and that their 

level of complexity threatens to destroy the most sustained attempt to classify their 

geometry. This shows that despite the acknowledgment of the problem, still often a 

simplistic approach and treatment is taken to analyse and understand the urban fabric. 

 

Form and function of space are dependent on one another. As the phrase ‘form follows 

function’ states, “various processes which contain the forces which determine form 

have specific functions and a study of form from the static viewpoint, from one snapshot 

in time for example, is often rooted in the quest to understand functions” (Batty and 

Longley, 1994, p.42).  Space is a shape, and function is what we do in it (Hillier, 1996). 

This relationship goes both ways. The environment and what it affords, that is, what 

objects or things offer one to do with them (Jordan et al., 1998), guide both the 

perception and action of people. This not only endows the layout of the environment, or 

its physicality, but a complex, information-rich, ever-changing environment, which is 

furnished with cultural objects and characterised by social interactions that it affords.  

The use we make of an environment thus is depended on what it allows one to do as 

well as its deliberate purpose that supports some type of function, which may or may 

not be realised through its specific use or role. Therefore, if affordances influence the 

functioning of our environment, then this functional environment will have an effect on 

the human behaviour, which, shaped through the sensory inputs and intrinsic 

information manipulation, makes use or takes place on that environment. From an urban 

perspective, this results in two problems. The multifunctionality of cities means that 

every aspect of the spatial and physical configuration works in many different ways, 

influenced climatically, economically, socially or aesthetically, with form only changing 
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slowly while function changes rapidly. Secondly, cities are made up of parts with a 

strong sense of local place, which clouds the morphological distinction between one 

part and another. Hence, two problems of description are needed and must be solved 

according to Hillier and Hanson (1984). That of society, which is to be described in 

terms of its intrinsic spatiality, and that of space, which is to be described in terms of its 

intrinsic sociality, in order to define the social logic of space and the spatial logic of 

society, respectively. Hillier (1996) argues that these two issues are really the same 

problem, because the fundamental correlate of the spatial configuration is movement, 

where movement largely dictates the configuring of space in the city and vice versa. 

Movement forms an integral part of the physical environment and human behaviour. 

Because urban space is a place of potential meetings and interactions of its inhabitants 

(Wlodarczyk, 2005), the built environment is not merely a material backdrop to 

individual and social behaviour. Both cultural and social ideas are transmitted through 

configuration, that is, the raw materials of space and form are given social meaning. It is 

evident that Hillier assumes that people and societies deploy themselves in space, and 

that these deployments are capable, under certain conditions, of adopting certain 

patterns. Functions are a result from these deployments. They are embedded as 

relationships between spatial configurations as a whole, and one will find that it is 

common that different functions are ‘spatialised’ in different ways. Hillier (1996) claims 

that the analysis of regularities in the relation between spatial configurations, defined as 

a set of interdependent relations, and the observation of the functioning of the 

environment allows the discovery of the distribution of land uses, such as retail and 

residences in an urban context. However, the difficulty in analysing settlement 

structures lies in the lack of well-defined spaces with well-defined links from one to 

another, because of its continuous structure of open space, which is not easily 

decomposable into elements for the purpose of analysis.  

Applied methods 

Hillier and Hanson (1984) introduced the configurational theory with the space syntax 

model, which describes society by associating social theory of production with the use 

of space patterns. The resulting urban space is a reduction to a complex of lines, or axial 

lines, and convex spaces. Their theory has been taken further by numerous authors (e.g. 

Cutini et al., 2004; Perdikogianni, 2003; and Kasemsook, 2003; Béra and Claramunt, 

2004) to study practical examples of spatial and functional pattern, and to perform 
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configurational analysis. Graph-theoretic representations became the norm for 

articulating urban space as a pattern of identifiable urban elements such as locations or 

areas whose relationships to one another are often associated with linear transport routes 

such as streets within cities (Batty, 2004). However, as in any theory, there is criticism. 

For example, space syntax techniques hardly bear any sign of the morphology of the 

urban spaces that gave rise to the lines in the first place, hence losing trail of the wide 

open spaces such as squares (Cutini, 2003). Furthermore, space syntax does not directly 

take into account land use factors, but instead keeps these separate to investigate the 

impact of both configuration and movement on land uses. According to Hillier and Penn 

(2004) space syntax expects land use to be a dependent variable, because if spatial 

configuration influences movement it can be expected to influence land use patterns 

with respect to their demands for being close to or avoiding movement. Nevertheless, 

the significance of Hillier’s research to this thesis is that according to configurational 

theory, the spatial structure of a settlement, that is the way its streets and squares are 

disposed and mutually related, is the actual key for the comprehension of urban 

phenomena, both material and immaterial (Cutini et al., 2004). 

 

Considering the intrinsic relation between spatial form and function, it becomes clear 

that any kind of quantification of spatial heterogeneity in spatial data requires a way to 

describe and represent variability in space and time (Gustafson, 1998). A number of 

approaches exist from disciplines such as data mining, where implicit information is 

exposed by using spatial rules to extract regularities within the data (Koperski and Han, 

1995; Lu et al., 1993). Automated map generalisation, for example, addresses problems 

of pattern recognition and structure modelling for preserving structural properties of a 

set of objects when these are generalised at different scales (Mackaness and Edwards, 

2002; Jiang and Claramunt, 2004; Zhang, 2004). Many of the recent advances in the 

computational recognition and analysis of spatial patterns present in geographically 

referenced digital data sets have used approaches from the broad field of pattern 

recognition (Barr and Barnsley, 1998; Chou, 1995). Although Hillier (1996) resists the 

word pattern, because it implies more regularity than one will find in most spatial 

arrangements, the identification of such spatial arrangements indicates their use. For 

example, residential areas in many Western European towns and cities typically form a 

complex compilation of buildings (houses), roads and open space (gardens and parks). 

On an aerial or satellite image, the thematic and morphological properties of these 
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parcels (their land cover type, size and shape) together with the spatial and structural 

relations between them (e.g. adjacency, containment, distance and direction) convey 

information on the associated land use (Barnsley and Barr, 1997). What is required, 

then, is a set of techniques that exploits these sources of information in an automated or 

semi-automated manner to infer land use from the spatial pattern of land cover. Urban 

areas offer a particular challenging landscape, as they are organised spatially into 

irregularly shaped land parcels of buildings, roads and various types of intra-urban open 

space. However, a separability analysis of land use samples from remotely sensed 

imagery suggests that a quantifiable mapping exists between urban form, i.e., land 

cover, and urban function, i.e., land use (Barr et al., 2004). 

 

The two main types of data structures for representing real world scenarios are vector 

data and raster images, of which the latter has by far the more developed techniques for 

image interpretation and inference of new information based on the recognition of 

structures within pictures (e.g. Mather, 1999). The process of deriving thematic 

information from digital, remotely sensed images is commonly based around the use of 

per-pixel, statistical analysis or artificial neural network classification techniques (Barr 

and Barnsley, 1997). The general approach is to identify the dominant land-cover type 

associated with each pixel and then examine the spatial arrangement of these land-cover 

labels in multi-pixel regions of the image. For example, in a remotely sensed image of 

urban areas, residential land typically consists of a complex spatial assemblage of 

tarmac and concrete roads, slate and tile roofs, trees, grass, shrubs and bare soil, each of 

which exhibits a different detected spectral response (Barr and Barnsley 1997). Many 

categories of urban land use have a characteristic spatial pattern of spectrally distinct 

land cover types that enables their recognition in fine spatial resolution remotely sensed 

images (Barnsley et al., 2001). However, such images are increasingly segmented into 

discrete, labelled regions closely related to the principal spatial entities in the 

corresponding scene. An object-oriented representation provides morphological 

information and allows us to quantify, interrogate and analyse the structural properties 

of the regions and the spatial relations between them. This information is crucial for an 

understanding of spatial configurations, that is, how characteristic patterns in a set of 

phenomena can be recognised by reference to abstract principles of arrangement or 

relationship. 
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Configuration is a set of relationships among things all of which interdepend in an 

overall structure of some kind (Hillier, 1996). Analysing configurations therefore 

requires a thorough understanding of what possible spatial relationships are among 

objects and how they can be determined.  Max Egenhofer, for example, (1989; 

Egenhofer et al., 1991; Egenhofer and Herring, 1991) defined binary topological 

relationships between n-dimensional spatial objects embedded in n-dimensional space, 

which allow the calculation of touching or overlapping objects. However, these 

relations are purely based upon topological properties – a taxonomy of all possible 

combinations of boundaries and interiors of two objects – and thus are independent of 

the existence of a distance function. Therefore, topological relations alone are not 

sufficient to provide a full description of a scene, and further relations have been 

defined in terms of distance and direction properties, especially within the field of 

qualitative spatial reasoning (Clementini et al., 1997; Cohn and Hazarika, 2001). This 

means both spatial relations as well as other types of spatial characteristics, including 

unary object descriptors, ratio-type relations and/or attributes specifying the semantics 

of the spatial objects are required. 

 

There are many techniques to establish patterns and infer higher-order meaning from 

spatial data, whether from images or vector data. This not only proves the general 

demand for improved information retrieval and exploitation of implicit information 

from existing data sources through automated reasoning procedures, but also that the 

scientific communities believe in a link between spatial form and higher-order meaning 

such as function. For instance, rule based aggregation uses a formalised set of rules for 

classifying the structural composition of objects. Bauer and Steinnocher (2001) use this 

technique to achieve the transition from the spatial distribution of land cover objects to 

land use entities. They treat residential area as a composite of large built areas adjacent 

to either medium grass or a medium tree area, whereas industrial areas comprise large 

built up and large open-space paved areas. The difficulty of this approach lies with the 

definition of such rules and the control strategy to infer new data from it, despite the 

development of concepts to integrate learning techniques for deriving the necessary 

knowledge. If, however, such rules are known or models of the situation are available, 

good results can be achieved. 
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As mentioned earlier, graph-theoretic approaches have proven popular for model-based 

interpretation derived from graph representations. Heinzle et al. (2005), for example, 

take such a graph-based approach to evaluate road network patterns within urban 

settlements and to determine the city centre. Barr and Barnsley (1997 and 1998) 

developed an extended relational attributed graph to infer second-order thematic 

information about a scene. This was developed further by de Almeida (2007) to infer 

higher-level information from unstructured datasets such as LiDAR data. Albeit existing 

techniques for assessing the similarity of graphs, for instance graph similarity measures 

and graph matching algorithms (Conroy Dalton and Kirsan, 2005), the problem arises 

with large data sets of greater structural complexity that will lead to computational 

inefficiency and greater uncertainty due to the much greater variability in the graph 

structure (Barnsley et al., 2001). Similarly, the concept of gradual change, which 

originates from the gradual deformation of spatial objects until the spatial relation 

between them is changed, experiences the same problems (Egenhofer and Al-Taha, 

1992; Bruns and Egenhofer, 1996). 

 

Often these approaches are combined with clustering procedures. Anders et al. (1999), 

for example, apply graph-clustering techniques for the analysis of settlement structures 

by delineating homogeneous structures in a data set. The drawback is the requirement of 

prior information, such as the statistical distribution of the data or the number of clusters 

to detect. This means existing algorithms can break down if the choice of parameters is 

incorrect with respect to the data set being clustered, or the model did not capture the 

characteristics of the cluster. Furthermore, existing clustering methods tend to be closed 

and are not geared toward allowing the interaction needed to effectively support a 

human-led exploratory analysis (Guo et al., 2002). 

 

In remote sensing analysis, methods such as supervised classification, decision trees and 

moving window techniques suffer from the need for training datasets or a priori 

optimum size for the kernel, whose rectangular shape is often unsuitable for searching 

irregularly shaped land cover/ land use parcels (e.g. Barnsley et al., 2001; McCauley 

and Geotz, 2004). Often interpretation accuracy is low, especially when using low-

resolution imagery. The relationship between land use in urban areas and spectral 

responses recorded in satellite images is complex and thus precluding the use of 

traditional classification approaches (Hansen, 2003). With the aim to overcome these 
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limitations, combinations of traditional remote sensing techniques with other data and 

methods have been researched. For example, Harris and Longley (2000) integrate urban 

remote sensing with new, often commercial, sources of socio-economic data to augment 

satellite data and thus enhance models of the form and functioning of urban settlements. 

Mesev (2003) links Ordnance Survey’s Address Point dataset with satellite imagery to 

study the spatial distribution of postal addresses based on density and arrangement to 

infer urban land use distributions of built environment, commercial and residential. 

Hvidberg (2001) and Hansen (2003) dismiss remote sensing altogether and instead 

employ the Danish Building and Dwelling Register database to create urban land use 

maps by overlaying a regular grid net and applying a fuzzy logic classification. Remote 

sensing techniques such as supervised classification have also been used in different 

contexts. Boffet (2000), for instance, applied the goal-directed classification for 

identifying homogeneous urban groups from topographic data. The classification is 

represented as a hierarchical tree with the final classes being predetermined according to 

the user’s need. The difficulty here lies with choosing the adapted variables, 

measurements and threshold and with interpreting intermediate cases. In particular, the 

chosen thresholds have to be sufficiently sensitive to discriminate significant classes. To 

improve the classification of urban districts, Boffet employs the typology of properties 

of urban sub-systems that allow the analysis of shapes, structures and constructions, as 

proposed by Pinchemel (1995). 

 

The kinds of higher-level information, which the exemplified techniques are trying to 

establish, closely link with the different conceptual levels of data description. The most 

fundamental and concrete level is raw data consisting of micro objects, such as a 

building, a road, or a community boundary. This is most useful at large-scale 

representations. At smaller scales, however, objects at a micro level of description are 

inadequate, as the desired objects become more abstract, called meso, such as a district, 

a block, or a town. The meso object is a relevant concept, as it describes the 

combination of micro objects based upon their collective representation of a geographic 

phenomenon (Boffet, 2000). Deriving the meso object from micro objects is not an easy 

task. The difficulty lies in the notion of geographical phenomena that require knowledge 

and the human capacity of interpretation in an interactive process. Interpretation 

generally is a knowledge intensive task, as we will further investigate in chapter 3. To 

improve previously developed techniques, which are mainly technology-driven, we 
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need to distinguish between the knowledgeable, i.e., the capability of machine learning, 

and recognisable, i.e., the human cognitive perception of patterns. Even Hillier et al. 

(1976, p.148) noted this key relationship as ‘the relationship between the formal 

structure of what there is to be known (for example, the patterns of space organisation, 

patterns of social networks, and so on); and the formal mental structure by which these 

are known or recognised’. 

 

Computer vision embraces this relationship by automating and integrating a wide range 

of processes and representations used for visual perception. This requires the 

formulation of procedures and knowledge that encapsulate the content of the images. It 

is therefore widely acknowledged that research on information extraction must consider 

primarily the semantic aspects of the data. However, the complexity of the information 

stored in images makes this a non-trivial task. For example, a long-term research project 

at the University of British Columbia, called Mapsee, provided a first approach for a 

theory of image interpretation based on logic (Reiter and Mackworth, 1989; Mulder et 

al., 1988). The Mapsee project experimented with visual knowledge representation from 

sketch maps of geographical regions. Matsuyama and Hwang (1985) developed also a 

logical foundation for their knowledge-based aerial image understanding system 

SIGMA. Approaches used in knowledge representation and modelling for machine 

vision have therefore been widely applied for image understanding of remotely sensed 

images (Sowmya and Trinder, 2000). But what about spatial databases containing 

vector data? The exposure of knowledge by means of knowledge representation, for 

example through ontologies, has been employed to improve retrieval of distributed 

geographic information (Lutz and Klien, 2006). Klien and Lutz (2005), for instance, use 

ontologies for the automated semantic annotation of geodata, whereas Hertog et al. 

(2000) applied a knowledge-based system for polygon classification. The semantic gap 

between low-level descriptors, such as images or other spatial data, and higher-level 

semantic concepts is achieved by using domain knowledge. This knowledge is often 

determined by the perception of an object, i.e. by the context, configuration, meaning 

and experience of the observer (Wertheimer, 1924). People can easily recognise spatial 

patterns; however, a translation of these cognitive processes into automated procedures 

is much of a different situation. Because knowledge-based systems integrate prior 

knowledge about the scene or several objects, they are strongly domain-dependent, and 

often do not separate knowledge from the procedures (Zlatoff et al., 2004). 
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Looking back over the reviewed methods and their limitations, it is evident that there is 

a general paucity of formal models on the structural operators, their semantics and 

expected results, which are required to underpin the development of such techniques 

(Barnsley et al., 2001). The existing lack of rigidity in definition and analysis in 

morphological studies arises in part because of the paucity of spatial analysis in 

providing measures of the distribution of physical and other spatial structures on the 

ground (Pesaresi and Bianchin, 2000). Furthermore, despite the acknowledgement of 

the problem of linking spatial configuration to the functioning of the environment by 

different disciplines, the focus seems to have been only on urban space and not on rural 

landscapes or non-urban scenarios. Non-urban landscapes and their pattern distribution 

are often only addressed in terms of landscape ecology to study links between 

ecological pattern and ecological function and process (Gustafson, 1998), or for 

strategic land-use allocation as it is the case for agricultural purposes (Carsjens and Van 

der Knaap, 2002). Therefore, it is important to designate the problem to any type of 

space, whether urban or rural, and to look at ways to retrieve functional information 

from various spatial arrangements. However, first we need to take a closer look at the 

underlying problem, that of configuration. 

2.2 Treating inference as a configurational problem 

Did you ever play with LegoTM in your childhood? Imagine you have a set of LegoTM 

blocks with which you want to build a small rowing boat model. This task translates 

into a set of requirements that specify general geometric properties of the boat and how 

its components must belong together. However, the type of LegoTM blocks that are 

available to you and how they fit together, as well as the design of the boat itself, i.e., it 

should be symmetric and all part should be connected, constrain the design. The LegoTM 

boat configuration therefore fully specifies the components, their shape and dimensions 

as well as their arrangement. The configuration problem consists of finding the optimal 

layout of the components, and involves some aggregation over the properties of the 

individual components. Given the standard dimensions of LegoTM components, you will 

struggle to satisfy the requirements exactly. This is a typical phenomenon in 

configuration design (Wielinga and Schreiber, 1997). 
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Configuration problem solving has become an established field of Artificial Intelligence 

(AI) applications. It comprises the selection and instantiation, parameterisation, and 

composition of components out of a pre-defined set of types in such a way, that a given 

goal specification as well as a set of constraints characterising the configuration in 

general will be fulfilled (Klein et al., 1994). Configuration is treated as a problem class 

with no indefinite goals, no unspecified constraints, with completely described objects, 

relations and constraints between them. In this sense, configuration is a well-structured 

phenomenon. The combinatorial nature of the problem requires problem-solving 

methods to constrain the search process of the relevant components. Knowledge about 

the configuration structure is therefore an essential precondition for the formulation of a 

solution, and provides a suitable platform for a formal description of the configuration 

problem. If the arrangement of components is an important element of the application 

problem, the solution can take the form of a hierarchical decomposition, where the top-

level goal is decomposed into a number of alternative substructures (Wielinga and 

Schreiber, 1997). Generally, a knowledge-intensive approach is required to express 

knowledge – heuristic or otherwise – and to make logical inferences about the typical 

problem solving activities. 

 

In geography, the problem is not as simple and sterile. Objects in a geographic space 

correspond to locations on the surface of the Earth, and complex geographic processes 

and structures can emerge from local interactions (Miller, 2004). Nevertheless, if built 

environments are considered as organised systems whose primary nature is 

configuration that expresses the social purpose for which the built environment is 

created (Hillier, 1996), then we should be able to apply methods of configuration 

problem solving. A first step would be to decompose the spatial configuration of land 

uses to understand the simultaneous effects of a whole complex of entities on each other 

through their pattern of relationships. By using this configuration knowledge, what 

logical inferences can we then make about a spatial environment? The answer lies in the 

contextual, structural and morphological properties of features represented in a spatial 

scene that together form a specific pattern or configuration. For example, consider a 

database in GIS that is composed of a large number of spatial objects that are spatially 

arranged and grouped into a few thematic layers, which usually cover the whole 

geographic space. You formulate a query to find a hospital in an urban area adjacent to 

a park and a highway. A query evaluation in a spatial database combines objects from 
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different thematic layers to construct desired answers based on these objects’ spatial 

relations (Rodriguez and Jarur, 2005). This is a type of constraint satisfaction problem. 

Crucial to finding a solution is the identification of spatial relations. Indeed, as Tobler’s 

first law of geography states, ‘everything is related to everything else, but near things 

are more related than distant things’ (1970, p.236). Location has an intrinsic degree of 

uniqueness due to its situation relative to the rest of the spatial system. The emerging 

spatial heterogeneity reveals information on both the intensity and pattern of spatial 

associations (Miller, 2004). However, in GIS spatial relations are limited to expressions 

in the form of topological relations, distance relations, or orientation relations. The 

problem is that computer systems do not generally support context-based 

representations, and therefore spatial relations such as proximity, which are context 

dependent, fail to relate mental representations of space (Worboys, 1996). The work of 

Rodriguez and Godoy (2002) reflects this problem. They describe quantitatively spatial 

configurations and try to retrieve them automatically from spatial databases, however 

only with limited success. Any configurational modelling therefore needs to address 

two issues: The first issue is that of identifying regularities in the ways in which urban 

systems and their functions are put together spatially by identifying their genotypes of 

spatial form. An effective way to achieve this could be the use of pattern recognition 

methods (e.g. Hussain et al., 2007). Secondly, these regularities need to be correlated 

with aspects of how humans conceptually interpret the functions observed in space. 

Take figure 2 for example, the human eye can easily interpret the spatial footprint of 

land uses with or without explicitly stating which land uses are depicted. This is because 

we have a common understanding of how the world works, and we are able to use 

implicit situational information, or context, to make sense of everyday situations (Dey 

and Abowd, 1999). 
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Figure 2 Topographic scenes of functional information 

 

(a) Department store Harrods in Knightsbridge, 
 London 

(b) Hyde Park in Knightsbridge and Belgravia 

(c) Chelsea and Westminster Hospital, London (d) Stamford Bridge Stadium, Chelsea Football 
Club

(e) Residential area, London (f) Residential area, Glasgow 
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Figure 2 Topographic scenes of functional information 

Figures 2 (a)-(j) give only a few key examples for different types of land uses or 

functions, but the typical organised regularity in the built, man-made environment is 

clearly evident. Houses spruce up like neatly planted carrots. Roads worm around other 

features in an organic fashion, connecting them like veins in a body whose blood flow 

resembles the movement of people in the urban space. Agricultural fields remind one of 

the patchwork of a large blanket, whose square geometric units can be combined to 

multiple patchwork blocks, which in turn are joined together to form a larger finished 

piece, offering almost endless possibilities of different block variations. We could 

continue to make comparisons of the compositional character of the spatial 

environment. However, the point is that functional information, although not explicitly, 

is noticeably represented in spatial data. We therefore need to treat data representation 

as a compositional problem that consists of a hierarchy of minimal meaningful units, 

(g) Victoria train station, London (h) Glasgow International Airport 

(i) Public spaces, Trafalgar Square in London (j) Agriculture, Glasgow 
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such as primitive entities (building, roads, etc.), that combine to form higher-level 

meaningful composites of sets of elements (such as residential blocks). Of course, a 

detailed data analysis is necessary to identify concrete characteristics of the land use 

composites, but rich knowledge is present in the aggregation of meaningful object 

configurations, special relations, perception (Gestalt principles) and context. Because 

humans can identify such information with ease, we need to achieve a one-to-one 

mapping between the rich, semantic knowledge and the represented data. This can be 

achieved by decomposing the rich knowledge to its finest level of detail in terms of its 

‘syntax’, that is, information about the structure of spatial objects (e.g. roads, buildings, 

land, and water) and how these comprise larger units that convey functional meaning 

through their spatial relations. Similar to the configuration design problem earlier, we 

can therefore create a hierarchical configuration where the top-level function is 

decomposed into its smaller substructures, each of which represents variants of the 

original goal. 

From syntax to meaning 

Configuration is a powerful means to say simple things about space and form. 

Configuration seems in fact to be what the human mind is good at intuitively, but bad at 

analytically. According to Hillier (1996), we easily recognise configuration without 

conscious thought, and just as easily use configurations in everyday life without 

thinking of them, but we do not know what it is we recognise and we are not conscious 

of what it is we use and how we use it. Apparently, we have no language for describing 

configurations, that is, we have no means of saying what it is we know. Hillier calls this 

non-discursivity, and labels it as the central problem of architectural theory. 

 

Interestingly, Hillier uses language as an example, and differentiates between social 

knowledge (that of spatio-temporal phenomena) and analytic knowledge (that of 

configurational structures that link words into meaningful complexes). He argues that 

language only works because we are able to use the configurational aspects of language 

in a way that makes their operation automatic and unconscious. The words we think of 

are at the level of conscious thought, while the structures we think with, which have the 

nature of configurational rules in that they tell us how things belong together, are 

hidden. 
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The structuralistic approach, with Ferdinand de Saussure as its originator in the 20th 

century, focuses on these regularities and patterns, which are a manifestation of the 

underlying system of language, or semiology (Chierchia, 1999). For Hillier 

“structuralism is an enquiry into the unconscious configurational bases of social 

knowledge, that is, it is an enquiry into the non-discursive dimensions of social and 

cultural behaviour” (1996, p.42). He strives to generate and describe the morphology of 

patterns through the adoption of natural languages and mathematical concepts, thence 

creating a theory of morphic languages whose syntax captures the elementary objects, 

relations and operations as realisations of the syntactic structures in the real world 

(Hillier, 1976). 

 

Language, indeed, offers a powerful ground for comparison. It is a dynamic 

phenomenon, which varies along the social and gender dimension, from speaker to 

speaker in idiosyncratic ways, and of course, varies due to a speaker’s ability to produce 

and understand an indefinite number of sentences, while having finite cognitive 

resources. Yet, naturally, people are endowed with abilities to acquire language and to 

extract regularities from the environment. Natural languages across the world are built 

on the same components: a vocabulary (lexicon), a list of words (terms) that are used, a 

syntax and grammar that describe how valid sentences can be formed from these words, 

and semantics indicating what the sentences mean (Frank and Mark, 1991; Pinker, 

1991). How meaning can be interpreted from a symbolic structure of some kind lies 

right at the centre of cognitive studies. According to Chierchia (1999), it is our 

knowledge of meaning that enables us to interpret an indefinite number of sentences, 

including ones we have never encountered before. The interpretation procedure is 

therefore compositional: From understanding the meaning of words (or morphemes), to 

the composing meaning of composed phrases, we cycle through syntactic configurations 

and arrive at the meaning of the sentence. Our knowledge of sentence meaning then 

enables us to place sentences within a wider network of semantic relationships with 

other sentences. 

 

Similar to this, we can interpret our spatial environment by placing the meaning of 

individual objects into groups of objects, and the meaning of groups into even higher 

composites of groups, and so on. For example, an individual house can become part of a 

row of terraces. A row of terraces can become part of a block of terraces defined by 
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surrounding roads. Blocks can become part of a neighbourhood of terraces, which in 

turn become part of a complete residential area. Whereas context helps people to 

evaluate more accurately the meaning of a given area, or group of objects, so does the 

knowledge of what an object is used for. Especially knowing the function of an 

individual object like housing will allow us to infer a group of such objects constituting 

the area’s function as residential area (Miller, 1978). Both context and function increase 

our conversational bandwidth and its richness (Dey and Abowd, 1999). It not only helps 

us to recognise instances of a category, but to interpret its accurate meaning. As a result, 

both the ability to express ourselves with language and to convey spatial information 

(Tversky and Lee, 1998), as well as the underlying ability to interpret meaning from 

words, sentences and objects, is a fundamental part of this problem. Natural language 

processing (e.g. Katz and Fodor, 1963; Lewis, 1970; Blutner, 2002) therefore translates 

to semantic data processing (figure 3).  

 
Figure 3 Semantic data processing 

The meaning of functional information is a function of the meanings of its parts and of 

how they are spatially combined. Knowledge of the syntax provides the properties of 

expression, in this case spatial objects, which are grouped together into hierarchies and 

at different levels of abstraction combine to parts that in turn create wholes (Chaudhry 

and Mackaness, 2007). Syntactic knowledge states structural information and 

relationships about the order of objects in a group signalling a particular meaning. 

Morphological knowledge relates to the understanding of multiple forms of objects and 

their spatial order. Semantic knowledge defines meaning about context and how 

concepts relate to the properties of expression and relations in the world. Consequently, 

meaning is implied contextually and configurationally, and thus can be exposed by 

reasoning about the semantics of a dataset although it is not explicitly expressed in the 

data itself. All that is required is to link the semantics of concepts to the underlying data 

(figure 3), hence enabling reasoning over that data and thereby making it more 

meaningful. 

Concepts 

Semantics

Data 
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2.3 A single, integrated, multi-resolution master database 

“DNF will foster an environment where users should not need to capture information 

that already exists. In future information can be re-used and added together to form 

new datasets building on existing proven components.” 

–DNF White Paper (2004, p.14) 

 

Since the advent of relational database systems, spatial data have been managed in 

database systems. The main application that drives research in spatial database systems 

is the technology for GIS (Güting 1994). The concern of data storage has now shifted 

largely to research on human-computer interaction, data sharing and general usability. 

Concerning issues include spatial cognition, geographic visualisation, multi-scale 

modelling, and spatial ontology and reasoning. For example, GIS environments and 

their common users have been studied at the workplace, in schools, and at home to 

demonstrate the scope of usability issues and the potential of developing techniques and 

methodologies within this domain (e.g. Haklay and Zafiri, 2008; Davies and Medyckyj-

Scott, 1996). 

 

It is important that we apply our experiences from these problems to the development of 

new systems. Tools and methods should take into account the special characteristics of 

geographical information and its manipulation, assisting in the design of user 

interaction. This is coupled with issues in searching and retrieving information from 

vast amounts of data that are often highly heterogeneous in terms of record types, 

thematic content, level and type of documentation, and computing environments 

(Fabrikant and Buttenfield, 1997; Wiegand et al., 2002; Haklay, 2006). However, if the 

content is not there, or is stored in forms that cannot be converted to those necessary for 

a given type of model, then any number of research studies and prototype models will 

fail to result in real-world applications (Davies, 2006). 

 

Consequently, any work that attempts to bridge cognitive science and GIScience needs 

to consider the relevance of the topic to real world applications, and specifically to the 

cognitive details of the tasks that people perform. With these issues in mind, how can 

we improve data accessibility and reuse, why and how is land use information important 

to users, and how does this type of information make data more definitive and 
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intelligible? The thesis takes the perspective from Britain’s national mapping agency 

Ordnance Survey to study prevailing issues around data interoperability, user focus and 

system flexibility, and to gain an understanding of the importance of functional 

information in the light of these questions. 

The need for land use information 

Ordnance Survey MasterMap is Britain’s state-of-the-art digital map database with over 

400 million real world features mapped according to a consistent, national framework 

being updated continually. OS MasterMap has developed from the Digital National 

Framework (DNF) project to provide the basis for delineating and maintaining land use 

parcels. It serves as a reference source to other data through its features’ unique 

identifiers that allow association to related services relevant to the same object. 

However, the development of a complete land use dataset is more challenging given the 

lack of existing data sources capable of providing comprehensive information on land 

use (Harrison, 2002). Most existing information on land use are statistical, hence 

providing only a general picture of the land use distribution prescribed by 

administrative districts or wards. For example, on behalf of the Office for National 

Statistics’ Neighbourhood Statistics service, the Office of the Deputy Prime Minister 

(ODPM) produced generalised land use statistics that cover nine simplified land use 

themes including domestic buildings, gardens, non-domestic, road, rail, path, 

greenspace, water and other. These statistic are calculated for each local authority 

district and each Census ward as defined for 2003, and are provided for all of England 

as at 2001 (ODPM, 2005). You can calculate land use proportions for areas of interest 

as percentages, as shown in figure 4.  

 
Figure 4 Generalised land use statistics for three London boroughs 
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The bar chart quickly reveals the highest and lowest portions of land uses across three 

London boroughs, which are road and greenspace, and rail and path, respectively. You 

can also use these land use statistics to determine the extent, distribution, and spatial 

variation of each of the land use categories among different geographical areas (figure 

5). By referencing the land use statistics at ward level to the relevant local authority 

boundaries, which are provided in OS MasterMap, we create a thematic representation 

of land use per category according to its percentage. This reveals distinct patterns of 

land use distribution based on defined intervals appropriate to the percentage range of 

each category.  

 
Figure 5 Thematic map of domestic buildings in three London boroughs 

These kinds of data, however, are too general for the level of detail required at large-

scale representations. In fact, over the past thirty years the development of a standard 

land use classification and collection of detailed and up-to-date information about the 

extent and distribution of land use at a national level has failed. Therefore, as described 

by Tompkinson et al. (2004), a series of studies commissioned by the Department of the 

Environment led to the conclusion that land use should be collected and maintained in 

collaboration with Ordnance Survey’s large-scale digital mapping. In response, ODPM 

launched the National Land Use Database (NLUD) project in 1998 to develop a 

comprehensive, complete and consistent source of land use information at the national 

level based on a standard land use classification (ODPM, 2006). Ever since, many 

efforts tried to integrate and apply various data sources from the Public Domain to 

establish such a national land use dataset (e.g. Wyatt, 2002 and 2004; Harrison, 2000 

and 2002; Harrison and Garland, 2001; Tompkinson et al., 2004). However, existing 
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data sources are unable to provide comprehensive information on land use. In addition, 

automatically generated land use classes suffer from insufficient completeness and 

confidence values. This meant Ordnance Survey had to reassess the business and 

technical feasibility of its approach for incorporating land use and land cover data into 

future releases of OS MasterMap (Harrison, 2002). 

 

Traditionally, map providers have been designing their range of map products to 

respond directly to the needs of different groups of customers. These products are 

derived from data that are being collected and maintained involving a large amount of 

manual work. This often leads to data providers imposing their view of the world, 

which is traditionally topographic, onto customers who then must modify their 

understanding of the world to fit that particular view (Byrom, 2003). The contemplation 

of user requirements somewhat allows to remedy this predicament by moving away 

from the ‘one size fits all’ approach towards a ‘fitness for use’ approach in data 

provision. Ordnance Survey’s key strategies, for example, are to get closer to the 

customer as part of the renewed customer focus, and to be an ‘influencer’ and a ‘thought 

leader’ of the nation’s GI-related activities. “A key goal is to develop a better 

understanding of the aims, objectives and applications of our users and customers to 

further refine the data and information we supply and thereby make it easy to adapt, use 

and exploit, not only today but in 2008 and beyond.” (Ordnance Survey Geographic 

Information Strategy 2006-08, p.3). 

 

Since the late 1960s, Ordnance Survey has positively started to identify and to meet 

customer needs (Marles, 1983). Instead of falling for the temptation of supplying what 

has been traditionally provided all along assuming that is what user wants, Ordnance 

Survey seeks confirmation about current and future needs by consulting users 

themselves or commissioning professional market research. By visiting end-users in 

their actual workplaces, and assessing the geographic relevance of their everyday work, 

it becomes apparent that users do have more to say about the generic and future aspects 

of their work, as well as trends and events that are likely to change their jobs in future, 

than is often anticipated. Davies et al. (2005) point out that often a product would have 

been designed fundamentally differently from the start, based on a different set of 

concepts and structures, if the users’ needs and how the product would be used had been 

precisely understood. In fact, the events in a system’s real context of use can vary 
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significantly from that hypothesized during the design, development and 

implementation of that system (Davies and Medyckyj-Scott, 1996). However, it requires 

a lot of effort to discover the true needs of users, as opposed to ‘wants’ which are 

endless. “We want everything really! ... Everyone wants the most detailed information 

they can lay their hands on.” (Ordnance Survey, 2005-2007). Furthermore, it is evident 

that users do not fully understand the potential of OS concepts and the data they are 

using, which leads to an absence of analytical analysis of OS data. Even Davies et al. 

(2005) argue that users often do not know what they want or cannot express it clearly. 

As a result, the reality looks like this: “It’s not a case of what do I need to do, it’s a case 

of, well, I have got this dataset, what actual use can I make of it.” (Ordnance Survey, 

2002, p.12). For this reason, Ordnance Survey conducts internal research to determine 

the part geography plays in users’ lives, that is, what, where, when and how 

geographical information (GI) is important to them. This enables better decision making 

for future OS processes, data, products and services, and helps to explore future data 

needs for GI use in terms of data content and quality (Davies et al., 2005). 

 

Ordnance Survey carried out a project to understand the requirements and information 

needs of potential users in relation to land use and cover, and to make an informed 

decision about the development of a land use theme in OS MasterMap (Ordnance 

Survey, 2002). The study confirmed the general lack of consistent land use data, and 

that most respondents do not purchase specific land use datasets because few are aware 

of any that are available. Overall, the research established that there is a wide 

acceptance and support of the distinction between land use and land cover. Land use is 

generally regarded as the most valuable because of the number of applications it can be 

applied to, e.g. government and policy initiatives (crime mapping, regeneration in areas 

of social deprivation), land planning (urban regeneration), land risk (flooding, 

contaminated land, waste disposal), lifestyle (commercial development, consumer 

behaviour), and socio-economic modelling (population migration, health, social 

planning). However, users are unlikely to purchase land use without the land cover layer 

because it is also believed to have vital applications. “People want much more 

integrated types of information … to be able to click on an area and know land use” 

(Ordnance Survey, 2002, p.16). 
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Users want intelligence behind the data. They want to distinguish the extent of land 

coverage through visual examination. This immediacy in visual distinction means that 

the data are more accessible to those without extensive mapping knowledge. However, 

the interest in representation is divided between information of larger aggregated 

polygons and information at an atomic level (individual topographic polygons). 

Although detail is required in some applications – for example, if you only have the 

primary use for the ground floor of a building, you are going to miss out on a lot of 

residential information – data at a granular level potentially leads on to there being far 

too much information. Generalised data and aggregated information are often easier to 

interpret and give you a better picture of the neighbourhood. Nevertheless, “the more 

subgroups you have the stronger your data (but you have to be careful how the data is 

presented because you can overload)” (Ordnance Survey, 2002, p.20). The Cities 

Revealed land use classification, for instance, is too general for users’ needs: “What’s 

the institutional building? A hospital? You need to separate that out because it has 

implications…” (p.21). It is clear that users want it all: Current and accurate data with 

detailed information at the atomic level, but also with aggregated information at more 

generalised levels of representation. This, however, is far-fetched from the reality. Too 

much data will mean larger datasets and therefore data management may become a 

problem. Even if OS MasterMap is used, there is not always the necessary infrastructure 

to implement it. Often tools such as Google Earth are used instead to get an initial feel 

for a place, but even this is not always used due to internal bandwidth issues. 

 

The importance of recognising users’ longer-term needs, and those of their organisation, 

could not be clearer. Ordnance Survey continuously invests in researching these needs. 

Its recent Future Users Research, which took place between 2005 and 2007, reveals a lot 

more about data issues and the types of functional information that would add value to 

its data. OS assessed the work of its key users (figure 6) to understand how geographic 

information interacts with other information and knowledge from other sources 

(Ordnance Survey, personal communication, March 2006). The study focuses on the 

features and aspects of the British landscape that are important to the customers’ job. It 

offers the customer an opportunity to tell OS how their work and information needs 

may change over the next few years. The research consists of fifty-six anonymous user-

task interview records, which are categorised according to supertask profiles such as 

flood risk assessment, catastrophe modelling, urban design, transport and network 
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management, to name a few. Even years later following the land use study, interviewees 

express similar feelings (Ordnance Survey, 2005-2007): 

 

“It would be good if all geographical information required was available to the 

user from the same source.” 

 

“We want to be able to share information with other people more easily.” 

 

“In an ideal world the team would have access to a fully integrated, up-to-date 

and reliable information system for UK data. A free, nationwide information 

portal… providing up to date, quality checked, reliable information (on e.g. 

habitat information, geology etc) for use in decision-making would be desirable.  

This would save many users a lot of repeated work.” 

 

“The Ordnance Survey provides some documentation but doesn’t, for example, 

provide easily available definitions for things… Datasets from some other 

organisations, containing geographic features, may have even less definition for 

what is meant by terms such as ‘lake’ etc in the dataset.“ 

 

“Automated generalisation tools, to consistently generalise datasets from their 

highest resolution base data could improve the overall quality of data worked 

with, especially if generalisation could be done on the fly.” 
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Figure 6 Overview of Ordnance Survey’s customers 

The predominant need for data interoperability, to have all the data available in one 

source with sufficient semantics, and on the fly aggregation is evident. However, so are 

the information, such as real world things, or concepts, and key attributes, required for 

the tasks that users have to carry out. In particular, functional information is a versatile 

component that fits into every task description. “There is much need for land use data. 

Anything that can be produced on land use (per field polygon rather than as a grid) 

would be very useful”. This is a typical reaction by respondents. Interesting is an 

analysis of the interview records in regards to what kinds of functional information are 

valuable. There are too many to mention them all here, but they range from detailed and 

specific land uses, such as hospital, airport, pharmacy, pub, school, train station, or golf 

course, to generic types, for example industry, retail, town centre, residential, 

agriculture and conservation areas. “For emergency planning generally, great levels of 

details for buildings etc. are not needed (do not want too much clutter)”, whereas for 

other tasks “many of the other categories are too vague to be useful.  […] In terms of 

land use, much effort is currently put into identifying green spaces with public access, 

e.g. parks in towns which aren’t necessarily identified as such in current OS 

MasterMap.” Building use (residential, commercial, etc.) and building type (e.g. 

detached, terraced, bungalows) are of particular interest, and buildings are considered 

part of land use. In addition to land use type, the extent of urban areas and settlement 
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patterns is often needed. This includes building complexes such as airports, stations, etc. 

where the spatial relationship of buildings to other buildings and features around the 

property (e.g. roads, schools) are important. With the more general categories, for 

instance industrial area, it is also useful to identify the type of industry. 

 

The functional geography is complex, as can be seen from the multiple land uses 

required at varying levels of detail. Figure 7 illustrates an example of such different 

classification levels. To accommodate all these needs and cater for a greater range of 

services to customers, Ordnance Survey is implementing a single, integrated and unified 

large-scale master database from which all future products will be derived. This has 

implications for the storage of data and its attribution. Functional information will be 

integrated in the form of the attribute ‘base function’, which in essence represents the 

action, purpose or role for which a thing is specially fitted or used. In addition, 

functional sites will be created, where more than one feature are used together to 

support or perform a given function. Currently, the attribution is far from complete. 

‘Base function’ is extracted from existing cartographic text until functional information 

is collected directly when features are being surveyed. The mentioned ongoing projects 

both internally and externally as well as the user requirements not only emphasize the 

relevancy and importance of this thesis, but impose implications for a solution, as 

discussed in chapter 5. With functional information being crucial for so many 

applications, deriving new information at a low cost solution from existing data remains 

highly beneficial. 
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Figure 7 Hierarchical representation of land uses 
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On-demand mapping 

Geospatial data are only as useful as they are accessible, which means the data must 

contain all the relevant information for a given task, in a format that can be easily 

shared, analysed and commented on, and at variable scale representations. For national 

mapping agencies for example, multiple scale map production is a crucial element in the 

business to derive products with as much automation and flexibility as possible. A 

limited number of fixed scale maps usually accommodate the different levels of details. 

These however entail considerable leaps in detail from one scale to another, because at 

present there are no automatic facilities to modify the level of generalisation of 

available geo-data in commercial GIS.  The popular aim of national mapping agencies is 

to build a large-scale digital database from which medium- or small-scale cartographic 

models can be derived (Lee, 2004). The principle is that a multi-resolution spatial 

database is used to store low-level geometry that is attributed with scale-specific data 

that enable lines or polygons of a required level of detail to be reconstructed from their 

component vertices (Jones and Ware, 2005). A system that tailors products according to 

the end user requires such flexibility, along with the ability to combine different sources 

of data, as well as an understanding of what the user wants to have in the product and 

how it is represented. However, current map production systems involve a large amount 

of manual work, which limits the possibility of producing more custom orientated 

products. 

 

The problem is that general-purpose topographic databases are poor in semantics. This 

especially concerns the representation of higher order semantic concepts that extend 

beyond the meaning of individual, discrete objects. Generalisation rules refer to such 

higher-level concepts in the form of the spatial organisation, or context, of these objects. 

The semantic characteristics of map objects are necessary to obtain priority orderings 

among map objects and to form meaningful groups before informed decisions can be 

made about generalisation (Neun et al., 2004). What is required, therefore, are methods 

that make explicit the spatial relationships and semantic concepts implicitly contained in 

spatial databases (Lüscher et al., 2008). Indeed, the challenge in developing 

generalisation solutions roots from the complexity of generalisation tasks itself, where 

no features should be generalised in isolation (Lee, 2004). By enriching the source data 

with higher-level concepts, these concepts are then available to provide contextual 
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information for a generalisation process or they can be used as a map component in the 

final product.  

 

This process of map generalisation is termed semantic generalisation. It is the choice of 

the appropriate categories of information, or concepts that should be represented. 

Concepts can describe, for example, patterns and their roles at varying levels of 

representation. Mackaness and Edwardes (2002) argue that the combination of various 

patterns enables the creation of higher order phenomena – such as land use. By 

decomposing and defining patterns in terms of individual map objects, we can associate 

a set of generalisation methods used to manipulate those objects with the representation 

of an higher order phenomenon. An automation of the generalisation process then 

requires a model of these patterns and their transitions in a more meaningful and 

explicit way (Edwardes et al., 2005). Here, knowledge representations can be 

particularly useful in providing the necessary structures to model the categorisation of 

concepts hierarchically. At the top of the hierarchy are the most important concepts, 

whereas their more specialised subdivisions reside at progressively lower levels. The 

meronymy of concepts describes the partonomic relationships between objects. Hence, a 

semantic model essentially defines objects, relationships among objects, and properties 

of objects. These types of relationships are relevant to guiding semantic map 

generalisation, whereby finer or coarser distinctions are made between concepts 

according to the level of abstraction that is appropriate (Jones and Ware, 2005). 

Consequently, such a model provides a number of mechanisms for viewing and 

accessing the database schema at different levels of abstraction (e.g. Ram, 1995). 

 

The idea behind a multi-resolution database system is to take some input data, some 

target specifications (i.e., map specifications) and automatically trigger the sequence of 

generalisation tools that will transform the input data into the specified output data 

(Regnauld, 2008). This requires a framework for not only defining conceptually 

geographic entities and their target specifications of the final map product, but also 

suitable tools for retrieving and displaying objects in a given context. Geometric 

generalisation refers to the simplification of the shape and structure of the graphical 

symbols that represent individual features (Jones and Ware, 2005). Semantic 

generalisation therefore dictates to some extent the type of geometry necessary to 

construct map symbols. However, often the data enrichment algorithms themselves are 
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buried inside a generalisation process resulting in a typical black box approach. The 

enriched components are consequently dependant on specific implementation 

characteristics, which are inaccessible to the user, as well as on a particular data model 

and even schema (Regnauld, 2008). Because generalisation rules are loosely defined, 

often providing mere guidelines, it would be better to formalise the definition of the 

higher-level concepts and their derivation rules to allow the user to tweak them. 

  

We need to divorce ourselves from the black box processes to derive different 

components of the map. Instead, we should explicitly model higher-level concepts, such 

as functional information, and their associated abstractions. We need to understand 

individual objects, such as a building, in their context of use. We may want to know 

which areas of the city are residential, commercial, or industrial, and what spatial extent 

they have to inform generalisation processes or produce content specific maps. By 

making these types of high-level information available as components, they can be 

exposed to whoever creates new products. Ultimately, a user could have access to a 

structured library of such components to select one or more components he or she is 

interested in, and then be presented with a list of abstractions available for this or 

another concept. 

 

This semantic-based approach has the potential benefit of ensuring that concepts are not 

affected by changes in the structure of the source data, and that different representations 

of the same concept will be consistent, because the enrichment process is explicit. This 

will enable different application developers to share the tools processing the data 

(Regnauld, 2008; Neun et al., 2006; Edwardes et al., 2005). According to Ordnance 

Survey, it is important to integrate what has already been done, thus reusing existing 

methods and developing the missing components to deal with new requirements. The 

issues of generalisation therefore must be tackled in a collaborative manner, for 

example as part of the ICA commission on generalisation and multiple representations, 

to avoid temporary in-house formalisms that package and describe software 

components, which will have to be abandoned in the future to take advantage of a richer 

source of reusable components. An explicit modelling promises a solution to these 

problems, including data interoperability, user focus, and system flexibility. 
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Conclusions 

In this chapter, we have learned about the importance of enriching spatial data with 

higher-level information, or knowledge, to accommodate users’ requirements for 

integrated data at multiple levels of representation. In particular, there is a substantial 

demand for land use information by different applications and users, as indicated by 

Ordnance Survey’s customer research for incorporating land use into future releases of 

OS MasterMap. Land use information is regarded as a higher-level concept that is 

implicitly present within the spatial configuration of features stored in a spatial database 

or a remotely sensed image. If we revisit the first research question of this thesis, that is, 

what can spatial context and its configuration tell us about the functioning of its 

features, then we can conclude that there is indeed an eminent relation between the 

spatial form and its function. This relationship has been discussed both in its theoretical 

and practical implications. With the result that many models proposed in urban studies, 

despite different analytical and scientific views, acknowledge that there is a common 

understanding of the complex nature of the urban fabric and its functioning. Form 

reflects function and vice versa. 

 

Hillier’s configurational theory seems to offer the key to understanding urban 

phenomena both material (i.e., form) and immaterial (i.e., function). Many different 

implementation methods adopted his theory, from graph-theoretic approaches, or rule-

based aggregation, to clustering and other classification procedures. Each one tries to 

create a mapping between land cover parcels and higher-order meaning of the scene 

such as land use. Despite the common demand for inferring higher-order meaning from 

spatial data, existing approaches suffer from considerable limitations that are often 

reflected in the classification accuracy, complexity, processing time, and lack of human 

capacity of interpretation. According to Minsky (1975), large amounts of knowledge are 

required to make machines intelligent and to provide intelligent information processing 

– indeed, ‘you cannot tell you are on an island by looking at the pebbles on a beach’. 

Interpretation, or inference of higher-order meaning, is a knowledge intensive task, and 

it has therefore been widely acknowledged that research on information extraction must 

consider primarily the semantics of the data. 
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Semantics is often linked to different conceptual levels of abstraction, as higher-level 

information is largely described by meso objects – a description of a combination of 

individual, micro objects. If we consider built environments as organised systems whose 

primary nature is configuration, then we must treat inference as a configuration 

problem. Instead of building up a configuration from individual components, we need to 

decompose the high-level entity into its constituting elements. A given land use type 

therefore specifies all its necessary components such that a residential area, for example, 

consists of residential houses in terraced, semi-detached or detached form. We need to 

identify the requirements that specify what types of land cover parcels constitute a land 

use and constrain it through their general morphological properties. Configuration 

problem solving then consists of finding the optimal layout in the data and aggregating 

individual objects into meso structures. Of course, land uses cannot always be neatly 

categorised. In the real world, one will find that more than one land use can exist for the 

same parcel of land. In figure 7, for example, land uses at the very fine level of detail 

(level 3) are too specific to be inferred from land cover data alone. These kinds of 

information are often available in points of interest data or as cartographic text labels. 

However, the general top-level categories (level 2 and 1), such as residential or 

industrial, are more likely to be implicitly stored within spatial data because they form 

the conceptual aggregation of individual, discrete objects. Specific land uses then can be 

aggregated into their primary, general land use of a given area. 

 

Consequently, we need to create a one-to-one mapping between rich, semantic 

knowledge on the one hand and the constituting syntax of land cover objects on the 

other hand. The interpretation of the spatial environment is then achieved by placing the 

meaning of individual objects into progressively, higher-level groups of objects, similar 

to the way we process natural languages. By exposing these higher-level structures, data 

will reflect more the way people perceive the world, not just the geometry of physical 

topographic features (Montello, 2002). Knowledge representation formalisms offer 

useful structures for modelling these kinds of high-level concepts. This thesis will 

explore a knowledge-based approach to innovate the area of inferring land use 

information directly from topographic maps. First, however, we need to learn about the 

types of processes and knowledge involved in such a task. 
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Chapter 3 

Interpreting Higher Order Meaning from Topographic 
Maps 

“One reason for the deficiency in the representation of geographic phenomena in a 

way that is appropriate for a wide range of application contexts is that the conceptual 

models currently employed for such digital geographic data representation do not 

incorporate any explicit consideration of how humans cognitively store and use 

geographic knowledge.” 

–Mennis et al. (2000, p. 501) 

 

We use and live in our environment taking it for granted, acting upon it almost 

unconsciously, exploiting it, referring to it, solving our daily spatial problems of how 

to get from one place to another and absorbing a daily wealth of information. Yet, we 

do not realise the wonder-like capabilities that are tied with these processes that seem 

to happen so effortless when performed. I am referring to our so-called black box of a 

mind that allows us to reason, acquire and structure our knowledge; let alone to which 

nouns like personality, thought, memory, intelligence and emotion are subscribed. 

Indeed, a variety of social sciences especially kinds like psychology and anthropology 

are concerned with discovering the mind and its fundamental cognitive processes. 

Here, however, a pure geographical perspective is taken to investigate more closely 

our spatial knowledge of the functional environment and how we interpret its spatial 

characteristics as depicted in maps. 

 

The most universal and well-known representation of geographic phenomena is the 

map. The map is special because it is both a graphic image as well as a geometric 

structure in graphic form (Peuquet, 1988). The variation of lightness and darkness, 

pattern, and possibly variation in colour characterise the map as an image. It may or 

may not convey meaning, as in the case of an abstract painting. The map’s geometric 

structure, on the other hand, provides an unambiguous representation in an 

appropriate coordinate system. Peuquet (1988) argues that since maps are human-

derived representations of geographic space, this image versus structure duality also 
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holds for how humans perceive geographic space, corresponding to the world as seen 

(image) and the world as understood (structure). In models of human perception of the 

spatial world, it is generally agreed upon that there is a distinction between what is 

seen and what is understood. In fact, what is seen is the result of a synthesis of 

different types of input: visual, auditory, olfactory, and kinaesthetic (Downs and Stea, 

1977). Some may argue that people perceive their environments in similar ways 

because of these physiological similarities (Mark and Frank, 1996). Others believe 

that the world is perceived in an individual way. Neisser (1976), for instance, claims 

that people only see what they know to look for, what they expect to see, and what 

they want to look for. In contrast, what is understood from the perceived world must 

be interpreted based on prior knowledge or experience, which in turn can also become 

knowledge and influence how subsequent inputs are interpreted (Peuquet, 1988). 

“Perhaps much of the confusion that lies at the heart of geography today results from 

an awareness that there are simply many geographies and many possible worlds” 

(Golledge, 1982, p.21). Indeed, no single representation of the world incorporates 

every possible viewpoint. The myriad of geographic models mirrors this dilemma to 

the degree whether a small-scale space relates to body sizes and smaller (Siegel, 

1981), or to that of a single room (Gärling and Golledge, 1987), or to that of a 

tabletop view of a large space (Mandler, 1983). Hence, the discrepancy of space 

representation relates to both the psychological connection to the world as well as to 

geographical and mathematic representations of space (Mark and Frank, 1996). 

 

This dichotomy reveals the importance of bridging the gap between widely deployed 

models of space and what research in cognitive sciences identified as being important 

for human interaction with and conceptualisation of space (Mark et al., 1999). For 

example, Mennis et al. (2000) point at existing conceptual models employed for 

digital geographic data representation, which do not incorporate any explicit 

consideration of how humans cognitively store and use geographic knowledge. It is 

important that spatial data models represent information in a way that is more natural 

to humans. This will not only result in improved spatial information processing, but 

also accommodate a wider range of application contexts. To get a step closer to filling 

this gap, we need to ask specific questions about people’s understanding and 

reasoning over space, the environmental characteristics that influence people’s 

knowledge, and how all these aspects can be modelled in a way appropriate for the 
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computer to process this information. Therefore, this chapter addresses two important 

issues. Firstly, we need to learn more about people’s perception of space and spatial 

cognition to define an appropriate solution for better information processing and 

inference. Secondly, because interpretation is a knowledge-intensive task, we need to 

find relevant persons to gather their reasoning skill and specialised knowledge –

intellectual cloning as Wilson and Keil (1999) call it – to embody that knowledge and 

reasoning later in a program, or other form accessible to the computer. 

