
The Journal of Logic and Algebraic Programming 81 (2012) 721–781

Contents lists available at SciVerse ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Twenty years of rewriting logic

José Meseguer

Computer Science Department, University of Illinois at Urbana-Champaign, IL 61801, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 21 August 2012

Keywords:

Rewriting logic

Concurrency

Logical frameworks

Temporal logics

Formal specification and verification

Programming language semantics

Networks and distributed systems

Real-time systems

Probabilistic systems

Security

Bioinformatics

Rewriting logic is a simple computational logic that can naturally express both concurrent

computation and logical deduction with great generality. This paper provides a gentle, in-

tuitive introduction to its main ideas, as well as a survey of the work that many researchers

have carried out over the last twenty years in advancing: (i) its foundations; (ii) its se-

mantic framework and logical framework uses; (iii) its language implementations and its

formal tools; and (iv) its many applications to automated deduction, software and hardware

specification and verification, security, real-time and cyber-physical systems, probabilistic

systems, bioinformatics and chemical systems.

© 2012 Elsevier Inc. All rights reserved.

To the loving memory of my mother, Fuensanta Guaita Sánchez

Contents

1. Introduction . 722

1.1. How to read this survey . 722

2. Rewriting logic in a nutshell . 723

2.1. Semantic framework uses: a communication protocol example . 724

2.2. Logical framework uses: a propositional satisfiability example . 726

3. Foundations . 729

3.1. Rewriting logic . 729

3.2. Computability and coherence . 732

3.3. Unification, generalization, narrowing, and symbolic reachability . 733

3.4. Reflection . 735

3.5. Strategies . 735

3.6. The ρ-calculus . 737

3.7. Sufficient completeness . 737

3.8. Termination . 738

3.9. Real-time rewrite theories . 740

3.10. Probabilistic rewrite theories . 740

3.11. Temporal logic properties . 741

3.12. Simulation and abstraction . 745

4. Rewriting logic as a logical and semantic framework . 747

4.1. Representing logics . 747

E-mail address: meseguer@illinois.edu

1567-8326/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlap.2012.06.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82449073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jlap.2012.06.003
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2012.06.003

722 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

4.2. Representing models of concurrency . 748

4.3. Rewriting logic semantics of programming languages . 750

4.4. Representing distributed systems, software architectures, and models . 751

5. Rewriting logic languages . 751

5.1. CafeOBJ . 751

5.2. ELAN . 752

5.3. Maude . 752

6. Tools . 752

6.1. Formal tools for rewriting logic . 752

6.2. Some domain-specific tools . 754

7. Some applications . 756

7.1. Automated deduction applications . 756

7.2. Software and hardware specification and verification . 756

7.3. Security . 759

7.4. Real-time and cyber-physical systems . 762

7.5. Probabilistic systems . 765

7.6. Bioinformatics, chemical systems, and membranes . 766

8. Some future research directions . 769

9. Conclusions . 770

Acknowledgements . 770

References . 770

1. Introduction

Thefirst threepapersonrewriting logicwerepublished in1990 [311,312,314]; theywere thenexpanded in [315,316]. Since

that time,many researchers around theworld havemade important contributions to its foundations, tools, and applications.

Since 1996, the Workshop on Rewriting Logic and its Applications has met biennially, with the 2010 Paphos meeting being

its eighth edition, the Workshop on Rewriting Techniques for Real-Time Systems held its first edition in Spitsbergen in March

2010, and many hundreds of papers have been published on the subject ([301] contains a bibliography up to 2002, and this

journal issue contains an up-to-date bibliography). This growth makes it desirable to reflect from time to time upon the

advances made, survey such advances, and perhaps get some glimpses and make some guesses about future directions. It

is somewhat like taking a snapshot of a person at age twenty. I have taken some similar, total or partial pictures at earlier

ages, as a child [318,320,321], and as a teenager [301] (with Martí-Oliet) and [324]. It seems appropriate to attempt taking

a coming-of-age picture, and to ask some questions about rewriting logic such as the following:

• How well-developed are its mathematical foundations?
• To what extent have its goals as a semantic framework for concurrency, and as a logical framework, been achieved?
• Which languages and tools supporting rewriting logic programming, specification, and verification have been devel-

oped?
• In which application areas has it been shown useful?
• What do its future prospects look like?

This paper is both a survey of the work that has been done, and my own attempt to answer the above questions.

I am grateful to themany gifted researcherswho have contributed to the rewriting logic research program. Iwill explicitly

mention some of them and some of their contributions. But I cannot really do justice to either all of them or all their

contributions. This is due, in part, to my own limitations in keeping up with a vast and fast-growing literature; and to the

impossibility, within the scope of this survey, of discussing, even summarily, the many hundreds of publications on the

subject. The compilers of the detailed bibliography contained in this issue have gathered and organized by topic all the

contributions that seem to have been made to date. I refer to this bibliography for a more complete picture of the different

research directions that here I can only describe in broad outlines.

1.1. How to read this survey

This survey can be read in various ways, depending on the research interests, time, and degree of previous acquaintance

with the overall area. For somebody unfamiliar with the area, not particularly interested in the mathematical foundations,

and trying to gain a first overview of it, I would suggest reading first Sections 2, 4, and 7, and then looking at the other

sections as needed. For a reader with a formal methods background, I would instead suggest reading first Sections 2–6, and

then looking at applications in Section 7 as needed. More specialized readings are also possible. For example, somebody

only interested in security (resp. bioinformatics) applications could probably jump from Section 2 directly into Section 7.3

(resp. 7.6.1). Of course, for somebody trying to get an in-depth understanding of the whole area, I would recommend reading

the entire survey from beginning to end.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 723

2. Rewriting logic in a nutshell

Since themain goal of this paper is to facilitate access to a large body of research ideas to readers whomay not be familiar

with rewriting logic, it does not seem out of place to explain and illustrate, in an informal and impressionistic way, what

rewriting logic is, and how it can be used.

Rewriting logic is like a coin with two sides: a computational side and a logical side. These two sides are complementary

viewpoints on the same reality. Some applications fall more obviously into one of these sides, but when viewed as rewrite

theories their other side is always present.

Computationally, rewriting logic is a semantic framework in which many different models of concurrency, distributed

algorithms, programming languages, and software andhardwaremodeling languages can benaturally represented, executed

and analyzed as rewrite theories (see Sections 4.2–4.4). Logically, it is a logical frameworkwithin whichmany different logics,

and automated deduction procedures can likewise be represented, mechanized, and reasoned about (see Section 4.1).

Whenever anybody is selling you a semantic or logical framework you should be wary. A key reason for wariness is that

such a framework may work in principle, but it may create a big gap between what is represented and its representation.

I call this the representational distance imposed by the framework. For example, Turing machines provide an, in principle

unobjectionable, semantic framework for sequential programming languages; but nobody uses them to define a language’s

semantics, except perhaps in the sense that a compiler for a language closely resembles a Turing machine semantics for it.

There is just too much distance between a high-level programming language and a Turing machine, and much, including all

the language’s features, is lost in translation. In this regard, the evidence accumulated over the last twenty years strongly

supports the claim that rewriting logic can rightfully be said to have “ε representational distance” as a semantic and logical

framework. That is, what is represented and its representation are often isomorphic structures, typically differing only

because of the slightly different notations used, but agreeing on all the main features. 1

Why is this so? Whenever you represent a concurrent system or a logic, there are two key aspects about such a repre-

sentation, which could be called the static and the dynamic aspects, and rewriting logic happens to be very well-suited for

naturally representing both. Representing the static aspect of a concurrent systemmeans representing its distributed states,

while representing that of a logic means representing its formulas. Instead, representing the dynamic aspect of a concurrent

system means representing its concurrent transitions, while representing that of a logic means representing its inferences.

The reason why rewriting logic’s representational distance is typically ε is that a rewrite theory R = (�, E, R) consists
of an equational theory (�, E) and a set of (possibly conditional) rewrite rules R, where (�, E) specifies the statics and

R specifies the dynamics. If we are using (�, E, R) to represent a concurrent system (resp. a logic), then the distributed

states (resp. formulas) of such a system are specified by the equational theory (�, E), where � is a collection of typed

operators which includes the state constructors that build up a distributed state out of simpler state components (resp. the

logical and non-logical symbols that build up a formula), and where E specifies the algebraic identities that such distributed

states (resp. formulas) enjoy. That is, distributed states (resp. formulas) are specified as elements of an algebraic data type,

namely, the initial algebra of the equational theory (�, E). Concretely, this means that a distributed state (resp. a formula) is

mathematically represented as an E-equivalence class [t]E of terms (i.e., algebraic expressions) built up with the operators

declared in �, modulo provable equality using the equations E, so that two state (resp. formula) representations t and t′
describe the same state (resp. formula) if and only if one can prove the equality t = t′ using the equations E. The great

generality with which algebraic data types can faithfully represent any data structures such as states or formulas (including

binding operators such as quantifiers, λ-abstraction, and so on, which have a natural algebraic specification using a calculus

of explicit substitutions such as CINNI [430]) is the reason why the static aspect can typically be represented with an ε
representational distance.

The dynamic aspect of a system or logic represented as a rewrite theoryR = (�, E, R) is specified by its set R of rewrite

rules. Why are they likewise so flexible? I focus first on concurrent systems specified with unconditional rewrite rules; the

case of logics is discussed afterwards. What the rules R then represent are the system’s local concurrent transitions. Each

rewrite rule in R has the form t → t′, where t and t′ are algebraic expressions in the syntax of �. The lefthand side t

describes a local firing pattern, and the righthand side t′ describes a corresponding replacement pattern. That is, any fragment

of adistributed statewhich is an instanceof thefiringpattern t canperforma local concurrent transition inwhich it is replaced

by the corresponding instance of the replacement pattern t′. Both t and t′ are typically parametric patterns, describing not

single states, but parametric families of states. The parameters appearing in t and t′ are precisely themathematical variables

that t and t′ have, which can be instantiated to different concrete expressions by a mapping θ , called a substitution, sending

each variable x to a term θ(x). The instance of t by θ is then denoted θ(t).
The most basic logical deduction steps in a rewrite theory R = (�, E, R) are precisely atomic concurrent transitions,

corresponding to applying a rewrite rule t → t′ in R to a state fragment which is an instance of the firing pattern t by

some substitution θ . That is, up to E-equivalence, the state is of the form C[θ(t)], where C is the rest of the state not

affected by this atomic transition. Then, the resulting state is precisely C[θ(t′)], so that the atomic transition has the form

C[θ(t)] → C[θ(t′)]. Rewriting is intrinsically concurrent, because many other atomic rewrites can potentially take place in

the rest of the state C (and in the substitution θ), at the same time that the local atomic transition θ(t)→ θ(t′) happens.

1 When even the notation is identical, I speak of “0 representational distance,” but the key point in either case is the isomorphic way in which a formalism is

faithfully represented within a framework.

724 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

That is, in general one may have complex concurrent transitions of the form C[θ(t)] → C′[θ ′(t′)], where the rest of the

state C has evolved to C′ and the substitution θ has evolved to θ ′ by other (possibly many) atomic rewrites simultaneous

with the atomic rewrite θ(t) → θ(t′). The rules of deduction of rewriting logic [80,315] (which in general allow rules in

R to be conditional) precisely describe all the possible, complex concurrent transitions that a system can perform, so that

concurrent computation and logical deduction coincide. Such inference rules are discussed in Section 3.1.

If instead we adopt a logical point of view, so that the rewrite theory R = (�, E, R) represents a logic, then the rewrite

rules R exactly specify the inference rules of the logic. What the rules rewrite may be formulas, or other formula-based

data structures such as sets or lists of formulas, sequents, and so on. In the simplest case of an unconditional rewrite rule

t → t′, we describe an inference step in which we pass from a formula or formula-based structure which is an instance of

the pattern t to another such formula or structure which is the corresponding instance of t′, perhaps in a context C. That

is, such atomic inference steps again take the form C[θ(t)] → C[θ(t′)], for θ the substitution instantiating the patterns t

and t′. Often, however, logical inference steps are conditional, and this may happen in two different ways. First, an inference

step t → t′ may only be allowed if we can previously show that other related steps, say, u1 → v1, . . . , un → vn can be

taken. Second, the inference stepmay be further constrained by a so-called side condition such as, for example, that a certain

variable involved in the step is not a free variable in a given formula. Algebraically, such side conditions can be represented

as equational constraints of the form w1 = q1 ∧ · · · ∧ wm = qm. The ε representational distance of rewriting logic as

a logical framework is due to the fact that such conditional inference rules can be exactly represented in R as conditional

rewrite rules of the form

t → t′ if u1 → v1 ∧ · · · ∧ un → vn ∧ w1 = q1 ∧ · · · ∧ wm = qm.

Of course, what we regard as concurrent computation or as logical deduction may, like beauty, be just in the eyes of

the beholder. For example, we may regard any rewrite theory (�, E, R) where � has just a binary operator ⊗ and some

constants, including a unit element I, E has associativity and commutativity axioms for⊗ and an axiom for I as identity of

⊗, and R is a collection of unconditional ground rewrite rules, as either a Petri net, or as a theory in the linear conjunctive

(⊗) fragment of propositional linear logic [299]. But since both structures are mathematically isomorphic, there is no fact

of the matter about which viewpoint should be adopted: this is just a pragmatic issue depending on what applications one

has in mind.

I illustrate below all the ideas just discussed by means of two simple examples, one of a concurrent object system and

another of an automated deduction procedure. For concreteness I give the specifications inMaude [105,106], a language and

system implementation directly based on rewriting logic (rewriting logic languages are discussed in Section 5). This empha-

sizes that rewriting logic is a computational logical and semantic framework, so that systems and logics can not only bemath-

ematically represented: they can also be efficiently executed if they satisfy some minimum requirements (see Section 3.2).

2.1. Semantic framework uses: a communication protocol example

I present a concurrent object-based system—namely, a simple communication protocol—specified in Maude. Maude’s

syntax is user-definable: operators can be declared with any desired “mixfix” syntax. A concurrent state made up of objects

andmessages can be thought of as a “soup” inwhich objects andmessages are freely floating and can come into contact with

each other in communication events.Mathematically, thismeans that the concurrent state, called a configuration, ismodeled

as amultiset or bag built up by a multiset union operator which satisfies the axioms of associativity and commutativity, with

the empty multiset as its identity element. We can, for example, denote multiset union with empty syntax, that is, just by

juxtaposition by declaring the type (called a sort) Configuration of configurations, which contains the sorts Object and

Msg as subsorts, the empty configuration none, and the configuration union operator as follows:

sorts Object Msg Configuration .

subsorts Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

Each operator is declared with the op keyword, followed by its syntax, the list of its argument sorts, an arrow ->, and its

result sort. The configuration union operator has two argument positions, which are marked by underbars. Before and/or

after such underbars, any desired syntax tokens can be declared. In this case an empty syntax (juxtaposition) has been

chosen, so that no syntax tokens at all are declared. Note that constants like none are viewed as operators with no arguments.

The keyword config declares that this is a union operator for configurations of objects and messages (the significance of

this for fair execution is explained in Section 3.5). The assoc comm id: none attributes declare the associativity axiom

(x y) z = x (y z), the commutativity axiom x y = y x, and the identity axiom x none = x. Maude then supports rewriting

modulo such axioms, so that a rule can be applied to a configuration regardless of parentheses, and regardless of the order

of arguments. The ctor keyword declares that both none and __ are state-building constructors, as opposed to functions

defined on such constructors (see Section 3.7).

Consider an object-based system containing three classes of objects, namely, Buffer, Sender, and Receiver objects,

so that a sender object sends to the corresponding receiver a sequence of values (say natural numbers) which it reads from

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 725

its own buffer, while the receiver stores the values it gets from the sender in its own buffer. In Maude’s Full Maude language

extension (see Part II of [106]), such object classes can be declared as subsorts of the Object sort in class declarations,

which specify the names and sorts of the attributes of objects in the class. The above three classes can be defined with class

declarations:

class Buffer | q : NatList, owner : Oid .

class Sender | cell : Nat?, cnt : Nat, receiver : Oid .

class Receiver | cell : Nat?, cnt : Nat .

In general, if a class Cl has been declared with attributes a1 of sort A1, . . ., an of sort An, in a class declaration

class Cl | a1 : A1, ... , an : An .

then an object o of class Cl is a record-like structure of the form:

< o : Cl | a1 : v1, ... , an : vn >

where eachvi is a termof sort Ai. For example, the sort Oidof object identifiers canuse quoted identifiers as object names by

importing the QIDmodule, where quoted identifiers have sort Qid, and giving the subsort declaration Qid < Oid. Similarly,

by importing the module NAT, where the natural numbers are the elements of sort Nat, one can then define the supersort

Nat? of Nat containing an empty value mt, and the sort NatList of lists of natural numbers as follows:

sorts Nat? NatList .

subsorts Nat < Nat? NatList .

op mt : -> Nat? [ctor] .

op nil : -> NatList [ctor] .

op _._ : NatList NatList -> NatList [ctor assoc id: nil] .

then the following is an initial configuration of a sender and a receiver object, each with its own buffer, and each with its

cell currently empty:

< ’a : Buffer | q : 1 . 2 . 3 , owner : ’b >

< ’b : Sender | cell : mt , cnt : 0 , receiver : ’d >

< ’c : Buffer | q : nil , owner : ’d >

< ’d : Receiver | cell : mt , cnt : 1 >

A sender object can send messages to its corresponding receiver object. The specifier has complete freedom to define the

format of such messages by declaring operators of sort Msg, using the msg keyword instead of the more general op keyword

to emphasize that the resulting terms are messages. For example, one can choose the following format:

msg to_::_from_cnt_ : Oid Nat Oid Nat -> Msg .

where amessage, say, to ’d :: 3 from ’b cnt 1, means that ’b sends to ’d the data item 3, with counter 1, indicating

that this is the first element transmitted. This last information is important, since message passing in a configuration is

usually asynchronous, so that messages could be received out-of-order. Therefore, receiver objects need to use the counter

information to properly reassemble a list of transmitted data. Of course, out-of-order communication is just one possible

situation that can bemodeled. If, instead, one wanted tomodel in-order communication, the distributed state could contain

channels, similar for example to the buffer objects, so that axioms of associativity and identity are satisfied when inserting

messages into a channel, but not commutativity, which is the axiom allowing out-of-order communication in a configuration

of objects and messages. Up to now we have just defined the distributed states of our object-based system as the algebraic

data type associated to the equational theory (�, E), where� is the signaturewhose sorts have been declaredwith the sort
(andclass) keywords,with subsort relations declaredwith thesubsort keyword, andwhose operators have been declared

with the op (or msg) keywords; and where the equations E have been declared2 as equational axioms of associativity and/or

commutativity and/or identity associated to specific operators, declared with the assoc, comm and id: keywords.

What about the concurrent transitions for buffers, senders, and receivers? They are specified by rewrite rules R such as

the following (note that, by convention, object attributes not changed by a rule need not bementioned in its righthand side):

vars X Y Z : Oid . vars N E : Nat . vars L L’ : NatList .

rl [read] : < X : Buffer | q : L . E, owner : Y >

< Y : Sender | cell : mt, cnt : N, receiver: Z >

=> < X : Buffer | q : L > < Y : Sender | cell : E, cnt : N + 1 > .

rl [write] : < X : Buffer | q : L, owner : Y > < Y : Receiver | cell : E >

=> < X : Buffer | q : E . L > < Y : Receiver | cell : mt > .

rl [send] : < Y : Sender | cell : E, cnt : N, receiver : Z >

=> < Y : Sender | cell : mt > (to Z :: E from Y cnt N) .

2 In Maude one can also declare explicit equations with the eq and ceq keywords. See Section 2.2 for an example.

726 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

rl [receive] : < Z : Receiver | cell : mt, cnt : N > (to Z :: E from Y cnt N)

=> < Z : Receiver | cell : E, cnt : N + 1 > .

That is, senders can read data from the buffer they own and update their count; and receivers can write their received data

in their own buffer. Also, each time a sender has a data element in its cell, it can send it to its corresponding receiver with

the appropriate count; and a receiver with an empty cell can receive a data item from its sender, provided it has the correct

counter. Note that rewriting is intrinsically concurrent; for example, ’b could be sending the next data item to ’d at the same

time that ’d is receiving the previous data itemor iswriting it into its ownbuffer; furthermore, there could bemany different

sender-receiver pairs executing concurrently in the same configuration. Note also that the rules send and receive describe

the asynchronous message passing communication between senders and receivers typical of the Actor model [3]. Instead, the

read and write rewrite rules describe synchronization events, in which a buffer and its owner object synchronously transfer

data between each other. This illustrates the flexibility of rewriting logic as a semantic framework: no assumption of either

synchrony or asynchrony is built into the logic. Instead, many different styles of concurrency and of in-order or out-of-order

communication can be easily modeled.

