92 research outputs found

    Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives

    Full text link
    Collectiveness is an important property of many systems--both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals, or even to produce intelligent collective behaviour out of not-so-intelligent individuals. Indeed, collective intelligence, namely the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems--motivated by recent techno-scientific trends like the Internet of Things, swarm robotics, and crowd computing, just to name a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognised research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this paper considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.Comment: This is the author's final version of the article, accepted for publication in the Artificial Life journal. Data: 34 pages, 2 figure

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Digital 3D Technologies for Humanities Research and Education: An Overview

    Get PDF
    Digital 3D modelling and visualization technologies have been widely applied to support research in the humanities since the 1980s. Since technological backgrounds, project opportunities, and methodological considerations for application are widely discussed in the literature, one of the next tasks is to validate these techniques within a wider scientific community and establish them in the culture of academic disciplines. This article resulted from a postdoctoral thesis and is intended to provide a comprehensive overview on the use of digital 3D technologies in the humanities with regards to (1) scenarios, user communities, and epistemic challenges; (2) technologies, UX design, and workflows; and (3) framework conditions as legislation, infrastructures, and teaching programs. Although the results are of relevance for 3D modelling in all humanities disciplines, the focus of our studies is on modelling of past architectural and cultural landscape objects via interpretative 3D reconstruction methods

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Überblick zur Softwareentwicklung in Wissenschaftlichen Anwendungen

    Get PDF
    Viele wissenschaftliche Disziplinen mĂŒssen heute immer komplexer werdende numerische Probleme lösen. Die KomplexitĂ€t der benutzten wissenschaftlichen Software steigt dabei kontinuierlich an. Diese KomplexitĂ€tssteigerung wird durch eine ganze Reihe sich Ă€ndernder Anforderungen verursacht: Die Betrachtung gekoppelter PhĂ€nomene gewinnt Aufmerksamkeit und gleichzeitig mĂŒssen neue Technologien wie das Grid-Computing oder neue Multiprozessorarchitekturen genutzt werden, um weiterhin in angemessener Zeit zu Berechnungsergebnissen zu kommen. Diese FĂŒlle an neuen Anforderungen kann nicht mehr von kleinen spezialisierten Wissenschaftlergruppen in Isolation bewĂ€ltigt werden. Die Entwicklung wissenschaftlicher Software muss vielmehr in interdisziplinĂ€ren Gruppen geschehen, was neue Herausforderungen in der Softwareentwicklung induziert. Ein Paradigmenwechsel zu einer stĂ€rkeren Separation von Verantwortlichkeiten innerhalb interdisziplinĂ€rer Entwicklergruppen ist bis jetzt in vielen FĂ€llen nur in AnsĂ€tzen erkennbar. Die Kopplung partitioniert durchgefĂŒhrter Simulationen physikalischer PhĂ€nomene ist ein wichtiges Beispiel fĂŒr softwaretechnisch herausfordernde Aufgaben im Gebiet des wissenschaftlichen Rechnens. In diesem Kontext modellieren verschiedene Simulationsprogramme unterschiedliche Teile eines komplexeren gekoppelten Systems. Die vorliegende Arbeit gibt einen Überblick ĂŒber Paradigmen, die darauf abzielen Softwareentwicklung fĂŒr Berechnungsprogramme verlĂ€sslicher und weniger abhĂ€ngig voneinander zu machen. Ein spezielles Augenmerk liegt auf der Entwicklung gekoppelter Simulationen.Fields of modern science and engineering are in need of solving more and more complex numerical problems. The complexity of scientiïŹc software thereby rises continuously. This growth is caused by a number of changing requirements. Coupled phenomena gain importance and new technologies like the computational Grid, graphical and heterogeneous multi-core processors have to be used to achieve high-performance. The amount of additional complexity can not be handled by small groups of specialised scientists. The interdiciplinary nature of scientiïŹc software thereby presents new challanges for software engineering. A paradigm shift towards a stronger separation of concerns becomes necessary in the development of future scientiïŹc software. The coupling of independently simulated physical phenomena is an important example for a software-engineering concern in the domain of computational science. In this context, different simulation-programs model only a part of a more complex coupled system. The present work gives overview on paradigms which aim at making software-development in computational sciences more reliable and less interdependent. A special focus is put on the development of coupled simulations

    Model-Based Run-time Verification of Software Components by Integrating OCL into Treaty

    Get PDF
    Model Driven Development is used to improve software quality and efficiency by automatically transforming abstract and formal models into software implementations. This is particularly sensible if the model’s integrity can be proven formally and is preserved during the model’s transformation. A standard to specify software model integrity is the Object Constraint Language (OCL). Another topic of research is the dynamic development of software components, enabling software system composition at component run-time. As a consequence, the system’s verification must be realized during system run-time (and not during transformation or compile time). Many established verification techniques cannot be used for run-time verification. A method to enable model-based run-time verification will be developed during this work. How OCL constraints can be transformed into executable software artifacts and how they can be used in the component-based system Treaty will be the major task of this diploma thesis.Modellgetriebene Entwicklung dient der Verbesserung von QualitĂ€t und Effizienz in der Software-Entwicklung durch Automatisierung der notwendigen Transformationen von abstrakten bzw. formalen Modellen bis zur Implementierung. Dies ist insbesondere dann sinnvoll, wenn die IntegritĂ€t der ursprĂŒnglichen Modelle formal bewiesen werden kann und durch die Transformation gewĂ€hrleistet wird. Ein Standard zur Spezifikation der IntegritĂ€t von Softwaremodellen ist die Object Constraint Language (OCL). Eine weitere Forschungsrichtung im Software-Engineering ist die Entwicklung von dynamischen Komponenten-Modellen, die die Komposition von Softwaresystemen im laufenden Betrieb ermöglichen. Dies bedeutet, dass die Systemverifikation im laufenden Betrieb realisiert werden muss. Die meisten der etablierten Verifikationstechniken sind dazu nicht geeignet. In der Diplomarbeit soll ausgehend von diesem Stand der Technik eine Methode zur modellbasierten Verifikation zur Laufzeit entwickelt werden. Insbesondere soll untersucht werden, wie OCL-Constraints zur Laufzeit in ausfĂŒhrbare Software-Artefakte ĂŒbersetzt und in dem komponentenbasierten System Treaty verwendet werden können
    • 

    corecore