 

Social sciences apply both qualitative and quantitative survey techniques, such as 

interviewing or questionnaire research, to unravel the unknown from human 

behaviour, whether it is exploring reasons behind processes or relationships among 

phenomena (Pope and Mays, 1995). A questionnaire survey thus provides the relevant 

material by aiming to derive consistent cognitive information from human experience 

of geographical space (Thomson, 2007). Questions are posed about the types of 

structures and patterns perceived according to each land use concept, the relevant 

(cognitive) approaches for identifying land uses within a topographic map, as well as 

on the common properties for the instances of a concept and the spatial structure 

among these concepts. By dissecting this information, the spatial environment is cut 

up and organised into concepts, and knowledge is induced. This chapter therefore 

analyses the problem of interpreting land use information from a human perspective. 

Together with relevant theoretic underpinnings and existing experiments as described 

in the next section, the questionnaire survey will indicate necessary knowledge and 

reasoning skills required for deriving a solution (section 3.2). 

3.1 Spatial perception, cognition and categorisation 

Human cognition takes place in a social and cultural context making use of tools such 

as language and communication, concepts and beliefs. Arguably, the very existence of 

culture is both an effect and a manifestation of human cognitive abilities, and human 

societies of today culturally frame every aspect of human life and cognitive activity 

(Sperber and Hirschfeld, 1999). Many different forms of cultures have evolved over 

time, perhaps not as an effect of biological variation, but more specifically from 

cognitive endowment given that different historical and ecological conditions make 

such variations possible. For example, studies of folk biological knowledge and their 
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classifications postulate that knowledge is based on a domain-specific approach to 

living things characterised by specific patterns of categorisation and inference (Atran 

(1990). Even though the initial approach to distinguishing these domains may be 

general across cultural knowledge, domain-specific knowledge results from the 

variation of identification and interpretation of such phenomena. Thus, despite the 

disposition to classify animals in the same way, local faunas differ and so does 

people’s involvement with this fauna (Sperber and Hirschfeld, 1999). As a result, 

domain-specific abilities contribute to explaining cultural diversity, as the information 

processed meets specific input conditions that depend on the environment. These 

environments are not always natural, and the greatest variation of cognitive 

disposition is found across our artificial, man-made environments. Hence, culture may 

be thought of as an ensemble of representations or classifications, schemas, models, 

etc., whose possession make one become a member of a cultural group. Its pool of 

traits enables, constrains, and channels the development of cognitive outputs. For 

instance, different language systems have an impact on segmentation, categorisation, 

and modes of thought in general, hence limiting our abilities to conceptualise the 

world (Tversky and Lee, 1998; Berlin and Kay, 1969). This means that not only do 

human mental processes make use of cultural tools, like language, models, expertises, 

values, etc., but they are also a reflection of that culture, just as they are a reflection of 

the environment at that place and time. As a result, everything that surrounds us 

shapes our knowledge – let it be socially, culturally, experientially or 

environmentally. 

 

Our interaction with the environment is a correlation between what is perceived and 

how the perceived is interpreted. Max Wertheimer (1924) established the most 

predominant principles of perception, and became renowned as founder of Gestalt 

theory. Gestalt theory overrides the previous perceptual theory of a structuralistic 

nature by arguing that people perceive organised scenes consisting of surfaces, parts, 

and whole objects coherently arranged in space rather than as a chaotic, dynamic 

juxtaposition of millions of different colours registered by retinal receptors. Stimulus 

factors, such as proximity, similarity of colour and size, common fate, good 

continuation, common region, closure and element connectedness, cause elements to 

be perceived as organised in distinct groups. For example, shape is related to concepts 

such as form and structure, and provides valuable clues about an object’s identity, as 
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well as information that are critical to manipulating objects and determining their 

functional properties or affordances. Shape perception depends on part on feature 

extraction processes, and processes that group elements into higher-order units. We 

can perceive both the shape of the individual elements, as well as the global shape of 

the grouped elements (Wilson and Keil, 1999). This emphasizes the doctrine of 

holism based on the assumption that the whole, i.e., the group of elements, is different 

from the sum of its parts, or individual elements. 

 

People’s awareness of space is a result of how we explore geographic space by 

navigating in it, and how we conceptualise it from multiple views, which are put 

together mentally like a jigsaw puzzle (Egenhofer and Mark, 1995). Golledge (1992) 

examined in detail the components that make up spatial knowledge: The location of 

occurrences, spatial distribution of phenomena according to pattern, shape or density, 

regions or bounded areas of space, hierarchies, networks, spatial associations, and 

surfaces or generalisations of discrete phenomena. Many researchers draw an analogy 

to the cognitive map with which they metaphorically describe how people process and 

recall spatial information (Holyoak, 1999). We retrieve knowledge according to 

conglomerations of information drawn from different sources and modalities that are 

pulled together for a particular purpose or problem-solving task (Mark et al., 1999). 

For spatial problems, such as navigating through the environment, we rely on our 

sophisticated mental representations of spatial relations. The cognitive map is one 

way to describe the mental representation that is derived from the environment and 

allows us to make sense of that environment. 

 

There are numerous metaphors out there each trying to describe more appropriately 

the mental processes that lie beneath our spatial knowledge: From the cognitive map 

(Tolman, 1948), imaginary map (Trowbridge, 1913) spatial images (Lynch, 1960), 

cognitive atlases and the ‘map in the head’ metaphor (Kuipers, 1982), to spatial 

mental models and cognitive collages (Tversky, 1993). The image comes much closer 

to what a map in the mind resembles metaphorically. A picture is worth a thousand 

words (Pinker, 1997), and as such ideally serves as a means to achieve cognitive 

economy. However, not any two mental representations can be similar between two 

people. Mental representations, or cognitive maps, are greatly influenced by 

experience, age, and styles of training and thinking (Downs and Stea, 1977). From a 
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geographical point of view, a mental representation can never exactly portray its 

captured spatial environment. Previous psychological research has revealed that 

spatial information is largely distorted and subject to systematic error (Tversky, 1993; 

Lloyd and Heivly, 1987). Furthermore, humans are lacking the storage capacity to 

allow perfect identity between representations and the spatial environment (Downs 

and Stea, 1977). This reflects somewhat Alexander’s point (1965) that the limited 

capacity of the mind to form intuitively accessible structures results in simplified 

representations that cannot encompass the complexity of the real world in all its 

facets.  

 

Corresponding to psychologists, the purpose of this mental mechanism is to cut down 

information, or to generalise it into manageable portions for memory to hold all the 

events. By recognising, differentiating and understanding it, we categorise the 

conceived information into apprehensible chunks, assigning categories to one class 

according to shared characteristics, and across classes based on their distinct 

characteristics. Eleanor Rosch (1978) revealed that categories arise out of an 

interaction between stimuli and process. This means category processors, like human 

beings, require the ability to judge similarity between stimuli, to perceive and process 

the attributes of a stimulus, and to learn. On the one hand, the function of the category 

system, or classification, provides maximum information with the least cognitive 

effort, thus aiming for cognitive economy. On the other hand, the perceived world 

comes as structured information rather than as arbitrary or unpredictable attributes. If 

categories map the perceived world structure as closely as possible, then also a state 

of cognitive economy can be achieved. According to the latter principle, the category 

system is already existent in the culture at a given time. 

 

Rosch (1978) proposes a category system based on vertical and horizontal 

dimensions. In general, the vertical dimension refers to the level of inclusiveness of 

the category, whereas the horizontal dimension refers to the segmentation of 

categories. This has the implication that in the vertical dimension not all possible 

levels of categorisation are equally good or useful. According to Rosch, the most 

basic level will be the most inclusive level at which categories can mirror the structure 

of attributes perceived. The basic level is the one first learned by children, preferred in 

naming and most rapidly categorised by adults (Wilson and Keil, 1999). In the 
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horizontal dimension the distinctiveness and flexibility of categories is increased. 

Where a category member is placed within the structure depends on its typicality, the 

degree of category membership, or goodness of example. The more prototypical of a 

category the member is rated, the more attributes it has in common with other 

members of the category and the fewer with members of contrasting categories. 

Hence, separateness and clarity of continuous categories is achieved by conceiving 

each category in terms of its clear cases rather than boundaries. 

 

A category member equals a concept or object whose belonging is determined by its 

shared attributes or characteristics. In Wilson and Keil (1999, p.176) the term concept 

is defined as “the elements from which propositional thought is constructed, thus 

providing a means of understanding the world, concepts are used to interpret our 

current experience by classifying it as being of a particular kind, and hence relating it 

to prior knowledge”. Various views of the concept exist, whose elements are, 

according to Smith et al. (2005), often found mixed up together in almost all 

terminology-focused work in informatics nowadays (table 1). 

Table 1 Views of concepts 

View of concepts Definition of concept 

Psychological view Mental entities, analogous to ideas or beliefs 

Linguistic view Meanings of general terms 

Epistemological view Units of knowledge, as in knowledge representation 

Ontological view Abstractions of kinds, attributes or properties 

Theory of basic levels Basic level of categorisation corresponding to high-frequency used nouns 

 

From a geographical point of view, concepts and objects must form some relation 

between the geographical world and our understanding of it. Following Wüster’s 

definition (Smith et al., 2005), an object is defined as anything perceived or 

conceived: Some objects are considered as material, some as immaterial or abstract, 

and others as purely imagined. Consequently, it can be said that geographic objects 

depicting real world spatial entities are materialistic things, such as a river or building, 

whereas their perceived attributes, which are the ways in which humans habitually use 

or interact with those objects, are immaterial or abstract ‘objects’ in that sense. With 

respect to Rosch’s theory of basic levels, there should be a basic level of geographic 

objects. Similarities of the prototypes and structure of such a basic level is found in 
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some categories describing geometrical forms (for example, circle, square and 

equilateral triangles), and judgements of physical distance (Vorwerg and Rickheit, 

1998).  

 

Considering these aspects, it is important to find a coherent means by which concepts 

and their characteristics can span the divide between concepts as creatures of the mind 

and as properties of objects in the world. To build a conceptualisation worthy of 

representing our geographical environment according to its interaction with human 

beings requires a bridge between human knowledge and that of real world entities. 

Although, the lingering incoherence is reflected by manifold representations of ideas 

in people’s minds, meanings of words, and consensus knowledge of experts in a 

discipline or types of entities in the world (Smith et al., 2005). We can expect from 

the above account that the conceptualisation will be more or less an exact reflection of 

the real world. If the category system is already existent in the culture at a given time, 

then how differently, if at all, is this information organised in our heads?  More 

importantly, how can we accurately capture this structure and its containing 

knowledge? According to Mark and Frank (1996), mental models can reveal 

themselves through spatial reference in natural language, through experiments with 

human subjects, through observation of spatial behaviour, or through study of the 

artefacts of such behaviour. The form of mental models is expressed in either of two 

media, imagery (mental maps) or words (categories) (Downs and Stea, 1977). Yet, 

Harding and Davies (2004) claim there remains great uncertainty as to the ‘best’ 

model for human categorisation even in relatively straightforward domains such as 

biological kinds. How can a conceptualisation that represents geographical as well as 

functionally abstract concepts account for fuzziness, for example? Crispness may only 

exist in idealisation or system of rules, which abstracts away from complicating 

aspects of reality, as Pinker (1997) claims. Yet, a concept becomes fuzzy again if 

taken out of its idealised theory. People form concepts that find clusters in the 

correlational texture and vicissitudes of the real world. As Rosch (1978, p.42) notes, 

“it is predetermined that there will be context effects for both the level of abstraction 

at which an object is considered and for which items are named, learned, listed, or 

expected in a category”. 
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Conceptual encoding, or conceptualisation, thus occurs in a wide range of phenomena 

in perception, attention, language comprehension, and memory. For example, 

concepts help us to grasp and communicate about spaces. The way location is 

described by a formal model through coordinates or its scientific geographical 

vocabulary, differs largely from the way people describe a location on a day-to-day 

basis (Hockenberry, 2004). These descriptions not only identify places, but give 

members of our socio-linguistic group information about them, building up a jointly-

defined cultural world-view within which we all act on a daily basis (Waters and 

Evans, 2003; Agarwal, 2004). Conceptualisations, however, vary greatly among 

different domains. For instance, the conceptualisation of topography varies greatly 

among topographic cartographers, information scientists, and geomorphologists, 

between that of pilots, explorers, anthropologists, hikers, and archaeologists (Mark 

and Smith, 2005). This yields the question what people will look for in a topographic 

map, depending on their knowledge and expectations, and how principles of 

perception will guide people’s understanding. Those discrepancies highlight the 

importance of incorporating cognitive aspects into our geographical models. And 

indeed, the nature of geographical knowledge and its research has been changing; 

changing from its declarative nature of collecting and representing the mere physical 

and human facts of existence, to the creation of knowledge generated by emphasizing 

cognitive demands focusing on processes and asking the ‘why’ and ‘how’ questions 

(Golledge, 2002). 

3.2 Relating land use to the landscape character: An investigation 

Questionnaires provide an objective means of collecting information about people’s 

knowledge, beliefs, attitudes, and behaviours. They offer a useful instrument for 

capturing knowledge as part of ontology engineering (Thomson, 2007), which is 

concerned with formalising a conceptualisation of a specific domain. Prior to any 

conceptualisation, a recording of the relevant knowledge is necessary. Finding a 

source of expertise that can be harvested is one challenge, the other is faced by how 

this information can be most efficiently extracted. The relation between humans and 

their knowledge about and their interaction with the environment is not an easy one to 

ground, as can be seen from numerous theories such as empiricism, positivism, 

rationalism, idealism, or constructivism, that offer different explanations for the 
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nature of knowledge (Gale and Golledge, 1982). Knowledge is something conscious, 

something that needs to be recognised.  As Downs and Stea (1977, p.xiii) note: “The 

ability to understand ourselves is limited by the ever-present feeling that much of how 

we behave and how we think is obvious, that these are things that everybody ‘knows’. 

We hamstring ourselves with the disparaging remark that something is trivially 

obvious.” Often knowledge, or lack of knowledge thereof, becomes only apparent 

when it is required, such as when we are taken out of our familiar environment and 

loose sense of orientation. 

 

From a geographical perspective, knowing is constituted by the environmental habitat 

that provides the necessary context for learning with constant feedback and 

adjustment (Hutchins, 1995). Indeed, knowledge can be gained by direct experience, 

but as well by facts and second-hand information. However, what is individually 

understood as knowledge depends largely on a person’s beliefs and truths that one 

confides in. Beliefs are thought of as psychologically-held understandings, premises 

or propositions about the world that are thought to be true (Richardson, 1996; Hofer 

and Pintrich, 1997). Therefore, what is accepted as knowledge may well be infiltrated 

by certain beliefs and truths that may lead to ‘contaminated’ knowledge. In respect to 

specific technical knowledge, this may not be such a concern, as knowledge is well 

documented and can be gathered from a domain expert. 

 

Most knowledge acquisition techniques focus on interviewing a single domain expert, 

who might be directly involved in the project itself, or extracting knowledge from 

loosely structured textual or multimedial data, or databases (Svátek, 2006). However, 

if the system relates to the geographical domain and its rich yet familiar phenomena, 

then subjects become malleable to its physical, cultural and social influences that 

provide people with the information to be perceived, processed and conceived, as we 

saw earlier. Thus, beliefs vary according to gender, ethnic, cultural difference, and 

spatial context. Nevertheless, geographical knowledge is concerned with common or 

natural phenomena. Since we are dealing with human lives and their perception of the 

environment that poses as the normal setting for people’s activities (Downs and Stea, 

1977), every person becomes an expert in their own right: “Anyone who inspects the 

world around him is in some measure a geographer” (Lowenthal, 1961, p.242). If 

knowledge is to be drawn from a wider population, then survey techniques as 
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employed by social sciences become a means to an end. After all, it is the knowledge 

derived from a number of experts that will always exceed that of a sole person 

allowing for the generalisation of the subjective to the objective interpretation of 

knowledge.  

Aims of the survey 

If we recall, the overall aim of the thesis is to derive a mechanism that can (semi-) 

automatically process a topographic database to infer additional, previously implicit 

information of a functional nature – something, so I argue, that can be done easily by 

human beings. The purpose of the questionnaire survey is to learn how humans reason 

about geographical data. The challenge of geographic reasoning is that it must 

typically deal with incomplete information (Egenhofer and Mark, 1995). People can 

draw sufficiently precise conclusions, for example by completing missing information 

intelligently or by applying default rules, frequently based on common sense. In fact, 

Barkowsky and Freksa (1997) argue that people succeed in combining their general 

spatial knowledge with the contents of maps in such a way that an overall inference 

works even if the individual contributing pieces of knowledge appear deficient. We 

need to uncover how people conceptualise the physical environment, especially in 

relation to its use, how people reason and infer knowledge from a topographic map, 

and how we can best capture this knowledge. These concerns directly touch upon 

people’s abilities and lives as seen earlier; they are not merely theoretical.  

 

The survey presented here is not concerned with assessing spatial abilities of people 

(e.g. Smith and Mark, 2001; Mark et al., 1999). Neither does it address how cognitive 

mapping is developed and learned (e.g. Held and Rekosh, 1963; Orleans, 1973; 

Grittens, 1969), nor does it identify errors and distortions in spatial memory (e.g. 

Gehrke and Hommel, 1998; Lloyd and Heivly, 1987; Jahn et al., 2005; Rothkegel et 

al., 1998). Instead, the interest lies with capturing spatial knowledge on land uses, to 

understand abilities and processes like grouping principles behind interpreting a 

topographic map according to function, and to identify people’s internal 

conceptualisation of the spatial composition of land uses. Indeed, visual search 

processes used in map reading have been investigated (e.g. Board and Taylor, 1977; 

Barkowsky and Freksa, 1997) as well as the semantic meaning of land cover (e.g. 

Comber et al., 2005a, 2005b, and 2005c). The aim here is to elicit ontologies from 
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human subjects to provide guidelines for developing links between high-level 

functional information and spatial data. 

 

Central to this questionnaire survey is hence the interpretation of topographic maps 

and the associated reasoning process that operate on it (Kosslyn, 1978). Over the past, 

many cartographers embraced an experimental paradigm and studied the interaction 

between the map and map-reader (Freundschuh and Egenhofer, 1997). We can 

describe this interrelationship by the earlier introduced ‘map in the head’ metaphor, 

which, being inspected by the ‘mind’s eye’, is functionally identical to a graphical 

map inspected by a ‘physical eye’ (Kuipers, 1982). This implies a direct relationship 

between the map’s depicted reality and that of a map reader, as illustrated in figure 8 

derived from Koláčný’s (1969) communication model about cognitive aspects of 

cartography.  

 
Figure 8 Mapping between a map’s depicted reality and a map reader’s reality 

Originally, such a communication model was developed to systematise the process of 

cartographic communication by illustrating influencive factors between the 

cartographer’s mind and the map reader’s mind, to better understand resulting 

implications for map design and interpretation. Such a communication is not far off 

from what is to be achieved in this thesis. However, the central concern does not lie 

with the processes of communication, but with the map reader’s expected view of a 
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real world representation, and that of the cartographer’s map accurately depicted 

view. Both the map and the person inspecting the map carry a representation of reality 

determined by a variety of factors. By unifying these representations, we combine 

detailed spatial information from the map data with human-acceptable concepts that 

are intrinsically tied to their underlying geography, and thus to the data itself 

(Thomson and Béra, 2007a). 

 

This thesis therefore relates human spatial perception of land use to the landscape 

characteristics. It accounts for the ways in which people represent and combine 

geographical information, how they recall it, and reason to derive new knowledge. As 

a result, the purpose of this undertaking is threefold: 

1. To study a topographic map according to the processes that operate on it when 

it is being inspected by the map reader; 

2. To study the nature of the input, or stimulus, perception and analytic processes 

and the nature of similarity judgement; 

3. To study a person’s conceptualisation according to the principles and structure 

of categorisation. 

From this, we can induce relevant knowledge, capture and translate it into a machine-

readable knowledge base (Thomson and Béra, 2007a). Later, an ontology can model 

this knowledge (see chapter 5) by explicitly stating how relevant concepts and their 

constituting objects relate to each other and manifest themselves in their physical 

existency in both reality and that of the representing geography. 

Questionnaire design 

Earlier in this chapter, we learned about spatial perception, cognition and 

categorisation of people. The related theories have important implications for the 

design of the questionnaire. The ability to think about one’s own cognitive processes 

is fundamental to answering questions about the interpretation method, yet it remains 

a difficult task to make this knowledge explicit. Culture is both a ramification and 

manifestation of human cognitive abilities and, as such, cultural and social aspects 

will influence a respondent’s way of thinking. It seems likely that answers will be a 

mere reflection of the spatial composition of land use types, because the physical 

environment and what it affords determines the input information for people and with 

that their knowledge. One may wonder why to perform a questionnaire survey in the 
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first place, if it only states the obvious. Nonetheless, its purpose is to capture 

knowledge, and a study of ways non-experts conceptualise a given domain of reality 

might help efforts to maximise future usability of the ontology, let alone through its 

empirical testing (Smith and Mark, 2001). Furthermore, if people’s perception and 

representation of space differs individually due to the way they experience their 

environment, then it is important to generalise cognitive views across more than one 

person. 

 

The first task of the questionnaire is to identify how humans interpret a topographic 

map for land use information. The map is studied in relation to the processes that 

operate on it whilst it is being read and interpreted. Interpretation requires the human 

ability to draw analogies from the familiar to the unknown. Because geographic kinds 

and concepts differ from everyday objects and kinds perceived by people, land use is 

not something people think about much in their daily lives. Nevertheless, Berendt and 

Barkowsky (1998) argue that operations performed on maps are routinely performed 

on internal representations making them natural and easy to accomplish. Of interest is 

how laws of perception influence and determine the map interpretation. In Barkowsky 

and Freksa (1997), a hierarchic order on different classes of aspects, or pieces of 

information, on a map is imposed for modelling interpretation processes. This 

technique reveals the depictional precedence of information used in the interpretation 

process. For example, existence and connectedness decrease in importance to distance 

and shape, which are only interpreted indirectly. Thus, the importance of map clues 

(i.e., shape, proximity, symmetry, contrast, etc.), context, scale, and perceptual criteria 

need to be evaluated as part of the interpretation decision. The questionnaire focuses 

on interpreting the geometry and configuration of mapped land cover parcels. 

Consequently, the topographic map needs to be stripped of all its additional colouring, 

cartographic text, scale and orientation information that is used to communicate the 

information in its entirety. 

 

Existing nomenclatures of land use types have specific terminology for their 

categorisation, whereas spatial data only offer descriptions to space and its coordinate 

system. People do not refer to space but place, and thus substitute scientific 

geographical vocabulary with shared, everyday descriptions of place. To make data 

more accessible, it is important to learn which terms offer the most natural description 
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for people. This can be achieved by asking respondents to describe their interpreted 

areas with one word, not having them biased previously with land use terms. 

Furthermore, instead of making people just think plainly in terms of land use, the 

respondents should be asked how they would make use of an area and what the 

deliberate purpose is of an area. Thus, by having two maps interpreted according to 

use and purpose respectively, we will learn how people communicate about land uses, 

perhaps revealing a ‘vernacular’ geography for land use.  

 

Another important aim is to study people’s conceptualisation about land use, and 

generally the knowledge they have about its spatial organisation and relations. People 

reason about spatial problems with their mental representation composed of pieces of 

information, images or diagrams, and beliefs and emotions. Mental models can reveal 

themselves in two forms: as images or words. Language determines but also limits the 

way the world is perceived and conceptualised. The question is how people internally 

conceptualise a land use type’s spatial composition. The questionnaire must offer a 

series of questions that capture the conceptualisation in written words and according 

to a structure that is similar to our innate structures of categorisation. As we learnt in 

section 3.1, categorisation is a means to achieve cognitive economy. It allows us to 

separate concepts into crisp categories. According to Rosch (1978), the vertical and 

horizontal dimension of our category system allows us to structure, organise and 

conceive our perceived environment. If we adopt a similar approach to this survey, 

then we can structure questions according to a horizontal dimension, where separate 

categories describe a land use spatially, and to a vertical dimension, where those 

categories are further described in detail according to a set of questions (Thomson and 

Béra, 2007a). This would look similar to the representation given in figure 9. The first 

question addresses concepts for a chosen land use type (i.e., the goal), describing it 

spatially according to other functions which make up that land use. This is then 

followed by questions addressing each concept’s purpose, role and affordance (i.e., 

words defining its function), as well as its physical object of which the concept is 

made and its physical property and other relations. Consequently, taking a top-down 

approach from the general to the specific, the underlying land cover defines and 

represents high-level land use.  
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Figure 9 Top-down approach for capturing a person’s inner conceptualisation 

Altogether, the questionnaire consists of four tasks. Figure 10 illustrates a flow chart 

of the tasks highlighting procedures and interplay between them and their measures. 

The first task is to interpret two plain topographic maps according to use and purpose 

of their depicted areas. The expected output is information on relevant concepts to the 

ordinary map user, and if respondents are capable of interpreting ‘successfully’ a plain 

map for land use information. The second task evaluates the interpretation process of 

the first task by asking open-ended, closed and attitude questions. A person’s 

approach to interpretation is measured considering difficulties, abilities and other 

factors. Important is the question whether the respondent is able to identify the 

location of the depicted area in the map. Ideally, this should remain unknown, so that 

it does not cause any bias in the interpretation. The chance of this happening has been 

reduced by stripping the topographic maps to their bare minimum and choosing a 

large scale. From this, it is expected to gain an insight into the reasoning processes 

behind interpretation and inferring knowledge. The third task captures a person’s 

conceptualisation and knowledge of land use. The output will reveal how someone 

spatially conceptualises a given land use. The fourth and last task addresses the 

respondents’ demographic information, which is required for analysing the 

questionnaire data. These tasks have been revised during pilot testing. The 

questionnaire can be found in appendix A. 
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Figure 10 Questionnaire flow chart 
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Population and Sample 

The survey aims at respondents that are familiar with geography and mapping. This 

deliberate choice of respondents ensures information-rich cases for in-depth study 

(Patton, 1990), and that respondents’ skills and knowledge are sufficient for the tasks 

and questions within the survey. The sample therefore complies with the purposive 

sampling strategy for the explicit selection of respondents that will generate appropriate 

data, as opposed to statistical sampling strategies used in quantitative studies, which are 

more concerned with the representativeness of sample in relation to a total population 

(Pope and Mays, 1995). The pilot study involved a number of PhD students (Np= 7) 

from UCL, and proved the usefulness and success of responses from this type of 

participants.  

 

The sample size of such an explorative and descriptive study is dependent on the aims 

of the survey, availability of eligible respondents, and limitations of time and resources, 

as in contrast to probability samples where sample size can be calculated  to minimise 

effect size and achieve precision (Green and Thorogood, 2004). The number of 

participants for the final survey aims at a small sample (a total of NT= 18 participants) 

due to the labour intensive analysis of qualitative data and the difficulty in recruiting 

participants. Such a small sample is not representative and does not aim to test 

hypotheses. The survey therefore only provides indicative information on the 

respondent’s interpretation and conceptualisation of land use. However, it is possible to 

carry out a wider research in future. 

 

The majority of the sample is male (77.8%) and British (83.3%). The age distribution’s 

majority is between the age of 18 and 30. A good mixture of participants took part with 

both varying educational levels and varying places of living and work including rural 

areas, towns and cities. Most respondents, more specifically half of them, are familiar 

with topographic data, whilst the rest is distributed among somewhat and a little of less 

familiar. The type of map data usage explains this high degree of familiarity. Maps are 

mainly used for personal and professional purposes. Ordnance Survey map products are 

used 77.8% of the time compared to other data such as street maps, digital maps, town 

plans, aerial photography, and terrain models. The frequency of map use has its 

majority between frequently (50%) and often (27.8%). More importantly, however, is 

that respondents did not recognise any of the locations depicted in the two maps to 
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avoid bias creeping into the map interpretation results. Despite the use of London data, 

and including participants from London, none of the participants identified the locations 

shown in the maps. 

Collection of replies and analysis method 

The data were collected by means of a self-administered, structured questionnaire. The 

method of distributing self-administered questionnaires allows participants to complete 

the questionnaire at their own time and convenience, besides being more cost effective 

than recruiting participants and performing interviews. The collected data were then 

categorised and coded to allow entering of the results into appropriate data files (Wall et 

al., 2002). The assigned codes for the categories of each question, including codes for 

missing values and non-responsiveness, are compiled in appendix B. This includes the 

description and type of each question, its data type, measure level, variable names and 

labels, the value labels (i.e., code), any missing values, and the analysis method. Due to 

the qualitative nature of this study, we are dealing with string data and nominal and 

ordinal measurement levels. Especially with regard to the numerous open-ended 

questions, which provide free text descriptions, it is necessary to identify initial themes 

or concepts. By labelling and sorting data according to concepts or themes, we can 

detect emerging patterns and develop appropriate explanations. It requires reviewed 

decisions of where to be specific in terms of increasing the number of categories, or 

where to reduce similar answers into the same category, and hence loosing some of the 

richness of the data. Nonetheless, these iterative steps are typical analysis procedures in 

any qualitative analysis, as illustrated in figure 11 (Ritchie and Lewis, 2003). Such a 

methodical and standardised approach is crucial for ensuring a good qualitative analysis 

that is able to document its claim to reflect some of the truth of a phenomenon by 

reference to systematically gathered data (Pope et al., 2000).  
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Figure 11 The stages and processes involved in qualitative analysis 

 

For analysis, the elicited data were entered into the statistical analysis software SPSS 

version 14.0. Due to the mixture of data types, a number of different statistical analysis 

options are available. For binary or yes/no answers, statistics such as Chi-squared, 

Spearmans, Wilcoxon, Mann Whitney, and Kruskal Wallis are useful. The rating or 

visual scale requires for example the T-test, Pearsons, Analysis of Variance (ANOVA), 

or cumulative frequencies and proportions. For open-ended replies, one can employ 

thematic content or discourse analysis, or also frequencies and proportions. The analysis 

of the survey results is mainly limited to running simple counts, frequencies, 

percentages, and row proportions due to the majority of categorical responses. 

Nevertheless, these simple statistics summarise the results, display the relative 

distribution of responses, and thereby identify emerging patterns and tendencies. 

Employing these standard analysis techniques ensures the results are valid and reliable 

for analysis. 

Seeking applications to 
wider theory 

RAW DATA 

Identifying initial 
themes or concepts 

Labelling data by 
concept or theme 

Sorting data by theme 
or concept (in cross-
sectional analysis) 

Summarising or 
synthesising data 

Identifying elements 
and dimension, 
refining categories, 
classifying data 

 

Detecting patterns 
(associative analysis 
and identification of 
clustering) 

Developing 
explanations 
(answering how and 
why questions) 

EXPLANATORY 
ACCOUNTS 

DESCRIPTIVE 
ACCOUNTS 

DATA 
MANAGEMENT 

Iterative process 
throughout analysis 

Assigning data to refined 
concepts to portray 
meaning 

Refining and distilling 
more abstract concepts 

Assigning data to 
themes/concepts to 
portray meaning 

Assigning meaning 

Generating themes and 
concepts 

Establishing typologies 



Interpreting Higher Order Meaning from Topographic Maps 

 

83

Results and analysis 

In the first task, participants were asked to carefully examine two topographic maps and 

to look for features, similarities and patterns that they may recognise. Then they should 

group those objects that they believed belong to the same land use category by circling 

or colouring in the area. Two scenarios were given for the interpretation. In the first 

map, respondents were asked to interpret the map according to how one can use the 

areas. In the second map, respondents were asked to think of urban planning, where 

everything is built for a specific purpose, and then to interpret the map according to the 

purpose of areas. In addition, they were asked to rate their confidence of the 

interpretation. Figure 12 illustrates one of the respondent’s interpretations.  

 
Figure 12 A respondent’s land use interpretation 

 

Table 2 and table 3 summarise the results in frequencies of the interpretation for maps A 

and B, respectively. The interpretations were compared against GeoInformation 

Group’s Cities Revealed land use dataset. The land use types that each map contains are 

summarised in the top row of both tables. Each interpreted map is examined for not 

identified land use types, which ones were interpreted correctly and which ones were 

misclassified, as shown in the left column. In the case of correct interpretations, it was 

also examined whether respondents used different concepts or the same terminology as 

annotated in the GeoInformation Group land use dataset. The results from both maps 
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suggest similar outcomes across the given criteria. The majority of respondents did not 

identify land uses such as offices, car parks, institutional and communal buildings, 

storage and warehousing, industry, standing water, religious buildings, and indoor 

recreation – keeping in mind that participants were not given a list of land use types to 

look for, but to search by themselves for uses and purposes of the depicted areas. 

Similarities were also present in the misinterpretation of land use information in both 

maps. The majority of misclassifications include retailing, educational and institutional 

buildings, industry and offices. The most accurate and successful interpretations are 

residential areas, retailing (to a certain extent), railways and outdoor recreation. 

However, the focus slightly differed in the first map, where only eight participants 

identified residential areas compared to twice as many in the second map. 
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Table 2 Interpretation results for map A in frequencies 

 Residential Retailing Offices Railways Car 
parks 

Outdoor 
recreation 

Educational 
buildings 

Insti-
tutional 
buildings 

Insti-
tutional 
& com-
munal 
buildings

Storage 
& Ware-
housing 

Industry Standing 
water 
 

Religious 
buildings 

Not 
identified 

10 1 17 3 17 0 9 11 18 17 16 18 15 

Interpreted 
correctly 
(same 
term used) 

5 1 0 1 0 3 0 0 0 0 0 0 0 

Interpreted 
correctly 
(different 
term use)* 

3 5 0 13 0 14 3 0 0 0 0 0 2 

Interpreted 
falsely 

0 11 1 1 1 1 6 7 0 1 2 0 1 

Total 18 18 18 18 18 18 18 18 18 18 18 18 18 
*other 
terms: 

 Cheap 
houses 

 Council 
estate 

 Housing 
 Housing 

estate 
 Nice 

houses 
 Residential 

area 
 Residential 

housing 
 Terraced 

houses 

 Commercial 
 Hardware 
store 
 Local shops 
 Shopping 
 Shopping 
area 
 Shopping 
centre 
 Shops 
 Post office 
 Superstore/ 
retail park 
 

  Railway line 
 Railway 

station 
 Train station 
 Transport 
 Transport 

links 
 Travel 
 Travelling 
 Underground 

station 
 Underground/ 

trains 
 Train 
 

 Super-
market 
car 
park 

 Golf course 
 Leisure 

complex/centre
 Park 
 Park area 
 Parkland 
 Playing field 
 Public park 
 Public open 

space 
 Recreation 
 Recreational 
 Soccer pitch 
 Sports area 
 Sports field 
 Sports pitch 
 Children park 
 Nature reserve

 Education 
 School 
 School 

playing 
field 

 School/ 
college 

 College 
 Secondary 

school 
 

 Hospital 
 Health 

centre 
 Public 

building 
 Public 

house 
 

  Storage/ 
park 

 Factories 
 Industrial 

area 
 Small 

factories 
 Work 

outlets 

  Church 
 Places of  
worship 
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Table 3 Interpretation results for map B in frequencies 

 Residential Retailing Offices Railways Indoor 
recreation

Outdoor recreation Educational 
buildings 

Institutional 
buildings 

Storage & 
Warehousing

Industry Religious 
buildings 

Not 
identified 

2 9 15 10 17 0 13 13 17 11 17 

Interpreted 
correctly 
(same 
term used) 

8 0 0 3 0 11 0 0 0 3 0 

Interpreted 
correctly 
(different 
term use)* 

8 0 0 5 0 7 1 0 0 0 0 

Interpreted 
falsely 

0 9 3 0 1 0 4 5 1 4 1 

Total 18 18 18 18 18 18 18 18 18 18 18 
*other 
terms: 

 Council/ 
government 
area 

 Flats/ 
housing 
estate 

 High rise 
flats 

 Houses 
 Housing 
 Housing 

estate 
 Structured 

housing 
 Tower-

blocks/ 
mass 
housing 

 Retail 
 Shopping 
 Shopping 

precinct 
 shops 

 Purpose 
built 
offices 

 Business

 Railway 
line 

 Railway 
station 

 Railway 
station/ 
tracks 

 Train 
tracks 

 transport 

 Indoor 
sport 
centre 

 Athletic track 
 Entertainment 
 Fields/parks 
 Football stadium 
 Horse racing track 
 Leisure 
 Leisure centre 
 Leisure complex 
 Leisure facilities 
 Open spaces 
 Park 
 Park/ sports ground 
 Public open space 
 Public park 
 Recreation 
 Recreational 

facilities 
 Sport facilities 
 Sport/recreation 
 Sports area 
 stadium 

 College/ 
university 

 School 
 School/ 

education 

 Hospital 
 medical 

 Warehouses  Factories 
 Farming/ 

agriculture 
 Industrial 
 Work/ 

industrial 
 

 Places of 
worship 
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Respondents’ own rating of their interpretation confidence, according to being ‘very 

confident’, ‘somewhat confident’, and ‘not confident’, reflects closely the results of the 

interpretation accuracy. Figure 13 provides a graphic representation of the results from a 

cross-tabulation. Respondents were most confident in determining recreation, 

residential and railway, which were also the most successful interpretations. Likewise, 

respondents’ least confidence reflects those categories that respondents mainly 

misclassified such as educational and institutional buildings, retail and industry. The 

results suggest the ambiguities and uncertainties involved in interpreting some land use 

categories. 

 
Figure 13 Respondents’ judged confidence in their interpretation 

 

For each land use category present within the maps, the majority of people referred to 

their interpretations in a number of different ways to the annotations used in the 

GeoInformation Group’s dataset. This indicates that everyday people’s use of 

terminology can be very different from professional geographic vocabulary in the land 
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use domain. As can be seen from table 2 and table 3, a remarkable 63.5% of correctly 

interpreted land use types were described with concepts different from GeoInformation 

Group’s terminology. This not only indicates the generic richness and diversity of land 

use categories, but also that people communicate with much more common, but detailed 

concepts than those all-embracing professional concepts used in existing land use 

nomenclatures. For example, respondents rarely used umbrella terms such as education 

or outdoor recreation. Instead, respondents distinguished between schools, colleges and 

universities, or athletic track, football stadium, park, and playing field. This 

phenomenon can be observed for all of the GeoInformation Group’s land use 

classification. People tend to speak in more specific terms by communicating as 

precisely as possible the meaning of the object they are referring to. In addition, these 

terms often reflect basic and simple concepts used in everyday language. For instance, 

rather than saying residential, respondents used the more common term housing or flats. 

As we learnt in section 2.3, professional users also require better-separated concepts 

because of implications for their applications. In fact, the results emphasize the general 

problem of semantic heterogeneity, and the need to include human acceptable concepts 

in spatial representations. This would not only ensure interoperability, but also improve 

spatial analysis and the general use of data. 

 

The second task enquired about the clues, factors, and reasoning processes that 

contributed towards the interpretation. It is important to learn about these processes to 

identify useful parameters and key pieces of information relevant for automating the 

procedure of deriving functional information from topographic data. The first set of 

questions addressed the interpretation approach, attention and dominant objects. 

Respondents used a variety of approaches to interpret the maps: 

 “Shape” (38.8%) 

 “Size” (16.7%) 

 “Large objects first” (16.7%) 

 “Similarities” (16.7%) 

 “Searching for familiar areas” (11.1%) 

 “Envisioned home town” (11.1%) 

 “Familiarity with urban layouts” (11.1%) 

 “Relationships between objects” (11.1%) 

 “Knowledge from using maps before” (11.1%) 
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Regarding the question what captured the respondent’s attention first in both maps, 

similar answers were found despite the different areas shown. For example, in map A 

attention was mainly drawn to residential areas (16.7%), parks (44.4%), and other open 

spaces (16.7%). Some respondents also mentioned straight lines that were interpreted as 

railway lines. Equally, in map B residential areas (16.7%) and open spaces (11.1%) 

captured respondents’ awareness. The oval track or sports ground was the most unique 

feature according to 66.7% of the respondents. Other clues about the interpretation 

include the following: 

 15 respondents (83.3%) made use of already interpreted areas for identifying 

further ones. 

 16 respondents (88.9%) believed there is a repeating pattern for each land use 

type. 

 10 respondents (55.6%) agreed that it would have helped if the map showed a 

bigger area. 

 6 respondents (33.3%) believed the varying scale of the two maps influenced 

their interpretation, while 9 (50.0%) disagreed, and 3 (16.7%) did not know of 

any difference. 

 

Indeed, scale and how much of an area is shown in a map depends whether an overview 

with fewer detail or vice versa is more desirable. Those respondents who believed scale 

influenced their interpretation stated that this was because: 

 “at smaller scale, larger areas relate better on the map.” 

 “smaller scale more to interpret.” 

 “things look different.” 

 “at smaller scale buildings harder to interpret what they could be used for.” 

In OS MasterMap, urban areas are represented at a detailed scale of 1:1250. The maps, 

however, were represented at a scale of 1:3000 and 1:4000, respectively, to increase 

context for the interpretation. The results suggest that respondents first classify areas 

they are familiar or confident with, and then move from there to the more uncertain 

areas. Despite some difficulties during the interpretation, most respondents believed that 

land use categories have a repeating pattern. The uniqueness and consistency of patterns 

is crucial for any attempt to identify land use types automatically according to 

configurations and context. 
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Uncertainties and difficulties in the interpretation reflect the land use categories that 

respondents mainly misinterpreted. Respondents felt that the biggest obstacle in the 

interpretation is that many areas could be interpreted as many different things, 

especially shops, amenities, and large areas or buildings. Other difficulties included the 

identification of public use buildings, generally identifying the detailed purpose of 

buildings, differentiating among residential and business, and industrial and 

commercial. One statement adequately summarises the findings: “identifying anything 

other than open areas and residential areas was a guess”. In particular, respondents 

seemed to agree with the following difficulties: 

 12 respondents (66.7%) agreed that difficulty was caused by the fuzziness of 

where one land use ends and the other starts. 

 15 respondents (83.3%) agreed that difficulties were caused by the 

misinterpretation of cartographic objects. 

 All 18 respondents agreed that difficulty was caused by not being able to 

identify an object’s meaning. 

 14 respondents (77.8%) believed that difficulties are caused by not being able to 

identify one area’s meaning in relation to other areas. 

 No respondents recognised the location of the areas depicted in the maps. 

 

The delineation of which groups of objects belong to a land use category is challenging, 

because there can be multiple land uses for one object. This is not to say that the 

underlying reality is in some respect ultimately vague (Smith and Varzi, 2000), but that 

people’s categorical scheme is an accreditation for a distinction between crisp and fuzzy 

denizens of reality. Delineating boundaries is a manifestation of people’s ability for 

picking up patterns and grouping objects together according to similarities. Therefore, it 

is necessary to investigate those principles that contribute to people’s perception to 

obtain clues about stimulus factors for the interpretation of land use types. Figure 16 

shows the results for respondents’ rated importance of Gestalt principles, addressing the 

relations among parts and wholes, spatial contiguity, proximity, similarity of shape and 

size, common fate, good continuation, common region, closure, and element 

connectedness. On a scale from 1 to 5, reflecting ordinal levels of ‘not important’, ‘little 

important’, ‘somewhat important’, ‘a fair bit important’ and ‘very important’, 

respondents were asked to rate which pieces of information or stimulus factors they 

thought were superior to others in the interpretation process. Initially, the results were 
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summarised in frequencies. Then, to derive a better picture of the trend in importance 

and unimportance of the factors, the ratings were combined into three reflective 

columns of ‘little important or less’, ‘somewhat important’, and ‘a fair bit important or 

more’. From the combined frequencies, row proportions were calculated to draw a less 

cluttered bar chart that visualises respondents’ answers. Figure 14 indicates that 

respondents felt that shape, size, similarity in arrangement and geometry, and 

simplification of identification were most important for successfully interpreting a 

topographic map. On the other hand, symmetry, context, orientation, and likelihood of 

correct interpretation were mostly rated as ‘little important or less’. Despite a relative 

high rating of importance across all principles for the interpretation process, there are 

factors that are superior in importance than others. 

 
Figure 14 Rated importance of gestalt principles for the interpretation process 

 

In addition, respondents were asked about the importance of principles for grouping 

objects together. The same scale was used as above with the calculated row proportions 

shown in figure 15. Similar to the results of the rated Gestalt principles, respondents felt 

that the most important factors were similarity in shape, size, and orientation. Proximity 

between objects, symmetry in arrangement, the relation among parts and wholes, and 

influence of one dominating feature within the group were somewhat important, 

whereas alignment of objects was rated as least important. Consequently, there is a clear 

tendency towards the importance of similarities rather than symmetries and alignments 

of objects. Additional comments by respondents showed that some felt grouping 
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principles are only relevant to residential areas. Others mentioned the distribution of 

roads as important, and that some types of building use are more likely to neighbour 

each other. 

 
Figure 15 Rated importance of grouping principles 

 
Figure 16 Importance of abilities for interpreting maps 

Lastly, respondents rated the importance of a number of abilities to interpret the maps. 

Figure 16 shows the row proportions of the ratings. The results indicate that experience, 

awareness of our everyday surroundings, and knowledge about land use are most 
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important for deciphering land use information from a topographic map. In fact, all of 

the given categories received relative high ratings in importance, with only memory and 

knowledge of what belongs to a land use category being rated as ‘little important or 

less’. These results confirm that interpretation is a knowledge-intensive task where 

experience is crucial for the inference through analogy, and that any expert system 

needs to consist of an exhaustive but precise knowledge base and a trained problem-

solving engine. 

 

In the third task of the questionnaire, respondents were asked to conceptualise a given 

land use with respect to its underlying landscape character. From a list of land use types 

respondents were asked to choose one and to think what constitutes a land use in the 

landscape. In the horizontal direction, separate categories define the chosen land use 

spatially, whereas in the vertical direction, a set of questions describe each member 

category in more detail. This task was specifically designed to acquire knowledge that 

will provide the skeletal foundation of categories, concepts, objects, relations and 

attributes for the conceptualisation and formalisation of an ontology in the land use 

domain. Due to the complexity of the task, a number of respondents either did not 

attempt this part at all or only parts of it. Fifteen out of the eighteen conceptualisations 

are useful for analysis. From the previous pilot study, where seven participants were 

asked to conceptualise six different land use types each, 42 conceptualisation were 

collected. This gives a total of 57 conceptualisations across the land use types industrial 

area, educational institution, hospital, recreational area, train station, and residential 

area, leading to a total of 285 member categories, and an overall total of 2565 concepts. 

 

Table 4 summarises the frequencies of the land use type’s associated member 

categories. The member categories are a reflection of the spatial footprint of land uses, 

which consist of other geographical objects and functions. The spatial component 

constrains the number of member categories that suit a specific land use type, therefore 

resulting often in similar conceptualisations. As table 4 illustrates, for each land use 

type there are a number of frequently occurring member categories. For example, land 

use education consists of the frequent member categories car park, classroom, sports 

field, gym, playground, school building, and canteen. Industry on the other hand 

consists of factory, car park, office, warehouse, roads, park, and shops. Some member 

categories are typical for their land use category, whereas others are common across 
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different land use types (e.g. car park). For each of the land use categories there are a 

number of no responses, which means that participants did not always think of all 

possible land use categories in the space provided. Furthermore, the number of 

examples given by respondents per land use category indicates both the familiarity of 

the category itself and the richness and diversity of familiar category members (Smith 

and Mark, 2001). 

Table 4 Member categories of land uses (frequency) 

Humans have a broad understanding of meanings according to contexts that allow them 

to overcome semantic heterogeneity, which is the main constraint on data 

interoperability.  This is important because the term function is not a mere synonym for 

land use. It refers to an object’s use, purpose, affordance and role, each of which it can 

have more than one. Functions are abilities that the object supports because of its 

deliberate design or purpose, but the object’s affordances do not necessarily relate to 

these planned functions, which are realised through its specific use. The way people 

apprehend function, and how they discern the purpose, role and affordance of an object 

can be analysed and quantified by assessing the semantic relatedness among the 

concepts’ terms. The majority of respondents found the differentiation between use, 

purpose, role, and affordance difficult. In the map interpretation task, participants were 

asked to look for uses and purposes in the two maps respectively. Although this initiated 

their own use of concepts for describing their interpretation, the differentiation does not 

appear to have much an impact on the interpretation. This is also evident in the third 

Land 
use 

Education  Industry Recreation Hospital  Train 
station  

Residential  

Car park (9) Factory (6) Pathways (3) Ward (7) Platform (6) House (8) 
Classroom 
(5) 

Car park 
(5) 

Park (2) Car park (6) Trains (4) Park (6) 

Sport field 
(5) 

Office (4) Playing field 
(2) 

Surgery (3) Ticket office 
(4) 

Garden (3) 

Gym (4) Warehouse 
(3) 

Small 
building (2) 

Waiting 
room (2) 

Shops (4) Roads (3) 

Play ground 
(4) 

Roads (3) Trees (2) A&E (2) Tracks (4) School (3) 

School 
building (4) 

Park (2) Lake/pond 
(2) 

Reception 
(2) 

Station 
building (3) 

Shops (2) 

Member 
categories 

Canteen (3) Shops (2) Fence/hedge 
(2) 

Subordinate 
department 
building (2) 

Car park (3) Block of 
flats (1) 

No 
response 

6 4 7 4 6 8 

Total 66 40 49 45 45 40 
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task, where respondents defined the purpose, role and affordance of their stated member 

categories. 

 

To learn how much similarity there is between the stated purpose, role, and affordance 

of each member category, we can calculate the semantic relatedness between the 

respective terms1. For this purpose, each pair of terms for purpose/role, role/affordance, 

and affordance/purpose was entered into the WordNet::Similarity web interface2, which 

quantifies the degree to which two word senses are related. It provides six measures of 

similarity and three measures of relatedness, all of which are based on the lexical 

database WordNet (Pederson et al., 2004). For this analysis, the simple node-counting 

measure path length is used to calculate semantic relatedness. The relatedness score is 

inversely proportional to the number of nodes along the shortest path between the 

synsets. The shortest possible path occurs when the two synsets are the same, in which 

case the length is one. Therefore, the measure can score between zero and one, the latter 

indicating high semantic relatedness. From the 216 terms that were given by 

respondents (excluding no responses), 45.8% of the terms were the same across all 

three, thus reaching a score of 1. However, of the 54.2% of the terms that differed, only 

a few cases had the highest score of 1 in semantic relatedness. This includes make/work, 

get/go, and drive/movement. In all other cases of differing terms, the highest similarity 

achieved is 0.5, going as low as to 0.0588. The average of the three comparisons 

indicates that purpose versus role has the highest semantic relatedness of 0.6788, 

followed by role versus affordance with 0.5860, and then by affordance versus purpose 

with 0.5314. However, these averages are misleading because they include the terms 

that did not differ across the three concepts purpose, role and affordance. Therefore, the 

cases that consist of the exact same terms are excluded from the analysis to get a better 

picture of the semantic relatedness between terms that differed. 

 

A sample of 19 cases was further investigated. Table 5 summarises the results showing 

the member categories to which the comparison of purpose/role, role/affordance, and 

affordance/purpose relate, and their attained score of the semantic relatedness measure. 

The new calculated average indicates that terms for role and affordance are more related 

than terms compared in the other two cases. In figure 17, the line representing role 

                                                 
1 For analysis purposes, only the results from the final survey are taken. 
2 Available from http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi 
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versus affordance lies above the other two. However, overall the semantic relatedness 

among terms that differed between purpose, role, and affordance is low. Although these 

terms do not relate much semantically, it seems that respondents generally do not 

differentiate much between purpose, role and affordance as indicated by the high 

number of the same terms used across all three concepts. 

Table 5 Semantic relatedness among terms that differed 

Category purpose role score role affordance score affordance purpose score 

School teach learn 0.1429 learn educate 0.2000 educate teach 0.1110

Factory production make 0.1250 make work 1.0000 work production 0.5000

Hospital operate treat 0.1667 treat receive 0.1667 receive operate 0.2000

Industrial - open space recreation relaxation 0.2000 relaxation smoking 0.1429 smoking recreation 0.0740

Train station building transport commercial 0.0833 commercial travel 0.0909 travel transport 0.2500

Rail lines network transport 0.2500 transport travel 0.2500 travel network 0.1667

Roads movement car 0.1250 car drop-off 0.1110 drop-off movement 0.2500

Car park revenue parking 0.0909 parking pay 0.1667 pay revenue 0.0667

School - playing field recreation education 0.3333 education club 0.1000 club recreation 0.0909

play ground play break 0.3333 break exercise 0.3330 exercise play 0.5000

teaching facility educating teaching 0.5000 teaching shelter 0.1250 shelter educating 0.1250

gym sport meet 0.2500 meet disco 0.2000 disco sport 0.1667

play ground play relaxation 0.2000 relaxation leisure 0.5000 leisure play 0.1667

Residential - garden recreation entrance 0.1667 entrance walking 0.2000 walking recreation 0.1250

Recreation sport gathering 0.2500 gathering meeting 1.0000 meeting sport 0.2500

Train station ticket travel 0.1667 travel paying 0.2500 paying ticket 0.2500

Car park storage parking 0.0833 parking driving 0.2500 driving storage 0.1667

School - grass area football play 0.2000 play exercise 0.5000 exercise football 0.1667

Shop selling buying 0.3333 buying display 0.2000 display selling 0.2000

    Average: 0.2105   Average: 0.3045   Average: 0.2014

 

 
Figure 17 Semantic relatedness among terms that differed 
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Discussion 

The subject under investigation needs to be treated carefully, as mental representations 

and individual knowledge of the respondents are subject to accidental properties, which 

should not be confused with the real properties of the phenomenon being studied. The 

other issue is order effect, which this survey does not account for. One task may directly 

affect the way that respondents approach the next one, which ideally should be 

eliminated. However, this is questionable, and if information from previous tasks 

influences subsequent ones, it will be expected to have a minimal effect.  

 

Overall, from the results of the map interpretation task, together with the findings from 

the pilot study, we can conclude that humans can interpret land use information from 

plain topographic maps to varying degrees of success. Although the interpretation 

results may improve with more clues in the data such as colouring or cartographic text, 

the significance of this task is to learn more about humans’ ability to infer land use 

information solely from its spatial configuration and context. Furthermore, it seems 

valid to postulate that some land use categories have unique and repeating patterns, like 

residential and recreational areas. Spatial configuration is an important characteristic of 

a land use’s spatial footprint, whose extent is largely determined by grouping objects 

together according to a set of Gestalt principles. Some features and patterns dominate 

the depicted areas, hence capturing the participants’ attention first. Respondents 

systematically searched the maps for what they believed made up a specific land use 

type. By considering shapes and sizes, and buildings versus open spaces, respondents 

thus identified the most familiar land uses followed by the less confident ones. 

Therefore, the key lies in the use of spatial relations, contextual and perceptional 

information to establish a complete definition of land use types. In fact, often a purely 

parameter based approached derived from data mining and pattern recognition 

techniques will not suffice in the interpretation of specific functions (e.g. Hussain et al., 

2007). 

 

The survey emphasises the need for experience and knowledge about the domain of 

interest. With knowledge being at the heart of any implemented knowledge-based 

system, this stresses the importance of capturing relevant knowledge and translating 

experience into trained mechanisms. The questionnaire survey offers a great means to 

source knowledge from a larger set of people – although, finding volunteers can be 
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challenging at times. High rates of non-responsiveness indicate that extracting 

knowledge about land use is not as straightforward as asking people about their general 

opinions and typical habits. 

 

Generally, qualitative research has been criticised for lacking scientific rigour, 

reproducibility, and generalisability (Mays and Pope, 1995). Indeed, the survey’s major 

weaknesses relate to its small sample, limited analysis options, and the data’s context 

specificity, which means that the results cannot be generalised to other contexts. On the 

other hand, complex data can only be acquired through small samples, as otherwise the 

workload becomes too labour-intensive and unmanageable. In addition, the detailed and 

context-rich data are particularly valuable for ontology engineering. The questionnaire 

survey therefore contributes towards techniques for knowledge acquisition and testing 

the use of non-experts as a source of knowledge. In fact, questionnaires for ontology 

elicitation have not been much studied or employed except for some experimental 

designs as for example in Agarwal (2004).  