Since the above rewrite theory is executable, we can use its rewrite rules not just as a formal specification, but also for

simulation purposes. For example, from the initial state described above, where the sender’s buffer had a list 1 . 2 . 3 and

the receiver’s buffer was empty, we would expect the above rewrite rules to achieve in-order communication, so that in the

final state the sender’s buffer is empty and the receiver’s buffer has the list 1 . 2 . 3. Maude achieves a rule-fair execution

with therewrite command. To support the object-oriented notation for classes, objects, andmessages used in this example,

we can declare the above sorts, subsorts, classes, and rules in an object-oriented module in Maude’s Full Maude extension

(see [106]). Then, to execute our system from the above-mentioned initial state we can give to Full Maude the following

command (note that all Full Maude module declarations and commands must be enclosed in parentheses):

Maude> (rewrite < ’a : Buffer | q : 1 . 2 . 3 , owner : ’b >

< ’b : Sender | cell : mt , cnt : 0 , receiver : ’d >

< ’c : Buffer | q : nil , owner : ’d >

< ’d : Receiver | cell : mt , cnt : 1 > .)

result Configuration :

< ’a : Buffer | owner : ’b, q : nil >

< ’b : Sender | cell : mt, cnt : 3, receiver : ’d >

< ’c : Buffer | owner : ’d, q :(1 . 2 . 3) >

< ’d : Receiver | cell : mt, cnt : 4 >

2.2. Logical framework uses: a propositional satisfiability example

Procedures for propositional satisfiability (SAT) are very useful in many applications, including SAT solving modulo

decidable theories in first-order theorem proving. Sometimes, however, in the quest for performance the algorithmic details

of a SAT solver may become so involved that it is unclear whether it is sound. In fact, this is not a theoretical possibility

but a real concern in actual SAT solvers. What is needed is a clear separation of concerns between the SAT solver’s inference

system and its (typically quite sophisticated) heuristics. This separation of concerns has been advocated by Tinelli, who

gave a precise sequent calculus specification of the Davis–Putnam–Logemann–Loveland (DPLL) SAT solving procedure, from

which a proof of its correctness is quite direct, in [453]. I discuss in what follows a slightly enhanced version of Tinelli’s

inference system in [453], which Tinelli and I then used to develop the rewriting logic specification of the inference system

executable in Maude discussed below. Tinelli’s sequent-based formalization is as follows. To reason about the satisfiability

of a propositional formula ϕ we first put it in conjunctive normal form as a conjunction of clauses C1 ∧ · · · ∧ Cn, where a

clause C is a disjunction of literals, which is logically equivalent to the set of clauses � = {C1, . . . , Cn}. The DPLL procedure

can then be formalized as a sequent-based inference system with sequents of the form	 � �, where	 is a set of literals,

i.e., of atomic propositions p or negations¬p of such propositions, and where � is a set of clauses. A set of clauses � will be

satisfiable iff from the initial sequent ∅ � � we can derive a sequent of the form 	 � ∅ using the DPLL inference system,

where 	 represents a satisfying assignment. As usual in sequent formulations, a set � = {C1, . . . , Cn} is written without

the enclosing parentheses as � = C1, . . . , Cn. Likewise, a set of literals 	 = {l1, . . . , lm} is written 	 = l1, . . . , lm. The
DPLL procedure can then be formalized as the following inference system:

(subsume)
	 � �, l ∨ C

	 � � if l ∈ 	 (resolve)
	 � �, l ∨ C

	 � �, C if ¬l ∈ 	

(assert)
	 � �, l
	, l � � if l
∈ 	, ¬l
∈ 	 (close)

	 � �,�
∅ � � if 	
= ∅ ∨ �
= ∅

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 727

(split)
	 � �, l ∨ C

	, l � � 	,¬l � �, C if l
∈ 	, ¬l
∈ 	, C
= �

where � denotes the empty clause, C ranges over clauses, and for l any literal,¬¬l = l. The rewriting logic formalization of

this inference system as a rewrite theoryRDPLL = (�DPLL, EDPLL, RDPLL)must axiomatize sequents as the algebraic data type

of the equational theory (�DPLL, EDPLL), and then axiomatize the inference rules as rewrite rules in RDPLL .We can, however, do

better than that. Because of rewriting logic’s distinction between equations and rules, we can choose to axiomatize as equations

those inference rules that are deterministic (in the sense that their combined application will lead to a unique final result)

and that should always be applied exhaustively. We only need to axiomatize as rules the truly nondeterministic rules. This

makes the specification bothmore clever, since itmakes explicit the implicit determinism, andmuchmore efficient, because

it can drastically reduce the amount of search required, given that search is now only needed for the nondeterministic rules.

For the above DPLL inference system, only the split rule is nondeterministic: all other rules can be axiomatized equationally.

The rewriting logic axiomatization RDPLL = (�DPLL, EDPLL, RDPLL) is in fact executable in Maude as the DPLLmodule below

and can be used as a prototype of the DPLL procedure.

Of course, the real smarts of a SAT solver are in its heuristics; but this is the whole point of Tinelli’s proposal: we should

cleanly separate between the inference system and its heuristics and not mix the two together in a confusion of pointers.

Nevertheless, the rewrite theory RDPLL = (�DPLL, EDPLL, RDPLL) captures in a declarative way a simple but important part

of those heuristics, namely, it identifies those deterministic rules that should always be applied exhaustively; but it leaves

unspecified the heuristics for applying the split rule. Heuristics or, more precisely, strategies are a separate and modular

dimension of a rewrite theory that I discuss in Section 3.5. The same rewrite theory can be executed with many different

strategies,whichmaybebetterorworse invarious regards;but strategies, beingnowaparticularwayof applying intrinsically

correct rules, can never affect correctness. For DPLL and DPLL(T) this completely agrees with Tinelli’s approach in [453] and

in his later joint work with Nieuwenhuis et al. [356], where the issue of strategies is discussed in depth. Although the above

DPLL calculus does not model fundamental features of modern SAT solvers such as back-jumping, conflict resolution, and

clause learning, the Abstract DPLL framework of [356]—which could also be naturally specified as a rewrite theory—can

express such features declaratively, so that a clean separation between heuristics and inference rules is maintained.

mod DPLL is protecting QID .

sorts Literal Context Clause ClauseSet Sequent .

subsorts Qid < Literal < Context Clause < ClauseSet .

op ˜ : Literal -> Literal .

op null : -> Context .

op _,_ : Context Context -> Context [assoc comm id: null] .

op _,_ : ClauseSet ClauseSet -> ClauseSet [assoc comm id: null] .

op [] : -> Clause .

op _\/_ : Clause Clause -> Clause [assoc comm id: ([])] .

op _|-_ : Context ClauseSet -> Sequent .

op _in_ : Literal Context -> [Bool] .

var p : Qid .

var l : Literal .

var CTX : Context .

var C : Clause .

var CS : ClauseSet .

eq ˜(˜(l)) = l .

eq l in l,CTX = true .

eq [contraction] : C,C = C .

eq [subsume] : l,CTX |- CS,(l \/ C) = l,CTX |- CS .

eq [resolve1] : p,CTX |- CS,(˜(p) \/ C) = p,CTX |- CS,C .

eq [resolve2] : ˜(p),CTX |- CS,(p \/ C) = ˜(p),CTX |- CS,C .

eq [close1] : CTX |- C,CS,[] = null |- [] .

eq [close2] : CTX,l |- CS,[] = null |- [] .

ceq [assert] : CTX |- CS,l = CTX,l |- CS

if (l in CTX) =/= true and (˜(l) in CTX) =/= true .

crl [split1] : CTX |- CS,(l \/ C) => l,CTX |- CS

if (l in CTX) =/= true and (˜(l) in CTX) =/= true and C =/= [] .

crl [split2] : CTX |- CS,(l \/ C) => ˜(l),CTX |- CS,C

if (l in CTX) =/= true and (˜(l) in CTX) =/= true and C =/= [] .

endm

Let me discuss the rewrite theory RDPLL = (�DPLL, EDPLL, RDPLL) in more detail. The signature �DPLL describes the sorts,

subsorts, constructors, and auxiliary functions needed for sequents. Note that the order-sorted type structure in DPLL
precisely captures the types of: (i) propositional symbols, represented here by the sort Qid of quoted identifiers, (ii) literals,

(iii) sets of literals, called contexts, (iv) clauses, and (v) sets of clauses. Sequents are then pairs of a context and a set of

728 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

clauses. Negation ¬ is represented by ˜ in typewriter notation, set membership ∈ by in, and the empty set ∅ by null. All
other operators are typewriter analogues of their mathematical notation.

The equations EDPLL are essentially of two kinds: those axiomatizing the basic properties of sequents, and those expressing

the deterministic inference rules subsume, resolve, assert, and close. In any sequent calculus, the first order of business is to

define the so-called structural rules enjoyedby sequents	 � �. For propositional andfirst-order logic, sequents	 � � enjoy

structural rules making	 and� sets of formulas. This is captured above by the assoc, comm (corresponding to the so-called

exchange structural rule of sequents), and id: attributes of the operator _,_ of set union; but there is still one more struc-

tural rule, namely, the so-called contraction rule expressing the idempotency of set union, which is specified above as the

contraction equation. Not all sequent calculi obey all these structural rules: linear logic drops contraction, and Lambek’s

logic drops both contraction and exchange. The general point is that, by choosing the right equations, we can capture any

desired structural axioms. Furthermore, by declaring some of them as axioms, we can reason modulo such axioms without

having to explicitly apply them as structural inference rules: the only exception here is the contraction rule, which is explic-

itly applied as a simplification equation modulo the built-in associativity, commutativity, and identity axioms for set union.

Since negations are restricted to literals in the above type structure, we only need the equation stating that the double

negation of a literal is the literal itself. Set membership needs only be defined in the positive case by the obvious equation;

since we are only defining the positive case, an expression like ’a in ’b,’c,’d, where ’a is not in the set ’b,’c,’d, does
not have a Boolean value: its value is the expression itself, which belongs to the supersort [Bool] of Bool automatically

addedbyMaude. For simplicity andefficiency reasons, except for theassert rule, all deterministic inference rules thathad side

conditions in Tinelli’s formulation are now specified as unconditional equations declaredwith the eq keyword. The simplicity

of these unconditional equations is due to the expressiveness of pattern matching modulo associativity, commutativity and

identity, which can capture the corresponding side conditions in the lefthand side patterns. Sometimes, as in the case of

resolve and close, two equations are needed to specify one rule. This is done to express the conditions of the corresponding

inference rules in the patterns of the unconditional equations, such as the disjunction of either 	 or � being nonempty in

the side condition of close, and the side condition of the resolve inference rule. Finally, the two conditional rewrite rules in

RDPLL , declared with the crl keyword, exactly capture the two inference rules specified by the two different outcomes of

the split rule. Note that we could have instead chosen to represent the DPLL inference rules au pied de la lettre. For example,

using the or operator from the implicitly imported BOOL module, we could have represented the close rule by the single

conditional equation

ceq [close] : CTX |- CS,[] = null |- [] if CTX =/= null or CS =/= null .

As alreadymentioned, the particular choice of equations and rules in DPLL ismotivated by two reasons: first, to illustrate the

high expressive power of matching modulo associativity, commutativity and identity, which allows expressing some condi-

tions directly in the lefthand side pattern; and second, for efficiency reasons, since unconditional equations and rules can

be executed more efficiently than conditional ones. Again, the representational distance between the textbook formulation

of the DPLL sequent calculus and its expression in an executable form in the rewriting logic framework, whether in the more

literal way just alluded to or the freer one in the DPLLmodule, can be fairly described as an ε distance. Furthermore, rewrit-

ing logic’s distinction between equations and rules gives a specifier additional expressive power to discriminate between

deterministic and nondeterministic inference rules.

The above inference system, being an executable rewrite theory, provides a prototype implementation of a DPLL-style SAT

solver. Of course, since the DPLL inference system is non-deterministic, using Maude’s rewrite command is not enough,

since the concrete sequence of inference steps followed by the default strategy of the rewrite command could result in an

assignment not satisfied by the given formula, when the formula is actually satisfiable. One option is to specify a strategy

that applies the DPLL rules in a way that guarantees that a satisfying assignment will be found if there is one; this could

be done using Maude’s strategy language [175]. A simpler option is to use Maude’s search command, where we begin

with an initial term t and search for a rewrite sequence reaching a term t′ which is a substitution instance of a pattern

(a term with variables) specified as the goal of the search command. For example, the satisfiability of a formula such as

(’a \/ ˜(’b) \/ ’c), (˜(’a) \/ ’b \/ ’c), (’a \/ ’b), can be decided by giving to Maude a search command to look for

a satisfying assignment, which is represented as a sequent of the form CTX |- null. Therefore, we begin with the sequent

null |- (’a \/ ˜(’b) \/ ’c), (˜(’a) \/ ’b \/ ’c), (’a \/ ’b) and search for a sequence of DPLL inference steps bringing us

to a sequent which is an instance of the pattern CTX |- null. If we are interested in just one solution, we can qualify the

search command with the [1] request for the first solution as follows:

Maude> search [1] null |- (’a \/ ˜(’b) \/ ’c), (˜(’a) \/ ’b \/ ’c), (’a \/ ’b)

=>+ CTX |- null .

Solution 1 (state 4)

CTX --> ’a,’c,˜(’b)

which tells us that we can reach the satisfying assignment ’a,’c,˜(’b) |- null by instantiating the pattern’s variable CTX

to the context ’a,’c,˜(’b). Instead, if we are interested in all satisfying assignments, we can give the unqualified search
command (note that some satisfying assignments below are special cases of more general ones):

Maude> search null |- (’a \/ ˜(’b) \/ ’c), (˜(’a) \/ ’b \/ ’c), (’a \/ ’b)

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 729

=>+ CTX |- null .

Solution 1 (state 4)

CTX --> ’a,’c,˜(’b)

Solution 2 (state 5)

CTX --> ’b,’c,˜(’a)

Solution 3 (state 7)

CTX --> ’a,’b

Solution 4 (state 8)

CTX --> ’a,’c

Solution 5 (state 9)

CTX --> ’a,’b,˜(’c)

Solution 6 (state 10)

CTX --> ’b,’c

No more solutions.

3. Foundations

The foundations of rewriting logic begin of course with its proof theory and its model theory, but have various other

aspects such as reflection, strategies, and executability properties. Furthermore, rewrite theories themselves canbe extended

to model real-time systems and probabilistic systems. Finally, the properties enjoyed by a rewrite theory need not be just

those expressible in rewriting logic itself: they may also be expressible in other logics, such as temporal logics. Temporal

logic properties can then be verified by model checking or deductive methods.

3.1. Rewriting logic

A rewrite theory 3 is a tupleR = (�, E, R), with:

• (�, E) an equational theory with function symbols� and equations E; and
• R a set of labeled rewrite rules of the general form

r : t → t′

with r a label and t, t′ �-terms which may contain variables in a countable set X of variables which we assume fixed

in what follows; that is, t and t′ are elements of the term algebra T�(X). In particular, their corresponding sets of

variables, vars(t), vars(t′) are both contained in X .

GivenR = (�, E, R), the sentences thatR proves are rewrites of the form, t → t′, with t, t′ ∈ T�(X), which are obtained

by finite application of the following rules of deduction:

• Reflexivity. For each t ∈ T�(X),
t → t

• Equality.
u→ v E � u = u′ E � v = v′

u′ → v′

3 As alreadymentioned in Section 2, rewrite rules can be conditional. To simplify the exposition I present here the simplest version of rewrite theories, namely,

unconditional rewrite theories over an unsorted equational theory (�, E). In general, however, the equational theory (�, E) can be many-sorted, order-sorted,

or even a membership equational theory [319]. And the rules can be conditional, where a rule’s condition has a conjunction of rewrites, equalities, and even

memberships, that is, rules have the general form

r : t → t′ if (
∧

iui=u′i) ∧
(∧

j vj :sj
) ∧ (∧

lwl→w′l
)

Furthermore, the theory may also specify an additional mapping φ : � −→ P(N), assigning to each function symbol f ∈ � (with, say, n arguments) a set

φ(f) = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ n of frozen argument positions under which it is forbidden to perform any rewrites. Rewrite theories in this more

general sense are studied in detail in [80]; they are clearly more expressive than the simpler unconditional and unsorted version presented here. This more

general notion is the one supported by the Maude language [106]. I discuss further these generalized rewrite theories in Section 3.1.2.

730 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

• Congruence. For each f : k1 · · · kn → k in�, and ti, t
′
i ∈ T�(X), 1 ≤ i ≤ n,

t1 → t′1 · · · tn → t′n
f (t1, . . . , tn)→ f (t′1, . . . , t′n)

• Replacement. For each rule r : t → t′ in R, with, say, vars(t) ∪ vars(t′) = {x1, . . . , xn}, and for each substitution

θ : {x1, . . . , xn} −→ T�(X), with θ(xl) = pl , 1 ≤ l ≤ n, then

p1 → p′1 · · · pn → p′n
θ(t)→ θ ′(t′)

where for 1 ≤ i ≤ n, θ ′(xi) = p′i .• Transitivity

t1 → t2 t2 → t3

t1 → t3

We can visualize the above inference rules as follows:

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 731

The notation R � t → t′ states that the sequent t → t′ is provable in the theory R using the above inference rules.

Intuitively,we should think of the inference rules as differentways of constructing all the (finitary) concurrent computations of

the concurrent system specified byR. The Reflexivity rule says that for any state t there is an idle transition in which nothing

changes. The Equality rule specifies that the states are in fact equivalence classes modulo the equations E. The Congruence

rule is a very general formof “sideways parallelism,” so that each operator f canbe seen as a parallel state constructor, allowing

its arguments to evolve in parallel. The Replacement rule supports a different form of parallelism, which I call “parallelism

under one’s feet,” since besides rewriting an instance of a rule’s lefthand side to the corresponding righthand side instance,

the state fragments in the substitution of the rule’s variables can also be rewritten. Finally, the Transitivity rule allows us to

build longer concurrent computations by composing them sequentially.

3.1.1. Operational and denotational semantics of rewrite theories

A rewrite theory R = (�, E, R) has both a deduction-based operational semantics, and an initial model denotational

semantics. Both semantics are defined naturally out of the proof theory just described. The deduction-based operational

semantics of R is defined as the collection of proof terms [315] of the form α : t → t′. A proof term α is an algebraic

description of a proof tree proving R � t → t′ by means of the inference rules of rewriting logic. As already mentioned,

such proof trees describe the different finitary concurrent computations of the concurrent system axiomatized by R. When

we specify R as a Maude module and rewrite a term t with the rewrite or frewrite commands, obtaining a term t′ as
a result, we can use Maude’s trace mode to obtain a sequentialized version of a proof term α : t → t′ of the particular

rewrite proof built by the Maude interpreter.

A rewrite theory R = (�, E, R) has also a model-theoretic semantics, so that the inference rules of rewriting logic

are sound and complete with respect to satisfaction in the class of models of R [315]. Such models are categories with a

(�, E)-algebra structure [315]. These are “true concurrency” denotational models of the concurrent system axiomatized

by R. That is, this model theory gives a precise mathematical answer to the question: when do two descriptions of two

concurrent computations denote the same concurrent computation? The class of models of a rewrite theory R = (�, E, R)
has an initial model TR [315]. The initial model semantics is obtained as a quotient of the just-mentioned deduction-based

operational semantics, precisely by axiomatizing algebraically when two proof terms α : t → t′ and β : u → u′ denote
the same concurrent computation. Of course, α and β should have identical beginning states and identical ending states.

By the Equality rule this means that we should have E � t = u, and E � t′ = u′. That is, the objects of the category TR
are E-equivalence classes [t] of ground�-terms, which denote the states of our system. The arrows or morphisms in TR are

equivalence classes of proof terms, so that [α] = [β] iff both proof terms denote the same concurrent computation according

to the “true concurrency” axioms. Such axioms are very natural. They express that the Transitivity rule behaves as an arrow

composition and is therefore associative. Similarly, the Reflexivity rule provides an identity arrow for each object, satisfying

the usual identity laws. Furthermore, they state that each f in the Congruence rule acts not only on states but also on arrows

as a functor, i.e., preserving arrow compositions and identities; this axiomatizes the true concurrency semantics of “sideways

parallelism.” Finally, the “parallelismunder one’s feet” semantics of theReplacement inference rule is axiomatized by giving

equational axioms making each rewrite rule r : t → t′ a natural transformation r : t ⇒ t′ between the functors t and t′.
Categorical models for rewrite theories go back to [312,314,315]. As pointed out in those papers and mentioned above,

themodels of a rewrite theory are (small) categorieswith an algebraic structure. They generalize ordinary algebras, which are

setswith an algebraic structure. Thismeans that the underlying universe inwhich thesemodels and theirmorphisms should

be considered is the 2-category Cat of small categories [314,315,344], as opposed to the underlying universe of algebras,

which is the category Set of sets. There is also a generalization of Lawvere’s functorial semantics [279] for ordinary algebras:

themodels of a rewrite theoryR have a functorial semantics as 2-product-preserving 2-functors into Cat from its associated

Lawvere 2-theory LR [313,322]. Such Lawvere 2-theories have been replaced by weaker sesqui-categories in [123,436]; and

in the context of tile logic (which I discuss further in Section 4.2) by Lawvere double theories in [78,81,328].

3.1.2. Generalized rewrite theories

Since rewriting logic is parameterized by its underlying equational logic, the more expressive its underlying equational

part, the more expressive also the resulting rewriting logic. Increased expressiveness is not a theoretical luxury, but an

eminently practical goal, since formal specification languages should describe as simply and naturally as possible thewidest

possible class of systems. As explained in [319], membership equational logic is indeed a very expressive equational logic

732 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

generalizing order-sorted equational logic (which generalizes many-sorted equational logic, which, in turn, generalizes

unsorted equational logic). It supports sorts, subsorts, partiality, and sorts defined by equational conditions through mem-

bership axioms. Its atomic formulas are either equalities t = t′, or memberships t : s stating that t has sort s. Its sentences

are universally quantified Horn clauses on such atoms. Therefore, as already pointed out in Footnote 3, a rewrite theory

R = (�, E, R), whose underlying equational theory (�, E) is a membership equational theory, may have conditional rules

in R whose conditions can be conjunctions of equations, memberships, and rewrites.

In the quest for more expressive versions of rewriting logic, another feature, namely, frozenness, has proved to be very

useful inmany applications. The idea of frozenness is that some argument positions in a state constructor should be “frozen,”

in the sense that no rewrites are allowed below that position. For example, if _ · _ is an action concatenation operator in a

process calculus, then an expression like a.P, with a an action and P a process expression, should typically not be rewritten

on the P part, that is, on its second argument. This can be simply captured by saying that _ · _ is frozen on its second

argument. More generally, given a signature �, its frozenness information is defined as a function φ : � −→ Pfin(N),
where φ(f) is the set of frozen argument positions. For example, φ(_ · _) = {2}. In summary, a generalized rewrite theory

is a 4-tuple R = (�, E, R, φ) where: (i) (�, E) is a membership equational theory; (ii) the rules in R may be conditional,

where conditions are conjunctions of equations, memberships and rewrites, and (iii) φ is the frozenness map. As shown in

detail in [80], all the good properties of the proof theory and the model theory of rewriting logic, including the existence of

initial and free models, extend naturally to the case of generalized rewrite theories.

A theme already developed in [315], which is extended to generalized rewrite theories in [80], is that of reachability

models. For some purposes (for example, model checking or reachability analysis), we may not need the initial model of

a rewrite theory R in its full glory as a category of truly concurrent computations: a much more abstract model, namely,

its reachability relation may be sufficient for such purposes. It is well-known that any small category can be collapsed to a

binary relation on its objects which is a preorder. In exactly this way, the initial model of R = (�, E, R, φ) is collapsed to a

preorder, namely, its reachability initial model, whose elements are E-equivalence classes [t] of ground terms t; and where

the reachability relation [t] →R [t′] is defined by the equivalence:

[t] →R [t′] ⇔ R � t → t′.

It is also possible to distinguish in the initial reachability model between one-step transitions [t] →1
R [t′], corresponding

to the application of a single rewrite rule, and general transitions [t] →R [t′], corresponding to zero, one, or more rewrite

steps. This distinction is useful for various purposes, for example for giving semantics in the initial reachability model of R
to the next operator© in temporal logic, a topic further discussed in Section 3.11.

3.2. Computability and coherence

For execution purposes a rewrite theory R = (�, E, R, φ) should satisfy some additional requirements. As already

illustrated by the DPLL example in Section 2.2, the equations E may decompose as a union E = E0 ∪ B, where B is a (possibly

empty) set of structural axioms, and E0 is a set of equations used as simplification rules modulo B. We should require that

matching modulo B is decidable, and that the equations E0 are sort-decreasing, ground confluent and terminating modulo B

and B-coherent. 4 Thismakes the initial algebra T�/E0∪B, that is, the set of states of the system axiomatized byR, computable;

in fact, equality becomes obviously decidable, and the elements of the initial algebra T�/E0∪B have a very simple description

as the (irreducible) canonical forms canE0/B(t) of ground terms t by the equations E0 modulo the axioms B.

