
Quoted Staged Rewriting: A Practical Approach to
Library-Defined Optimizations

Lionel Parreaux, Amir Shaikhha, Christoph Koch
EPFL, Switzerland — {firstname.lastname}@epfl.ch

Abstract
Staging has proved a successful technique for programmati-
cally removing code abstractions, thereby allowing for faster
program execution while retaining a high-level interface for
the programmer. Unfortunately, techniques based on staging
suffer from a number of problems — ranging from practicali-
ties to fundamental limitations —which have prevented their
widespread adoption. We introduce Quoted Staged Rewriting
(QSR), an approach that uses type-safe, pattern matching-
enabled quasiquotes to define optimizations. The approach
is “staged” in two ways: first, rewrite rules can execute ar-
bitrary code during pattern matching and code reconstruc-
tion, leveraging the power and flexibility of staging; sec-
ond, library designers can orchestrate the application of suc-
cessive rewriting phases (stages). The advantages of using
quasiquote-based rewriting are that library designers never
have to deal directly with the intermediate representation
(IR), and that it allows for non-intrusive optimizations — in
contrast with staging, it is not necessary to adapt the entire
library and user programs to accommodate optimizations.

We show how Squid, a Scala macro-based framework, en-
ables QSR and renders library-defined optimizations more
practical than ever before: library designers write domain-
specific optimizers that users invoke transparently on delim-
ited portions of their code base. As a motivating example we
describe an implementation of stream fusion (a well-known
deforestation technique) that is both simpler and more pow-
erful than the state of the art, and can readily be used by Scala
programmers with no knowledge of metaprogramming.

CCS Concepts • Software and its engineering → Soft-
ware performance; Compilers;

Keywords Rewrite Rules, Staging, Optimization
ACM Reference Format:
Lionel Parreaux, Amir Shaikhha, Christoph Koch. 2017. Quoted
Staged Rewriting: A Practical Approach to Library-Defined Op-
timizations. In Proceedings of 16th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences
(GPCE’17). ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3136040.3136043

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136043

1 Introduction
We begin by providing some necessary background before
presenting our approach and core contributions.

1.1 Staging and extensible compilers
Multi-stage programming (MSP, or just staging) [46] lets
programmers syntactically distinguish multiple stages of ex-
ecution in their programs. At each intermediate stage the
program computes away what is known at this stage, and
generates a new residual program meant to execute the next
stage. The ultimate stage performs the task of the unstaged
program, but in a more efficient way. MSP can be viewed
as a form of partial evaluation with explicit annotations
for binding-time analysis [19], or as a way to define type-
safe program generators that work by iteratively composing
code fragments together. MSP can be applied to both run
time [45, 47] and static [13, 56] code generation. In the latter
case, programs are made of two stages where the first stage
is executed at compile time and the second stage corresponds
to the final, compiled program. A major limitation of MSP is
that it generally offers no type-safe facilities to analyse code
(it is purely generative), which greatly restricts its capabili-
ties in terms of program optimization. Moreover, staging a
library exposes users of that library to staging annotations,1
which leak through its interface. Perhaps more importantly,
staging requires to decide from the beginning which parts
of the program are static (meant to be executed at program
generation time) and which parts are dynamic, then building
everything around that dichotomy, making it hard to evolve
the design later on without extensive refactorings.
Staging has been successfully applied to optimizing do-

main specific languages (DSL), especially Embedded DSLs
(EDSL) [17] which are DSLs that are definedwithin amore ex-
pressive host language such as Haskell [1, 17, 29] or Scala [26,
30, 35, 39]. In this context, staging has been used to facili-
tate the definition of extensible compilers for performance-
oriented DSLs and heterogeneous target platforms [1, 9, 26,
30, 33]. Generally speaking, these compilers reuse the fron-
tend capabilities of their host (syntax and type system) but
they convert programs into their own domain-specific in-
termediate representation (IR) before stringifying low-level
code. This limits their ability to interact with code outside of
the DSL. For example, a compiler for a streams DSL (see the
LMS embedding of [24]) by default can only handle primi-
tive types, strings, arrays, functions, loops and tuples, and
adding support for using other constructs (such as, for ex-
ample, BigInt) requires extending the compiler’s IR, which

1 Type-Based Embedding eschews staging quotations [35], but requires
more complex types, which also degrades the library interface [23, 34].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148033026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3136040.3136043
https://doi.org/10.1145/3136040.3136043
https://doi.org/10.1145/3136040.3136043

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

involves significant amounts of boilerplate. Moreover, ex-
pressing non-trivial optimizations in these frameworks is
hard and error-prone, as one has to deal with details of the
IR with limited support for code pattern matching. Tools
have been proposed to generate some of the boilerplate auto-
matically [23, 43] and solutions were sketched to make code
rewriting easier [34], but the fundamental limitations and
intrinsic complexity of these approaches are still there, and
the burden they impose on library users only partly lifted.

1.2 User-defined rewriting
The idea of building program optimizations via high-level
rewrite rules is far from new [10, 21, 25, 33, 41, 42, 49–51].
However, few approaches have offered a lightweight, type-
safe, language-integrated way of expressing these rules, as
most rely on distinct specification metalanguages or complex
code transformation combinators.

A notable exception, the GlasgowHaskell Compiler (GHC)
[21] allows librarywriters to describe simple algebraic rewrite
rules consisting of two expressions: a pattern, and a template
to replace the pattern with when the rule fires. GHC tries
to apply as many of these rules as possible as it performs
its own optimization passes. There are no termination or
correctness guarantees associated with the rewrite rules, as
their objective is to let users make — at their own risk —
domain-specific assumptions that the compiler cannot make.
There are two major limitations to this approach. First,

while the rules are sufficient to express a variety of optimiza-
tions, they are limited in the patterns that they canmatch and
in the code that they can generate. For example, it is easy to
define a rule to rewrite pow x 2 into x * x, but the generaliza-
tion of that rule to rewrite pow x n, where n is constant, into
x * ... * x is not expressible. Second, library designers have
very weak guarantees about the actual application of their
rules when a program is compiled. The result is intimately
dependent on the inlining behavior of GHC (which is affected
by separate compilation), so that expert knowledge about
the inner workings of the GHC optimizer is often required
to achieve satisfying results [21].2 As a consequence, the
practice is to annotate functions with INLINE or NOINLINE

directives that sometimes need to refer to GHC’s own inter-
nal optimization phase numbers. Moreover, approaches like
stream fusion — a popular deforestation technique [6, 7] —
have been shown to require more powerful rewriting facili-
ties than simple GHC rewrite rules. This has sparked interest
in HERMIT [10, 11], an interactive system based on rewriting
combinators that is significantly more complex.

1.3 Quoted Staged Rewriting
In summary, staging is powerful but imposes a burden on
both library users and library designers. Moreover, purely-
generative staging disallows code inspection, which is lim-
iting, and approaches that allow code inspection do so by
exposing low-level IR constructs that are hard to manipulate.
2 The GHC wiki has this informal bit about the behavior of rewrite rules
in the context of list fusion: “Q: Why does making one thing fuse sometimes
make something else not fuse? A: Because the whole system is built around
inlining, and no one really knows how to make that Do The Right Thing every
time. Also, no one knows a better way to avoid basing it on inlining.”

Rewrite rules in the style of GHC are easier to express and
integrate more seamlessly with the host language, but they
lack expressiveness and control.
In this paper, we bring together the advantages of stag-

ing and rewriting into a unified framework, Quoted Staged
Rewriting (QSR), based on the Squid metaprogramming sys-
tem [31]. We claim that our approach combines the flexibility
and ease of use of language-integrated rewrite rules with
the power and guarantees of static staging.
Our framework works by user-defined, scoped opti-

mizations, whereby: 1. library designers express powerful
domain-specific optimizations byway of type-safe quasiquote-
based rewrite rules; and 2. library users write normal, un-
staged code that they can surround with optimize{ ... }

blocks in order to apply those library optimizations. With
first-class control of inlining, users can abstract on the li-
brary’s constructs while letting the library see through these
abstractions to apply its rewritings. Scoped optimizations
are useful because it often makes sense to focus optimization
efforts on the “hot execution paths” of a program, where we
can afford to let the optimizer spend more time doing its job.
In our experience, applying these aggressive optimizations
to more code outside of the hot paths makes the general
compilation slower but has rapidly diminishing results.
Rewrite rules, which are applied at compile time, are al-

lowed to use arbitrary computations, a flexibility that
places them on equal footing with staging. On the other hand,
rewriting enables a more dynamic approach to binding-time
analysis. Together with extensible pattern matching, this
favors more modular optimization designs: rewritings with
orthogonal concerns can be completely decoupled. Taking
inspiration from transformation-based compilers [20, 36],
where rewritings are interspersed with successive lowering
phases that decrease the general level of abstraction, we
allow optimization designers to specify at which phase to
inline which library abstractions. This is an essential feature
to guarantee consistent abstraction removal and robust, pre-
dictable optimization — both staples of MSP. We make novel
use of a simple IR and effect system, to soundly accommo-
date Scala’s imperative features while enabling high-level
algebraic rewritings. We thus reap the benefits of purity
while still allowing the manipulation of low-level imperative
programs.

1.4 Contributions
Our contributions are organized as follows:
• We develop a simple staging example, and show how the
problem of extending it to handle more optimizations ex-
hibits limitations with staging (Section 2).
• We show how QSR eliminates these problems while retain-
ing the desirable properties of staging, and we see how to
modularly define and compose QSR libraries (Section 3).
• We explain important aspects of how Squid is implemented
and how its IR and effect system work to enable QSR in
the presence of imperative features (Section 4).
• We detail our main use-case: implementing stream fusion
by QSR.3 We improve on the state of the art by expressing
the fusion of more programs, in a simpler way (Section 5).