 

There are many different ways of capturing a person’s knowledge depending much on 

the type of domain. This may involve in-depth interviews (Ritchie and Lewis, 2003), 

focus groups (Kitzinger, 1995; Green and Thorogood, 2004), or written questionnaires 

(Wall et al., 2002). However, for specific knowledge acquisition, a purposive sample is 

crucial to ensure familiarity with the domain. For example, the results seem to fortify 

the findings in Smith and Mark (2001) where the number of examples given by 

respondents per land use category reflects some combination of the familiarity of the 

category itself and the richness and diversity of familiar category members. The study 

shows that people think in many different ways resulting in different conceptualisations 

and concepts. These may only differ slightly, yet they accentuate the problem of 

semantic heterogeneity. The conceptualisations are replicas of our spatial environment, 

because of the domain’s spatial characteristics and strong influences from the natural 

world. Nevertheless, the number of concepts that respondents used for describing land 

uses and purposes in the map interpretation indicate that people communicate in terms 

that are most familiar to them. Consequently, the identification of human acceptable and 

familiar concepts should be the first step towards establishing more realistic models and 

representations of space.  
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The survey highlights this current gap between existing spatial models and the way 

humans interact with and conceptualise space. This thesis forms a bridge over this gap 

by relating human spatial perception of land use to the landscape characteristics. The 

identified concepts will be useful for describing land use types and will contribute 

towards a domain ontology of geographical knowledge, serving both the need for 

interoperability and information retrieval in future. This, however, may not be 

straightforward when dealing with conceptualisations from different countries and 

cultures, where the spatial environment, customs, mentality, etc., differ from our own 

ones. Although this assumption has not been tested here, it would be interesting for a 

further study to evaluate variations among socio-economic groups across different 

cultures. Real culture-induced differences can only be analysed by comparing findings 

to other groups abroad in relation to their appropriate topographic datasets. 

Conclusions 

The motivation for this survey has been the quest to learn from our own reasoning 

processes and abilities when interpreting land use information from topographic maps. 

Capturing the essence of people’s knowledge is important for expanding sources of 

expert knowledge and deriving human-acceptable concepts for ontology engineering. 

Despite difficulties in making this knowledge explicit, the cognitive and qualitative 

approach to relating land use to the landscape character proves useful. Qualitative 

research is firmly established within social sciences. We have been stepping on terrae 

incognitae by pondering over disciplines such as cognitive science, psychology, 

philosophy, linguistics, computer science, and anthropology. The combination of 

cognitive sciences with information theory and GIScience helps to understand human 

interaction with and conceptualisation of functional space. As people’s perception and 

conceptions not only vary among each other but also with the established spatial 

representations, human-based concepts need to be reflected in a more timely, realistic 

and acceptable manner. 

 

Humans use multiple mental models of the world to reason efficiently at different levels 

of abstraction. Current geographic information systems normally use only a single 

model or representation of the world. Hence, the use of the system is limited. GIS needs 

to support multiple representations at different levels of abstraction, so that adequate 
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levels of abstraction can be found for a large range of scales. For example, Mennis et al. 

(2000) argue, if the cognitive representations and acquisition of geographic knowledge 

is divided between sensory information and derived knowledge, so too can the 

geographic database representation be divided between spatiotemporal data and higher-

level geographic knowledge derived from that data. Consequently, this field has 

developed with two complementary problems: The theoretical problem requires a better 

understanding of how humans perceive the world and acquire higher-level spatial 

concepts. The practical problem addresses how to make computers interpret spatial 

information (Peuquet, 1988). This thesis is not just addressing the mere integration of 

semantics into database representations. It looks at cognitive principles to enrich spatial 

representations automatically. 

 

In the quest to relate land use to the landscape character, we are addressing both the 

geometric structures of space models and their corresponding human 

conceptualisations. As Peuquet (1988, p.377) identified: “it seems that research 

regarding cartographic representation has historically progressed along the two 

separate tracks with no significant integration. These two tracks coincide with the dual 

aspects of the map […] as geometric structures and maps as images.” This survey 

focused on the latter, on the ‘map in the head’ metaphor and people’s 

conceptualisations. Perhaps this is the first step from technical feasibility to the social 

acceptable, where we incorporate elusive measures such as human values, attitudes, 

beliefs, judgement, trust and understanding. On the one hand, this will ensure the 

development of a good ontology because of the empirical testing of non-expert 

knowledge, which should help to maximise the usability of the ontology and 

corresponding information systems (Smith and Mark, 2001). On the other hand, the use 

of non-experts ignites potential infiltration of erroneous beliefs within the captured 

knowledge (Smith, 2004). Even if we put confidence in some machine being able to 

make interpretations that actually correspond to some meaningful state of the world, we 

can only derive true statements from other true statements. All knowledge-based 

approaches remain limited insofar that these systems narrowly focus on specific 

domains of knowledge and cannot venture beyond them. As a result, their performance 

is always based on the accumulation of a substantial body of task-specific knowledge, 

motivated often by a combination of science and application on real-world tasks. Their 
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success is determined at least in part by accomplishing a useful level of performance on 

that task.  

 

Questionnaires potentially offer a useful instrument for capturing knowledge despite 

existing pitfalls commonly known in questionnaire design (Boynton and Greenhalgh, 

2004; Wall et al., 2002). Considerations need to be taken towards the nature of 

knowledge, categorisation and conceptualisation in terms of cultural and linguistic 

constraints, and general difficulties in acquiring a person’s believed knowledge. 

Therefore, the results are not to be understood in relation to a socio-economic group’s 

representativeness, but only in relation to the derived knowledge. This knowledge, the 

key processes and factors involved during map interpretation, and how people construct 

representation of land use at different semantic levels, needs to be formalised into 

mechanised ways. The categorisation of functional roles and geographical entities can 

be easily represented by an ontology, as we will learn in the next chapters. Cognitive 

aspects of spatial relations can be formalised among concepts. Existing computational 

models inform the design and implementation of a computerized system that will be 

able to use these models for reasoning about functional information. The issues of 

knowledge representation and understanding of the spatial cognitive processes involved, 

the examination of respondents’ views, and the theoretical aspects of cognitive science 

put this thesis in theoretical as well as applied contexts. Inference especially from a 

topographic database is not easy and the success of a knowledge system for reasoning 

about functional information in topographic data has yet to be proven. Even though, it is 

anticipated that domain specific knowledge possibly holds the key to enhancing 

cartographic data, and with that Ed Feigenbaum’s gnomic dictum comes to the fore: 

“Knowledge is power” – indeed a true statement. 
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Chapter 4 

The Ontology-Driven Approach to Enriching Spatial 
Databases 

 “To the extent that rational thought corresponds to the rules of logic, a machine can be 

built that carries out rational thought. […] To the extent that thought consists of 

applying any set of well-specified rules, a machine can be built that, in some sense, 

thinks. … A single machine can be programmed to do anything that any set of rules can 

do.”  

–Pinker (1997, pp.67-68) 

 

The human mind is a complex but ingenious piece of natural engineering, which makes 

any so far attempted computational versions look pallid. Indeed, one major critique has 

been that computers are serial, doing one thing at a time, while brains are parallel, doing 

millions of things at once. Whereas computers outperform humans when it comes to 

doing repetitive tasks, humans are much more efficient in reasoning. Nevertheless, a 

computational theory of the mind states that all beliefs and desires are information, 

incarnated as configurations of symbols, which symbolise things in the world and are 

triggered accordingly (Pinker, 1997). Thus, we can speak of two types of 

representations, that of human versus computer knowledge representations. Although 

varied information is easily integrated and reconciled by human beings when needed 

and required knowledge is extracted, how does this work in a knowledge-based system? 

Take for example the World Wide Web with millions of web pages whose information 

volume rapidly grows making it increasingly difficult to find, organise, access and 

maintain information. To overcome these limitations, Tim Berners-Lee envisions the 

Semantic Web where meta-information annotates and defines the contents of a web 

page in a machine processable way (Davies et al., 2003). The aim is to build knowledge 

and understanding from raw data, hence linking information in a more meaningful way. 

For example, when you enter a search term, instead of a search engine retrieving results 

that are varied in relevance, the semantic web ‘knows’, crudely speaking, which 

information to look for. From an Artificial Intelligence (AI) perspective therefore, 

knowledge representation refers to the encoding of knowledge in a form that can be 
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processed by a computer to derive consequences. Ergo, representations must be made of 

a formal, logical form, such as sentential logics, semantic networks, frame-based or 

object-oriented programming languages. 

 

The analysis of mental representation, deductive reasoning, philosophy of language, and 

philosophical logic, as we partially touched upon in the previous chapter, have all 

contributed to building computational models of cognition through encoding 

information into knowledge representation (Wilson and Keil, 1999). Quite rightly so, as 

these computational models provide information that needs to be understood by their 

users and interpreted in the way the providers intended it (Kuhn, 2004a). We learnt that 

there is no single view on the world, but that there is a common basis of understanding 

through shared languages. Therefore, terms from natural language can be assumed to be 

a shared vocabulary relying on a common understanding of concepts with only little 

variety. The way the world is organised constitutes this common understanding. 

Conceptualisation is what we conceive it to be, this way or that way, and not some other 

way. It is a way of thinking about part of the world to which a limited number of 

persons commit at a time (Stuckenschmidt and van Harmelen, 2005). Conceptualisation 

thus represents ways in which we humans understand the world. For example, two 

different terms can be used to describe the same thing, as in English ‘apple’ or in 

German ‘Apfel’, but both share the same conceptualisation, a common understanding. 

In a GIS, conceptualisation naturally relates to some abstract description of 

geographical phenomena and concepts, such as building, land parcel, road, etc. (Smith 

and Mark, 1998). However, with the use of a shared terminology according to a specific 

conceptualisation of the world much information remains implicit. A vocabulary of 

terms is needed with some specification of their meaning.  

 

Ontologies have set out to overcome the problem of hidden knowledge by making the 

conceptualisation of a domain explicit. An ontology is used to make assumptions about 

the meaning of a term, and as such ontology plays an integral part of knowledge 

representation. Knowledge representation is rooted in both epistemology, that is, the 

nature and sources of knowledge, and ontology, the study of the organisation and nature 

of the world independently of the form of our knowledge about it. The usual logical 

interpretation of epistemology is that knowledge consists of propositions whose formal 

structure and inferential aspects are the source of new knowledge. The notion of 
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ontology, on the other side, has two mainstream views (Agarwal, 2005): The original, 

philosophical view refers to Ontology (conventionally written with a capital letter) as a 

particular system of categories accounting for a certain vision of the world. In this 

sense, Ontology is the study of existence. In AI however, ontology refers to an 

engineering artefact, constituted by a specific vocabulary used to describe a certain 

reality, as well as a set of explicit assumptions regarding the intended meaning of the 

vocabulary words. A formal ontology is therefore the systematic and axiomatic 

development of the logic of all forms and modes of being (Guarino, 1995). Its 

specification can range from a simple catalogue or glossary of terms to the axiomatic 

theory of terms. Often a formal ontology is implemented in a knowledge base to 

facilitate intelligent reasoning, information retrieval or semantic annotation of data. AI 

researchers have been mainly interested in the nature of reasoning rather than in the 

nature of the real world. Reasons for the lack of interest towards ontology in AI research 

lies in the fact that problems like ontology and conceptual modelling need to be studied 

under a highly interdisciplinary perspective. The term ontology therefore tends to be 

used more to denote the content of a particular top-level knowledge base rather than to 

indicate a scientific discipline or a methodology. 

 

Ontologies are useful for many different applications, but they all share the same idea. 

Ontologies help to reach a common understanding of a particular domain by identifying 

categories, concepts, relations and rules. These define and conceptualise the knowledge 

in a domain to model and provide a standardised vocabulary. The resulting specification 

of the meaning of this vocabulary of terms indicates how concepts are interrelated, and 

collectively impose a structure on the domain constraining the possible interpretations 

of these terms (Agarwal, 2005). Ontology therefore offers a means to improve 

communication between either humans or computers. Keita et al. (2004), for instance, 

summarise the use of ontologies as ‘communication between humans and machines’, 

‘structuring and organising knowledge’, and ‘reasoning by inference, particularly in 

very large databases’. Communication demands an explanation of the terminology used. 

System engineering benefits from a precise description of information and systems, 

which helps to identify requirements as well as inconsistencies in a chosen design. As 

we learnt in chapter 2, the reuse of existing software relies on specifying knowledge 

about existing components that can match the requirements of a given task. The ability 

to exchange information at run time, also known as interoperability, poses the same 
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demands as communication but among computers. Using ontology for the description of 

available information as well as for query formulation serves as a common basis for 

matching queries against potential results on a semantic level, thus facilitating 

information retrieval (Stuckenschmidt and van Harmelen, 2005).  

 

The primary concern of knowledge engineering is to model systems in the world 

(Guarino, 1995). In GIS, the concern focuses on modelling spatial systems and 

geographical phenomena. GIS always had some sort of specification of the semantics of 

its represented features, take for example feature object catalogues or other land use and 

land cover nomenclatures. However, now that both data and methods may be retrieved 

and combined in an ad hoc way from anywhere in the world, these locally held 

specifications differ from other sources, are usually not machine-readable, and thus 

prohibit sharing with other systems (Kuhn, 2005). These concerns led to the emerging 

UCGIS research theme ‘Ontological foundations for Geographic Information Science’ 

(Mark et al., 2004), which declares that research priority should focus on the semantics 

of geospatial information, in particular on the relations between human minds, 

information systems, and the geospatial world beyond. This thesis is concerned with the 

land use domain and its physical manifestation in topographic space. So far, we have 

studied and elicited the relation between human conceptualisations of land use 

phenomena and their real world representations. The goal is to ground a land use 

conceptualisation, for example residential area, in the topographic data representation, 

and to use ontology for an automated, semantic annotation of the data with functional 

information. Therefore, three research themes identified in Mark et al. (2004) are 

particularly relevant to this thesis: 

1. The clarification of the relations between human knowledge, beliefs and 

representations on the one hand, the models and representations embedded in 

our data systems on the other hand, and the real world of objects beyond. 

2. Research in eliciting geo-ontologies from human subjects (both experts and non-

experts) using standard psychological methods. 

3. Research in methods and tools for describing, accessing, and inferring semantic 

information from existing geo-spatial data. 

The third research theme addresses the use of ontologies for information retrieval from 

spatial databases. In the subsequent chapters, we will obtain a visual demonstration of 

the richness of ontologies. First, however, we will learn how ontologies provide the 
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necessary means for translating our gathered knowledge about land use 

conceptualisations into a machine-readable format. The next section exemplifies how 

formal ontologies, specified in a logical theory, benefit spatial data. It will become clear 

why notions like semantics and ontologies have received so much attention within and 

outside geospatial information communities, but it will also highlight what ontologies 

can and cannot do. Then, the thesis applies knowledge engineering techniques and 

ontologies to the particular problem of inferring functional information from 

topographic data. Consequently, this chapter defines the solution, how this is a new step 

and if it is an isolated effort. Because ontology refers to the logical theory as applied in 

AI in the context of this thesis, I adopt the convention of writing ontology with a lower-

case. Further, because ontology is not representative of a singular overriding truth, as in 

its philosophical sense, the use of plural ontologies is relevant and indicates multiple 

systems of conceptualisations. 

4.1 How spatial data could benefit from ontologies 

Although there are differences within ontologies, general agreement exists between 

ontologies on many issues: There are objects in the world that exist in various relations 

with each other. Objects have properties or attributes that can take values. Properties 

and relations can change over time. Objects can have parts. The world and its objects 

can be in different states. There are processes in which objects participate and that 

occur over time. Events occur at different time instants and can cause other events or 

states as effects. The representational repertoire of objects, relations, states, events, and 

processes does not say anything about which classes of these entities exist. The 

modeller of the domain makes these commitments (Chandrasekaran et al., 1999). 

 

In the geospatial domain, researchers have often asked what makes spatial special 

(Anselin, 1989; Egenhofer, 1993). Smith and Mark (2001) claim that one of the most 

important characteristics of the geographical domain is the way in which geographical 

objects are not merely located in space. They are typically part of the Earth’s surface, 

and thus inherit many of its mereological properties. At the same time, however, 

empirical evidence suggests that geographical objects are organised into categories in 

much the same way as detached, manipulable non-spatial objects (Mark et al., 1999). 

Consequently, geospatial data and services contain symbols whose meaning is not only 
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a matter of convention, but grounded in physical reality. Land use, for instance, has an 

observable grounding in the world. As the geographer distinguishes between physical 

and human geography, there are on the one hand physical entities such as mountains, 

rivers, and other features that make up land cover. On the other hand, there are socio-

economic units like cities, neighbourhoods, and land use. Some of those categories are 

defined by function, for instance a house is a building in which something is sheltered 

or located (Kuhn, 2007). Geospatial information is often based on human perception 

and social agreements, combining objective measurements with subjective judgments 

(e.g. Santos et al., 2007). Providing a mapping between them is probably the biggest 

challenge to make geospatial information more meaningful and shareable. 

 

Meaning expressed by ontologies provides the long sought for glue between geospatial 

communities by capturing their practices and conceptualisations, and facilitating the 

alignment of heterogeneous elements expressed at a high semantic level. Indeed, many 

high level semantic paradigms have been used to describe the geospatial domain, from 

image schemata, conceptual spaces, affordances, to multi-representation, and recently 

difference spaces (Tanasescu, 2007). Logic-based ontologies offer reasoning 

capabilities about types of geospatial values, objects, and functions. Unfortunately, they 

do not offer a magic solution to the problem of different unconnected perspectives of 

different levels of application specificity, or issues relating to handling vagueness as 

well as cultural and subjective discrepancies (Agarwal, 2005). 

 

According to Freksa and Barkowsky (1995), it is impossible to make all potentially 

interesting aspects of the world simultaneously explicit within one representation 

medium. Because the geographic world surrounding us is extremely complex, we 

usually single out particular aspects of interest from this multifaceted formation. At any 

given time, we are only interested in few objects and only particular properties and 

relations. This means to make explicit specific aspects of the world, we ignore others. 

The ability to switch between views is an important feature of using world knowledge 

intelligently. For example, Frank (2001 and 2003) suggests that an ontology for GIS 

should be built as a coordinated set of tiers of ontology, which distinguishes the 

physical reality and its observations, objects with properties, cultural conventions of the 

social reality, and subjective knowledge in the form of ideas cognitive agents have 

about the world. This multi-tier ontology is supposed to recognise that various 
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approaches contribute to our understanding of certain aspects of the world around us. It 

is supposed to help with the integration of data from different sources to understand the 

processes that result in agreement or disagreement between data. 

 

These aspects put high demands on ontology design in the geographical domain. There 

is the need to share information more easily due to high acquisition and maintenance 

costs. Spatio-temporal databases must make stronger commitments to capture the 

meaning of space and time. This requires the modelling of complex spatio-temporal 

relations such as topology, mereology, and metrics (e.g. Hornsby and Egenhofer, 2000; 

Raper and Livingstone, 1995). Furthermore, modellers need to account for culture 

dependent semantics of spatial terms for linguistic as well as professional cultures. 

However, the complexity of geographically referenced data, the (potentially) large 

databases to be manipulated and the diversity of application areas make GIS a candidate 

for the application of artificial intelligence techniques (Miller, 1994). The general 

objective is to emulate the problem-solving capabilities of the human expert to manage 

and access data more effectively (Openshaw and Openshaw, 1997). This is the reason 

why current research focuses on ontologies in terms of interoperability issues, 

information retrieval, domain specification, knowledge generation and general 

information system development. As we have seen in earlier chapters, conventional GIS 

data models suffer shortcomings in the way geographic information is stored and 

represented, and thus fail to meet specific application contexts. It remains an impossible 

task to acquire and store all knowledge from raw information before knowledge is 

accessed, and to provide unprocessed raw information and computing specific 

knowledge on demand (Freksa and Barkowsky, 1995; Peuquet, 1988; Burrough and 

Frank, 1995; Frank, 1992). To overcome any of these issues, GIS research must 

separate the concepts involved in a programme from the mechanics of its 

implementation as a program (Frank and Mark, 1991). It must separate the conceptual 

database schema from the physical storage arrangement, while a third schema describes 

subsets of the conceptual view according to users and their specific task contexts (figure 

18).  
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Figure 18 The relation between different schemas 

Database schemas constrain focus on data integrity, whereas ontologies constrain focus 

on intended meaning. We have to bridge the entities represented in a GIS, which stand 

for the real world objects and their properties, with the ontology, which stands for the 

conceptualisation of knowledge consisting of some of these real world objects, their 

relations and properties. Geospatial semantics is not about the relationship between GIS 

contents and the world. This relationship is already captured in the notion of correctness 

and integrity of databases and information systems. Geospatial semantics is about 

understanding GIS contents, and capturing this understanding in formal theories (Kuhn, 

2005). A GIS database should therefore present a logical view of the data as well as the 

derived higher-level knowledge that corresponds to people’s own cognitive view 

(Mennis et al., 2000). An ontology forms the mediating instance between the 

represented world’s reality, i.e., the raw data, and the information that is required 

according to human understanding about the enquired concepts. In that respect, the 

ontology becomes a powerful tool for tailoring effective and efficient descriptions of 
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arbitrary situations from arbitrary viewpoints. As Frank (2003) argues, a meaningful 

combination of different semantics and representations requires bridging the gap created 

by ontological assumptions as well as translations between the representations once 

their meaning is in the same context. However, even for databases where all data are 

from the same source, the gap between the ontology of the data collectors and the 

ontological assumptions of the designer of the GIS software and later the users must be 

bridged. 

 

It is widely accepted that ontologies will play an important role for the next generation 

of information systems (Wessel and Möller, 2007; Guarino, 1998; Fonseca, 2001; 

Fonseca and Egenhofer, 1999). Future information systems should be able to handle 

semantic heterogeneity by making use of the amount of information available with the 

arrival of the Internet and distributed computing (Fonseca et al., 2003). According to 

Guarino (1998), the role of an explicit ontology within an information system is to drive 

all aspects and all components of that information system (IS). This includes both the 

development and run time of an IS. The use of ontology in an IS component enables the 

developer to practice a higher level of software reuse than is usually the case in software 

engineering. The use of a common vocabulary across heterogeneous software platforms 

helps to concentrate on the structure of the domain and the task, and thus increases the 

quality of the conceptual analysis process. At run-time, Guarino distinguishes between 

ontology-aware IS and ontology-driven IS. In the former, the system is merely aware of 

the existence of an ontology and can use it for whatever specific application purpose is 

needed. In the latter case, the ontology is another component cooperating at run time 

towards the overall IS goal. An important benefit for using an ontology at run time is 

enabling the communication between software agents. An example of an ontology-

driven geographic information system is given in Fonseca et al. (2000). 

 

As part of the database component of an IS, ontology can be compared with the schema 

component of a database. Whereas an ontology usually describes a specific domain, a 

conceptual schema describes the contents of a database (Spyns et al., 2002). The 

ontology, however, is semantically much richer than a database conceptual schema, and 

thus closer to the user’s cognitive model. This is because conceptual schemas are built 

to organise what is going to be stored in a database. An ontology, on the other hand, 

represents concepts in the real world (Fonseca et al., 2003). For example, a common 
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conceptual schema can be used for mapping heterogeneous conceptual schemas on a 

common top-level ontology, thus providing access facilities in a heterogeneous 

environment. Ontologies therefore form the core of the mediation-based approach to 

information integration. The large-scale towntology project, for example, has been 

building an ontology to facilitate, in the long term, interoperability between models of 

databases and different co-operative systems of design, as well as the communication 

between various actors in the urban management and planning domain (Keita et al., 

2004). The fundamental question in interoperability is that of identifying objects in 

different databases that are semantically related, and then resolving the schematic 

differences among semantically related objects (Kashyap and Sheth, 1996). Torres et al. 

(2005) argue that GIS-applications require alternative object representations that are 

independent of the imprecise nature of the data. Montes de Oca et al. (2006), for 

example, use logic rules for the automatic description of spatial data to provide quality 

information for spatial decision support systems. Ontology offers a useful alternative 

representation by precisely describing concepts, objects and properties independent of 

scale, format, or references (Verastegui et al., 2006), thus representing information on a 

level that corresponds more readily to human cognition. Keßler (2006), for instance, 

investigates conceptual spaces for data descriptions based on people’s perceptions as the 

fundamental quality dimensions. Gärdenfors’ (2000) theory of conceptual spaces 

provides a mathematical basis for the analogy between concepts and geometric spaces, 

and has been exploited fruitfully for all sorts of representation and reasoning challenges, 

in particular for similarity measurements and transformations (Kuhn, 2005). Similarity 

measurements and semantic matchmaking between concepts is particularly important 

for achieving interoperability between data that have heterogeneous classification 

systems (e.g. Rodríguez et al., 1999; Schwering, 2005; Schwering and Raubal, 2005; 

Feng and Flewelling, 2004; Visser et al., 2000). Ahlqvist (2005; Ahlqvist and Gahegan, 

2005), for instance, explores the use of conceptual spaces to translate between 

taxonomies of land cover categories, and estimates their semantic similarity.  

 

As part of a user interface, an ontology can be useful for mapping a user’s natural 

language terms to the IS vocabulary, thus facilitating improved querying of the stored 

data (Frank and Mark, 1991). Logical reasoning inherent in ontologies can be used to 

discover implicit relationships between human concepts and information descriptions 

within the data, as well as to flexibly construct taxonomies for classifying information 
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sources (Lutz and Klien, 2006). Klien et al. (2004) and Schwering et al. (2003), for 

example, extend query capability with terminological reasoning on metadata provided 

by an ontology-based reasoning component. They illustrate how this approach 

contributes to solving semantic heterogeneity problems during free-text search in 

catalogues and on the Web. There has been some work related to optimising queries by 

connecting ontologies to existing relational databases (e.g. Beneventano et al., 2003; 

Calvanese et al., 2006a; El-Ghalayini et al., 2005).  More recently, Zhao et al. (2008) 

try to overcome limitations of using ontology-based queries that yet cannot be applied 

directly to legacy data stored in databases by rewriting user queries as SPARQL 

queries. Ordnance Survey also invests research in this area to map spatial domain 

knowledge directly to databases (Dolbear et al., 2007). To overcome the mathematical 

nature of description logics that makes it difficult for non-logicians to understand and 

author logic-based ontologies such as OWL, Ordnance Survey developed a Controlled 

Natural Language syntax called Rabbit, which is an engineered subset of a natural 

language with explicit constraints on grammar, lexicon, and style (Schwitter et al., 

2008). Other work tries to improve the user interface by detecting mismatches between 

a user’s and an expert’s conceptual model (Huang et al., 2005). Peachavanish and 

Karimi (2007), for instance, try to mitigate the knowledge gap between non-experts and 

experts in GIS by using ontological-based methodologies and techniques to automate 

tasks related to the interpretation of geospatial queries and mapping the interpreted 

results into geospatial data models and geo-processing operations. The use of 

conceptualisation of geospatial queries, knowledge representation for queries, and 

ontologies to map queries to geo-processing operations shall aid non-expert users to 

solve geospatial problems with little knowledge and skill on the workings of GIS 

platforms. However, a successful method for expressing queries is still needed. 

 

As part of the application program component, it is possible to represent explicitly all 

the domain knowledge that is hidden in the application program, thus turning the 

program into a knowledge-based system. Verastegui et al. (2006) for example, 

incorporate semantic content into a spatial database to support subsequent processing. 

Their method is based on conceptually representing topological and geometrical 

properties of the data, which are only implicitly contained within the database. The 

creation of a knowledge-based system allows the inference of new knowledge, adding it 

to the database (Montes de Oca et al., 2006). As we learnt in chapter 2, the 
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augmentation of cartographic and other geodata with semantics supports tasks such as 

generalisation and improves usability. In fact, semantic enrichment has been long 

discovered as a promising application area for well known AI-techniques and methods. 

Its adaption to the geospatial domain means that we need to attach semantics to 

information sources and entities, and to draw conclusions from the semantic annotations 

available (Visser et al., 2000). This kind of intelligent information processing is what 

makes ontology so relevant to this thesis. It provides a means to discover and retrieve 

implicit information from geospatial databases. Geographic data models tend to 

explicitly represented only a set of basic objects, their geometry and their properties 

(Worboys, 1996). However, much of the semantics appears in the relations linking 

objects. Some relations are represented in data models, others are not. The extraction of 

implicit information is based on the unique set of characteristics that are inherent in the 

data. These characteristics encompass geometric and other unary properties, spatial 

relations such as topology, distance and direction, and existing attributes, all of which 

are easily recognisable by humans, but are mostly contained implicitly within the 

dataset. Often they need to be calculated and derived through a number of GIS 

operations. However, even upon finding implicit spatial structures, the computer still 

does not know the meaning of them – the semantics needs to be translated into a 

computer-comprehensible way (Heinzle and Sester, 2004). 

 

There is enough evidence to pursue the use of ontologies to infer functional information 

from topographic knowledge with an optimistic view on success. In particular, Barr et 

al. (2004; Barnsley and Barr, 1997) investigated the intrinsic separability of several 

different categories of urban land use based on the morphological properties of, and the 

spatial relations between, their component land-cover parcels (see chapter 2). They 

performed a statistical separability analysis to validate their assumptions and to provide 

quantitative evidence. Unfortunately, Barr and Barnsley have not taken their developed 

extended relational attribute graph (XRAG) to the next level of actually searching for 

land uses that meet their a priori established morphological characteristics. Klien and 

Lutz (2005), on the other hand, illustrate an automated semantic annotation of geodata 

by associating spatial analysis methods with spatial relations in ontologies. By 

establishing concept definitions for the intended domain ontology, and extracting each 

concept’s characteristic spatial relations, it then becomes possible to analyse an existing 

non-annotated dataset for spatial entities that meet the specified characteristic spatial 
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relations of that concept, thus annotating it as such. On the one hand, GIScience’s multi-

disciplinary nature lies at the root of many of the semantic problems. On the other hand, 

it offers methods in ontology design that are informed from development across various 

disciplines (Agarwal, 2005). 

 

The transition from data, to information, and to knowledge is achieved by defining a 

conceptual model that offers expressive facilities for modelling directly and naturally, 

and for structuring information bases. In the simplest case, an ontology describes a 

hierarchy of concepts related by subsumption relationships. In more sophisticated cases, 

suitable axioms are added to express other relationships between concepts and to 

constrain their intended interpretation (Guarino, 1998). Ontologies offer benefits in 

terms of ease-of-maintenance, extensibility and flexibility, and they can help to increase 

the transparency of application software. The semantic database industry, with examples 

such as Freebase and True Knowledge, has already developed technology that 

demonstrates the benefits of semantic databases (Lowe, 2008). Benefits such as having 

a much richer, structured data modelling approach have been known for a long time 

(Peckham and Maryanski, 1988; Hull and King, 1987). However, who defines and 

categorises data into these types and who builds the relationships between database 

elements? Knowledge acquisition can indeed form a bottleneck in this matter (Sester, 

2000). Even with the wiki approach that Freebase uses, the question remains whether it 

will scale up. Semantic databases will become the future in the way we interact with 

information only when their development and maintenance can become automated. 

Ontology, however, is merely a theory of objects and their relations, concerning 

especially entities in language. It offers an explicit specification of a conceptualisation, 

which can be formalised in a machine-readable way. A common misconception is that 

ontologies are a collection of facts arising from a specific situation. An ontology is more 

than just facts, it defines intended meaning of these facts. By itself, ontology is not a 

database schema or a model of an application domain, nor a vocabulary or dictionary, 

not even a knowledge base. Ontology is the general framework for organising 

knowledge. Its defined concepts therefore can become part of a domain model or a 

knowledge base, and this thesis explores this in the subsequent chapters. Ontology may 

offer human-legible and structured content that assists with interoperability and mixing 

of data and metadata. However, ontology languages are not designed to cope with 

context other than by building other ontologies and producing mappings between them 
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based on syllogistic reasoning (Tanasescu, 2007). They require categorisation that is 

often arduous and fails to reflect the dynamic nature of the geographic environment. 

The derived symbol-based systems often are not grounded in reality. They are separated 

from subsequent design products or are not accessible to application programs, as in the 

case of querying databases. Furthermore, ontology can have very long descriptions. It is 

extremely difficult to encode very large geographical databases. There is no indexing, 

which makes querying within a knowledge base very memory-dependent and slow. As a 

result, some regard ontology as a panacea for an extremely wide range of problems. 

Others adopt entirely the opposite view and deny that ontological inquiry has any sense 

at all. On the one hand, there is the desire to capture the world in a definitive set of 

categories. On the other hand, there is the opinion that the endeavour is impossible and 

nonsensical (Poli, 1996).  

 

In spite of both baseless enthusiasm and deligitimating rejection of ontology and all of 

its controversies, research is advancing in this area and ontologies are becoming a 

widespread phenomenon with the semantic web. In the light of this thesis, I can discern 

three major advantages of pursuing an ontological approach for three respective 

viewpoints: From a business perspective, the semantic enrichment of OS MasterMap, 

for example, will be useful for its wider use, meeting a wider range of customer needs, 

and offering customised, thematic representations. Ordnance Survey is particularly 

interested in describing their data to the user’s understanding, as well as to facilitate 

data integration and ontology merging. From a customer’s perspective therefore, this 

means that data are potentially more suitable for the way customers solve their 

problems. This includes new ways of cartographically drawing the information to 

customised maps. From an academic perspective, the thesis distinguishes itself from 

other research by exploiting ontologies for inferring higher-level knowledge from 

topographic data, and by tying knowledge representation closely to the way people 

interpret topographic maps. 

4.2 The ontology engineering approach 

How is ontology useful for this particular problem of exposing high-level semantic 

information within topographic data? According to Nunes (1991), geographic space is a 

definition of its geographical objects, their attributes and relationships. Ontology is ideal 
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for modelling these entities as well as human-legible, high-level concepts that describe 

land uses and functional information. Because this knowledge is not explicitly 

contained within the data, the goal of this thesis is similar to the broad field of data 

mining and knowledge discovery. Knowledge discovery in databases (KDD) is a 

process of identifying valid, novel, useful, and understandable patterns in data (Fayyad 

et al., 1996). Most literature however is about validity and process and very little is 

about novelty, utility, and understandability. Psychological studies of the nature of 

comprehensibility of knowledge structures are necessary to give substance to the 

intuitions. For Pazzani (2000) it is time for KDD to draw on cognitive psychology in 

addition to databases, statistics, and artificial intelligence. Pazzani argues that by 

considering the human cognitive processes, we can increase the usefulness of KDD 

systems. This does not suggest that KDD systems should emulate the way people learn 

from data, since people have difficulty finding subtle patterns in terabytes of data. 

However, KDD can benefit from incorporating some of the human learning biases. 

 

Ontologies play already a role in KDD systems, but mostly as background knowledge. 

They express the main concepts and relationships in a domain in a way that is 

consensual and comprehensible to the given professional community, committing to 

some generic principles of knowledge organisation. Their role depends on the given 

mining task and method, on the stage of the KDD process, and on some characteristics 

of the domain and dataset. Usual applications of ontologies are data understanding, task 

design, result interpretation and result dissemination over the semantic web (Svátek et 

al., 2006). Although ontologies are a popular instrument in many diverse applications 

such as text mining (e.g. Vallet et al., 2005), they have been mainly used to enhance the 

knowledge discovery process. This thesis, however, will explore the reasoning abilities 

of logic-based ontology languages for the actual mining process. 

 

Discovered knowledge should be concise, informative, and be represented by high-level 

concepts. Ontologies present themselves as ideal candidates for modelling these 

semantic requirements considering their main characteristics (Kuhn, 2004a): 

 Semantics has a model-theoretic view of the world, assuming that the meaning 

of an expression is a model of the real world. 
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 Semantic theories are axiomatisations for predicates in some variant of first-

order logic, for instance in a description logic. Hence, they are machine-

interpretable. 

 All formalisms assume compositionality, that is, the idea that the meaning of a 

component is the set intersection of the meanings of its components. This is 

particularly useful for describing land use information that is naturally 

compositional. 

 The meaning of sub-types is explained by adding predicates to account for 

additional information, such as the sub-type house to an ontology describing 

types of dwellings. 

 Multiple inheritance relationships, which are essential to any theory of 

meaning, can only be handled if the sub-type stands for the set intersection of 

what the super-types stand for. Therefore, instances of the sub-types inherit all 

attribution from the supertype. 

These characteristics will become clearer in due course as we develop a semantic model 

for exposing functional information within topographic data. The question is how 

logical descriptions assist in the tasks of geospatial data interpretation, or map 

description (e.g. Montes de Oca et al., 2006), and especially in interpreting functional 

information from topographic maps. The key is the reasoning facilities provided with 

logic-based ontology languages, which chapter 6 discusses in detail. Reasoning in that 

sense relates to the psychological approach of deduction, where reasoning is a kind of 

mental process that creates new ideas from old ones (Rips, 1994). There is not only the 

need to infer new information from existing ones, but to classify database instances 

according to some defined high-level concepts. Classification is a well-known data 

mining technique, where the data stored in a database are analysed to find rules that 

describe the partition of the database into a given set of classes. Each object in a 

database is assumed to belong to a predefined class. The most common classification 

method constructs decision trees that use a top-down, divide-and-conquer strategy for 

partitioning a set of given objects into smaller subsets (e.g. Koperski et al., 1998). With 

ontologies, we can devise a similar hierarchical tree of defined super- and sub-types of 

concepts, and classify instances accordingly. 
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The first step towards bridging the divide between existing models of space and the way 

humans interact with and conceptualise space is to make higher-level semantic 

information accessible from existing data repositories. The crucial point is therefore the 

incorporation of the human component. People effortlessly combine contextual and 

configuration information with other significant variables such as size, shape, 

similarities and proximities to draw inferences, as chapter 3 elaborated. Our inferences 

happen so quickly that we are often not aware about the ‘why’ and ‘how’ we came to 

our conclusions. By making this knowledge explicit through ontology – hence 

modelling the relevant spatial relations, typical characteristics and other variables 

common in the geographical space – we conceptualise and translate this knowledge into 

machine readable and logical form. The resulting formal ontology then becomes a 

useful tool for: 

1. Modelling all the aspects that are relevant for a complete representation of some 

functional information concepts, 

2. Deriving previously unknown (functional) information from the database as part 

of the data mining process, 

3. And simplifying the process of sharing and integrating the existing database 

content with other data sources. 

Consequently, ontologies have the potential to bridge the gap between a given 

conceptualisation and the data it relates to (e.g. Hart, 2007). They can be seen as a 

mediating instance between the captured reality, i.e., spatial data, and higher-level 

knowledge.  

 

Unfortunately, a standard, unified and acknowledged methodology for the building of 

ontologies is still missing. Figure 19 is a combination of several proposed approaches in 

literature, whose methodologies have general stages in common (e.g. Jones et al., 1998; 

López, 1999; Noy and McGuinness, 2001; Mizen et al., 2005; Kovacs et al., 2006). A 

form of ontology life cycle appears with support and development-oriented activities. 

The starting point is an initial specification of the ontology, including its motivation, 

purpose, scope and domain. This is followed by knowledge acquisition to capture the 

main concepts, properties and relations of the ontology. The questionnaire survey in 

chapter 3 provides such knowledge for the ontology development. The next stage, 

conceptualisation, addresses the informal description of the ontology. These are usually 

natural language descriptions, or expressed as graphical diagrams like semantic 
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networks (e.g. Kovacs et al., 2006). The next chapter defines the conceptual framework 

and requirements for this thesis. The informal description then carries through to the 

formal description, where concepts and relations are expressed as axioms, and 

definitions are stated in a logic-based ontology language. Chapter 6 introduces the 

necessary formalisms, which are essential for the implementation of the ontology in a 

knowledge-based system. The ontology is then ready for application to whatever 

particular problem it addresses. The thesis applies the developed ontology to 

topographic data for deriving implicitly stored functional information (chapter 7). 

During ontology evaluation, the ontology is assessed in regards to its structure, intended 

use, and usability. Chapter 8 draws conclusions about the usefulness of ontology in 

terms of its design and reasoning abilities. Either the circle then closes and the ontology 

becomes a matter of maintenance and possible future re-use, or the circle rejoins the 

specification stage because there are re-adjustments in the ontology’s conceptualisation 

as well as formalisation. 

 
Figure 19 Ontology development and life cycle 

 

Just as ontologies are classified according to their level of formality, i.e., informal, 

conceptual, and formal ontologies, they are also distinguished based on their level of 
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describe a certain level of detail. For the ontology to become dynamically adaptable to 

different situations, vertical neighbours must either unify or split as a means to decrease 
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on a conceptualisation of the world. A fine-grained ontology needs a very expressive 

language and has a large number of axioms. Often the terms high-level and low-level 

ontologies are used respectively (Fonseca et al., 2002). This distinction stems from the 

ontology integration problem (Guarino, 1998). The need to find an agreement between 

different models of conceptualisation has led to the consideration of developing 

different kinds of ontologies according to their level of generality. For our purpose, 

granularity must meet the level of detail provided by the objects, attributes, and 

relations of geographical space, that is, of the data under interrogation. If we want to 

map individual features of the data onto the higher-level conceptualisation of the 

ontology, we require a sufficient vertical level of granularity. This is what differentiates 

this approach to many existing ontologies that were designed primarily for data sharing. 

For example, the land use ontology of the HarmonISA project provides just enough 

formalisation to describe relevant categories according to some general attributes (Hall, 

2006; Mandl and Hall, 2006). 

 

A classification according to an ontology’s dependence on a specific task or viewpoint 

has been proposed to differentiate between the different levels of granularity (Guarino, 

1998; Fonseca et al., 2002). Figure 20 illustrates how concepts are interrelated between 

these different levels of generality. They range from the fine detailed, low-level data 

ontology (describing the data), via the high-level concepts of the domain of interest 

(describing the functional information) to an existing upper level ontology that provides 

the most generic concepts and relations for classification. The top-level or upper 

ontology is an attempt to create a unified ontology, which describes general concepts 

that are the same across all domains, thus providing concepts and relations to the more 

specific domain ontology (Guarino, 1998; Masolo et al., 2003; Niles and Pease, 2001). 

At the domain level, the vocabulary relates to a generic domain, as in this case of our 

high-level functional information. Sometimes the ontology may refer to a specific task 

or activity, such as inference or information retrieval, for which the terms introduced in 

the level above are further specialised. Application ontologies are a specialisation of 

both the domain and task ontology, where concepts often correspond to roles played by 

domain entities while performing a certain activity. By putting domain ontologies on the 

foundation of an upper level ontology like DOLCE, this potentially helps to enhance the 

quality of the domain and application as well as to achieve not only logical consistency 

but also ontological consistency (Klien and Probst, 2005). Because of the limited scope 
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of this thesis, I will concentrate on the application level. As long as the detailed 

ontologies are based on high-level ontologies, so that each new ontology level 

incorporates the knowledge present in the immediate higher level, a mapping can be 

achieved between these different levels of abstraction (Fonseca et al., 2002). 

 
Figure 20 Ontologies at different levels of generality 
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abstract categories, for example the core concepts of functional information, reside at 

the top, with narrower and more specific categories, mostly geographical objects, 

beneath them. As in any network, it also becomes possible to assess neighbourhood 

relations among concepts, that is, all core-, secondary- and sub-concepts. The horizontal 

neighbourhood between concepts refers to competing concepts on the same level of 

granularity, allowing for the selection of an appropriate description value. Concepts that 

are far apart in terms of the distance along the network will have less in common than 

ones close by. At the vertical level, neighbouring concepts reveal their part-of and kind-

of relations, and refer to compatible concepts on different levels of granularity allowing 

for the selection of an appropriate description granularity. The resulting knowledge 

representation, or concept space (Freksa and Barkowsky, 1995), is therefore not simply 

a hierarchical tree subdivided by individual concepts, but rather constitutes a 

neighbourhood structure for objects, relations and attributes of various kinds. This 

property allows the capture of implicit knowledge about conceptual aspects from the 

description of other concepts, because a concept’s meaning is largely given by their 

relation to other concepts. 

 

A mutual relatedness between concepts and objects enforces a certain structure upon the 

concepts. As established earlier, space intrinsically ties geographic objects to its 

structural properties leading to special ontological considerations. Concepts have their 

meaning rooted in their relation to objects. For example, the concept of a building rests 

on the object’s properties in regards to its size and shape. Considering concepts in their 

wider context requires spatial relations. For example, a terraced house is defined by its 

relation to its neighbouring buildings. A spatial conceptualisation therefore must be able 

to contain a qualitative topology, that is, a theory of boundaries and interiors and 

connectedness and separation, as well as a mereological theory of parts and wholes, and 

qualitative geometry (Smith and Mark, 1998). Modelling these relations is potentially 

very difficult. Whereas we are intuitively aware of an objective reality that contains so-

called bona fide objects, such as buildings, lakes, and roads, the human geographic 

reality includes also objects that exist only in virtue of our individual and social 

conceptualisations of the relevant areas of space (Peuquet et al., 1998). Classical 

problems connected with the notions of adjacency, contact, separation and division may 

be resolved in an intuitive way by recognising a two-sorted ontology of bona fide and 

fiat boundaries. However, Smith and Varzi (2000) argue that their opposition cannot be 
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modelled in a natural and intuitive fashion within a topology on a set-theoretic basis. 

Therefore, if we force a conceptualisation into logical formalisms, we have to accept 

that the resulting categorical system exists only because of delineating boundaries 

between categories, even if reality is imprecise, such as land use, where boundaries are 

partly induced through human demarcation. 

 

To the contrary, the meaning of spatial concepts is not only given by their relations to 

physical objects, but by their relations to other concepts. For example, we can imagine 

the concept residential through other concepts such terraced houses or semi-detached 

houses. The compositional aspect of these kinds of concepts shows that meaning is 

constituted even further through situation context. In this sense, Freksa and Barkowsky 

(1995) argue that spatial concepts have a meaning independent of an envisioned 

physical materialisation. This independence is what makes concepts universally valid 

for all situations in which the concept can be used. However, I believe that a concept’s 

meaning is always stimulated by the comprehended reality of the environment we live 

in. Consider the land use domain that contains such abstract, universal concepts like 

residential or recreational. Does not a functional concept become spatial through its 

conceptualisation in terms of its geographic space it claims in the real world? Such a 

concept is made up of real geographical objects, such as a building where recreation can 

be practised. This means, a functional concept comes into existence based on its part-of 

relations that constitute its spatial context and configuration. Consequently, a concept is 

defined through its envisaged physical and spatial existence whether this is expressed 

through other concepts or objects. 

 

Consequently, we need to match the discrete world of concepts with the continuously 

perceived world of features of the entities in the real world. This includes both 

categorical predications, such as building, house, or road, and accidental predications 

(properties), such as large, living, or natural (Mark et al., 1999). We need to capture 

geographic objects according to their surroundings and context, such that for instance a 

land parcel of sand only becomes a beach if it is adjacent to the sea. Geographical 

objects may be persistent in space and only change very slowly, however their 

associated functions potentially change much more rapidly. A building may be used as a 

residential home one day; another day, it may be transformed into a set of offices. I will 

only consider the static viewpoint, the situation given at one time. In chapter 3, part of 
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the questionnaire survey generated instances of categories and attributes at several 

levels, evaluating their goodness and typicality. There is a great degree of agreement 

among human subjects as to what constitute good and bad examples of category 

members. Naturally, we learn how the things falling under given categories are related 

to each other and how they interact causally, but when we want to model a category 

system, we must make concrete decisions on their relationships and definitions. The 

elicitation of ontologies not only helps to make these decisions, but also to model 

domains according to the conceptualisation of given individuals or cultures. Instead of 

focusing on knowledge and beliefs in general, an elicitation concentrates on the 

ontological content of certain domain-specific representations. Considering the need to 

model both low-level, object-specific content as well as high-level content, a middle-out 

approach that combines both top-down and bottom-up approaches seems most suitable. 

Thereby we will go top-down from the concepts established from the human knowledge 

and natural language descriptions towards geographical objects, and bottom-up from the 

objects towards the concepts. Although both methods will reach the same level of 

granularity at some point, Freksa and Barkowsky (1995) warn for incompatibilities 

when pursuing a one-to-one mapping with this approach. 

 

This duality is caused by the nature of our problem. On the one hand, we are dealing 

with human understanding, meaning and knowledge of land use, whether derived from 

questionnaire surveys or existing natural language definitions (e.g. Fellbaum, 1998). On 

the other hand, in a GIS we are dealing with scientific fiat boundaries, prescribed by the 

classification system of the spatial representation. The entities stored in a database are 

mathematical fiats that are artefacts of a certain technology. These artefacts can have 

measurable quantities and other physical properties that constitute fields that vary more 

or less continuously and somewhat independently across geographic space (Smith and 

Mark, 1998). With this kind of perfect information, we can apply a typology of land use 

to the continuous variables and derive crisp boundaries. Hence, land use can be seen as 

a world of geographic objects with crisp boundaries. They may misrepresent the 

phenomenon, but they are the best that can be done with current data representations. 

Consequently, the ontologies underlying most geographic information systems rest on 

discretised metric world models. On the contrary, a high-level ontology must have the 

resources to represent the qualitative conceptual categories conveyed by natural 

language. Therefore, a mapping of high-level concepts onto the low-level features is 
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required. An ontology allows us to combine both types of knowledge granularity. 

Further, by formalising the ontology with an appropriate knowledge representation 

language, knowledge becomes machine interpretable and can be used to infer new 

knowledge. This process is similar to the goal of data mining, as discussed earlier. 

Figure 21 depicts the KDD’s general basic steps from understanding the application 

domain, its relevant prior knowledge, identifying the overall goal, to searching and 

interpreting mined patterns, and consolidating the discovered knowledge (Fayyad et al., 

1996). These general processes are pliable to our specific problem. Therefore, the figure 

can be altered to show exactly where ontology slots into the KDD process and how the 

information retrieval procedure will be performed. 

 
Figure 21 Ontologies for knowledge discovery 

 

The starting point is the topographic database – in data mining lingua often referred to 

as prior knowledge. From this large repository of data, we select some sample data. This 

data then is pre-processed to collect all the necessary information, such as spatial 

relations, building features, and other useful attribution. The transformation stage relates 

to the reduction of the target data to the ontology language RDF/OWL, so that the 

information can be imported into the knowledge base. The knowledge base consists of 

both the asserted knowledge about the data as well as the high-level concepts described 

by the ontology. The ontology serves as a tool for information retrieval by classifying 

the asserted topographic instances according to its high-level concepts. After the 

concept-based instance retrieval, the inferred functional information is finally added as 

new knowledge to the database. The next chapters will further explain and illustrate this 
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crudely outlined method with examples from OS MasterMap Topography Layer. This 

solution is based on the cognitive use of a priori knowledge to interpret and categorise 

new observational data. It rests on the compromise of pre-processing raw data to a level 

of conceptually relevant granularity and using this pre-processed data on demand by the 

conceptualisation formed in specific contexts (Freksa and Barkowsky, 1995). 

Consequently, the suggested approach exhibits a strong correspondence to the human 

use of geographic maps. 

Conclusions 

Ontology is one of the most thriving themes in geographic information science. In the 

past, ontology has been rather confined to the philosophical sphere, but now it has 

become a fancy name for its role in AI, computational linguistics and database theory 

(Guarino, 1998). As a result, there have been many ambiguities around the term 

ontology (Guarino and Giaretta, 1995). It is referred to as a philosophical discipline, as 

a conceptual system, a specification of a conceptualisation, a representation of a 

conceptual system via logical theory, a hierarchical structured set of terms for 

describing a domain that can be used as a skeletal foundation for a knowledge base, and 

so forth. Nevertheless, what all these views have in common is that ontology aims to 

make sense of what exists. 

 

From a philosophical point of view, ontology accounts for a certain vision of the world 

and makes assumptions about the meaning of terms describing this world explicitly. In 

AI, ontology has evolved to an engineering artefact that models and represents 

knowledge of the real world by using a systematic and axiomatic development of the 

logic of all forms and modes of being. However, ontologies have their own 

methodological and architectural peculiarities. From a methodological perspective, it is 

the highly interdisciplinary approach to analysing the structure of a given reality at a 

high level of generality and in formulating a clear and rigorous vocabulary. The 

problem here lies with capturing a conceptualisation that is possibly infiltrated with 

biased knowledge and erroneous beliefs, especially if taken from human subjects. On 

the architectural side, it is the centrality of the role that an ontology can play in an 

information system, leading to the perspective of ontology-driven information systems. 

Here, we need to be vigilant to model a conceptualisation that is broad enough to 
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capture high-level concepts, but also fine-grained to account for the level of detail given 

in low-level representations. Therefore, research on this topic must be careful to 

distinguish the domain of the real world from the domain of computational and 

mathematical representations, and both of these from the cognitive domain of reasoning, 

language, and human action (Smith and Mark, 1998). 

 

As it is debatable whether or not the current object-field representation dichotomy of 

spatial data can represent all kinds of geographic phenomena, ontologies have to 

encapsulate not only the meanings linked to specific concepts in the data but also the 

way these meanings are handled and represented in the cognitive set of individuals 

(Agarwal, 2005). Ontology provides an opportunity to understand better and in a 

systematic manner geographic reality and the way such knowledge is, or better should 

be represented in modern information systems. Ontology by definition, attempts to 

clarify and set the explicit knowledge of the domain they describe. There is a higher 

ontological perspective with an interest in representing appropriately reality (geographic 

in our case), or more precisely our knowledge about reality. On the other hand, there is 

the lower design and implementation perspective with an interest in formalising, 

processing and associating existing information or data (Kavouras, 2003). For the 

objective of this thesis, I am proposing a middle-out approach for the ontology 

development. It seems most promising to combine both interests, top-down from the 

human elicited conceptualisation of the land use domain and bottom-up from the 

representation, or more precisely the objectification, of topographic data. Not only do 

we need to model spatial context of features within the topographic map, but this 

knowledge needs to be put into a machine-readable format with which we can reason 

about the data and derive new knowledge in an automated way. 

 

It is evident that the specific nature of geographic categories and the predominantly 

cognitive nature of geographic information make it difficult to organise the domain and 

the concepts in it within a structured formal framework (Agarwal, 2005). Even if the 

organisational structure of such a framework resembles Rosch’s (1978) proposed 

mental category system (chapter 3), capturing the meaning of a conceptualisation in a 

rigorous way is not easy. Individual conceptualisations are highly subjective and 

dependent on context. The challenges that we face in the light of the geographic domain 

are in fact well known (Freksa and Barkowsky, 1995): We have to handle knowledge 
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that is to be used for different tasks requiring different resolutions and different 

conceptualisations. We have to manage incomplete and imprecise information. 

Knowledge and concepts of varying granularity cause fuzzy correspondence between 

concepts and real world entities. We have to deal with complex open worlds whose 

dimensions and values cannot be entirely specified.  Furthermore, the number of 

ontologies developed is not large and their practical use in final and real applications is 

still small. This is especially true for the geospatial domain (Klien and Probst, 2005). 

However, Kuhn (2004a) believes that these problems generally are tractable. For 

example, feature attribute catalogues, conceptual data models, descriptions of work 

procedures, and other sources are subject to explicit and documented agreements among 

their designers and users. These agreements form the basis of information system 

semantics, and are, though often implicit and imprecise, available for inspection. They 

can be mined in the process of defining ontologies. What remains, therefore, is the 

integration of the information system’s semantics with the cognitive nature of 

geographic information in a framework that provides access to the rich, higher-level 

knowledge of people. 
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Chapter 5 

A Conceptual Framework for Accessing Knowledge 

“Geographic space must be a relative space, and because the concept of relative space 

essentially means that objects are the space, the problem of defining geographic space 

or a conceptual model for it is actually a problem of defining and studying the 

geographical objects, their attributes and relationships.” 

–Joan Nunes (1991, p.27) 

 

Exploring, learning and understanding visual scenes are a matter of breaking down an 

image into the sensory input of features and objects that compose a scene description. 

The key is to understand the concept of what is being recognised, that is, the meaning of 

things rather than just their appearance. Understanding the meaning of topographic 

features is also more important than their mere appearance in a geo-referenced space. 

According to Schröder (1999), if the aim of a scene interpretation is to be in a human 

understandable form, then the interpretation must operate within terms that the human 

mind created for the phenomena in the world he or she lives in. Now, how can we 

recognise meaningful concepts from topographic data in an autonomous way? Let us 

recapitulate what we found out so far. Firstly, the interpretation of land use information 

can be defined as a configuration problem because the functional meaning is inherent in 

the spatial constellation of its land cover features. Secondly, the interpretation is based 

on map cues such as feature sizes, shapes, and proximities, which can be described with 

spatial relations. Thirdly, an ontology provides us with a framework for modelling this 

knowledge in an explicit way. Its different levels of granularity allow us to map low-

level, detailed information onto high-level, aggregated, more meaningful information. 

We have seen that reasoning refers to the cognitive, computational and formal aspects 

of making logical inferences about a spatial environment (Worboys, 1995). Any form of 

knowledge retrieval therefore requires powerful inference capabilities.  