What about the computability of the one-step rewrite relation→1
R in R = (�, E, R, φ)? If we want the number of

states reachable in one step from a given state to be finite, for unconditional rules R we should first of all require that for

any rule r : t → t′ in R we have vars(t′) ⊆ vars(t). But because of rewriting logic’s Equality inference rule, computability

is not at all obvious just by requiring vars(t′) ⊆ vars(t), or even by further requiring that E = E0 ∪ B with the equations

E0 sort-decreasing, ground confluent and terminating modulo B. The problem is that the term t we rewrite need not be

in canonical form, and there may easily be an infinite number of terms having the same canonical form. Otherwise put,

model-theoretically the transitions in the initial model TR, or in its collapse as an initial reachability model, are between

states [t] which are E0 ∪ B-equivalence classes of terms, and therefore possibly infinite sets. Finding a rewritable term in

such a set is the proverbial search for a needle in a haystack and may be undecidable.

Of course, all would be easy if the existence of a one-step rewrite proofR � t → t′ guarantees the existence of another

such one-step rewrite proof of the form R � canE0/B(t) → t′′ such that [t′] = [t′′], since then, assuming R is finite, the

one-step rewrite relation becomes easily computable: to rewrite [t] what we can do is: (i) compute the canonical form

canE0/B(t) of t, and (ii) try to rewrite canE0/B(t)with the rules Rmodulo B in all possible ways. By the assumptions on B and

the finiteness of R there is only a finite set of such one-step rewrites that can be effectively computed, say, canE0/B(t) →
t1, . . . , canE0/B(t)→ tk . Then the next states reachable from [t] in one step are exactly [t1], . . . , [tk]. Furthermore, we can

conveniently represent such states by their unique canonical forms canE0/B(t1), . . . , canE0/B(tk). This is exactly howMaude

4 For B any combination of associativity and/or commutativity and/or identity axioms, B-coherence can be automatically guaranteed by a simple theory

transformation, as done automatically in Maude (see [106, Section 4.8]). As explained in Footnote 5, the notion of coherence of an equational theory (�, E0 ∪ B),

though related, is different from that of coherence of a rewrite theory, which is the main topic discussed in this section.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 733

computes with a rewrite theory: it reduces t to canonical formwith E0 modulo B, and then applies a rule in Rmodulo B, and

keeps doing this until termination or until a user-givenmaximumnumber of rewrites with R, that is, of one-step transitions.

Similarly, in reachability analysis or model checking, Maude stores the states in the state space as their canonical forms

canE0/B(t).
But is this complete? Couldn’t we be missing rewrite proofs, and therefore transitions, by adopting this strategy? Com-

pleteness is guaranteed if we have the implication:

R � t →1 t′ ⇒ (∃t′′) R � canE0/B(t)→1 t′′ ∧ [t′] = [t′′]
whereR � t →1 t′ denotes a one-step rewrite proof. This property is called the ground coherence of R with E0 modulo B. If we

do not require t to be a ground term, we talk instead of the coherence 5 of R with E0 modulo B. This coherence property was

first axiomatized by Viry [463,464]. A similar but weaker property, what Viry calls “weak coherence,” was independently

identified in [316]. For the case of rewrite theoriesR = (�, E0∪B, R)where (�, E0∪B) is an untyped equational theory, E0
is confluent and terminating modulo B, and the axioms B consist of the associativity or the associativity–commutativity of

some binary function symbols in�, a detailed study of critical pair criteria for checking coherence of Rwith E0 modulo Bwas

given byViry in [467]. Since coherence is such a fundamental property to ensure the computability and efficient executability

of rewrite theories, coherence needed to be generalized to support more expressive rewrite theoriesR = (�, E0 ∪ B, R, φ)
with: (i) an order-sorted signature�with sorts and subsorts; (ii) possibly conditional equations E0; (iii)more general axioms

B such as any axioms whose equations are unconditional, linear and regular and have a finitary unification algorithm; (iv)

conditional rules Rwhich can have a conjunction of equations in their condition; and (v) a frozenness map φ. Furthermore,

proofmethods and tools not only for coherence (the case studied by Viry) but also for ground coherence had to be developed.

This has been done recently in [161], where the Maude Coherence Checker tool is also described (I further discuss this tool

in Section 6.1.1). But of course, to check coherence or ground coherence under such general conditions is only possible if we

can first check the confluence and termination of the underlying order-sorted conditional specification (�, E0 ∪ B). Proof
methods for checking confluence of equational theories under such general conditions and a tool (theMaude Church–Rosser

Checker (CRC)) are presented in [161] (I discuss the CRC tool in Section 6.1.1). I postpone discussion of the termination

methods until Section 3.8, and of termination tools until Section 6.1.

To summarize, equality of states, operations on states, and the one-step rewrite relation are all effectively computable

in a finitary rewrite theory R = (�, E ∪ B, R, φ) such that: (i) the (possibly conditional) equations E are sort-decreasing,

ground confluent and terminating modulo B and B-coherent, and there is a B-matching algorithm; and (ii) the rules in R are

coherent with the equations E modulo B and have only equalities and memberships in their conditions, and if they have

extra variables in their righthand side or condition which do not appear in the lefthand side, then they are admissible rules

in the sense of [106, Section 6.3].

An interesting question to ask is: how expressive is rewriting logic to specify computable transition systems and com-

putable Kripke structures (formore on Kripke structures see Section 3.11)? For equational logic the same questionwas asked

and answered by Bergstra and Tucker in [54]: any computable algebra, i.e., any computable data type, can be specified by a

finitary equational theory (�, E), where the equations E are confluent and terminating. For rewriting logic the samequestion

has been asked and answered in [332]: any computable transition system, resp., computable Kripke structure, is isomorphic

to one specified by a finitary rewrite theoryR = (�, E∪B, R, φ) satisfying conditions (i)–(ii) andwith a chosen kind [State]
of states, so that the transition system’s set of states is the algebraic data type T�/E∪B[State] , and its transition relation is→1

R.

3.3. Unification, generalization, narrowing, and symbolic reachability

The rewrite rules of a rewrite theoryR, and the rewrite sequentswe candeduce from it using the inference rules discussed

in Section 3.1, are all (implicitly) universally quantified. But what about existential formulas of the form

∃x : t(x)→ t′(x)

with x some variables; what do such formulas mean? and how can we reason formally about them? An existential formula

∃x. t(x) → t′(x) is of course a reachability property. It says that there is some instance of the state pattern t from which

we can reach, by some possibly complex computation, another state which is an instance of the state pattern t′. A negated

existential formula¬∃x. t(x)→ t′(x), which is of course equivalent to theuniversal formula∀x. ¬(t(x)→ t′(x)), is then an

unreachability property. Reachability and unreachability properties are among themost useful properties of rewrite theories.

Typically, an unreachability property expresses a safety property such as an invariant (invariants are further discussed in

Section 3.11.3). An invariant says that for all the states reachable from a specified set of initial states something bad can never

happen. By describing our, possibly infinite, set of initial states as the ground instances of the state pattern t, and likewise

5 The notion of coherence of a rewrite theory is related to, but different from, that of coherence of an equational theory (�, E0 ∪ B). In both cases the issue is

to ensure an appropriate notion of completeness of a rewrite relation. For equational theories the relation is that of rewriting with equations E0 modulo axioms

B. Instead, for rewrite theories it is a matter of the coherence between two rewrite relations modulo B, namely, one with equations E0, and another with rules R.

Early work on the coherence of a set of equations E0 modulo axioms B includes, e.g., [244,248,383].

734 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

describing the bad states as the ground instances of the state pattern t′, the unreachability property ∀x. ¬(t(x) → t′(x))
says that bad states in t′ are never reachable from the initial states in t or, equivalently, that the complement of the set of

bad states which are ground instances of t′ is an invariant, relative to the initial states in t. Understood this way, proving the

formula ∃x. t(x)→ t′(x)means proving that such a supposed invariant can be violated.

So the question now is: how can we prove existential formulas of the form ∃x. t(x) → t′(x) for a rewrite theory

R = (�, E ∪ B, R, φ) (where we assume the good executability properties already discussed in Section 3.2, i.e., that E is

confluent and terminating modulo B, and R is coherent with E modulo B)? Thati and I studied this question in [340,450] and

gave several conditions onR and several forms of narrowing modulo E ∪ B providing complete proof methods for formulas

of the form ∃x. t(x) → t′(x). Let me summarize the simplest condition that can be given on R, namely, the frequently

occurring case of topmost rewrite theories. These are theories having a kind k (a topmost sort in some connected component

in the poset of sorts) such that: (i) no operator has k as sort for any of its arguments; and (ii) the terms in all rewrite rules in

R are of kind k. For example, the DPLL module satisfies these two conditions with k = Sequent. Our object-based example

in Section 2.1 does not quite satisfy requirements (i) and (ii) because the constructor for configurations __ has the sort

Configuration as an argument, but can be easily transformed into a semantically equivalent rewrite theory which does: we

can just add a new sort, say, State, and declare an operator embracing a whole configuration to make a global distributed

state:

op {_} : Configuration -> State .

Then, to satisfy condition (ii) we can just place all the rules in our object-based example in the bigger context of a state by

adding an extra variable C of sort Configuration to represent “the rest of the state” (which could be empty). For example,

rule send now becomes:

rl [send] : { < Y : Sender | cell : E , cnt : N , receiver : Z > C }

=> { < Y : Sender | cell : mt, cnt : N > (to Z :: E from Y cnt N) C } .

As shown in [340], under conditions (i)–(ii), narrowing with R modulo E ∪ B is a complete method for proving formulas

of the form ∃x. t(x)→ t′(x), that is, for symbolic reachability analysis. Specifically, under such conditions ∃x : t(x)→ t′(x)
holds for R iff there is a narrowing sequence t �∗

R,E∪B u such that u and t′ have a E ∪ B-unifier. Narrowing is just like

rewriting, but replacing matching modulo an equational theory by (semantic) unification modulo such a theory. That is,

the one-step (R, E ∪ B)-narrowing relation is defined as t �R,E∪B t′ iff there is a non-variable position6 p of t, a (possibly

renamed) rule l→ r in R, and a unifierσ ∈ Unif E∪B(t|p, l) such that t′ = σ(t[r]p), whereUnif E∪B(t|p, l) denotes a complete

set of unifiers of the equation t|p = l, that is, of substitutions θ solving such an equation in the equational theory E ∪ B, in

the sense that θ(t|p) =E∪B θ(l). This hasmany applications to automated deduction, verification of safety properties, model

checking, and security. Some of these applications were discussed in [188,340]. I discuss some of the applications to model

checking in Section 3.11.2, and to the analysis of cryptographic protocols in Section 7.3.

There is, however, a nontrivial problem, namely, how to obtain practical unification algorithms to computeUnif E∪B(t|p, l).
If E = ∅, and B is a set of axioms for which a unification algorithm exists, then things are easy. For example, for the object-

based system of sender and receiver objects with buffers in Section 2.1, E = ∅ and B consists of the axioms of associativity,

commutativity and identity for the operators _ _ and _ , _ forwhich there is a finitary unification algorithm generating a finite

set of solutions. There is, however, the remaining problem that the signature of the above example is order-sorted (indeed, the

operators _ _ and _ , _ have different sorts),whereas the standard unification algorithmsmodulo associativity, commutativity

and identity are unsorted. The paper [235] gives an algorithm, under very general conditions on B, by which one can use an

unsorted B-unification algorithm to obtain a complete set of order-sorted B-unifiers. Currently,Maude supports order-sorted

unification for B any combination of: (i) free function symbols; (ii) commutativity axioms; (iii) associativity–commutativity

axioms; and (iv) associativity, commutativity and identity axioms [152].

When E is nonempty, the matter of finding a E ∪ B-unification algorithm is more complex. In principle, one can assume

good properties about E such as confluence, termination, and coherence modulo B and use the results in [249] to compute

E ∪ B-unifiers by (E, B)-narrowing. 7 But there are two main problems: (i) in general the number of E ∪ B-unifiers is not

finite; and (ii) for B
= ∅ unrestricted narrowing can be horribly inefficient in the sense of leading to huge search spaces,

and known strategies making narrowing efficient such as basic narrowing can be incomplete. For example, basic narrowing

is incomplete when B is the theory of associativity–commutativity (AC) [121]. To make things even worse, it is very easy to

give examples of narrowingmodulo, e.g., AC such that there is a finite set ofmost general narrowing solutions to a unification

problem, but the narrowing algorithm modulo AC will loop forever looking for more solutions.

6 By viewing a term as a tree, we can represent a positions p in it by a string of natural numbers. For example, in the term f (a, g(b, c)), a is at position 1, g(b, c)

at position 2, b at position 2.1, and c at position 2.2. The subterm of t at position p is then denoted t|p . A position p is non-variable, iff t|p is not a variable.
7 This reduces the problem of computing E ∪ B-unifiers to a symbolic reachability problem. Specifically, we add a new binary operator≈ and a fresh constant

true to our syntax, and add a new rule x ≈ x → true to our equations E oriented as rewrite rules. Then the E ∪ B-unification problem ∃x. t(x) = t′(x) is
transformed into the symbolic reachability problem ∃x : t(x) ≈ t′(x)→ true for the rewrite theory with equations B and rules E ∪ {x ≈ x → true}, which is

solved by narrowing with rules E ∪ {x ≈ x→ true}modulo B.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 735

In fact, narrowing with (oriented) equations E modulo axioms B when B
= ∅ has been for a long time a terra incognita,

where little was known about any practical methods to deal with these problems. Using the idea of variants 8 of a term

proposed by Comon-Lundth and Delaune in [121], Escobar, Sasse and I have defined a complete narrowing strategy with

equations E modulo B called folding variant narrowing 9 [189] (see also the longer paper [190] in this issue), that is optimally

terminating, that is, if any complete narrowing strategy terminates on an input term, then folding variant narrowing will

terminate on that term. Furthermore, if E ∪ B has the so-called finite variant property [121], folding variant narrowing will

terminate on all input terms. For E ∪ B-unification purposes this means that, if E ∪ B has the finite variant property, folding

variantnarrowing thenprovides afinitary E∪B-unificationalgorithm.10 Escobar, Sasse and Ihavealsogivenmethods to check

the finite variant property of a theory in [187]. It turns out thatmany cryptographic theories of interest have the finite variant

property [121]. I explain in Section 7.3 how—using folding variant narrowing to compute E ∪ B-unifiers and narrowing with

protocol rules Rmodulo E∪B to perform symbolic reachability analysis—this has been exploited in theMaude-NPA protocol

analyzer [183] to provide complete formal analysis for security protocols modulo a variety of cryptographic theories. More

generally, Maude 2.6 supports variant narrowing, and symbolic reachability analysis of topmost rewrite theories, modulo a

large class of equational theories E ∪ B having the finite variant property [152].

Generalization is the dual of unification. Given two terms t and t′, a set of most general B-unifiers for the equation t = t′
is, as already mentioned, a set Unif B(t, t

′) giving us a set of most general instances {θ(t) | θ ∈ Unif B(t, t
′)}, which are

common instances of t and t′ up to B-equivalence, i.e., θ(t) =B θ(t
′). But we can ask the dual question: given terms t and

t′, can we compute a set GralB(t, t
′) of least general patterns of which t and t′ are instances modulo B, i.e., least general

terms u such that there are substitutions θ, ρ with θ(u) =B t and ρ(u) =B t′? For example, for B = ∅ and � untyped,

the terms f (f (a, a), b) and f (f (b, b), c) have a least general generalization in the pattern f (f (x, x), y). Generalization has

many useful applications, for example, to automated deduction, machine learning, testing, and partial evaluation. Alpuente,

Escobar, Ojeda and I have developed generalization algorithms for two cases that are important for rewriting logic, namely,

order-sorted generalization [17], and generalization modulo B, for B any combination of associativity and/or commutativity

and/or identity axioms [16].

3.4. Reflection

Reflection is a very important property of rewriting logic [102,113,115,116]. Intuitively, a logic is reflective if it can faithfully

represent its metalevel at the object level. Specifically, rewriting logic can faithfully represent its own theories and their

deductions by having a finitely presented rewrite theory U that is universal, in the sense that for any finitely presented

rewrite theory R (including U itself) we have the following equivalence

R � t → t′ ⇔ U � 〈R, t〉 → 〈R, t′〉,
where R and t are terms representing R and t as data elements of U . Since U is representable in itself, we can achieve a

“reflective tower” with an arbitrary number of levels of reflection [102,113,115], since we have

R � t → t′ ⇔ U � 〈R, t〉 → 〈R, t′〉 ⇔ U � 〈U, 〈R, t〉〉 → 〈U, 〈R, t′〉〉 . . .
Reflection is a very powerful property: (i) it allows defining rewriting strategies by means of metalevel theories that

extend U and guide the application of the rules in a given object-level theory R (this is further discussed in Section 3.5);

(ii) it is efficiently supported in the Maude implementation by means of descent functions [104] in the META-LEVELmodule;

(iii) it can be used to build a variety of theorem proving and theory transformation tools (this is further discussed in

Sections 4.1 and 6.1); (iv) it can endow a rewriting logic language like Maude with powerful theory composition operations

[150,151,159,160]; (v) it can be used to prove metalogical properties about families of theories in rewriting logic, and about

other logics represented in the rewriting logic meta-logical framework [50,109] (this is further discussed in Section 4.1);

and (vi) has important connections with distributed object-based reflection and adaptation [338].

3.5. Strategies

Recall the DPLL rewrite theory in Section 2.2. Themost complex aspect of a SAT solver is precisely its heuristics or strategy.

In the case of the rewrite theory specified in DPLL thismeans that performancewill crucially depend on the strategies used to

apply the split1 and split2 rewrite rules. In a more sophisticated SAT solver supporting back-jumping, conflict resolution

and clause learning, the situation is similar: performance will crucially depend on the strategies guiding the application of

8 The E ∪ B-variants of a term t are pairs (u, θ) with u = canE/B(θ(t)) and θ some substitution. Therefore, the variants of t are essentially the irreducible

patterns to which any instance of t may evaluate.
9 Variant narrowing is a narrowing strategy which, given an input term t, computes a complete set of E ∪ B-variants of t. The folding version of this strategy

uses subsumption modulo B to avoid computing any variant which is a substitution instance modulo B of a more general variant.
10 Using the ideas in Footnote 7, computing the E∪B-unifiers of the equation u = v by folding variant narrowing amounts to computing (a complete set among)

those E′ ∪ B-variants of the term u ≈ v which are of the form (true, θ), for E′ = E ∪ {x ≈ x→ true}.

736 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

the Abstract DPLL inference rules in [356]. Of course, this is a general issue that applies not just to SAT solving but to any

rewrite theory; and that involves not only performance but also any goal-oriented use of a rewrite theory. The key issue is

the potential nondeterminism of rules, as opposed to the determinism of confluent and terminating equations.

Strategies are still relevant for equations for performance and termination reasons, evenwhen the equations are confluent

and terminating, or to ensure their termination as in the case of context-sensitive rewriting for equations (see, e.g., [290] and

references there). Context-sensitive rewriting of equational specifications is supported by OBJ, CafeOBJ, and Maude. Note

that the addition of a frozennessmap φ to a generalized rewrite theory, as explained in Section 3.1.2, provides a similar form

of context-sensitive rewriting at the rule level, as opposed to the equation level. 11 But for nondeterministic rules, strategies

become a much more essential issue, because such rules, depending on when and where they are applied, can yield totally

different outcomes. Frozenness provides a very simple form of strategic rewriting with rules, but more than frozenness is

needed.

The role of strategies is to tame the potentially wild nondeterminism of rules for various purposes, whichmay include: (i)

realistic modeling of the behavior of a truly nondeterministic system, whose nondeterminismwe cannot or we do not intend

to control, but where some behaviors may be utterly unrealistic; and (ii) goal-oriented (and perhaps performance-oriented)

control of the nondeterminism in a system’s execution. It is of course possible to mix purposes (i) and (ii): for example, we

may have an asynchronous object systemwhere the asynchronous behavior is only restricted by a few fairness assumptions,

but where the objects are intelligent and use sophisticated game-theoretic strategies when interacting with each other. In

all cases, what strategies do is to restrict the set of all possible dynamic behaviors of the system axiomatized by the given

rewrite theory. That is, roughly speaking a strategy determines a subset of the set of all the possible computations of a system

specified by a rewrite theory R, where those computations need not be just the finite ones but may also include infinite

computations.

If we are modeling a concurrent, asynchronous system whose nondeterminism is an intrinsic fact of life which cannot

really be controlled, and we want to simulate such a system, strategies may still be relevant, not so much to control the

outcome of system executions as to observe the behavior of the system under realistic assumptions about its execution.

Recall the example of sender, receiver, and buffer objects in Section 2.1. It is easy to extend such a system to one where

there are also sensor objects that are periodically writing numerical data observations into the sender’s buffer. In this way

the system immediately becomes a nonterminating reactive system. Such a system can have executions that are totally

unrealistic. For example, a sensor can be regularly writing new data into the sender’s buffer, the sender object can be

sending this potentially infinite stream of data to the receiver, but the receiver never receives anything! Intuitively, such

a behavior is unfair. Therefore, fair strategies, which restrict the set of behaviors to those were starvations such as this are

ruled out, are very important to model a system’s behavior realistically, and to reason formally about system properties

such as termination or satisfaction of temporal logic formulas (I further discuss fair termination in Section 3.8, and model

checking of temporal logic formulas under fairness assumptions in Section 3.11). As explained in [323], fair rewriting is not

just a matter of rule fairness, that is, of making sure that all rewrite rules are given a chance to be executed. For example,

in the above concurrent object system with sensor, buffer, sender and receiver objects, if we have two different sensors

hooked up to two different senders through their respective buffers and two corresponding receiver objects with their

own buffers, we can be rule fair by making sure that the receive and write rules are executed infinitely often; but we

can still starve one of the receivers, just by only executing receive and write rules for the other. That is, we here need

not only rule fairness but also object fairness: each object should be treated fairly. The general notion is that of localized

fairness in rule applications [323]. This is of course important to obtain realistic simulations. For example, Maude provides

rule fair executions through its rewrite command; and rule and position fair executions through its frewrite command,

which becomes also object fair for object-based concurrent systems specified with a multiset union operator using the

config keyword, as illustrated in the example of Section 2.1. But what can be done if we want to obtain fair behaviors

besides the ones provided by a language implementation? Fairness is just a particular kind of temporal logic property. More

generally, we can view a temporal logic formula as a strategy expressionwhich defines a corresponding class of behaviors. In

Section 3.11.2, I explain how an expressive temporal logic such as TLR can be used as a strategy language, which is then

implemented by a model checker.