3 Source code freely available at http://github.com/LPTK/Squid-Examples.
2

http://github.com/LPTK/Squid-Examples

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

• We empirically verify that the QSR approach to stream
fusion matches staging in terms of performance, but also
that it requires less lines of code (Section 6).

2 Background on Staging
2.1 Preamble: Typed Quasiquotes
In this paper we will write all examples using our Squid
framework, which can express staging as well as rewrit-
ing. The way Squid differentiates code in the current stage
from code in the next stage is by the use of code "..."

quasiquotes and associated Code [...] types. For example,
while expression 2. toDouble evaluates immediately to value
2.0 of type Double , expression code "2. toDouble" evalu-
ates to a code value representing the program fragment
2. toDouble of type Code[Double]. In order to go from a
Code[Double] to a Double , one has to call run on the result,
as in code "2. toDouble".run which evaluates to 2.0.

Quasiquotes support composing code fragments together
by using $-escapes, which represent “unqotes.” For example,
val d = code "2"; code "$d + 1" evaluates to code "2+1".
It is possible to unquote the result of bigger expressions by
using curly braces after the dollar sign, so the previous code
can also be written code "${ code "2" } + 1".

Although code quasiquotes use a syntax similar to string
quotation "..." , remark that the code fragments they gen-
erate are not internally represented as character strings, but
as constructs in Squid’s intermediate representation (IR).

2.2 Staging the Power function
The prototypical staging example is power, a function that
raises a number x to the nth power: since the exponent part n
is often a statically known integer, it is tempting to special-
ize that function so that a call to it expands into a simple
sequence of multiplications. Figure 1a presents the code for a
staged power function, which takes a current-stage exponent
n and returns a function from any Double code value base to
a code value representing its multiplication n times. Triple
quotation marks """ introduce multi-line quotations.
The figure ends with a usage example for n = 3. The

astute reader will have noticed that the unquoted expres-
sion power (3) has type Code[Double] => Code[Double],
whereas it is applied in the next stage (inside the quota-
tion) as if it were of type Code[Double => Double]. The
reason is that Squid automatically lifts any current-stage
function Code[A] => Code[B] into a next-stage function
Code[A => B] upon insertion, and immediately inlines it.

2.3 New optimization opportunity
When removing abstractions programmatically and perform-
ing aggressive inlining, optimizable patterns often emerge,
including patterns that a programmer would never write
explicitly [21]. For instance consider a simulation applica-
tion that needs to compute the gravitational force between
several different celestial bodies. Those of us who remember
our physics course will point out that the relevant equa-
tion has the form F = G

m0 ·m1

d (p0,p1)2
, which corresponds to

the program of Figure 2. When the call to distance is in-
lined, the body of gravityForce ends up containing a call to
pow(sqrt (...) ,2), which is clearly an inefficient identity:

G * plan0.mass * plan1.mass /
pow(sqrt(pow(plan0.pos.x - plan1.pos.x, 2)

+ pow(plan0.pos.y - plan1.pos.y, 2)), 2)

Naturally, we would like to be able to optimize such patterns.

2.4 Limitations of Staging
Let us consider what happens if we stage the function of Fig-
ure 2, making use of the power function defined in Figure 1a.
Assuming purely-generative staging like in MetaOCaml [45],
there is no easy way to extend that definition of power to
perform the “power-of-power” optimization described above.
The staged function can no longer accept a Code[Double]

as the base, since purely generative approaches do not allow
inspecting or decomposing code fragments – only creating
and composing them together. However, we need to know
whether a given piece of code has the form of a square root
to be able to eliminate a square operation performed on it.
Solving this issue typically involves defining an auxil-

iary data structure for code being constructed, that carries
additional information about its underlying structure. Fig-
ure 4 shows a generalized definition genPower of the power
function, that uses an algebraic data type CodeRep to retain
information about the code: subclass Pow describes a piece of
code that results from an application of the power function,
while Simple corresponds to other code. Method toCode is
used to reify that intermediate representation into a proper
code fragment to be inserted into a quasiquote.

Notice how that change affected the way we define pow3.
More complex usages of power have to change in an even
more significant way, as is shown in Figure 3 where we
adapt the planet simulation code seen previously to our new
staging scheme. As one can see, both the implementation of
genPower and its usage in pow3, distance and gravityForce

become tremendously more complicated. We believe that
this is why purely-generative staging is often relegated to
the back end — i.e., used merely for end-of-the-pipeline code
generation, while the front end of the library is defined in
the finally-tagless style [2] and mostly hides staging.

Extensible compiler techniques obviate the need to explic-
itly wrap and unwrap code, by making the equivalent of Pow
directly extend (inherit from) the compiler’s internal IR node
type [16]. Moreover, type-inference-based techniques help
to hide staging annotations to some extent [35], which can
be further improved by language virtualization [23, 28], but
the added complexity and fundamental limitations are still
there: DSL designers have to write the entire library with
staging in mind, define IR nodes for all constructs meant to
be supported by the DSL, and interact directly with details of
the compiler’s IR (especially when defining rewritings [34]).

3 Quoted Staged Rewriting
3.1 Preamble: Quasiquotes in Pattern Matching
Squid supports pattern matching on code fragments, with
syntax case code "pattern" => result . In a code pattern,
the semantics of unquotes is no longer to insert but rather to

3

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

def power(exp: Int)(base: Code[Double]): Code[Double] =
if (exp == 0) code"1.0"
else {

assert(exp > 0)
if (exp % 2 == 0) code"""

val tmp = ${power(exp /2)(base)}
tmp * tmp

"""
else code"$base * ${power(exp -1)(base)}" }

val pow3 = code"(x: Double) => ${power (3)}(x)".run

(a) Defining a staged power function.

import Math.pow // (Double ,Double) => Double
@bottomUp @fixedPoint val powOpt = rewrite {

case code"pow($base ,0)" => code"1.0"
case code"pow($base,${Const(exp)})"

if exp.isWhole && exp > 0 =>
if (exp % 2 == 0) code"""

val tmp = pow($base, ${Const(exp/2)})
tmp * tmp

"""
else code"$base * pow($base, ${Const(exp -1)})" }

def pow3(x: Double) = powOpt.optimize { pow(x,3) }

(b) Rewriting the standard Math.pow function.
Figure 1. Two approaches to optimizing the power function.

import Math.{pow ,sqrt}; val G = 6.67E-11
def gravityForce(plan0: Planet , plan1: Planet) =

G * plan0.mass * plan1.mass /
pow(distance(plan0.pos ,plan1.pos), 2)

def distance(p0: Position , p1: Position) =
sqrt(pow(p0.x - p1.x, 2) + pow(p0.y - p1.y, 2))

Figure 2. Example simulation code using sqrt and pow.

def gravityForce(pl0: Code[Planet], pl1: Code[Planet]) =
code"""G * $pl0.mass * $pl1.mass / ${

genPower(distance(code"$pl0.pos",code"$pl1.pos"),2.0)
.toCode }"""

def distance(p0: Code[Position], p1: Code[Position]) =
sqrt(Simple(code"""

${ genPower(Simple(code"$p0.x - $p1.x") ,2.0). toCode }
+ ${ genPower(Simple(code"$p0.y - $p1.y") ,2.0). toCode }

"""))
def sqrt(x: CodeRep[Double]) = genPower(x, 0.5)

Figure 3. Simulation code adapted for the (new) staged interface.

abstract class CodeRep[T] { def toCode: Code[T] }
case class Simple[T](toCode: Code[T]) extends CodeRep[T]
case class Pow(cde: Code[Double], exp: Double)

extends CodeRep[Double] { def toCode =
if (exp.isWhole) power(exp.toInt)(cde)
else code"Math.pow($cde,${Const(exp)})" }

def genPower(base:CodeRep[Double],exp:Double) = base match {
case Simple(c) => Pow(c, exp)
case Pow(c,e) if exp.isWhole => Pow(c,exp * e)
case _ => Pow(base.toCode , exp) }

val pow3 = code"(x: Double) => ${ (x: Code[Double]) =>
genPower(Simple(x), 3). toCode }(x)".run

Figure 4.Newdefinition of the staged power function, with support
for optimizing the “power-of-power” pattern.

extract code fragments found in the place where they occur.
For example, the following program evaluates to code "2":
code "2+1" m a t c h { case code "($n:Int) + 1" => n }

3.2 Rewriting Math.pow

Figure 1b presents a rewriting that optimizes calls to Math.pow

with integer exponents using binary exponentiation. Const
is the constructor/extractor for constant values; for example
Const (2) is equivalent to code "2" in both expressions and
patterns. A rewriting is registered using a r e w r i t e block
containing pattern matching clauses. Each rewriting can
be configured to apply in bottom-up or top-down traver-
sal order, and can be made to apply repeatedly until a fixed

point is reached. In this example we use bottom-up order and
fixed-point recursion. Method isWhole simply tests whether
a Double value is a whole number. Note that Squid uses an IR
based on the A-Normal Form (ANF) [12], which means that
non-trivial sub-expressions are let-bound, so that it is not a
problem to duplicate the base argument extracted from the
patterns. For example, pow(readInt ,3) is rewritten into:
val x_0 = readInt; x_0 * 1.0 * (x_0 * 1.0 * (x_0 * 1.0))

One can immediately notice several differences with the
staged version. First we do not need to create a new, dis-
tinct power construct; instead we operate directly on Java’s
standard Math.pow method. This means that any programs
using Math.pow can already benefit from our optimization
without any changes to their business logic. In other words,
QSR allows us to work directly on program representations
instead of staged structures, but without having to define
our own domain-specific IR. Moreover, the optimization of
pow3 in Figure 1b happens at compile-time which makes the
user experience similar to built-in optimizations.