 

Through model theory, formal semantics introduces the notion of possible models that 

are considered to be the meanings of things. Although formal semantics represent 

meaning as a relationship between symbols of a language or symbols representing 
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concepts, these relations do not exist in the real world. Rather, they exist in minds to aid 

in making sense of the world and in interacting with it (Mark and Frank, 1996). From a 

conceptual point of view, semantics are just symbolic structures, but useful ones: They 

represent conceptualisations of entities, properties, and relationships in a domain and 

can therefore be tested against human intuitions. The closer the models correspond to 

the human concepts about a domain, the more useful will an ontology be (Kuhn, 2005; 

Jakulin and Mladenić, 2005). A knowledge base incorporates these conceptualisations 

by creating a unified, high-level collection model (Lewis and Sparck Jones, 1996). It 

provides more depth and integration through an organised superstructure over the data, 

hence allowing more intensive inference. Indeed, there are existing methods for 

describing spatial data, and using knowledge bases and logical rules to infer new 

knowledge. However, this only happens at the data level. These approaches do not 

consider how to derive higher-level classes of information (Montes de Oca 2006; 

Mullally and O’Donoghue, 2006). The thesis is interested in the representation of 

context in a model that potentially helps to solve semantic problems of similarity and 

inference at a high level. There are computational benefits that might accrue in 

modelling and representing context in AI and knowledge-based systems (Kashyap and 

Sheth, 1996). In a manner akin to database views, a conceptual model provides a 

semantic summary of the information stored in the data (explicit or implicit). It provides 

flexible semantics in the sense that the same two objects can be related to each other 

differently in two different contexts. Furthermore, logical reasoning in a knowledge 

base easily identifies any inconsistencies inherent in the semantic descriptions. 

 

This chapter introduces the generic framework of how new knowledge can be made 

explicit within topographic data using a conceptual model. The model expresses the 

higher-level semantics we wish to recognise in the data. Its hierarchy of concepts 

captures the semantic distinctions necessary for generating land use information in 

topographic data. These distinctions require different levels of semantics to link low-

level representations, such as house, with high-level representations, such as a district of 

houses or residential area. The semantics are therefore abstract beyond the data, but 

broken down into their constituting lower-level features, they still maintain a 

commitment to the data as a motivating force. In the next sections, I will explain how 

this conceptual model is built and how it ties concepts from the questionnaire survey to 

the data through semantic aggregation. We will learn how computer vision motivates 
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the interpretation of scenes, and more importantly of spatial data. The concept 

residential area serves as the illustrating example. It is the most straightforward concept 

people recognise within topographic data. In addition, the spatial patterning of housing 

yields important information (e.g. Pesaresi and Bianchin, 2000), thus making 

‘residential’ a relevant and important concept in real world applications. 

5.1 Decomposing the link between knowledge and spatial data 

The entities represented in a GIS stand for the real world objects and their properties. In 

that sense, GIS forms the mediating instance between world’s reality and the way 

humans interact with this reality. However, when people describe certain aspects about 

the real world, we have to match the discrete world of concepts with the continuously 

perceived world of features of the entities in the real world. By using concepts we can 

see the world as detailed as we need, or in other words, by using concepts we construct 

our reality of interest (Freksa and Barkowsky, 1995). Naturally, spatial concepts are 

essential for representing knowledge about the geographic world. A geographic feature 

has therefore a two-fold meaning: It is both a real world geographical entity and it is a 

digital representation (Tang et al., 1996). In its digital representation, a feature is 

committed to the conceptual schema of the computer representation. The data primitives 

in a GIS contain attributes and relations about the spatial and non-spatial components of 

the feature. However, a feature is also an instance of an entity set, where the entity is a 

real world phenomenon. In this sense, a feature is committed to a knowledge domain of 

an ontology that describes concepts in the way people perceive them (Fonseca et al., 

2003). The aim is to allow the user to access information stored in databases using high-

level concepts – in this case relating to land use information. This means we have to 

make the semantics embedded in the geographic data primitives explicit and relate these 

to higher-level semantics as described by the knowledge domain. 

 

In computer vision, the interpretation of a visual scene is viewed as an information-

processing task. It consists of breaking down an image into the sensory input of features 

and objects that compose a scene description. This process is similar to semantic 

factoring in ontology (Kokla and Kavouras, 2001). It is a process of analysing and 

decomposing the categories of a given ontology into a set of fundamental categories. 

Thus, complex concepts are decomposed into simpler concepts out of which they are 
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constructed. Marr (1982) asserted that processing of visual information must begin with 

the perceived image of the real world, that is, the perceived image in the machine vision 

sense and not in the sense of mental imagery. Similarly, we can choose to dissect the 

geographical representation of the real world. Marr goes on to describe characteristics 

regarding the overall spatial arrangement of individual entities as primitive image 

elements. These account equally for spatial data representation, as the characteristics 

relate to the existence of surfaces that compose the world and create spatial 

configurations. These configurations take on a hierarchical organisation of spatial 

entities, which are often generated by a number of different processes, each operating at 

a different scale. Entities therefore have different levels of abstractions that subsume 

one another in hierarchical fashion. Items that are part of a configuration tend to be 

more similar to one another in spatial organisation, size and other attributes than to 

other items. In other words, similar objects have similar properties, forming groups or 

classes of objects. Furthermore, items in a configuration generated by a single process 

tend to exhibit some sort of organised pattern. These patterns result in a tendency 

toward smooth-shaped and non-abrupt boundaries between them. 

  

As we learnt in chapter two, the inference of land use information from a topographic 

representation is a configuration problem. Configurational knowledge includes the 

ability to identify distributions, patterns, shapes, associations and relations of 

phenomena in both proximal and macro environments. It has been hypothesized that 

spatial knowledge requires only a declarative base and a set of procedural rules to allow 

understanding of complex spatial environments (Golledge, 1992). Most people have a 

common sense configurational understanding of spatial phenomena, as the 

questionnaire survey in chapter 3 confirmed. We learnt from the survey and related 

research that a lot can be discerned and named from topographic data. Although there is 

no explicit information about relations, such as buildings are near streets, or streets are 

in urban areas, etc., they are still observable in the data and reveal themselves to the 

user by visual inspection (Sester, 2000). Attributes that are typically stored in a database 

are material, type, and status. Others are hidden, in particular topological relations or 

proximities. These can be calculated, as GIS offers analytical tools to extract such 

information interactively. However, the higher-level semantics behind such relations 

and configuration is still missing. Semantic relations and intrinsic interrelations of the 

features themselves are often neglected (Tang et al., 1996). That is why knowledge 
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about the objects and concepts to be found in the data has to be made available as a 

model of the relations between parcels and buildings, and other structures such as 

aggregated entities like urban areas. 

 

The determination of geographical features is a complex process involving human 

perception and cognition. The analysis begins with the differentiation of data into 

categories, which must end with their reintegration into the whole image, as meaning is 

broken down into map elements and their structural entities that constitute the overall 

image. Shape, arrangement, similarity and proximity facilitate the making of vividly 

identified functional information within the map. There are clear interrelationships 

between map elements at different levels, as identified by Marr. We start with 

individual objects that form larger groups of objects based on similarity. These groups 

can be aggregated to blocks of objects, which are distinguished by their surrounding 

streets. These in turn form larger areas of homogeneity such as specific districts. 

Physical characteristics determine districts as thematic continuities which may consist 

of a variety of components, such as texture, space, form, details, building type, use, 

activity, etc. (Lynch, 1960). Homogeneities are characterised by similarities and their 

proximities such as direct neighbours and connectedness of groups, leading to a 

thematic unit. These elements operate together in a context providing a satisfying form 

to the observer. Most observers group the elements into larger organisations, or 

complexes that are sensed as a whole. In this holistic sense, people see the world as a 

whole rather than the sum of its parts. This means relations between a feature and the 

surrounding area are considered for the interpretation of the scene.  

 

The preoccupation with parts, or map elements, rather than wholes is a necessary 

feature of an investigation into the interpretation of maps. To understand how the world 

is seen as a whole, we need to decompose objects into a set of sub-objects according to 

the user’s interpretation of the reality. Geographic space can be defined as a finite, but 

not fixed, set of geographic entities having a recursive structure of partition and 

composition. A feature can both be composed of and be part of any other spatial or non-

spatial objects. For example, a residential area is composed of houses, gardens and 

roads; likewise, a house is part of a residential area. The kinds of formalisms therefore 

needed for modelling geographic space in GIS, and particularly for semantic data 

modelling, are algebras or geometries dealing with such entities. Today GIS can 
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identify limited number of spatial relations like neighbourhood, containment or overlap 

relations, and only after very expensive, blind searches and computations, even to 

produce trivial results quite well presumable or known in advance. More complex, or 

conversely very intuitive, queries simply cannot be asked. What is needed are not 

formal models of spatial relationships among ideal polygons or lines, or topologic cells 

or simplices, but among houses and gardens, or streets and buildings (Nunes 1991). 

Further steps in the analytical direction require first of all what could be termed a 

taxonomic approach, that is, a systematic collection and specification of entities, their 

properties and relations. This will lead perhaps to a splitting of what is proposed now as 

geographic space in a number of interrelated sub-spaces, each one relevant to a kind of 

process. Second, a combinatorial approach determines how features aggregate to form a 

composite in each sub-space. Whether geographical entities will best be handled by set 

theory or not, this is in essence a configurational enterprise, not in purpose but in 

procedure. It is only after a successful differentiation and understanding of the kinds and 

parts before we can move on to consider the total system.  

A conceptual model for exposing the link 

A model is a simplification and abstraction of reality. It translates knowledge in a way 

that allows mechanical simulation. Modelling therefore requires that what is being 

modelled is made explicit. This includes the specification of things and relations 

between these things.  Ontology provides the foundation for modelling. Since the model 

is an extract from reality, we need knowledge of the phenomenon under investigation. 

This includes the problem and its constituents, and a general understanding of how 

reality is composed, that is, what can be and how it is represented (Steimann and Nejdl, 

1999). The starting point for an overall framework for accessing knowledge is therefore 

the conceptual model. A conceptual model is a general description of specific sets of 

entities and the relationships between these entities. The first step is to break down, or 

decompose, the thing to be represented into its elemental components, as outlined 

earlier. A geographic representation, in most general terms, is composed of entities, 

properties, and relationships. An entity in this context refers to spatial objects. 

Properties of objects are things that describe or characterise the object. Properties are 

crucial in explaining our ability to recognise and categorise things in the world around 

us: “To categorise is to render discriminably different things equivalent, to group the 

objects and events and people around us into classes, and to respond to them in terms of 
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their class membership rather than their uniqueness” (Bruner et al., 1956, p.1). There 

are many different types of properties: Characterising properties (e.g. high), mass 

properties (e.g. cement, water), general properties (e.g. colour, shape), natural kind 

properties (e.g. river), artificial properties (e.g. road), and qualities (e.g. distance, area) 

as well as roles (e.g. land use) are considered as sorts of properties (Kokla and 

Kavouras, 2001). It is not enough to rely solely on mathematical descriptions of spatial 

properties and criteria since their definitions often fail to do justice to people’s intuitive 

notions of what constitutes shape (Haggett and Chorley, 1969; Marshall, 2005). To 

capture the essence of human perception, understanding, reasoning and intuition, we 

need to model in a more natural way. For instance, on a set of spatial structures, such as 

topographic features, reasoning processes operate based on similarity judgement, 

proximities, shapes, sizes, etc., in ways similar to those investigated by Gestalt 

psychology (Thomson and Béra, 2007a). Concepts can be associated to these structures 

and processes to form a knowledge representation. Higher-level concepts can then be 

built incrementally from re-usable, primitive concepts as disposable one-time 

conceptual entities dependent on the information that is required by the user. 

 

Since we are dealing with a domain that manifests itself with its underlying geographic 

existence, higher-level knowledge of land use can be grounded to its finest level of 

detail in terms of objects, attributes, and relations that constitute its super-ordinate 

levels of information. Geographic context includes information about geographic 

concept types, characteristics, relations and operations. These describe both the inner 

context, i.e., the context of features within a land use category, and outer context, i.e., 

the context among different types of land use categories. For the purpose of this thesis, 

we will only concentrate on the inner context to discern the composites of parts and 

features that make up the whole of a given land use category. Therefore, if we take the 

high-level concept ‘residential’, it can be related to the landscape through its make up of 

geographic objects, the objects’ affordances and how they relate to one another to allow 

the use of that geographic space for human habitation. 

 

In chapter 3, the questionnaire survey asked ordinary people how they related land use 

to the landscape character. The resulting conceptualisations are a specification of 

different spaces that define and relate land use to its underlying topography – from the 

semantic categories with which people communicate about a given domain, their 
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defined relational, functional and attribute spaces, to their underlying real world object 

space. Table 6 shows some terms from people’s conceptualisation of the residential land 

use. A person’s conceptualisation is subjective, and involves knowledge, experience, 

perception and cognition. It happens on the mental level. On the other hand, its 

underlying geography represented through topographic data is an objectification of the 

real world. Its objects’ inherent properties can be measured and made explicit, e.g. sizes, 

shapes, location. The representation is objective and happens on a digital, computerised 

level (Thomson and Béra, 2007b). The link between the two is already there: The 

mental conceptualisation refers directly to the topographic representation. It just needs 

to be exposed. 

Table 6 Terms describing residential 

From the previous account, we can identify five important components for the 

conceptual model (figure 22): A collection of category types, a collection of 

relationships among these categories, a collection of functions (i.e., the purpose/role of 

categories), a collection of properties describing categories, and a collection of real 

world objects that are the constituents of the categories. Categories, or concepts, are the 

Member 
categories 

House Block of flats Front garden Rear garden Garden 

Member objects Building, low 
building 

Tall building Open space Open space Grass, open 
area 

Purpose Living 
accommodation, 
protection, 
residence, living 
area, housing, 
living in 

Housing Recreation Recreation Cultivation  

Role Living in, 
living, 
accommodation, 
provide 
comfort, shelter 

Shelter  Entrance to 
house 

Gardening Enjoyment  

Affordance Sleeping, live, 
living in, living 

Living Walking Relaxing Sitting 
outside 

Property Small rectangle, 
square, 
individual 
rectangles, 
small, 

Medium, 
rectangle 

Very small 
rectangle 

Large 
rectangle 

rectangle 

Taxonomy/ 
Partonomy 

Kind of, part of Part of Kind of Kind of Part of 

Topology Meets/ adjacent 
to house, 
contained/ 
inside garden 

Inside 
residential 
area 

Meets house Meets house Adjacent to 
house 
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contents of any representation. In figure 23, the category space describes the component 

concepts that make up the high-level category residential. These components consist of  

minimal meaningful units, such as primitive entities (building, roads, etc.), that combine 

to form higher-level meaningful composites of sets of elements (such as residential 

blocks and districts). Richer knowledge is derived from meaningful object 

configurations, special relations, perception (Gestalt principles) and context (Thomson 

and Béra, 2008). These relations form the relationship space, where categories are 

linked with one another. As identified by Barr and Barnsley (1997) land cover is 

organised spatially into discrete parcels whose morphological properties and the spatial 

relations between them convey information on land use and other higher-order 

‘meaning’ about the scene. This meaning is described through the roles, purposes, or 

functions of the categories. The resulting function space asserts how categories are used, 

for example, a house provides accommodation. To be able to identify instances that 

belong to the categories, we require properties. The attribute space provides the 

necessary information to discern different types of categories. For instance, a detached 

house is typically larger than a terraced house. When we have to make a choice of 

which type of house we are dealing with, we just need to look at its properties and 

relations to other objects. Objects refer to the spatial features that represent these 

categories in the real world. For example, a house is a building. In a GIS, these features 

are represented as geometric objects with associated topological relations and 

classification attributes. Although GIS has been criticised for its reductionism because it 

artificially divides the world into parts, for our purpose this is particularly useful. 

 

This vertical dimension of categorisation grounds the categories in the data by 

decomposing the rich knowledge to its finest level of detail in terms of its ‘syntax’. This 

allows a one-to-one mapping between higher-level concepts and its representing 

geography (Thomson and Béra, 2008). I assume that words for categories, properties, 

relations, and functions, which make up the rich knowledge, are symbolic tokens for the 

things themselves (i.e., the real world objects). Therefore, the process of attaching 

meanings to words is essentially the same as attaching meaning to spatial entities. This 

process is termed semantic data processing (chapter 2). To adequately describe word 

meanings, we require morphological knowledge (forms of objects and their spatial 

order), syntactic knowledge (structural information and relationships), and semantic 

knowledge (meaning about context and how concepts relate to objects and relations in 
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the world). Syntactic knowledge is given by the syntax of objects. It relates to 

information about the structure of spatial objects (such as roads, buildings, land, and 

water), and how these comprise larger units that convey functional meaning. 

 
Figure 22 Land use conceptualisation of residential 

The conceptual model relates to concepts that real-world objects possess, or at least 

apply to them in some way. These concepts in turn relate to the discrete data 

components within the geodata model where they are realised as features in a database. 

 

 

 

  

 

 
 

 

small 

 

large 

 
 

 

 
 

 

 

  

 

 
 

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Accommodation 

Habitation 

kind of 

kind of 
kind of 

part of 

part of 
part of 

part of 

meet 
adjacent 

next to 

part of 

part of 

part of 
close 

 

 

 

 

  

 

 

 

 

Terrace

Semis 

 

 

  

 

Park 

 

House 

part of 

part of 

natural, 
irregular shape 

man-made, 
very small 

multi- 
surface man-made, 

rectangular 

compactness 
similarity 
density 

open-space 

open-space 

open-space building 

building 

single 
building 

row of 
buildings 

pair of 
buildings 

complex of 
buildings & 
open spaces 

Detached 

Garden 

Block 

District 

Garage 

Driveway 

Recreation 

Movement 

Storage Relaxation 

medium 

man-made 

Category 
space 

Relationship 
space 

Function 
space 

Attribute 
space 

Real world 
object space 

Shelter 



A Conceptual Framework for Accessing Knowledge 

 

139

There have been attempts to devise an ontology by reverse-engineering databases and 

vice versa (e.g. El-Ghalayini et al., 2005; Astrova, 2004). However, the thesis focuses 

on common sense knowledge of what is needed from the data to construct higher-level 

knowledge through ontologies. Hart and Greenwood (2003), who built up detailed 

descriptions of individual real-world objects, realise the importance of the structural 

symmetry between concept, concept component, data component and feature in being 

able to make sense of multiple worldviews. This translates into four basic relations: An 

object has an attribute, an object belongs to a concept, a concept abstracts to an 

attribute, and a concept is a sub-concept of another concept (Hereth et al., 2000). If we 

therefore constrain the concept and its attributes, then this has a direct effect on the 

object. This means the conceptual model is a set of goal-relevant constraints governing 

the representation of higher-level functional information. The ontology constrains the 

allowable relationships that may exist between concepts and their physical 

manifestation as data components. 

 

These constraints are necessary to classify features stored in the data according to some 

high level concept. In traditional methods of classification, we first need to define the 

structures that we wish to recognise in the data. For example, Steiniger et al. (2008) 

define land use structures such as industrial and commercial area, inner city, urban area, 

suburban area and rural area for the automated compilation of medium scale maps. They 

assign measures to evaluate the structural properties including morphological (area, 

shape, corners, squareness, etc.) and relational measures (buffer, convex hull, etc.). 

Similar to Barr et al. (2004), they assess the separability of these structures through the 

given measures. Although concepts describe a very rich set of realities, we cannot live 

without measures when dealing with an objectification of reality. For example, certain 

conditions must hold for a given category, or concept, so that we can identify its 

members (Peuquet, 1988). Necessary conditions state that, for instance, for a house to 

be a house it needs to be a building. Graded conditions denote a central or threshold 

value for a property, such as the size of a building. A typicality condition is what we 

normally associate with a feature, such that a house is used typically for living 

accommodation. The problem is that we cannot get around the need for threshold values 

that determine certain properties, because we are dealing with concrete things or 

physical objects. In ontology, this aspect relates to concrete domains where quantities 

and measures need to be expressed with an otherwise purely terminological language. In 
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this context, we are dealing with a concrete domain of relations and structures in 

categorical maps. Although this allows us to make use of measures that are used for 

modelling cartographic relations both on the horizontal and vertical level (e.g. Neun and 

Steiniger, 2005; Steiniger and Weibel, 2005), we are faced with a major limitation. The 

way a person perceives the structure of a dataset cannot be reproduced by measures 

alone (Peter, 2001). Therefore, we are back to the initial problem: Whereas we can 

describe shape more intuitively through concept terms, the mapping of the concept to 

the physical object reduces it again to a mathematical definition. 

 

The use of measures is unavoidable, but it can be seen as a means to translate human 

intuition into computational form. Since the reasoning still occurs at the conceptual 

level, the classification remains a human-centred process because the knowledge 

discovery process refers to the constitutive character of human interpretation (Hereth et 

al., 2000). As the survey in chapter 3 reveals, respondents’ success in interpreting plain 

topographic maps according to land uses is down to their ability to draw analogies from 

the known to the unknown. The cognitive use of a priori knowledge to interpret and 

categorise new observational data links this approach to the complex and interactive 

processes as led by human thought. The notion of schema relates to this process. A 

schema is formed by induction from repeated experience with the same type of object 

and may be based on the prototype example of a category of objects (Mennis et al., 

2000). The schema is not an exact representation, but is more like a general pattern. It 

provides a set of information about a type of object or category that is used to discover 

new instances of this type of object or category. For example, a respondent’s schema for 

the visual recognition of a ‘residential’ pattern may include information such as small 

objects in a row running adjacent to a road, or pair of houses next to garden spaces 

running adjacent to a road. Thus, when the respondent recognises objects that meet 

these schema criteria, he or she can identify the geographic space in the map as an 

instance of the residential category with specific values for the generic properties 

described by the schema. This could be that buildings will have a certain size, a certain 

shape, and a certain alignment. These criteria are determined by both knowing what an 

object is, and knowing where something is. The latter relates to the locational properties 

of objects such as containment, distance and direction. Kuhn (2004b), for example, 

poses the ontological question of the meaning of where and establishes the conceptual 

elements of a theory of location. The former relates to the detailed and precise 
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geometric properties, such as shape, relative orientation of component parts, size, and so 

forth. Downs and Stea (1977) refer to this type of knowledge as ‘whatness’ categories. 

It is the key to determine the identity and uniqueness of a category. Equivalent 

categories on the other hand are built around the similarities between places and objects 

commonly found in the spatial environment. They are classified and grouped together 

on the basis of shared characteristics. For example, land uses are unique. Residential can 

be clearly differentiated from recreational land use. However, blocks of flats, or districts 

of terraced and semi-detached houses share common characteristics because they all 

serve the purpose of residential accommodation. 

 

To translate this ability into mechanised ways, we require a priori knowledge of a 

general representation of the domain of interest. Torres et al. (2006), for instance, 

successfully use a priori knowledge of a satellite image to aid the supervised clustering 

by adding its intrinsic semantics. The conceptual framework described here provides the 

means to define and formalise higher-level knowledge as an ontology that maps directly 

onto the topographic data to interpret its immanent functional meanings. Figure 23 

illustrates the proposed methodology. Domain concepts of higher-level semantic 

information are derived from the external schema, the users. Data concepts describe the 

underlying geographic data making its primitives explicit (discrete, identifiable entities 

with a geometrical representation and descriptive attributes), i.e., the internal schema. 

By combining these two approaches into a shared conceptualisation of the application 

ontology, that is, into the conceptual schema, it becomes possible to map the 

conceptualisation to the data and search a priori for features that meet the 

conceptualisation’s definition of higher-level functional information. The classification 

is therefore constrained by the ontology’s specification. Features that meet these 

specifications become instances of the high-level concept and inherit the defined higher-

level semantic information. For example, having various levels of semantic definitions 

for the category residential allows the expression of this category at a high level as 

districts and blocks, and at finer levels as terraced, semi-detached and detached houses, 

and row of buildings, pair of buildings, and single buildings, respectively. The high-

level semantic description residential can then be inherited down to the finest level, i.e., 

that of individual objects that meet the schema’s criteria of a certain size, shape, type, 

etc.  
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Figure 23 Proposed methodology 

 

The advantage of using ontologies is that they give a concise, uniform, and declarative 

description of semantic information independent of the underlying syntactic 

representation of information bases (Kashyap, 1999). This means when changes occur 

to the underlying data, this does not affect the defined high-level knowledge. With an 

ontology we can reclassify the data’s topographic instances and derive a set of areas 

depicting the human activity that takes place on that geographic space. Important is that 

the concepts about the topography or its geographic location characteristics do not 

change throughout the process of deriving an alternative representation, but become 

merely enriched through higher-level semantic information and top-level concepts. This 

is a posteriori solution to the problem of providing a high-level view of the real world-

representation in existing data repositories, as opposed to directly integrating ontologies 

into the conceptual representation of designing and implementing the physical database 

design (Fonseca et al., 2003). Although it is not a new endeavour to incorporate 

cognitive principles into geographical databases and to derive a unifying, semantic data 

model (e.g. Peuquet, 1988; Mennis et al., 2000; Mennis, 2003), often research remains 

at the conceptual level. Despite much research on the use of ontologies in the geospatial 

domain, authors have often either left the relationship to the data model undefined, or 

have tied it to one physical implementation method (Hart and Greenwood, 2003).  
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The ontological approach to map interpretation 

Interpretation is a fundamental human cognitive ability. It is a knowledge intensive 

process that is decisively shaped by the way common-sense knowledge and experiences 

are brought to bear. We have seen that interpretation is the ability to assign meanings to 

input data through the assignment of one or more concepts or categories. We have also 

seen that interpretation can be qualitative, i.e., assigning a qualitative concept or 

category, or quantitative, i.e., assigning a numerical value, or measurement. Brey (2005) 

argues that computers extend the memory, interpretation, search, pattern matching and 

higher-order cognitive abilities of human beings by performing cognitive tasks 

autonomously. Although computers are systems in which symbol structures are capable 

of representing objects in the real world that are manipulated in intelligent ways, they 

can only work by reducing them to information-processing tasks. So far, I have 

considered ontology as a framework to represent information to describe a certain 

domain of entities that are related to each other with a particular notion of reduction to 

find a simple and systematic theory. Ontologies, however, are also more easily 

accessible to automated information processing. 

 

The previously described conceptual model illustrates how implicitly represented 

knowledge within a spatial database, such as residential area, can be inferred from 

knowledge that is explicitly defined through the different ontology levels described in 

chapter 4. Figure 24 shows how the bottom-up and top-down approaches of the 

modelling come together. By going bottom-up, we adopt an agglomerative approach 

where each primitive element, describing a separate data entity (e.g. building) becomes 

part of its parent aggregate concept (e.g. terraces) until the high level interpretation (i.e., 

residential area) of the scene is reached. The top-down approach defines the part-whole 

aggregation based on certain criteria and rules from a high-level conceptual view, which 

will constrain the reasoning. The low-level concepts describe the entities stored in the 

database, and can be seen as a surrogate representation. The link between the conceptual 

model and the data level is achieved by having an application classify the data’s 

instances in terms of the semantic categories that the conceptual model provides, 

starting with the low-level ones and incrementally building up the high-level 

interpretation. As a result, the interpretation process needs to be modelled as an 

incremental construction process with the goal to create and verify any instances that 

may be useful for the overall map interpretation. 
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Figure 24 Relating higher-level concepts to the data structure 

 

This methodology uses description logics in a way similar to Neumann and Möller 

(2008) for scene interpretation, where the recognition of the whole (scene or map) arises 

from the recognition of its parts (aggregate concepts). It follows the tendency to 

continually abstract through simplification, as people perceive space as a composition 

of simple geometries and similarities (Batty and Longley, 1994). To create a diversity of 

patterns and parts through a system, generic design guidance is required which specifies 

the elemental units or sets of units to be recognised dependent on the purpose of the 

classification. Form plays an important role, since space is not only observed and 

understood in terms of its spatial pattern, but is composed of such elements. Modelling 

higher-level meanings is difficult because of the mix of heterogeneous activities and 

uses, which have a high complexity, threatening the classification of their geometry, as 

well as impeding objective and consistent categorisations (Batty and Longley, 1994). 

Nevertheless, through simplification a system structure can be built composed of 

elements and relations that decompose into further subsystems arranged into distinct 

hierarchies of taxonomies and partonomies. This structure enables inference of higher-

level information based on reasoning about its defined concepts and finding relevant 

instances. Although we have to be careful not to force the diversity of functions into a 

narrow range of concepts, a parser working according to some configurational rule can 

incrementally build up the semantic interpretation of a map scene using the 

corresponding object semantic rules of spatial composition. 
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The recognition is simplified to the detection of objects that must have a specific spatial 

configuration (Haarslev et al., 1994). The inference is determined deductively from the 

primitive characteristics of objects visible in the map. The key notion is to provide a 

conceptual description of the complex structure in the map we wish to recognise, such 

as residential area, and to find its instances that are to be classified accordingly. Given 

appropriate high-level knowledge structures, far-reaching interpretations may be 

obtained including propositions about parts of the maps for which there is no direct 

evidence at all. Hence, higher-level knowledge can be inferred and assigned to map 

primitives, and with that we can instantiate land use information and assign it to 

constituent land cover parcels. This is made possible because land use is treated as a 

configuration problem (chapter 2), which provides the foundation for logical scene 

interpretation as applied by vision recognition systems in artificial intelligence (e.g. 

Schröder, 1999; Möller et al., 1999; Neumann and Möller, 2008). The approach is 

equivalent to logical model construction (Hotz and Neumann, 2005). For example, 

configuration systems have been developed in support of tasks where parts (usually 

technical components) have to be configured to form a system that meets the given 

specification (see the Lego example in chapter 2). Here the parts are land parcels of a 

topographic map. Therefore, scene or map interpretation formulates as a finite model 

construction task that is implemented through constraint satisfaction. 

 

Model construction in this sense applies to the symbolic description consistent with 

conceptual knowledge about the world and concrete knowledge about the scene. The 

interpretation is formalised as a concrete application of the axiomatisation of the 

required knowledge through first-order logic to provide a formal definition for the 

expected result of the interpretation problem (Schröder, 1999). This means that a formal 

mapping is constructed from constant symbols and predicates of a symbolic language 

into the corresponding entities of a domain such that all predicates become true (chapter 

6). Hence, a valid map interpretation must be a model of the conceptual knowledge and 

the map data, as it connects constant, predicate and function symbols of the high-level 

domain with corresponding individuals, predicates and functions of the represented data 

domain. Thereby, the mapping between the two domains becomes a model if it causes 

all symbolic expressions of the conceptual knowledge and the map-specific knowledge 

to become true. In that respect, an interpretation of a map is a partial description in 
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terms of instances of concepts of the conceptual knowledge base. It is partial because 

only parts of the map and a subset of the concepts are interesting in general, depending 

on the pragmatic context (Neumann and Möller, 2008). Consequently, the interpretation 

process needs to be modelled as an incremental construction process with the goal to 

create and verify any instance that may be useful for the overall inference. 

 

Figures 25 illustrates the basic idea of how a formal interpretation based on ontologies 

compares with the human interpretation. To make new knowledge accessible within the 

data, we require the two inputs described above. Firstly, the knowledge base consists of 

evidence from the map in the form of its low-level features. The so-called A-Box of a 

description logic system stores all the asserted information about the facts, similar to the 

information we capture with our eyes when reading a map. The retinal image therefore 

equates to the described knowledge in the knowledge base. Secondly, the so-called T-

Box of the knowledge-based system captures the logical assertions on concepts in the 

ontology according to the described conceptual model. The ontology therefore provides 

the necessary a priori knowledge of spatial objects, their properties and relations to one 

another in the map scene akin to a human-constructed physical world.  

 

Both concepts and facts are described using a highly expressive object description 

language, and are embedded in a taxonomical hierarchy. A compositional hierarchy is 

induced by the special structural relation part-of. Constraints among concepts pertain to 

properties that are in turn specified by parameters with restricted value ranges or sets of 

values (Hotz and Neumann, 2005). The interpretation process is to instantiate concepts 

of the knowledge base by checking for which concepts the relevant attributes and 

constraints in the map are fulfilled. This means individuals in the A-Box must interface 

to the data level and map onto the high-level concepts in the T-Box. Only then, a map 

description, for example that of residential area, can be generated and its symbolic 

meanings, i.e., semantics, can be assigned to the map primitives. We speak of ontology-

assigned meaning. 
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Figure 25 The ontological approach to map interpretation 
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turn subsumes. Plus, rather than relying on surface based comparisons as in traditional 

classification algorithm, information retrieval based on the semantics of the data model 
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5.2 Semantic aggregation 

For urban planners, the pattern specification of urban areas is important to develop a 

meaningful and manageable system of description, addressing physical patterns such as 

urban forms and networks, and relationships between different patterns, at different 

scales. Such a specification assists in interpreting physical and spatial patterns existing 

on the ground or modelled (Marshall, 2005). Their discrimination provides useful 

information. The town planner, for instance, might be interested in the distribution of 

neighbourhoods, their facilities, and green spaces. Because the visible world is viewed 

at multiple scales and degrees of detail (chapter 3), there can be no single correct or 

definitive way of classifying patterns. However, a diversity of overlapping pattern types 

and themes are both appropriate and inevitable. Often a balance needs to be struck 

between having too few broad categories or too many narrow ones (chapter 2). Taken to 

the extreme, we may end up with a single category into which all actual patterns are 

lumped. The proposed system in this thesis provides a dynamic solution by 

accommodating different levels of patterns. Depending on the requirements, you can 

have very fine levelled categories, such as terraced, semi-detached, and detached house 

patterns, and a very broad, overall category of residential area. This avoids over-

generalisation or stereotyping. The conceptual model orders the different kinds of 

categories of pattern classification (i.e., configurations), and harmonises the use of 

language and terms by explicating the typologies’ semantics. 

 

To provide improved information access, we need to organise data into intelligible and 

easily accessible structures at various levels of detail (Bresciani and Fanconi, 1996). 

Over the course of this thesis so far, we have learnt that map reading is a process that 

accesses the spatial knowledge stored in the ‘cognitive map’. According to Kuipers 

(1978), it is essential to have a theory of the representations in the cognitive map to 

make computational theories of these processes. It is typical for high-level abstractions 

to resort to common-sense knowledge, beyond the knowledge about geographic 

phenomena. Land use, for instance, describes a map at an abstraction level above the 

single-object trajectories present in spatial data requiring qualitative and symbolic 

representation. Therefore, functional information is typically embedded in a 

compositional hierarchy with increasing abstraction towards higher-levels. Spatial 

relations between constituent parts and objects, as well as their morphological 
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properties define functions. These relations must be evaluated efficiently to support the 

recognition of functions in the spatial data. The recognition then requires incremental 

part-whole reasoning on the different levels of abstraction. Consequently, the 

conceptual model builds up descriptive primitives (from the most detailed level, i.e., the 

data), which will become successive groupings producing hierarchies of entities and 

spatial patterns. 

 

We have seen that pure mathematical definitions fail to do justice to our intuitive 

notions of what constitutes shape. Especially when we attempt to generalise shapes into 

high-order features, we must also abstract their conceptualisations. The first abstraction 

involves mapping identified features into geometric shapes and symbols with sizes, 

styles and possibly colours. This produces a useful description of the scene depicted in 

the topographic data, whose initial representation is a collection of polygons, lines, and 

points stored in a spatial database. The next abstraction involves simplifying, culling, 

and coalescing graphic objects into smaller versions of the things they represent. In fact, 

much of the generalisation literature is stuck at this level (e.g. Duchêne et al., 2003; 

Christophe and Ruas, 2002; Gaffuri and Trévisan, 2004; Li et al., 2004). The third 

abstraction is to generalise the concepts that the symbols represent, such as residential 

area, and then depict those. Usually domain-independent algorithms (from 

generalisation) extract, characterise and label the components, and then deliver more 

generalised representations. Here is where ontologies can make a difference (e.g. 

Camacho-Hübner and Golay, 2007). One way to enrich cartographic data without 

completely recompiling them is to build associated ontologies conveying the meaning 

of data items, their properties, and relationships for operational purposes (Dutton and 

Edwardes, 2006). Initially, the mapmaker sets down spatial semiotics to depict the real 

world with a host of tacit semantics based on mapping standards and lack of thought. 

Often ignored is therefore the role that perception has in specifying abstractions of 

reality, that is, how you generalise maps depends on how you perceive the world and 

how you specify it. 

 

Cognitive psychology in particular supports the idea of hierarchical representations 

(Peuquet, 1988), because organising pieces of information into larger, meaningful units 

is a universal cognitive principle. Grouping is one of the effects resulting from this 

principle. The grouping mechanisms are connected on a functional level by their spatial 
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grounding and thus contribute to cognitive control during spatial reasoning (Engel et al., 

2005). This means, groupings are not only reflected in the various representations, they 

also entail one another on the basis of a common principle. However, the determination 

of meaningful groupings can almost never be achieved directly from the scene (i.e., the 

observed data), but from pre-existing knowledge concerning the nature of the given 

phenomena involved in the scene. In terms of our conceptual model, this means that 

although a map can be seen as a series of levels at different scales (Chaudhry, 2008) – 

that is, from an image at street level of individual buildings to levels of neighbourhoods 

and districts – we need some pre-existing knowledge concerning the nature of the given 

phenomena involved. With such knowledge, we can then determine the structure of 

each level and its subordinate elements. In this fashion, it is possible to model the 

knowledge of each stage and reason about it. This incrementally builds an interpretation 

from the individual object, say house, to its high-level, superordinate category, say 

district. Consequently, the gap between the data and the conceptual model is bridged via 

a range of representations, which connect the input data to the output interpretation 

(Sowmya and Trinder, 2000). 

 

The purpose of abstraction is to provide richer and more expressive concepts with 

which to capture more meanings than were possible with classical data models (Tang et 

al., 1996). Hierarchical levels of geographical features are useful for expressing these 

abstractions. Whereas semantic granularity addresses the different levels of 

specification of an entity in the real world, spatial granularity deals with the different 

levels of spatial resolution or representation at different scales. A combination of five 

abstraction mechanisms including classification, generalisation, specialisation, 

aggregation, and association, make these different levels of abstraction possible. 

Classification is the mapping of objects that share the same behaviour or characteristic 

into a common class. Generalisation is the mechanism to form a general super class by 

combining several classes of objects of similar type or with common properties and 

functions. Specialisation creates specialised classes that inherit structure from higher-

order object classes. Aggregation is the collection of a set of subclass objects, each with 

its own functionality to form a semantically higher-level parent object. All these 

mechanisms operate on the ‘is-a’ and ‘part-of’ relations, which determine the 

hierarchical and combinatorial arrangements of classes. 
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From an ontological perspective, these kinds of processes and relations map easily to 

semantic relationships between two or more concepts in an ontology (Fonseca et al., 

2003). The relations map to the notions of hypernymy, hyponymy, mereonymy and 

synonymy as applied to ontologies (Kokla and Kavouras, 2001). Hypernymy and 

hyponymy are semantic relations defined between words and word senses. Hyponymy, 

subtype/ supertype, or a-kind-of relation is the subordination/ superordination relation 

defining the taxonomy of concepts. The hyponym inherits all the characteristics of the 

more generic concept and adds at least one characteristic that distinguishes it from other 

hyponyms. Meronymy/ holonymy denote the part-whole relation. Synonymy refers to 

similarity in meaning, as we analysed in chapter 3 for terms describing role, purpose 

and function of a given concept. These relations are the operating factors that form 

higher-level classes of objects from other classes, creating different abstractions and 

inheriting from their superordinate classes. This means some objects can be defined 

entirely from other objects. Mennis et al. (2000), for instance, differentiate between 

objects that are derived directly from their observation in the data, termed atomic, and 

those objects that are composed solely of other objects, termed composite.  

 

When dealing with spatial data, additional relations come into play. According to 

Fonseca et al. (2003), topologic relations are fundamentally important to the definition 

of spatial integrity rules, which in turn determine the geometric behaviour of objects. 

Other relations that describe geographical phenomena include direction, distance, 

nearest neighbour, adjacency and containment, which associate different locations over 

a single, continuous surface. The spatial as well as membership relation among various 

entities determine the entities’ positions across a given, common level within the 

hierarchy. Taxonomic and aggregation relations, on the other hand, allow association 

among entities at different levels up and down the hierarchy. All these relations are 

essential for the interpretation steps. Aggregation in this sense relates to the act of 

inferring an aggregate from parts (part-whole reasoning). Specialisation means 

tightening properties and constraints, either along the taxonomical hierarchy or by 

checking objects for possible roles in aggregates. And generalisation is the step of 

instantiating the parts of an aggregate if the aggregate itself is already instantiated. 

 

The primary element of the conceptual model is the specification of how the elements of 

the representation are defined, combined and added as new information. A graphical 
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understanding of the discussion of this approach is illustrated in figure 27. The 

functional reality can be grasped in adequate fashion only by taking entities at a 

multiplicity of different granularities into account. According to Batty et al. (2003) 

whether or not a place has more than one function, land use or activity, depends on the 

size of that place. For example, in our abstraction hierarchy (figure 26), at the low-level 

we usually deal with a single activity. At higher-levels, the abstraction encompasses a 

larger area, such as blocks, block groups or districts, where more than one function can 

take place. For instance, when we aggregate everything to one space – the level of the 

residential district, say – then multiple activities may take place there, such as recreation 

if a park is contained within the district. 

 

The theoretical attention to the representation of the spatial or formal system gives rise 

to a whole family of representations of the same spatial system, each one relevant to 

some aspect of its functioning (Hillier, 1996). It is therefore normal to combine 

representations, literally by laying one representation on top of the other and treating the 

resulting connections as real connections in the system. This is a typical procedure in 

the generalisation literature, where urban structures are built based on their component 

patterns and inner organisations (e.g. Gaffuri and Trévisan, 2004; Boffet and Serra, 

2000; Boffet, 2000; Larive et al., 2005; Ruas, 2000). For example, a town is composed 

of urban districts, which in turn are a collection of urban blocks. The block is shaped by 

and consists of building groups. Further, the group is determined by the building 

alignment. These organisations link to the micro, meso and macro levels of 

generalisation. However, the structural consideration alone here is not sufficient. Just as 

Hillier believes that taking pairs or even triples of representations together yield 

formally or functionally informative results, the model represents space in terms of the 

type of function in which we are interested. 

 

The representational units for modelling this incremental construction process are 

aggregate concepts. An aggregate specifies a set of objects with certain properties and 

relations that together constitute a meaningful scene entity (Hartz and Neumann, 2007). 

A configuration typically constitutes a complete model for an aggregate specified by the 

configuration task. Hence, an aggregate represents object configurations and other high-

level structures that form part of the compositional and taxonomical hierarchies 

imposing the main structures of the high-level conceptual knowledge base. 
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Figure 26 Semantic aggregation 

The main motivating criterion for defining an aggregate is to provide a coherent 

description of entities that tend to co-occur in a map scene (this is regardless whether 

information is explicitly or implicitly contained in the map). An aggregate expresses the 
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properties and constraints that make an object, or a particular set of objects worth being 

recognised as a whole. It may consist of other aggregates depending on its constraints 

that relate constituents of different parts to each other. For example, the aggregate 

concept semi-detached house consists of the concepts house, garden, and optionally an 

outbuilding. This induces a compositional hierarchy that is built on top of primitive 

entities contained in the map as illustrated in figure 26. The meaning of aggregates 

evolves throughout the hierarchy by developing a significantly different definition at 

high-level from the definitions of the features’ low-level classification. The resulting 

abstraction hierarchy describes how the different definitions of spatial objects link at 

several scale levels. 

 

This abstraction hierarchy has its roots in models of perception. For instance, if I see 

something for the first time at some distance, I may not see all the details of the object 

nor may I be able to consider all possible instances of details that I am missing. 

Nonetheless, I will be able to make certain observations and inferences about the object. 

This is possible because many observations and inferences are independent of the 

missing details. Knowledge about these missing details would allow for a refinement 

but not require corrections of the observations. Consequently, the bottom-up view 

suggest that incomplete knowledge is due to omission of specifications, thus it can be 

completed by considering the set of possible augmentations. The top-down view 

suggests that incomplete knowledge is due to possible distinctions of details which are 

not made, thus by ignoring details, we can deal with coarse knowledge. With this view 

of the world, we organise knowledge hierarchically according to the level of detail that 

is available: Coarse knowledge corresponds to the higher levels, and detailed 

knowledge to the lower levels in this organisation. On any level certain inferences can 

be drawn. These inferences can be expressed in terms of knowledge represented on the 

same level of detail or of a higher or lower level. One advantage of this approach is that 

inferences that can be drawn on a higher level subsume several corresponding 

inferences on lower levels. If additional knowledge about details becomes available, the 

inferences are refined (Freksa, 1991). 

 

What we want is to represent knowledge in such a way that few concepts capture rich 

situations. This means that gradual transitions from one concept to another should be 

captured by introducing only the number of intermediate concepts required to achieve 
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the goal. As suggested by Freksa and Barkowsky (1995), the model takes into account 

the neighbourhood structure of geographic entities according to a physical model, the 

vertical and horizontal neighbourhood structure of the spatial concepts, and the 

correspondence between concepts and geographic entities. The problem is to understand 

how levels are constructed, i.e., to know the criteria used in the selection of particular 

aspects of a situation and how these perspectives and aspects are combined into a 

representation that can be used to derive the higher-level abstraction. The number and 

contents of the levels and their relations characterise a particular modelling domain or 

even a specific problem (e.g. other function categories), and thus cannot be defined in 

general. The hierarchy needs to be adapted for different purposes. 

Conclusions 

The need to develop a tool for image interpretation that segments a map and 

automatically associates geometric regions on a map with semantic labels has been long 

recognised (e.g. Esposito et al., 1997). In fact, the concepts and methods people use to 

infer information about geographic space become increasingly important for the 

interaction between users and computerised GIS. This chapter explained how these 

methods can be emulated by producing a semantic abstraction hierarchy that links high-

level concepts to the data. Thereby the question was addressed of how to bridge the gap 

between knowledge, i.e., conceptualisation, and geographic data, i.e., representation. 

Once knowledge is available in machine interpretable form via ontologies, it can be 

linked to a topographic database through a conceptual hierarchy creating a mapping 

between high-level knowledge structures and those present in the data. Since space can 

be observed from many different viewpoints and at different resolutions, the same 

objects may be represented differently, depending on the purpose, indicating the point 

of view to take and the level of detail to be included. This is generally termed multi-

representation of spatial objects (Timpf and Frank, 1997). The representation of the 

spatial objects at different levels of resolution leads to a hierarchical representation 

where more and more details are included as one descends the hierarchy. Here, the 

interest lies with accessing high-level knowledge by ascending the hierarchy. 

 

Categorical database generalisation, for instance, relies on the exploitation of 

hierarchies that are inherent to spatial data (Liu et al., 2003). Timpf and Frank (1997) 
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have also identified the benefits of hierarchical reasoning, because it uses the level of 

detail appropriate for the task. We humans constantly isolate the relevant aspects and 

relate them to one another to achieve intellectual efficiency. This efficiency is necessary 

for successfully operating in the world (Freksa and Barkowsky, 1995). Spatial 

hierarchical reasoning denotes the deduction of information from a representation of a 

spatial situation. It also applies the economic principle that a task is solved with the 

least amount of effort. Therefore, spatial hierarchical reasoning requires a method to 

derive less detailed representation from the most detailed one. This is achieved by 

modelling incremental structures along the hierarchy with different levels of semantic 

abstraction. 

 

When people deal with spatial objects, they usually automatically attach higher-order 

meaning. The processing of spatial information therefore begins with the perceived 

image of the real world. Once we select directly observed phenomena and abstract them 

into key characteristics of the scene or map, we then interpret these characteristics using 

pre-existing knowledge. For example, directly observable features of a topographic map 

are buildings, roads and open spaces. We can interpret these structures as urban areas, 

inner city, or residential depending on their configurational properties. Whether this 

information is purely conceptual consisting of high-level abstract objects, or whether 

this information is purely representational as in a map, currently there are no models for 

a comprehensive treatment of different kinds of spatial concepts and their combinations 

that are cognitively sound and plausible. 

 

Modelling is not a straightforward task. The difficulty of visual object recognition in 

general – let alone the interpretation of information – is the complexity of the scene and 

the generality of the object models. The adoption of a model-based recognition method 

based on a hierarchical organisation means that we are faced with the limitations of any 

kind of tree structure for representing knowledge. Indeed, a tree can represent many 

real-world phenomena, as we learnt in chapter 2. Whether it is correct to do so is a 

separate issue (Hirtle, 1995). Nevertheless, adopting a knowledge representation 

framework, namely, providing sufficient representations to allow reasoning about 

geographical situations and land use phenomena, means that a model has both 

psychological and epistemological relevance. For example, the model provides a 

psychologically relevant representation of geographical features because of its link to 
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human conceptualisation and the way its abstractions are partitioned according to 

Gestalt principles, that is, the way people interpret topographic maps. Because higher 

levels of abstraction are less detailed than lower ones, moving up one or more levels 

allows one to see the forest through the trees. This view is characterised by the use of 

conceptual categorisation. One convenient categorising process for spatial data involves 

partitioning space into recognisable and acceptable units such as country, region, 

community, neighbourhood, and so on (Gale and Golledge, 1982). In the geographical 

context, it is therefore possible to identify a hierarchy of scales that people use to 

partition space. 

 

The conceptual framework is not directly concerned with the physical transformation of 

objects into higher-level representations (e.g. Liu et al., 2003). Rather it describes 

semantic generalisation of how existing instances in a database can be thematically 

enriched and therefore accessed in more meaningful ways. Subsequently, the enriched 

information can then aid generalisation algorithms to derive the necessary physical 

representations. Indeed, there are algorithms to perform the same steps of deriving 

building alignments, blocks of buildings and whole districts (e.g. Regnauld, 2001). 

These algorithms perhaps provide fast computation, but they remain a black box method 

with the essential semantics hidden behind the algorithms. The benefit of adapting the 

knowledge representation paradigm is therefore the explicit modelling of knowledge. 

The domain of geospatial concepts is separated from the domain of data representation 

according to the layered ontology architecture of the conceptual framework. This 

separation ensures that the conceptual model is not affected when changes occur to the 

underlying data representation. Furthermore, the model can be easily extended by 

including concepts in its taxonomic and partonomic hierarchies. This means that  

inferences carried out on the basis of coarser knowledge should remain valid when 

additional knowledge becomes available. However, knowledge formalisms still put us 

at the mercy of mathematical theories such as sets and logic. It follows that because 

spatial data are a concrete domain of physical and quantitative nature, we cannot 

divorce ourselves entirely from the mathematical definition necessary to constrain 

properties. 

 

Nevertheless, the model allows incorporation of complexities of spatial data and 

relations in the database, thus capturing higher-level meanings. Its abstraction hierarchy 
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encapsulates data and functions in user-defined object classes allowing holistic 

representation of features. User-defined means that the concepts are designed to 

represent characteristics of features that are relevant to a particular application, say 

deriving residential areas. Geographical features are identified according to their 

common characteristics and function, and are grouped into higher, more meaningful 

configurations. For example, if instances meet the constraints or rules of a given 

concept definition, then they inherit that corresponding higher-level concept. 

Inheritance of properties and structure from superclasses to subclasses makes 

abstraction of geographical features possible. Aggregating objects is therefore a 

powerful means to achieve abstraction in spatial representation. Semantic aggregation 

enhances the representation of features in a holistic way because each feature can 

describe the total information about a location and the relations with other features for a 

specific application. The use of ontologies for designing and representing these 

aggregate concepts makes the more meaningful abstractions and their associated 

representations possible and practical. The result is a more complete digital 

representation and spatial description of geographical phenomena.  

 

The conceptual framework presented here at a general, descriptive level will easily map 

into expressive description logic, as I will explain in the next chapter. I will describe the 

model in its formal, implementable form. Further, I will give concrete examples of how 

to infer an interpretation of a map that is consistent with conceptual knowledge, 

evidence, and context information. The link between the data model and the conceptual 

model is achieved by having an application (e.g. Protégé) classify the data’s knowledge 

in terms of the general semantic categories that the conceptual model asserts. There is a 

clear partition between the conceptual model described in this chapter, its formalised 

form (chapter 6), and its application with off-the-shelf knowledge-based software 

(chapter 7). Hence, this thesis goes beyond pure conceptual work (e.g. Mennis et al., 

2000; Peuquet, 1988) by considering how objects and classes are actually generated 

from observational data. 
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Chapter 6 

Formalising a Representational System 

“The only way to rectify our reasonings is to make them as tangible as those of the 

Mathematicians, so that we can find our error at a glance, and when there are disputes 

among persons, we can simply say: ‘Let us calculate, without further ado, to see who is 

right.’” 

– Gottfried Leibniz, 1685 

 

Knowledge representation refers to the general topic of how information can be 

appropriately encoded and used in computational models of cognition (Wilson and Keil, 

1999). The practical goal of constructing frameworks for knowledge is to allow 

computational systems to attack knowledge-intensive problems such as real-world 

reasoning. Ontology only forms a part of such a system. It describes a vocabulary for 

talking about a domain. In knowledge bases, there is a clear distinction between 

terminological and assertional knowledge about individuals and their membership to 

concepts and roles described by the ontology (Schaerf, 1994). This knowledge is needed 

to solve a problem to answer arbitrary queries about a domain. Therefore, a 

representational system that formalises knowledge must contain what the represented 

world is, for example real world entities or spatial data in this case, and what the 

representing world is, that is, the conceptual model. It must know what aspects of the 

represented world are being modelled, what aspects of the representing world are doing 

the modelling, and what the correspondence between to two worlds is (Palmer, 1978). 

In other words, the nature of representation is the existing correspondence, or mapping, 

between objects in the represented world (evidence) and objects in the representing 

world (conceptual model), such that at least some relations in the represented world are 

structurally preserved in the representing world. 

 

Consequently, the foremost role of knowledge representation is to substitute for the 

things in the world to enable a machine to determine consequences by reasoning about 

the world rather than taking action in it (Davis et al., 1993). Reasoning is a process that 

goes on internally, in our minds for example, but most things it wants to reason about 
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exist only externally. The coupling of high-level knowledge with a GIS also requires 

two representations to be linked: Spatial data in a GIS with application specific 

knowledge (Miller, 1994). This unavoidable dichotomy is a fundamental rationale and 

role for knowledge representation. It functions as a surrogate inside the reasoner by 

mapping between real world representations and conceptualisations of a given domain. 

The correspondence between the surrogate and its intended referent in the world is the 

semantics for the representation. 

 

Because knowledge representation is a surrogate, it is unavoidably a set of decisions 

about how and what to see in the world. Selecting a representation thus means making a 

set of ontological commitments in terms of the concepts, properties and relations that 

represent relevant knowledge. This is necessary because representations are imperfect 

and the complexity of the natural world is overwhelming, forcing us to decide what in 

the world to attend to and what to ignore. Similar to spatial data that represent only a 

selection of geographic information, the ontological commitments we make constrain 

the domain we wish to model. 

 

Reasoning in machines is a computational process and therefore requires choosing a 

formalism to represent this information. This is made possible by mapping the set of 

ontological concepts into a set of language constructs. Constraints such as properties 

and relations that relate ontological concepts to one another determine the combined use 

of language elements. An interpretation of these elements (i.e., semantics) assigns to 

each language construct an ontological interpretation (Evermann and Wand, 2005). The 

formalism should be appropriate in two respects, it has to faithfully render the available 

data and make the kind of reasoning needed possible. Great care must be taken to define 

the concepts and relations on an appropriate level of expressiveness. The terms have to 

be general enough to allow the annotation of all information sources, but specific 

enough to make meaningful definitions possible. Spatial reasoning especially requires 

representation at a high level (e.g. Vieu, 1993).  

 

Although we end up with a specific representation language to implement the model, 

the essential information is not the form of this language but the content, that is, the set 

of concepts offered as a way of thinking about the world. However, representation and 

reasoning are inextricably intertwined so that we cannot talk about one without also 
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unavoidably discussing the other (Davis et al., 1993). On the one hand, knowledge 

representation plays the role as a medium for pragmatically efficient computation. This 

efficiency is supplied by the guidance that a representation provides for organising 

information to facilitate making the recommended inferences. On the other hand, it is 

important to capture and represent the richness of the natural world. Either end of this 

spectrum offers its problems: We can ignore computational considerations at our peril, 

but we can also be overly concerned with them, producing representations that are fast 

but inadequate for real use. 

 

This chapter is about formalising the conceptual model discussed in the previous 

chapter with a knowledge representation language. So far, I have considered the term 

inference in a generic sense to mean any way to get new expressions from old ones. 