If instead our purpose is to control the nondeterministic behavior of a rewrite theory R for goal-oriented and perhaps

performance-oriented purposes, an appropriate way to achieve that end is to provide a strategy language that can be used

to guide and control the way in which the rules ofR are applied. To give a logical example,R can be the inference system of

a theorem prover or of a SAT solver, and then the strategies correspond to proof tactics or to solving heuristics. In concurrent

system applications the relevant strategies may have other purposes, such as, for example, having a winning strategy in

a game-theoretic interaction between agents. Given all these useful purposes, different rule-based languages such as, for

example, ELAN [70,71], Maude [113,114,303], and Stratego [468], provide strategy languages to guide and control rule

executions. The ELAN researchers deservemuch credit as pioneers in this area for havingmade key contributions to rewriting

strategy ideas from the beginning of the ELAN language.

For modularity and reasoning purposes it is very useful to keep a clear separation between the rewrite theory R and

the strategies used to control it. As discussed in Section 2.2, this was one of the key motivations of Tinelli in seeking formal

specifications of SAT solvers by inference systems, so that the proof of correctness of a SAT solver is completely decoupled

11 Maude supports both forms of context-sensitive rewriting: with equations using the strat attribute, and with rules using the frozen attribute.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 737

from its, possibly quite complex, heuristics. Following this point of view, a strategy language SL is understood in [303] as a

theory transformation of the form:

(R, SM) �→ SL(R, SM)

where SM is a strategy module completely separated from the rewrite theory R, and SL(R, SM) is a transformed rewrite

theory which executes the rules in R using the strategy expressions of SM. Modularity and separation of concerns are thus

achieved, because we can have different strategy modules, say, SM1, . . . , SMn, to control the executions of the same rewrite

theoryR in differentways for different purposes. The fact that SL(R, SM) is another rewrite theorymeans that the operational

semantics of the strategy language SL is also defined by rewriting, as done, for example, in [70,71,114,303]. But what is now

rewritten is not just a term t in R, but a pair s@ t, consisting of a strategy expression s in SM which is applied to a term

t in R. What the term s@ t rewrites to are solutions (plus possibly pending strategy tasks); that is, terms t′ in R that are

reachable from t when the rules inR are applied according to the strategy s. Therefore, one can also give to SL amore abstract

set-theoretic semantics that assigns to s@ t the set of all its solutions, as done, for example, in [70,71,303].

Of course, the theory SL(R, SM) manipulates or controls the theory R. It needs to know and handle notions such as

term, subterm, rule, position, matching substitution, and so on. This makes an explicit use of reflection in the definition of

SL(R, SM) very natural, in the sense that SL(R, SM) can be viewed as a rewrite theory that extends the universal theory

U with special combinators aimed at controlling the execution of R at the metalevel. This has been the approach taken

in Maude since its first strategy languages until its current one [113,114,303]. In this way, strategies are made internal to

rewriting logic itself. There are of course various requirements that one would like a strategy language to satisfy, the most

basic one being its soundness, i.e., only terms reachable from t in R should be among the solutions of s@ t. The paper [303]

discusses several such requirements, emphasizing the fact that the determinism of SL(R, SM) is a highly desirable feature:

since we want to control the nondeterminism ofR, once we fix a strategy s, the solutions of s@ t should not depend on how

s@ t is executed in SL(R, SM), in the sense that any possible solution not yet seen should always be obtainable by further

rewriting.

An important area where more advances are needed is that of formal reasoning about rewriting with strategies. Useful

formal reasoning techniques and tools already exist for proving termination under some notion of strategy: I discuss work on

termination under fairness, context-sensitive termination, and termination under ELAN strategies in Section 3.8. However,

other formal reasoning methods are less developed; for example, the paper [289] studies conditions for context-sensitive

confluence, but the conditions are quite strong.

3.6. The ρ-calculus

One of the attractive aspects of theλ-calculus is that it is very simple, both in its syntax and its rules, yet all of higher-order

functional programming can be encoded in it, or in some variant of it such as a typed version. Couldn’t there be a similar

calculus for rewriting? And could such a calculus be general enough as to naturally embed the λ-calculus as a subcalculus?

Cirstea and Kirchner both posed these intriguing questions and gave an elegant positive answer to them in their ρ-calculus
[95–97]. The key idea is to replace the λ-abstraction operator λx.u by a ρ-abstraction t ⇀ u, where the role of the bound

variable x in λx.u is now played by the bound term t in t ⇀ u. As in the λ-calculus, there is also an application operator [_]_.
The intended meaning of an application [t ⇀ u](v) is to rewrite the term v at the top with the rewrite rule t → u. The

λ-calculus is then naturally encoded in the ρ-calculus as a special case. For example, the λ-term λx.(y x) is encoded as the

ρ-term x ⇀ [y](x). The entire ρ-calculus is then described by a small set of evaluation rules; furthermore, such evaluation

rules, particularly the Fire rule, can bemade parametric on thematching algorithm employed, i.e., the ρ-calculus can express

not only syntactic rewriting, but also rewriting modulo axioms such as associativity–commutativity. In similarity to the

λ-calculus, there are also typed versions of the ρ-calculus [99,287], and even a “ρ-cube” [98].
From the point of view of reflection, the ρ-calculus can be understood as a convenient simple calculus specifying a

universal theory (modulo using an explicit substitution calculus such as, e.g., CINNI [430] to turn the ρ-calculus itself into
a first-order rewrite theory). Indeed, it is shown in [96,97] that the ρ-calculus can faithfully simulate at the metalevel the

rewriting behavior of any other rewrite theory. Since, as pointed out in Section 3.5, from a reflective point of view a strategy

language SL can be understood as the addition of appropriate strategy combinators to a universal theory U , it is entirely

natural to see that one of the important uses of the ρ-calculus has been to give a rewriting semantics at the metalevel to

strategy languages such as ELAN, and that theρ-calculus itself has been extendedwith such strategy combinators to become

in effect a powerful strategy language [100].

3.7. Sufficient completeness

Given a rewrite theory R = (�, E ∪ B, R, φ), with good executability conditions such as E being ground confluent

and terminating modulo B, and R being coherent with E modulo B, we can represent its states uniquely up to B-equality

as canonical forms canE/B(t) with t a ground term. The equations E may define various auxiliary functions (for example,

numerical functions), which operate on some parts of the state, that is, that manipulate elements of the initial algebra

T�/E∪B. Therefore in canE/B(t) all such auxiliary functions should have already disappeared and only state constructors

738 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

should remain. This is the (equational) sufficient completeness problem: given a subsignature � ⊆ � of operators called

constructors, is it the case that for any ground �-term t, the term canE/B(t) is an �-term? If this holds, (�, E ∪ B) is called
sufficiently completewith respect to the constructor subsignature�; if it fails to hold, this is clear indication that we have not

given enough equations to define some auxiliary function f ∈ �−�, so that there is somethingwrongwith the specification.

For a rewrite theoryR = (�, E∪ B, R) this means that there are extra states that we had not intended to have in our system

and which are not built by the state constructors� alone.

It is therefore important to check that an equational theory (�, E ∪ B), or the equational part of a rewrite theory

R = (�, E ∪ B, R, φ), is sufficiently complete. When B = ∅, � is unsorted, and the equations E are unconditional, several

algorithms to check sufficient completeness are known (see, e.g., [120] and references there). An attractive possibility is to

further assume that the equations E are left-linear (i.e., if (t = t′) ∈ E, then each variable x in t occurs at a single posi-

tion p of t), because then the problem can be reduced to an emptiness problem for tree automata (see [120]). In general,

however, one would like to have sufficient completeness proof methods that can apply more broadly to: (i) order-sorted

or even membership-equational signatures; (ii) modulo axioms B; and (iii) with E containing conditional equations and

even conditional memberships. In such a broad generality the problem becomes undecidable, but proof obligations can be

generated. For example, the tool described in [232] addresses (i) and (iii) by providing a decision procedure to check the suf-

ficient completeness of unconditional order-sorted equational theories without requiring left linearity, and generates proof

obligations which are sent to theMaude Inductive Theorem Prover (ITP) (see Section 6.1.5), to prove sufficient completeness

of order-sorted andmembership-equational conditional specifications. Instead, theMaude Sufficient Completeness Checker

tool (SCC) [234,236] addresses (i) and (ii) by providing a decision procedure which can check sufficient completeness of

order-sorted equational specifications modulo combinations of associativity and/or commutativity and/or identity axioms

when the equations E are unconditional and left-linear. The SCC tool reduces the problem to an emptiness problem for

propositional tree automata [238], and uses the CETA library that efficiently implements tree automata operations for propo-

sitional tree automata [231]. As already mentioned, sufficient completeness for membership equational logic (MEL) is in

general undecidable, but proof obligations can be generated. The MEL sufficient completeness problem has been studied in

[72,231,237].

For a rewrite theoryR = (�, E ∪ B, R, φ) there are actually two different sufficient completeness problems. The first, of

course, is the equational sufficient completeness of its equational part (�, E ∪ B) relative to a constructor subsignature �

described above. The second problem is the sufficient completeness of the rules R. But what does that mean? If (�, E ∪ B)
is sufficiently complete in the equational sense, are not all states of R already representable as �-constructor terms of the

form canE/B(t)? Yes indeed, but what about the set of final states, that is, states for which it is not possible to perform any

further transitions with R? They are in general a subset of all ground �-terms, so that they may be describable by an even

smaller constructor subsignature� ⊆ � ⊆ �. By specifying�, a user makes clear a set of state constructors that is enough

to generate all such final states.What is then a failure of sufficient completeness for the rules R?What does itmean? Itmeans

exactly a violation of deadlock freedom. A deadlock is an unintended and unwanted final state. Lack of sufficient completeness

for R means that there is a final state of R which is not a �-term, that is, R has a deadlock. Therefore, checking sufficient

completeness of R means checking deadlock-freedom. This has been proposed by Rocha and me in [397], where we show

that the same propositional tree automata techniques used to verify sufficient completeness for order-sorted equational

specifications modulo axioms can be extended to check sufficient completeness of the rules R in R under the assumption

that they are unconditional, left-linear, and weakly terminating; we also extend the Maude SCC tool to also support such

checking. For the case of rewrite theories of the form R = (�,∅, R), with � unsorted and R unconditional, a different

method to check the sufficient completeness of R using narrowing techniques has been proposed by Gnaedig and Kirchner

in [213].

3.8. Termination

Termination of a rewrite theoryR = (�, E∪B, R, φ) is a very important problem, and there is a rich body of termination

techniques for term rewriting systems that can be used. However, the standard termination proofmethods address themuch

simpler case of untyped rewrite theories of either the formR = (�,∅, R), or the formR = (�, B, R) for some restricted set

B of axioms. These standard methods are clearly insufficient for rewrite theories and need to be substantially generalized in

several dimensions such as: (i) support for sorts, subsorts, and memberships; (ii) support for conditional rules with extra

variables in their conditions12 in both E and R; (iii) the existence, when E and R are conditional, of two separate rewrite

relations→E and→R that cannot be easily combined into a single one; (iv) the need to support a wide range of equational

axioms B containing at the very least any combination of associativity and/or commutativity and/or identity axioms; and

(v) support for context-sensitive rewriting. Furthermore, standard termination methods were developed in the context of

equational logic and automated deduction and do not address important kinds of termination relevant for rewriting logic

applications such as: (a) termination under fairness assumptions; (b) termination under strategies; and (c) probabilistic

termination.

12 The use of extra variables in conditions, which are instantiated incrementally, greatly increases the expressive power of specifications. See [106, Sections 4.6

and 6.3] for the executability conditions required in Maude for such specifications.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 739

To address problems (i)–(v) in the context of generalized rewrite theories R = (�, E ∪ B, R, φ) whose equational part

is a (possibly conditional) membership equational theory (�, E), the first thing to observe is that the “vanilla flavored”

description of the computations by a single rewrite relation→R, or even by two relations→E and→R, is utterly inadequate,

because the computation of the membership relations t : s is just as important and is entwined with that of rewrites

using→E and→R. What one needs to make explicit is an inference system involving both rewrites (with R and E) and

memberships. This, in turn, poses the problem of conditional termination not in terms of a rewrite relation→R, but in terms

of different logics with different inference systems. This has led to proposing the notion of operational termination in [155],

not only for membership rewriting, but for logical inference systems in general. Although very general, this notion is also

very practical, because it captures the idea of an interpreter carrying out the inference steps, so that operational termination

means that such an interpreter will never loop. Even for the vanilla-flavored case of untyped conditional rewrite theories

R = (�,∅, R) this notion provides useful insights: as shown in [291], operational termination coincides there with the

notion of quasi-decreasing conditional term rewriting systems,making it clear that other conditional rewrite systems,which

are soi disant terminating, such as those enjoying “effective termination,” are not effective at all, since interpreters can loop

on such systems [155]. The relations of operational termination with other notions of conditional termination for untyped

conditional term rewriting systems have been further investigated in [414].

Although the approach to the operational termination ofmembership rewrite theories in [155] already dealt with rewrit-

ingmodulo axiomsB, andwas extended in [157] todeal simultaneouslywith the relations→E and→R plus thememberships

t : s, there is great practical interest in being able to use existing state-of-the-art termination tools for term rewriting systems

to prove the termination of generalized rewrite theoriesR = (�, E∪B, R, φ) beyond their scope. To bridge this gap, several

important problems need to be solved. First, the rewrite theoriesR = (�, E∪ B, R, φ), or even the membership equational

theories (�, E) need to be transformed into untyped vanilla-flavored term rewriting systems, eliminating features such as

sorts, subsorts, memberships, and even conditions. This is accomplished in [155,157] by appropriate non-termination pre-

serving theory transformations. The second problem is that the sets of axioms B for which proofs of termination modulo

B are supported in existing tools are quite restricted. To solve this problem, semantics-preserving theory transformations

based on the notion of variant (see Section 3.3) that transform a rewrite theory R = (�, E ∪ B, R, φ) into a semantically

equivalent one R̂ = (�, Ê ∪ D̂ ∪ B0, R̂, φ) with simpler axioms B0, where B = B0 ∪ D, are presented in [158]. However,

transformational methods come at a nontrivial cost, since the transformed theories are usually more complex. Therefore,

more intrinsic proof methods to handle the above two problems are also of great interest. For example, in [294] the transfor-

mations in [155] are replaced by transformations into order-sorted rewrite theories, which still keep a lot of sort information,

and in [292] dependency-pair-based methods are generalized from the unsorted to the order-sorted level. Similarly, in [10]

intrinsic methods to prove termination modulo useful combinations of equational axioms by dependency pair techniques

are proposed. The advantages of intrinsic methods over transformational ones are also clear in proofs of context-sensitive

termination (see, e.g., [8,225]). Many of the above-mentioned techniques for proving termination of rewrite theories are

already supported by the Maude Termination Tool (MTT), which I discuss in Section 6.1.3.

My current view is that the class of order-sorted rewrite theories of the form R̂ = (�, B0, R, φ), where: (i) B0 is thewidest

possible class of axioms for which dependency pair proof methods are available; and (ii) the rules R are unconditional, is

a good target class for which intrinsic methods should be further developed, since the transformations of general rewrite

theories into that class become much simpler than the transformations into untyped rewrite theories, and therefore the

proof methods will become considerably more effective in practice.

Another, orthogonal set of techniques that need to be further developed in order for termination proofs to scale up

to large rewrite theories are modularity techniques that work at the richer level of at least order-sorted rewrite theories

modulo axioms B0. At the vanilla-flavored level of untyped rewrite theories of the form R = (�,∅, R), there is already

a substantial body of such techniques available (see, e.g., [358,456]), and even some very useful work for untyped rewrite

theories of the form R = (�, AC, R), with AC associative–commutative axioms [296]. Schernhammer and I have initiated

the study of modularity techniques for the termination of unconditional order-sorted specifications modulo combinations

of associativity and/or commutativity and/or identity axioms in [415].

All the termination techniques described above provide an important necessary core. However, this core is not sufficient

to cover important applications. Suppose that our rewrite theoryR specifies a communication protocol whose termination

we want to prove. Very often R will not terminate in the standard sense, but will terminate under appropriate fairness

assumptions. That is, infinite rewrite sequences do exist, but all such sequences are unfair and therefore unrealistic. For

example, the simple communication protocol in Section 2.1 can be easily extended to a fault-tolerant one that can operate

in a lossy medium by: (i) modeling the lossy medium by a rewrite rule which can destroy a message (rewrite it to the none

configuration); (ii) modifying the receive rule, so that an acknowledgment is sent back to the sender; and (iii) modifying

the send rule so that the sender keeps resending the n-th item without emptying its cell until an acknowledgment for it is

received. Since now anymessage can be destroyed before it is received, plus a sender can keep resending a message forever,

the system is no longer terminating. However, under fairness assumptions about how each receiver object will apply the

receive rule, and each sender object will receive acknowledgments and clear its cell, the fault-tolerant system is indeed

fairly terminating. Proof techniques for termination of rewrite theories under fairness assumptions have been studied in

[293], substantially extending prior work in [386,387]. Another way inwhich termination techniques need to be extended is

to reason about termination ofRwhen executed under a given strategy (see Section 3.5). This extension has been carried out

in [199,214] and is supported by the CARIBOO tool, which I discuss in Section 6.1.2. Yet another topic requiring a substantial

740 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

extension of standard termination techniques is the termination of probabilistic rewriting, a topic investigated in [212] (for

a discussion of probabilistic rewriting and the different notions that have been proposed see Section 3.10).

3.9. Real-time rewrite theories

In many reactive and distributed systems, including, for example, schedulers, networks, and so-called cyber-physical

systems, real-time properties are essential to their design and correctness. Therefore, the question of how systems with

real-time features can be best specified, analyzed, and proved correct in the semantic framework of rewriting logic is an

important one. This question has been investigated by several authors from two related perspectives. On the one hand, an

extension of rewriting logic called timed rewriting logic has been investigated, and has been applied to several examples and

specification languages [273,274,366,429]. On the other hand, Ölveczky and I found a simple way to express real-time and

hybrid system specifications directly in rewriting logic [359,367,368,371]. Such specifications are called real-time rewrite

theories and have rules of the form

{t} r→ {t′} if C

with r a term denoting the duration of the transition (where the time can be chosen to be either discrete or continuous),

{t} representing the whole state of a system, and C an equational condition. Ölveczky and I showed that, by making the

clock an explicit part of the state, these theories can be desugared into semantically equivalent ordinary rewrite theories

[359,367,368]. That is, in the desugared version we can model the state of a real-time or hybrid system as a pair ({t}, r0),
with {t} the current state and r0 the current global clock time. Then the above rule becomes desugared as

({t}, r0)→ ({t′}, r0 + r) if C

Rewrite rules can then be either instantaneous rules, that take no time and only change some part of the state t, or tick rules,

that advance the global time of the system according to some time expression r andmay also change the global state13 t. By

characterizing equationally the enabledness of each rule and using conditional rules and frozen operators [79], it is always

possible to define tick rules so that instantaneous rules are always given higher priority; that is, so that a tick rule can never

fire when an instantaneous rule is enabled [369]. When time is continuous, tick rules may be nondeterministic, in the sense

that the time r advanced by the rule is not uniquely determined, but is instead a parametric expression (however, this time

parameter is typically subjected to some equational condition C). In such cases, tick rules need a time sampling strategy to

choose suitable values for time advance.

Besides being able to show that a wide range of known real-time models (including, for example, timed automata,

hybrid automata, timed Petri nets, and timed object-oriented systems) and of discrete or dense time values, can be naturally

expressed in a direct way in rewriting logic (see [368]), an important advantage of the above approach is that one can use

an existing implementation of rewriting logic to execute and formally analyze real-time specifications. Because of some

technical subtleties, this seems difficult for the alternative of timed rewriting logic, although a mapping into the above

framework does exist [368].

Of course, one would like to simulate and formally analyze real-time systems specified as real-time rewrite theories. The

Real-TimeMaude tool [359,371] has been developed for this purpose (I further discuss Real-TimeMaude in Section 6.1.8). In

this way, a wide range of applications, including schedulers, networks, cyber-physical systems, and real-time programming

and modeling languages, have been specified (I discuss such applications in Section 7.4), and have been formally analyzed

by model checking their temporal logic properties (I discuss the model checking of temporal logic properties, including the

model checking of such properties for real-time systems in Section 3.11.2).

3.10. Probabilistic rewrite theories

Many systems are probabilistic in nature. This can be due either to the uncertainty of the environment in which they

must operate, such as message losses and other failures in an unreliable environment, or to the probabilistic nature of

some of their algorithms, or to both. In general, particularly for distributed systems, both probabilistic and nondeterministic

aspects may coexist, in the sense that different transitions may take place nondeterministically, but the outcomes of some

of those transitions may be probabilistic in nature. To specify systems of this kind, rewrite theories have been generalized

to probabilistic rewrite theories in [5,276,277]. Rules in such theories are probabilistic rewrite rules of the form

l : t(�x)→ t′(�x, �y) if cond(�x) with probability �y := πr(�x)
where the first thing to observe is that the term t′ has new variables �y disjoint from the variables �x appearing in t. Therefore,

such a rule is nondeterministic; that is, the fact that we have a matching substitution θ such that θ(cond) holds does not

13 Instantaneous rules need not involve the global state: they can be local (for example, local to a give object, which receives a message) and can be applied

concurrently; only tick rules, which change the global time and must reflect the effects of time elapse everywhere (for example, in all timers) need to be global

and must rewrite the entire state.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 741

uniquely determine the next state fragment: there can be many different choices for the next state, depending on how

we instantiate the extra variables �y in t′. In fact, we can denote the different such next states by expressions of the form

t′(θ(�x), ρ(�y)), where θ is fixed as the given matching substitution, but ρ ranges along all the possible substitutions for the

new variables �y. The probabilistic nature of the rule is expressed by the notation:with probability �y := πr(�x), where πr(�x)
is a probability distribution which may depend on the matching substitution θ . We then choose the values for �y, that is, the
substitution ρ , probabilistically according to the distribution πr(θ(�x)).