3.3 Extending the Rewriting
Implementing the “power-of-power” optimization by rewrit-
ing is straightforward, as we can simply add the following
rewrite rules4 to those of Figure 1b:

case code"sqrt($x)" => code"pow($x ,0.5)"
case code"pow(pow($base,${Const(a)}),${Const(b)})"

if b.isWhole => code"pow($base,${Const(a * b)})"
case code"pow($x ,1)" => x // just for aesthetics

We can now wrap the body of gravityForce in Figure 2 in-
side a powOpt.optimize {...} block, which rewrites it into:

val x_0 = plan0.pos.x - plan1.pos.x
val x_2 = plan0.pos.y - plan1.pos.y
G * plan0.mass * plan1.mass / (x_0 * x_0 + x_2 * x_2)

There is one caveat however: the additional rules have to
be inserted at the beginning of the case clauses of Figure 1b,
otherwise an expression such as pow(pow(x,0.5) ,2) will
be rewritten to val tmp = pow(y ,0.5); tmp * tmp by the
second rule of Figure 1b, before the new rules can be ap-
plied, missing that optimization opportunity.5 This shows

4 We require the outer exponent b to be a whole number to avoid performing
unsound reductions, like sqrt(pow(x,2)) to x instead of abs(x).
5 The cases of a rewriting are tried in the order they are defined, similar to
classical pattern matching (the match keyword).

4

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

@online val powOpt = rewrite {
case code"pow($base,${Const(exp)})"

if exp.isWhole && exp > 0 => power(exp.toInt)(base)
case code"pow($base,$exp)" => throw

StagingError ("Non -static exponent: " + exp) }

Figure 5. Hybrid approach: rewrite rules that falls back to staged
function and emit error on rewrite failure.

that the ordering of rewritings should be carefully consid-
ered by library designers. More generally, it is often useful
to organize rewrite rules into separate phases. For example,
considering that the implementation of sqrt is faster than
that of more general-purpose pow, it would pay off to have a
later phase that converts code of the form pow(x,0.5) back
into sqrt(x) before emitting the final code. The question of
rewriting phases is exemplified further in Section 5.4.

3.4 Hybrid approaches and online rewriting
It is possible to freely combine rewriting and traditional stag-
ing. For instance, while fixed point rewriting is often useful,
its use in Figure 1b could be considered overkill; instead of
looping through the fixed point of the rewrite rule, we could
just as well call a staged function that performs the looping
itself,6 as demonstrated in Figure 5. In that configuration,
the role of rewrite rules is to automatically extract static
parts from unannotated programs, similar to binding time
analysis (BTA). Reminiscent of online partial evaluation [19],
the @online annotation specifies that a rewriting should be
performed on the fly, as program representations are con-
structed. Online rewrite rules can be used to achieve a form
of normalization: by restricting the space of representable
programs, they make transformations simpler to express. Ad-
ditionally, they can alleviate phase ordering problems [36].

3.5 Guarantees and Control
Thanks to arbitrary code execution in rewrite rules and con-
trol over inlining (see Section 5.4), we make the argument
that QSR is as powerful as compile-time staging. In particu-
lar, it preserves all the necessary control required by library
designers, who wish to guarantee to library users that pro-
gram optimizations apply reliably: if some rewriting could
not be applied because static information could not be ex-
tracted, it is always possible for the rewrite system to emit a
compile-time error and fail code generation, as is done in the
second rule of Figure 5. Other valid behaviors in this case
may be: emitting a compile-time warning but going through
with code generation; simply logging the failure in a report
that users can inspect in order to understand how to speed
up their program; or doing nothing at all – which is what
traditional compiler optimizations have been doing.
An even stronger argument can be made following [3]

and [29], who rely on the subformula principle of normal
proofs adapted to programming [54] to guarantee that types
that do not appear as subformulas of the types of the inputs
and outputs of a program will be completely removed after
sufficient normalization. For example, a program of type

6 Yet another hybrid approach would be to use code pattern-matching inside
of a staged definition, lifting the purely-generative restriction.

Int => Int that is internally defined using some Stream data
type can be rewritten to a program that does not make use
of Stream , as long as we can inline all Stream functions. The
possibility of inlining the relevant functions is an integral
part of the subformula principle: if we do not have access
to the function body (and therefore cannot inline it), the
function itself should be counted as part of the inputs to the
program, which prevents the application of the subformula
principle (as the function type will contain the offending
type — here, Stream).

3.6 Modularity of rewritings
Squid enables the common approach [41, 52] of separating
term-level rewritings from transformation strategies. As a
result, it is possible to define self-contained libraries of useful
rewritings as well as libraries of useful transformation strate-
gies and compose them modularly. To combine different
strategies we rely on Scala’s mix-in composition mechanism,
a technique also used in previous work [16, 37].
Another important direction for modularity is to allow

abstracting over patterns in rewrite rules [49]. Squid achieve
this by merely relying on Scala’s built-in custom extractors:
object Even { def unapply(x: Code[Double]) = x match {

case Const(n) if n % 2 == 0 => Some(x)
case code"($_: Int) * 2" => Some(x)
case code"${Odd(_)} + 1" => Some(x)
case _ => None }}

object Odd { /* similar definition elided */ }
rewrite {

case code"pow(-1,${Even(n)})" => code"1.0"
case code"pow(pow($b,${Even(Const(n))}), ${Const(e)})"

if n * e == 1.0 => code"abs($b)" }

The code above defines co-recursive Even and Odd extractors
that are used to rewrite terms such as pow(pow(x,2) ,0.5)

into abs(x) and pow(-1,readInt *2) into readInt; 1.0.

3.7 Composing uses of QSR libraries
Finally, we describe how to compose together optimizers de-
fined in different libraries. The simplest way to achieve com-
position is to nest the optimize blocks, which expand inside-
out: in r0.optimize{ ... r1.optimize{ ... } ... } the
r1 block expands first (applying its rewrite rules), and what
the r0 block sees is the resulting optimized code. Conse-
quently, this approach may yield different results depending
on the order in which the different blocks are nested.
A more fine-grained alternative is to merge rewriting

passes together, as in (r0+r1). optimize{ ... } but this
requires that the rewritings be defined using compatible tra-
versal strategies. More advanced library optimizers (like in
Section 5) may be defined in terms of successive rewriting
and inlining phases; determining how to mix these more
complex optimizers together in a fine-grained way requires
careful consideration from the user.

3.8 Optimizing Existing Libraries
As we saw with Math.pow and Math.sqrt, Squid can opti-
mize code written using preexisting, unmodified libraries.
On the other hand, it is often beneficial to design libraries

5

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

with optimization in mind, using constructs that can be eas-
ily manipulated and optimized by code rewriting. For ex-
ample, Section 5 presents a streams implementation Strm

that is geared towards QSR. Nevertheless, it is still possible
to use that ad-hoc implementation to optimize existing li-
braries, such as Scala’s Stream . This is done in three phases.
First, we define conversion functions toStrm and toStream

to move between the two representations [48]. Then we
rewrite all Stream operations to Strm ones using these con-
versions, while collapsing useless conversions on the fly.
For example, we convert Stream.from (0,1). take (3). sum

to Strm.from (0 ,1). take (3). sum with these rewritings:
case code"($xs:Stream[Int]).sum" => code"toStrm($xs).sum"
case code"Stream.from($start,$step)"

=> code"toStream(Strm.from($start,$step))"
case code"($xs:Stream[$t]). take($n)"

=> code"toStream(toStrm($xs).take($n))"
case code"toStrm(toStream($xs:Strm[$t]))" => xs

Finally, the usual Strm optimizations can be applied on the
resulting program, producing optimized code that may en-
tirely bypass the usage of Stream . Note that in certain cases,
inserting back-and-forth conversions may be detrimental to
performance when the whole pipeline cannot be converted
and when the cost of conversion outweighs the gains of
optimization [7]. Thankfully, it is easy to write a separate
“clean-up” phase which reverts conversions that could not
apply fully, avoiding unwanted conversion costs.

4 Enabling Quoted Staged Rewriting
In this section, we detail several important technical aspects
of the Squid implementation that enable QSR.

4.1 Custom A-Normal Form (ANF)
Hash consing. The Squid ANF IR is geared towards making
rewrite rules as flexible as possible. As such, we have an
unconventional definition of “non-trivial expressions” (those
expressions that need to be let-bound). In our approach all
pure expressions are considered trivial and therefore they
are never let-bound. Semantically, it is as if pure expressions
were duplicated at every one of their use sites, but internally
Squid uses hash-consing [18] so that there is only a single
representation in memory of every pure term. Conceptually,
writing code "println(x+1); x+1" is equivalent to writing
val x_0 = code "x+1"; code "println($x_0); $x_0". This
is not only useful to save memory, but also allows Squid to
cache transformations so that they are not performed more
than once on a given pure term.

Matching. The mechanism described above gives us the
benefits of ANF (normalized control-flow, sound handling
of effects) while enabling powerful code pattern matching,
because patterns can freely inspect nested sub-expressions
as long as these sub-expressions are pure. Impure patterns
can also be used, such as case code "println(readInt)",
which matches code " val x = readInt; println(x)" but
does not match any program where there are impure expres-
sions intervening between the readInt and println calls,
like code " val x = readInt; readDouble; println(x)".

Scheduling. When generating or pretty-printing code, Squid
uses a scheduling phase to let-bind pure expressions that are
used multiple times, in order to minimize program size and
computation costs. This phase needs special care around
closures, by-name arguments and branching constructs. For
example, it makes sense to schedule expressions out of a
loop (so as not to recompute them on every iteration), but
inside an if-then-else branch if the other branch does not
also use it (so as not to perform useless computations). Due
to the lack of space, we do not describe the algorithm used
by Squid to perform scheduling, but there is extensive lit-
erature on the subject [4]. Squid allows users to annotate
higher-order method parameters to indicate whether they
are expected to execute at most once, at least once or many
times. This way Squid can produce sensible schedules for
code that uses custom constructs, such as the loopWhile

function of Section 5.3.