This chapter is concerned with representations that enable sound logical inferences 

based on asserted knowledge. The literature suggests many different paradigms for 

knowledge representation formalisms, ranging from formal logic, fuzzy logic, frames, 

semantic nets, to production systems (Koch et al., 1997). The family of description 

logics (DL) provides the foundation for these representation tools by offering rich 

schema languages. In particular, description logics have become an accepted standard 

for decidable knowledge representation. They play an increasingly important role for 

building the next generation of deductive, ontology-based information systems (Wessel 

and Möller, 2006). The World Wide Web Consortium, for example, endorses the 

description logic based ontology language OWL (Web Ontology Language) as a 

standard for ontology representation in the Semantic Web (McGuinness and van 

Harmelen, 2004). In the next section, we will learn why logic-based languages are 

useful for the formal representation of knowledge and automated inference. Section 6.2 

describes the requirements for translating the conceptual model into a formalised 

representation language, and why description logics offer the most suitable formalism 

for the model’s implementation. 

6.1 Logical foundations for the conceptual model 

Logic has its historical origins in Aristotle’s efforts to accumulate and catalogue 

syllogisms in an attempt to determine what should be taken as a convincing argument. 

A famous rule is the following syllogism: All men are mortal. X is a man. Therefore, X 
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is mortal. If we assume the truth of the premises, namely the first two sentences, then 

the law of the syllogism assures us that the third sentence is true whatever the identity 

of X (Ben-Ari, 1993). For instance, if X is a specific man such as Socrates, we can 

deduce that Socrates is mortal. This thought continued with Rene Descartes, whose 

analytic geometry showed that Euclid’s work on the logical organisation of geometric 

principles into axioms and theorems could be married to algebra. By the time of 

Gottfried Wilhelm von Leibniz in the seventeenth century, the agenda was to seek a 

calculus of thought – one that would permit the resolution of all human disagreement. In 

the nineteenth century, Boole provided the basis for propositional calculus with his 

Boolean algebra (Boole, 1848), which later, with additional work from Frege and 

Peano, provided the foundation for the modern form of predicate calculus. In the 

twentieth century, Davis, Putnam, and Robinson took the final steps in sufficiently 

mechanising deduction to enable the first automated theorem provers (Davis et al., 

2003; Zegarelli, 2007). 

 

In the logicist tradition, intelligent reasoning is taken to be a form of calculation, 

typically, deduction in first-order logic. A formal system is a mathematical model of 

reasoning based on the syntactic manipulation of sentence-like representations. A 

sentence has an underlying logical form that represents its meaning. Reasoning involves 

computations over these logical forms. Logic therefore allows us to model and reason 

about premises based on the notion of proof. If you want to know whether a particular 

argument is deductively correct, you can find out by taking its premises as given and 

then trying to derive its conclusion by applying a specified set of rules. If a proof or a 

derivation is possible, then the argument is deductively correct, that is, the conclusion is 

deducible from the premises. In other words, the proof lies in the truth of a sentence and 

the validity of an argument. Therefore, in contemporary logical theory, the deductive 

correctness of an argument is a matter of the relationship between the truth of the 

premises and the truth of the conclusion. 

 

The procedure of checking the statement’s validity or satisfiability is called proof-

theory, and includes the axioms and rules of inference that state entailment relationships 

among well-formed formulas (Gašević et al., 2006). Standard model-theoretic 

semantics assigns truth-values or interpretations to atoms and formulas. An 

interpretation determines the meaning of a sentence stating that the world is this way 
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and not that way. Hence, semantic statements can be true or false. A sentence is true 

under a particular interpretation if the state of affairs it represents is the case. The truth 

therefore depends both on the interpretation of the sentence and on the actual state of 

the world (Russell and Norvig, 1995). Finding the truth-value of an arbitrary statement 

is a matter of examining the truth-values of the variables and the truth tables of the 

logical operators in component parts of the statements. These logical operators (often 

called Boolean operators after their inventor George Boole (e.g. Boole, 1848)) are 

known as truth-functional connectives. They build up the truth-value of a complex 

sentence by using the operators to connect simpler sentences (Barwise and Etchemendy, 

1999). For example, negating a true statement turns it into a false statement. Negating a 

false statement makes it true, that is, every statement has the opposite truth value from 

its negation. The symbols ∧, u are used to express conjunction in our language (usually 

expressed with terms like and, moreover, and but). It implies that a statement built from 

this constructor is true only when both parts of the statement are true. Otherwise, it is 

false. The symbols ∨, t express disjunction in our language, equivalent to using the 

word or. Because the ∨-operator is inclusive, its semantics says that an or-statement is 

false only when both parts of the statement are false. Otherwise, it is true. The symbols 

→, ⊃ express logical consequence and imply that when an if-statement is true and the 

first part of it is true, the second part must be true as well. The symbols ↔, ≡ express 

logical equivalence, which means that one part of a statement using the if-and-only-if-

operator cannot be true without the other (Zegarelli, 2007). Consequently, these 

operators help us to determine the truth-values of whole formulas or sentences by 

checking the truth-values of their atoms. This means, if the conclusion is semantically 

entailed by the premises, then the entire argument is valid (Rips, 1994). For instance, if 

A and B are false and C is true, then the following formula (A ∨ B) ∧ C is false. This is 

because if both parts of an or-statement are false, then the or-statement is false. This 

makes the and-statement false, because the and-statement is true only if both statements 

are true, otherwise it is false.  

 

There are different types of logic depending on what they commit to as primitives, that 

is, the set of concept and role constructors they provide. The two main branches are 

propositional logic and predicate logic. The most basic language is propositional logic 

whose ontological commitments (what exists in the world) are only facts that can be 
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true, false or unknown. It treats propositions as single units. Predicate logic, on the other 

hand, makes finer distinctions. It analyses propositions into combinations of predicates, 

and is committed to facts, objects and relations. Temporal logic is a variation that 

includes time. Probability theory and fuzzy logic address facts and degrees of truths 

(i.e., degree of belief between 0 and 1). Classical first-order logic, however, is by far the 

most widely used, studied, and implemented version of logic (Sowa, 2000).  

 

First-order logic (FOL) is made up of variables, constant- and function-symbols that 

build terms, relational symbols that are applied to terms to build predicates, and 

predicates and logical constructors that build whole sentences (Hedman, 2006; 

Srivastava, 2008). Variable symbols (x, y, z, e.g. x. Male(x) ∨ Female(x)) represent 

arbitrary elements of an underlying set. For example, male is a variable ranging over 

males. The language’s individual constants (a, b, c, e.g. Male(John)) represent a 

specific element of an underlying set. For example, John is a constant symbol denoting 

a particular male. The symbols for functions (f, g, h, e.g. x. Male(father(x))) have 

any number of variables. If f is a function of one, two, or n-number of variables, then it 

is called unary, binary, or n-ary, respectively. Unlike predicate symbols, which are used 

to state that relations hold among certain objects, function symbols are used to refer to 

particular objects without using their names, for example father of x. In addition, FOL 

admits a restricted form of quantification that is realised through so-called quantified 

role restrictions, which are composed of a quantifier, a role, and a concept expression. 

There are two types of quantifiers: The universal quantifier (), read as ‘for all’, and the 

existential quantifier (), read as ‘there exists’. Quantified role restrictions allow one to 

express properties of entire collections of objects, such as the relationships existing 

between the objects in two concepts (Calvanese et al., 2001). 

 

Description logics refer to the logic-based semantics that is given by a translation into 

first-order predicate logic. Description logic languages form the core of knowledge 

representation systems, and range from high polynomial complexity to no longer 

polynomial but highly expressive languages, as well as offering various kinds of 

inference services (Neumann and Möller, 2008). Appendix C describes the family of 

description logics as well as some of the language’s preliminaries. For example, in DL, 

let C and D be concept descriptions, A be an atomic concept and R be a role name, then 
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the set of ALC concepts is inductively defined as follows: C, D → A | ¬C | C u D | C 

t D | R.C | R.C (Espinosa et al., 2007). The interpretation of ¬ C is the set of all 

individuals in the domain that do not belong to the interpretation of C. The intersection 

of two concepts (C u D) is interpreted as the set-intersection of all individuals in the 

domain that belong to both interpretation of C and the interpretation of D. The union of 

concepts (C t D) means that individuals in the domain are instances of either C or D. 

The existential restriction (R. C) should be paraphrased by “amongst other things”. 

Therefore, when given hasChild.Male, it means that at least one child must be male. 

This is an open world assumption, where we assume there is always more information 

than is stated. This type of assumption is different from the closed world assumption, as 

for example found in databases where the information we have is everything. Whereas a 

database instance represents exactly one interpretation, as defined by the classes and 

relations in the schema, a DL knowledge base represents many different interpretations 

with all its models (Baader et al., 2003). Consequently, if a database cannot find some 

data, it returns a negative. However, a reasoning procedure in DL makes no assumption 

about the completeness of the information it is given, and therefore treats absence of 

information simply as lack of knowledge. Alternatively, the universal value restriction 

closes the interpretation of the domain: R.C requires that all the individuals that are in 

the relationship R with the concept C being described belong to the concept C. For 

example, hasChild.Male means that all children must be of type male, that is, there 

can be no child member that is not male. The quantified role restrictions are denoted by 

the letter C and thus extend the DL base language AL to ALC. 

 

In summary, logic enables a precisely formulated subset of language to be expressed in 

a computable form (Sowa, 2000). Whereas its syntax defines abstract formulas or 

sentences in the language, the semantics or intended interpretations define the meaning 

of sentences, that is, the truth of a sentence in a world. The justification of applied 

mathematics is that the result of a syntactical manipulation (theorems or computations) 

can be used in the real world by mapping from syntax to semantics (Ben-Ari, 1993). 

This mapping, however, depends on the expressive power of a representation language, 

and is directly linked to the resources needed for computing a solution. The definition of 

reasoning problems therefore addresses both decidability (i.e., if a problem is solvable) 

and its associated computational complexity. Decidability of an entailment problem 
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refers to a terminating algorithm to compute entailment. These algorithms typically are 

based on the well-known tableau method to test the logical validity of complex 

propositions in a formula (D’Agostino, 1992). A formula is said to be satisfiable if the 

algorithm will constructively exhibit a model of the formula. If the argument is invalid, 

the model is undecidable and does not terminate. The computational cost of finding a 

proof may be enormous. 

 

In formal logic, inference procedures for the reasoning problems derive results that are 

logically implied by a set of premises. However, only inferences that are permitted are 

sound inferences. In other words, logic permits only those inferences that are 

encompassed by logical entailment in which every model for the axiom set is also a 

model for the conclusion. For example, a fundamental inference rule is modus ponens, 

illustrated earlier with the syllogism that if all men are mortal and Socrates is a man, 

then Socrates is mortal. It means that if you know that a statement of the form P → Q is 

true, and you know that the P part is true, then you can conclude that the Q part is also 

true (Zegarelli, 2007). Additional inference rules enable greater deductive power. 

However, careless use of logic can of course lead to inexplicable situations or 

paradoxes, that is, self-contradictory statements. Consider the following syllogism: 

Some cars rattle. My car is some car. Therefore, my car rattles (Ben-Ari, 1993). In 

particular, the use of an imprecise notation such as natural language can lead to claims 

that false statements are true, or to claims that a statement is true, even though its truth 

does not necessarily follow from the premises. Nevertheless, logic and its notion of 

inference has a number of important benefits, including being intuitively satisfying (a 

sound argument never introduces error), explicit (so we know precisely what we are 

talking about), precise enough that it can be the subject of formal proofs, and old 

enough that we have accumulated a significant body of experience (Davis et al., 2003). 

 

Logic is especially useful because it formally addresses the relationship between 

representation and the world (Wilson and Keil, 1999). Representation alone is generally 

not enough. We want to be able to access and process the represented knowledge. Logic 

achieves this by reducing reality to a set of abstractions, called a model, by working 

within this model to reach a conclusion, and then applying this conclusion back to 

reality again (figure 27). This process is most successful when a good correlation exists 

between the model and reality and when the model lends itself well to the type of 
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calculations that logic handles comfortably. Although logic is the only well-developed 

system for assessing the deductive correctness of arguments, the idea that formal logic 

bears a close relationship to human reasoning is extremely controversial within 

cognitive science (Rips, 1994). 

 
Figure 27 Drawing conclusions from propositions (Russell and Norvig, 1995) 

 

To enable logical reasoning for our conceptual model, we need to specify the 

terminology of the ontology with first-order logic (Grüninger and Fox, 1995). With its 

precise mathematical formulation of the properties and relations of entities and 

proposed axioms about entities in question, a formal language based on logic provides 

the necessary framework to represent information in an especially useful way and to 

make it more easily accessible to automated information processing. Yet, simply 

proposing a set of objects alone, or proposing a set of ground terms in first-order logic 

does not constitute an ontology. Axioms must be provided to define the semantics, or 

meaning, of these terms, followed by sanctioned inferences. The commitment to a 

particular view of the world depends on the choice of a representation technology and 

accumulates as subsequent choices are made about how to see the world in these terms 

(Davis et al., 1993). These choices are reflected by the predicates that represent 

different ontological commitments of all the relevant things that exist in the subject 

matter or application (Sowa, 2000). 

 

Ontological commitments specify a set of constraints that declare what should 

necessarily hold in any possible world. An ontology describes concepts (aka classes), 

properties of concepts (aka attributes or roles), relationships between concepts, and 

additional constraints (e.g. role restrictions). Ontologies thus play a key part of a 

broader range of semantics-based technologies and are a sub-area within knowledge 

representation. There is a wide variety of ontology languages of which some are more 
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formal than others (Gašević et al., 2006). Ontologies may be simple (having only 

concepts), frame-based (having only concepts and properties), or logic-based (e.g. 

OWL). Each representation technology supplies its own view of what is important to 

attend to. Each suggests, conversely, that anything not easily seen in these terms may be 

ignored. For example, logic involves a commitment to viewing the world in terms of 

individual entities and relations between them. Rule-based systems view the world in 

terms of attributes-object-value triples and the rules of plausible inference that connect 

them, whereas frames have us thinking in terms of prototypical objects. The selection 

will have a significant impact on our approach to the task and on our perception of the 

world being modelled (Davis et al., 1993). 

 

Ontologies are typically expressed by means of diagrams. For example, the entity-

relationship conceptual data model and UML (unified modelling language) class 

diagrams can be considered as ontology languages. These languages have evolved with 

the Semantic Web. For example, the resource description framework (RDF) is a 

language used for representing information about resources on the web. RDF describes 

these resources in terms of properties and property values. Its statements form sets of 

triples that consist of a subject, a predicate, and an object. Subsequently, the language 

was extended with RDF Schemas (RDFS) to enable the expression of classes of 

resources and the properties used with them. RDF and RDF Schemas are recognisable 

as an ontology language because of their classes (sub- and super-classes) and properties 

(range and domain of properties). However, RDFS is too weak to describe resources in 

sufficient detail, and its non-standard semantics with higher order flavour makes it 

difficult to provide reasoning support. The recognition of these limitations led to the 

development of new web ontology languages, such as Ontology Inference Layer (OIL), 

DARPA Agent Markup Language DAML+OIL, and Web Ontology Language (OWL), 

which began to include logic-based descriptions (Horrocks and Patel-Schneider, 2003). 

 

The investigations of DL language constructors provided a detailed understanding of the 

semantics and computational properties of, and reasoning techniques for various 

ontology language designs (Baader et al., 2006). The marriage with logics provided 

ontology formalisms with the specification of both syntax and semantics necessary for 

the use of standard inference engines for reasoning over ontologies (Calvanese et al., 

2006b; Uschold and Grüninger, 2004). This understanding led to three OWL dialects of 
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which two provide decidable reasoning problems. OWL FULL is a union of OWL 

syntax and RDFS, where RDF semantics is extended with relevant semantic conditions 

and axiomatic triples. Because OWL-FULL provides features that go outside of the 

description logic paradigm, such as meta-modelling, blending objects and data types, 

unusual syntactic forms, etc., it does not guarantee computational completeness and 

decidability. OWL-DL on the other hand is restricted to description logics. It has 

standard first order model theoretic semantics. This makes it the most expressive of the 

three sublanguages in that it does not compromise completeness and decidability. Its 

underlying description logic is SHOIN(D) (Horrocks and Sattler, 2005). The different 

letters in the name stand for the sets of constructors available in the language. Hence, 

the language restricts the form of number restrictions to be unqualified, supports role 

hierarchies, nominals and inverse roles, and adds a simple form of data types (often 

called concrete domains in DL). OWL-Lite is an easier to implement subset of OWL-

DL with less expressive power being based on SHIF(D). The W3C Web Ontology 

Working Group considered the design of simpler ontology languages with more 

tractable inferences important (Baader et al., 2006). OWL-DL and OWL-Lite are thus 

by far the most used languages in ontology applications. 

 

OWL exploits a considerable existing body of description logic research (Horrocks, 

2005a). Its specific syntactic constructs are written as combinations of RDF syntactic 

constructs (Horrocks and Patel-Schneider, 2003; Schwitter and Tilbrook, 2006). As a 

result, OWL relies on XML for syntax and is semantically layered on top of RDF/ 

RDFS from where its three sublanguages borrow different sets of constructors, which 

affect their expressive power. It provides a source of sound and complete algorithms 

and optimised implementation techniques for deciding key inference problems, and 

therefore is used in implemented DL systems to provide necessary reasoning support. 

OWL evolved to a standard ontology modelling language, which led to the notion of 

ontology being treated as a synonym for a description logic knowledge base (Calvanese 

et al., 2006b). In particular, the standardisation of OWL led to the development and 

adoption of a wide range of tools and service, including reasoners such as FaCT++, 

Racer, and Pellet, and editing tools such as Protégé (Baader et al., 2006). Although 

OWL was initially designed for the Semantic Web, it is now widely used in ontology 

development in general. This means, its language constructs are being continuously 
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extended by exploiting the ever increasing developments for more expressive 

languages. 

 

The advantage of using off-the-shelf software is that it is accessible to everyone and 

illustrates what solutions are practically achievable. However, by using OWL as the 

implementation language, we have to accept the language’s restrictions in terms of how 

and where language constructs can be used to guarantee decidability. For example, the 

treatment of specific domains with fixed (concrete) semantics is challenging for 

description logics. Under certain conditions, objects and relations of a concrete domain, 

such as space, can be built into a description logic so that knowledge representation and 

reasoning can be performed with other than purely symbolic objects. Concrete domain 

reasoning is still actively explored, including the coupling of geometric computations 

such as topology with symbolic reasoning services (e.g. Gütter et al., 2008), as well as 

extending data type expressivity in the next generation of OWL2 (e.g. Motik and 

Horrocks, 2008; Cuenca Grau et al., 2008). In principle, spatial representations are 

possible with expressive spatial concrete domains (e.g. Möller et al., 2000). Research in 

spatial reasoning provides us already with logical calculi for representing and reasoning 

with qualitative spatial relations over regions (e.g. Cohn et al., 1997; Bennett, 2001; 

Galton, 1999; Wolter and Zakharyaschev, 2005; Bittner and Stell, 2000; Haarslev and 

Möller, 1997; Isli et al., 2001; Lutz and Möller, 1997; Möller and Wessel, 1999). In 

OWL, however, these calculi are not yet implemented, and the concrete domain is 

restricted to expressing only some quantitative properties. Despite these limitations, 

description logic based languages offer a suitable formalism for implementing the 

conceptual model, as we will see in the next section. 

6.2 Model-based recognition of the dwelling and beyond 

A conceptual model captures expertise in an informal, but structured way. It describes 

the different types and roles of knowledge in reasoning tasks. A formal model encodes 

this knowledge in a symbolic formalism with a mathematically sound basis and a 

declarative semantics. It allows eliminating ambiguities and inconsistencies from the 

conceptual model and enables formal verification and validation (Benjamins et al., 

1999). We now need to transform the content of the conceptual model into a formal 

model. This translation is essentially a mapping between two languages, or media of 
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expression, that preserve certain aspects but not others, that is, leaves them invariant 

(Kuhn, 2004a). The key question is what to preserve and what to lose in the process. We 

need to determine the appropriate mappings from the source conceptualisation to the 

target language. This is not a trivial task. Poli (1996), for example, notes that the 

ontology and the logic (or at least the formalism), which should give it formal rigour, lie 

at different levels that should not be confused. In passing from the ontological tree to 

the logical tree, changes may occur of which one should be aware, and there is nothing 

to guarantee the neutrality of the translation. Furthermore, there may be different logical 

translations of the same ontological structure, which also may not prove to be 

compatible with the entire ontology. 

 

So far I have treated ‘concept’ as a linguistic artefact, where it is used in place of a 

name or word as a device that allows us to abstract away from incidental syntactic 

differences and focus instead on those sorts of relations between terms which are 

important for reasoning. On the engineering reading, concepts are creatures of the 

computational reality, which exist through their representations in software, or in 

systems of axioms (Smith, 2004). Concepts are conceived as universals to which the 

general terms used in making assertions correspond. Universals are repeatable, abstract, 

and lack specific locations in space-time. For example, the concept Public House is a 

universal concept. Particulars are the instances of such universals, which exist in the 

real world of space and time. Manchester House, for example, is a physical instance of 

the concept Public House. A universal is defined as anything that is instantiated, and an 

instance as anything that instantiates some universal. The term universal thus signifies 

what the corresponding instances have in common. The relation of instantiation is 

hereby taken as primitive, and it is specified axiomatically that it holds exclusively 

between instances and universals. To support semantic annotations we need to define 

the necessary and sufficient conditions an information entity (particular) has to fulfil to 

belong to a concept (universal) (Visser et al., 2000). Indeed, any theory can be 

formulated in many different ways, which can take different sets of concepts. Some 

choices may be easier to work with than others, depending on the conceptual vocabulary 

one wants to formalise within the theory. However, the possibility of defining one 

concept in terms of others gives a very powerful mechanism for organising and 

streamlining ontology development.  

 



Formalising a Representational System 

 

172

This two-level representation with concepts, universals or high-level knowledge (i.e., 

conceptual representation) on the one side, and asserted particulars, instances or 

individuals (i.e., factual representation) on the other side has been addressed throughout 

this thesis. Figure 28 illustrates how the two representations relate to one another, and 

how the representational framework classifies instances into higher-level classes. The 

figure is an adaptation of Neumann’s (2005) model for scene interpretation to that of 

topographic data. The underlying idea is that all high-level structures can be described 

in a homogeneous way as composite entities with spatially related parts. The shaded 

areas in figure 28 emphasize how these entities form specific configurations which in 

turn link to other configurations. The high-level concepts explicitly define the 

constituting elements and their characteristics. Reiter and Mackworth (1989) were the 

first to show that scene interpretation is formally equivalent to logical model 

construction. Hence, instead of concluding from the evidence that this is, say a 

residential area, the conceptual model of a residential area explains the evidence with its 

composition that builds on a declarative representation of knowledge. Since the creation 

of a configuration requires abstraction, it should provide a set of guiding principles that 

select, organise and order relevant elements independent of contingent factors (Pesaresi 

and Bianchin, 2000). As explained in the previous chapter, the conceptual 

representation defines a land use scene consisting of primitive objects that aggregate 

into higher, more meaningful entities. Interpretation is defined as an instantiation of a 

conceptual knowledge base consistent with evidence, that is, with information about the 

scene. In other words, the conceptual model maps onto the evidence given by the data 

representation, and is implemented as constraint satisfaction. Henceforth, inference is 

treated as a search problem of classifying possible interpretations defined by the 

taxonomical and compositional relations and by incrementally instantiating concepts 

while maintaining consistency. 
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Figure 28 Adaption of Neumann’s (2005) model for interpreting topographic data 

 

Knowledge representation technologies provide flexible access to information in many 

different modalities (Bresciani and Franconi, 1996). They provide the organization, the 

classification, and the conceptual modelling of information. They aggregate and abstract 

data in various dimensions and at different levels of granularity. However, the choice of 

the knowledge representation language rests on the inference mechanisms needed by the 

application that uses the ontology. We require a representation formalism that not only 

allows us to describe simple taxonomic relationships, but also provides suitable axioms 

to express other relationships between concepts and to constrain their intended 

interpretation. For example, the subsumption or taxonomic inclusion allows us to 

express that a terraced house is a kind of house. Instantiation means that a topographic 

feature with the identifier osgb10000040376335 is an instance of terraced house. The 

individual part-of relation allows us to say that a garden is part of a terraced house, 

whereas the membership relation states that this house is a member of the collection of 

houses in the block of terraced houses. The partonomic inclusion between universals 

offers statements such as every instance of the universal terraced house is an individual 

part of some instance of the universal residential area. The partition of (or subdivision 

of) relations expresses that the collection of blocks of terraced houses forms a partition 
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of districts of terraced houses. Currently, only with description logic based languages, 

the inference engine (reasoner) can infer these relations at run time. 

 

With the formal, logic-based semantics of description logics, we have the 

expressiveness for modelling the domain as well as the necessary reasoning services 

that make automatic inferences over our knowledge base. Reasoning is a central service 

that allows one to infer implicitly represented knowledge from the knowledge that is 

explicitly contained in the knowledge base. The capability of exploiting the description 

of the model to draw conclusions about the problem at hand is a particular advantage of 

modelling using DL. In addition, a DL system offers the components to store both the 

necessary types of representations: The conceptual model consisting of a set of 

terminological axioms and the domain specific asserted facts. These two components 

are traditionally called the TBox and ABox of a knowledge-based system, as briefly 

mentioned in chapter five. The TBox equates to an ontology, which contains intentional 

knowledge in the form of a terminology (taxonomy/partonomy) consisting of atomic 

concepts (unary predicates) and attributes, usually called roles (binary predicates). 

These are built through declarations that describe general properties of concepts, 

resulting in a lattice-like structure entailed by the subsumption relationship. The 

resulting hierarchy of assertions forms the representational structure for the conceptual 

model.  

 

The assertions in the TBox are restricted to so-called definitions. A definition is an 

assertion stating that the extension of a concept denoted by a name is equal to the 

extension of another complex concept (Calvanese et al., 2001). These statements take 

the form of terminological axioms expressed as A v C (primitive concept definition/ 

concept inclusion) and A ≡ C (concept definition/ concept equation). A primitive 

concept is an atomic concept occurring only on the right-hand side of axioms. The 

defined concept is an atomic concept occurring on the left-hand side of an axiom 

(Baader et al., 2003). TBoxes differ from each other by the type of TBox-statements 

they allow (Donini et al., 1996). A primitive concept definition in the form of an 

inclusion assertion A v C states a necessary but not sufficient condition for 

membership in the class A. By means of C, the assertion specifies only necessary 

conditions for an object to be an instance of the atomic concept A. Although the 
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property C is necessary for an object to be in the class A, this condition alone is not 

sufficient to conclude that the object is an instance of class A, unless it is explicitly 

stated. Symmetrically, an assertion C v A specifies a sufficient condition for an object 

to be an instance of A. In contrast, an equality assertion A ≡ C states both necessary 

and sufficient conditions for membership in the class A. It corresponds to the pair of 

assertions A v C and C v A. This means that besides having the property C, it is 

necessary for an object to be in the class A. For example, we can define the concept 

detached house by stating that a detached house is a house that does not touch some 

other house, e.g. DetachedHouse≡ House u ¬touches.House. An individual only 

then becomes a member of the class DetachedHouse when it meets both necessary and 

sufficient conditions of being a house and not touching some other house. Equality 

assertions are typically used to define a taxonomy of concepts. It is assumed that each 

atomic concept may appear at most once on the left hand side of an assertion to ensure 

the taxonomy is acyclic. Other forms of expression are R v S, R ≡ S and R+ v S, 

where R, S are roles, and R+ is a set of transitive roles. A set of axioms of the form R v 

S where both R and S are atomic is called role hierarchy, and its presence is usually 

indicated by appending H to the name of the DL (Baader et al., 2003). Reasoning tasks 

reason on the concept expressions obtained by unfolding the definitions, whereby 

replacing atomic concepts on the left hand side of a knowledge base assertion with the 

corresponding right hand side (Calvanese et al., 2001).  

 

The ABox, on the other hand, contains extensional or assertional knowledge that is 

specific to the individuals of the domain of discourse (i.e., the evidence in terms of 

topographic features). The ABox is a set of assertions that is realised by permitting 

concepts and roles to be used in assertions on individuals. For example, with the 

concept membership assertion C(a), where C is a concept name and a is an individual, 

we can express that the topographic feature OSGB1000040381257 is an instance of the 

concept building: Building(OSGB1000040381257). Further, we can assert that this 

topographic feature touches another feature by using the role membership assertion 

R(a, b), where a, b are individual names and R is a role name: 

touches(OSGB1000040381257, OSGB1000040381258). 
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What is required are mechanisms that feed concrete data, e.g. topographic features, into 

the ABox (Neuman and Möller, 2008). For example, a quantitative description of the 

map scene consists of a list of all primitive objects present, each described by its unique 

identifier (e.g. TOIDs), other available attributes (e.g. descriptive terms), and calculated 

spatial relations. A spatial analysis provides measures of the distribution of physical and 

other spatial structures in the map. We can then apply predicates in qualitative 

primitives that correspond to notions such as near, far or touching, whereas map 

elements constitute all constant symbols of an interpretation. In other words, lower-level 

processes will supply data for instances of concepts, which are modelled as parts of the 

map scene. Context information may be entered into the ABox in terms of instantiated 

aggregates, which constrain other possible map objects. For example, if the context of a 

residential area is given, it is assumed that a corresponding aggregate is instantiated and 

possible parts, such as terraced or semi-detached housing, are expected as constituents 

of the interpretation. Such context-based instances help to guide the interpretation 

process. Hence, the ABox will contain concrete facts about the map data, i.e., its 

individuals, context information in terms of partially specified concept instances, as 

well as the resulting high-level description as generated by the inference process. 

 

Protégé allows to implement such a system through its OWL-DL language with which 

we can specify the concepts of the TBox as classes and the concrete facts of the ABox 

as individuals. Since a DL system offers standard inference procedures for both TBoxes 

and ABoxes, we can reason over the defined classes and their individuals and infer 

implicit, new information. As described in the previous section, logical inference is a 

process that implements the entailment relation between sentences. A reasoner evaluates 

the truth of sentences with respect to a model of formally structured worlds. It checks if 

knowledge is correct and meaningful, that is, if classes have instances. It checks that 

knowledge is minimally redundant, i.e., that there are no unintended synonyms. No 

human intervention is required to spot glitches in reasoning. Further, a reasoner can 

query knowledge. Query answering is performed simply by iterating instance checking 

for all the individuals in a knowledge base. By means of ABox reasoning and a store of 

asserted descriptions of individuals, a DL system can query which individuals occurring 

in the assertions are instances of some concept description (retrieval), or alternatively, 

given an individual a, what is the most specific concept C in the TBox that a is an 

instance of (realisation) (Bechhofer et al., 2003; Baader et al., 2003). Answering queries 
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in DL systems therefore goes beyond query answering in relational databases, because it 

must consider all models and requires deduction (Esposito et al., 2007). In addition, 

subsumption ensures that the right place for a concept C is found in the taxonomy 

implicitly present in a TBox. It verifies whether a generic subsumption relationship 

between concept expressions is a logical consequence of the declarations in the TBox, 

thus ensuring consistency of the ontology. The task of inserting new concepts in a 

taxonomy is referred to as classification. Here, the reasoner determines for a given 

concept C in a TBox whether the new concept D subsumes C, or D is subsumed by C. 

Table 7 summarises the reasoning tasks with respect to the ABox and TBox (Calvanese 

et al., 2001; Baader and Küsters, 2006). 

Table 7 Reasoning tasks for the TBox and ABox 

TBox ABox 

 Inferencing of relationships, be they 
transitive, symmetric, functional or inverse 
to another property. 

 Equivalence of concepts within a 
terminology is the problem of deciding 
whether two concepts are logically 
equivalent (C ≡ D). 

 Subsumption checks whether one concept 
is more general than another. 

 Satisfiability generally is the problem of 
checking whether a knowledge base has a 
model, i.e., a valid interpretation. Concept 
satisfiability is the problem of checking 
whether concept C is satisfiable with respect 
to a knowledge base. 

 Classification, which places a new concept 
in the proper place in a taxonomic hierarchy 
of concepts. 

 Concept consistency is the problem of 
deciding whether concept C is consistent in 
a knowledge base. 

 Logical implication is the problem of 
deciding whether a knowledge base implies 
an inclusion assertion C v D, which is 
whether a generic relationship is a logical 
consequence of the declarations in the 
TBox. 

 Consistency checking of instances. 

 Entailments, which are whether other 
propositions are implied by the stated 
condition. 

 Satisfiability checks that the conditions of 
instance membership are met. 

 Infer property assertions implicit through 
the transitive property. 

 Instance checking is the problem of 
checking whether the concept membership 
assertion C(a) is satisfied in every model of 
a knowledge base. It verifies whether a 
given individual is an instance of a specified 
concept. 

 Knowledge base consistency, which is to 
verify whether all concepts admit at least 
one individual. In other words, to check 
whether a given ABox is consistent with 
respect to a TBox 

 Realisation is the problem of checking the 
most specific concept C in the TBox that an 
individual a is an instance of. 

 Retrieval is the problem of checking 
whether an individual is an instance of some 
concept description C. 

 

 

There are well-established and optimised reasoning algorithms for these kinds of 

reasoning tasks, such as the earlier mentioned tableaux procedures (e.g. Baader and 

Sattler, 2001; Möller and Haarslev, 2008). The tableau calculus is specifically designed 

for solving the problem of satisfiability, validity and entailment by incrementally 
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building a model of a given formula, decomposing it in a top/down fashion, and 

exhaustively looking at all possibilities until it can eventually prove whether a model 

exists or not. In other words, tableau rules correspond to constructors in logic and stop 

when no more rules are applicable or a clash occurs. If a clash occurs then the problem 

is said to be undecidable. However, the property of (un)decidability lies with the general 

property of the problem and not of a particular algorithm solving it. An algorithm is just 

a computational process that uses a finite number of steps to solve a particular problem. 

The proof procedure’s time for solving a problem depends on the complexity of the 

formulas. Although decidability of a formal language can be achieved by restricting it 

(Calvanese et al., 2001), we have to sacrifice some of the logic’s expressive power and 

with that the complexity with which we can describe a problem. However, given a 

decidable problem, the issue of computational difficulty in solving the problem remains 

in terms of the use of computing power and resources. For example, validity testing for 

sentential logic is equivalent in computational complexity to problems for which every 

known algorithm requires an amount of time equal to some exponential function of the 

length of the problem statement (Rips, 1994). Therefore, the complexity class to which 

a problem belongs is again a general property of the problem and not of a particular 

algorithm solving it. In general, the more restricted the representational power, the 

faster is the inference.  

 

The use of logic and its inference scheme have been much researched in computer 

vision (e.g. Zhang, 2007). Despite limitations in expressivity and computational power, 

formal logics provide us with the necessary means of modelling and reasoning about 

geographic space in an explicit and more natural way. Indeed, there are different ways 

to represent knowledge. Not only is there a large variety of languages to choose from, 

but there are also other systems such as Minsky’s frame theory (Minsky, 1975), 

probabilistic models (e.g. Bayesian network), or associative structures and cognitive 

learning paradigms (e.g. neural network). However, modern ontology languages based 

on description logics offer well-proven, standardised representation and reasoning 

mechanisms. The question that remains is how the language’s expressivity and 

reasoning ability will live up to the requirements for deriving a high-level representation 

of land use from topographic data.  



Formalising a Representational System 

 

179

Conclusions 

Modelling geographic space in terms of its context and arrangement is a difficult task. 

Its spatial patterns were never consciously created in the first place, thus making it a 

challenge to consciously recreate these patterns through a system of generic design 

guidance (Marshall, 2005). Although a conceptualisation of space provides the 

necessary abstraction, it requires guiding principles to which relevant elements are to be 

selected, organised and ordered. Ontologies provide the necessary means to structure 

the ontological commitments of our domain, and their semantic-based languages 

provide the necessary inference services to make new knowledge explicit. This chapter 

showed how the conceptual model can be made accessible to the computer through 

knowledge representation formalisms. The model’s rich descriptions of meanings are 

explicitly expressed by an ontology. The ontology not only provides the vocabulary of 

terms, through which new terms can be formed by combining existing ones, but it also 

formally specifies the semantics of a shared domain. Due to its logic-based semantics a 

machine can reason about the asserted knowledge and infer higher level, initially 

implicit information. Since interpretation is a cognitive as well as knowledge-intensive 

task, a knowledge-based approach seems to lend itself to the problem of inferring 

additional information from topographic data. An important lesson to emerge from 

controversies around knowledge representation is that the representation of knowledge 

cannot be completely isolated from its hypothesized functions in cognition (Wilson and 

Keil, 1999). Just as knowledge representation paradigms have proven useful for 

computer vision (e.g. Möller et al., 1999), so should they be useful for the interpretation 

of geographic information. 

 

Knowledge representation formalisms interface to common-sense knowledge and 

represent conceptual models with well-defined semantics that exploit validated 

inference procedures. Description logics in particular constitute a whole family of 

formalisms that have obtained much attention in the last decade. A description logic’s 

object-oriented knowledge representation is similar to frame systems used in many 

knowledge-based application systems, but it is based on formal semantics. Because 

description logics realise a subset of first-order logic, they guarantee the decidability 

and correctness of reasoning services including consistency checking, subsumption, 

satisfiability, classification, abstraction and instance checking and retrieval (Neumann 
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and Möller, 2008). Although logic offers complex properties and highly optimised 

implementations, such as OWL, it is important that all the available knowledge can be 

fully axiomatised and represented using such formal languages. It is also required that 

for the used formal language there exists an elaborated model theory, and that for the 

purpose of reasoning the language is decidable. This leads to the important 

consideration of the trade-off between expressiveness of a terminology and the 

complexity of reasoning services, which ultimately has an effect on the representation 

of the problem. Unfortunately, desirable features may easily lead to undecidability. For 

example, concrete domains must be incorporated to support spatial reasoning, which is 

not yet fully available in OWL. 

 

The trade-off between expressive power and deductive complexity is a central issue of 

knowledge representation formalisms. DLs have been thoroughly investigated 

especially with the aim of devising knowledge representation formalisms with a good 

compromise between expressive power and complexity of reasoning (Calvanese et al., 

2001). Even though classical first order logic has enough expressive power to define all 

of mathematics and the semantics of every version of logic, including itself, logic has its 

own limitations. It may be able to define fuzzy logic, modal logic, neural networks, and 

even higher-order logic. It may be the best-defined, least problematic model theory and 

proof theory, and it can be defined in terms of a bare minimum of primitives: Just one 

quantifier (either  or ) and one or two Boolean operator (Sowa, 2000). However, all 

sentences in logics are assertions, and reasoning based on formal logics is limited to 

deriving truth-values and proofs for such assertions. Hence, it is difficult to model 

human reasoning that involves assumption, likelihood, belief, doubt, etc. 

 

Logical computation involves regimenting arguments in ways that are often unintuitive. 

Therefore, it remains questionable how relevant logical proof theories are to the study of 

human reasoning (Rips, 1994). Formalisms such as semantic or associative networks in 

AI as well as the classical relational calculus or first-order predicate calculus cannot 

represent or accommodate inexactness. Even with fuzzy logic, the calculation of a 

quantified, statistical probability has by itself a distinct air of artificiality (Peuquet, 

1988). This means, when it comes to representing our problem, which stands in some 

sort of isomorphism to corresponding entities in reality, we are faced with additional 
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trade-offs between method of structural information handling, the nature of the raw 

data, the characteristics of the landscape and robustness and processing time of the 

method (Pesaresi and Bianchin, 2000). Nevertheless, the special-purpose heuristics of 

this approach will take advantage of particular types of rules or lines in the proof.  

 

On the positive side, first-order logic provides a powerful representation and reasoning 

system upon which many knowledge representation formalisms are based. The 

separation between syntax and semantics is one of the major strengths of modern logic 

(Fagin et al., 2003). They are formally well founded and are suitable for machine 

implementation. Logic is well understood as it has been extensively studied (it goes 

back thousands of years to philosophers such as Aristotle). It continues to be actively 

researched in terms of extending the expressivity of concept languages, the decidability 

and tractability of inference services, and the integration of predicates over concrete 

domains. There exist several commercial and experimental developments of DL 

systems, among them KL-ONE, CLASSIC, LOOM, Racer, and Protégé (e.g. Calvanese 

et al., 2007a; Duineveld et al., 1999), which can be readily used for implementing 

ontologies and knowledge bases. 

 

In particular, description logics offer a useful paradigm for modelling our problem, 

since we are interested in the symbolic processing of high-level interpretation and 

vision tasks (Möller et al., 1999). Whereas the TBox of a DL system contains sentences 

describing concept hierarchies, that is, the relations between concepts, the 

representation of factual knowledge is achieved through the declaration of knowledge 

about individual objects in the assertional knowledge base (ABox). With the ABox, it is 

possible to express conceptual properties of instances and relations between individuals, 

for example, of the contents of a particular map scene. The TBox background 

knowledge determines what can be inferred from the explicit declarations in an ABox. 

Using the ABox reasoning services, an ABox individual can be shown to be an instance 

of certain TBox concepts (instance checking), as well as the set of most specific concept 

names of which an individual is an instance can be computed (object classification). 

These services have benefits over traditional database query languages (such as SQL) in 

so far that the modelling comes more natural (it is easier to construct queries), and new 

information can be inferred from a given set of information. Therefore, we can capture 

implicit information that does not exist on the level of pure geographical features by 
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using background information that is usually well known by humans (Heinzle and 

Sester, 2004). 

 

Another advantage is that DL provides standardised reasoning services. Instead of 

programming an object recognition procedure, we can use the object classifier of a DL. 

This provides significant economical advantages in terms of reusable software 

components that can be used instead of complex application-dependent software 

(Möller et al., 1999). The success of applied description logics for pattern classification 

tasks has been shown previously (e.g. Liedtke et al., 1997; Mayer, 1999). The idea of 

conceptually defining classes in terms of sufficient conditions, which must be fulfilled 

by image features, has been successfully applied in computer vision as well as the 

classification of remotely sensed imagery. This thesis also applies the knowledge 

representation framework for model-construction in the logical sense by treating the 

problem of modelling land use as a configuration task. The importance lies in the 

interface between a GIS and a knowledge base to facilitate both the necessary high-level 

background knowledge as well as situational context given by the data. This leads to a 

duality of the generality and application of the problem. On the one hand, the 

independence of symbolic logic formalisms is an advantage with respect to validity and 

reusability. On the other hand, this independence poses a severe impediment when 

domain-specific properties and laws, such as dealing with space and time, must be 

exploited for a task. This especially addresses the incorporation of concrete domains in 

DL formalisms to accommodate reasoning other than with purely symbolic objects. The 

current representation of concrete domains and the lack of spatio-terminological 

reasoning will limit the implementation of our proposed conceptual framework, which 

builds upon spatial knowledge. However, first-order logic will be around for a long 

time, and current obstacles are likely to be solved in the future (Russell and Norvig, 

1995). Plus, alternative solutions (e.g., frame-based and rule-based languages) have 

proven not to be perfect either (Gašević et al., 2006). 
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Chapter 7 

Applied Evaluation: Inference of Residential Area 

“Implicit information does not exist on the level of pure geographical features, but on 

the level of the relationships between the features, their extent, density, frequency, 

neighbourhood, uniqueness and more. This knowledge often is well known by humans 

with their background information, however, it has to be made explicit for the 

computer.” 

–Heinzle and Sester (2004, p.335) 

 

The use of GIS to answer geographical questions will often search for information not 

explicitly represented in available databases. The challenge of deriving implicit facts 

from explicit geographic knowledge is mainly a result of the lack of semantics 

contained in spatial databases (Verastegui et al., 2006). The use of formal ontologies to 

model, classify and annotate data of various domains has been explored for this purpose 

(e.g. Villanueva-Rosales et al., 2007; Wolstencroft et al., 2006; Stevens et al., 2007; 

Bada et al., 2004). As we learnt over the course of this thesis, ontologies are not only 

helpful as a specification for a required domain, but they provide logic-based search for 

better information (Uschold and Grüninger, 2004).  

 

To use ontology in the engineering sense, we have to think globally but act locally. We 

need to think of what it is we want to extract from topographic data in a global sense to 

get a complete understanding of the domain and provide context for the inference. 

However, the actual inference takes place locally on a specific set of data, depicting a 

specific location in reality, which will have constraints affected by local surroundings as 

in spatial layout. The fact that environments vary in terms of their physical, climatic, 

and cultural context means that the ontological commitments made locally, do not 

necessarily apply globally. For instance, the spatial layout of residential areas 

potentially varies from country to country (chapter 3). Acknowledging these 

circumstances, the formalised example begins at ‘home’ with the typical spatial layouts 

found in Great Britain that are portrayed in Ordnance Survey’s topographic data. 
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The ontological commitments are given by the conceptual model that imposes 

constraints on the domain. In representing knowledge about the real world, one part of 

the system is the body of knowledge to be represented. This results in a partial 

representation of characteristics within the world where the complexity of the problem 

is reduced both spatially as well as in terms of content (chapter 5). Another part is the 

representing formal structure (chapter 6), and a third part establishes the relations 

between the body of knowledge and the formal structure. This chapter establishes this 

relation by applying existing ontology technology to infer higher-level functional 

information from topographic knowledge.  

 

To begin with, we make choices about the vocabulary of terms (predicates, functions, 

and constants) of a domain. The resulting vocabulary, or informal list of the concepts in 

the domain, is what is known as the ontology of the domain. By writing logical 

sentences or axioms about the terms in the ontology, we accomplish two things: First, 

we make the terms more precise so that humans will agree on their interpretation, and 

second, we make it possible to run inference procedures to automatically derive 

consequences from the knowledge base. We then encode a description of the specific 

problem instance, which involves writing simple atomic sentences about instances of 

concepts that are already part of the ontology. Lastly, we post queries to the inference 

procedure and get answers, that is, we can let the inference procedure operate on the 

axioms and problem-specific facts to derive the facts we are interested in knowing 

(Russell and Norvig, 1995). To understand this process better, we now turn to the 

implementation by applying the proposed conceptual model in Protégé. 

 

In the next section, after introducing the study areas, the conceptual model is 

implemented in OWL-DL by asserting necessary knowledge in the ABox and TBox of 

the knowledge base. This is achieved by defining the concepts of the conceptual model 

as classes in the OWL ontology, and converting the factual knowledge stored in the 

database into OWL individuals. Section 7.2 applies the asserted knowledge for concept-

based instance retrieval and classification. In particular, the thesis illustrates how a 

description logic’s reasoning services aid the inference from type of dwelling, type of 

urban block, and type of district to residential area. Section 7.3 discusses the results and 

evaluates the benefits and current limitations of this approach and its methods, followed 

by conclusions. 
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7.1 Implementing the model in OWL-DL with Protégé 4 Alpha 

Protégé is currently the leading ontology development editor and environment. The 

platform was developed at Stanford University and has already been through a number 

of versions and modifications (Gašević et al., 2006). It facilitates the defining of 

concepts (classes), properties, taxonomies, various restrictions, and class instances. Its 

uniform graphical user interface has a tab for the collection of knowledge into a 

knowledge base conforming to the ontology. Protégé supports several ontology 

representation languages, including OWL and RDFS. To accommodate the formal 

logics in OWL, Protégé implements reasoners such as FaCT++ and Pellet that provide 

automatic inference services including satisfiability, subsumption checking, and 

instance retrieval (Sirin et al., 2007). 

 

In chapter six, I first introduced OWL. This chapter implements the proposed 

conceptual model in OWL-DL. I am using OWL because it is freely available through 

Protégé, and it is the current standard endorsed by the World Wide Web Consortium. 

As outlined earlier, OWL is an ontology language that provides the formal foundations 

and reasoning support based on well-defined model theoretic semantics. Its basic 

constructs are classes (denoting sets of instances), properties (denoting relationships 

between individuals) and individuals (denoting objects in the world). These constructs 

are equivalent to the concepts, roles and individuals in first-order logic (FOL).  

 

Figure 29 and figure 30 outline OWL’s class constructors and axioms that support the 

modelling of a given domain (Horrocks, 2006). As explained in chapter six, OWL 

constructors allow one to specify the intersection of classes by combining two or more 

classes with the and-operator. In addition, it allows the union of classes with the or-

operator, complement classes by negating another class, and restrictions by determining 

the type and possible number of relationships a class of individuals can participate in 

(e.g. quantifier, cardinality and has value restrictions). With properties aka roles, we can 

determine the relationships between individuals. The main categories of properties are 

object and data type properties. The former links individuals to individuals. The latter 

links individuals to data type values such as integers, floats and strings. The data type 

property models the so-called concrete domain. As shown in figure 30, properties can 

take different characteristics. A functional property can only take one value. An inverse 
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property denotes the inverse of a relationship (e.g. partOf = hasPart). Inverse functional 

refers to the inverse of the property that is functional. Symmetric means that if a 

property links individual a to b then it can be inferred that it links b to a. A property is 

transitive if it links a to b and b to c, then it also link a to c. These constructors and 

axioms have been restricted so that reasoning in OWL-DL is decidable. 

 

 
Figure 29 OWL class constructors 

 
Figure 30 OWL Axioms 

Given the individuals, classes and properties of an ontology, these are mapped via the 

interpretation function I to the interpretation domain I based on the semantics of 

standard first order model theory. Figure 31 shows how the property ‘touches’ is 

interpreted as a set of pairs of individuals from the domain Building, and how the class 

‘SemiDetachedHouse’ is interpreted as a set of individuals that is equivalent to sharing 

a subset of the domain defined as House where an individual touches maximal one 

House. This means for an individual to be classified as SemiDetachedHouse, it must be 

in a touch relation to another individual, and both these individuals must satisfy the 

constraints of the subset of the domain denoted as House. 
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Figure 31 Semantics given by standard FO model theory 

The subsequent sections describe the study areas and how Protégé models both database 

instances as well as the high-level concepts of our conceptual model. In the concrete 

examples that are going to follow, I am using the widely accepted conventions for 

writing OWL syntax: Concept names start with an uppercase letter followed by 

lowercase letters (e.g. SemiDetachedHouse, Building), role names, i.e., properties that 

relate concepts and individuals, start with a lowercase letter (e.g. hasArea, touches), and 

individual names are all uppercase (e.g. OSGB1000004037856, URBANBLOCK1). 

Once an individual is asserted as a member of a specific class, we speak of instances. 

The Protégé abstract syntax is written in sans-serif typeface. 

Study areas 

The chosen study area is Glasgow, the largest of Scotland’s cities. It is located right on 

the banks of the River Clyde, situated in the Central Belt of Scotland on the west coast. 

Glasgow is Scotland’s principal commercial centre, and one of the United Kingdom’s 

main regional retail and office centres. Glasgow has a great diversity both 

geographically and functionally, which makes it a useful study area. Its residential areas 

are characterised by Victorian architecture, streets of red stone terraced houses with 

large windows, as well as modern semi-detached and detached properties in and around 

the city. The three areas Giffnock, Drumchapel and Pollokshields were chosen for the 

implementation of the conceptual model – each one characterised by different 

residential properties.  

Individuals  iI ∈ I 
 osgb1 
 osgb2 
Concepts   CI ⊆ I 
 Building 
 House 
 Outbuilding 
Roles   rI ⊆ I × I 
 touches 
  

Interpretation domain I Interpretation function I

SemiDetachedHouse ≡ House u touches max 1 House
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House types and sizes vary in the U.K. An interesting piece of evidence for this is given 

by RICS Building Cost Information Service’s (BCIS) guide to house rebuilding costs 

(BCIS, 2004). The BCIS guide provides regional rebuilding cost tables broken down by 

age band, type of house, quality, and size. Table 8 shows BCIS rebuilding cost table for 

Scotland. BCIS (2004) considers nine Government Office Regions because there are 

considerable local cost differences within a geographically defined region – Scotland 

being one of them. It focuses on five major types of house: two storey detached, semi-

detached and terraced, and detached and semi-detached bungalows. It represents four 

age bands, pre-1920, 1920-45, 1946-79, and 1980 to date. These age bands are intended 

to represent the specification and design typical of the period. Of particular interest are 

the represented size categories (small, medium and large) for each type of building. The 

calculations for these sizes have been based on exact areas, which are included in the 

appropriate rebuilding cost table (table 8). The rebuild cost figures are £/m2 of gross 

internal floor area including demolition and fees. The gross internal floor area is the 

area of the building measured to the internal face of the perimeter walls at each floor 

level.  

 

Table 8 Scotland rebuilding cost table (BCIS, 2004) 

Age Size Quality Detached 
Semi-

Detached 
Terraced Bungalow 

Semi-
Detached 
Bungalow 

Small Basic 
Good 
Excellent 

767 
887 
1085 

816 
946 
1135 

777 
894 
1071 

798 
922 
1104 

879 
1014 
1200 

Gross Floor Area m2 75 52 52 59 41 
Medium Basic 

Good 
Excellent 

646 
781 
987 

737 
846 
1000 

771 
877 
1031 

731 
886 
1146 

840 
971 
1159 

Gross Floor Area m2 114 75 64 79 46 
Large Basic 

Good 
Excellent 

597 
762 
954 

705 
813 
1000 

715 
845 
1009 

652 
852 
1066 

713 
832 
1051 

1980-to 
date 

Gross Floor Area m2 201 130 75 160 79 
Small Basic 

Good 
Excellent 

793 
905 
1086 

764 
867 
1044 

784 
895 
1089 

774 
903 
1123 

773 
881 
1072 

Gross Floor Area m2 84 83 74 84 69 
Medium Basic 

Good 
Excellent 

734 
862 
1034 

698 
797 
983 

692 
790 
968 

713 
853 
1058 

709 
820 
1029 

Gross Floor Area m2 110 109 108 111 99 
Large Basic 

Good 
Excellent 

615 
765 
939 

645 
744 
931 

632 
723 
891 

636 
822 
1033 

671 
801 
1000 

1946-1979 

Gross Floor Area m2 213 135 137 209 114 
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Table 8 continued 

Age Size Quality Detached 
Semi-

Detached 
Terraced Bungalow 

Semi-
Detached 
Bungalow 

Small Basic 
Good 
Excellent 

879 
1050 
1261 

854 
1025 
1215 

850 
1021 
1203 

820 
968 
1174 

785 
942 
1135 

Gross Floor Area m2 84 72 69 84 69 
Medium Basic 

Good 
Excellent 

841 
1012 
1235 

843 
1008 
1205 

857 
1023 
1223 

770 
919 
1160 

826 
973 
1177 

Gross Floor Area m2 110 91 84 117 99 
Large Basic 

Good 
Excellent 

790 
925 
1125 

926 
1028 
1238 

948 
1051 
1258 

839 
977 
1228 

893 
1005 
1211 

1920-1945 

Gross Floor Area m2 213 110 106 139 114 
Small Basic 

Good 
Excellent 

928 
1100 
1305 

871 
1039 
1233 

871 
1045 
1241 

  

Gross Floor Area m2 104 94 84   
Medium Basic 

Good 
Excellent 

903 
1058 
1257 

837 
982 
1174 

869 
1025 
1224 

  

Gross Floor Area m2 137 137 111   
Large Basic 

Good 
Excellent 

790 
959 
1152 

825 
962 
1175 

880 
1030 
1242 

  

Pre 1920 

Gross Floor Area m2 289 189 137   

 

Size is an important criteria in the interpretation of residential dwellings, as shown in 

earlier chapters,. Table 8 illustrates the differing sizes between types of houses and their 

ages. The largest houses are detached houses, especially the older ones. With the 

increased demand for housing nowadays, the house sizes of modern houses seems to 

have become smaller over time. Excluding the bungalow type, terraced houses have the 

smallest gross floor area among semi-detached and detached houses. These size 

differentiations will proof important for the classifications later on. 