The fact that the probability distribution may depend on the substitution θ can be illustrated by means of a simple

example. Consider a battery-operated clock.Wemay represent the state of the clock as a term clock(T,C), with T a natural

number denoting the time, and C a positive rational number denoting the amount of battery charge. Each time the clock

ticks, the time is increased by one unit, and the battery charge slightly decreases; however, the lower the battery charge,

the greater the chance that the clock will stop, going into a state of the form broken(T,C’). We can model this system in

PMaude notation (see Section 6.1.9) by means of the probabilistic rewrite rule

rl [tick]: clock(T,C) => if B then clock(T + 1,C - (C / 1000))

else broken(T,C - (C / 1000))

fi

with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally depends on the battery charge, which is

here represented by the battery-dependent bias of the coin in a Bernoulli trial. Note that here the new variable on the

rule’s righthand side is the Boolean variable B, corresponding to the result of tossing the biased coin. As shown in [276],

probabilistic rewrite theories can express awide range ofmodels of probabilistic systems, including continuous-timeMarkov

chains [437], probabilistic nondeterministic systems [388,418], and generalized semi-Markov processes [211]; they can

also naturally express probabilistic object-based distributed systems [5,277], including real-time ones. Yet another class of

probabilistic models that can be simulated by probabilistic rewrite theories is the class of object-based stochastic hybrid

systems discussed in [336].

A completely different notion of probabilistic rewriting has been proposed in [74,76]. The key idea in both of these papers

is that the rewrite rules themselves, r : t → t′, are still deterministic (the righthand side t′ has no extra variables); what

is probabilistic is the choice of which rule to apply and where. In [76] it is shown how such choices can be defined in quite

sophisticated ways by probabilistic ELAN strategies to model, for example, probabilistic algorithms; and in [74] ordinary

deterministic rewrite rules are endowed with weights to achieve a notion of probabilistic rewrite system. A good way to

understand how the ideas in [74,76] are different from those in [5,276,277] is to observe that in a rewrite theoryR there are

two completely different potential sources of nondeterminism: (i) the choice of which rule to apply at any given moment

and where to apply it; and (ii) once a choice of rule, term position and matching substitution has been made, if the rule

r : t(�x) → t′(�x, �y) has extra variables �y on its righthand side, the choice of a ground substitution ρ to instantiate the

variables �y. The semantics in [74,76] makes the choice (i) probabilistic while keeping the rules themselves deterministic;

while the semantics in [5,276,277] keeps the choice (i) nondeterministic whilemaking the instantiation of nondeterministic

rewrite rules governed by probability distributions that are parametric on the lefthand side’s matching substitution. A final

observation to make is that the existence of nondeterminism in the choice (i) of which transition to fire and where, with the

transitions themselves being probabilistic in their outcome, is well-known in the modeling of probabilistic systems, e.g., in

probabilistic nondeterministic systems [388,418]; and in the probabilisticmodel checking of such systems,which introduces

the notion of a scheduler to eliminate the nondeterminism in the choice of transitions, and then model checks the system

considering all such possible schedulers.

It is highly desirable to be able to specify, simulate and analyze probabilistic systems specified as probabilistic rewrite

theories. The PMaude language design [5] has exactly this purpose; I further discuss PMaude in Section 6.1.9. The kinds of

possible formal analyses go beyond simulations and include statistical model checking with respect to properties expressed

in either a probabilistic temporal logic or even a quantitative probabilistic temporal logic where the result of evaluating a

formula on a path is a real number corresponding to some quantity associated to a system behavior. I discuss probabilistic

temporal logics and model checking of probabilistic properties in Section 3.11. Many applications to probabilistic systems

are thus made possible; I discuss some of them in Section 7.5.

3.11. Temporal logic properties

As already observed at the end of Section 3.1.2, the reachability initial model of a rewrite theoryR = (�, E, R, φ) has an
associated one-step rewrite relation [t] →1

R [t′] relating the states, i.e., the E-equivalence classes [t] of ground �-terms t.

SinceR can have different sorts and kinds, we should furthermore specify which is the preferred kind of states, so that terms

of other kinds describe state fragments, or data components of the state, but not an entire state of our system. Let [State]
be such a kind. Then we can associate to R a transition system, namely, the pair (T�/E[State] ,→1

R) where T�/E[State] denotes
the set of E-equivalence classes [t] of ground�-terms t of kind [State]. Without loss of generality we may also assume that

the equations E already define a desired collection of state predicates (if they do not, we can just add new function symbols

and equations defining such state predicates as Boolean-valued functions). That is to say, we can associate to R not just

742 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

a transition system (T�/E[State] ,→1
R), but in fact a Kripke structure 14 (T�/E[State] ,→1

R, LR), where LR is a labeling function,

associating to each state predicate p the set of all states where p holds.

All this means that, since rewrite theories model concurrent systems and we can naturally associate to them Kripke

structures, their temporal logic properties can then be defined semantically in terms of suchKripke structures (or for real-time

or probabilistic rewrite theories the analogous real-time or probabilistic transition systems). For expressing such properties,

suitable temporal logics can be used. Then, both model checking, or theorem proving, or a combination of both approaches,

can be used to verify that a rewrite theory (more precisely, its reachability initial model) satisfies some desired temporal

logic properties.

3.11.1. Temporal logics

Which temporal logic is best suited for specifyingwhich properties of a rewrite theory is itself a very good question. Here

are several choices with specific advantages.

State-based logics. There are many choices. The most common is CTL∗ [101], or one of its subsets such as CTL or LTL. These

logics are well suited for properties based on state predicates; but not well suited for properties based on events, which need

to be encoded unnaturally in the state itself to be expressible.

TLR and parameterized fairness. To avoid the limitations of state-based logics in expressing events, while keeping all their

good state-based features; and to take advantage of the expressive power of rewrite theories in expressing parameterized

events by rewrite rules, and spatial information by term patterns, the temporal logic of rewriting TLR [325] can be used. TLR

is a simple extension of CTL∗ where just one more construct is added to the syntax of formulas, namely, spatial action

patterns. The simplest such patterns are just labels of rewrite rules, stating that a transition event with a rule having that

label has taken place. For example, for the object-based system of Section 2.1, we can state the liveness property that each

message send is always eventually followed by a receive event by the (implicitly universally path quantified) TLR formula

�(send → � receive). However, more complex patterns are possible taking advantage of both the parametric nature

of rewrite rules (whose parameters are the mathematical variables of each rule) and the context where the rewrite takes

place. For example, we can localize the above property both to sender object ’b and its associated receiver object ’d by

the formula �(send(’b)→ � receive(’d)). It is also very easy to express localized (that is, parameterized) fairness

conditions asuniversallyquantifiedTLRproperties. For example, the (weak) object fairness of thereceiveandwriteactions
needed for a realistic modeling of the object-based system of Section 2.1 when sensor objects are added, as explained in

Section 3.5, can be succinctly captured by the TLR formulas (∀x : Oid) �� receive.enabled(x)→ � � receive(x), and
(∀x : Oid) �� write.enabled(x)→ �� write(x), wherereceive.enabled(x) and write.enabled(x) are the obvious state
predicates stating that the object x can perform the receive, resp., write action. Of course, the reachability initial model

of a rewrite theoryR and its associated Kripke structure (T�/E[State] ,→1
R, LR) throw away all information about actions and

therefore cannot be used to give semantics to TLR. We need to use the initial model TR ofR and its associated labeled Kripke

structure, where labeled transitions are of the form [t] [α]→R [t′], with α a one-step proof term [325].

Metric temporal logic and TCTL. For real-time systems, standard temporal logics, although able to express many useful

properties (particularly when the state predicates refer to timers or even to the global clock), are not expressive enough:

one often wants to express the requirement that a certain property must hold within certain time bounds. Various temporal

logics for real-time systems can be used. A simple possibility is to use the metric temporal logic MTL [275], which extends

LTL to timed paths by qualifying LTL’s until operator U with a time interval [t, r]. The meaning of a formula ϕ U[t,r] ψ is then

that ϕ U ψ holds in the standard LTL sense and, furthermore, ψ must hold at a time t′ ∈ [t, r], and ϕ must continuously

hold until time t′. Instead, Timed CTL (TCTL [25]) extends CTL by qualifying the until operator U with a time bound t plus an

indication of whether the second formula must hold before, after, or exactly at time t, that is, we have formulas of the form

ϕ U�t ψ , where �∈ {≥,>,≤,<,=}, with the expected meaning. For example, ϕ U≥t ψ is equivalent to ϕ U[t,+∞) ψ in

an interval formulation.

PCTL, CSL, and QuaTEx. For probabilistic systems, temporal logics that extend standard ones are also needed. One well-

known such logic is Probabilistic CTL (PCTL) [227]. The basic idea is that sets of computation paths in a probabilistic system

have probability measures associated to them, and we can qualify temporal logic formulas by requiring that the set of paths

satisfying a certain formula has a probability greater (resp., smaller) than or equal to a certain p ∈ [0, 1]. For example, the

PCTL formula P≥0.7(ϕ U ψ) states that the set of paths where ϕ U ψ holds has a probability measure greater than or equal

to 0.7.
Since many probabilistic systems are also real-time systems, for such systems there is also a need to have temporal

logics which combine both probabilistic and time-bounded features. Continuous Stochastic Logic (CSL) [1,43] is one such

logic extending PCTL by qualifying temporal logic operators by a time bound. For example, the formula P≥0.7(ϕ U≤3.2 ψ)
states that the set of paths where ϕ U ψ holds and, furthermore, ψ holds at a time t ∈ [0, 3.2], and ϕ holds continuously

until time t, has a probability measure greater than or equal to 0.7.
In the analysis of probabilistic systemswe are often interested not just in the probabilities associated to the satisfaction of

certain temporal logic formulas, but in quantitative properties such as, for example, the expected latency of a communication

14 For technical reasons, in some approaches, e.g., [101], the transition relation of a Kripke structure is assumed to be a total relation; there is no problem in

extending the relation→1
R to a total relation for this purpose.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 743

protocol when hardened against DoS attacks under specific assumptions about the attacker and the network. Such a latency

is not a probability but a real number. To be able to express such quantitative properties, PCTL and CSL have been generalized

to a logic of Quantitative Temporal Expressions (QuaTEx) in [5]. The key idea is to generalize state formulas and path formulas

to real-valued state expressions and path expressions, where the appropriate real-valued functions can be defined by the user,

just as the appropriate state predicates are defined by the user in standard temporal logics. Boolean-valued and probability-

valued formulas are nowregarded as special cases of real-valuedQuaTEx formulas byusing the subset containments {0, 1} ⊂
[0, 1] ⊂ R. For example, Boolean-valued CSL formulas such asP≥0.7(ϕ U≤3.2 ψ) are also expressible in QuaTEx, but QuaTEx

can express properties beyond CSL [5].

3.11.2. Model-checking verification of rewrite theories

Model checking of state-based temporal properties. The simplest, yet very useful, formofmodel-checking analysis of rewrite

theories is the verification of invariants. As usual in model checking, what we search for is the violation of a property, in this

case the invariant. An invariant I is a Boolean-valued state predicate, so we can express a search for its violation as a search

for a proof of the existential formula

(∃x : [State]) (init → x ∧ I(x) = false)

where init is the initial state, and [State] is our chosen kind of states. If the number of states reachable from init is finite,

breadth first search is a complete model-checking procedure to verify the invariant. If the number of states reachable from

init is infinite, breadth first search still gives us a semidecision procedure to check the failure of the invariant: if I fails, we are

guaranteed to find a counterexample in finite time.

More generally, we can model check properties in state-based temporal logics such as CTL, LTL, or CTL∗ using the model-

checking algorithms described in [101] by using the Kripke structure (T�/E[State] ,→1
R, LR) associated to the given rewrite

theory R, provided the number of states reachable from the given initial state init is finite.

Model checking of TLR properties. To verify TLR properties on a rewrite theoryR, assuming again that the number of states

reachable from the given initial state init is finite, we have two different possibilities: (i) to transformR and the property ϕ
into a new rewrite theory R̃ and a CTL∗ formula ϕ̃ and thenmodel check R̃, ĩnit |� ϕ̃ as described in [325] and implemented

in Maude in [37] for the linear time temporal logic fragment LTLR; or (ii) to use a more efficient algorithm that can directly

verify LTLR formulas on a rewrite theory R on the fly, as the one developed and implemented in the Maude system in [38].

One of the good features of TLR is that it is very easy to express fairness assumptions in it [325], so a first approach to the

verification of a TLR property ψ under fairness assumptions ϕ is to verify the implication ϕ → ψ . However, this suffers

from two major drawbacks: (i) in a logic like LTL the Büchi automaton associated to ϕ → ψ grows exponentially with the

size of the formula; and since ϕ typically contains several fairness formulas and can be relatively complex, we can easily hit

severe performance barriers; and (ii) to make things worse, the approach of model checking ϕ→ ψ has no reasonable way

of dealing with localized fairness formulas which are parametric, i.e., what we have is not a propositional formula ϕ, but a
universally quantified first-order formula (∀x) ϕ(x). For example, (∀x) ϕ(x)may express an object fairness assumption in a

systemwith dynamic object creation. Even if we could predict the set O of all such objects, whichmay not be possible unless

we explore the entire state space, the only way to encode this directly at the propositional level would be as a conjunction∧
o∈O ϕ(o), something quite unfeasible to model check in practice because of the typically huge size of the corresponding

Büchi automaton. For these reasons, Bae and I have developed a completely new model-checking algorithm for LTLR which

can model check LTLR formulas under parametric fairness assumptions of the form (∀x) ϕ(x). The algorithm and its Maude

implementation are described in [39].

An interesting, additional aspect of LTLR model checking is its use as a strategy language. Since TLR formulas contain

action patterns corresponding to how rules are applied, with which substitutions, and where in the state, and describe

complex behaviors involving such elementary actions and tests expressed by state predicates, a TLR path formula ϕ can be

naturally understood as a strategy expression, which defines a corresponding set of computations in the given rewrite theory

R. Assuming that ϕ does not contain any path quantifiers, we can use an LTLR model checker to generate a behavior for

the strategy expression ϕ by giving to the model checker the LTLR state formula ∀¬ϕ. If the strategy expression ϕ can be

realized by a concrete behavior, the LTLR model checker will provide such a behavior as a counterexample for ∀¬ϕ, that is,
as a constructive proof of the existentially path quantified TLR state formula ∃ϕ.

Narrowing-based symbolic model checking of rewrite theories. One important limitation of standard model-checking algo-

rithms such as those described in [101] is that they work under the assumption that the set of states reachable from the

initial state is finite. There are several ways to avoid this limitation: (i) to use deductive methods such as those I discuss

in Section 3.11.3; (ii) to use some kind of abstraction or simulation that transforms the system into a finite-state one (I

discuss this in Section 3.12); and (iii) to use a model-checking approach that does not require the system to be finite-state.

Regarding approaches of type (iii), Section 3.3 has explained hownarrowing can be used as a complete symbolic reachability

analysis method to model check the failure of an invariant for a possibly infinite-state rewrite theory R. This is of course a

very different notion of “symbolic model checking” than the usual one based on BDDs, which uses the representation of a

finite set of states as a propositional formula assuming a finite state space. But Section 3.3 dealt only with reachability and

invariants. What about other temporal logic properties? In [186] Escobar and I show how the same narrowing approach can

be extended to model check ACTL∗ properties of a possibly infinite system specified as a topmost rewrite theory R, where

ACTL∗ denotes the universal fragment of CTL∗.

744 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

Model checking of real-time rewrite theories. The simplest models of real-time systems are timed automata [26], whose

TCTL properties are decidable by model checking [25]. The paper [52] shows how timed automata model checking can

be expressed as a symbolic procedure using appropriate strategies in the ELAN rewriting logic language. Timed automata

can be seen as very simple real-time rewrite theories [368], but their simplicity also involves a severe limitation: they are

finite-state systems. Even a relatively simple system such as a scheduler whose state includes unbounded queues cannot

be modeled by a timed automaton [364]. What real-time rewrite theories offer is a more expressive high-level way of

specifying many real-time systems of interest, such as network protocols and distributed object systems, whose states are

in principle unbounded and often contain complex data structures. The challenge is to identify temporal logic properties

and conditions on the real-time rewrite theory that make the verification of such properties decidable by model checking.

A very broad class of real-time rewrite theories (whose time may be continuous) has been identified in [370], where it is

shown that the following temporal logic properties are decidable for such systems: (i) time-bounded LTL\© formulas15

of the form ϕ in time r, where ϕ is an LTL\© formula and r is a time bound (for a detailed explanation of the semantics

of such formulas see [371]); and (ii) LTL\© formulas whose state predicates do not refer to the global clock, provided the

set of discrete states reachable from the initial state is finite. Recall that a state of a system specified by a real-time rewrite

theory is a pair ({t}, r), with {t} a ground term describing the global state and r a (possibly continuous) clock value. By

the “discrete state” I mean the global state {t}. Formulas of types (i) or (ii) can already express many properties of practical

interest, but formalisms such as MTL and TCTL are obviously more expressive. More recent work has developed two new

model-checking algorithms for real-time rewrite theories. In [283], a model-checking algorithm to verify properties in a

subset ofMTL for object-oriented real-time rewrite theories whose state is a multiset of objects and messages is presented;

and [282] presents an algorithm to model check real-time rewrite theories for the satisfaction of TCTL formulas, except for

formulas of the form ϕ U=t ψ . In Section 6.1.8 I discuss the Real-Time Maude tool, which supports all the model-checking

procedures mentioned above; and in Section 7.4 I discuss many real-time system applications that have been specified and

analyzed in Real-Time Maude.

Statistical model checking of probabilistic rewrite theories. Temporal logic properties of a probabilistic system can bemodel

checked either by exact model-checking algorithms, or in an approximate, but more scalable and more widely applicable

way, by statistical model checking (see, e.g., [5,419,475]). The idea of statistical model checking is to verify the satisfaction of

a temporal logic property by statistical methods up to a user-specified level of statistical confidence. For this, a large enough

number of Monte-Carlo simulations of the system are performed, and the formula is evaluated on each of the simulations.

Recall the discussion in Section 3.10 about how a probabilistic rewrite theory in general has a nondeterministic aspect

corresponding to the choice ofwhichprobabilistic transition tofire. One important requirement of statisticalmodel-checking

algorithms is that they assume that the system is purely probabilistic: there is nonondeterminism in the choice of transitions.

This seems like a strong requirement. However, using the methodology presented in [5], a wide class of object-oriented

probabilistic real-time rewrite theories specifying many concurrent, actor-based systems of interest can be expressed so

that no nondeterminism is involved in the application of rewrite rules. The key idea is to take advantage of three facts: (i)

time is continuous; (ii) the probability distributions governing message arrival latencies are also continuous; and (iii) since

the message arrival latency distributions are continuous, the probability that two messages will arrive at the same time

to any two objects (or to the same object) is then zero. Since the rewrite rules specify how an actor changes state when it

receives a message, and at each instant in time at most one message has arrived to at most one object, there is at most one

rewrite rule that can be applied at each continuous instant and all nondeterminism disappears.

Properties expressed in either CSL or QuaTEx can then be statistically model checked for such probabilistic real-time

rewrite theories, using the algorithms presented in, respectively, [419] and [5]. Furthermore, as shown in [23], the above

algorithms are naturally parallelizable and can scale up verywell using such parallelization. A related algorithm for statistical

model checking of quantitative properties is presented in [261]. In Section 6.1.10 I discuss how the VeStA and PVeStA tools

support the statistical model checking of CSL and QuaTEx properties for the above-mentioned class of probabilistic rewrite

theories; and in Section 7.5 I discuss various applications that have been specified and analyzed this way.

3.11.3. Deductive verification of rewrite theories

Model checking, while extremely useful, is not sufficient for all verification purposes. This is clear from the fact that

satisfaction of properties is in general undecidable, from the infinite-state nature of many systems, and, evenwhen a system

is finite-state for each initial state, from the fact that in general theremay be an infinite number of initial states. Furthermore,

even ifwe succeed in reducing the verification problem to a finite-statemodel-checking problemby the use of an abstraction

as discussed in Section 3.12, deduction still plays a fundamental role in verifying the correctness of such an abstraction. The

late Amir Pnueli expressed the situation succinctly in his motto “deduction is forever” [385].

Given a rewrite theoryR (resp. a parameterized16 rewrite theoryR[P]with P its parameter theory), there are different

kinds of properties that one may want to verify deductively about its initial model TR, or the Kripke structure associated to

15 LTL\© is the sublogic of LTL obtained by not using the© operator.
16 A parameterized rewrite theoryR[P] can be understood as a theory inclusionP ↪→ R of the parameter theoryP into the “body”R and specifies a parametric

family of concurrent systems.R[P] can then be instantiated by views, i.e., theory interpretations V : P −→ Q, by the usual “pushout construction.” Semantically,

what is used is the fact that rewriting logic is a “liberal institution,” i.e., that it has not only initial models, but also free models along theory interpretations. For

the treatment of parameterized rewrite theories in Maude see [106, Section 8.3].

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 745

its initial reachability model (resp. the free models of R[P] or their associated Kripke structures). Properties we may want

to verify include: (i) temporal logic properties; (ii) inductive properties about the rewrite relation itself; and (iii) inductive

equational properties about the states of R. The termination methods for rewrite theories discussed in Section 3.8 can be

naturally regarded as proof methods for a particular kind of type (i) property.

Regarding deductive verification of temporal logic (type (i)) properties, the general idea is to use a sound and rela-

tively complete proof system for a temporal logic to get rid of the temporal logic operators as much as possible and try

to reduce the proof task to the verification of proof obligations of type (iii). The term “relatively complete” expresses the

fact that the original temporal logic property holds for the given model iff the proof obligations of type (iii) generated by

the inference system do; but since these are inductive proof obligations, a complete proof system for properties of type

(iii) does not exist in general. A good example of a sound and relatively complete deductive proof system for CTL∗ is the

one proposed by Gabbay and Pnueli in [204]. An important remaining problem in using a deductive system of this kind

is how to deal with the resulting proof obligations of type (iii). In this regard, rewrite theories are particularly attractive,

because there is a rich body of inductive proof methods for equational logic which can then be used to discharge such

proof obligations. For example, for Maude specifications one can use various formal tools described in Section 6.1 for this

purpose.

For rewrite theories, this approach to the verification of type (i) properties has so far focused mostly on safety properties,

including invariants. For the deductive proof of invariants there is a rich body of work, including several substantial case

studies, using proof scores in CafeOBJ to verify invariants of observational transition systems (OTSs) (see, e.g., [202,357]).

The CafeOBJ researchers have also shown how deductive verification of invariants for an OTS can be combined with model-

checking verification of the rewrite theory associated to the OTS, or an abstraction of it [202,476]. Another approach to

invariant and temporal logic verification which can be viewed as both deductive and algorithmic is the narrowing-based

reachability analysis method already discussed in Sections 3.3 and 3.11.2. Rusu and Clavel [410], and Rusu [409], present a

different approach to invariant verification that reduces the problem to a type (iii) proof task by associating to a rewrite

theory R a corresponding membership equational theory M(R) with a sort Reachable of reachable states characterized

by appropriate membership predicates. In a sense, this can be seen as using an enrichment of the characterization of the

initial reachability model ofR as the initial model of a membership equational theory given in [80] and discussed in Section

3.1.2. Rocha and I have presented a different approach to the verification of safety properties in [398]. The basic idea is to

use narrowing-based proof methods to reduce the proof of: (a) invariants, (b) stability properties of the form P ⇒ �P,

and (c) strengthenings of invariants, to proof obligations of type (iii); and to then discharge many such proof obligations

automatically, so that a considerably smaller set of proof obligations is left for an inductive theorem prover.