4.2 Effect System
Basic Principles. In order to determine which expressions
are pure, Squid uses a very simple yet surprisingly versatile
effect system. The idea is to differentiate two kinds of effects:
direct and latent. An expression has direct effect if it reads
or writes mutable state, performs I/O, etc. Latent effects are
reserved for expressions that delay the execution of direct
effects, such as a lambda expression containing effectful
code. Similarly to previous systems [38], methods are then
annotated with 1. their intrinsic effect, and 2. the way they
propagate the effects of their arguments. “Pure expressions”
are those with no direct effect, so lambda expressions are
considered pure even when they have latent effect.

Examples. Since the Scala Stream datatype is purely func-
tional, none of its methods has any intrinsic effects. However,
transformers like map “build up” latent effects when applied
to effectful functions, so Stream (1,2,3).map(_ + readInt)

has latent effect. On the other hand, consumers like fold

“execute” the latent effect of their arguments. This is because
Stream is a lazy data structure that executes computations
only when required. As an example, if either s or f have
latent effect then s.fold (0)(f) has direct effect — other-
wise it is pure. As a result, a stream pipeline like the ones
we study in Section 5 is normalized to one big expression
terminated by a call to a consumer such as fold or foreach ,
which allows for simple yet powerful rewritings (cf. Fig-
ure 7). Finally, notice that strict collections behave differ-
ently: for them, transformers execute immediately, so code
like List (1,2,3).map(_ + readInt) has direct effect.

FutureWork. Improving the effect system to bemore finely-
grained could benefit pattern matching and scheduling. In
particular, we could maintain an arbitrary number of latent
effect layers — currently we consider that x => print(x)

and x => y => print(x) have the same (latent) effect, which
means that when the latter is applied once it is already consid-
ered to have a direct effect, which is not unsound but rather
imprecise.We could also use a graph-based IR [5] to maintain
explicit dependencies between expressions, like in LMS [36]
or Graal [55]. Finally, while we currently require users to

6

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

annotate the effects of their methods, automatic effect infer-
ence is entirely feasible. Existing dedicated effect-tracking
tools could also be leveraged, such as Scala FX [38].

4.3 Implemenation of code pattern matching
Squid implements pattern matching by building a term con-
taining holes to represent the pattern, similarly to the Folds
subsystem of HERMIT described in Farmer’s dissertation
(p.73) [10]. Squid’s current rewriting algorithm works by try-
ing each pattern one after the other, and does not memoize
previous matching results, although that would be possible
to implement — following Farmer, we plan to use trie maps in
order to speed up the process. Nevertheless, we have found
that even our non-optimal approach was practical, and en-
abled advanced rewritings like those of Section 5 plus dozens
of online normalization rules7 to be applied on mid-sized
method bodies without incurring unmanageable compilation
times. We reserve an empirical study of these performance
characteristics for future work.

5 Stream Fusion
5.1 Previous Approaches
List fusion, which consists in optimizing libraries that make
use of functional lists — or “streams” — by removing inter-
mediate results (a technique also called deforestation [53]),
has been an intense subject of research [7, 14, 15, 21, 22, 24].
Promising approaches relying on GHC rewrite rules [7, 21]
were thoroughly explored, but these approach often suf-
fer from a lack of control and from limitations of the GHC
rewrite rule framework.

On the other hand, staging has been used to achieve simi-
lar goals [22, 24]. Most recently, Kiselyov et al. [24] demon-
strated an approach based on staging that fuses several dif-
ficult stream operations, including “zipping” two streams
together.8 Their approach requires an elaborate staged rep-
resentation of streaming code, that relies on existentially-
quantified types to encode the stream’s internal state and
uses continuation-passing style (CPS) thoroughly to thread
state and iteration code through the streaming constructs.
This makes the description and implementation of the li-
brary slightly convoluted and hard to understand. On the
other hand, the library exposes staging annotations, as it
forces users to write all the business logic of their appli-
cation inside quotations.9 For example, instead of writing
stream.map(x => x.foo), one has to write the equivalent of
stream.map(x => code "$x.foo"). This has two disadvan-
tages: first, library users generally have to use a compiler
modified for staging, and need to understand staging an-
notations even when it’s irrelevant for their business logic;
second, this means the BTA of the library is completely

7 Whenwe did the microbenchmarks of Section 6, there were a total of 66 on-
line rewrite rules registered, handling things ranging from logic operations
to options normalization to desugaring common Scala idioms.
8 Zipping a stream of elements of type A with a stream of elements of type
B produces a stream of combined (A,B) elements.
9 The authors propose to use combinators to hide staging and mitigate the
issue, but we believe that this is not really helping. x => stagedFoo(x) is not
qualitatively better for the user than the quoted version.

fixed [27]; i.e., which parts are known statically is fully deter-
mined in advance by the library designers. Future changes to
enable more optimizations may break the library interface,
as we describe further in Section 5.6, and any usages of the
library in a slightly more dynamic setting are impossible.
In the rest of this section, we show how to use QSR and

reap the benefits of staging and rewriting: we perform stream
fusion without affecting the user interface of the library and
more thoroughly than in the staging-based previous work,
and we enable more control and more powerful transforma-
tions than offered by GHC rewrite rules.

5.2 Stream Fusion by CPS and Inlining
The streams interface that we focus on is the same as in [24]
and follows. All functions are standard and self-describing:
type Strm[A] <: {

def map[B](f: A => B): Strm[B]
def flatMap[B](f: A => Strm[B]): Strm[B]
def take(n: Int): Strm[A]
def filter(p: A => Bool): Strm[A]
def zipWith[B](that: Strm[B]): Strm[(A,B)]
def fold[B](z: B)(f: (B,A) => B): B

}
def fromRange(from: Int , until: Int): Strm[Int]
def unfold[A,B](init:B)(next:B => Option [(A,B)]): Strm[A]

Other constructs can of course be defined on top of these
ones by adding “syntactic sugar,” such as fromArray in:

def fromArray[A](xs: Array[A]): Strm[A] =
fromRange(0, xs.length).map(i => xs(i))

A simple way to implement streams is by backing them with
imperative producers which allow requesting elements one
by one (the pull model of iteration) while keeping internal
iteration state. In order to retain the expected pure interface
for streams, it is necessary that stream objects not store a spe-
cific producer, but rather a way to initialize a new producer
and its internal state — a producer factory:

case class Strm[A](producer: () => Producer[A])

Producer[A] can be implemented as a function of no argu-
ments that, when called, returns Some(e) if e is the next
element to be produced, or None if there are no more ele-
ments to produce (i.e., type Producer[A] = () => Option[A]).
However, as has been noted before [44] the use of Option to
guide control flow tends to generate code that is not easily
optimized or partially evaluated, because it typically contains
redundant branching expressions. In general, rewriting these
into a more streamlined control flow requires some control-
flow analysis. While this can certainly be done using our
approach (since we can inspect code by recursively travers-
ing it via pattern-matching), it is much easier to adopt an
alternative representation of producers. As often, the better
representation is in continuation-passing style:

type Consumer[A] = A => Unit
type Producer[A] = Consumer[A] => Unit

Figure 6 shows the gist of the Strm implementation that
we finally settle on. The andThen combinator pipelines two
functions together such that f.andThen(g) (also written in
operator syntax f andThen g) is equivalent to x => g(f(x)).

7

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

@embed case class Strm[A](producer: () => Producer[A]) {
def map[B](f: A => B): Strm[B] = Strm (() => {

val p = producer (); k => p(f andThen k) })
def take(n: Int): Strm[A] = Strm (() => {

val p = producer (); var taken = 0
k => if (taken < n) { taken += 1; p(k) } })

def zip[B](that: Strm[B]): Strm[(A,B)] = Strm (() => {
val p0 = producer (); val p1 = that.producer ()
k => p0 { a => p1 { b => k((a,b)) } } })

def fold[B](z: B)(f: (B,A) => B): B = {
val p = producer (); var cur = z; var cont = true
while (cont) { cont = false

p { a => cur = f(cur , a); cont = true } }; cur }
def foreach(f: A=>Unit): Unit = fold (()){(_,a) => f(a)}
/* other implementations elided */

}
def fromRange(n: Int , m: Int): Strm[Int] = Strm (() => {

var i = n; k => { if (i < m) { k(i); i += 1 } } })

Figure 6. Implementation of the Strm data type.

Marking the Strm class with an @embed annotation allows
Squid to automatically create a deep embedding for the body
of every method in the class (similar to [23]). By default,
unless annotated with an explicit @phase (see Section 5.4),
methods and data constructors are treated by Squid like
syntactic sugar, and they are inlined on the fly.