Giffnock 

Giffnock is an area within East Renfrewshire, Scotland. Its location within Greater 

Glasgow effectively makes it a suburb of the city.  Figure 32 provides an aerial view of 

the area taken from Google Earth. Giffnock is largely residential in character, 

surrounded by green spaces. It is a relatively wealthy area, as the Google Street View 

screen shots confirm in figures 33 and 34. The area consists predominantly of modern 

as well as Victorian housing. Figure 33 shows some modern semi-detached houses, 

whereas figure 34 highlights the typical red stone terraces of Glasgow. 
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Figure 32 Aerial view of Giffnock  

 

 
Figure 33 Modern semi-detached houses in Giffnock 
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Figure 34 Victorian terraced houses in Giffnock 

 

Drumchapel 

Drumchapel is located along the perimeter of the city of Glasgow, bordered by 

Knightwood and Yoker. As part of an overspill policy, a large housing estate was built 

there in the 1950s. This post-war social housing scheme suffers from social problems, 

notably anti-social behaviour and degeneration of its post-war housing. Figure 35 shows 

an aerial image of the neighbourhood. The area is predominantly of residential character 

with tall, high-rise buildings, presumably blocks of flats, visible in the centre of the 

image. Drumchapel is also surrounded by some larger industrial complexes. The Google 

Street View screen shots in figures 36 and 37 illustrate the post-war and modern houses, 

mostly flats, terraced and semi-detached houses. 
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Figure 35 Aerial view of Drumchapel 

 

 
Figure 36 Modern flats and semi-detached houses in Drumchapel 
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Figure 37 Post war terraced houses in Drumchapel 

 

Pollokshields 

Pollokshields was the first garden suburb to be built in the United Kingdom back in the 

19th century. It is among the plushest areas in the city with many avenues of grand 

Victorian villas accommodating the wealthy. Overall, Pollokshields is an attractive 

residential area on the south side of Glasgow, just two miles from the city centre. It is a 

conservation area characterised by substantial sandstone villas and tenements along 

broad streets. The aerial image in figure 38 shows the spacious layout of the area with 

plenty of green spaces. Figure 39 gives a Google Street View screen shot of one of the 

large Victorian villas, and figure 40 shows its typical tenements - large Victorian town 

houses. These types of houses put Pollokshields in stark contrast to Giffnock and 

Drumchapel. 
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Figure 38 Aerial view of Pollokshields 

 

 
Figure 39 Victorian villas in Pollokshields 
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Figure 40 Victorian town houses in Pollokshields 

 

Asserting knowledge in the knowledge base 

Geographic knowledge in particular is a challenging domain, which requires us to 

simplify the model by making several restrictive assumptions. When dealing with 

geographic knowledge, we are dealing with incomplete knowledge. Although this 

equates to the open world assumption in predicate logic, to effectively deal with the 

instances of our domain we have to assume complete knowledge, that is, a closed world 

representation. As elaborated in chapter 6, with the open world assumption the reasoner 

makes no assumptions about the completeness of the information it is given. However, 

we need to assume that the information we have is everything so that the reasoner 

returns an answer. In other words, we need to specify what exists in the topographic 

map, and we need to assume that the sum of objects in the map are known and finite 

(Schröder, 1999). This can be achieved by using the universal value restriction, which 

closes the interpretation of the domain. Furthermore, knowledge is naturally uncertain, 

especially if obtained from concrete domains such as geography. Even though there is 

work on incorporating probability theories and fuzzy logics (e.g. Freksa, 1994), for the 

purpose of the implementation we have to assume that we are dealing with certain 

knowledge. This is because formalisms only operate on a symbolic level where facts 

and rules can be postulated to be either true or false. With these restrictions in mind, we 
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have to find a way to implement the conceptual model in OWL by considering its 

fundamental notion of incrementally classifying topographic features into higher-level 

objects from types of housing, blocks and districts to residential areas. 

 

We have two types of knowledge available, that what is contained within the database 

and that what the conceptual model represents within our domain. This includes: 

 General knowledge about objects in the topographic scene as well as the land 

use domain; 

 Implicit contextual knowledge, for example the expert knows that a building 

in a row of buildings adjacent to gardens is a terraced house; 

 Spatial relations between polygons (topology); 

 And polygon attributes, such as descriptive group, cartographic text and 

symbols. 

To reason about this knowledge, all information about the map scene must be given a 

priori in symbolic form, that is, all given knowledge must be axiomatised with logical 

formulas. This includes the general domain knowledge, which we wish to make explicit 

within the data, as well as knowledge about the data’s topographic features. 

Respectively, this relates on the one hand to the concepts or classes, whether primitive 

or defined, that constitute the general knowledge about the domain of interest (TBox). 

On the other hand, the ABox specifies the topographic data by asserting knowledge 

about the individuals, which characterise a specific world or situation under 

consideration, that is, the geographic extent which is being represented and reasoned 

about. Although the conceptual model guides the types of knowledge required for 

modelling the domain, we now need to determine precisely the classes and properties in 

the domain to build our OWL ontology. This means we have to determine domains and 

ranges for properties, define classes and cardinality restrictions for the relevant 

properties for each class, and add individuals and relationships as necessary. For the 

remainder of this section, I discuss how to convert both the general and factual 

knowledge to OWL. 

 

The TBox 

The TBox is the intentional component of a DL system and contains the terminology, or 

ontology. Here, we create the high-level classes and sub-classes that describe the 
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information we want to make explicit within the database. Accordingly, we specify 

classes of our domain of discourse such as House, Building, TerracedHouse, 

DetachedHouse, BlockDetachedHouses, and so forth. We characterise their 

relationships to other classes within the taxonomy, thus linking classes to other classes. 

For instance, through subsumption we specify subclassing mechanisms, such as 

EndTerracedHouse is-a TerracedHouse is-a Building (figure 41). Other kinds of 

relationships can be modelled by introducing new object and data properties or roles, 

such as hasArea, contains, connectedTo, etc. These properties are important to describe 

both the classes and their individuals. They define the necessary and sufficient 

conditions for individuals to be classified as instances of certain concepts. 

 
Figure 41 Taxonomy of primitive classes describing the conceptual model 

Because concepts are regarded as classes of individuals, we begin with all individuals 

that are a type of the class Building. This information is explicitly contained within the 

database; we know which polygons are buildings. For the proof of concept, we will only 

consider buildings to simplify the reasoning procedure. The aim is to define the higher-

level classes to classify the individual buildings. Figure 41 shows the resulting 

taxonomy of classes according to the proposed conceptual model in chapter five. All 

classes subsume the abstract class Thing, which is the highest class in OWL. It denotes 

that everything has an existence in the world. 
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To define each of the classes, we use Protégé’s abstract syntax, which is based on 

Manchester OWL Syntax (Horridge et al., 2006). The implemented OWL code can be 

found in appendix D. The definitions have to be reduced and kept as simple as possible 

to avoid overly complex axioms that slow down the reasoning. Fortunately, the reasoner 

helps in building these definitions by performing subsumption and consistency checks. 

The lowest level, primitive class is Building. It holds all the asserted buildings from the 

topographic dataset. The next higher-level classes in our abstraction hierarchy are those 

describing the types of dwelling. Their definitions are based on what we know 

intuitively (see chapter 3) and what can be found in any dictionary. For example, a 

semi-detached house is defined in the Oxford English Dictionary as “designating either 

of a pair of houses joined together and forming a block by themselves”. To distinguish 

the many different types of buildings, we must consider both the immediate 

neighbourhood (e.g. touch relations) and the size of the building as an indicator of its 

purpose. To model these criteria, we require both object and data type properties of 

OWL. The object property ‘touches’ is created and made symmetric. This means if 

individual a touches individual b then individual b also touches individual a. The data 

type property ‘hasArea’ links an individual to the data type float to express a numerical 

decimal value. The data type is set to functional because a building can only hold one 

size value. This way, we can express both the calculated area value (in square metres) of 

the individuals (see ABox assertions), and we can constrain the class definition. We can 

now build our class definitions as follows: 

 

House ≡ Building 

 and hasArea some float[<= 160] 

 and hasArea some float[>= 35] 

 

HouseExtension ≡ Building 

 and touches some House 

 and hasArea some float [<= 35] 

 

OutBuilding ≡ Building 

 and not (touches some House) 

 and hasArea some float[<= 35] 
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DetachedHouse ≡ House 

 and not (touches some House) 

 

SemiDetachedHouse ≡ House 

 and not EndTerracedHouse 

 and touches max 1 House 

 

TerracedHouse ≡ EndTerracedHouse or MidTerracedHouse 

 

MidTerracedHouse ≡ House 

 and touches min 2 House 

 

EndTerracedHouse ≡ House 

 and not MidTerracedHouse 

 and touches some MidTerracedHouse 

 

The logical connectors (and, or, not), quantifiers (some, only) and cardinal restrictions 

(max, min, exactly, value) are shown in bold. Negation is used to make classes disjoint. 

This is to say that for example an individual of SemiDetachedHouse cannot be an 

individual of EndTerracedHouse. In the definition of TerracedHouse, it is important to 

differentiate between houses in the middle of the row and those at the end, because at 

the end of a row, the house only touches one other house. This definition is similar to 

SemiDetchedHouse. However, by having the class MidTerracedHouse, we can say that 

the EndTerracedHouse touches some MidTerracedHouse. Important is that the 

classification has to be performed sequentially because some definitions are built upon 

other concepts’ individuals that need to be already classified and asserted. For example, 

to classify EndTerracedHouse we need to know which individuals are part of the class 

MidTerracedHouse. In addition, step by step reasoning reduces computational 

complexity. 

 

The next higher-level aggregates define urban blocks and districts. Humans typically 

identify blocks because of their similarities and defined boundaries by roads. The goal 

is to classify urban blocks according to the type of housing they contain, and then to 

aggregate them into districts of the same kind of blocks that are directly connected. 
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Again, the neighbourhood of blocks plays a role in the recognition of their high-level 

meaning, i.e., districts. Therefore, to define the next set of classes, we introduce the 

object properties ‘connectedTo’ (symmetric) and ‘contains’, and the functional data 

type properties ‘hasPercentageSemis’, ‘hasPercentageDetached’ and 

‘hasPercentageTerraces’. With the -percentage- properties, it is possible to account for 

the degree of vagueness in the number of types of housing that are contained in one 

block. Hence, we can differentiate and define the following: 

 

BlockTerrachedHouses ≡ hasPercentageTerraces some float[>= 70] 

 

BlockSemiDetachedHouses ≡ hasPercentageSemis some float[>= 70] 

 

BlockDetachedHouses ≡ hasPercentageDetached some float[>= 70] 

 

BlockMixedHouses ≡ (contains some DetachedHouse  

 and contains some SemiDetachedHouse) 

 or (contains some DetachedHouse 

 and contains some TerracedHouse) 

 or (contains some SemiDetachedHouse 

 and contains some TerracedHouse) 

 

DistrictTerracedHouses ≡ BlockTerracedHouses 

 and connectedTo some BlockTerracedHouses 

 

DistrictSemiDetachedHouses ≡ BlockSemiDetachedHouses 

 and connectedTo some BlockSemiDetachedHouses 

 

DistrictDetachedHouses ≡ BlockDetachedHouses 

 and connectedTo some BlockDetachedHouses 

 

DistrictMixedHouses ≡ BlockMixedHouses 

 and connectedTo some BlockMixedHouses 

 

The final class, the one we wish to make explicit within the topographic dataset, is 

residential area. The definition of residential area is now straightforward because the 
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residential area covers the defined districts above. This can be expressed with a simple 

covering axiom such that: 

 

ResidentialArea ≡ DistrictMixedHouses or DistrictDetachedHouses or 

DistrictSemiDetachedHouses or DistrictTerracedHouses 

 

All these definitions are applied in section 7.2 for the concept-based instance retrieval, 

and are explained in more detail where necessary. 

The ABox 

The ABox is the extensional component of a DL system and represents the actual 

database or information store in terms of so-called assertions. The ABox is extracted 

from the data in the database and contains closed ground formulas, also called facts 

(Esposito et al., 2007). Because the terminological knowledge is defined at an abstract 

logical level, data features stored in the spatial database must also be asserted in 

symbolic form to enable reasoning over them. The necessary knowledge is computed 

from the concrete geometry of the map to represent as many spatial aspects as possible. 

Due to the symbolic form of the DL, we can only represent qualitative spatial 

relationships. However, we can compute these spatial relations (based on the so-called 

region connection calculus (RCC)) from the geometry of the map, and represent these 

by means of RCC role assertions such as ‘touches’ and ‘contains’ in the ABox. This 

leads to a bottom-up computation of a potentially very large number of pair wise spatial 

relations, from which only a small number may play a part in the high-level 

interpretation (e.g. Neumann and Möller, 2008). Nevertheless, by integrating 

quantitative computations into the high-level concepts, a more efficient and transparent 

solution may be achieved. Selected spatial attributes such as area and length can also be 

represented using the concrete domain by means of data property assertions, e.g. 

hasArea = 12.34. This knowledge is necessary to recognise an individual in the ABox as 

an instance of one of the higher-level classes through size constraints and RCC 

appropriate role assertions. Furthermore, when querying classes that contain or imply a 

universal role or number restriction, we can answer queries completely only if we turn 

on closed domain reasoning mode. This means we have to close the ABox assertions 

with respect to the RCC role assertions. The presence of individuals in a knowledge 

base makes reasoning more complex from a computational viewpoint, as we will find 
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out in section 7.2 (Baader et al., 2003). Nevertheless, given an ABox with concrete 

views as individuals, the DL system can generate an interpretation including all 

additional individuals that are required to satisfy the conceptual framework.  

Linking the database and the knowledge base 

Accessing external data sources that are independent from the ontology such as 

relational databases is problematic. Whereas databases are natural candidates for the 

management of the data layer, ontologies are the best candidates for realising the 

conceptual layer (Calvanese et al., 2006a). The ontology is a virtual representation of a 

universe of discourse (i.e., domain), and the instances of concepts and roles in the 

ontology are simply an abstract representation of some real data stored in existing data 

sources. Unfortunately, most work on description logics do not deal with the problem of 

how to store ABox assertions or how to acquire these assertions from existing data 

sources. Therefore, establishing sound mechanisms for linking existing data to the 

instances of concepts and the roles in the ontology is of special importance wherever the 

use of ontologies is advocated. The mapping between relational data and ontologies is 

an important research topic, for example explored by Calvanese et al. (2006a and 

2007b), Poggi et al., (2008), and Dolbear and Goodwin (2007). To integrate external 

data sources with an ontology, we have to deal with the so-called impedance mismatch 

problem. This problem arises from the difference between the basic elements managed 

by the sources, namely data, and the elements managed by the ontology, namely 

abstract objects (Poggi et al., 2008). 

 

There are different ways to overcome this problem. For example, Protégé plug-ins such 

as the spreadsheet importer (Kola and Rector, 2007) and DataMaster (Nyulas et al., 

2007) allow you to import data from relational databases into ontologies. With 

DataMaster you can connect directly to a ODBC data source and import the data as 

classes and instances into the ontology. This creates a mapping between the database 

schema structure and ontology concepts. Table contents are imported as instances of the 

created table name class. These kinds of plug-ins represent an important part of the 

semantic data-access layer, which annotates and integrates disparate data sources into a 

semantically uniform data stream (Nyulas et al., 2007). However, a major persisting 

limitation is the derivation of ontologies with flat structures that simply mirror the 

schema of the source databases (Cerbah, 2008). For the purpose of this thesis, I use a 
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custom approach where the database information is translated first into RDF, which 

then easily implements as OWL syntax in Protégé. Figure 42 illustrates the overall 

process. 

 
Figure 42 Translating database instances into OWL individuals 

Initially, we start out with the information explicitly stored in the database. OS 

MasterMap, for example, is delivered in GML (geographic mark-up language) format. 

The data was converted and partitioned into Oracle tables according to the OS data 

model using Snowflake’s GoLoader software. We then have to extract a suitable sample 

area (see chapter 4 for the overall knowledge discovery process). For the purpose of this 

proof of concept, I extracted three small samples from the Glasgow area using the 

SDO_WITHIN_DISTANCE operator set to a 1000 metres radius. The SQL syntax for 

the necessary operations is given in appendix D. From the reduced datasets, I then 

extracted only buildings to reduce the number of individuals. This will help to simplify 

the reasoning inside the DL system. Using the table consisting of only buildings, we can 

then calculate the touch relations between all buildings using the SDO_TOUCH 

operator. By joining the original BUILDINGS table with the derived TOUCH table, we 

create one table with all the required information for export into a comma separated file 

(CSV). The file contains the information from the following relevant columns: TOID, 

OSMM DESCRIPTIVE GROUP, CALCULATEDAREAVALUE, 

NUMBER_OF_BUILDINGS (that the object touches), and TOID_BUILDING2, 

Python Script 

Add RDF syntax 
to OWL file 

KB (Protégé) 

Export CSV file 

SQL queries / data 
preparation 

DB (Oracle) 
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TOID_BUILDING3, etc. (TOIDs of the buildings that the first TOID touches). The 

unique topographic identifier (TOID) will serve also as an identifier for the asserted 

individuals in the ABox, which is important to be able to integrate the inferred results 

back into the database.  

 

For deriving the type of urban blocks and districts, we do the same by extracting a text 

file of the urban block partitions, the blocks that touch one another, the individual 

buildings each block contains, and the percentage of the type of housing they contain 

(based on the prior inference of type of housing in Protégé). These operations were 

carried out in Radius Clarity 2.6 from 1Spatial. The algorithm for partitioning the vector 

dataset has been developed in house by the Generalisation Team at Ordnance Survey 

Research and was kindly provided for this work. 

 

With a python script we can then translate the database information contained in the 

CSV files into RDF. The python script contains RDF syntax for describing an 

individual of the ABox. By creating an example individual within Protégé in the way 

we want all individuals to be asserted, we generate the necessary OWL code that the 

RDF syntax in the Python script must reflect. Instead of the details of that one 

individual, we assign which row of the CSV file will provide the information to be 

populated into the syntax (see appendix D for the code). The script then imports and 

runs through the individual CSV files, and populates the RDF syntax with the 

information stored in each row of that file. The output is the required syntax of all 

individuals for the OWL file. After copying and pasting the generated syntax into the 

OWL file, we can load the OWL file into Protégé, which then contains all the asserted 

data individuals. Figure 43 shows the loaded assertions for the building individuals. 
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Figure 43 Asserted building individuals in Protégé 

 

The knowledge that is asserted is the minimum required for making the inferences 

within Protégé. Relational databases store only values, therefore objects that are 

instances of the concepts in the knowledge base need to be constructed from such 

values. For the building individuals, we need to know how many other buildings a 

building individual touches, which ones it exactly touches, and its size in terms of the 

calculated area value (in square metres). Say we have an individual defined as follows: 

 OSGB1000040381257 is a type of Building 

 touches exactly 1 Building 

 touches OSGB1000040381258 

 hasArea 73.4 

The data property ‘hasArea’ relates the individual to the value of 73.4m2. Values are 

external mathematical abstractions. Logic provides no function for calculating values; it 

can only conclude new statements from existing ones. That is why a mapping to 

databases is so important. Calculating the touch relation between buildings is also 

necessary. It is not enough to just say how many buildings a building touches, such as a 
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detached house touches no other building, a terraced house touches at least two 

buildings, a semi-detached touches exactly one other building. This would lead to 

misclassifications as not all buildings are houses. For example, a house may touch an 

extension (e.g. a conservatory) but no other house, meaning it is a detached house. 

However, based on only the knowledge that it touches another building, it will be 

classified as semi-detached house. That is why we need to set criteria for what is a 

house, and we need to know whether the building that the building is touching is a 

house or a house extension. Consequently, it is essential to model relations between 

individuals, such as knowing the other building’s TOID. 

 

For the urban blocks, we need to assert for example: 

 UB63991 is an individual 

 contains only {OSGB1000040377135, OSGB1000040377166, …} 

 contains OSGB1000040377135, contains OSGB1000040377166, contains … 

 connectedTo UB66244, connectedTo …, … 

 hasPercentageDetached 0 

 hasPercentageSemis 80 

 hasPercentageTerraces 20 

Each individual has a unique name that allows us to link it back to the database, in this 

case an identifier for the partitioned blocks. The role ‘contains’ is a simple object 

property that relates block individuals to building individuals. Therefore, we can say for 

each urban block which building TOIDs it contains. By linking these two types of 

individuals, we can then later classify urban blocks according to the type of housing 

they contain. It is important to close our individuals with the universal value restriction 

R.C  (e.g., contains only). This means no other values exist except for those entailed 

by the axiom. Although we state which building individuals are contained in an urban 

block, the system does not know if there are any not explicitly stated building 

individuals in the open world. This is because OWL automatically assumes the open-

world condition where any model means success without consideration of missing 

evidence (Neumann and Weiss, 2003). Instead, we need to apply the closure axiom to 

facilitate a finite model based on the closed world assumption. Therefore, we need to 

explicitly state both that an urban block contains a building TOID and that it only 

contains that building TOID.  
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In addition, we need to assert the percentage of type of housing an individual block 

contains. These values are computed from the previously inferred types of housing in 

Protégé. Unfortunately, OWL does not incorporate fuzzy/probability logic, which 

would allow us to express imprecise or vague knowledge. Equally, we cannot count 

individuals inside a knowledge base to derive percentage values. Consequently, this 

knowledge needs to be calculated outside the DL system and then asserted explicitly to 

enable reasoning over percentages. For this, we specify three properties that carry the 

different house type percentages respectively. 

 

Lastly, we assert which block individuals touch one another. Similar to describing 

which buildings touch, the knowledge base needs to know which blocks are connected 

to be able to infer individuals of the district classes. From this, we can establish which 

blocks of the same kind are connected to one another. The described assertions for 

urban block individuals are shown in figure 44. The OWL code of an asserted urban 

block individual is given in appendix D. Next, we use both the defined classes and 

asserted individuals to infer and classify the instances of the higher-level concepts. 

 
Figure 44 Asserted urban block individuals in Protégé 
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7.2 Concept-based instance retrieval and classification 

Query answering with respect to an ontology is in general a deductive process of 

finding domain objects that satisfy the query in all possible worlds constrained by the 

ontology (Calvanese et al., 2007c). For instance, by storing a basic set of relationships 

from the domain, a logic-based system deduces others from the basic ones if it needs 

them in answering a query (Rips, 1994). ABox query answering in particular is used to 

implement retrieval systems based on high-level interpretations of data objects. The 

user poses a query that describes the information he or she wants to retrieve in terms of 

the underlying terminology of the ontology. Since the ontology is conceptually close to 

the high-level vocabulary of the user, queries appear intuitively more natural. 

 

The success indicators of query answering are CPU time for answering the query and 

the amount of memory used. This relates directly to the problem of DL expressivity and 

deductive complexity. To rate the efficiency with respect to scalability, you have to take 

into account the size and complexity of the source ABox. Experience with ontologies 

derived from database content has shown that it is often necessary to effectively solve 

instance retrieval problems with respect to huge amounts of data descriptions that make 

up major parts of ontologies (Haarslev and Möller, 2008 and 2001). Although reasoners 

such as FaCT++ and PELLET are based on a tableau reasoning algorithm and integrate 

various optimisation techniques to provide for a fast and efficient practical 

implementation (Esposito et al., 2007), the size of the ABox and the complexity of the 

assertions ultimately determines the speed of query answering. 

 

The following sections outline the high-level inferences of our asserted knowledge base. 

Each section respectively describes the inference according to every stage of the 

abstraction hierarchy of our conceptual model (chapter 5). Unfortunately, current DL 

reasoning systems do not yet provide the services that would optimally support high-

level inferences since concrete views do not provide logically sufficient conditions for 

higher-level classification. In other words, logic does not provide the necessary means 

to autonomously derive all the information required for the inference. The problem of 

missing information as well as the complexities of reasoning are addressed for each 

classification level. The results are visualised by exporting the inferred knowledge back 

into the database and creating a thematic map of the classified instances. 
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Inference of type of dwelling 

Housing type is a key variable in defining urban structures. Houses are typically 

classified into five types of purpose-built flats, converted flats, terraced, detached/semi-

detached houses and miscellaneous buildings (Batty and Longley, 1994). The objective 

here is the detection and assignment of the dwelling types semi-detached, detached and 

terraced houses from building data. Figure 45 shows the ontology for classifying 

buildings. The ontology comprises primitive concepts (yellow) and defined concepts 

(orange), as discussed in chapter six. Whereas a primitive concept has no definition, a 

defined class means that its concept name is equivalent to its given definition.  

 
Figure 45 Dwelling taxonomy 

Based on class definitions in the TBox and the asserted knowledge in the ABox, a DL 

reasoner infers which individuals are members of the respective classes. Because logic-

based ontologies function on the notion of set theory, a concept is treated as a set of a 

well-defined collection of instances. In other words, the concept is defined in such a 

way that a DL reasoner can determine whether any given individual belongs to that set. 

If a class subsumes another class, then the individuals from the one class form a subset 

of the set of individuals from the other class. Therefore, it is important that classes are 

not made disjoint along the subsumption hierarchy because two disjoint classes cannot 

share the same set of individuals. For example, the class House cannot be disjoint from 

the class DetachedHouse because the subsumer shares a subset of its set of individuals. 

Otherwise, this would lead to an inconsistent knowledge base. However, classes on the 

same level of the hierarchy must be disjoint to ensure that individuals cannot be 

instances of more than one class. For example, instances of SemiDetachedHouse cannot 

be instances of DetachedHouse or EndTerracedHouse at the same time. 
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To get the correct definition of the classes, a very small dataset is used initially to tweak 

the defined classes. Figure 46 shows the different classified building types according to 

the ontology in figure 45. There is enough expressivity to discern between semi-

detached, detached, mid-terraced and end-terraced houses, outbuildings (e.g. garage) 

and house extensions (such as conservatories). The OWL code for this small ontology 

and its asserted individuals can be found in appendix D. 

 
Figure 46 Illustrating expressivity of OWL to infer types of buildings 

 

The main drawback of this fine-grained ontology is its computational complexity. The 

expressivity of the above definitions is ALCIQ(D), which includes concept 

intersection, universal and existential qualifiers, complex concept negation, cardinality 

restrictions, and symmetric and data type properties (see appendix C). The main issue is 

the size of the ABox and the number of complex relations asserted in the ABox. Large 

numbers of individuals that link to one another through the ‘touches’ property increase 

the number of relations that the reasoner must consider. This may work fine for a small 

sample as above, but when definitions are scaled up to a larger sample area, we run into 

computational problems. Since the inference is carried out in memory, the available 

memory runs quickly out when reasoning over large ABoxes. 

 

Domain modelling and the inference therefore require complexity reduction. To 

improve computational efficiency for a large ABox, we need to simplify the ABox. 

Instead of importing all buildings of all sizes and letting the reasoner identify 

outbuildings and house extensions, we exclude small buildings (of size less than 35m2) 

Ordnance Survey ©Crown Copyright. All rights reserved. 
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prior to the classification. This step is done within the database using a SQL query to 

import only the buildings required for the reasoning inside the knowledge base. This 

reduces the number of relations that the reasoner must handle. For example, a terraced 

house now only touches other houses and not also small buildings such as a house 

extension. Hence, the number of relations is reduced significantly from four or five to a 

maximum of just two related building individuals. In addition, this allows us to simplify 

the ontology by dropping the classes Outbuilding and HouseExtension. Now we can 

define the dwelling terminology as follows: 

 

DetachedHouse ≡ House 

 and not (touches some Building) 

 

SemiDetachedHouse ≡ House 

 and not EndTerracedHouse 

 and touches max 1 Building 

 

MidTerracedHouse ≡ House 

 and touches min 2 Building 

 

EndTerracedHouse ≡ House 

 and not MidTerracedHouse 

 and touches some MidTerracedHouse 

 

The definitions now assert the touch relation between individuals of the primitive class 

Building instead of the defined class House. This reduces the computational effort 

required by the reasoner. However, we still need to know which buildings some 

individuals touch, because EndTerracedHouse remains defined as a House that touches 

some MidTerracedHouse. Thus, for an individual to become a member of 

EndTerracedHouse, it needs to know that the building it touches has been classified as a 

MidTerracedHouse. Figure 47 shows the classification results based on the above 

definitions for a slightly larger sample area (individual count 503). The buildings that 

were excluded from the classification are also shown. Large buildings are not classified 

because they do not satisfy the size constraint of the class House, which the defined 

dwelling concepts subsume. We can see that the reasoner correctly inferred all instances 

of the defined classes. 
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Figure 47 Thematic map of inferred types of dwelling 

 

Lastly, the ontology is applied to the three study areas. Giffnock consists of 4288 

individuals of the type Building. Drumchapel has 4,314 buildings and Pollokshields has 

2,941 buildings. These numbers exclude buildings of size less than 35m2. Figure 48 

shows the Protégé interface after the reasoner classified all the instances in the ontology. 

We can see the defined class EndTerracedHouse and its inferred instances with a yellow 

backdrop. Figures 49 to 51 present the results of the classification in a thematic map of 

the three study areas, respectively. For all three study areas the same ontology rules 

were applied. However, in the case of Pollokshields, which consists largely of large 

Victorian villas, the size threshold of 160 m2 was not very successful. Many of the 

detached dwelling were omitted by the reasoner because they are larger than 160m2. As 

the reconstruction cost table in table 8 has shown, different types of houses have 

different sizes depending also on their age. Villas are not listed in this table, however, 

they are much larger than ordinary residential detached houses. To accommodate for 

this effect, another classification was carried out with the size threshold of the class 

Ordnance Survey 
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House increased to 280m2 (figure 52). Now the reasoner picks up all the Victorian 

villas. However, as the validation next will show, the increased threshold has other 

implications, such as misclassifying other non-residential, large buildings. This 

promotes the need for adapting the ontology rules to different types of houses instead of 

having one class defining house which subsumes the more specialised housing types. 

 

 
Figure 48 Inferred individuals in Protégé 
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Figure 49 Giffnock classified by type of housing 
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Figure 50 Drumchapel classified by type of housing 
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Figure 51 Pollokshields classified by type of housing 
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Figure 52 Pollokshields classified by type of housing with increased threshold 

 

To get a better understanding of the success of the classification, we can compare the 

results with Google Earth imagery and validate the number of residential buildings by 

using OS MasterMap Address Layer 2. OS MasterMap Address Layer is the most 

complete, comprehensive, national spatial address dataset for the whole of Great 

Britain. The information has been assembled from data collected by Ordnance Survey 

and from key organisations involved with the creation of addresses, notably Royal Mail 

and Valuation Office Agency (Ordnance Survey, 2006). Each address is classified as 
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either residential or commercial. Commercial address are further broken down where 

the trading or brand name provides clear details of their function, for example, B&Q 

equals retail. The dataset also includes buildings that may be known by a name as well 

as a house number. This includes sub-building names such Flat 1. Furthermore, a non-

postal theme contains miscellaneous premises like churches, halls, car parks, and public 

conveniences. We can use this information for identifying residential buildings, in 

particular which ones are multi-occupancy, i.e., flats, and commercial buildings. This 

reference dataset will allow us to establish how successful the classification picked up 

residential houses and which buildings were misclassified. 

 

In addition, we can do a visual inspection of the classified types of dwellings by 

transforming the shape file with the classified polygons into a KML file so that it can 

overlaid on top of Google Earth. For this purpose, I used the freely available tool 

Shp2kml3. Shp2kml is a stand alone tool that transforms GIS layers to Google Earth. 

Figure 53 shows all three classifications in Google Earth, giving an overview of the 

location of the study areas around Glasgow. Figures 54 to 56 show enlarged examples 

within the three study area, respectively. Although the projection is slightly off, we can 

still see that the classified polygons (blue outline for semi-detached houses, red for 

detached houses, light green for end-terraced houses and dark green outline for mid-

terraced houses) matches the underlying aerial imagery of the real world buildings. In 

figure 54, we can see successfully classified semi-detached, terraced and detached 

houses in Giffnock. Figure 55 shows amongst others some misclassified semi-detached 

houses in Drumchapel. Lastly, in figure 56, we can see that Pollokshields’ tenements 

were misclassified as terraced houses due to the increased size threshold. In reality, 

these rows of houses are multi-family dwellings as can be seen from OS MasterMap 

Address Layer in figure 59. Flats and non-residential addresses were added to the 

classified datasets of all three case studies (figures 57-59), thus highlighting which 

buildings were misclassified. With the help of these two methods, we can now look at 

some classification statistics and identify common errors in the classifications. In 

particular, we can create prediction success tables of all three case studies. Such 

confusion matrices give the prediction success as well as the proportions of objects that 

were actually classified. 

                                                 
3 Zonums Solutions, available from URL: http://www.zonums.com/shp2kml.html 



Applied Evaluation: Inference of Residential Area 

 

219

 
Figure 53 Aerial view of all three classified study areas 

 
Figure 54 Giffnock – validation of classification in Google Earth 

Giffnock 

Pollokshields 

Drumchapel 
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Figure 55 Drumchapel – validation of classification in Google Earth 

 

 
Figure 56 Pollokshields – validation of classification in Google Earth 
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Figure 57 Giffnock OS MasterMap Address Layer with flats and non-residential addresses 

 

 

… … 
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Figure 58 Drumchapel OS MasterMap Address Layer with flats and non-residential addresses 

 

 

 

 

 

… … 
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Figure 59 Pollokshields OS MasterMap Address Layer with flats and non-residential addresses 

From OS MasterMap Address Layer 2 and the classified datasets, we can establish 

some building statistics about the three study areas. Table 9 summarises these by the 

total number of buildings, number of buildings greater than 35m2,  number of buildings 

classified with the size threshold set to 160m2 and 280m2 (for Pollokshields), and the 

number of buildings with flats and non-residential buildings in each category for each 

study area. With OS MasterMap Address Layer overlaid on top of our datasets, we can 

query which buildings contain the address layer’s point features where the sub-building 

attribute lists a flat and where the postal code organisation attribute lists a business or 

… … 
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other non-residential address, respectively. From this information we can establish the 

number of buildings in the original dataset as well as the classified dataset that are in 

fact multi-family dwellings or non-residential buildings. Overall, the areas are 

predominantly residential, however a small number of non-residential premises remain. 

For instance, looking at the classified datasets, there are 0.7% classified buildings with 

flats and 0.9% classified buildings which are non-residential in Drumchapel. In 

Giffnock, there are 0.3% classified buildings with flats and 2.1% classified buildings 

with non-residential addresses. Pollokshields has the largest number of flats with 4.8% 

classified buildings actually being multi-family dwellings and 1.5% classified buildings 

being non-residential. These percentages increase dramatically with the size threshold 

raised to 280m2 in the Pollokshields’ dataset. 13.7% of the classified buildings now 

include flats and 2.4% are non-residential. 

Table 9 Building statistics from the classification and OSMM Address Layer 2 

 Drumchapel Giffnock Pollokshields 
All buildings 6,004 8,454 5,852 
Buildings >35 4,314 4,288 2,941 
Classified <160 4,090 3,986 1,945 

Buildings 

Classified <280 - - 2,651 
All buildings 153 101 549 
Buildings >35 153 101 548 
Classified <160 29 15 94 

Flats 

Classified <280 - - 365 
All buildings 83 127 114 
Buildings >35 82 124 112 
Classified <160 40 85 29 

Non-residential 

Classified <280 - - 63 

 

On first impression, the reasoner fairly accurately inferred the different types of houses 

with the minimal knowledge that has been asserted in the ABox, such as an individual is 

a building, it has a certain size, and knowing how many and which buildings it touches. 

However, on closer inspection we will find common errors in all three datasets. For 

example, figure 60 illustrates typical misclassifications (left) and omissions (right) of 

detached dwellings. The result is shown in the context of the complete OS MasterMap 

dataset. Some outbuildings near terraced houses were misclassified as detached houses, 

and some detached houses were omitted because of the threshold value in the definition 

of the class House (less than 160m2). Since detached houses are generally larger in size 

than semi-detached and terraced houses (see table 8), the class DetachedHouse suffered 

the most omissions. However, if you increase the threshold, as done in the case of 

Pollokshields, then the reasoner classifies buildings as house that are not actually 
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residential. Here it would be worth while to adapt the rules to account for different 

house sizes. In addition, the parameters could be improved by running some statistical 

analysis for finding the most appropriate threshold for a given area. For this purpose, 

pattern recognition and computer visions techniques could be used for describing shape, 

proximity and configuration statistics. Such methods allow us to determine the 

correlation between many potentially geometric and attribute factors and the required 

classification. Indeed, there will always be exceptions to the rule. This is generally an 

issue when working with parameters and defined threshold – whether in a knowledge 

base or in a programmed algorithm. 

 
 

Figure 60 Typical misclassification and omission of detached dwellings 

 

The threshold value also caused some omissions and misclassifications in the class 

SemiDetachedHouse (figure 61). Misclassifications include buildings where two 

buildings are adjacent to one another, but one is much larger than the threshold value. 

Alternatively, two buildings may be touching, but in the context of the scene, they are 

more likely to be a pair of garages or outbuildings. The definitions could be refined by 

stating that both houses in a pair must be of similar size and shape to be classified as 

SemiDetachedHouse. The questionnaire survey in chapter 3 showed the importance of 

additional factors such as shape, proximity and orientation (see figure 15). For example, 

we could compute the shape of a polygon area by the squared hull and derive absolute 

orientation by looking at the longest edge of a polygon (Steiniger and Weibel, 2005). 

Equally, we can include more context information. The survey also captured a lot of 

knowledge about the residential land use domain. As table 6 summarises from the 

questionnaire, a house is defined as a building next to a garden. OS MasterMap, for 

instance, describes residential gardens as ‘multi-surface’. This additional knowledge 
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could be asserted in the knowledge base to improve the classification of all residential 

dwelling types. 

 
 

Figure 61 Typical misclassification and omission of semi-detached dwellings 

 

In the case of terraced houses, misclassifications occurred in all three datasets because 

we simplified the concept definitions of our ontology. By reducing the definition of 

MidTerracedHouse to a House that touches exactly two Building (instead of two 

House), different building combinations were classified as terraced houses. Whereas 

one building satisfies the size criteria of house and touches exactly two buildings, these 

buildings may not satisfy the house criteria in that they are too large. This is then not a 

scenario of a row of  residential houses, but a group of connected buildings that serve an 

entirely different function, as shown in figure 62. Although this can be rectified by 

altering the definition, the computational effort to go through all the relations between 

large numbers of individuals is potentially too large. Some omissions also become 

visible in the context of the complete dataset (figure 63). The exclusion of small 

buildings from the classified datasets meant that some small terraced houses were 

excluded from the classification. 

 

 
 

Figure 62 Misclassification of terraced dwellings 
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Figure 63 Omission of terraced dwellings 

 

As we can see from the previous figures, common errors were caused by excluding 

small buildings from the classification. Other errors resulted from the lack of context 

information in the definitions. This however remains a predicament: Although results 

would be more accurate with more knowledge, the complexity would increase to such a 

degree that the reasoner potentially fails to compute a solution. Based on the applied 

rules in the ontology, tables 10 to 13 summarise the classification success of all three 

case studies including the one with the increased threshold. In all four classifications, 

the reasoner misclassified a lot of buildings which do not belong to any of the dwelling 

categories. These misclassification are grouped collectively under the category ‘others’. 

This includes the misclassification of non-residential and multi-family buildings. In 

Giffnock and Drumchapel the reasoner only misclassified a small percentage of ‘other’ 

buildings, that is, 2.9% and 2.3% respectively. In Pollokshields on the other hand, the 

dataset contains large numbers of tenements, which resulted in 17.6% misclassification 

of ‘other’ buildings. With the size threshold raised to 280m2, the misclassification 

increased to 23.4%. In terms of the classified categories detached, semi-detached, end-

terraced and mid-terraced house, the reasoner did overall a good job. Especially in 

Pollokshields, there was not much confusion among the categories. In the Giffnock and 

Drumchapel datasets, the highest confusion is between detached and end-terraced 

houses. This happened because some of the terraced houses were omitted by having set 

the lower size limit to 35m2. This meant that actual end-terraced houses became single 

houses. This was also the case for some mid-terraced and semi-detached houses. 

Equally, a few semi-detached houses were confused with mid- and end-terraced houses. 
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In the Pollokshields dataset, only the class detached house was confused with the class 

semi-detached house. This happened where detached houses touch a large garage or a 

house extension, which were also classified as house. 

 

Table 10 Giffnock confusion matrix 

  Actual 
  Detached End-

terraced 
Mid-
terraced 

Semi-
detached 

Other Total 

Detached 860 13 5 0 62 940 
Endterraced 0 313 9 1 10 333 
Midterraced 0 0 932 1 11 944 

Predicted 

Semi-detached 3 2 4 1727 33 1769 
Total 863 328 950 1729 116 3,986 

 

Table 11 Drumchapel confusion matrix 

  Actual 
  Detached End-

terraced 
Mid-
terraced 

Semi-
detached 

Other Total 

Detached 305 57 7 9 22 400 
Endterraced 0 365 2 2 14 383 
Midterraced 0 3 656 2 31 692 

Predicted 

Semi-detached 0 11 15 2561 28 2615 
Total 305 436 680 2574 95 4,090 

 

Table 12 Pollokshields confusion matrix at same threshold as other study areas 

  Actual 
  Detached End-

terraced 
Mid-
terraced 

Semi-
detached 

Other Total 

Detached 436 0 0 0 157 593 
Endterraced 0 160 0 0 28 188 
Midterraced 0 0 538 0 82 620 

Predicted 

Semi-detached 3 0 0 466 75 544 
Total 439 160 538 466 342 1,945 

 

Table 13 Pollokshields confusion matrix at increased threshold (280m2) 

  Actual 
  Detached End-

terraced 
Mid-
terraced 

Semi-
detached 

Other Total 

Detached 772 0 0 0 179 951 
Endterraced 2 163 0 0 87 252 
Midterraced 0 0 542 0 242 784 

Predicted 

Semi-detached 14 0 0 537 113 664 
Total 788 163 542 537 621 2,651 
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Lastly, figures 64 to 66 illustrate the classifications in the context of OS MasterMap 

Topography Layer including all other non-building features. Despite some omissions, 

misclassifications and the general computational issues, the ontology effectively infers 

higher-level knowledge in terms of types of dwellings. Considering the level of 

fuzziness in higher levels of the model, the errors occurring at this level should be well 

within the fuzziness of the next higher-level class definitions. Therefore, the 

misclassifications and omissions should not pose any issues for a generalised view of 

residential area. 

 
Figure 64 Giffnock classification visualised in OS MasterMap 
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Figure 65 Drumchapel classification visualised in OS MasterMap 
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Figure 66 Pollokshields classification visualised in OS MasterMap 

 

The beauty of this approach is that a DL system employs standard reasoning services 

that not only save on software development efforts but also provide explanations about 

their inferences. The definitions can be easily changed, or new concepts added. The 

whole process from modelling to inference is explicit. Subsequently, the inferred 

instances are asserted back into the knowledge base as individuals of their derived 

parent classes to assist in the classification of the next higher-level concepts. That way, 

the ABox part of the ontology is extended with new assertions describing individuals of 

types of dwellings, which are used for further data characterisation and classifying the 

next higher-level concepts of types of blocks and districts. 

 
 

Ordnance Survey ©Crown Copyright. All rights reserved. 



Applied Evaluation: Inference of Residential Area 

 

232

Inference of type of urban block 

“The plots of private land surrounded by public streets are like an archipelago of 

islands set in a sea of public space.” 

 –Steven Marshall (2005, p.13) 

 

The urban block forms an integral part in neighbourhood models of urban morphology. 

It provides constraints for guiding the global partitioning of building sets on the whole 

map by means of roads and rivers (Li et al., 2004). These partitions form blocks, 

districts and neighbourhoods, which are defined through Gestalt principles such as 

similarity and proximity. As explained in chapter 5, the block forms an important 

aggregate structure for this conceptual model. However, this implementation requires 

auxiliary methods for calculating missing knowledge such as the urban blocks. The 

algorithm used for this purpose is based on the road network, partitioning islands 

between roads.  The block itself is a connected surface delimited by looping streets that 

contain buildings (Larive et al., 2005; Gaffuri and Trévisan, 2004). The block is 

therefore a meso object that combines and generalises elementary features in relation to 

surrounding roads into groups (Ruas, 2000). It serves as a convenient unit for 

partitioning the space into more manageable chunks, mainly to reduce computational 

complexity for generalisation algorithms. Although deriving meso objects requires 

knowledge and human capacity of interpretation in interactive processes (Boffet, 2000), 

we have to adapt the divide and conquer strategy of a partitioning algorithm. Similar to 

the missing touch relations in the previous section, we have to compute the partitions of 

our sample datasets outside the DL system. However, with the expert knowledge held in 

the DL system, we can reason about the block partitions, classify them according to the 

type of housing they contain, and infer implicit knowledge. 

 

The classification of blocks forms the second stage of this hierarchical interpretation. 

The reasoner classifies blocks according to their heterogeneity, that is, the type of 

housing each block contains. Based on the previously inferred types of dwelling, we can 

now classify individual blocks as members of the class BlockDetachedHouses, 

BlockSemiDetachedHouses, BlockTerracedHouses, or BlockMixedHouses. Figure 67 

shows the ontology with the defined classes denoting the different types of blocks. 

From the dwelling taxonomy (figure 45) only the named classes for each type of 

dwelling remain to hold their asserted instances, respectively. The class TerracedHouse 
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remains defined as a covering axiom for the classes EndTerracedHouse and 

MidTerracedHouse. Because of the additional asserted knowledge, for example in the 

Giffnock ontology, we now have a class count of 16 and the number of individuals rises 

to 10,176. There are 8,404 class assertion axioms, 5,214 data property assertion axioms, 

and 17,229 object property assertion axioms. This illustrates how the amount of data we 

are dealing with increases the complexity of the DL system. The DL expressivity is 

SOF(D), denoting ALC as well as nominal and functional properties. 

 
Figure 67 Taxonomy of defined urban block classes 

 

We have knowledge about a given set of urban block individuals and the TOIDs they 

link to with the ‘contains’ property. We now want to infer which type of dwelling the 

blocks contain and classify them accordingly. We can do a 100% classification by 

defining that for example the class BlockDetachedHouses contains only 

DetachedHouse. However, reality is much more uncertain and vague. If the class 

BlockDetachedHouses contained only one single terraced house, it would be classified 

as BlockMixedHouses. Most blocks contain a mixture of types of housing, usually with 

a clear majority. Consequently, we need to classify blocks in relation to this majority to 

avoid having most of the blocks classified as being of type mixed houses. Ideally, we 

would want Protégé to tell us that instances of BlockDetachedHouses contain a majority 
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of detached houses (perhaps greater than 70%). Unfortunately, logic only allows one to 

make inferences about statements. As a result, we need to go outside the DL system 

again to calculate the missing knowledge.  

 

These limitations can be potentially overcome in the future as logic is evolving to 

permit reasoning over probabilistic statements (Klinov, 2008). The probabilistic 

reasoner Pronto is an extension to Pellet and provides probabilistic reasoning over 

OWL-DL ontologies. Although Pronto is not yet implemented in Protégé, it processes 

an existing OWL ontology by adding to and inferring new probabilistic statements from 

a probabilistic ontology. Probabilistic reasoning refers to the probability of a class being 

a sub-class of another class. For example, Pronto processes statements like “Bird is a 

subclass-of FlyingObject with a probability greater than 90%”. Pronto is currently a 

prototype and not ready for prime time, but it could be explored as part of future work.  

 

The main problem is that reasoning is done on already asserted probabilities. There is 

no function in Protégé that allows counting the number of types of houses and 

producing their probability values in each urban block individual. Consequently, the 

uncertainty is calculated outside Protégé and then asserted as the property ‘percentage’ 

to link to the relevant data type value. By expressing restrictions based on these 

percentages, the reasoner can evaluate the membership of the block individuals. We 

therefore overcome existing DL limitations by asserting the necessary knowledge for 

the reasoning in this step, which is required to get to our ultimate goal of deriving the 

high-level concept residential area. 

 

The results of the classification are shown in figures 68 to 70. The dataset with the 

partitioned building blocks was used to create a thematic map of the classification 

results. The colour scheme of the blocks is the same as for the underlying types of 

housing classified earlier. Blocks without buildings are empty and are not useful to the 

inference procedure. The classification was based on the percentage restriction that an 

individual block must contain 70% of one type of housing to be classified as an instance 

of the relevant class. However, the partitioning of blocks is not always ideal. Some 

partitions enclose quite large areas containing a mixture of differently sized and shaped 

building features. The results could be improved by using methods that make finer 

distinctions within the partitions. For example, clustering methods assign objects into 
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groups (i.e. clusters) so that objects from the same cluster are more similar to each other 

than objects from different clusters (see chapter 2). This technique could be used to 

divide blocks that are not homogeneous, thus providing a more fine-grained 

classification. 

 
Figure 68 Giffnock inferred types of urban blocks 
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Figure 69 Drumchapel inferred types of urban blocks 
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Figure 70 Pollokshields inferred types of urban blocks 
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Inference of type of district 

Districts are visually and functionally characterised blocks (Boffet, 2000). In reality, 

districts are difficult to define because their limits often superimpose one another, due 

to their natural fuzziness. However, here we are dealing with a simplified representation 

of concrete individuals that have been partitioned into blocks. The partitioning of blocks 

provides the means to define even larger areas of homogeneity such as specific districts. 

Looking at previous figures with the block classifications, we can already discern 

districts that are forming out of adjacent blocks that contain the same kind of housing. 

Interpretation is largely guided by identifying homogenous areas based on Gestalt 

principles. In this case, similarity and proximity do not relate to individual buildings but 

to individual blocks. Similarity in this sense is expressed through blocks of the same 

kind, and proximity is expressed through blocks that are near to one another. By 

asserting the knowledge of which blocks are connected to one another, we can use the 

classified types of blocks to define districts. The idea is to assert that if an individual 

block a is connected to block b, and a is of the same type as b, then a and b are part of 

the same district. Figure 71 illustrates this idea. 

 
Figure 71 Deriving districts based on connected blocks of the same kind 

The reasoner can accurately infer the blocks of the same kind as part of 

DistrictSemiDetachedHouses despite their connections to other types of blocks. It is 

important that the property ‘connectedTo’ is symmetric and not transitive. With a 

transitive property, a block that is not connected directly to another block of the same 

kind would still be classified as part of the district, because it is connected via the other 
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type of block. For example, the two separate blocks of terraced houses in figure 71 

would be also classified as part of the class DistrictTerracedHouses because they are 

linked to the other terraced blocks via the semis and mixed types of blocks. This means 

if the block ‘terraces’ is connected to the block ‘semis’, and the block ‘semis’ is 

connected to another block ‘terraces’, then the first block ‘terraces’ is also connected to 

that block ‘terraces’. Instead, we want a district defined as a group of blocks with a 

minimum of two blocks in one district. This issue is eliminated by setting the 

‘connectedTo’ property to symmetric, where the blocks have to directly touch one 

another. 

 

Figure 72 shows our ontology with the defined district classes. Again, the classified 

block instances of the previous inference have been asserted as individuals in the ABox. 

Hence, we can lose the previous class definitions of the types of blocks and keep them 

as primitive classes denoting the different sets of block individuals respectively. The 

resulting DL expressivity is SOIF(D). The way the district classes haven been defined 

leads to a subsumption relationship to the block classes. For example, the class 

DistrictDetachedHouses is a BlockDetachedHouses that is connected to some other 

BlockDetachedHouses. This definition specifies that an individual block becomes a 

member of the class DistrictDetachedHouses, if it is a member of the 

BlockDetachedHouses and is connected to another member of the same class. This 

means all the individuals are members of both the district and the block classes. 

Defining the districts along the specialisation hierarchy is a simple solution to 

classifying the block individuals into the relevant types of districts. However, we might 

want to express that a block is part of district. We could argue that a district of type 

detached houses should contain 90% of blocks of the same type. In this case the is-a 

relation is not valid anymore. 
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Figure 72 Taxonomy of defined district classes 

 

The results of the inference show why a fuzzy definition could be more desirable. 

Figure 73 shows an enlarged subset of the Giffnock classification. The classification is 

overlaid on the previously classified types of blocks and buildings. The districts have a 

patterned filling to differentiate between the blocks that have not been classified as part 

of a district. We can see why it might be of interest to change the definition of a district 

class to include blocks of other types of housing. The classified districts contain only 

blocks of the same kind. Some individual blocks remain because they do not form a 

group of blocks of the same kind, such as the single block of terraced houses 

surrounded by the district of semi-detached houses. In such cases, it might make sense 

to aggregate a small percentage of different types of blocks into the district, if it forms a 

uniform whole with the rest of the group. 
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Figure 73 Example of residential districts and blocks (Giffnock) 

 

In conformance with the given definitions of our ontology, the reasoner accurately 

inferred all types of districts. As we can see in figure 73, the separately located block of 

semi-detached houses in the top left corner was not classified as part of the class 

DistrictSemiDetachedHouses. Figures 74 to 76 illustrate the classified districts for all 

three case studies. Since the inference is based on block partitions, we will find large 

areas classified as districts of mixed housing. Having more finely delimitated blocks 

would certainly improve the results at this level as well. Another reason is that the 

partitioning and inference is based on building features alone. Taking into account other 

topographic features, such as green spaces, would improve the results overall. However, 

considering the limited scope of this thesis, these examples illustrate adequately the 

inference mechanisms at the different abstraction levels of the proposed conceptual 

model. 
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Figure 74 Giffnock inferred types of districts 

 

Ordnance Survey ©Crown Copyright. All rights reserved. 



Applied Evaluation: Inference of Residential Area 

 

243

 
Figure 75 Drumchapel inferred types of districts 
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Figure 76 Pollokshields inferred types of districts 
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Inference of the residential area 

Residential area is a matter of defining a class with a covering axiom that joins the 

different types of districts. In this case, we can express an axiom where the class 

ResidentialArea is covered by all types of districts. In Protégé, a covering axiom 

manifests itself as a class that is covered by a union of classes. Therefore, a covering 

axiom consists of two parts: The class that is being covered, and the classes that form 

the covering. Consequently, we can specify that class ResidentialArea is covered by the 

classes DistrictDetachedHouses and DistrictTerracedHouses and so forth (figure 77). 

This means that a member of class ResidentialArea must be a member of 

DistrictDetachedHouses and/or DistrictTerracedHouses. If classes 

DistrictDetachedHouses and DistrictTerracedHouses are disjoint then a member of class 

ResidentialArea must be a member of either class DistrictDetachedHouses or class 

DistrictTerracedHouses. Without a covering axiom an individual may be a member of 

the class ResidentialArea and still not be a member of DistrictDetachedHouses, 

DistrictTerracedHouses, etc. 

 
Figure 77 The effect of using a covering axiom 

 

The covering axiom can be extended to include other functions such as recreational 

areas, i.e., a park. Furthermore, it is possible to refine and split the class ResidentialArea 

into, say, residential suburbs, inner city or rural areas. These classes could be 

differentiated by including knowledge about densities, type of housing and relations to 

other functions such as parks or commercial areas. Cities articulate as spatial patterns 

with flats near the centre, terraced inner suburbs, and detached/ semi-detached outer 

suburbs. Often density and distance variables are indirectly reflected in house types 

(Batty and Longley, 1994). The advantage is that the model can be easily extended to 

facilitate for such additional knowledge. 
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As already mentioned, this proof of concept does not include any of the other 

topographic features. I concentrated on making inferences about the types of buildings 

and their aggregated concepts. Hence, by applying the covering axiom for residential 

area, the whole of the sample datasets would be classified as residential area. It requires 

further work to apply the conceptual framework to other types of land uses, which 

would then allow us to differentiate between residential areas and parks, for instance, in 

the given sample datasets. For example, figure 78 shows the park in the Pollokshields 

dataset. We can create rules that define the characteristics and configuration of a park. 

From OS MasterMap Topography Layer we know that typical features have descriptive 

group attributes such as general surface, natural environment, road or track, or inland 

water. The make is natural and the descriptive term gives attributes such as scrub, 

coniferous trees and nonconiferous trees. This information can be asserted as part of the 

ABox individuals including information on size, shape and which features are touching 

one another. From the questionnaire, we know that people associate pathways, playing 

fields, trees, hedges and lakes or ponds with the recreational land use (see table 4). We 

can therefore define a park has having large, unevenly shaped natural surfaces, adjacent 

to tree areas (coniferous or nonconiferous) and containing paths and potentially inland 

water features. 

 

 
Figure 78 Extracting recreational land use example from Pollokshields 

 

Similarly, we can define in detail the industrial area from the Drumchapel dataset 

(figure 79). Typical characteristics consist of very large buildings (e.g. 7,000 to 12,000 

square metres in size), very large man-made general surfaces (e.g. 14,000 to 29,000 

square metres in size) adjacent to some natural general surfaces, roads, and railway. An 
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industrial area requires good access methods for transporting goods, which means such 

areas are usually located near a railway. It would be worthwhile to evaluate the 

topological significance of the transport land use, as it is contiguous and connects all 

other land uses (Marshall, 2005). Indeed, it will be challenging to define rules that make 

appropriate distinctions between industrial, commercial and even educational land uses 

because of similar configurations. A detailed analysis is necessary to identify typical 

features and their characteristics that build up the higher-level categories. Context 

information provides the key for the differentiation. Whereas an industrial area is likely 

to be next to a railway, an educational area will contain other features such as a large 

sports ground. Therefore, to prove the wider applicability of this ontology-based 

approach to other, more difficult types of land uses requirs further work. Nevertheless, 

the examples in this thesis illustrate successfully the inference procedures for the 

residential land use type, where we start out with the database knowledge and a large set 

of individual topographic features that become classified into higher-level objects.  