Finally, Rocha and I have initiated a study of constructor-based proof methods for inductive properties about the rewrite

relation of the initial reachability model of a rewrite theory R (type (ii) properties) in [397]. That is, we want to prove

that the initial reachability model of R satisfies some property of the form (∀�x) t → t′, which is equivalent to proving

R � θ(t)→ θ(t′) for all ground substitutions θ . A related task is to prove that the initial reachability model of R satisfies

inductive joinability properties of the form (∀�x) t ↓ t′, stating that all ground instances of t and t′ can be rewritten to a

common term. The key idea is that, the same way that equational constructors are crucial for proving inductive equalities

t = t′, both equational constructors for (�, E ∪ B), and constructors for R associated to final states (see Section 3.7) are

crucial for proving inductive properties of the form (∀�x) t → t′ for a rewrite theoryR = (�, E ∪ B, R, φ).

3.12. Simulation and abstraction

As alreadymentioned, the applicationof standardmodel checkingmethods to the verificationof a temporal logic property

ϕ by (the initial model of) a rewrite theory R may be hindered by R being infinite-state. Even if R is finite-state, the huge

size of its state space may still make it unfeasible to model check such a property. Under such circumstances a very useful

approach is to find a different rewrite theory R̂ which has a much smaller (and finite) state space than R, to verify ϕ for R̂,

and to show that we have an implication

R̂, înit |� ϕ ⇒ R, init |� ϕ.
As shown in, e.g., [101,295,332], this can be done if we can relate the sets of states of R and R̂ and the initial states init

and înit by a binary relation H such that either: (i) H is a simulation and ϕ ∈ ACTL∗; or (ii) H is a stuttering simulation and

ϕ ∈ ACTL∗\© (i.e., ϕ is an ACTL∗ formula which does not contain the operator©). In addition, the above implication can

be turned into an equivalence if H is a bisimulation (resp. stuttering bisimulation).

Given a rewrite theory R = (�, E ∪ B, R, φ), a very simple, yet powerful, approach to obtaining such a theory R̂ is to

realize that rewriting logic comes with a built-in “abstraction dial” which allows us to turn some rewrite rules in R into

equations that can be removed from R and added to E. That is, we can decompose R into a disjoint union R = G ∪ R0 and

define R̂ = (�, E∪ Ĝ∪ B, R0, φ), where Ĝ denotes the set of equations associated to the rules G. A good example of the use

of such an abstraction dial is the DPLL module in Section 2.2, where G consisted of the subsume, resolve, assert, and close

rules. Of course, for the use of this abstraction dial to be natural, the rules G should be deterministic in nature, so that the

equations E ∪ Ĝ are still ground confluent and terminating modulo B. But in order for the Kripke structure associated to R̂
to be computable (an essential requirement for model checking it) we also need R0 to be coherent with E ∪ Ĝ modulo B. If

746 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

these two conditions are satisfied, and, furthermore, the rules G preserve all the state predicates in ϕ, Farzan and I proved

in [192] that the quotient �-homomorphism q : T�/E∪B −→ T�/E∪Ĝ∪B defines a stuttering bisimulation, so that for any

ϕ ∈ ACTL∗\©we have the equivalence R̂, înit |� ϕ ⇔ R, init |� ϕ, where înit = q(init).
If the theory R̂ thus obtained by turning the abstraction dial as much as possible is still too big to be model checked,

a second, also very useful approach is to further collapse the set of states by an equational abstraction. Given a rewrite

theory R = (�, E ∪ B, R, φ) and a set G ∪ B′ of �-equations, we can collapse R into the rewrite theory R/G ∪ B′ =
(�, E ∪ G ∪ B ∪ B′, R, φ) which typically has a much smaller state space than R. Again, we need the equations G ∪ B′ to
preserve the state predicates appearing in the formula ϕ we want to model check; and we need R/G ∪ B′ itself to yield

a computable Kripke structure, i.e., E ∪ G should be ground confluent and terminating modulo B ∪ B′, and R should be

coherent with E ∪ G modulo B ∪ B′. Under these conditions, Palomino, Martí-Oliet and I proved in [331] that the quotient

�-homomorphism q : T�/E∪B −→ T�/E∪G∪B∪B′ defines a simulation, so that for any ϕ ∈ ACTL∗ we have the implication

R/G ∪ B′, q(init) |� ϕ ⇒ R, init |� ϕ.
In the two methods just discussed for collapsing the state space of a rewrite theoryR = (�, E ∪ B, R, φ), the signature

� did not change at all: we either changed some rules into equations or added somemore equations to the equational part.

But this is not a necessary requirement: our more abstract rewrite theory R̂ may be based on a different signature �′, so
that it is of the form R̂ = (�′, E′ ∪ B′, R′, φ′). All we need is to find an appropriate simulation relation H betweenR and R̂.

Severalmethods for finding such simulation, or stuttering simulation, relations are presented in [302,332] under the general

banner of “algebraic simulations.” The general idea is to use algebraic and/or rewriting logic methods to define such an H

as either a function or a relation. Another idea explored in depth in [332,377] is that simulations and stuttering simulations

are arrows in appropriate categories, so that they can be composed, i.e., the entire approach is compositional, so that we

can combine several of the above-mentioned abstraction methods to arrive at the desired abstraction. A general emphasis

common to all the abstraction methods presented in [192,302,331,332] is on the inductive proof obligations that need to

be discharged in order to prove that the proposed simulation H is correct. That is, although H is used to verify a property by

model checking, the correctness of the verification requires the interplay between model checking and inductive theorem

proving: deduction is forever!

Another stuttering-simulation-based method frequently used to reduce the state space is partial order reduction (POR).

The general idea is that a concurrent system can have a huge number of states due to the many different interleavings

involved; however, many concurrent transitions are independent, in the sense that they can be interleaved with each other

in arbitrary order without affecting the resulting state. This leads to the idea of cutting down the number of interleavings

by only considering a subset of the computations involving independent transitions (see [101] for a detailed discussion). To

support POR at the level of rewrite theories, Farzan and I proposed in [193] a general theory transformationmapping rewrite

theories of a certain type into their corresponding POR versions. In particular we showed how this transformation can be

applied as a generic method to model check programs much more efficiently in a wide range of concurrent programming

languages whose semantics has been defined in rewriting logic by the methods outlined in Section 4.3.

In Section 3.11.2 I explained how for topmost rewrite theories ACTL∗ properties can be model checked symbolically

by narrowing by the methods presented in [186]. The reason why the CTL∗ property must be in the universal fragment

ACTL∗ is precisely that what is used is a simulation relating the ground term instances of a term to such a term. That is,

the original system we want to verify is the Kripke structure associated to the given rewrite theory R, whose states are

E∪ B-equivalence classes of ground terms; but we simulate it symbolically by another Kripke structure where the states are

terms with variables. The abstraction relation H is precisely the “being an instance of modulo E∪ B” relation, denoted�E∪B,
where E ∪ B are the equations in R. Given a ground term t and a term t′, t �E∪B t′ holds iff there is a substitution σ such

that t =E∪B σ(t′). Since the transition system defined on terms with variables by the narrowing relation �R,E∪B in general

has still an infinite number of states reachable from a symbolic initial state, a further abstraction can be obtained by adding

a folding relation17 between terms with variables. This gives rise to an even more abstract simulation relation, where now

the symbolic transition system can in some cases become finite-state. In order for the number of E ∪ B-unifiers to be finite,

the finite variant property is required of E ∪ B [186].

I have already mentioned in Section 3.11.2 that, under very general conditions, time-bounded LTL\© properties and

standard LTL\© properties of a real-time rewrite theory can be effectively verified by model checking, even when time is

continuous. The reason for this is also related to simulations and abstractions. Specifically, we show in [370] that there is

a stuttering bisimulation between the fair timed computations of a “time-robust” real-time rewrite theory and the much

smaller set of computations obtained by always advancing the clock as much as possible until the next zero-time transition

becomes enabled. For continuous time rewrite theories and time-bound LTL\©properties, this provides an abstraction from

an infinite-state system to a finite-state one; but even for discrete time rewrite theories this provides a huge abstraction,

marking in practice the difference between feasible and unfeasible model checking. One can further prove that when the

state predicates inϕ ∈ LTL\© do not depend on the value r of the global clock, but only on the global state {t}, the projection
map ({t}, r) �→ {t}provides a further abstraction allowing themodel checking of time unboundedproperties in LTL\©when

the set of discrete states (of the form {t}) reachable from the initial state is finite.

17 Several relations can be used to “fold” the state spacewhose states are termswith variables. One is the already-mentioned relation�E∪B; another, the relation
of one term being equal (up to E ∪ B-equality) to a term obtained by renaming the variables of another term.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 747

4. Rewriting logic as a logical and semantic framework

I further discuss here the logical and semantic framework uses already illustrated by means of simple examples in

Section 2.

4.1. Representing logics

Using rewriting logic as a logical framework can be best understood within a metatheory of logics such as the theory of

general logics [310], which provides an axiomatic framework to formalize the proof theory and model theory of a logic, and

which also provides adequate notions ofmapping between logics, that is, of logic translations. This theory contains Goguen

and Burstall’s theory of institutions [216] as its model-theoretic component.

The theory of general logics allows us to define the space of logics as a category, in which the objects are the different

logics, and the morphisms are the different mappings translating one logic into another. We can therefore axiomatize a

translation� from a logic L to a logic L′ as a morphism

(†) � : L −→ L′

in the category of logics. A logical framework is then a logic F such that a very wide class of logics can be mapped to it by

maps of logics

(‡) � : L −→ F

called representation maps, that have particularly good properties such as conservativity. 18

A number of logics, particularly higher-order logics based on typed lambda calculi, have been proposed as logical frame-

works, including the Edinburgh logical framework LF [34,206,230], generic theorem provers such as Isabelle [381], λProlog
[196,348], and Elf [384], and the work of Basin and Constable [51] on metalogical frameworks. Other approaches, such as

Feferman’s logical framework FS0 [195] (that has been used in the work of Matthews et al. [305]), earlier work by Smullyan

[425], and the 2OBJ generic theorem prover of Goguen et al. [219] are instead first-order. The role of rewriting logic as a

logical framework should of course be placed within the context of the above related work, and of experiments carried out

in different frameworks to prototype formal systems (for more discussion see the survey [327]).

As I have already pointed out in Section 2, one key property by which the practicality of a logical framework should be

judged is by how short its representational distance is, and of course by howgeneral it is in representing other logics. Regard-

ing generality, since various typed lambda calculi have been extensively used as logical frameworks, a logical framework that

can represent themwith 0 representational distance can a fortiori represent anything they can represent, and possibly better.

As Stehr and I have shown in [434], rewriting logic can represent with 0 representational distance not just some particular

typed lambda calculus, but the parametric family of typed lambda calculi called pure type systems [53], which generalize

the λ-cube and therefore contain virtually all typed lambda calculi of interest. The reverse is not at all the case: there is no

representation of rewriting logic, or even of equational logic, into such calculi which could be said to have ε representational
distance. The obvious reason for this is the well-known difficulty of lambda calculi in dealing with equational reasoning,

since the only equational reasoning native to such calculi is that between lambda expressions by β-reduction. Furthermore,

in LF there is no adequate representation for linear logic in a precise technical sense of “adequate” [206, Corollary 5.1.8].

Instead, linear logic can be faithfully represented in rewriting logic with 0 representational distance [300].

All these representations of logics are easily mechanizable using a rewriting logic language like Maude, leading to useful

prototypes supporting formal reasoning for the logic in question. The nontrivial matter of quantifiers and substitutions is

elegantly supported by Stehr’s CINNI calculus of explicit substitutions [430]. In particular, using CINNI pure type systems

can not only be represented: they can also be efficiently executed in a rewriting logic language like Maude. This trivial

representation in one direction, and the serious difficulties for lambda calculi to deal with equality in the converse direction,

were seen by Stehr as an opportunity to generalize the Coquand–Huet Calculus of Constructions (CC) [122] into his own

Open Calculus of Constructions (OCC) [431–433] within rewriting logic (implemented in Maude as a theorem prover) to

naturally support both CC reasoning and equational reasoning in a seamless way.

The above remarks make it obvious that rewriting logic has very good properties as a logical framework. Several other

examples of well-known logics which can be represented in rewriting logic with ε representational distance are given in

[298,300], and a more detailed discussion of logical framework applications is given in Section 7.1. An additional good

feature of rewriting logic as a logical framework is its ability to deal naturally with state changes, and therefore to solve in a

straightforward way the thorny “frame problem,” which has plagued for decades AI researchers using first-order logic as a

knowledge representation formalism; this is explained in detail in [299].

Yet another very useful representational feature is rewriting logic’s “abstraction dial” (see Section 3.12). This was already

obvious in the DPLL example of Section 2.2 and is systematically exploited for model-checking purposes as explained in

18 A map of logics is conservative [310] if the translation of a sentence is a theorem if and only if the sentence was a theorem in the original logic. Conservative

maps are sometimes said to be adequate and faithful by some authors.

748 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

Section 3.12. For logical framework uses the general point is that: (a) there is a very useful distinction to be made between

(i) computation, which is deterministic and can be blindly and exhaustively applied with high efficiency, and (ii) deduction,

which is nondeterministic, requires search, and can be very inefficient; and (b) this computation vs. deduction distinction is

naturally supported by a rewrite theoryR = (�, E∪B, R, φ) as the distinction between its deterministic equations E∪B and

its nondeterministic rules R. The practical meaning of all this is that one canmake the implementation of a logic muchmore

efficient, and the level at which a user interacts with a tool much higher, if millions of trivial computations are automatically

performed, so that the strategic thinking about proofs can be focused at a much higher level. This was emphasized since

the early papers on logical framework uses of rewriting logic [298,300,327], has been later dubbed “deduction modulo” by

some researchers [148], and has been illustrated with interesting examples of rewrite theories representing logics such as

those in [396,466].

All the above remarks are fine and well, but even with all those good features a mapping � : L −→ F of a logic L
into a logical framework F is still a complex metalevel entity: how can � itself be represented? It is neither in L nor in the

framework F but hovers abstractly above both. More generally, how can a map of logics � : L −→ L′ be represented?

This is not a theoretical question but an eminently practical one: how are � or � going to be implemented? And how can

we reason about them? Here is where rewriting logic’s reflective features play a key role, so that it is not just a good logical

framework, but a reflective metalogical framework in the precise, technical sense given to the term in [50].

The key advantage of having a reflective logical framework such as rewriting logic is that we can represent—or as it is said

reify—within the logic in a computable way maps of the form (†) and (‡). We can do so by extending the universal theory U
(see Section 3.4) of our reflective framework logic F (namely, rewriting logic), which has a sort Theory representing rewrite

theoriesR as termsR of sort Theory, with equational abstract data type definitions for the data type of theories TheoryL for

each logic L of interest. Then, a map� : L −→ L′ can be reified as an equationally-defined function

� : TheoryL −→ TheoryL′ .

And, similarly, a representationmap� : L −→ F , withF rewriting logic, can be reified as an equationally-defined function

� : TheoryL −→ Theory.

If the maps � and � are computable, then, by a metatheorem of Bergstra and Tucker [54] it is possible to define the

functions� and� bymeans of corresponding finite sets of confluent and terminating equations. That is, such functions can

be effectively defined and executed within rewriting logic.

The point worth emphasizing again is that all this is not a theoretical divertimento but an enormously practical feature.

For example, Naumov, Stehr and I used exactly the above approach to represent the logics of the HOL and NuPrl theorem

provers within rewriting logic, define a conservative map of logics between them, prove its correctness, make such a formal

definition executable inMaude, and automatically translate several megabytes of HOL theories into correct-by-construction

NuPrl theories in [353] (a mechanical proof of correctness of such a map of logics was later given in [417]). Many more

examples of how reflection is enormously useful to define and implement within F itself maps of logics, particularly maps

of the form � : F −→ F mapping the reflective framework to itself and corresponding to theory transformations are

discussed in Sections 3.4, 6.1 and 7.1.

The last point worth making is that rewriting logic is not just a logical framework but a metalogical one. As explained

in [51], what a metalogical framework adds to a logical framework is the capacity to reason formally within itself about

the metalogical properties of the logics represented in it. Typically such reasoning requires induction. As explained in [50],

the reflective features of membership equational logic and of rewriting logic, combined with the fact that both logics have

initial models supporting inductive reasoning principles, and with the fact that, in particular, their universal theories do

come with their own induction principles, is what makes them into reflective metalogical frameworks. For several practical

applications of rewriting logic’s metalogical reasoning capabilities see [50,109,112].

4.2. Representing models of concurrency

Since rewriting logic is a coin with two sides, a logical side and a computational one, the exact same reasons making

it a very flexible logical framework with 0 or ε representational distance make it also a very flexible semantic framework.

Since this is one of the main uses of rewriting logic since the beginning [315], so much work has been done that it is hardly

possible to survey it all. But perhaps what is most important is for me to explain the philosophical distinction between a

model and a logic, and why that distinction is crucial for representing concurrency models within rewriting logic.

The way concurrency models have been traditionally compared is by building encodings from one model into another.

For example, some researchers encoded the CCS process calculus into Petri nets; and others encoded the lambda calculus

and some variants of the actormodel into theπ-calculus. These are Turing-machine-like representations, where in principle

one can show that somemodel can be simulated by anothermodel by some kind of compilation process, but in general there

is a substantial representational distance and much is lost in translation. If rewriting logic were to be one more such model

into which other models are similarly compiled, there would be little point in such a futile representational exercise. The

key observation is that rewriting logic is not a model at all. It is instead a logic within which widely different models can be

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 749

specified as rewrite theories without any encoding. One can think of it as an “ecumenical movement” with no sectarian ax to

grind: it makes no commitments to specific concurrency mechanisms. Is it better to be synchronous or asynchronous? Is

message-passing the best communication mechanism? Should channels be conceived as names, or as communication links

containing messages? Should the order of messages be preserved or not? Should processes have unique names? All these

are questions for each specific model, that is, each specific rewrite theory, to address or ignore. Rewriting logic remains

politely silent about the choices made in each model, but tries to be as flexible as possible in representing different choices.

My own opinion is that concurrency is such a motley phenomenon (much more so than, say, functional computation) that

the question “what is the best model of concurrency?” is both meaningless and unwise. Chivalrous quests for the Holy

Grail of Concurrency, while commendable and probably quite useful in their side effects, are likely to remain inconclusive.

The point is that any model must make some commitments about what concurrency mechanisms to favor; and this will

automatically create a representational distance between it and other models making other equally valid commitments,

perhaps for different purposes and reasons.

Just to give some feeling for the vast amount of work which has been done in defining different models of concurrency as

rewrite theories, typically with 0 or ε representational distance, I mention first some well-knownmodels not involving real

time or probabilities, and then discuss real-time and probabilistic models. Next to each model I mention some references

for illustration purposes, without any attempt to cover them all (see the bibliography in this issue for a hopefully complete

list of references).

1. Actors and Concurrent Objects [316,440].

2. CCS [77,128,460].

3. LOTOS [458,460].

4. Dataflow [318].

5. Gamma and the CHAM [315].

6. Graph Rewriting [318,421].

7. Neural Networks [318,411].

8. Parallel λ-Calculus [278].
9. Petri Nets [315,435].

10. π-Calculus [430,451,465].

11. Tile Logic [78,82,83,328].

12. The UNITY Model [315].

An important point not made explicit by the above list is that the initial model semantics of rewriting logic (see Section

3.1.1) plays also a crucial role, because it unifies within a single semantics very different denotational models that have been

independently proposed for variousmodels of concurrency. For example, rewriting logic’s initialmodel semantics specializes

to: (i) for Actors to the event diagram partial order of events model of [44,119], as shown in [337]; (ii) for Petri nets to the

Best-Devillers commutative processmodel [57], as shown in [129,435]; (iii) for the parallel lambda calculus to its traditional

model, shown to be a simple quotient of the initial model of the corresponding rewrite theory in [278]; and (iv) for CCS to

the proved transition causal model of Degano and Priami [130], shown to be a simple quotient of the initial model of the

corresponding rewrite theory in [84].

For real-timemodels, real-time rewrite theories alsoprovideaverygeneral andflexible semantic framework. For example,

the following models of real time can all be naturally specified as real-time rewrite theories:

1. Hybrid Automata [368].

2. Timed Petri Nets [368,435].

3. Timed Automata [368].

4. Timed Transition Systems [368].

5. Object-Oriented Real-Time Systems [368].

6. The Orc Model of Concurrent Real-Time Computation [20,21].

7. Phase Transition Systems [368].

Probabilistic rewrite theories can also be used as a semantic framework for a wide range of probabilistic systems,

including:

1. Continuous Time Markov Chains [276].

2. Generalized Semi-Markov Processes [276].

3. Object-Oriented Probabilistic Systems [5,277].

4. Object-Oriented Stochastic Hybrid Systems [336].

5. Probabilistic Nondeterministic Systems [276].

750 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

4.3. Rewriting logic semantics of programming languages

The flexibility of rewriting logic to naturally express many different models of concurrency can be exploited not just at

the theoretical level, for expressing suchmodels both deductively, and denotationally in the model theory of rewriting logic

[315,318]: it can also be applied to give formal definitions of concurrent programming languages by specifying the concurrent

model of a language L as a rewrite theory (�L, EL, RL), where: (i) the signature �L specifies both the syntax of L and the

types and operators needed to specify semantic entities such as the store, the environment, input-output, and so on; (ii)

the equations EL can be used to give semantic definitions for the deterministic features of L (a sequential language typically

has only deterministic features and can be specified just equationally as (�L, EL)); and (iii) the rewrite rules RL are used to

give semantic definitions for the concurrent features of L such as, for example, the semantics of threads. By specifying the

rewrite theory (�L, EL, RL) in a rewriting logic language like Maude, it becomes not just a mathematical definition but an

executable one, that is, an interpreter for L. Furthermore, one can leverage Maude’s generic search and LTL model-checking

features to automatically endow L with powerful program analysis capabilities. For example, the search command can be

used in the module (�L, EL, RL) to detect any violations of invariants, e.g., a deadlock or some other undesired state, of a

program in L. Likewise, for terminating concurrent programs in L one can model check any desired LTL property. All this

can be effectively done not just for toy languages, but for real ones such as Java and the JVM, Scheme, and C (see Section 7.2

for a discussion of such “real language” applications), and with performance that compares favorably with state-of-the-art

model-checking tools for real languages.