Perhaps surprisingly, most of the constructs of our streams
library already fuse automatically after inlining. For example,
the “Hello World” of fusion xs.map(f).map(g).sum where
s.sum = s.fold (0)(_ + _) basically desugars/inlines into:

val p = xs.producer (); var cur = 0
var cont = true; while (cont) { cont = false

p { a => cur = cur + g(f(a)); cont = true } }
cur

As a more interesting example, consider the program:
optimize{ (xs:Array[Int]) => unfold (0)(i => Some(i,i+1))
.zip(fromArray(xs). filter(_ % 2 == 0)). foreach(print) }

For which Squid produces this code, slightly reformatted:
(xs_0: Array[Int]) => {

val len_1 = xs_0.length; var st_2 = 0; var i_3 = 0;
var cont_4 = true; while (cont_4) { cont_4 = false;

val x_5 = st_2; st_2 = x_5 + 1;
var cont_6 = true; while (cont_6) { cont_6 = false;

val iv_7 = i_3; if (iv_7 < len_1) {
val x_8 = xs_0(iv_7);
if(x_8 % 2 == 0){ print((x_5 ,x_8)); cont_4=true }
else cont_6 = true;
i_3 = iv_7 + 1; }}}}

As we can observe, all of the Strm abstractions have been
removed and closures have disappeared, leaving behind a
residual program made only of variables and loops. Normal-
ization plays a major role in this regard: on the one hand,
Squid relies on ANF (cf. Section 4.1) to streamline block struc-
tures and inline “one-shot” lambdas (lambdas applied only
once [21]); on the other hand, user-defined online rewrite
rules allow getting rid of intermediate abstractions — notice
that the code above does not contain any Option despite the
unfold interface making use of them. We do not describe
such normalizations here for lack of space, but the ones
that apply in this case transform Some(x). isDefined and
Some(x).get into true and x respectively.

5.3 The problem with flatMap

The only construct that does not play well with this state
of affairs is flatMap , which is due to its intrinsic higher-
order nature. To understand this, consider one of its possible
implementations, shown below:
def flatMap[B](f: A => Strm[B]): Strm[B] = Strm (() => {

val p=producer (); var curBp=Option.empty[Producer[B]]
k => {

var consumed = false
loopWhile {

if (!curBp.isDefined)
p { a => curBp = Some(f(a). producer ()) }

curBp.fold(false) { bs =>
bs { b => k(b); consumed = true }
if (! consumed) { curBp = None; true } else false

}}}})

Syntax loopWhile {...} is the same as w h i l e ({...}){} , and
opt.fold(d)(f) applies function f on the value contained
in option opt or returns d if opt is not defined. The imple-
mentation proceeds by storing the current producer of B

elements in variable curBp . Whenever the current producer
runs out of elements (variable consumed is not set to true
after calling bs), we set curBp to the next producer, which is
obtained by applying f on the next element a of p.

The problem is that curBp is a variable that stores a func-
tion, preventing its inlining (remember that type Producer[B]

is an alias for Consumer[B] => Unit). Notice that each time
the value of curBp is reset, it captures a different value of a
that is not available outside of the continuation passed to p.
Even if we know the body of f, we cannot naively inline it at
its use site, in bs{ b => ...}, because we would no longer
have access to that a. As was noted before [6, 7, 11], these
complications derive directly from the power and generality
of flatMap . In the general case, for each element of the source
stream, the function passed to flatMap could return streams
of arbitrary shapes constructed at runtime, making it unfea-
sible for a compiler to fuse the code based solely on static
information. However, in a significant proportion of stream
programs used in practice (if not the vast majority), flatMap
is used with more “well-behaved” functions, for example
functions that always produce the same shape of streams
for each source element (see Section 5.7). Furthermore, it
is often possible to reorganize a program so that the result
of any flatMap is consumed all at once (the “push-based”
approach) instead of one element at a time, which allows
us to avoid the inefficient pull-based implementation shown
above. In the next section we explore that approach, and in
Section 5.7 we describe a more general but more complex
and slightly less efficient solution.

5.4 Enabling more fusion by QSR
Our goal is to defer the inlining of flatMap and the other
Strm operations so that we get a chance to rewrite stream us-
age patterns in a way that removes the need for pulling from
flatMap results. To achieve this, we annotate all core Strm

methods (those that are not syntactic sugar) with @phase

("Low") to delay their inlining. We then take inspiration
from Kiselyov et al. [24], who leverage the fact that flatMap
is no more problematic if we can consume its elements using
internal iteration (push-based approach, cf. foreach) instead

8

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

of external iteration (pull-based). We introduce the notion of
pullable streams for streams that can be efficiently used with
external iteration. To mark streams that are pullable, we use
a dummy “marker” method pull[A](as:Strm[A]): Strm[A]

also annotated with @phase("Low"), which simply returns
its argument unchanged.10 We make fromRange and unfold

syntactic sugar that wrap their body with a call to pull, since
their implementations are pullable, and we define the prop-
agation rules seen in the first part of Figure 7. These rules
“float out” the pull wrapper as long as the outer operation
is also pullable.11
The next step is to define rules that fold usages of the

stream combinators in order to enable internal iteration. To
simplify this step, we redefine fold and foreach in terms of
a doWhile method that consumes the elements of a stream
as long as its argument function returns true:

@phase ("Low") def doWhile (f: A => Bool) = {
val p = producer (); loopWhile {

var cont = false; p { a => cont = f(a) }; cont }}

The Folding rules in the second part of Figure 7 then reduce
stream combinators that are applied to doWhile . The last
two rules of Figure 7 dispatch the implementation of zip

depending on which of its two arguments is pullable. Similar
to [24], in this section we do not explicitly handle the case
where neither is pullable. Function doZip is syntactic sugar
for a specialized versions of doWhile:
def doZip[A,B](s:Strm[A],p:Producer[B])(f:(A,B) => Bool) =
s.doWhile{ a => var c = false; p { b => c = f(a,b) }; c }

Schematically, our optimizer is organized as follows:
• Desugaring: This is already done automatically by Squid;
it concerns fromArray , fold, foreach , doZip , etc.
• Flow: bottom-up rewriting to propagate the pull infor-
mation “down” the method chain — when possible — and
to reduce consumed streams using internal iteration.
• Lowering: inlining of the Strm constructor, pull, doWhile
and other core Strm methods to low-level code; removal
of Option variables and other low-level optimizations.

Example. Consider the following pipeline transformation:
// Source:
fromRange(0,n) zip (

fromRange(0,m).map(i => fromRange(0,i)). flatMap(x => x)
) filter {x => x._1 % 2 == 0} foreach println

// After Desugaring:
pullable(fromRangeImpl (0,n)).zip(

pullable(fromRangeImpl (0,m))
.map(i => pullable(fromRangeImpl (0,i)))
.flatMap(x => x)

). filter { x => x._1 % 2 == 0 }
.doWhile { x => println(x); true }

10 A common technique, also used by GHC developers. For example see
https://ghc.haskell.org/trac/ghc/wiki/OneShot (accessed June 28 2017).
11 Note that Squid allows type-parametric matching – unquotes can extract
types as well as terms. For ease of presentation, Figure 7 has been simplified
not to include type extraction. In our code base, the pattern of the first rule
actually reads: case code"pull[$ta]($as) map[$tb] $f" => ...

@bottomUp @fixedPoint val Flow = rewrite {

// Floating out pullable info

case code"pull($as) map $f "

=> code"pull($as map $f)"

case code"pull($as) filter $pred "

=> code"pull($as filter $pred)"

case code"pull($as) take $n "

=> code"pull($as take $n)"

case code"pull($as) flatMap $f" => code"$as flatMap $f"

// Folding ^ flatMap is not 'pullable '

case code"pull($as) doWhile $f" => code"$as doWhile $f"

case code"$as map $f doWhile $g"

=> code"$as doWhile ($f andThen $g)"

case code"$as filter $pred doWhile $f"

=> code"$as doWhile { a => !$pred(a) || $f(a) }"

case code"$as take $n doWhile $f"

=> code"""var tk = 0

$as doWhile { a => tk += 1; tk <= $n && $f(a) }"""

case code"$as flatMap $f doWhile $g"

=> code"""$as doWhile { a => var c = false

$f(a) doWhile {b => c = $g(b); c}; c }"""

// Zipping

case code"$as zip pull($bs) doWhile $f" => code"""

$as.doZip($bs.producer ()){ (a,b) => $f((a,b)) }"""

case code"pull($as) zip $bs doWhile $f" => code"""

$bs.doZip($as.producer ()){ (b,a) => $f((a,b)) }"""

}
Figure 7. Algebraic rewrite rules for stream fusion.

// After Flow:
val p = fromRangeImpl (0,n). producer ()
fromRangeImpl (0,m) doWhile { i =>

var cont_0 = false
fromRangeImpl (0,i) doWhile { b =>

var cont_1 = false
p {a => if(a % 2 == 0) println ((a,b)); cont_1 = true}
cont_0 = cont_1
cont_0 }; cont_0 }

// After Lowering , the code has only variables and loops

To conclude this part, let us remark that we already fuse
more programs than [24], because in contrast with that work
we do not desugar filter to flatMap . The implementation of
filter is pullable while that of flatMap is not, so that desug-
aring is counterproductive. As a result, we can fuse programs
such as (s0 filter f0) zip (s1 filter f1) while [24]
cannot — in their case writing such a program results in the
generation of variables holding closures that capture local
mutable state, a failure of abstraction removal.

By using a careful design, simple high-level rewrite rules
and controlled inlining, we achieved state-of-the-art stream
fusion capabilities with less complexity than previous work.

5.5 Correctness of the Stream Fusion scheme
The first desirable property for our stream fusion rewriting
system is that it terminates, expressed in Theorem 5.1 below:

Theorem 5.1 (Strong Normalization). The fixed point appli-
cation of the rewrite rules in Figure 7 always converges.

Proof: The pull wrapper propagation converges because
pull is only propagated outwards, and is never introduced
by any other rule. For the rest of the rules, notice that they
each reduce the number of Strm constructs in the program

9

https://ghc.haskell.org/trac/ghc/wiki/OneShot

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

by at least one. This is a decreasing measure which ensures
that the rewriting is terminating.
Next, let us argue that we fuse all stream pipelines that

we set out to fuse (which excludes pipelines zipping two
flattened streams). Interestingly, Figure 7 can be viewed like
small-step operational semantics, where values are fully-
fused stream pipeline programs. Our goal is then to show
that well-formed pipelines reduce to values, which is done
via the usual properties of subject reduction (Theorem 5.4)
and progress (Theorem 5.6).