 

 
Figure 79 Extracting industrial land use example from Drumchapel 

 

In summary, the procedure of incrementally classifying all individuals into higher-level 

aggregate concepts resembles the structure of a pyramid (figure 80). At the outset, we 

have a large store of individuals that were exported from the topographic database along 

with their attributes and calculated missing relations. With the provided class definitions 

of the conceptual framework, a terminological reasoner then classifies the individuals 

by assigning them to their respective member classes. Individuals are then instantiated 

into increasingly more meaningful, higher-level concepts through a systematic 

Ordnance Survey 
©Crown Copyright. All rights reserved. 



Applied Evaluation: Inference of Residential Area 

 

248

procedure. The aim is finally to export the high-level annotations such as residential 

district or area back into the database. As individuals are incrementally instantiated, we 

are dealing with fewer individuals at the high level (such as block and district 

individuals). Hence, inference becomes computationally less burdensome the higher up 

we are the hierarchy. 

 
Figure 80 Inferences resemble a pyramid structure 

7.3 Discussion 

There are clear advantages and disadvantages of using a knowledge-based approach. 

The following sections discuss the benefits and weaknesses in terms of the applied 

technologies and how we overcame some of the limitations. An outlook on perspectives 

of description logic languages places the benefits of this approach into the longer-term 

view. 

Advantages 

In general, OWL meets the basic requirements for modelling a geographic domain 

(Abdelmoty et al., 2005). OWL is a general-purpose language where domains are 

modelled using user-defined classes and properties. We can therefore represent 

geographic features and their associated types as well as spatial and non-spatial 

properties. We can represent the specialisation and generalisation of feature hierarchies 

and create constraints on the supported types of relationships. Using set operators such 

as union and intersection, we can define classes through collections of individuals from 

other classes. In particular, OWL-DL is a good implementable and expressive language, 

which has received much research over the past years as part of the Semantic Web 

vision. Formal knowledge representation in general has indisputable merits for 

analysing the formal structure of a problem and its solution as well as to represent 

knowledge in a formally accountable way (Neumann and Schröder, 1996). 
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Knowledge representation provides the basis for powerful inference mechanisms. 

Protégé for example, provides standard inference services for building and managing 

ontologies at author time. It offers useful services at delivery time, and it acts as a 

reasoner at application time. In contrast to information stored in a database, ontologies 

are much easier to manage as they grow in size because of the subsumption and 

consistency checking provided by the inference engine. Inconsistencies and conflicting 

information are detectable and easily tracked down. Despite some deficiencies in query 

answering, ontologies have the general advantage over standard database query 

languages (e.g. SQL) that they can infer new information. Their reasoning services can 

help in the selection of the sources that are relevant for a query of interest. In addition, it 

can be easier to construct queries over ontologies because the concepts reside on a high 

conceptual level close to a user’s language and understanding. 

 

Fundamental to our problem is that DL classifiers allow composition and instance 

retrieval. Composition means we can define new concepts systematically from existing 

concepts. This allows the construction of complex, higher-level concepts out of simpler 

ones when ascending the interpretation hierarchy of our conceptual model. Since 

ontology classifiers are designed to reason about the things that are necessarily true 

about all instances of given types in our conceptualisation (Rector, 2004), we can 

exploit reasoning tasks for classifying our topographic individuals. In particular, 

instance retrieval determines the most specific superordinate concepts of a knowledge 

base for an unknown individual described by attributes and relations. Therefore, if a 

semi-detached house in a topographic scene is conceptually defined as a ‘house that 

touches max one other house’, a classifier can determine whether some topographic 

evidence satisfies this conceptual description. As we can see from the previous sections, 

the application of ontologies seems to offer optimistic results for the recognition of new 

concepts in topographic data. 

 

Consequently, the main benefits include the explicit and more intuitive nature of the 

modelling. The intended meaning of terms is explicitly defined and expressed through 

the semantics of the language. Standard reasoning services provide the necessary 

methods for making inferences about the asserted knowledge. The reasoner gives 

explanations about its inferences and automatically identifies any conceptual 

inconsistencies in the knowledge base. With other techniques, such as graph-based or 
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pattern recognition algorithms, the processes for computing a solution are often hidden 

in some programming language. In addition, the structure of the model is often obtuse, 

for example where the representation has been reduced to a number of connected lines 

(e.g. Hillier, 1996; Béra and Claramunt, 2004). Therefore, alternative methods often 

suffer from a lack of definition and semantics, as well as the flexibility to make changes 

to the underlying model at application time. 

  

Lüscher et al. (2007 and 2008) try to overcome the limitations of procedural algorithms 

by combining them with ontologies. They pursue the same goal of accessing higher 

order semantic concepts such as dwelling types from topographic data. Lüscher exploits 

ontologies for explicitly describing the properties of, say, terraced house, to inform the 

recognition process. However, instead of using the reasoning powers of logic-based 

ontologies for inferring new knowledge, he attaches a piece of code to be executed for 

computing terraced houses from the vector data. Advantages include that the algorithm 

can be tweaked to deal with uncertainty, it can learn and tune thresholds on the fly 

(machine learning), it does not rely on complete information, and it is computationally 

efficient. Nevertheless, the incorporation of algorithms in such a way does not lend 

itself very well to the integration in a system with a formal semantics. 

Limitations 

Unfortunately, a logic-based approach is inherently limited because of its purely 

deductive nature. Knowledge representation formalisms generally live in a separate 

paradigm to databases and thus fail to provide the necessary means to directly process 

database instances. Instead, database properties need to be translated into the abstract 

logical level that the knowledge representation level resides on. We achieved this 

through various procedures, by preparing the data in the database, running a python 

script to populate the RDF syntax with the individuals, and incorporating this syntax 

into the OWL file. With all these intermediate processes, one has to be careful not to 

miss any assertions and links between individuals. Errors can creep in quickly, leading 

to an inconsistent ABox. Although Protégé offers consistency checking, it currently 

lacks any implemented explanation about individuals, which makes it difficult to find a 

missing link between thousands of individual assertions. Similarly, we have to transfer 

the inferred knowledge back into the database. For this purpose, a text parser was used 

to extract the inferred assertions from the OWL file into a CSV file, which was then 
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imported back into the database. The whole process is therefore cumbersome and error-

prone. 

 

Knowledge representation needs a sound formal basis when the body of knowledge 

becomes large and diverse. Still, the classification suffered problems when dealing with 

large numbers of individuals and complex role assertions. A geographical application 

domain can potentially contain hundreds of concepts and many thousands of individuals 

(Abdelmoty et al., 2005). For example, the reasoning for this proof of concept was 

carried out on a 2GB RAM, 4CPU, 3GHz workstation. If the ontology became too 

complex in terms of a large ABox and complicated expressions, the inference process 

was either very slow, taking anything up to a couple of hours, or it ran out of memory 

completely. If sufficient memory was available, then the processing would only be a 

matter of a few minutes. Therefore, a major limitation is not only the failure to access 

the database layer directly, but also the inability to query over large sets of individuals. 

This, however, is a general problem. Large datasets of greater structural complexity 

usually lead to computational inefficiency and in some cases to greater uncertainty (e.g. 

Barnsely et al., 2001; Conroy Dalton and Kirsan, 2005). 

 

Precautions can be taken to avoid the computational complexity of large ABoxes and 

rich concept definitions. Firstly, the number of individuals was reduced by excluding 

building features of size less than 35m2. Secondly, the concept definitions were 

simplified. In some cases of the classification, this meant there was insufficient 

knowledge to correctly infer all types of dwellings. It therefore remains a diligent trade-

off between expressivity and deductive power of the DL system. 

 

Another challenge is the modelling of concrete domains. Currently, we cannot 

sufficiently handle spatial aspects like topological and distance relations with OWL-DL, 

except for linking properties to data types such as float, string, integer, etc. As spatial 

data are a concrete domain, it is yet not possible to directly infer knowledge from spatial 

features. Tools providing such inference services are not yet available and further 

research is still required to this end. Hence, qualitative relations needed for the 

conceptual modelling must be instantiated outside the DL system because almost all 

terminological systems have no built-in primitives to support spatial or temporal 

reasoning. For example, there is no efficient access to spatially adjacent objects unless 
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one provides user-defined generator functions (Neumann and Schröder, 1996). 

Consequently, we had to adopt a custom approach to calculate the necessary missing 

information on spatial relations and block individuals outside the DL system. Although 

we can criticise such procedural attachments to ontologies (e.g. Lüscher et al. 2008), it 

seems that currently it is not possible to achieve a complete high-level interpretation 

within a formal DL system. 

 

The DL paradigm imposes many restrictions on the modelling of our domain. The 

asserted individuals and the domain must be closed to enable reasoning, which goes 

against the open world assumption of DLs. This leads to insufficient query processing. 

Another aspect is that the inference procedure advances along the specialisation 

hierarchy, whereas an aggregate should ideally be formed from parts as described by the 

conceptual framework. However, the formal semantics of parts and wholes is 

problematic (Neumann and Schröder, 1996). It is difficult to express that parts become 

something special when they constitute an aggregate. In other words, one of the 

problems is to induce a classifier to assemble suitable parts into an aggregate. 

Description logics do not offer a pre-defined part-of role like many frame systems, and 

therefore it would be interesting to implement the conceptual model in a frame-based 

ontology (Wang et al., 2006). 

 

A further, yet more general problem is the modelling of fuzziness. Regions considered 

in geography often do not have crisp and well-defined boundaries. Whether we model 

spatial regions in a GIS using the region connection calculus (RCC), or whether we 

conceptually model regions through qualitative spatial relations in a knowledge base, 

we are still abstracting away from the complicating aspects of reality. Although 

progress is being made in terms of reasoning over fuzzy concepts, e.g. Pronto (Klinov, 

2008), OWL does not express fuzzy or vague concepts (Goodwin, 2005). Presently, 

there is no hypothesis generation, no guessing of likely classifications, not even a 

computation of possible classifications. There is no mechanism to compute missing 

evidence as it is needed, such as in calculating the percentage of types of dwellings in 

each asserted block individual. Classifications are deduced from evidence that must be 

completely provided beforehand. 
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Overall, knowledge engineering is hard. There is rarely one person who is both a 

domain expert and ontology expert (Goodwin, 2005). Those who have not yet used a 

terminological system will probably need time to get used to the logical expressions. 

Knowledge acquisition often forms a bottleneck in the progress of knowledge-based 

techniques (Weibel et al., 1995). Although we are trying to generate a solution that 

reflects the human conceptual nature and cognitive perception of patterns, we still rely 

on prior information, thresholds and parameters. Hence, similar to other classification 

methods (e.g. Boffet, 2000), the chosen thresholds have to be sufficiently sensitive to 

discriminate significant classes. For example, a small threshold value for the class 

House results in many omissions. On the other hand, a large threshold value results in 

many misclassifications. Improvements can be achieved by combining and augmenting 

data sources, knowledge and methods. We can assert additional knowledge to refine the 

class definitions. Alternatively, we can include other methods, such as clustering 

techniques (e.g. Anders et al., 1999), to get a more fine-grained classification of the 

types of blocks and districts.  

 

Perspectives 

Description logics are versatile as they play a key role in may applications ranging from 

medicine, databases, semantic web, to geographic information science. The increasing 

use of DL based ontologies already stretches the capabilities of DL systems in terms of 

modelling quality and performance, and thus brings with it a range of challenges for 

future research. In response to users’ requests, DLs are continuously being researched, 

improved, and extended. There will be increased expressive power, improved 

scalability, extended range of reasoning services (e.g. explanation, matching, 

approximation), and hybrid systems are being developed for reasoning more efficiently 

over spatial data (Cuenca Grau et al., 2006; Wessel and Möller, 2007; Grütter and 

Bauer-Messmer, 2007a). The tools and infrastructure are also continuously expanding 

with open source communities such as Protégé that will deliver support for large scale 

ontological engineering and deployment in the future. 

 

Only recently, a new W3C Working Group formed to work on the next OWL language, 

which came into life as OWL2 in April 2008 (Cuenca Grau et al., 2008). The new 

design of this language increases language expressivity (compatible with the description 
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logic SROIQ), adds property and qualified cardinality constructors, extends data type 

support and annotations, and includes simple meta modelling (Motik et al., 2008). 

Similar to the earlier version of OWL, OWL2 has profiles that place restrictions on the 

structure of OWL2 ontologies. They are trimmed down versions of OWL2, which trade 

some expressive power for the efficiency of reasoning. For example, OWL2-QL is 

aimed at applications that use very large volumes of instance data, and where query 

answering is the most important reasoning task. These languages will be the future for 

query optimisation as well as new database developments such as Oracle, which is 

starting to incorporate to some extent the RDF and OWL data model (e.g. Lopez and 

Annamalai, 2006). 

 

In addition, there is a growing body of research about spatial knowledge and related 

reasoning services, which will potentially overcome current limitations in spatial 

reasoning (e.g. Grütter et al., 2008; Grütter and Bauer-Messmer, 2007b; Katz and 

Cuenca Grau, 2005). It is possible to envisage the development of specialised tools for 

manipulating elements in the ontology. We therefore have to see the value of this 

approach in the longer-term according to advances in artificial intelligence and 

inference mechanisms. In comparison, Lüscher’s (Lüscher et al., 2008) approach of 

using ontologies to describe pattern recognition algorithms, for example, is shorter term 

since it relies on algorithms that operate directly on the data. Although we also had to 

rely on calculations made outside the DL system to support our inferences, most of the 

encountered limitations are of technological nature. It can be trusted that in the near 

future most of the difficulties and incompatibilities identified throughout this thesis 

would be overridden by the evolution of systems and the refinement and enrichment of 

ontology languages. 

Conclusions 

The underlying question of this thesis asks what types of functional information can be 

derived from topographic data alone. The thesis pursued a method that starts with the 

land cover parcels and spatial structures stored in a database to incrementally reason 

about higher-level land use information. According to Clawson and Stewart (1965) 

characteristics of a good land use classification are a pure line classification that 

describes activities only, a system that is useable in detail as well as in summary form if 
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desired, and a classification that is based upon what you actually see on the ground or 

on the map. The conceptual model that this thesis proposes meets all of these criteria: 

The model is pure because it models only relevant concepts. Flexibility is provided 

through the different levels of granularity that the model represents. The model builds 

upon people’s conceptualisation of the land use domain, which is reflected in its high-

level concepts. Because the model is implemented with a knowledge representation 

formalism based on logic, it is readily susceptible to machine processing and we can 

apply standard inference services. Lastly, because the model’s explicitly asserted 

semantics are dissociated from the database layer, it promotes interoperability and 

transparency. 

 

The characterisation of land uses and urban patterns enriches the topographic data and 

helps to improve the map generalisation of buildings. However, most of these higher-

level characterisations are not specific to a generalisation purpose, but can be used for 

other applications such as in urban studies (Gaffuri and Trévisan, 2004). The results 

presented in this chapter are specific to residential land use, and illustrate how semantic 

reasoning can be applied to topographic data to semantically enrich its thematic 

contents. Although it needs to be proven, the proposed conceptual framework is 

potentially valid for other types of land use. The exact formulae and properties may 

have to be modified and additional knowledge has to be asserted, but the underlying 

framework remains the same. However, creating the mappings between the data layer, 

the real world, and a knowledge representation language is a labour-intensive and error-

prone activity. Many current mapping tools are semi-automated, helping humans in an 

interactive manner. In particular, the mapping between semantically lightweight 

representations (e.g. spatial data) versus semantically rich representations with formal 

axiomatisations (e.g. OWL) still requires a trade off between computational cost, 

flexibility and powerful reasoning capabilities (Uschold and Grüninger, 2004). 

 

It is important that the conceptual model is consistent with the phenomenon under 

investigation, that is, it must aid and not hinder the explanation of the phenomenon 

under investigation. With description logics, we have the advantage of precise 

conceptual definitions with well-defined semantics. The creation of high-level structures 

always requires abstraction, and such abstraction should provide a set of guiding 

principles, which select, organise and order relevant elements, independent of 
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contingent factors. With description logics, we can specify a method of analysis and 

define the relevant variables. A DL system’s reasoner provides a standardised way of 

processing knowledge and making deductive inferences asserting new facts. It is 

therefore easier to maintain the classification rules, and it provides flexibility for 

modelling differences between regions as well as possibilities to adapt to future 

requirements (Hartog et al., 1999). For example, you can define new terms for special 

uses based on the existing vocabulary, in a way that does not require the revision of the 

existing definitions. The conceptual framework therefore should offer extendibility so 

that one can extend and specialise the ontology monotonically (Gruber, 1993). 

 

The main advantage of knowledge engineering over programming is that it requires less 

commitment, and thus less work (Russell and Norvig, 1995). A knowledge engineer 

only has to decide what objects and relations are worth representing, and which 

relations hold among which objects. A programmer has to do all that, and in addition 

must decide how to compute the relations between objects, given some initial input. The 

knowledge engineer specifies what is true. The inference procedure then figures out 

how to turn the facts into a solution to the problem. Furthermore, because a fact is true 

regardless of what task one is trying to solve, knowledge bases can, in principle, be 

reused for a variety of different tasks without modification. Hence, in view of the 

complexity of hand-coded classification processes, it would be an advantage to make 

use of a classifier offered as an inference service of a terminological system (Neumann 

and Schröder, 1996). This would not only save software development efforts but the 

formal semantics of the terminological system would facilitate knowledge reuse through 

the use of ontologies. Furthermore, ontologies provide a precise account of what we 

want to model or, as in this case, recognise in the data. Assumptions that would remain 

implicit in informal definitions have to be spelled out. Nothing is hidden and 

inaccessible within a knowledge-based system. The model is explicit and can be easily 

changed or adapted to new application contexts. Indeed, the scope of concept definitions 

potentially suffers from a lack of expressiveness of terminological languages, as 

reasoning processes may become computationally more complex or even undecidable. 

Nevertheless, because of a logic’s inference processes, debugging a knowledge base is 

made easier by the fact that any given sentence is true or false by itself, whereas the 

correctness of a program statement depends very strongly on its context. Inference 



Applied Evaluation: Inference of Residential Area 

 

257

procedures of consistency and satisfiability checking ensure that the ontology is 

consistent automatically.  

 

There is no doubt that we need reasoning services that are better equipped for 

interpretation tasks. To make progress, individual researchers and practitioners will 

have to initially make many assumptions, and then relax them one by one as technology 

progresses. Some may argue that given the widespread importance of knowledge 

representation to the field of cognitive engineering, that such efforts are bound to be 

fruitful, regardless of the findings they produce. According to Horrocks (2005b), the 

effective use of logic-based ontology languages in applications such as this one will 

critically depend on the provision of efficient reasoning services to support both 

ontology design and deployment. This, however, is a technical limitation and not a 

conceptual one. 
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Chapter 8 

Conclusion 

“Masses of low-level data are all very well, say the artificial intelligence researchers, 

but unless and until these can be presented in a form that is humanly intelligible – 

making use of the high-level concepts that typify human qualitative spatial reasoning – 

they can never be put to good use outside a rather narrow range of technically-

motivated concerns. Your abstract high-level theorising is all very well, reply the people 

who work with low-level data, but how can any of it be applied in practice?” 

–Antony Galton (1999, p.251)  

 

In the view of the conflicting attitudes between artificial intelligence researchers and 

those concerned with low-level data, this thesis takes a small step towards combining 

both directions with the aim to bridge the gap between the higher and lower level 

approaches to spatial information. Artificial Intelligence is a different way of looking at 

the world and it requires a willingness to experiment. Perhaps we need divorce 

ourselves from traditional methods and technologies to do best. The fact is that there is 

considerable difference between users’ interest in reality and the map contents described 

by using only the low-level perceptive features. The problem that we are faced with is 

the lack of semantics in spatial databases, and with that inherently the lack of flexibility 

and interoperability. The obvious solution is to enrich data sources to equip them better 

for real-world applications. This thesis exploits high-level conceptualisations for this 

purpose. Land use information is regarded as a high-level concept that is in most cases 

implicitly represented within the spatial configuration of features stored in a 

topographic database. Implemented through knowledge representation formalisms, a 

conceptual model allows reasoning about and assigning semantics to spatial data. The 

semantic gap is filled by classifying low-level visual features according to the high-

level concepts of the model, thus exposing new, previously implicit knowledge within 

the data. 

 

This chapter summarises the main research findings in the next section. It discusses the 

methodological, conceptual and technical implications of this thesis, and highlights its 
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contributions in each area. With a critical view on what this thesis has achieved, I 

describe potential benefits and its impact both from an applied and theoretical 

perspective in section 8.2. Although the thesis attempts to answer many questions, it 

inevitably poses new ones that need to be addressed with future work. Section 8.3 

addresses possible research avenues that can be taken from here onwards.  

8.1 Summary of the research 

Ontology started as a philosophical notion some 2000 years ago when Aristotle first 

began to analyse syllogisms. Now it is part of artificial intelligence in terms of building 

cognitive models for automated reasoning. Ontology addresses the high-level 

conceptualisation of the world, and thus offers promising aspects for modelling and 

reasoning about high-level functional concepts in regards to low-level spatial data. In 

particular, the model offers an instance-based approach to generating inferences on 

discrete spatial information. For example, OS MasterMap provides classification for 

individual features such as buildings. In principle, it stores land cover information. 

Although cartographic text exists to identify the location of functional sites such as a 

school, there is no explicit association between individual features and the complex 

features. This thesis attempts to make such higher-level, complex functional 

information explicit based on the example of residential land use. To achieve this, the 

thesis addressed the following research questions: 

1. What can spatial context and its configuration tell us about the functioning of its 

features? 

2. What can we learn from our own abilities to interpret land use information from 

topographic maps? What kind of knowledge and reasoning processes are 

required? 

3. How can people’s knowledge be captured and transformed into machine-

readable format? 

4. How can we bridge the gap between knowledge, i.e., conceptualisation, and 

geographic data, i.e., representation? 

5. How can geographic space be modelled in terms of its context and arrangement? 

6. What types of functional information can be derived from topographic data 

alone? 
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Previous research, especially in urban studies, shows that there is a special relationship 

between spatial form and spatial function. This relationship forms the fundamental 

hypothesis of this thesis: Functional information is implicitly represented within the 

spatial configuration of topographic features (chapter 2). The next question is how we 

can make this type of information explicit within spatial data. The best interpreters are 

us human beings. Hence, it suggests itself to investigate the way people interpret this 

information from topographic maps and how they conceptualise the land use domain in 

relation to its underlying landscape. Chapter 3 provides the results of this investigation, 

which gives a clear indication of how successful any automated approach could be – 

with some land uses (e.g. residential) being easier to determine than others (e.g. 

educational). 

 

Interpretation is a knowledge-intensive task that requires background knowledge and 

experience to categorise new observation data. Ontology offers a way to capture, model 

and transform our acquired knowledge into machine-readable format (chapter 4), thus 

answering the third question. However, we still have to bridge the gap between the 

interpreted high-level functional concepts and the low-level data. Knowledge about 

space consists of the recognition and elaboration of the relations among geographic 

primitives and the advanced concepts derived from these primitives (Golledge, 2002). 

Therefore, the thesis proposes an agglomerative approach, where higher-level meaning 

is instantiated by combining individual features into more meaningful objects.  Similar 

to the interpretation process where groups are determined through their similarities and 

proximities, the model instantiates increasingly more meaningful objects from types of 

dwellings and urban blocks to residential districts (chapter 5). The recognition of the 

whole map arises from the recognition of its parts, which are defined by their 

underlying data structure. 

 

Through an ontology and its knowledge representation language, we can model the 

hierarchy of different levels of abstraction, the relations between individual objects and 

the high-level concepts to be made explicit within the data (chapter 6). Hereby, we have 

to take care of the duality of the problem in terms of the low-level data descriptions and 

the high-level concept definitions. This knowledge is formally represented in the ABox 

and TBox of a description logic system, respectively. The TBox consists of logical 

predicates that allow the composition of further predicates by logical connectives and 
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quantifiers. These formal structures then receive intentional meanings and are used to 

classify the asserted individuals of the ABox, which map directly to the topographic 

features in the database. 

 

The proposed framework is applied to a sample dataset from OS MasterMap 

topography layer to identify if functional information can be practically inferred from 

topographic knowledge alone. For this purpose, a proof of concept is implemented in 

Protégé 4 Alpha using the ontology language OWL-DL (chapter 7). Based on the 

standard reasoning services of description logics, a reasoner infers which individuals 

from the ABox are instances of the defined classes in the TBox. The approach 

successfully infers the instances for the different types of dwellings from which it then 

infers the instances of types of blocks followed by the instances of types of residential 

districts. Figure 81 gives an overview of the thesis, which consists of a conceptual part 

and the system architecture. Next, we look at the main strengths and weaknesses of this 

approach, which highlight the implications of the methodological, conceptual and 

technical aspects of this thesis 

 

 

Figure 81 Summary of the thesis 

 

 

Individuals 

Conceptualisation 

Knowledge acquisition 
& representation 

Part-whole reasoning; 
rules/measures 

High-level 
concepts 

TBox: Ontology/Axioms 

Concept-based 
instance retrieval

ABox: Facts/Assertions 

Decomposition 

Conceptual Framework: 
Defining a theoretical hierarchy of 
concepts & rules (Chapters 2-5)

Knowledge base 

Data representation 

System Architecture: 
Semantic annotation of 
topographic data (Chapters 6-7) 



Conclusion 

 

262

Methodological conclusions 

The thesis develops a methodology to infer higher-level information from a topographic 

database. Interpretation, or inference of higher-order meaning, is a knowledge intensive 

task, and it has been widely acknowledged that research on information extraction must 

consider primarily the semantics of the data (chapter 2). The proposed methodology 

treats inference as configuration problem solving. It conceptualises and uses human 

knowledge to determine the function of individual topographic features according to 

their surrounding context. Humans use multiple mental models of the world to reason 

efficiently at different levels of abstraction (chapter 3). The thesis decomposes this 

process into its elementary abstraction levels – from individuals and blocks to districts 

and neighbourhoods – to link between low-level representations and high-level 

interpretations. This method correlates a one-to-one mapping between rich, semantic 

knowledge and the syntax of land cover objects, thereby producing a model that is 

broad enough to capture high-level concepts, but also fine-grained to account for the 

level of detail given in low-level representations. 

 

GIS research must separate the conceptual database schema from the physical storage 

arrangement and link it to a third schema describing subsets of the conceptual view 

according to users and their specific tasks (chapter 4). It therefore seems most promising 

to combine a top-down approach, from the human elicited conceptualisation of the land 

use domain, with a bottom-up approach that originates from the representation of 

topographic data. This middle-out approach incrementally links different levels of 

details, and thereby derives a coarser description from a more detailed one. The 

semantics specifies the context for each abstraction level based on a set of relationships 

that have to be fulfilled by individual features. Ontologies capture and structure this 

knowledge. By assigning intentional meaning to the concepts that we wish to recognise 

within the data, ontologies can be used to classify topographic instances into their 

respective higher-level classes. In this sense, ontologies form the core of the mediation-

based approach to information integration, which not only allows the handling of 

semantically heterogeneous datasets but the inference of implicit knowledge. 

 

The treatment of high-level concepts as neighbourhood structures with their flexibility 

to form organically proves in many cases to be a better solution to portraying high-level 

information (e.g. Wahl, 2008). For example, a lot of existing land use data is in 
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statistical form that confines to a fixed quantity of administrative districts or wards. In 

this thesis, districts grow out of the characteristics of housing, thus building upon what 

the data contains. Furthermore, the methodology embraces geographical concepts that 

are shared in common by non-experts. It brings the advantage that it is more likely to 

render the results of work in geospatial ontology compatible with the results of 

ontological investigations of neighbouring domains. It has advantages also in more 

immediate ways, above all in yielding robust and tractable standardisations of 

geographical terms and concepts (Mark and Smith, 2001). 

 

The methodological drawback of this approach is the lack of procedure or guideline that 

can help in the acquisition of knowledge required for a modelling task (Lind, 1999). 

The elicitation of knowledge from people (experts as well as non-experts) is not easy, 

and can be subjective and error-prone. Human beings perceive and recognise on a level 

of near unawareness. This makes it hard to reveal the underlying processes and transfer 

them to a machine. For example, the questionnaire survey in chapter 3 asks a person to 

use his or her cognitive mapping skills so that he or she can express to us the 

characteristics of the very same cognitive mapping process. According to Downs and 

Stea (1977), this poses serious problems for research into the process of cognitive 

mapping because the translation into written word is masked by skills to do so. 

Therefore, the ability to translate knowledge makes it difficult to say this is how a 

person knows land use. 

 

As a result, building the conceptual model is a time-consuming and versatile process 

with no singular correct way of doing the modelling. There is no process for model 

building or for revising, modifying and validating a model. In the worst case, the model 

may only rely on the modeller’s knowledge if not wider knowledge was acquired to 

ensure the acceptance of concepts across a user community. This potentially leads to a 

domain bias as well as a mechanism bias, where particular elements are initially 

selected for examination based merely on the assumptions of the modeller. Currently, 

these deficiencies are amplified by the circumstance, that the meanings of the different 

levels of abstraction in the model are only defined in terms of prototypical examples 

from the topographic domain. This is reflected in the choice of data that the conceptual 

model builds upon. For example, the thesis focuses on topographic data from Great 

Britain provided by Ordnance Survey MasterMap. The manual interpretation as well as 



Conclusion 

 

264

the set of automated inferences takes place in the context of a specific location in 

reality, which is constrained by local surroundings. In other words, the spatial 

arrangement, composition and context of the geography treated by this thesis may vary 

greatly to the environments of other countries (Steiniger, 2006). Therefore, the outlined 

process for model generation is not general and can potentially vary, as 

conceptualisations may require adjustment in their specification when different datasets 

are treated. It may not be easily transferred to other problem areas such as for other 

types of land uses. 

Conceptual conclusions 

The thesis adapts an empirically grounded theory that starts from data that are broken 

down, conceptualised, and put back together in new ways to generate a rich, tightly 

woven, explanatory theory that closely approximates the reality it represents (e.g. 

Hereth et al., 2000). Land use is a high-level abstract concept, but it is also an 

observable fact intimately tied to geography. The thesis decomposes this relationship 

and provides representations of geographical features in the way they are partitioned 

according to Gestalt principles, that is, in the way people interpret topographic maps for 

land use information. Because all information ultimately rests on observations, 

semantics are physically grounded in processes and are mathematically well understood. 

Exploiting this foundation to understand the semantics of information derived from 

observations produces powerful semantic models. With such models, we can then 

reason about the described phenomena and derive new knowledge. Considering the 

current gap between data representations and high-level conceptualisations, this kind of 

approach is needed, not only to make sure that representational and modelling 

languages are compatible but also that models become more intuitive. 

 

Ontology is considered as a strictly pragmatic enterprise. It concerns itself not with the 

question of ontological realism, that is, with the question whether its conceptualisations 

are true of some independently existing reality. Rather, it starts with conceptualisations, 

and goes from there to a description of corresponding domains of objects or closed 

world data models. This can be interpreted as a failure because ontology is based on a 

methodology that ignores the real world of flesh-and-blood objects in which we all live, 

and focuses instead on closed world models (Smith and Mark, 2001). However, this is 

not necessarily a bad thing. Closed world models are much simpler targets, from a 
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mathematical point of view, than their real-world counterparts are. In particular, when 

implementing a formal system for processing database knowledge, we are forced to deal 

with closed world assumptions (chapter 7). Ontology in this sense provides the best link 

between closed world models and conceptual representations, which attempt to 

represent the real world more intuitively. However, some may question the ability of 

formal ontologies to provide conceptualisations that are more intuitive in the first place. 

 

Ontological engineering is based on model-theoretic semantics (chapter 6). Kuhn 

(2005), for example, argues that model-theoretic approaches are limited in their 

meaning because they are restricted to sets. Unstructured sets are too weak to serve as 

interesting conceptualisations of the world. Especially humans do not understand 

domains as sets of things and subsets formed by predicates, but through their behaviour 

and the actions that can be performed in them. A more fundamental pitfall of model 

theory, in Kuhn’s eyes, lies in the symbol grounding problem. Grounding the meaning 

of symbols through symbols is an oxymoron. Meanings are not fixed and cannot be 

assigned to symbols independently of how these are used. Therefore, all symbolic 

approaches to semantics are necessarily limited in scope and need to be complemented 

by studies of language use and evolutions. It boils down to accounting for meaning by 

modelling observable effects in the world. This can be achieved by grounding the 

ontology in the real world and aligning its concepts to people’s conceptualisations of the 

domain (chapter 3). 

 

Without going into further depths of the philosophical issues surrounding ontologies, 

we have to accept that they simply are another representation, a surrogate, for the real 

world. All surrogates are imperfect, and from this, two important consequences follow 

(Davis et al., 1993): Firstly, in describing the natural world, we must omit some of the 

effectively limitless complexity of the natural world. This means the conceptual 

descriptions of the model are reduced to what is required for the reasoning. Secondly, if 

the world model is somehow wrong – and all representations are imperfect – some 

conclusions will be incorrect, no matter how carefully drawn. Therefore, despite the 

reasoning services that knowledge representation formalisms offer, drawing only sound 

inference does not free reasoning from error. It can only ensure that inference is not the 

source of the error. 
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Despite these flaws, simplification does not necessarily imply limitation. We have to 

accept the capacities of any form of representation. Ontologies confine representation to 

a hierarchical collection of concepts. Hierarchical representations have been long 

criticised by researchers in terms of their inability to portray a given domain accurately. 

In particular, the geospatial domain requires modelling that extends beyond hierarchies. 

Land uses, for example, are composed of overlapping areas that are more lattice- than 

tree-like (Alexander, 1965). Equally important are therefore non-taxonomic 

relationships, for example that houses and gardens are parts of residential areas. 

Reasoning with these is much harder because it is not the simple set inclusion kind 

required for taxonomies, but depends on the semantics of each relationship. The 

conceptual model that this thesis proposes recognises this fact, and treats the land use 

domain as a configurational problem that consists of parts and wholes (chapter 5). 

However, in its implementation (chapter 7), the model’s inference still takes place along 

the specialisation hierarchy. 

 

The main advantage of the conceptual model is its dissociation from the data. It 

provides hooks that allow for a direct link, but its conceptual descriptions will not be 

affected when changes occur to the source data. Equally, the conceptual model offers 

flexibility because if it misses concepts for describing a specific situation, it can easily 

introduce new concepts and develop new data components. This is an additive process 

that would not necessarily alter existing definitions or structures (Hart and Greenwood, 

2003). The model builds upon people’s conceptualisation of the land use domain, which 

is reflected in its high-level concepts. Yet, the model’s levels of spatial form and spatial 

function clearly refer to the spatial extension and behavioural characteristics of physical 

objects (chapter 5). It is unclear whether the definitions of these levels leave room for 

other types of entities like temporal processes (e.g. land use change). The relation 

implied by the model between spatial form and function is therefore only valid for 

material objects found in the geography of the real world. Relations between an action 

and its attributes are not represented. 

 

Overall, there is the danger of the developed ontology to become another island in a sea 

of different conceptualisations, which are hard to connect (Kuhn, 2005). We have to 

take care not to develop ontologies that lack the means to ground conceptualisations in 

reality. For this reason, it is important to establish a link between the conceptual model, 
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people’s conceptualisations and reality. This requires the study of how people 

conceptualise the real world, as attempted by the questionnaire survey in chapter 3, and 

to incorporate these views into our computer models. Otherwise, our models depend on 

us for their interpretation and we have no account of how meaning gets into the system. 

The applied evaluation in chapter 7 focused on the inference procedures. However, the 

categories used in the ontology could be adapted to reflect better the concepts used by 

ordinary people to describe land use types (e.g. table 3). Without solving this symbol 

grounding problem, ontologies cannot anchor their conceptualisations in reality and 

their usefulness remains questionable. 

Technical conclusions 

Despite lingering controversies among researchers, the thesis develops a method in 

favour of ontologies. It defies both the attitudes of baseless enthusiasm and 

deligitimating rejection of ontology, and instead takes a practical approach in terms of 

what can be realistically achieved with ontologies. Thereby, the thesis goes beyond pure 

conceptual work (e.g. Mennis et al., 2000; Peuquet, 1988) by considering how objects 

and classes are actually generated from observational data. With the aim to enrich a 

topographic database with functional information, the thesis contributes with a 

systematic approach of converting measurable spatial database properties into high-

level semantic information. It successfully demonstrates how high-level concepts are 

inferred from lower level specifications using semantic rules and definitions. Since we 

are interested in the symbolic processing of high-level interpretations and vision tasks, 

description logics offer a useful paradigm for modelling the different abstraction levels 

of our conceptual model (chapter 5). 

 

The underlying logic and well-founded language extensions of knowledge 

representation formalisms give good reasoning support, which plays a crucial part of 

ontology in all its stages of design, maintenance and deployment. Exploiting such 

inference mechanisms leads to data enrichment with improved properties regarding 

correctness, ease of development and software reusability. However, knowledge 

formalisms still put us at the mercy of mathematical theories such as sets and logic. 

Logical computation involves regimenting arguments in ways that are often unintuitive. 

All sentences in logics are assertions, and reasoning based on formal logics is limited to 

deriving truth-values and proofs for such assertions. Hence, it is difficult to model 
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human reasoning that involves assumption, likelihood, belief, doubt, etc. Further, 

because spatial data are a concrete domain of physical and quantitative nature, we 

cannot divorce ourselves entirely from the mathematical definitions necessary to 

constrain properties, which is reflected in the classification results (chapter 7). 

 

Overall, this approach suffers from the applicability and scalability problem of 

description logic languages. On the one hand, description logics live in their own realm, 

which is currently not interoperable with databases. The technological divide between 

the conceptual layer of an ontology and the data layer of a database prevent this 

approach from accessing data instances directly. This impedance mismatch problem 

requires a translation between the data and the abstract objects managed by the 

ontology. This task is not trivial and requires a lot of manual effort such as pre-

processing and importing the data into the knowledge base. Furthermore, the use of 

closed world models of databases goes against the open world assumption of DLs. This 

meant, the thesis had to adopt methods to work around the modelling limitations by 

calculating spatial knowledge for the inference outside the knowledge base and 

asserting them through closure axioms and relevant RCC role assertions.  

 

On the other hand, complexity barriers may still prevent DLs to become useful for 

larger practical applications (Neumann and Schröder, 1996). Firstly, it is unlikely that 

standard ABox techniques will be able to cope with large quantities, and this is 

especially an issue with spatial databases that consist of thousands of features given just 

a small geographic area. For example, the OS MasterMap coverage for the whole of the 

U.K. consists of over four million features. Secondly, there is a trade off between 

expressive power of a language and its computational complexity. OWL, for instance, is 

not expressive enough for some applications because its logical constructors are mainly 

for classes (unary predicates). There are no complex data types or built in predicates, no 

variables, and no higher arity predicates. Furthermore, reasoning is generally a NP hard 

problem, and for OWL-DL it is NExp Time-complete. This means that a solution is 

theoretically possible, but with problems of relevant size the solution becomes so 

complex that it cannot be practically achieved. 

  

However, other techniques such as machine-learning equally suffer from the direct 

correlation between the complexity of the models and the complexity of the learning 
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techniques. Complex structures require sophisticated learning algorithms, which are 

mostly search procedures with exponential complexity. Furthermore, such learning 

programs are usually tailored to specific applications and require detailed background 

knowledge (Sester, 2000). Such non-standardised algorithms cannot be easily re-used. 

They are a black box procedure where the logic is hidden in the program, and they lack 

powerful inference mechanisms. Often the semantics of a given category is implicitly 

codified in a natural language label of a classification (Giunchiglia et al., 2006). In 

contrast, ontologies clearly specify semantics and allow reasoning over them through 

standard inference services. Through them, we can relate semantics to specific concepts 

in the data, and describe how people cognitively handle and represent these meanings. 

 

It follows that success of this approach critically depends on the provision of efficient 

reasoning services to support both ontology design and deployment. This, however, is a 

technical limitation and not a conceptual one. To overcome these technical limitations, 

we need to acknowledge the current dependency between high level rules and the low 

level procedures that may be required to implement aspects of these rules. Machine 

learning, statistical analysis, and pattern recognition can provide the necessary 

knowledge for deriving parameters and need to be further integrated into our approach. 

Ontology languages are still in their infancy when it comes to modelling spatial aspects 

of a domain. In future, there will be increased expressive power with extended range of 

reasoning services, and scalability will be solved eventually (Haarslev and Möller, 

2008). With active research and growing interests in the fields of description logics and 

ontologies, it remains to be seen how successfully the proposed conceptual framework 

of this thesis can be applied in future. 

8.2 Potential benefits and impact 

There is often a big gap between what a human user wants to do with a GIS, and the 

spatial concepts offered by the GIS. In particular, GIS do not sufficiently support 

common-sense reasoning (Egenhofer and Mark, 1995). People however perform 

common-sense reasoning and its outcomes make intuitive sense to them – it is reasoning 

that needs little explanation. To make spatial data more useful for a wider range of 

people, it will be necessary to incorporate people’s concepts about space and time and 
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to mimic human thinking. A good step towards achieving this goal is the use of 

knowledge representation paradigms that allow the modelling of human knowledge. 

 

The thesis demonstrates the application and functionality of a conceptual framework for 

modelling and deriving functional information from topographic data. The advantage of 

this model is its immediate appeal to common sense in terms of its conceptualisation. 

The definition of concepts such as semi-detached, detached or terraced house relates to 

common-sense knowledge and people’s understanding of land use. The ability to 

present and to interpret spatial data in a method that is consistent with the understanding 

of the user leads to systems that are more flexible and will provide greater functionality 

in terms of cognitive spatial tasks (Hirtle, 1995). However, common-sense reasoning is 

difficult, and we have to account for the limitation posed by ontology languages that 

potentially lack the expressive power to model a specific problem or domain. 

 

Nevertheless, the advantages that can be gained from formal knowledge representations 

and reasoning in general outweigh the problems, especially those resulting purely from 

immature technology. Working on a conceptual level not only disconnects us from the 

rigidness of databases, but also allows us to describe phenomena according to people’s 

understanding. We can attach knowledge to geographical concepts and use the standard 

reasoning services of DL systems to derive new knowledge, which enriches data 

sources with new concepts. These concepts can be derived as per specification from 

user requirements. In addition, by having explicit semantics, ontologies enable data 

sharing and standardisation. For example, consider a complex spatial multi-resolution 

system, which has to carry out many of the above tasks. It has to derive data on demand 

in conformance with concepts of a specific application. By using the inference 

mechanisms of description logics, the system can automatically enrich its data contents 

and make them available to a user’s specific needs. Besides the semantic generalisation 

of the database concepts, it also has to trigger generalisation algorithms to physically 

transform objects into a representation that meets its semantic conceptualisation. This 

can be achieved by linking concepts to algorithms, as in the work of Lüscher et al. 

(2008). For example, the semantic concept of residential area may result in aggregated 

topographic features denoting this concept in the data. Lastly, ontology can be used as a 

means to facilitate querying and providing the desired output according to theme and 
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scale, picking the required information from different data sources. Figure 55 illustrates 

the thesis in the context of such an expert generalisation system. 

 

The computerisation of the map compilation process would save national mapping 

agencies incredible amounts of time and labour, and improve the consistency of their 

data products. Without mechanisms to formalise principles and guidelines that are well 

understood but difficult to exchange verbally or procedurally, manual intervention in 

the cartographic process not only continues to drive costs up, but impairs the quality of 

products. Knowledge representation formalisms such as ontology could have potential 

impact on operational issues for automated cartographic production and data abstraction 

for cartographic representation (Buttenfield and Dibble, 1995). 

 
Figure 82 The thesis in the context of a generalisation system 
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The formalisation of human reasoning processes about spatial patterns and graphical 

display plays an important role in generalisation, data enrichment and other related 

applications. In addition, there is a pressing need within the map generalisation 

community to share techniques and results, which address a complex set of 

interoperability challenges at the technical, syntactic and semantic levels (Edwardes et 

al., 2005). Whereas this thesis illustrates the use of semantics to reason about the 

functional geography at multiple levels of abstraction, the use of DL-based languages 

provides maximal reuse of standard components such as its reasoning services. Only the 

future can tell how much further research can push the boundaries of such technologies. 

However, I personally believe ontologies are here to stay, and that we will witness their 

seamless integration into our current technologies from the web to information systems. 

Services such as semantic query optimisation with concept languages will ease the way 

we search for and handle information (e.g. Buchheit et al., 1994). Indeed, ontologies do 

not offer any magical solutions to our problems; but with ongoing research, we can 

foresee them to become a central part of GIScience, especially with the development of 

the Semantic Web and related spatial web applications.  

8.3 Proposed future work 

The future of GIScience relies on high-level research to build bridges to other areas, 

especially cognitive sciences. Spatial data models need to correspond more intuitively 

to people’s understanding. There is a clear dichotomy between spatial data 

representations and higher-level geographic knowledge. People want all their data to be 

available from one source, to be able to share information with other people more 

easily, to have clear semantics defining the meaning of things represented, and to obtain 

generalised data on the fly. This is a long wish list, which requires more flexibility than 

what currently can be provided by the rigid storage models of databases. 

 

This thesis demonstrates to some extent the potential usefulness of knowledge 

representation paradigms such as ontologies. Despite the current limitations of ontology 

languages and technology, this approach offers new avenues for exploitation. The 

presented ontology-based framework is flexible and should be easily adaptable to 

support different domains, provided the appropriate domain knowledge definitions are 

available. Land use categories are generated by people and are not given by the 
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environment per se. Hence, we have contrasting alternatives. For example, land use can 

be viewed as industrial, commercial, residential, and agricultural. We can reassemble 

pieces or categories into many alternative cognitive mappings, each one useful in a 

specific problem context. Therefore, the methodology needs to be transferred to other 

types of land uses by differentiating between classes such as industrial, recreational, and 

commercial, breaking them down, and integrating them in the current framework. 

Although, the questionnaire survey revealed that the interpretation of land use 

information is not straightforward in every case, other sources of knowledge, such as 

points of interest datasets, need to be explored for inclusion in the knowledge base to 

enhance the reasoning. Alternatively, the database itself can be further exploited for 

additional knowledge such as cartographic text labels. The proof of concept in chapter 

seven uses only minimal knowledge for illustration purposes.  

 

One of the bigger challenges relates to modelling fuzzy concepts. A major weakness of 

this model is that it does not address the nature of uncertain knowledge, neither in the 

conceptual model nor in its application. The geographical domain is inherently vague 

with land use concepts that can overlap and physical regions whose boundaries are 

fuzzy. In addition, we need to formalise people’s fuzzy relatedness notion in the sense 

of distance or proximity, and neighbourhood for distinguishing near features from far 

ones. Conceptualisation and formalisation of proximity and fuzziness are critical in 

information retrieval. Currently, the application of the proposed conceptual framework 

suffers from immature technology that does not incorporate probabilities efficiently for 

reasoning yet. This includes the immaturity of modelling the concrete spatial domains 

with description logics. Continuous research in these areas will eventually overcome 

these issues. However, it will be worthwhile to explore semantic uncertainty in the 

geographic domain, as for example in Ahlqvist (2004). 

 

The high-level abstraction of the representational framework ideally should include a 

fourth component to accommodate fully the spatio-temporal data requirements: Time. 

This adds another dimension to the representation, implying a temporal type of relation 

on both the object and locational aspects. Time would essentially enhance a land use 

model that is naturally subject to change over time, and would allow incorporating the 

concept ‘land use change’. The fundamental characteristic of relations with temporal 

dynamics in description logics and ontologies is therefore another major and needed 
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area of research for adequately modelling spatial information and making it more 

accessible. As Nunes (1991) notes, semantic modelling is by principle a never-ending 

task, just as any scientific working, but a task worthwhile to be undertaken. 

 

Although the present beginnings seem promising in these regards, it is still much too 

early to utter glowing pronouncements and offer overly optimist prognosis. Ontology 

has yet to evolve to computationally more suitable representations. What is still required 

is an investment of more theoretical as well as engineering effort to data-ontology 

mappings (Svátek et al., 2006). This task has no software support at the moment. 

Although the independence of symbolic logic formalisms is an advantage with respect 

to validity and reusability, its separate realm to databases poses a severe impediment 

when domain-specific properties and laws, such as dealing with space and time, must be 

exploited for a task. If this problem is addressed, the added value of ontologies is 

potentially very high. It would be unfortunate if the services of a spatial database could 

not be made available to the reasoning system. The spatial database should form the 

surrogate for a set of ABox terms, which would then allow powerful inference 

mechanisms over the data. The thesis demonstrates this successfully for a small sample 

dataset. Overall, it applies a simple, common-sense approach to enriching spatial data 

based on the way we interpret spatial information exploiting these kinds of formalisms. 

Even if our scientific communities frequently declare such formalisations as too 

simplistic because everyone understands them, we should instead adopt the attitude of 

Egenhofer and Mark (1995) that “if it is simple and solves the problem, then it is good.” 
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Appendix A 

Questionnaire 

Attached is the questionnaire that was used as a tool to elicit knowledge about the 

interpretation process of topographic maps as well as the conceptualisation of the land 

use domain, as described in chapter 3. 
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Appendix B 

Survey variables and code book 

Table 9 summarises the variables and codes used for processing the data collected from the questionnaire survey. These are used to categorise 

and code the qualitative results for analysis in the statistical analysis software SPSS version 14.0. Table 9 also lists the applied analysis method 

for each question/ task. Because of the qualitative nature of this study, the analysis is confined to simple frequency and percentage summaries. 