There are essentially three reasons for this surprisingly good performance. First, rewriting logic’s distinction between

equations EL, used to give semantics to deterministic features of L, and rules RL, used to specify the semantics of concurrent

features, provides in practice an enormous state space reduction. Note that a state of (�L, EL, RL) is, by definition, an EL-
equivalence class [t]EL , which in practice is represented as the state of the program’s execution after all deterministic

execution steps possible at a given stage have been taken. That is, the equations EL have the effect of “fast forwarding”

such an execution by skipping all intermediate deterministic steps until the next truly concurrent interaction is reached. For

example, for L = Java, EJava has hundreds of equations, but RJava has just 5 rules. The second reason is of course the high

performance of rewriting logic languages such as Maude, which can reach millions of rewrite steps per second. The third

reason is that the intrinsic flexibility of rewriting logic means that it does not prescribe a fixed style for giving semantic

definitions. Instead,many different styles such as, for example, small-step or big-step semantics, reduction semantics, CHAM-

style semantics, modular structural operational semantics, or continuation semantics, can all be naturally supported [423].

But not all styles are equally efficient; for example, small-step semanticsmakes heavy use of conditional rewrite rules, insists

on modeling every single computation step as a rule in RL, and is in practice horribly inefficient. Instead, the continuation

semantics style described in [423] and used in, e.g., [191] is very efficient.

As for models of concurrency, the general idea for SOS definitions is that rewriting logic provides a general framework

for such definitions, but has no ax to grind regarding specification style choices. From its early stages rewriting logic has

been recognized as ideally suited for SOS definitions [300,326], and has been used to give SOS definitions of programming

languages in quite different styles, e.g., [77,191,194,459–461]. What the paper [423] makes explicit is both the wide range

of SOS styles supported, and the possibility of defining new styles that may have specific advantages over traditional ones.

Where the “abstraction dial” is placed in such choices is of course crucial for the efficiency of model-checking analyses:

traditional styles will tend to force the least abstract choices that specify all computation steps with rules; but many more

choices are available when the underlying logic supports a distinction between equations and rules.

The good theoretical and practical advantages of using rewriting logic to give semantic definitions to programming

languages have stimulated an international research effort called the rewriting logic semantics project (see [333–335,423] for

some overview papers). Not only have semantic definitions allowing effective program analyses been given for many real

languages such as Java, the JVM, Scheme, and C, and for hardware description languages such as ABEL and Verilog: it has also

been possible to build a host of sophisticated program analysis tools for real languages based on different kinds of abstract

semantics. The point is that instead of a “concrete semantics” (�L, EL, RL), describing the actual execution of programs in

a language L, one can just as easily define an “abstract semantics” (�A
L, E

A
L, R

A
L) describing any desired abstraction A of L.

A good example is type checking, where the values manipulated by the abstract semantics are the types. All this means

that many different forms of program analysis, much more scalable than the kind of search and model checking based on a

language’s concrete semantics, become available essentially for free by using Maude to execute and analyze one’s desired

abstract semantics (�A
L, E

A
L, R

A
L). I further discuss different applications of both concrete and abstract rewriting semantics

of programming languages in Section 7.

Two further developments of the rewriting logic semantics project, both pioneered by Roşu with several collaborators,

are worth mentioning. One is the K semantic framework for programming language definitions [408], which provides a very

concise and highly modular notation for such definitions. The K-Maude tool then automatically translates language defini-

tions in K into their corresponding rewrite theories inMaude for execution and program analysis purposes (I further discuss

K and the K-Maude tool in Section 6.2.2). Another ismatching logic [404,406], a program verification logic, with substantial

advantages over both Hoare logic and separation logic, which uses a language’s rewriting logic semantics, including the

possibility of using patterns to symbolically characterize sets of states, to mechanize the formal verification of programs,

including programs thatmanipulate complex data structures using pointers (I further discussmatching logic and theMatchC

tool in Section 6.2.3).

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 751

4.4. Representing distributed systems, software architectures, and models

It is well known that the most expensive errors in system development are design errors. They are not coding errors

having to do with some mistake in the details of a program: they happened much earlier, when the system was designed

and no programs yet existed. Because design errors affect the overall structure of a system and are often discovered quite

late in the development cycle, they can be enormously expensive to fix. All this is uncontroversial: there is widely-held

agreement that, to develop systems, designs themselves should be made machine-representable, and that tools are needed

to keep such designs consistent and to uncover design errors as early as possible. This has led to the development of many

software modeling languages and of architectural notations to describe software designs.

There are however two main limitations at present. The first is that some of these notations lack a formal semantics:

they can and do mean different things to different people. The second is that this lack of semantics manifests itself at the

practical level as a lack of analytic power, that is, as an incapacity to uncover expensive design errors which could have been

caught by better analysis. It is of course virtually impossible to solve the second problem without solving the first: without

a precise mathematical semantics any analytic claims about satisfaction of formal requirements are meaningless.

The practical upshot of all this is that a semantic framework such as rewriting logic can play an important role in: (i) giving

a precise semantics to modeling languages and architectural notations; and in (ii) endowing such languages and notations

with powerful formal analysis capabilities. Essentially the approach is the same as for programming languages. If, say,M is a

modeling language, then its formal semantics will be a rewrite theory of the form (�M, EM, RM). If the modeling language

M provides enough information about the dynamic behavior of models, the equations EM and the rules RM will make M
executable, that is, it will be possible to simulate models in M before they are realized by concrete programs, and of course

such models thus become amenable to various forms of formal analysis. There is a large body of research in rewriting logic

that has done just this, including:

1. giving formal semantics to various object-oriented design notations, architectural notations, and software modeling lan-

guages, e.g., [33,40,42,60–62,65,66,110,154,169,197,268,269,345–347,363,393,394,474], and

2. giving formal semantics to variousmiddleware and distributed coordination mechanisms, e.g., [13,14,153,167,168,350,

402].

I discuss all this work in more detail in Section 7, and the MOMENT-2 tool in Section 6.2.

Since many of the software architectures needed in practice are distributed architectures, the flexibility of rewriting logic

to naturally represent a wide range of distributed communication and interaction mechanisms has proved very useful in all

the applications mentioned above. But the medium of a modeling language or an architectural description language is not a

necessary requirement. It is also possible to specify and analyze a wide range of distributed system designs and algorithms

directly in rewriting logic. In practice this has been often the case for many:

1. network algorithms, e.g., [131,133,221,258,373,375,391,462], and

2. middleware designs and distributed reflective architectures, e.g., [134,163,338,441].

I further discuss all this work in Section 7.

5. Rewriting logic languages

In this section I discuss CafeOBJ, ELAN, andMaude, three languages that implement rewriting logic andwhose researchers,

through their language design and implementation work and through a host of important new techniques and applications,

have made fundamental contributions to the rewriting logic research program. These are not the only rule-based languages

that I could discuss. For example, OBJ [218], ASF+SDF [457], Tom [46], and Stratego [468] are other important rule-based

languages; but they are somewhat more specialized in nature: OBJ and ASF+SDF deal with equational specifications; Tom

enriches Java with rewriting capabilities; and Stratego is a rewriting strategy language aimed particularly at program trans-

formation applications.

5.1. CafeOBJ

CafeOBJ http://www.ldl.jaist.ac.jp/cafeobj/ [141] is a language containing in essence OBJ [218] as a functional

sublanguage but extending substantially order-sorted equational logic in two orthogonal and complementary directions:

(i) it supports behavioral specifications and their execution by behavioral rewriting in behavioral equational logic; and (ii)

it also supports rewriting logic specifications. Furthermore, these orthogonal logical features are combined in the “CafeOBJ

Cube” [141]. As OBJ, CafeOBJ has powerful module composition features throughmodule hierarchies, parameterization, and

module expressions. Two additional important features are CafeOBJ’s support for object-oriented modules, and its support

for observational transition systems (OTS), a special type of behavioral specifications ideally suited to specify transition

systems such as network protocols and other distributed systems. CafeOBJ specifications can be formally analyzed in various

ways. An important theme is the use of proof scores [201,202]which reduce the proof of inductive properties about a CafeOBJ

752 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

specification to rewriting on the underlying CafeOBJ engine. Of particular interest from the rewriting logic point of view is

CafeOBJ’s search feature, which supports breadth-first searchmodulo a user-specified equality predicate [202], a very useful

form of abstraction-based model checking. Also interesting in this direction is the synergistic way, already mentioned in

Section 3.11.3, in which CafeOBJ and Maude can be used together to analyze OTS specifications by model checking [476]. I

discuss some CafeOBJ applications in Section 7.

5.2. ELAN

I have already mentioned in Section 3.5 the importance of strategies for controlling the rewriting process when the

rules can be highly nondeterministic, and the key contributions that the ELAN researchers have made in this area. ELAN

http://elan.loria.fr/ [69,70] supports the specificationof sophisticated strategies that canguide the rewritingprocess

to achieve complex tasks. This has applications in many areas that have been developed by the ELAN researchers; I discuss

some of them in Section 7. In particular, from the beginning of the language the ELAN researchers have developed many

applications of rewriting logic as a logical framework which greatly benefit from the use of strategies. The key idea is that

the logical inference system used in a theorem prover or in some other logical procedure is typically nondeterministic.

Therefore search, as opposed to deterministic computation, is essential. ELAN supports a corresponding distinction at the

language level between computation rules, which are applied exhaustively without using strategies, and strategy-guided

rules. At the language implementation level, besides the contributions to efficiently support strategies, an important addi-

tional contribution has been the development of novel compilation techniques for efficient rewriting modulo associativity–

commutativity [265].

5.3. Maude

Maude http://maude.cs.uiuc.edu/ [105,106] supports both membership equational logic (its functional sublan-

guage of functional modules), and rewriting logic (systemmodules) in the fullest possible generality: equations and rules can

be conditional and can have extra variables in their righthand sides and conditions, and rewriting modulo any combination

of associativity and/or commutativity and/or identity axioms is supported [106]. All this is achieved without sacrificing

high performance thanks to Maude’s use of advanced semi-compilation techniques and novel matching modulo algorithms

[105,111,171,172]. Maude has also powerful module composition operations and support for parameterized modules, the-

ories and views. A key feature is its efficient support for reflection (see Section 3.4) through its META-LEVELmodule. Besides

providing powerful higher-order metaprogramming features (functions can take not just other functions as arguments, but

entiremodules as arguments), this makes the Maude module composition operations extensible [160], which is exploited in

the Full Maude language extension [106] to support, for example, very convenient syntax for object-oriented specifications.

Reflection is also exploited in an essential way in Maude’s strategy language [175,303]. A unique feature of Maude is its

efficient built-in support for model checking. Reachability analysis and invariant verification are supported by its breadth-

first search command; and LTL model checking by its MODEL-CHECKER module. Another important feature is its support for

order-sorted unificationmodulo axioms, and for variant computations and symbolic reachability analysismodulo equational

theories with the finite variant property [103,152]. I discuss Maude’s formal environment in Section 6.1, and some Maude

applications in Section 7.

6. Tools

In Section 6.1 I discuss some tools supporting various kinds of formal reasoning about rewriting logic specifications. In

Section 6.2 I discuss several more specialized tools that use rewriting logic and its reasoning methods to support formal

analysis in various application domains.

6.1. Formal tools for rewriting logic

In Section 3 I discussed in detail various formal properties that one often wants to verify about a rewrite theory. Tools

supportingverificationof suchproperties arevery important. I discuss someof themherewith theexceptionof the searchand

model-checking capabilities already native to rewriting logic languages: CafeOBJ, ELAN, and Maude support various forms

of search analysis, and Maude also supports LTL model checking. Some of these formal tools, particularly the Maude-based

ones, systematically use reflection (see Section 3.4) in their design: since formal analysis tools manipulate and transform

theories, a reflective approach making such theories data structures manipulable within rewriting logic is very useful in

practice. Indeed, several of the Maude formal tools use the Full Maude reflective extension of Maude [106, Part II] as their

basis, and then use the general methodology outlined in [162] to add tool-specific reflective features. The tools mentioned

below are an incomplete set of tools; see the rewriting logic bibliography in this issue for references to other tools.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 753

6.1.1. The Maude Church–Rosser Checker and Coherence Checker (CRChC)

These two tools http://maude.cs.uiuc.edu/maude-tools.html are combined into one tool [161]. The CRC tool

checks the confluence and sort-decreasingness of conditional order-sorted specifications modulo axioms, assuming they

are operationally terminating (see Section 3.8). Instead, the ChC tool checks the coherence, or ground coherence, of a rewrite

theory’s rules R with respect to their equations E modulo axioms B, assuming that the equations themselves are (ground)

confluent, sort-decreasing and operationally terminating.

6.1.2. The CARIBOO termination tool

CARIBOO [198,214] http://cariboo.loria.fr/index.html is a termination tool written in ELAN which can prove

ground termination of rewrite theories written in ELAN with respect to a given strategy (see Section 3.5). Based on an

induction principle, it uses an abstractionmechanism to represent sets of terms symbolically with abstraction variables, and

narrowing controlled by abstraction and ordering constraints. Orderings need not be chosen in advance but can be partially

and incrementally determined by means of constraints.

6.1.3. The Maude Termination Tool (MTT) and μ-Term
MTT http://maude.cs.uiuc.edu/maude-tools.html, theMaude Termination Tool, [156,157] supports termination

proofs for generalized rewrite theories and for membership equational theories, which can both be conditional and have

axioms such as associativity, commutativity and identity. As already explained in Section 3.8, the main technique used by

MTT is that of non-termination-preserving theory transformations that transform such theories to either order-sorted or

unsorted context-sensitive unconditional specifications modulo axioms. Termination tools such as μ-Term [9] or AProVE

[210] can then be invoked by the user to try to prove the transformed theory terminating.μ-Term is in some ways closer to

MTT because of its unrivaled support for context-sensitive termination and its support for order-sorted termination.

6.1.4. The Maude Sufficient Completeness Checker (SCC)

SCC http://maude.cs.uiuc.edu/maude-tools.html, the Maude Sufficient Completeness Checker [236] can check

the sufficient completeness (see Section 3.7) of context-sensitive unconditional left-linear order-sorted equational theories

modulo axioms [234], and in its most recent version also the sufficient completeness of both equations and rules in un-

conditional order-sorted left-linear theories modulo axioms [397]. SCC uses the CETA library of propositional tree automata

operations developed by Hendrix as part of his Ph.D. dissertation [231] to reduce all the above sufficient completeness

problems to tree automata emptiness problems.

6.1.5. The Maude Inductive Theorem Prover (ITP)

ITP, http://maude.cs.uiuc.edu/maude-tools.html, the Maude Inductive Theorem Prover, was originally devel-

oped by Clavel and has been substantially extended by Hendrix [107,117,231]. It supports inductive reasoning about mem-

bership equational theories in Maude and has been applied to a wide range of problems and also to build more specialized

theorem provers for imperative programming languages and for modeling languages [110,118,413]. Its original support for

structural induction has been more recently extended to also support coverset induction [231,233]. An important feature

of the ITP is its natural support for partiality, which is nicely demonstrated by the extended powerlist case study developed

by Hendrix as part of his Ph.D. thesis [231,233].

6.1.6. The Maude Formal Environment (MFE)

Often a verification task requires interoperating different tools. For example, the proof of an inductive theorem using the

ITP may be based on a structural induction scheme using constructors whose sufficient completeness proof is provided by

the SCC tool, but the sufficient completeness proof relies on a weak termination assumption for which the MTT tool may

be invoked. Similarly, a proof of ground coherence using the ChC tool may generate inductive proof obligations for the ITP,

and requires a proof of confluence of the equations using the CRC, which itself relies on a proof of operational termination

of those equations using theMTT . To support the seamless interoperation of formal tools for rewriting logic within a single

formal environment, the Maude Formal Environment (MFE) [164,165] has been developed as an extensible framework to

which different Maude-based tools can be added. Besides allowing the user to ship proof tasks from one tool to another,

MFE keeps track of the overall proof effort, and stores a record of the tool interactions and subproof invocations involved in

such an overall proof, so that proof scripts can be stored and reused.MFE already exists as a prototype, and will be released

as a Maude tool in the near future.

6.1.7. The Declarative Maude Debugger

In addition to the debugging capabilities already provided by Maude [106], the Declarative Maude Debugger

http://maude. sip.ucm.es/debugging/ [392] can interact with a user to find the causes of wrong answers in a Maude

program execution and also of missing answers, which are particularly important for nondeterministic programs such as

rewrite theories (system modules), but are also meaningful for deterministic ones (functional modules) because of sort

information. The debugger traverses an abbreviated proof tree, which stores an abbreviated declarative summary of the

computation, and interacts with the user asking questions until the cause of the bug is found.

754 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

6.1.8. Real-Time Maude

Real-Time Maude http://heim.ifi.uio.no/peterol/RealTimeMaude/ [371] is a specification language and a for-

mal tool built as an extension of Full Maude by reflection. It provides special syntax to specify real-time systems, including

distributed object-oriented ones, where the time can be either discrete or continuous. It offers a range of formal analy-

sis capabilities, including simulation, reachability analysis, and model checking. Real-Time Maude systematically exploits

the underlying Maude efficient rewriting, search, and LTL model-checking capabilities to both execute and formally an-

alyze real-time specifications, which are internally desugared into ordinary Maude specifications and Maude search and

model-checking queries using reflection [371]. It furthermore supports model checking in a subset ofMTL [283], and in TCTL

[282] (see Section 3.11). Real-Time Maude has been applied in a wide range of industrial applications, including networks,

embedded car software, and scheduling algorithms. It has also been used to give formal semantics to, and provide formal

analysis for, several real-time programming languages and softwaremodeling languages. I further discuss these applications

in Section 7.4.

6.1.9. The PMaude language design

ThePMaude language [5,277] is an experimental specification languagewhosemodules are probabilistic rewrite theories.

It is still a language design, since it has not yet passed the prototyping level. However, since its methodology has already

been successfully applied to a wide range of applications such as sensor networks, defenses against Denial of Service (DoS)

attacks, and stochastic hybrid systems (I further discuss these applications in Section 7.5), it seems appropriate to discuss

it here. Recall from Section 3.10 that, due to their nondeterminism, probabilistic rewrite rules are not directly executable.

However, probabilistic systems specified in PMaude can be simulated in Maude. This is accomplished by transforming a

PMaude specification into a corresponding Maude specification in which actual values for the new variables appearing

in the righthand side of a probabilistic rewrite rule are obtained by sampling the corresponding probability distribution

functions (see Section 3.3 in [324] for a detailed explanation). Using the transformed Maude module one can perform

Monte-Carlo simulations of the given PMaude module. Using the methodology presented in [5] and discussed in Section

3.11.2, one can then use the VeStA and PVeStA tools discussed below to perform statistical model-checking verification of

temporal logic properties of a real-time PMaude module expressed in either CSL or QuaTEx (see Section 3.11.1).

6.1.10. VeStA and PVeStA

The VeStA tool [5,420] supports statisticalmodel checking (see Section 3.11.2) of probabilistic real-time systems specified

as either: (i) discrete or continuous Markov chains; or (ii) probabilistic rewrite theories in Maude. Furthermore, the prop-

erties that it can model check can be expressed in either: (i) CSL/PCTL, or (ii) the QuaTEx quantitative temporal logic (see

Section 3.11.1). One important practical issue for any model-checking analysis is scalability. Since statistical model checking

is parametric on a user-specified level of statistical confidence, if such a level is high, the number ofMonte-Carlo simulations

that have to be performed before VeStA can return an answer to a model-checking query can be very large. Fortunately,

Monte-Carlo simulations can be run in parallel on different processors. This has led to the design and implementation of

PVeStA http://maude.cs.uiuc.edu/maude-tools.html [23], which parallelizes the statistical model-checking analy-

sis of probabilistic rewrite theories, making it highly efficient and scalable. For example, a realistic model-checking problem

can be sped up by a factor of 46 on a 60-node parallel machine using PVeStA, compared with the time required for VeStA to

perform the same task on a single node [23].

6.2. Some domain-specific tools

This section is much more of a random sample than Section 6.1: there are many more domain-specific tools based on a

rewriting logic semantics than the ones mentioned below, and discussing them all is out of the question. For example, any

rewriting logic semantics of a programming language or of a modeling language expressed in Maude or Real-Time Maude

automatically provides a tool supporting simulation, reachability analysis, and LTL model checking for such a language.

A number of other tools are discussed much more briefly in Section 7, and the bibliography in this issue gives a more

comprehensive picture.Mymain goal here is to give the reader a feeling through concrete examples for someof the advanced

applications that can be supported by tools of this kind.

6.2.1. JavaFAN

JavaFAN http://fsl.cs.uiuc.edu/index.php/JavaFAN, the Java Formal Analyzer [191,194] is a tool supporting

the execution and analysis of the source code and the JVM code of Java programs. It is based on rewriting logic semantic

definitions in Maude at both the Java and the JVM levels. The entire language, except for the libraries, is supported. Such

definitionsprovide interpreters for Java and for the JVM.Also,multithreaded Java and JVMprograms canbe formally analyzed

to detect violations of invariants using Maude’s breadth-first search command; and terminating multithreaded programs

can likewise be model checked with respect to LTL properties using Maude’s LTL model checker. To facilitate the use of the

tool and make knowledge of the underlying semantics unnecessary for users, Java and JVM code can be directly entered

into JavaFAN and is then automatically translated into Maude. Similarly, JavaFAN provides an intuitive Java-like syntax for

defining atomic predicates which makes it easy for users to define search commands and LTL queries only in terms of their

programs. The performance of JavaFAN compares favorably with other state-of-the-art tools such as Java PathFinder on

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 755

various benchmarks [191,194], which is encouraging since JavaFAN is just a formal semantic definition of Java. One of the

reasons for this is rewriting logic’s distinction between equations and rules (the “abstraction dial” mentioned in Section

3.12), which, while still faithfully capturing the concrete semantics, allows a huge equational abstraction of the state space

by expressing all deterministic features equationally and reserving rules for the nondeterministic, concurrent features.

6.2.2. K-Maude

As mentioned in Section 4.3, one of the important recent contributions to the rewriting logic semantics project is the

K framework [408], which provides a concise and highly modular notation for programming language definitions. K is a

new definitional style offering specific advantages over SOS-based styles such as those discussed in [423]. Furthermore, the

relation between a K definition and its corresponding rewriting logic semantics is essentially one of desugaring, where what

is conveniently implicit in themore compact K notation ismade fully explicit in its rewriting logic counterpart. The K-Maude

tool [421,422] http://fsl.cs.uiuc.edu/index.php/K-Maude allows a user to define the semantics of a programming

language in K and provides two main features. The first one is the automatic generation of a LATEX rendering of the given

K definition for ease of readability in two different styles, one more textual and another more graphical and intuitive. The

second and main feature is that the rewriting logic semantics of K is supported by the tool, so that the rewrite theory

corresponding to a language definition in K is automatically generated as a Maude module. In this way, K definitions can be

executed as interpreters, and programs can be formally analyzed by reachability analysis and LTL model checking. K-Maude

has already been applied to give K definitions for entire languages such as, for example, Scheme and C.