Definition 5.2 (Pullable Stream). A stream term that can
be rewritten to a term of the form pull(xs) by the rewrite
rules in Figure 7.

Definition 5.3 (Well-formed pipeline). A well-typed pro-
gram where: 1. all stream sub-terms are used as arguments
in applications of map, flatMap , filter , take, zip, pull, or
doWhile; 2. where any applications of zip has at least one
of its two arguments pullable; and 3. where applications of
pull enclose neither zip nor flatMap applications.

Notice that in actual programs, pull is not invoked by
the user but solely arises from desugaring fromRange(n.m)

and unfold(z)(f) into well-formed sub-terms, respectively
pull(fromRangeImpl(n,m)) and pull(unfoldImpl(z)(f)).
For simplicity we consider that producer () calls intro-

duced by the Zipping rules are immediately inlined, and that
the resulting code is inlined as well, recursively.

Theorem 5.4 (Subject Reduction). The rewrite rules of Fig-
ure 7 preserve types and well-formedness.

Proof: We have type preservation for free thanks to Squid,
which statically enforces that the result of each rewrite rule
has the same type as the pattern. It is straightforward to
see that well-formedness is preserved as well, as the rules
only introduce Strm functions and low-level constructs —
we can prove by induction that producer () is never applied
on flatMap (which is the only construct with a non-trivial
producer implementation) because the zipping rules make
sure producer () is only applied on pullable streams, and
flatMap does not propagate the pull wrapper.

Definition 5.5 (Fully-fused pipeline). A program that only
contains references to doWhile , fromRangeImpl , unfoldImpl
and low-level constructs such as variables of primitive types,
if-then-else branches, conditionals, etc.

Theorem 5.6 (Progress). Any well-formed pipeline that is
not fully-fused can have at least one of its sub-terms reduced
by the rules of Figure 7.

Proof: For a pipeline to be well-formed but not fully fused, it
either needs to have non-low-level features such as function
variables — which cannot happen because we only inline
pullable streams — or it needs to still have one of pull, map,
flatMap , filter , take or zip. At least one of these has to be
passed into a call to doWhile , by well-formedness hypothesis
(because doWhile is the only terminal operation). Therefore,
such term can be reduced by one of the folding rewrite rules

if the outer term is not a zip. If it is a zip, we can either
propagate pull in one of its arguments, or we can apply one
of the zipping rules because by hypothesis at least one of the
two arguments is pullable.
Finally, remark that semantic preservation (in terms of

program execution semantics) is easily assessed by looking at
each rewrite rule case in isolation. In other words, QSRmakes
it easy to reason locally about each rewrite rule, ensuring that
it transforms its input program into an equivalent output.

5.6 Extensibility of Optimizations
We already saw that Squid allows adding syntactic sugar in
the form of user-definedmethods annotated with or enclosed
by a class annotated with @embed (which allows Squid to lift
the method’s implementation). Here we examine how to
extend the set of core stream constructs.
As an example, consider stream programs that contain

code of the form if (...) stream0 else stream1 . At the mo-
ment, that pattern will not be recognized as pullable by the
library, and may therefore get in the way of fusion. Thank-
fully, by only adding the two rules below we can seamlessly
integrate that pattern with the rest of the fusion system:

// Floating out pullable info
case code"if ($c) pull($thn) else pull($els)"

=> code"pull(if ($c) $thn else $els)"
// Folding
case code"(if($c) $thn else $els) doWhile $f"

=> code"""if ($c) $thn doWhile inl($f)
else $els doWhile inl($f)"""

Like pull(s), syntax inl(f) is used as a marker. It hints for
Squid to inline function f, even if f is used in several places.
This effectively leads to code duplication in the case above,
but that is a requirement for fusion to happen reliably.
Contrast the seamless extension above with what [24]

proposes to solve the same problem, which involves changing
the user interface of flatMap to continuation-passing style.

5.7 When everything else fails — streamlining
flatMap the hard way

The rewriting proposed in Section 5.4 generates fused code
for many use cases, but unfortunately fails to fuse zip ap-
plications where both arguments are flattened. More gen-
erally, it fails to fuse flatMap in the absence of a direct
consumer of the flattened stream, which can also happen
if we only have access to incomplete pipelines, such as
(n:Int) => fromRange(0,n). flatMap(fromRange(0,_)).
In general, it would be useful if we could streamline flatMap

applications so as to make them efficiently pullable. Intu-
itively, the code above could be rewritten:
(n:Int) => Strm (() => { var i = 0; var j = None; k =>

loopWhile { // loop until suitable element is found
if (j.isEmpty && i < n) { j = Some(i); i + = 1 }
j.fold(false) { jv =>

if (jv < i) { k(jv); false } // element found
else { j = None; true } }}}) // j stream exhausted

Notice the similarity with the implementation of flatMap

shown in Section 5.3. The main difference is that instead
of using a variable that stores the inner Producer , we use
a variable that stores the state of the inner producer (here

10

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

@online val FlatMapStreamlining = rewrite {

case code"doFlatMap[$ta,$tb]($pa,a => $f(a))" => close(f){

(bodyf ,reopenf) =>

def rec(t: Code[Producer[tb]], reset: Code [() => Unit])

: Code[Producer[tb]] = t match {

case code"val x = Var[$xt]($init); $innerBody(x)"

=> close(innerBody) { (ib,rib) =>

code"val y = Var(null : $xt); ${ (y:Code[Var[xt]]) =>

val newReset = code"() => { $reset (); $y := $init }"

rib(rec(ib, newReset))(y)

}(y)" }

case code"val x: $xt = $init; $innerBody(x)"

=> close(innerBody) { (ib,rib) =>

code"val y = Var(null : $xt); ${ (y:Code[Var[xt]]) =>

val newReset = code"() => { $reset (); $y := $init }"

rib(rec(ib, newReset))(code"$y.!")

}(y)" }

case code"$effect; $innerBody"

=> rec(innerBody , code"() => { $reset (); $effect }")

case code"k => $innerBody(k)" => code"""

var curA: Option[A] = None

(k:Consumer[tb]) => { var consumed = false; loopWhile {

if (!curA.isDefined)

$p { a => curA = Some(a); ${ reopenf(reset)}(a)() }

curA.fold(false) { a =>

${ reopenf(t)}(a) { b => k(b); consumed = true }

if (! consumed) { curA = None; true } else false }}}

"""

case _ => throw StagingError ("Could not streamline ") }

rec(bodyf , code"() => ()")

}}
Figure 8. The flatMap streamlining rewrite rule.

j), and that state is reset whenever a new value of the outer
producer (here i) is obtained. The idea is similar to the one
proposed in [11], though we use actual imperative stream
states while [11] uses a purely functional encoding of stream
states, as the host language (Haskell) is purely functional.
This transformation can be applied automatically, pro-

vided we have access to the complete inlined state of the
inner producer. This tells us that the rewriting should apply
after the Lowering phase of Section 5.4. To prevent flatMap

from being inlined to its inefficient implementation, we
change its implementation so that it inlines into a low-level
doFlatMap(p,f) method where p is the source producer, and
f is the function that creates an inner producer from each
element of p. Next, we register the rewrite rule of Figure 8,
to be applied during Lowering. The code in Figure 8 is the
most technical example of our paper; to understand it, we
first need to introduce a few concepts:
Higher Order Patterns Variables. Squid provides a very
simple form of higher-order matching [8, 32], that directly
mirrors the automatic function lifting facility. Concretely,
while pattern code "(x:Int) => $body:Int" will not match
a lambda where body makes use of x, the following pat-
tern will: code "(x:Int) => $f(x):Int", giving to f type
Code[Int] => Code[Int]. Applying f to some Code[Int]

will replace all usages that f made of x with the provided
code value. Higher order pattern variables in quasiquote-
based matching was suggested before by Sheard et al. [40].
Temporary Variable Extrusion. In order to inspect open
code, which is represented as a function [32], we must apply
it to some value first. However, sometimes we do not yet have
that value until after we have inspected the code. To solve

this, Squid provides a close(f)((body ,reopen) => ...) idiom
used to temporarily close open code f as body, making it
inspectable. Given some f : Code[A] => Code[B], the type of
body is B but it implicitly contains unbound references to its
A parameter. reopen has type ∀X. Code[X] => Code[A => X],
and is used to reintroduce the explicit parameter dependency.
reopen can be applied to body or to any of its subterms. This
mechanism can lead to errors, if one does not reopen pieces
of code that were closed and contain occurrences of the
parameter. However, the close function checks that no such
occurrences exist in the result. Therefore, any programmer
error is immediately reported at the relevant place, and we
never end upwith programs containing unbound or wrongly-
captured variables, which greatly simplifies debugging.
Virtualized mutable variables. To facilitate the handling
of mutable variable bindings, Squid views all mutable vari-
ables as syntactic sugar for usages of the Var[T] data type,
an approach inspired by language virtualization [28]. Var[T]
featuresmethods .! and := to respectively access the value of
a variable and reset it. Therefore code " var i = 0; i += 1"

is equivalent to code " val i = Var (0); i := i.! + 1".
In Figure 8 we recursively analyse the body of f, using a

reset parameter to accumulate a function term that resets
the state of the inner streamwhen a new element of the outer
stream is available. When we encounters a mutable variable
binding, we reconstruct it but initialize it with null and inte-
grate the actual initialization as part of the reset argument
passed recursively. Immutable value bindings are converted
into variables so they can be reset similarly. Finally, encoun-
tered effects are simply integrated into the reset accumu-
lator. When the recursion finally encounters the k => ...

lambda expression constructing the resulting Producer , we
build the final, efficient implementation of flatMap . Note
that it is important to match a lambda k => ... term, for
the soundness of the rewriting (finding something else in
place of a lambda would mean that low-level state inlining
might not have been complete).
Summary. We presented an algorithmic rewrite rule that
performs flatMap streamlining to enable fusion in many
of the cases where it failed in Section 5.4. The rule is im-
plemented entirely using the type-safe, high-level utilities
provided by Squid. Previously, Farmer et al. [11] demon-
strated a similar rewriting, but to implement it they had to
extend the compiler and drop down to complicated IR ma-
nipulations. We can also argue that our approach is more
robust, as the user has full control on the rewriting and in-
lining pipeline. Remark that flatMap streamlining usefully
completes the scheme of Section 5.4, but does not replace it:
our optimizer always tries to apply the latter first, because it
is more efficient (as it deals with smaller, higher-level stream
representations) and because it tends to produce slightly
better code with less variables and loops.