Table 14 Survey variables and codes for analysing the questionnaire survey 

T
as

k
 

Q. 
No. 

Question/ Task 
Description 

Question 
Type 

Data 
Type 

Measure 
Level 

Variable 
Name 

Variable Label Value Labels (Code) 
Missing 
Values

 
Analysis method 

 Map A 
interpretation 
according to use 

 String Nominal  A_Res 
 A_Retail 
 A_Office 
 A_Rail 
 A_Car 
 A_OutRec 
 A_Edu 
 A_Inst 
 A_ComAcc 

 A_Storage 
 A_Industry 
 A_Water 
 A_Rel 

 Map A – Residential 
 Map A – Retailing 
 Map A – Offices 
 Map A – Railways 
 Map A – Car parks 
 Map A – Outdoor recreation 
 Map A – Educational buildings 
 Map A – Institutional buildings 
 Map A – Institutional buildings 

& communal accommodation 
 Map A – Storage & Warehousing 
 Map A – Industry 
 Map A – Standing Water 
 Map A – Religious buildings 

0=no response 
300=not identified 
301=interpreted correctly 
(same term used) 
302=interpreted correctly 
(different term used) 
303= interpreted falsely 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
 
0 
0 
0 
0 

Frequencies 

T
A
S
K
 
1 

 Map B 
interpretation 
according to 
purpose 

 String Nominal  B_OutRec 
 B_Res 
 B_Edu 
 B_IndRec 
 B_Retail 

 Map B – Outdoor recreation 
 Map B – Residential  
 Map B – Educational buildings 
 Map B – Indoor recreation 
 Map B – Retailing 

0=no response 
300=not identified 
301=interpreted correctly 
(same term used) 
302=interpreted correctly 

0 
0 
0 
0 
0 

Frequencies 
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 B_Inst 
 B_Office 
 B_Rail 
 B_Industry 
 B_Storage 
 B_Rel 

 Map B – Institutional buildings 
 Map B – Offices 
 Map B – Railways 
 Map B – Industry 
 Map B – Storage & Warehousing 
 Map B – Religious buildings 

(different term used) 
303= interpreted falsely 
 
 
 
 

0 
0 
0 
0 
0 
0 

   
T
A
S
K
 
2 

1 How did you 
approach the 
map 
interpretation 
task? 

Open-
ended 

String Nominal  app1 
 app2 
 app3 

 Interpretation approach 1 
 Interpretation approach 2 
 Interpretation approach 3 

 

0=no response 
24=residential areas 
78=knowledge from 
using maps before 
79=familiarity of urban 
layouts 
80=size 
81=arrangement 
82=road network 
84=fields 
85=symmetry 
86=shape 
87=pattern 
88=space around 
buildings 
89=large objects first 
90=similarities 
91=relationships 
between objects 
92=tried to find things 
that were thought of as 
expected 
93=clusters of shapes 
94=use of one area to 
identify the one next to it 
95=larger buildings next 
to houses as shops or 
schools 
96=obvious features 
97=detailed examination 

1 
8 
12 

Classifying and 
categorising 
answers; 
Percentage 
summaries 
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of area by area 
98=familiar areas 
99=visioned home town 

2 What captured 
your attention 
first? 

Open-
ended 

String 
 

Nominal  att_A 
 att_B 

 
 

 What captured attention in MapA 
 What captured attention in Map B 

 
 

0=no response 
23=park 
24=residential area 
36= oval track/sports 
ground 
37=golf course 
42=open spaces 
44=density of buildings 
50=small objects 
55=large objects 
82=road network 

1 
1 

Classifying and 
categorising 
answers; 
Percentage 
summaries 

3 What do you 
think is the most 
dominant object 
throughout each 
map? And as 
what did you 
interpret it? 

Open-
ended 

String Nominal  dom_obj_A 
 dom_int_A 

 dom_obj_B 
 dom_int_B 

 

 Dominating object (Map A) 
 Dominating object’s 

interpretation (Map A) 
 Dominating object (Map B) 
 Dominating object’s 

interpretation (Map B) 
 
 

0=no response  
22=train station 
23=park 
24=residential area 
32=housing estate 
33=terraced streets 
34=sports stadium 
35=running track 
37=golf course 
42=open spaces 
41=building 
43=small buildings 
45=blocks 
54=straight lines 
56=oval shape 
82=road network 
244=recreation 

0 
0 
 
0 
0 

Classifying and 
categorising 
answers; 
Percentage 
summaries 

4 Did you use 
areas you 
already 
interpreted to 
identify what 

Closed String 
 
 

Nominal  interp  Use of already interpreted areas 
for identifying further ones 

0=no response 
10=yes 
11=no 
 

0 Binary; percentages 
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the surrounding 
areas were? 

5 Do you believe 
there is a 
repeating 
pattern for each 
land use type? 

Closed 
 

String Nominal  pattern  Repeating land use pattern 0=no response 
10=yes 
11=no 
 

0 Binary; percentages 

6 Would it have 
helped you if 
the map showed 
a bigger area? 

Closed String Nominal  context  Context 0=no response 
10=yes 
11=no 
 

0 Binary; percentages 

7 Did the varying 
scale of the two 
maps influence 
your 
interpretation? 
If yes, in what 
way? 

Closed/ 
Open-
ended 

String Nominal  scale  Scale influence 
 Scale influence description 

0=no response 
10=yes 
11=no 
12=don’t know 
148=at smaller scale 
larger areas relate better 
on the map 
149=smaller scale more 
to interpret 
150=things look different 
151=clearer the further 
away 
152=context 
153=at smaller scale 
building harder to 
interpret what they could 
be used for 
154=size of sports 
facility 

0 
13 

Percentages 

8 Was there 
anything in the 
map that you 
weren’t sure 
about? 

Open-
ended 

String Nominal  uncertainty  Uncertainties in map 
interpretation 

0=no response 
46=large areas/buildings 
47=unfamiliar objects 
48=lack of repeating 
pattern 
49=what edges of lines 

5 Classifying and 
categorising 
answers; 
Percentage 
summaries 
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represented 
155=shops and amenities 
156=golf course may be 
a park 
157=uncertain between 
hospital, housing estate 
and campus 
158=difficult to identify 
exact structures 
159=a lot of areas could 
be interpreted as a lot of 
different things 
160=at first complex and 
difficult, but once broken 
down it was easy 

9 What did you 
find difficult 
during your 
interpretation? 

Open-
ended/ 
Closed 

String 
 

Nominal 
 

 diff_desc 

 diff_fuzz 
 diff_misint 

 diff_obj_ 
mean 

 diff_area_ 
mean 

 Difficulties during map 
interpretation 

 Difficulty caused by fuzziness 
 Difficulty caused by 

misinterpretation 
 Difficulty caused by not 

understanding objects’ meaning 
 Difficulty caused by not 

understanding areas’ meaning 

0=no response 
10=yes 
11=no 
47=unfamiliar objects 
159=a lot of areas could 
be interpreted as a lot of 
different things 
161=deciding which area 
best suits 
162=colouring & 
symbols would be more 
easier to understand 
163=difficult to identify 
public use buildings 
164=identifying more 
detailed purpose for 
buildings 
165=difference between 
business and residential 
166=interpretation of 
objects in relation to 

2 
 
0 
0 
 
0 
 
0 

Percentages 
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other areas 
167=some small areas & 
shapes between rows of 
houses difficult to 
identify 
168=difficulties in 
differentiating between 
industrial / commercial 
buildings 
169=identifying anything 
other than open areas and 
residential areas was a 
guess 

10 Did you 
recognise any of 
the locations 
shown in the 
maps? 
If yes, where do 
you think the 
areas are located? 

Closed/ 
Open-
ended 

String Nominal  rec 

 rec_desc 

 Recognition of map’s depicted 
location 

 Description of map’s depicted 
location  

0=no response 
10=yes 
11=no 

0 
 
18 

Binary; percentages 

11 Which pieces of 
information do 
you think are 
superior to 
others in the 
interpretation 
process? 

Attitude String Ordinal 
 
 

 pos 
 prox 
 shp 
 sz 
 sim_arr 
 sim_geom 
 contrast 
 symm 
 fact_contxt 
 simp 
 orient 
 conn 
 struct 
 clos 
 comm_reg 

 Position 
 Proximity 
 Shape 
 Size 
 Similarity in arrangement 
 Similarity in geometry 
 Contrast 
 Symmetry 
 Context 
 Simplicity of identification 
 Orientation 
 Connectedness 
 Structure 
 Closure (bound, limit) 
 Common region 

0=no response 
1=not important 
2 
3 
4 
5=very important 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Frequencies; row 
proportions 
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 cont 
 likelihood 

 org 
 top 
 comb 

 Good continuation of objects 
 Likelihood of correct 

interpretation 
 Organisation 
 Topology 
 Combination of objects 

0 
0 
 
0 
0 
0 

12 How important 
do you rate the 
following 
principles for 
grouping objects 
together? 

Attitude  String 
 

Ordinal   sim_shp 
 sim_sz 
 sim_orien 
 prox_obj 
 symm_arr 
 align_obj 
 shp_group 
 rel_part_ 

whole 
 dom_obj_ 

infl 

 Similarity in shape 
 Similarity in size 
 Similarity in orientation 
 The proximity between objects 
 Symmetry in the arrangement 
 Alignment of objects 
 The overall shape of the group 
 The relation among parts and 

wholes 
 The influence of one dominating 

feature within the group 

0=no response 
1=not important 
2 
3 
4 
5=very important 
 

0 
0 
0 
0 
0 
0 
0 
0 
 
0 

Frequencies; row 
proportions 

13 Did you apply 
any other 
grouping 
principles for 
you 
interpretation? 

Open-
ended 
 

String 
 

Nominal   group_princ  Other grouping principle 0=no response 
170=distribution of roads 
171=some types of 
building use are more 
likely to neighbour each 
other 
172=grouping principles 
really only applied to 
residential areas 

15 Classifying and 
categorising 
answers; 
Percentage 
summaries 

14 How important 
do you rate the 
following for 
your ability to 
interpret the 
maps? 

Attitude String Ordinal  exist_know 
 mem 
 exp 
 aw 

 know_frm 

 know_bel 

 Existing knowledge about land use
 Memory 
 Experience 
 Awareness of our everyday 

surroundings 
 Knowledge about the form and 

sizes of objects constituting a 
land use 

 Knowledge of what belongs to a 
land use category 

0=no response 
1=not important 
2 
3 
4 
5=very important 
 
 
 
 

0 
0 
0 
0 
 
0 
 
 
0 

Frequencies; row 
proportions 
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T
A
S
K
 
3 

15 Imagine 
yourself in the 
land use you 
have chosen. 
What 
geographical 
objects make up 
the land use? 

Open-
ended  

String 
 

Nominal 
 

 LU 
 mem_cat1 
 mem_cat2 
 mem_cat3 
 mem_cat4 
 mem_cat5 

 Chosen land use concept 
 Member category 1 
 Member category 2 
 Member category 3 
 Member category 4 
 Member category 5 

 
 
 

 

0=no response 
14=factory 
20=school 
21=hospital 
22=train station 
23=park 
24=residential 
25=industrial 
26=commercial 
27=outdoor recreation 
28=terraced housing 
29=semi-detached 
housing 
30=detached housing 
31=public spaces 
38=rear garden 
39=front garden 
40=house 
43=small building 
210=car park 
211=stores/warehouse 
212=office 
213=open area 
214=routes 
215=shops 
216=main ward building 
217=subordinate 
department building 
218=gym 
219=school building 
220=sport field 
221=garden 
222=grass 
223=pathways 
224=trees 
225=fence/hedge 

3 
3 
3 
3 
8 
11 

Frequencies 
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227=teaching facilities 
228=play ground 
229=bus stop 
230=restaurant 
231=train tracks 
232=toilet facilities 
233=classroom 
234=station building 
235=water 
236=game facilities 

16 How do they 
physically look 
like in the real 
world? 

Open-
ended 

String Nominal 
 

 mem_obj1 
 mem_obj2 
 mem_obj3 
 mem_obj4 
 mem_obj5 

 Member object 1 
 Member object 2 
 Member object 3 
 Member object 4 
 Member object 5 

0=no response 
19=lake 
41=building 
42=open space 
271=steel lines 
272=enclosed space 
273=green space 
274=multi-storey 
275=tarmac space 
223=pathways 
224=trees 
225=fence/hedge 

3 
3 
3 
8 
11 

 

17 What is their 
primary purpose 

Open-
ended 

String Nominal  purp1 
 purp2 
 purp3 
 purp4 
 purp5 

 Purpose 1 
 Purpose 2 
 Purpose 3 
 Purpose 4 
 Purpose 5 

0=no response 
212=office 
215=shops 
240=teaching 
241=storage 
242=sports 
243=living 
accommodation 
244=recreation 
245=education 
246=parking 
247=play 
248=learning 
249=revenue generation 

3 
3 
3 
8 
11 

Semantic 
relatedness 
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250=assist movement 
251=aesthetics 
252=relaxation 
253=buying 
254=eating 
255=refreshment 
256=pick up/drop off 
257=walking 
258=landscaping 
259=accommodating 
patients 
260=treating of patients 
261=public seating 
276=transport/travel 
277=forms railway 
network 

18 What are they 
used for? 

Open-
ended 

String Nominal  role1 
 role2 
 role3 
 role4 
 role5 

 Role 1 
 Role 2 
 Role 3 
 Role 4 
 Role 5 

0=no response 
212=office 
240=teaching 
241=storage 
242=sports 
243=living 
accommodation 
244=recreation 
245=education 
246=parking 
247=play 
248=learning 
250=assist movement 
251=aesthetics 
252=relaxation 
253=buying 
254=eating 
256=pick up/drop off 
257=walking 
258=landscaping 

3 
3 
3 
8 
11 

Semantic 
relatedness 
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259=accommodating 
patients 
262=sports events 
263=treating sick/injured 
264=break time 
265=school run 
266=peeing 
267=customer parking 
268=entrance to house 
269=gardening 
270=staff parking 
276=transport/travel 

19 How do people 
make use of 
them? 

Open-
ended 

String Nominal  aff1 
 aff2 
 aff3 
 aff4 
 aff5 

 Affordance 1 
 Affordance 2 
 Affordance 3 
 Affordance 4 
 Affordance 5 

0=no response 
240=teaching 
241=storage 
244=recreation 
245=education 
246=parking 
247=play 
248=learning 
249=revenue generation 
252=relaxation 
253=buying 
254=eating 
256=pick up/drop off 
257=walking 
266=peeing 
269=gardening 
270=staff parking 
276=transport/travel 
280=working 
281=maintenance 
282=driving 
283=living 
284=curing 
285=shopping 

4 
4 
4 
9 
11 

Semantic 
relatedness 
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286=leaving cars 
287=meeting 
288=shelter 
289=exercise 
290=sleeping 
291=club use 
292=enjoyment 
293=view 
294=shade 
295=long stay 
296=short visits 

20 What are their 
geographical 
properties in 
terms of 
geometry, 
shape, relative 
size? 

Open-
ended 

String Nominal  prop1 
 prop2 
 prop3 
 prop4 
 prop5 

 Spatial property 1 
 Spatial property 2 
 Spatial property 3 
 Spatial property 4 
 Spatial property 5 

0=no response 
15=linear 
16=round 
17=rectangular 
18=irregular 
51=large 
52=small 
53=square 
54=straight lines 
56=oval shape 
57=spaced out 
58=very large 
59=very small 
60=any shape 

3 
3 
3 
8 
11 

 

21 Is the member 
category a kind 
of or part of 
your chosen 
land use? 
What is the 
spatial 
combination of 
member 
categories? 
What is the 

Open-
ended 

String Nominal  rel_part_tax1
 rel_part_tax2
 rel_part_tax3
 rel_part_tax4
 rel_part_tax5
 rel_top1 
 rel_top2 
 rel_top3 
 rel_top4 
 rel_top5 
 rel_dist1 

 Taxonomy/Partonomy relation 1 
 Taxonomy/Partonomy relation 2 
 Taxonomy/Partonomy relation 3 
 Taxonomy/Partonomy relation 4 
 Taxonomy/Partonomy relation 5 
 Topological relation 1 
 Topological relation 2 
 Topological relation 3 
 Topological relation 4 
 Topological relation 5 
 Distance relation 1 

0=no response 
61=kind of 
62=part of 
63=disjoint 
64=meet 
65=overlap 
66=covers 
67=covered by 
68=contains 
69=equal 
70=inside 

5 
5 
5 
9 
12 
5 
5 
5 
10 
12 
4 
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spatial distance 
among member 
categories? 

 rel_dist2 
 rel_dist3 
 rel_dist4 
 rel_dist5 

 Distance relation 2 
 Distance relation 3 
 Distance relation 4 
 Distance relation 5 

71=zero 
72=very close 
73=close 
74=far 

4 
4 
10 
12 

22 Age group Closed String Nominal  age  Age group 0=no response 
100=18-25 
101=26-30 
102=31-35 
103=36-40 
104=41+ 

0 Frequencies/ 
percentage 

23 Gender 
 
 

Closed String Nominal  gender  Gender 0=no response 
6=male 
7=female 

0 Frequencies/ 
percentage 

24 Nationality 
 

Open-
ended 

String Nominal  nat  Nationality 0=no response 
105=British 
106=German 
107=Brazilian 
108=French 
109=Portuguese 
110=Greek 

0 Frequencies/ 
percentage 

25 Languages 
spoken (native 
first) 

Open-
ended 

String Nominal  lang1 
 lang2 
 lang3 

 Language spoken 1 
 Language spoken 2 
 Language spoken 3 

0=no response 
111=English 
112=German 
113=Portuguese 
114=French 
115=Spanish 
116=Greek 
117=Finnish 

0 
12 
15 

Frequencies/ 
percentage 

26 Where do you 
live? 
Where do you 
work? 

Closed String Nominal  live 
 work 

 Place of living 
 Place of work 

0=no response 
120=City 
121=Town/ Village 
122= Rural 

0 
0 

Frequencies/ 
percentage 

 
T
A
S
K
 
4 

27 Please indicate 
the level of 
Education you 
hold. 

Closed String Nominal  gcse 
 alevel 
 bsc 
 msc 

 Educational level 
 Educational level 
 Educational level 
 Educational level 

0=no response 
8=marked 
9=unmarked 

0 
0 
0 
0 

Frequencies/ 
percentage 
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 phd  Educational level 0 
28 What is your area 

of interest/ 
expertise? 

Open-
ended 

String Nominal  expert  Interest/Expertise 0=no response 
180=Military mapping 
181=communications 
182=Armed forces 
183=Modern 
languages/international 
relations 
184=Remote sensing 
185=Physics 
186=GIS 
187=sciences 
188=procurement 
189=teaching 
190=Law 

0 Frequencies/ 
percentage 

29 How familiar 
are you with 
topographic 
maps? 
With which map 
data are you 
most familiar? 

Attitude 
/ Open-
ended 

String Ordinal / 
Nominal 

 familiarity 

 fam_desc1 
 fam_desc2 
 fam_desc3 

 Familiarity with topographic 
maps 

 Familiarity with other map data1 
 Familiarity with other map data2 
 Familiarity with other map data3 

0=no response 
1=not at all familiar 
2 
3 
4 
5=very familiar 
200=Ordnance Survey 
maps 
201=Aerial photography 
202=Town plans 
203= street maps  
204=digital maps 
205=terrain models 
206=internet based maps 
(e.g. multimap.com)  

0 
 
0 
15 
17 

Frequencies/ 
percentage 

30 What do you 
use map data 
primarily for? 

Closed String Nominal  use_pers 
 use_res 
 use_prof 
 use_none 

 Type of use of map data 
 Type of use of map data 
 Type of use of map data 
 Type of use of map data 

0=no response 
8=marked 
9=unmarked 
 

0 
0 
0 
0 

Frequencies/ 
percentage 

31 How often do 
you use map 

Closed String Nominal  frequency  frequency of map data use 0=no response 
140=frequently 

0 Frequencies/ 
percentage 
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data? 141=often 
142=rarely 
143=never 

32 Any additional 
comments? 

Open-
ended 

String Nominal  comment  Additional comment to survey 0=no response 
400=some questions 
confusing 
401=difficult identifying 
areas which are not 
residential/parks 
402=confused about the 
‘purpose’ or ‘use’ of land 
403=good survey 
404=difficult survey 

14 Classifying and 
categorising 
answers 

    Date   Date  Date of completion  0 None 
    String   ID  Respondent ID  0 None 
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Description logic preliminaries 

Description logics (DL) organise knowledge into classes, gathering the common 

properties of the data, and the classes themselves into hierarchies. Important 

characteristics of DL are high expressivity together with decidability and completeness, 

which guarantee that reasoning algorithms always terminate with the correct answers. 

They are equipped with several reasoning mechanisms for different types of deduction. 

They capture the basic facets of data semantics, including the structure of complex 

entities and ontological dimensions such as time, space, and events.  

Description logic family 

The smallest propositionally closed DL is AL. It is an attributive language that allows 

atomic negation (¬), concept intersection (u), universal restriction (), and limited 

existential quantification (). In literature, a naming convention is used to describe 

additional operators and expressivity by extending the base language with the following 

letters: 

C Complex concept negation. 

S An abbreviation for AL and C with transitive properties. 

H Role hierarchy. 

R Limited complex role inclusion axioms; reflexivity and irreflexivity; role 

disjointness. 

O Nominals (enumerated classes of object value restrictions). 

I Inverse properties. 

N Cardinality restrictions. 

Q Qualified cardinality restrictions. 

F Functional properties. 

E Full existential qualification. 

U Concept union. 

(D) Use of data type properties, data values or data types. 

FL- A sub-language of AL that prohibits atomic negations. 

FLo A sub-language of FL- that additionally disallows limited existential 

quantification. 
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Description logic syntax 

The syntax of a language defines the way in which basic elements of the language may 

be put together to form clauses of that language. Therefore, to reveal the internal 

structure of a proposition, the sentence must be broken down into smaller parts that can 

be represented separately. The syntax of description logic consists of a set of unary 

predicate symbols that are used to denote concept names, a set of binary relations that 

are used to denote role names, and a recursive definition for defining complex concept 

terms from concept names and role names using constructors (such as intersection, 

union, negation, value restrictions, etc.). Generally, concepts denote sets of individuals, 

and roles denote binary relations between individuals. We differentiate between atomic 

concepts and complex concept descriptions. Atomic concepts and atomic roles are 

elementary descriptions, whereas complex descriptions can be built from them 

inductively with constructors. 

 

The syntax of propositional logic is the most basic form and consists of a countable 

alphabet  of atomic propositions a, b, c, etc. An example of propositional formulas is 

given below, where | indicates on which side of an axiom a formula can take the 

following form: 

φ, ψ → a Atomic formula 

 | > Logical truth 

 | ⊥ Logical falsity 

 | ¬φ Negation, opposite or complement of sets of individuals 

 | φ ∧ ψ Conjunction, and-operator, intersection of individuals 

 | φ    ∨ ψ Disjunction, or-operator, union of individuals 

 | φ  → ψ Implication, conditional, if- or if…then-operator 

 | φ ↔ ψ Equivalence, if-and-only-if- or iff-operator 

 
 
In propositional logic, atomic formulas consist only of concepts. However, often it is 

difficult to assign a variable to a whole statement. In first-order logic (FOL), the atomic 

formulas are interpreted as statements about relationships between objects. Since an 

interpretation I respectively assigns to every atomic concept and role a unary and 

binary relation over I, we can view atomic concepts and roles as unary and binary 

predicates. Then, any concept C can be translated effectively into a predicate logic 
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formula φC(x) with one free variable x such that for every interpretation I the set of 

elements I satisfying φC(x) is exactly CI. An atomic concept A is translated into the 

formula A(x) (Baader et al., 2003). For example, C u D can be regarded as the first 

order logic sentence C(x) ∧ D(x), where the variable x ranges over all individuals in 

the interpretation domain, and C(x) is true for those individuals that belong to the 

concept C. Therefore, in FOL a well-formed formula is defined as P(t1, …, tn) where P 

is an n-ary predicate of a language L consisting of a set U, and each of t1, …, tn is either 

a variable or an element of U. First-order logic is a two-valued logic with just two 

quantifiers and the basic Boolean operators introduced above, thus extending the terms 

of propositional logics as follows: 

Terms: t → x Variable 

 | a Constant 

 | f (t1, …, tn) Function application  

Formulas: ψ, φ → P(t1, …, tn) Atomic formulas 

 … … 

 | x.φ Universal quantification 

 | x.φ Existential quantification 

Description logic semantics 

In DL, semantics is defined by interpreting concepts as sets of individuals and roles as 

sets of pairs of individuals (Baader et al., 2003). The model-theoretic semantics of a 

logic is given in the standard form using a Tarskian interpretation I = (I, ·I) 

consisting of a non-empty set I (the domain of the interpretation), and an interpretation 

function ·I that maps 

 Every concept to a subset of I: Concept name A → subset AI of I (AI ⊆ I). 

 Every role to a subset of I x I: Role name R → binary relation RI over I 

(RI ⊆ I × I). 

 Every individual to an element of I: Individual name i → iI element of I (iI 

∈ I). 

This means for a given set as the domain, an interpretation of AL concepts is defined as 

an atomic concept when it is interpreted as a set of individuals that is a subset of the 

domain. It is interpreted as an atomic role when it is interpreted as a set of pairs of 

individuals from the domain, i.e., a binary relation over the domain. For example, in a 
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given interpretation I, whose domain contains the element a, we have that a ∈ (C u    

D)I, then from the semantics we know that such element should be in the intersection of 

CI and DI, that is, it should be in both  CI and DI. In an interpretation, different 

individuals are assumed to denote different elements, that is, for every pair of 

individuals a, b, and for every interpretation I, if a ≠ b then aI ≠ bI. This is called the 

unique name assumption and is usually assumed in database applications (Donini et al., 

1996). 

 

Therefore, if a truth value assignment (or interpretation) of the atoms in  is a function 

I:  → {T, F}, then a formula φ is satisfied by an interpretation I (I ² φ) or is true 

under I when: 

I ² > 

I ² ⊥ 

I ² a iff aI      = T 

I ² ¬φ iff I ² φ 

I ² φ  ∧ ψ  iff I ² φ and I ² ψ 

I ² φ  ∨ ψ  iff I ² φ or I ² ψ 

I ² φ  → ψ iff I ² φ, then I ² ψ 

I ² φ  ↔ ψ iff I ² φ, if and only if I ² ψ 

Where ² means implies, ² not implies, and iff means if and only if. For example, let C 

and D be concept descriptions and A be an atomic concept of the language AL, then the 

top concept is interpreted as the whole domain (i.e., >I = I). The bottom concept is 

interpreted as the empty set (i.e., ⊥I = ∅). The interpretation of ¬A is the set of all 

individuals in the domain that do not belong to the interpretation of A (i.e., I \  AI). 

Intersection of two concepts is interpreted as the set-intersection of all individuals in the 

domain that belong to both interpretation of C and the interpretation of D (i.e., CI ∩ 

DI). The union of concepts means that individuals in the domain are instances of either 

C or D, and is interpreted as (C t D)I = CI ∪ DI. Two concepts are equivalent C ≡ D 

if and only if CI = DI for all interpretations I (Baader et al., 2003), that is, the 

individuals in the domain of C are equivalent to the individuals of D. 
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An interpretation is uniquely determined by the values that it gives to primitive concepts 

and primitive roles. Hence, a complex sentence has a meaning derived from the 

meaning from its parts. A sentence is valid or necessarily true if and only if it is true 

under all possible interpretations in all possible worlds. Such sentences are referred to 

as tautologies. A sentence is satisfiable if and only if there is some interpretation in 

some world for which it is true (Russell and Norvig, 1995). An interpretation is 

satisfiable and valid under the following conditions: An interpretation I is a model of φ  

(I ² φ). A formula φ is  

 Satisfiable, if there is some I that satisfies φ.  

 Unsatisfiable, if φ is not satisfiable. 

 Falsifiable, if there is some I that does not satisfy φ. 

 Valid, if every I is a model of φ (tautology). 

 Two formulas are logically equivalent (φ ≡ ψ), if for all I: I ² φ iff I ² ψ. 

 
 
As in propositional logic, a complex FOL formula may be true or false with respect to a 

given interpretation. The interpretation specifies referents for constant symbols as 

objects, for predicate symbols as relations, and for function symbols as functional 

relations. For example, an atomic sentence P(t1, …, tn) is true in a given interpretation 

iff the objects referred to by t1, …, tn are in the relation referred to by the predicate P. 

Therefore, the interpretation I = h, ·Ii is an arbitrary non-empty set  and ·I is a 

function that maps n-ary function symbols over  (fI   ∈ [n → ]), individual constants 

to elements of  (aI  ∈ ), and n-ary predicate symbols to relation over  (PI ⊆ n). A 

formula φ is satisfied by (is true in) an interpretation I under a variable assignment  

(I,  ² φ): 

I,  ² P (t1, …, tn) iff ht1
I,, …, tn

I,i ∈ PI 

I,  ² ¬φ iff I,  ² φ 

I,  ² φ  ∧ ψ iff I,  ² φ and I,  ² ψ 

I,  ² φ  ∨ ψ iff I,  ²  φ or I,  ² ψ 

I,  ² x.φ iff for all d ∈ : I,  [x/d] ² φ 
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I,  ² x.φ iff there exists d ∈ : I,  [x/d] ² φ 

Similar as in propositional logic, a formula φ can be satisfiable, unsatisfiable, falsifiable 

or valid, except that the definition is in terms of the pair (I, ). For example, a formula 

φ is satisfiable if there is some (I, ) that satisfies φ, and it is valid if every (I, ) is a 

model of φ. Overall, an interpretation function ·I is an extension function if and only if 

it satisfies the semantic definitions of the language. 

Knowledge bases 

A knowledge base KB is a pair hT, Ai where T is a set of “terminological” axioms and 

A is a set of “assertional” axioms:  = hTBox, ABoxi. Terminological axioms in the 

TBox are restricted to so-called definitions, where a definition is an assertion stating 

that the extension of a concept denoted by a name is equal to the extension of another 

complex concept (Calvanese et al., 2001). A concept name A directly uses a concept 

name B in a TBox  iff the definition of A mentions B. A concept A uses a concept 

name Bn iff there is a chain of concept names hA, B1, …, Bni such that Bi directly uses 

Bi+1. A TBox is acyclic iff no concept name uses itself. For example, if we build a graph 

whose nodes are atomic concepts and whose arcs connect pairs of concepts such that 

one appears in the definition of the other, then the graph is acyclic. 

 

The ABox is a set A of assertions that is realised by permitting concepts and roles to be 

used in assertions on individuals. These assertional axioms state the ground facts of the 

KB. Given a concept language L, an ABox-statement in L has either one of the two 

forms: 

  C(a) Concept membership assertion 

 R(a, b) Role membership assertion 

where a, b are individual names, C is a concept name and R is a role name. 

 

Different semantics have been proposed for the TBox depending on the fact whether 

cyclic statements are allowed or not (Donini et al., 1996). In descriptive semantics, an 

interpretation I satisfies (models) a TBox axiom A (I ² A): 

I ² C v D iff CI ⊆ DI 

I ² R v S iff RI ⊆ SI  
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I ² R+ v R iff (RI)+ ⊆ RI 

I ² C ≡ D iff CI = DI 

I ² R ≡ S iff RI = SI 

I satisfies a Tbox T  (I ² T) iff I satisfies every axiom A in T , that is, an interpretation 

I is a model for a TBox T if I satisfies all the statements in T. An interpretation I 

satisfies a role hierarchy H if it satisfies all role inclusions (I ² R v S iff RI ⊆ SI) in 

H. The above definitions are constraints stating a restriction on the valid models of the 

knowledge base, and in particular on the possible interpretations of a given concept or 

role, where it is no better specified. Although descriptive semantics seems most 

appropriate, it is not satisfactory in all cases, such as in cyclic statements (Donini et al., 

1996). 

 

The semantics of an ABox is defined as follows: Given a set A of assertions and if I= 

(I, ·I) is an interpretation, then C(a) is satisfied by I if aI ∈ CI, and R(a, b) is satisfied 

by I if (aI, bI) ∈ RI. An interpretation I is said to be a model of the ABox A if every 

assertion of A is satisfied by I, that is, I satisfies an Abox A (I ² A) iff I satisfies 

every axiom A in A (Donini et al., 1996). 

 
An interpretation I = (I, ·I) is said to be a model of a knowledge base  if every axiom 

of  is satisfied by I, that is, I satisfies a KB K (I ² K) iff I satisfies both T  and A. A 

knowledge base = hTBox, ABoxi is said to be satisfiable if it admits to a model. In 

particular, satisfiability of concept terms can be reduced to ABox consistency as 

follows: A concept term C is satisfiable iff the ABox {C(a)} is consistent (Haarslev and 

Möller, 2000). Therefore, an ABox is consistent with respect to a TBox T iff it has a 

model I that is also a model of T. 

Reasoning 

A model m of a sentence  is true if  is true in m. If M() is the set of all models of , 

then  knowledge base KB ²  if and only if M(KB) ⊆ M(). The model refers to the 

interpretation of logical statements. The logical implication KB ²  means that KB 

entails sentence  if and only if  is true in all worlds where KB is true (Russell and 



Appendix C 

 

335

Norvig, 1995). A formula φ can be implied by sets of formulas  if φ is true in all 

models of , that is,  ² φ   iff I ² φ  for all models I of . Let KB (= hTBox, ABoxi) 

be a knowledge base, A be an ABox, T  be a TBox, C  and D concept descriptions, and 

a an individual name, then reasoning services can be described as follows (Calvanese et 

al., 2001; Baader and Küsters, 2006): 

 Subsumption ( ² C v D) is the problem of checking whether C is subsumed 

by D with respect to , that is, whether CI ⊆ DI is in every model I of . 

 Satisfiability ( ²) is the problem of checking whether  has a model. Concept 

satisfiability ( ² C ≡ ⊥) is a special case of subsumption, with the subsumer 

being the empty concept, meaning that a concept is not satisfiable. Concept 

satisfiability is therefore the problem of checking whether C is satisfiable with 

respect to , that is, whether there exists a model I of  such that CI ≠ ∅. 

Knowledge base satisfiability is the problem of deciding whether a knowledge 

base KB is satisfiable, that is, whether KB admits a model I. 

 Concept consistency is the problem of deciding whether a concept C is 

consistent in a knowledge base KB, that is, whether KB admits a model I such 

that CI ≠ ∅. The ABox consistency problem is to decide whether a given ABox 

A is consistent with respect to a TBox T. 

 Logical implication is the problem of deciding whether a knowledge base KB 

implies an inclusion assertion C1 v C2 (written KB ² C1 v C2), that is, 

whether C1
I ⊆ C2

I for each model I of KB. 

 Equivalence of concepts within a terminology T is deciding whether two 

concepts are logically equivalent (C ≡T D), that is, if in all models I of T we 

have CI = DI. 

 Instance checking ( ² C(a)) is the problem of checking whether the assertion 

C(a) is satisfied in every model of . 

 Retrieval ({a |  ² C(a)}) is the problem of checking whether an individual 

occurring in the assertions is an instance of some concept description C. 

 Realisation ({C |  ² C(a)}) is the problem of checking the most specific 

concept C in the TBox that a is an instance of. 
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Inference rules rely implicitly on a general property of certain logics (e.g. propositional 

and first-order logic) called monotonicity. A logic is monotonic if when we add some 

new sentence to the knowledge base, all the sentences entailed by the original KB are 

still entailed by the new larger knowledge base. Formally, this is expressed as if KB1 ² 

 then (KB1 ∪ KB2) ² . Were it not for monotonicity, we could not have any local 

inference rules because the rest of the KB might affect the soundness of the inference. 

This would potentially cripple any inference procedure (Russell and Norvig, 1995). 

Therefore, given that sentence  can be derived from the set of sentences KB by 

procedure i (KB `i ), then: 

 Procedure i is sound whenever procedure i proves that a sentence  can be 

derived from a set of sentences KB (KB `i ), then it is also true that KB 

entails  (KB ² ). This means that no wrong inferences are drawn, although 

a sound procedure may fail to find the solution in some cases, where there is 

actually one. 

 Procedure i is complete whenever a set of sentences KB entails a sentence  

(KB ² ), then procedure i proves that  can be derived from KB (KB `i ). 

This means all the correct inferences are drawn, but a complete procedure may 

claim to have found a solution in some cases, when there is actually no 

solution. 

Concrete domains 

The idea of adding data type properties and data values is based on capturing the 

concrete semantics of objects not with description logic axioms, but to represent them 

separately (Esposito et al., 2007). A concrete domain D is a tuple (D, Φ) of a non-

empty set D and a set of predicates Φ. Each predicate name PD from ΦD is associated 

with an arity n and an n-ary predicate PD ⊆ D
n. Attributes are introduced as partial 

functions that map individuals of the abstract domain I to elements of D of the 

concrete domain D. For attributes a, the interpretation is extended as aI: I → D. 

Concrete domains are restricted to so-called admissible concrete domains to keep the 

inference problems of this extension decidable. 
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Ontologies 

The interpretation of an ontology is defined as the collection of all the legal world 

descriptions that conform to the constraints imposed by the ontology. To formally 

define the interpretation, an ontology is mapped into a set of first-order logic formulas. 

The legal world descriptions (i.e. the interpretation) of an ontology are all the models of 

the translated FOL theory. Therefore, given an interpretation I = hD, ·Ii where D is an 

arbitrary non-empty set such that D = Ω ∪ B, where B = 1
m
i BDi· BDi  is the set of values 

associated with each basic domain (i.e. integer, string, etc.) and BDi ∩ BDj = ∅, i,j.i ≠ 

j, and Ω is the abstract entity domain such that B ∩ Ω = ∅. Then the interpretation 

function maps: 

 Basic domain predicates to elements of the relative basic domain Di
I = BDi, 

e.g. stringI = Bstring; 

 Entity-set predicates to elements of the entity domain Ei
I ⊆ Ω; 

 Attribute predicates to binary relations such that Ai
I ⊆ Ω x B; 

 Relationship-set predicates to n-ary relations over the entity domain Ri
I ⊆ Ω x 

Ω … x Ω = Ωn; 

where the alphabet of the FOL language will have the predicate symbols E1, E2, …, En 

for each entity set, D1, D2, …, Dm for each basic domain, A1, A2, …, Ak for each 

attribute, and R1, R2, …, Rp for each relationship-set. 

 

When data types are supported, the domain is divided into two disjoint sets of the 

‘object domain’ I
O and the ‘data type’ domain I

D such that I = I
O ∪ I

D. The 

interpretation then maps individuals into elements of the object domain, classes into 

subsets of the object domain, data types into subsets of the data type domain and data 

values into elements of the data type domain. Object properties and data type properties 

are mapped into subsets of I
O × I

D respectively. Thus, individuals and data values 

correspond to FOL constants, classes and data types correspond to unary predicates, 

properties correspond to binary predicates, and sub-class/property relationships 

correspond to implication (Horrocks et al., 2003). 
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This appendix lists all the code used (SQL, Python, OWL) for implementing the 

proposed conceptual model, as described in chapter 7. This includes the preparation of 

the database in terms of extracting a sample area and calculating missing relations, the 

transformation from database instances to OWL individuals, and example OWL code 

from the ontology and its asserted individuals. 

SQL code 

Extracting a sample dataset 

For the purpose of the proof of concept, we need to extract a small dataset that will be 

used for the reasoning, that is, to demonstrate the use of description logics to infer 

higher order information. Using the SQL buffer operator SDO_WITHIN_DISTANCE, 

data can be extracted within a specified distance of 1000 metres: 

 
Create table Glasgow_Sample as  

Select b.feature_id, b.toid, b.baseform, b.basefunc, b.location 

From maia.gb04_s_ft_topo_area a, maia.gb04_s_ft_topo_area b 

Where a.feature_id=’{}’ and sdo_within_distance(b.location, a.location, ‘distance=1000 unit= meter’) 

= ‘TRUE’; 

 

From the reduced dataset, we then extract only the building features. This is done for 

two reasons: To calculate the spatial relation between buildings, and to reduce the 

number of features that the description logic system must handle. The derived dataset is 

called RESIDENTIAL_BUILDINGS: 

 
Create table RESIDENTIAL_BUILDINGS as 

Select b.TOID, b.FEATURE_ID, a.FEATURECODE, b.baseform, a.BASEFORM_DESC, a.BFORM_FULL_STRING_FORM, 

b.BASEFUNC, a.BASEFUNC_DESC, a.BFUNC_FULL_STRING_FORM, a.OSMMTOPO_DESCRIPTIVE_GROUPS, 

a.OSMMTOPO_DESCRIPTIVE_TERMS, a.OSMMTOPO_MAKE, a.OSMMTOPO_THEMES, a.CALCULATEDAREAVALUE, 

a.PHYSICALLEVEL, a.PHYSICALPRESENCE, b.LOCATION 

From residential a, sample_2_2D b 

Where b.TOID = a.TOID (+) and a.OSMMTOPO_DESCRIPTIVE_GROUPS='Building'; 

 

To be able to visualise the newly created tables, it is important to keep the spatial 

geometry column. We then have to insert a record in the spatial metadata for the tables 

based on their geometry column LOCATION: 
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Insert into user_sdo_geom_metadata 

values ( 

'Residential_Buildings', 

'Location', 

 MDSYS.SDO_DIM_ARRAY ( 

  MDSYS.SDO_DIM_ELEMENT('X',0,700000,0.001), 

  MDSYS.SDO_DIM_ELEMENT('Y',0,1300000,0.001) 

  ), 

81989); 

 

This is followed by creating a spatial index: 

 
CREATE INDEX RESIDENTIAL_BUILDINGS_GI ON RESIDENTIAL_BUILDINGS(LOCATION)  

    INDEXTYPE IS MDSYS.SPATIAL_INDEX; 

 

Calculating missing spatial relations 

With a table that consists only of building features, we can now calculate the ‘touch’ 

relations between all buildings using the SDO_TOUCH operator: 

 
Create table RES_BUILDINGS_TOUCH as 

Select a.TOID as TOID_BUILDING1, b.TOID as TOID_BUILDING2 

From maiagen.RESIDENTIAL_BUILDINGS a, maiagen.RESIDENTIAL_BUILDINGS b 

Where sdo_touch(a.LOCATION, b.LOCATION)=’TRUE’; 

 

By joining the original table RESIDENTIAL_BUILDINGS with the derived 

RES_BUILDINGS_TOUCH table, we create one table with all the information 

necessary for the knowledge base: 

 
Create table HOUSES_TOUCH as 

Select a.*, b.TOID_BUILDING1, b.TOID_BUILDING2 

From maiagen.RESIDENTIAL_BUILDINGS a, maiagen.RES_BUILDINGS_TOUCH b 

Where a.TOID = b.TOID_BUILDING1 (+); 

 

The symbol (+) stands for an OUTER JOIN to include building features that do not 

touch any other buildings. The table HOUSES_TOUCH carries only relevant columns 

required for the reasoning. Because of the complexity of the asserted relations between 

individuals in the knowledge base, this table is reduced further to building features that 

are of size (CALCULATEDAREAVALUE) greater than 35m2. Finally, the table is 

exported as a comma separated values (CSV) file for further processing. 
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Python code 

Python script is used to read the CSV file and to input its contents into RDF syntax. 

First, we assert one individual in OWL the way we want all individuals to be asserted. 

The generated OWL code form this individual can be then used for the python script, 

where the code is populated with information from the CSV file. This creates a text file 

of the specified code for each row, that is, every individual from the CSV file. 

Example for an individual that touches no other building 

Below is the script for individuals that do not touch any other buildings. 
# import the csv library 

 

import csv 

 

# create a reader object to parse the csv file. Note the double "\\" in the directory 

# path. This is important otherwise python won't find your file. 

 

reader = 

csv.reader(file("F:\\PhD\\GeoBase04\\ResidentialAnalysis\\Glasgow_Sample_2_2D\\RES_BUILD_HOUSES_JOIN_

TOUCH_0.csv")) 

 

#Step through each row in the csv file 

 

for row in reader: 

 

#The RDF string contains the RDF. The data in the first column of each row can be accessed using 

#row[0]. Data in the nth column is accessed using row[n-1]. Single quotes are used to hold the string 

#values. The control character \n returns a newline.  

     

    RDF = ('    <!-- http://www.semanticweb.org/ontologies/2008/4/GlasgowSample.owl#' + row[0] + ' --

>\n' 

 

    + '<Building rdf:about="#' + row[0] + '">\n' 

        + '<rdf:type>\n' 

            + '<owl:Class>\n' 

                + '<owl:complementOf>\n' 

                    + '<owl:Restriction>\n' 

                        + '<owl:onProperty rdf:resource="#touches"/>\n' 

                        + '<owl:someValuesFrom rdf:resource="#Building"/>\n' 

                    + '</owl:Restriction>\n' 

                + '</owl:complementOf>\n' 

            + '</owl:Class>\n' 

        + '</rdf:type>\n' 

        + '<hasArea rdf:datatype="&xsd;float">' + row[2] + '</hasArea>\n' 

    + '</Building>\n') 

 

# The print statement below print the value of RDF to the console window. You can then copy/paste 

this to a text file or whatever 

# Note for some reason you need to use ctrl c/ctrl v for copy and paste in the console window as 

right-clicking with the mouse 

# won't work. 

 

    print RDF        
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Example for individuals that touch other buildings 

For individuals that touch other buildings, the code changes slightly because we have to 

assert which building the individual touches: 

 
    RDF = ('    <!-- http://www.semanticweb.org/ontologies/2008/4/GlasgowSample.owl#' + row[0] + ' --

>\n' 

 

    + '<Building rdf:about="#' + row[0] + '">\n' 

        + '<rdf:type>\n' 

            + '<owl:Restriction>\n' 

                + '<owl:onProperty rdf:resource="#touches"/>\n' 

                + '<owl11:onClass rdf:resource="#Building"/>\n' 

                + '<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>\n' 

            + '</owl:Restriction>\n' 

        + '</rdf:type>\n' 

        + '<hasArea rdf:datatype="&xsd;float">' + row[2] + '</hasArea>\n' 

        + '<touches rdf:resource="#' + row[4] + '"/>\n' 

    + '</Building>\n') 

 

For individuals that touch more than 1 building, we simply add rows: 
        + '<touches rdf:resource="#' + row[5] + '"/>\n' 

        + '<touches rdf:resource="#' + row[6] + '"/>\n' 

OWL code from Protégé  

The generated syntax from the Python script can then be loaded into Protégé, where we 

will now find all asserted individuals. We define the high-level concepts of the TBox as 

described in chapter 7. Below some of the OWL code is given. 

HousesOntology_Test3TouchRelation_allclassified.owl: 

The sample dataset contains thousands of individuals, which results in very large OWL 

files. For illustrative purpose, only the building ontology for figure 38 with only a few 

individuals is given here: 
<?xml version="1.0"?> 

 

 

<!DOCTYPE rdf:RDF [ 

    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 

    <!ENTITY owl11 "http://www.w3.org/2006/12/owl11#" > 

    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY owl11xml "http://www.w3.org/2006/12/owl11-xml#" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

    <!ENTITY HousesOntology "http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#" > 

    <!ENTITY HousesOntology-Test3TouchRelation-terraces 

"http://www.semanticweb.org/ontologies/2008/4/HousesOntology-Test3TouchRelation-terraces.owl#" > 

]> 
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<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2008/4/HousesOntology-Test3TouchRelation-

allclassified.owl#" 

     xml:base="http://www.semanticweb.org/ontologies/2008/4/HousesOntology-Test3TouchRelation-

allclassified.owl" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     xmlns:HousesOntology-Test3TouchRelation-

terraces="http://www.semanticweb.org/ontologies/2008/4/HousesOntology-Test3TouchRelation-

terraces.owl#" 

     xmlns:HousesOntology="http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#" 

     xmlns:owl11="http://www.w3.org/2006/12/owl11#" 

     xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#" 

     xmlns:owl="http://www.w3.org/2002/07/owl#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 

    <owl:Ontology rdf:about=""/> 

     

 

 

    <!--  

    /////////////////////////////////////////////////////////////////////////////////////// 

    // 

    // Object Properties 

    // 

    /////////////////////////////////////////////////////////////////////////////////////// 

     --> 

 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#touches --> 

 

    <owl:ObjectProperty rdf:about="&HousesOntology;touches"> 

        <rdf:type rdf:resource="&owl;SymmetricProperty"/> 

        <owl:inverseOf rdf:resource="&HousesOntology;touches"/> 

    </owl:ObjectProperty> 

     

 

 

    <!--  

    /////////////////////////////////////////////////////////////////////////////////////// 

    // 

    // Data properties 

    // 

    /////////////////////////////////////////////////////////////////////////////////////// 

     --> 

 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#hasArea --> 

 

    <owl:DatatypeProperty rdf:about="&HousesOntology;hasArea"> 

        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 

    </owl:DatatypeProperty> 

     

 

 

    <!--  
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    /////////////////////////////////////////////////////////////////////////////////////// 

    // 

    // Classes 

    // 

    /////////////////////////////////////////////////////////////////////////////////////// 

     --> 

 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#Building --> 

 

    <owl:Class rdf:about="&HousesOntology;Building"> 

        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#DetachedHouse --> 

 

    <owl:Class rdf:about="&HousesOntology;DetachedHouse"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <rdf:Description rdf:about="&HousesOntology;House"/> 

                    <owl:Class> 

                        <owl:complementOf> 

                            <owl:Restriction> 

                                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                                <owl:someValuesFrom rdf:resource="&HousesOntology;House"/> 

                            </owl:Restriction> 

                        </owl:complementOf> 

                    </owl:Class> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;House"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#EndTerracedHouse --> 

 

    <owl:Class rdf:about="&HousesOntology;EndTerracedHouse"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <owl:Class> 

                        <owl:complementOf rdf:resource="&HousesOntology;MidTerracedHouse"/> 

                    </owl:Class> 

                    <rdf:Description rdf:about="&HousesOntology;House"/> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl:someValuesFrom rdf:resource="&HousesOntology;MidTerracedHouse"/> 

                    </owl:Restriction> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;House"/> 
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    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#House --> 

 

    <owl:Class rdf:about="&HousesOntology;House"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <rdf:Description rdf:about="&HousesOntology;Building"/> 

                    <owl:Class> 

                        <owl:intersectionOf rdf:parseType="Collection"> 

                            <owl:Restriction> 

                                <owl:onProperty rdf:resource="&HousesOntology;hasArea"/> 

                                <owl:someValuesFrom> 

                                    <rdf:Description> 

                                        <rdf:type rdf:resource="&owl;DataRange"/> 

                                        <owl11:minInclusive 

rdf:datatype="&xsd;int">35</owl11:minInclusive> 

                                        <owl11:onDataRange rdf:resource="&xsd;float"/> 

                                    </rdf:Description> 

                                </owl:someValuesFrom> 

                            </owl:Restriction> 

                            <owl:Restriction> 

                                <owl:onProperty rdf:resource="&HousesOntology;hasArea"/> 

                                <owl:someValuesFrom> 

                                    <rdf:Description> 

                                        <rdf:type rdf:resource="&owl;DataRange"/> 

                                        <owl11:maxInclusive 

rdf:datatype="&xsd;int">160</owl11:maxInclusive> 

                                        <owl11:onDataRange rdf:resource="&xsd;float"/> 

                                    </rdf:Description> 

                                </owl:someValuesFrom> 

                            </owl:Restriction> 

                        </owl:intersectionOf> 

                    </owl:Class> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;Building"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#HouseExtension --> 

 

    <owl:Class rdf:about="&HousesOntology;HouseExtension"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl:someValuesFrom rdf:resource="&HousesOntology;House"/> 

                    </owl:Restriction> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;hasArea"/> 

                        <owl:someValuesFrom> 

                            <rdf:Description> 
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                                <rdf:type rdf:resource="&owl;DataRange"/> 

                                <owl11:onDataRange rdf:resource="&xsd;float"/> 

                                <owl11:maxInclusive rdf:datatype="&xsd;int">35</owl11:maxInclusive> 

                            </rdf:Description> 

                        </owl:someValuesFrom> 

                    </owl:Restriction> 

                    <rdf:Description rdf:about="&HousesOntology;Building"/> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;Building"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#MidTerracedHouse --> 

 

    <owl:Class rdf:about="&HousesOntology;MidTerracedHouse"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <rdf:Description rdf:about="&HousesOntology;House"/> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl11:onClass rdf:resource="&HousesOntology;House"/> 

                        <owl:minCardinality 

rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality> 

                    </owl:Restriction> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;House"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#Outbuilding --> 

 

    <owl:Class rdf:about="&HousesOntology;Outbuilding"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;hasArea"/> 

                        <owl:someValuesFrom> 

                            <rdf:Description> 

                                <rdf:type rdf:resource="&owl;DataRange"/> 

                                <owl11:onDataRange rdf:resource="&xsd;float"/> 

                                <owl11:maxInclusive rdf:datatype="&xsd;int">35</owl11:maxInclusive> 

                            </rdf:Description> 

                        </owl:someValuesFrom> 

                    </owl:Restriction> 

                    <owl:Class> 

                        <owl:complementOf> 

                            <owl:Restriction> 

                                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                                <owl:someValuesFrom rdf:resource="&HousesOntology;House"/> 

                            </owl:Restriction> 

                        </owl:complementOf> 
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                    </owl:Class> 

                    <rdf:Description rdf:about="&HousesOntology;Building"/> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;Building"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/4/HousesOntology-Test3TouchRelation-

terraces.owl#SemiDetachedHouse --> 

 

    <owl:Class rdf:about="&HousesOntology-Test3TouchRelation-terraces;SemiDetachedHouse"> 

        <owl:equivalentClass> 

            <owl:Class> 

                <owl:intersectionOf rdf:parseType="Collection"> 

                    <owl:Class> 

                        <owl:complementOf rdf:resource="&HousesOntology;EndTerracedHouse"/> 

                    </owl:Class> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl11:onClass rdf:resource="&HousesOntology;House"/> 

                        <owl:maxCardinality 

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality> 

                    </owl:Restriction> 

                    <owl:Class> 

                        <owl:complementOf rdf:resource="&HousesOntology;DetachedHouse"/> 

                    </owl:Class> 

                    <rdf:Description rdf:about="&HousesOntology;House"/> 

                </owl:intersectionOf> 

            </owl:Class> 

        </owl:equivalentClass> 

        <rdfs:subClassOf rdf:resource="&HousesOntology;House"/> 

    </owl:Class> 

     

 

 

    <!-- http://www.w3.org/2002/07/owl#Thing --> 

 

    <owl:Class rdf:about="&owl;Thing"/> 

     

 

 

    <!--  

    /////////////////////////////////////////////////////////////////////////////////////// 

    // 

    // Individuals 

    // 

    /////////////////////////////////////////////////////////////////////////////////////// 

     --> 

 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376989 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376989"> 

        <rdf:type rdf:resource="&HousesOntology;EndTerracedHouse"/> 
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        <rdf:type rdf:resource="&HousesOntology;House"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376990"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">87.6</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376990 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376990"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376989"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376991"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">71.5</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376991 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376991"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">77.4</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376990"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376992"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376992 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376992"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 
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        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377010"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376993"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376991"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377011"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">72.5</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376993 --> 

 

    <HousesOntology:MidTerracedHouse rdf:about="&HousesOntology;osgb1000040376993"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377010"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376992"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376994"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">72.1</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377011"/> 

    </HousesOntology:MidTerracedHouse> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376994 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376994"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377008"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">73.1</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377009"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376995"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376993"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376995 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376995"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 
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                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377009"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377008"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">74.6</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376994"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376996"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376996 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376996"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377006"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376997"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376995"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377007"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">71.5</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376997 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376997"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376998"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377007"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">73.8</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377006"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376996"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376998 --> 

 

    <HousesOntology:MidTerracedHouse rdf:about="&HousesOntology;osgb1000040376998"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 
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                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376997"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377004"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376999"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">73.1</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377005"/> 

    </HousesOntology:MidTerracedHouse> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040376999 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040376999"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376998"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377005"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">73.3</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377004"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377000"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377000 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377000"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376999"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377001"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">75.1</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377003"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377001 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377001"> 

        <rdf:type rdf:resource="&HousesOntology;MidTerracedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 
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                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377002"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377000"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">68.9</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377003"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377002 --> 

 

    <HousesOntology:EndTerracedHouse rdf:about="&HousesOntology;osgb1000040377002"> 

        <rdf:type rdf:resource="&HousesOntology;House"/> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377001"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">79</HousesOntology:hasArea> 

    </HousesOntology:EndTerracedHouse> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377003 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377003"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377001"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.4</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377000"/> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377004 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377004"> 

        <rdf:type rdf:resource="&HousesOntology;HouseExtension"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 
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        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.5</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377005"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376998"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376999"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377005 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377005"> 

        <rdf:type rdf:resource="&HousesOntology;HouseExtension"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.6</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376999"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376998"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377004"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377006 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377006"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376996"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377007"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376997"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.2</HousesOntology:hasArea> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377007 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377007"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377006"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376997"/> 
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        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376996"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.1</HousesOntology:hasArea> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377008 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377008"> 

        <rdf:type rdf:resource="&HousesOntology;HouseExtension"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376994"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376995"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.8</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377009"/> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377009 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377009"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.1</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376995"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377008"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376994"/> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377010 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377010"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376992"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376993"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3.5</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377011"/> 
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    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377011 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377011"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">3</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377010"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376993"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040376992"/> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377012 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377012"> 

        <rdf:type> 

            <owl:Class> 

                <owl:complementOf> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl:someValuesFrom rdf:resource="&HousesOntology;Building"/> 

                    </owl:Restriction> 

                </owl:complementOf> 

            </owl:Class> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;Outbuilding"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">22.3</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377014 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377014"> 

        <rdf:type> 

            <owl:Class> 

                <owl:complementOf> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl:someValuesFrom rdf:resource="&HousesOntology;Building"/> 

                    </owl:Restriction> 

                </owl:complementOf> 

            </owl:Class> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;Outbuilding"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">12.9</HousesOntology:hasArea> 

    </HousesOntology:Building> 
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    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377732 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377732"> 

        <rdf:type rdf:resource="&HousesOntology;DetachedHouse"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377754"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">119.9</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377733 --> 

 

    <HousesOntology:Building rdf:about="&HousesOntology;osgb1000040377733"> 

        <rdf:type> 

            <owl:Class> 

                <owl:complementOf> 

                    <owl:Restriction> 

                        <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                        <owl:someValuesFrom rdf:resource="&HousesOntology;Building"/> 

                    </owl:Restriction> 

                </owl:complementOf> 

            </owl:Class> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;DetachedHouse"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">103.4</HousesOntology:hasArea> 

    </HousesOntology:Building> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377754 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377754"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">4.5</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377732"/> 

    </HousesOntology:HouseExtension> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377759 --> 

 

    <HousesOntology-Test3TouchRelation-terraces:SemiDetachedHouse 

rdf:about="&HousesOntology;osgb1000040377759"> 
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        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology;House"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377769"/> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377760"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">98.6</HousesOntology:hasArea> 

    </HousesOntology-Test3TouchRelation-terraces:SemiDetachedHouse> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377760 --> 

 

    <HousesOntology:House rdf:about="&HousesOntology;osgb1000040377760"> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <rdf:type rdf:resource="&HousesOntology-Test3TouchRelation-terraces;SemiDetachedHouse"/> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">97.7</HousesOntology:hasArea> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377759"/> 

    </HousesOntology:House> 

     

 

 

    <!-- http://www.semanticweb.org/ontologies/2008/3/HousesOntology.owl#osgb1000040377769 --> 

 

    <HousesOntology:HouseExtension rdf:about="&HousesOntology;osgb1000040377769"> 

        <rdf:type rdf:resource="&HousesOntology;Building"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&HousesOntology;touches"/> 

                <owl11:onClass rdf:resource="&HousesOntology;Building"/> 

                <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality> 

            </owl:Restriction> 

        </rdf:type> 

        <HousesOntology:touches rdf:resource="&HousesOntology;osgb1000040377759"/> 

        <HousesOntology:hasArea rdf:datatype="&xsd;float">14.7</HousesOntology:hasArea> 

    </HousesOntology:HouseExtension> 

</rdf:RDF> 

Example OWL syntax for defined Urban Block individuals: 

Below is the OWL syntax for one defined urban block individual that is used for the 

inference of types of blocks and districts. An individual’s syntax can be very long 

because some of the blocks contain hundreds of building individuals.  
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    <!-- http://www.semanticweb.org/ontologies/2008/5/GlasgowSample_HouseTypes.owl#UB63991 --> 

 

    <owl:Thing rdf:about="&GlasgowSample_HouseTypes;UB63991"> 

        <rdf:type rdf:resource="&GlasgowSample_HouseTypes;BlockMixedHouses"/> 

        <rdf:type rdf:resource="&GlasgowSample_HouseTypes;DistrictMixedHouses"/> 

        <rdf:type> 

            <owl:Restriction> 

                <owl:onProperty rdf:resource="&GlasgowSample_HouseTypes;contains"/> 

                <owl:allValuesFrom> 

                    <owl:Class> 

                        <owl:oneOf rdf:parseType="Collection"> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377135"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377166"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377132"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377161"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377143"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377137"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377136"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377164"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377138"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377162"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377130"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377169"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377165"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377172"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377167"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377133"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377173"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377142"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377159"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377129"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377134"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377170"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377131"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377168"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377140"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377141"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377139"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377171"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377163"/> 

                            <rdf:Description rdf:about="&GlasgowSample;osgb1000040377160"/> 

                        </owl:oneOf> 

                    </owl:Class> 

                </owl:allValuesFrom> 

            </owl:Restriction> 

        </rdf:type> 

        <GlasgowSample_HouseTypes:hasPercentageDetached 

rdf:datatype="&xsd;float">0</GlasgowSample_HouseTypes:hasPercentageDetached> 

        <GlasgowSample_HouseTypes:hasPercentageTerraces 

rdf:datatype="&xsd;float">20</GlasgowSample_HouseTypes:hasPercentageTerraces> 

        <GlasgowSample_HouseTypes:hasPercentageSemis 

rdf:datatype="&xsd;float">80</GlasgowSample_HouseTypes:hasPercentageSemis> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377129"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377130"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377131"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377132"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377133"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377134"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377135"/> 
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        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377136"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377137"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377138"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377139"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377140"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377141"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377142"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377143"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377159"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377160"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377161"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377162"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377163"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377164"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377165"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377166"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377167"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377168"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377169"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377170"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377171"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377172"/> 

        <GlasgowSample_HouseTypes:contains rdf:resource="&GlasgowSample;osgb1000040377173"/> 

        <GlasgowSample_HouseTypes:connectedTo rdf:resource="&GlasgowSample_HouseTypes;UB63833"/> 

        <GlasgowSample_HouseTypes:connectedTo rdf:resource="&GlasgowSample_HouseTypes;UB64608"/> 

        <GlasgowSample_HouseTypes:connectedTo rdf:resource="&GlasgowSample_HouseTypes;UB64610"/> 

        <GlasgowSample_HouseTypes:connectedTo rdf:resource="&GlasgowSample_HouseTypes;UB66001"/> 

        <GlasgowSample_HouseTypes:connectedTo rdf:resource="&GlasgowSample_HouseTypes;UB66244"/> 

    </owl:Thing> 

 