5.8 Conclusion
Quoted Staged Rewriting allows library writers to co-design
high-level libraries and associated optimizers that render
their usage as efficient as low-level code (cf. Section 6). Ap-
pendix A details how the Strm library is organized.

11

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

E
xe

cu
ti

on
T

im
e

Default Iterator Staged Rewritten Baseline

1

10

100

1000

10000

100000

sumOfSquaresE
ven cart

sumOfSquares

zipWith-after
-flatMap

zip-flat-flat filters

flatMap-take

zip-filter-fi
lter

flatMap-after
-zipWith

dotProduct maps sum

Figure 9. Time taken by different stream pipeline implementations on the JVM. Notice the logarithmic scale. Default: our streams library with-
out optimization; Iterator: standard Scala iterators; Staged: staged streams using LMS [24]; Rewritten: our streams library with optimizations
applied; Baseline: manual low-level implementations. The code is available online at https://github.com/epfldata/staged-rewritten-streams.

6 Experiments
Performance. In this section, we empirically demonstrate
that our QSR stream fusion approach12 is competitive with
both staging and manual low-level implementations that
use only integral variables and loops. We measured the ex-
ecution time of small pipelines consisting of flat-mapping,
filtering, zipping, etc. and summing up the results. We tested
five approaches: our pure Scala library without optimiza-
tion (Default); Scala iterators, which are conceptually simi-
lar but lower level (their interface is imperative) and hand-
optimized to play well with the JVM (Iterator); the staged
code of [24] (Staged); the same code as Default but sur-
rounded with an optimize {...} block to apply our QSR
(Rewritten); and hand-coded low level implementations us-
ing integral variables and loops (Baseline). The inputs used
consisted of arrays of several hundred thousand integer el-
ements. The times were measured on a six-core Intel Xeon
E5-2620 v2 processor with 256GB of DDR3 RAM (1600Mhz).
We used Scala version 2.11.2 running on the OpenJDK 64-Bit
Server VM (build 24.95-b01) with Java 1.7.0 101.

As we can observe, the rewritten version has performance
characteristics mostly similar to the staged and low-level ver-
sions. All these three versions outperform the unoptimized
and iterator versions by one or two orders of magnitude.
We interpret that performance difference as the cost of ab-
straction (here mainly incurred from using closures, virtual
dispatch and boxing). Even in these simple cases the ad-
vanced JIT of the JVM in server mode cannot remove that
overhead automatically. Both the rewritten and staged ap-
proaches produce similarly low-level code where all abstrac-
tions have been eliminated, except for cases zip_flat_flat

and zip_filter_filter where the staged version fails to
fuse and falls back to using variables holding functions. The
generated code still performs honorably — about twice as
slow as the rewritten version but an order of magnitude
faster than the unoptimized ones. Finally, notice that even if
the rewritten version does completely fuse zip_flat_flat

using the technique in Section 5.7, the resulting code is still
significantly slower than the baseline, as we produce more
variables and more intricate loops. For the rest of the tests,
12 We benchmark the fusion algorithm presented in Section 5, with a few
minor tweaks and extra normalization rules that help with streamlining.

Table 1. Lines of code for stream fusion in Squid and LMS.
Shallow Fusion Generic

Squid / QSR 127 149 293
LMS / [24] — 314 1982

the minor differences in runtime between the staged, rewrit-
ten and baseline versions can be attributed to slight differ-
ences in generated looping structures.

Productivity. We conclude with a brief empirical argument
about the productivity gains of our approach. We measured
the number of physical lines of code (i.e., excluding com-
ments and blank lines) in: 1. the “shallow” implementation
of the library (cf. Figure 6); 2. the implementation of stream
fusion; and 3. the supporting library code that allows the
approaches to function (Generic). The LMS implementation
does not have a shallow counterpart to its staged streams li-
brary — which is reported under Fusion. The Generic number
for LMS accounts for the IR definitions of basic constructs
such as arrays, strings, tuples, etc., and associated code gen-
eration implementations; it only includes LMS code used by
this application. For Squid, Generic includes mainly standard
normalization rules as well as a small library of virtualized
constructs (like mutable variables). Notice that the stream fu-
sion rewritings in Squid are half the size of the staging-based
implementation in LMS, and are completely separate from
the library, which can be used independently. Even more
tellingly, the LMS approach requires considerably more sup-
porting code,13 and that code will only grow as users want
to include more constructs to be used within their streams
programs. In contrast, Squid accommodates new constructs
without requiring any additional supporting code.

Acknowledgments
Wewould like to thank Aggelos Biboudis for his constructive
input on the paper, and we are grateful to the reviewers for
their useful comments. The optimize {...} macro syntax
was inspired by ScalaBlitz.14 This work was supported by
NCCR MARVEL of the Swiss National Science Foundation.
13 This code can be generated automatically by tools like Yin-Yang [23] and
Forge [43], but it is still an overhead compared to not needing it at all.
14 https://web.archive.org/web/20141218200210/scala-blitz.github.io/

12

https://github.com/epfldata/staged-rewritten-streams
https://web.archive.org/web/20141218200210/scala-blitz.github.io/

Quoted Staged Rewriting GPCE’17, October 23–24, 2017, Vancouver, Canada

References
[1] Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin

Keijzer, Bo Lyckegård, Anders Persson, Mary Sheeran, Josef Svennings-
son, and András Vajda. 2010. Feldspar: A domain specific language for
digital signal processing algorithms. In Formal Methods and Models for
Codesign (MEMOCODE), 2010 8th IEEE/ACM International Conference
on. IEEE, 169–178.

[2] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming 19, 05 (2009),
509–543.

[3] James Cheney, Sam Lindley, and Philip Wadler. 2013. A Practical
Theory of Language-integrated Query. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP
’13). ACM, New York, NY, USA, 403–416.

[4] Cliff Click. 1995. Global Code Motion/Global Value Numbering. In
Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation (PLDI ’95). ACM, New York, NY,
USA, 246–257.

[5] Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining
Optimizations. TOPLAS 17, 2 (March 1995), 181–196.

[6] Duncan Coutts. 2011. Stream fusion : practical shortcut fusion for
coinductive sequence types. Ph.D. Dissertation. University of Oxford,
UK.

[7] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream
Fusion. From Lists to Streams to Nothing at All. In ICFP ’07.

[8] Oege de Moor and Ganesh Sittampalam. 2001. Higher-order matching
for program transformation. Theoretical Computer Science 269, 1-2
(2001), 135–162.

[9] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan
Vitek. 2013. Terra: a multi-stage language for high-performance com-
puting. In ACM SIGPLAN Notices, Vol. 48. ACM, 105–116.

[10] Andrew Farmer. 2015. HERMIT: Mechanized Reasoning during Compi-
lation in the Glasgow Haskell Compiler. Ph.D. Dissertation. University
of Kansas.

[11] Andrew Farmer, Christian Hoener zu Siederdissen, and Andy Gill.
2014. The HERMIT in the stream: fusing stream fusion’s concatMap.
In Proceedings of the ACM SIGPLAN 2014 workshop on Partial evaluation
and program manipulation. ACM, 97–108.

[12] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen.
1993. The essence of compiling with continuations. In ACM Sigplan
Notices, Vol. 28. ACM, 237–247.

[13] Steven E Ganz, Amr Sabry, and Walid Taha. 2001. Macros as multi-
stage computations: type-safe, generative, bindingmacros inMacroML.
In ACM SIGPLAN Notices, Vol. 36. ACM, 74–85.

[14] Andrew Gill, John Launchbury, and Simon L Peyton Jones. 1993. A
short cut to deforestation. In Proceedings of the conference on Functional
programming languages and computer architecture. ACM, 223–232.

[15] Andrew John Gill. 1996. Cheap deforestation for non-strict functional
languages. Ph.D. Dissertation. University of Glasgow.

[16] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. 2008. Polymorphic embedding of DSLs. In Proceedings of the
7th international conference on Generative programming and component
engineering. ACM, 137–148.

[17] Paul Hudak. 1996. Building domain-specific embedded languages.
ACM Computing Surveys (CSUR) 28, 4es (1996), 196.

[18] Dean F Jerding, John T Stasko, and Thomas Ball. 1997. Visualizing
interactions in program executions. In Proceedings of the 19th interna-
tional conference on Software engineering. ACM, 360–370.

[19] Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial
evaluation and automatic program generation. Peter Sestoft.

[20] Simon L. Peyton Jones. 1996. Compiling Haskell by program transfor-
mation: A report from the trenches. Springer Berlin Heidelberg, Berlin,
Heidelberg, 18–44.

[21] Simon L. Peyton Jones, Andrew Tolmach, and Tony Hoare. [n. d.].
Playing by the rules: rewriting as a practical optimisation technique
in GHC. In 2001 Haskell Workshop. ACM SIGPLAN.

[22] Manohar Jonnalagedda and Sandro Stucki. 2015. Fold-based Fusion
As a Library: A Generative Programming Pearl. In Proceedings of the
6th ACM SIGPLAN Symposium on Scala (SCALA 2015). ACM, 41–50.

[23] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. 2014. Yin-Yang: Concealing the
Deep Embedding of DSLs (GPCE 2014). ACM, 73–82.

[24] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream fusion, to completeness. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM, 285–299.

[25] P. Klint, T. v. d. Storm, and J. Vinju. 2009. RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation. In 2009 Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation. 168–177.

[26] HyoukJoong Lee, Kevin J Brown, Arvind K Sujeeth, Hassan Chafi, Tiark
Rompf, Martin Odersky, and Kunle Olukotun. 2011. Implementing
domain-specific languages for heterogeneous parallel computing. IEEE
Micro 31, 5 (2011), 42–53.

[27] Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and
Philipp Slusallek. 2015. Shallow Embedding of DSLs via Online Partial
Evaluation. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences (GPCE
2015). ACM, New York, NY, USA, 11–20.

[28] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012.
Scala-virtualized. In Proceedings of the ACM SIGPLAN 2012 workshop
on Partial evaluation and program manipulation. ACM, 117–120.

[29] Shayan Najd, Sam Lindley, Josef Svenningsson, and PhilipWadler. 2016.
Everything Old is New Again: Quoted Domain-specific Languages. In
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation (PEPM 2016). ACM, New York, NY, USA,
25–36.

[30] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Püschel. 2013. Spiral in Scala: Towards the Systematic Con-
struction of Generators for Performance Libraries. In Proceedings of
the 12th International Conference on Generative Programming: Concepts
& Experiences (GPCE ’13). ACM, New York, NY, USA, 125–134.

[31] Lionel Parreaux, Amir Shaikhha, and Christoph Koch. 2017. Squid:
Type-Safe, Hygienic, and Reusable Quasiquotes. In Proceedings of the
2017 8th ACM SIGPLAN Symposium on Scala (SCALA 2017). ACM.

[32] Frank Pfenning and Conal Elliott. 1988. Higher-order abstract syntax.
In ACM SIGPLAN Notices, Vol. 23. ACM, 199–208.

[33] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua,
Manuela M Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proc. IEEE 93, 2 (2005), 232–275.

[34] Tiark Rompf. 2016. Reflections on LMS: exploring front-end alterna-
tives. In Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala.
ACM, 41–50.

[35] Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
In Generative Programming and Component Engineering. 127–136.

[36] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin
Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. 2013. Optimizing data structures in high-level
programs: new directions for extensible compilers based on staging.
In POPL. 497–510.

[37] Tiark Rompf, Arvind K Sujeeth, HyoukJoong Lee, Kevin J Brown,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. Building-
blocks for performance oriented DSLs. DSL (2011).

[38] Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight
Polymorphic Effects. In ECOOP. Springer, 258–282.

13

GPCE’17, October 23–24, 2017, Vancouver, Canada Lionel Parreaux, Amir Shaikhha, Christoph Koch

[39] Maximilian Scherr and Shigeru Chiba. 2015. Almost First-class Lan-
guage Embedding: Taming Staged Embedded DSLs. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (GPCE 2015). ACM, New York,
NY, USA, 21–30.

[40] Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic. 1999. DSL
Implementation Using Staging and Monads. In Proceedings of the 2Nd
Conference on Domain-specific Languages (DSL ’99). ACM, New York,
NY, USA, 81–94.

[41] Anthony M. Sloane. 2011. Lightweight Language Processing in Kiama.
In Proceedings of the 3rd International Summer School Conference on
Generative and Transformational Techniques in Software Engineering
III (GTTSE’09). Springer-Verlag, Berlin, Heidelberg, 408–425.

[42] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: From high-level functional expressions to high-performance
opencl code. ACM SIGPLAN Notices 50, 9 (2015), 205–217.

[43] Arvind K Sujeeth, Austin Gibbons, Kevin J Brown, HyoukJoong Lee,
Tiark Rompf, Martin Odersky, and Kunle Olukotun. 2013. Forge:
Generating a high performanceDSL implementation from a declarative
specification. In Proceedings of the 12th international conference on
Generative programming. ACM, 145–154.

[44] Walid Taha. 1999. Multi-stage programming: Its theory and applica-
tions. Ph.D. Dissertation. Oregon Graduate Institute of Science and
Technology.

[45] Walid Taha. 2004. Domain-Specific Program Generation: International
Seminar, Dagstuhl Castle, Germany, March 23-28, 2003. Revised Papers.
Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter A Gentle In-
troduction to Multi-stage Programming, 30–50.

[46] Walid Taha and Tim Sheard. 1997. Multi-stage programming with
explicit annotations. In ACM SIGPLAN Notices, Vol. 32. ACM, 203–217.

[47] Walid Taha and Tim Sheard. 2000. MetaML and multi-stage program-
ming with explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000),
211–242.

[48] Vlad Ureche, Aggelos Biboudis, Yannis Smaragdakis, and Martin Oder-
sky. 2015. Automating Ad Hoc Data Representation Transformations.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 801–820.

[49] Eelco Visser. 2001. A survey of rewriting strategies in program trans-
formation systems. Electronic Notes in Theoretical Computer Science 57
(2001), 109–143.

[50] Eelco Visser. 2002. Meta-programming with concrete object syntax.
In Generative programming and component engineering. Springer, 299–
315.

[51] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998.
Building program optimizers with rewriting strategies. InACM Sigplan
Notices, Vol. 34. ACM, 13–26.

[52] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998.
Building Program Optimizers with Rewriting Strategies (ICFP ’98).
13–26.

[53] Philip Wadler. 1988. Deforestation: Transforming programs to elimi-
nate trees. In ESOP’88. Springer, 344–358.

[54] Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12
(2015), 75–84.

[55] Thomas Würthinger. 2011. Extending the graal compiler to optimize
libraries. In Companion to the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, 41–42.

[56] Jeremy Yallop and Leo White. 2015. Modular macros. In OCaml Users
and Developers Workshop.

A Organization of the Streams Optimizer
In this appendix, we give more details on the way a library
should be structured in order to benefit from Squid-based
Quoted Staged Rewriting, using the streams library seen in
Section 5 as an example.

Scala Restrictions. Squid makes extensive use of macros,
which currently have some restrictions: Scala code defined
in some project P cannot be executed at compile-time in P
itself or in a project that P depends on — one may have to
“stratify” program definitions into different sub-projects.

The Strm Library. It is organized in a single project as fol-
lows: in the lib package, the shallow Strm definitions as seen
in Figure 6, with an @embed annotation to automatically lift
method definitions; in the compiler package, the ANF-based
“embedding” used as the IR in which to manipulate the code
(Squid supports different IRs [31]), defined as follows:
object Embedding extends SchedulingANF

with OnlineOptimizer with StandardEffects
{ object Desug extends Transformer with Desugaring

object Norm extends Transformer
with StandardNormalizer with LogicNormalizer

def pipeline = Desug.pipeline andThen Norm.pipeline
embed(Strm)

}

Object Embedding extends the SchedulingANF base IR and
the StandardEffects trait to benefit from effect annotations
on standard Scala constructs. It extends OnlineOptimizer

in order to perform some online rewriting — provided via
the pipeline method, which applies some desugaring and
then some normalization. The embed(Strm) call, executed
when Embedding is initialized, registers in this IR the Strm

methods lifted earlier by @embed .
The stream fusion optimizer itself is implemented in the

compiler.StrmOptimizer class, which defines successive
optimization phases Flow, Lowering and LowLevel :
class StrmOptimizer extends Optimizer
{ def pipeline = (

Flow.pipeline
andThen Lowering.pipeline
andThen LowLevel.pipeline)

}
object Flow extends Embedding.Transformer

with SimpleRuleBasedTransformer
with BottomUpTransformer
with FixPointTransformer

{ rewrite { ... } }
object Lowering extends Embedding.Transformer with ...
object LowLevel extends Embedding.Transformer with ...

Theway Flow is defined above is equivalent to the annotation-
based way seen in the paper, which is only syntax sugar (i.e.,
@bottomUp @fixedPoint val Flow = r e w r i t e { ... }). The
role of LowLevel is to apply low-level transformations at
the end of the pipeline, such as flattening variables holding
an option type into a boolean variable isDefined and an
unwrapped currentValue variable.

In order to use this optimizer, one has to instantiate class
StaticOptimizer[strm.compiler.StrmOptimizer] and,
from another project, invoke its optimize{ ... } macro.

14

	Abstract
	1 Introduction
	1.1 Staging and extensible compilers
	1.2 User-defined rewriting
	1.3 Quoted Staged Rewriting
	1.4 Contributions

	2 Background on Staging
	2.1 Preamble: Typed Quasiquotes
	2.2 Staging the Power function
	2.3 New optimization opportunity
	2.4 Limitations of Staging

	3 Quoted Staged Rewriting
	3.1 Preamble: Quasiquotes in Pattern Matching
	3.2 Rewriting Math.pow
	3.3 Extending the Rewriting
	3.4 Hybrid approaches and online rewriting
	3.5 Guarantees and Control
	3.6 Modularity of rewritings
	3.7 Composing uses of QSR libraries
	3.8 Optimizing Existing Libraries

	4 Enabling Quoted Staged Rewriting
	4.1 Custom A-Normal Form (ANF)
	4.2 Effect System
	4.3 Implemenation of code pattern matching

	5 Stream Fusion
	5.1 Previous Approaches
	5.2 Stream Fusion by CPS and Inlining
	5.3 The problem with flatMap
	5.4 Enabling more fusion by QSR
	5.5 Correctness of the Stream Fusion scheme
	5.6 Extensibility of Optimizations
	5.7 When everything else fails — streamlining flatMap the hard way
	5.8 Conclusion

	6 Experiments
	Acknowledgments
	References
	A Organization of the Streams Optimizer