6.2.3. The MatchC tool

Asmentioned in Section 4.3,matching logic [404,406] is another key contribution to the rewriting logic semantics project.

It is a logic of programswith clear advantages overHoare logic and separation logic. The key idea is to leverage aprogramming

language’s rewriting logic definition as the mathematical basis for the matching logic inference system. What matching

logic essentially does is to extend such a definition into a full-fledged first-order reasoning system which manipulates

symbolic descriptions (with existential and universal variables) of programs and their properties, and uses the termmatching

(modulo axioms) native to rewriting logic to express both properties about program configurations, and the application of

semantic rules to such configurations. This accomplishes at a simpler, structural level all the separation properties achieved

by separation logic at the logical level. In this way, programs involving pointers and complex data structures on the heap

can be easily reasoned about. A very appealing feature of matching logic is that there is essentially no gap between the

level of a language’s semantic definition and that of its logic, whereas proving soundness and relative completeness of a

Hoare logic with respect to an operational semantics is a highly nontrivial task. Although the matching logic ideas are very

general, the current MatchC tool [404] realizes them for the C language with a remarkable level of automation and with

very high efficiency http://fsl.cs.uiuc.edu/index.php/Matching_Logic. An impressive web-accessible collection

of benchmarks has already been assembled [404].

6.2.4. The Maude-NPA

TheMaude-NPAhttp://maude.cs.uiuc.edu/maude-tools.html [183] is a tool to verify security properties of cryp-
tographic protocols modulo the algebraic properties of their cryptographic functions. The point is that one can “verify” that

a protocol is correct with respect to the traditional Dolev–Yao model which treats the cryptography as a “black box,” but

an attacker can sometimes break such a protocol by making use of algebraic properties. For example, if the protocol uses

an exclusive or operation⊕, and the attacker has already seen a message m, then it can get message m′ from the message

m⊕ m′ just by performing the operationm⊕ m′ ⊕ m, since⊕ is associative and commutative, and satisfies the equations

x⊕ x = 0 and x⊕ 0 = x. All this means that reasoning modulo such axioms is an essential feature of security proofs, since

attacks can bemountedusing them. TheMaude-NPAdoes exactly this by: (i) axiomatizing a protocolP as a (topmost) rewrite

theory (�P , EP ∪ B, RP), where P ’s equational properties are axiomatized by the equations EP ∪ B, and P ’s transitions are

axiomatized by the rules RP ; (ii) characterizing attack patterns as terms with variables describing a possibly infinite set of

concrete attack states; and (iii) using the rules RP in reverse 19 to search for an initial state from the given attack pattern p.

This is accomplished by narrowing p with the reversed rules R
−1
P modulo EP ∪ B, which, as explained in Section 3.3 and

in [340], is a complete reachability analysis method for topmost rewrite theories. Of course this still leaves the problem of

computing EP ∪ B-unifiers. Fortunately, many equational theories EP ∪ B of interest satisfy the finite variant property (see

Section 3.3), so that theMaude-NPA uses narrowing at two levels: with R
−1
P modulo EP∪B for reachability analysis; andwith

EP modulo B to compute EP ∪B-unifiers. Since the narrowing tree generated by a search from an attack pattern p is typically

infinite, an important additional feature of theMaude-NPA is the use of very powerful state space reduction techniques [182]

that often make such a symbolic search space finite, so that not finding an attack is in fact a proof that the protocol is safe

from the given attackmodulo the algebraic properties EP ∪B. I further discuss applications of theMaude-NPA in Section 7.3.

19 That is, a rule t → t′ is now viewed in reverse as a rule t′ → t.

756 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

6.2.5. MOMENT2

MOMENT2http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/ is an algebraicmodelmanagement

framework and toolwritten inMaude and developed by Boronat [60]. It permitsmanipulating softwaremodels in the Eclipse

Modeling Framework (EMF). It uses OMG standards, such as Meta-Object Facility (MOF), Object Constraint Language (OCL)

andQuery/View/Transformation (QVT), as a clean interfacebetween rewriting-logic-based formalmethodsandmodel-based

industrial tools. Specifically, it supports formal analyses based on rewriting logic and graph transformations to endowmodel-

driven software engineering with strong analytic capabilities. MOMENT2 supports not just one fixed modeling language,

but any modeling language whose metamodel is specified in MOF. In more detail, a modeling language is specified as a pair

(M, C), whereM is its MOF-based metamodel, and C are the OCL constraints that M should satisfy. Using rewriting-logic-

based reflection and its efficient support inMaude,MOMENT2provides an executable algebraic semantics for suchmetamodel

specifications (M, C) in the form of a theory inmembership equational logic (MEL)A(M, C), so that amodelM conformant

with the metamodel (M, C) is exactly a term of sort Model in A(M, C), and so that satisfaction of OCL constraints is also

decidable using the algebraic semantics [64,66].

Due to the executability of MEL specifications in Maude, the realization of MOF metamodels as MEL theories enhances

the formalization and prototyping of model-driven development processes, such as: (i) model transformations; (ii) model-

driven roundtrip engineering; (iii) model traceability; and (iv) model management. These processes permit, for example,

merging models, generating mappings between models, and computing differences between models; they can be used to

solve complex scenarios such as the roundtrip problem. InMOMENT2 the formal semantics of model transformations is given

by rewrite theories specified in a user-friendlyQVT-based syntax [62]. Suchmodel transformations can describe the dynamic

evolution of systems at the level of their models. Using the search and LTL model checking features of Maude, properties

about the dynamic evolution of amodelM conformantwith ametamodel specification (M, C) can then be formally analyzed

bymodel checking [62]. Real-timemodeling languages can likewise be supported and analyzed [67]; this is further discussed

in Section 7.4.4.

7. Some applications

I discussapplications inareas suchasautomateddeduction, softwareandhardware specificationandverification, security,

real-time and cyber-physical systems, probabilistic systems, and bioinformatics. Neither the choice of areas nor the work

discussed in each of them aim at any completeness: again, this is just a sample.

7.1. Automated deduction applications

Perhaps the most important automated deduction applications are formal tools for different logics and automated de-

duction procedures that use rewriting logic as a logical framework. As explained in Section 4.1, the systematic idea common

to all such tools is the faithful representation of their underlying inference systems as rewrite theories. Furthermore, using

reflection very sophisticated tools can be built this way for many logics and for rewriting logic itself [108]. All the rewriting-

logic-based tools discussed in Section 6.1 exemplify this general approach. But many other tools or prototypes for different

automateddeductionprocedures have likewise beendeveloped thiswayusing either ELANorMaude, including, for example,

• Constraint solving [68,242,266,267,472].
• Higher-order logics, procedures, and provers, explicit substitution calculi, and translations between such logics [45,

56,146,147,353,430,432–434].
• Proof certification [354,405].
• Rule Completion [264].
• Timed automata verification [52].
• Other theorem proving systems and procedures [94,140,148,395,396,466].

7.2. Software and hardware specification and verification

Systems need to be specified and verified at various levels of abstraction. Rewriting logic has very good properties as a

semantic framework to support such specification and verification at different levels: at the level ofmodels in the early stages

of software design; at the level of codewritten in different programming languages; and at the hardware level. Furthermore,

specification and verification of different network systems, and of distributed architectures, middleware, and coordination

and reflection mechanisms can likewise be supported. All this has been described in broad outlines in Sections 4.3 and 4.4.

Here I discuss in more detail some of the concrete applications that have been developed at all these levels.

7.2.1. Modeling languages

As explained in Section 4.4, software design notations and modeling languages are quite useful, but they can be made

evenmore useful by substantially increasing their analytic power through formal analysis, since this can make it possible to

catch expensive design errors very early. Formal analysis is impossible or fraudulent without a formal semantics. Early work

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 757

in developing rewriting-logic-based formal semantics focused on object-oriented design notations and languages [351,352,

473], and stimulated subsequent work on UML and UML-like notations, e.g., [33,110,169,197,268,269,345–347,474].

A more ambitious question is: can we give semantics not just to a single modeling language, but to an entire modeling

framework where different modeling languages can be defined? This question has been answered positively in [60–62,65,

66,394], and has led to theMOMENT2 and the e-Motions tools (see Sections 6.2.5 and 7.4.4).

I further discuss the semantics of real-time modeling languages [40–42,67,363,393,394] in Section 7.4. Some recent work

has also considered the semantics of multi-modeling languages [63], that is, languages that can combine different models

describing various perspectives about the same system.

7.2.2. Programming languages

I havealreadygivenanoverviewof the rewriting logic semanticsproject in Section4.3.Here I discuss concrete applications

within this project. Early work focused on SOS definitions of process calculi and of small programming languages [77,300,

326,459–461]. The first application to a “real” programming language showing that this approach could scale up to large

languages and could be used to analyze programs with competitive performance was the semantics of Java and the JVM

[191,194] described in Section 6.2.1. Since then, many other languages have been partially or totally defined in rewriting

logic, sometimes using the K notation. For example, Beta [239] and KOOL [241] have been so defined; all of Scheme has been

defined in [307,308], and the formal semantics of C in [176] is arguably the most complete ever and will soon cover the

entire C language. Another real languagewhose rewriting semantics has been fully defined inMaude is PLEXIL, a synchronous

language developed by NASA to support autonomous spacecraft operations. The Maude-based formal executable semantics

of PLEXIL [149] has become the de facto PLEXIL standard at NASA, against which the correctness of PLEXIL implementations

is judged, and is the basis of other PLEXIL tools [399].

As mentioned in Section 4.3, the rewriting semantics of a language can be extended and/or abstracted to provide other

kinds of static and dynamic analysis, for example, for units of measurement [91,240], type checking [177], and runtime

verification [407,421]. Two extensions of a programming language’s rewriting logic semantics to model fault detection

(resp. hang detection) have been developed by Pattabiraman et al. [379] (resp. Wang et al. [469]). In [379], the authors use

rewriting logic to model both the semantics of an assembly language and the hardware on which it runs, as well as various

hardware errors. The overall goal is to provide a formal semantic framework (called SymPLFIED) to analyze the effectiveness

of error detection mechanisms. Maude’s search command is used for complete reachability analysis. In [469], a Linux-like

operating system, as well as the underlying hardware, are formally specified in Maude in order to verify the detection

effectiveness of an operating system’s hang detector. In order to exhaustively explore all the possible hanging behaviors,

Maude’s search command is used (up to a specified depth) to explore all behaviors. It is also possible to use a language’s

rewriting logic semantics as the basis for program refactoring, as shown for C in [208] and for Java in [207].

Regarding tools supporting rewriting-logic-based language definitions, besides the direct use of rewriting logic languages

for this purpose and theK-Maude tool discussed inSection6.2.2, theMaudeMSOS tool [89] supports definition, executionand

analysis of languagedefinitions on theMSOS style. Also, tools to simulate andanalyzeCCSprocesses and LOTOS specifications

based on their rewriting semantics are discussed in [106, Section 21.2.3]. Deductive tools based on rewriting logic semantic

definitions include the MatchC tool discussed in Section 6.2.3, and two Hoare logic provers built on top of the Maude ITP

[118,413]. Furthermore, the rewriting logic semantics of Java was used in [7] to automatically validate the semantics of a

Java verification tool.

7.2.3. Hardware specification and verification

Prior to the use of rewriting logic, its equational logic subset (plus inductive principles) has been used for hardware

specification and verification by various researchers, e.g., [215,250,428]. The earliest work I know on hardware specification

and verification using Maude is by Harman [228,229]. Subsequent work has focused mostly on extending the rewriting

logic semantics project from the level of programming languages to that of hardware description languages (HDLs). In this

way, hardware designs written in an HDL can be both simulated and analyzed using the executable rewriting semantics of

the HDL and tools like ELAN, CafeOBJ, or Maude. The first HDL to be given a rewriting logic semantics in Maude was ABEL

[254]; this semantics was used not only for hardware designs, but also for hardware/software co-designs. An important

new development has been the use of the rewriting logic semantics of an HDL for generating sophisticated test inputs for

hardware designs. The point is that random testing can catch a good number of design errors, but uncovering deeper errors

after random testing is hard and costly and requires a good understanding of the design to exercise complex computation

sequences. The key insight, due to Katelman, is that the rewriting semantics can be used symbolically to generate desired test

inputs, not on a device’s concrete states, but on states that are partly symbolic (contain logical variables) and partly concrete.

Broadly speaking, this is an instance of the symbolic reachability analysis of rewrite theories I have discussed in Section

3.3; but for hardware verification the approach, first outlined in [257] and more fully developed in [256], has a number of

unique features including: (i) the use of SAT solvers to symbolically solve Boolean constraints; (ii) support for user-guided

random generation of partial instantiations; and (iii) a flexible strategy language, in which a hardware designer can specify

in a declarative, high-level way the kind of test that needs to be generated. The effectiveness of this approach for generating

sophisticated tests on real hardware designs, and for finding unknown bugs in such designs, has been demonstrated for

medium-sized Verilog designs, including the I2C-Bus Master Controller, and a microprocessor design [251,256].

758 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

But the value of the rewriting semantics of an HDL is not restricted to testing. For example, the recent Maude-based

rewriting logic semantics of Verilog in [309] is arguably the most complete formal semantics to date, both in the sense of

covering the largest subset of the language and in its faithfulmodeling of nondeterministic features. Besides being executable

and supporting formal analysis, this semantics has uncovered several nontrivial bugs in various mature Verilog tools, and

can serve as a practical and rigorous standard to ascertain what the correct behavior of such tools should be in complex

cases.

A more exotic application of rewriting logic semantics, for which it is ideally suited due to its intrinsically concurrent

nature, is that of asynchronous hardware designs. These are digital designs which do not have a global clock, so that different

gates in a device can fire at different times. Such devices can behave correctly inmuch harsher environments (e.g., a satellite

in outer space) and with much wider ranges of physical operating conditions, than clocked devices. Asynchronous designs

can be specified with the notation of production rules, which roughly speaking describe how each gate behaves when inputs

to its wires are available. In [252] a rewriting logic semantics of asynchronous digital devices specified as sets of production

rules is given and is realized in Maude (see also the longer paper [253] in this issue). This is the first executable formal

semantics of such devices I am aware of. It can be used both for simulation purposes and for model-checking verification of

small-sized devices (about 100 gates). An interesting challenge is how to scale up model checking for larger devices; this is

nontrivial due to the large state space explosion caused by their asynchronous behavior.

7.2.4. Networks, distributed architectures, middleware and coordination

Networks and network protocols are among the most basic distributed systems, on top of which other systems com-

municate. There is a long history of work on formal specification and verification of network protocols. Early work using

rewriting logic in this area includes [131,133,304,462]. What rewriting logic seems to be particularly good at is its support

for distributed objects, which naturally describes network nodes, and its flexibility in handling many different network and

communication models: in-order or out-of-order, link-based communication, broadcast, multicast and unicast, active net-

works, wireless communication, and so on; and to also handle naturally real time and probabilistic features. For example, to

faithfully model wireless communication in a sensor network the geometry of the network, the varying power at each node,

the time required for transmission, and the radius that a wirelessmessage broadcast can travel without being lost depending

on the power with which it is transmitted, all need to be modeled as done in [375]; likewise, probabilistic algorithms for

sensor networks, modeling of packet contention, clock synchronization, and formal analysis by statistical model checking

are all naturally handled in [258]. Network specifications and analyses have tackled not just single protocols, but composable

collections of them in actual active network systems, where important design problems not revealed by standard testing

have been uncovered [373].

In some cases, e.g., [373], the network protocols specified and analyzed in rewriting logic had already been implemented

before the formal analysis was done; but the most useful application of these methods is before a protocol is implemented.

The reason is obvious, although not always perceived by the unenlightened: it is much easier to debug a design expressed

as a formal executable specification which can be very quickly specified and can then be subjected to exhaustive formal

analysis, than it is to adopt the standard alternative of testing successive prototypes written in, say, C. Also, using formal

executable specifications one can much more easily explore different design alternatives and get a better understanding of

the design choices. Everybody knows that debugging distributed code is notoriously hard to do, but the brute force approach

still remains a widespread, wasteful and unreliable way to develop protocols. One of the key contributions of [221] was to

make exactly this point in a very thorough way by taking to heart the idea of using formal specification andmodel-checking

analysis in Maude to design a completely new protocol (L3A) and using this as a method to make the right choices between

design alternatives and to fully debug the design. The beauty of it was that the subsequent implementation of L3A (reported

in [222])was essentially a transcription of the executableMaude specification into imperative code,whichwas accomplished

much faster and in amuchmore reliableway than if the formal analysis had not been done. In thewords of one of the authors

[220],

[theMaudemodeling and analysis] gave us a complete story of amodel with proofs and an implementation that was really

done from the Maude model. In essence, the debugging was done in Maude and we could focus on implementation and

performance issues and not the correctness of the protocol.

For a similar detailed case study of usingMaude to fully explore a protocol design (in this case one thatwas not implemented,

precisely because of the complexities uncovered by the formal analysis) see [223]. Some of the above protocols, e.g., [131,

133,221,223], are security protocols. I discuss them froma security perspective, aswell as other security protocols, in Section

7.3.

Besides networks themselves, different distributed architectures and middleware systems, and various distributed coor-

dination and reflectionmechanisms, have also beenmodeled and formally analyzed in rewriting logic. For example, there is

work on formalizing different aspects of ODP [154,166–168,350,402], SOAP [13], CORBA [14], and the SMEPPP2Pmiddleware

[153]. Similarly, work on formal models of coordination includes [85,86,441,444]. Closely related to coordination models is

work on formal models of distributed object reflection and adaptation [88,134,261,338,441]. For work on formal analysis

of web applications and services using rewriting logic specifications see [15,163].

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 759

7.3. Security

Security is a concern of great practical importance for many systems, making it worthwhile to subject system designs

and implementations to rigorous formal analysis. Security, however, is many-faceted: on the one hand we are concerned

with properties such as secrecy and authenticity: malicious attackers should not be able to get secret information or to falsely

impersonate honest agents; on the other, we are also concernedwith properties such as availability, whichmay be destroyed

by a (DoS) attack: a highly reliable communication protocol ensuring secrecy may be rendered useless because it spends

all its time checking spurious signatures generated by a DoS attacker. Furthermore, security concerns span many different

levels and subsystems, such as network protocols, programming languages, browsers, web applications, operating systems,

and hardware.

Rewriting logic has been successfully applied to analyze various security properties for a wide range of systems and

at different levels of abstraction. Research in this general area includes: (i) work on cryptographic protocols; (ii) work on

network security; (iii) work on browser security; (iv) work on access control, and (v) work on code security.

7.3.1. Cryptographic protocol specification and analysis

The earliest work on the formal specification and analysis of cryptographic protocols in rewriting logic is by Denker et

al. [132,133]. This stimulated further work by Rodríguez [400,401], and inspired Millen and Denker to use Maude to give a

formal semantics to their cryptographic protocol specification language CAPSL, and to endow CAPSL with an execution and

formal analysis environment [135–138]. In a similar vein, Cervesato, Stehr, and Reich gave a rewriting logic semantics to the

MSR security specification formalism, leading to the first executable environment for MSR [87,390].

An important breakthroughwas the realization that, by specifying a crypto protocol as a rewrite theoryR = (�, E∪B, R),
where E ∪ B describes the algebraic properties of the protocol’s cryptographic functions, and R are the protocol rules, one

could use narrowing with R modulo the equations E ∪ B as a complete reachability analysis method (see Section 3.3). This

was first pointed out in [339,340]. This advance was crucial for two main reasons: (i) protocols could be analyzed modulo

their algebraic properties E∪B; it is well known (as already pointed in Section 6.2.4), that the traditional Dolev–Yao analysis

treating cryptography as a “black box” is too weak, since protocols proved secure under the black box assumption can

sometimes be broken by an attacker using the properties E ∪ B; and (ii) by adopting a narrowing-based symbolic model-

checking approach, the fact that the number of protocol states, and even the number of protocol sessions, is unbounded does

not preclude performing a complete analysis. Based on these ideas and on the rich experience about symbolic reachability

methods in the NRL Protocol Analyzer [306], Escobar, Meadows and I have developed theMaude-NPA protocol analysis tool,

discussed in Section 6.2.4, and its foundations [180,183]. To the best of my knowledge the Maude-NPA is the most advanced

analysis tool to date for analyzing cryptographic protocols modulo algebraic properties with an active intruder and an

unboundednumber of sessions in a completewayandwithout using any abstractions or approximations. Formanyprotocols,

Maude-NPA can exploit the fact that E ∪ B happens to enjoy the finite variant property to obtain a finitary E ∪ B-unification

algorithm by variant narrowing (see [190] and Section 3.3). But finitary algorithms for theories E ∪ B not having the finite

variant property, e.g., homomorphic encryption, are also supported by Maude-NPA. In this way, we have formally analyzed

protocols of the formR = (�, E∪B, R), where E∪B can be a cryptographic theory involving a combination of functionalities

such as: (i) encryption–decryption; (ii) bounded associativity; (iii) Diffie–Hellman exponentiation; (iv) exclusive or; and

(v) homomorphic encryption [178,179,181,183,412]. In general, of course, protocol analysis with an unbounded number

of sessions is undecidable. However, thanks to Maude-NPA’s use of grammars [180] and of other state space reduction

techniques [182,184], a protocol’s symbolic state space can often become finite while remaining complete. This means

that one can not only be sure to find attacks if they exist, but that one can often prove that the specified attacks are not

possible modulo the algebraic properties E ∪ B. Protocols are often compositions of smaller protocols, so that, even when

the subprotocols are secure, unforeseen insecure interactions may take place in a composition. To support compositional

reasoning in Maude-NPA, new composition constructs and associated analysis methods have been developed in [185].

7.3.2. Network security

I have already discussed in Section 7.2.4 the usefulness for protocol design of the formal specifications in [221,223]. Since

both specify network security protocols, I briefly discuss them here from a security perspective. The work in [221] describes

in detail the design steps, using Maude and its model-checking formal analysis, to arrive at the design of L3A, an accounting

protocol built on top of IPsec (using IPsec tunnels) to support billing which was subsequently implemented in [222]. One of

the unique features of L3A is that it is resilient under cramming attacks, where amalicious attacker can direct traffic to a client

for the purpose of having the client billed for the spurious traffic. The work in [223] uses Maude and its model-checking

features to explore and analyze a new protocol design called Sectrace. The problem addressed by Sectrace is the setting up of

associations and policies assumed, but not provided, by the IPSec protocol in order to provide encryption and authentication

services. Due to the presence of nested channels and concatenated channels involving several security gateways, setting

up such security associations and policies is highly nontrivial. Indeed, the formal analysis uncovered quite complex issues,

such as the fact that certain possibilities to set up correct security associations could be missed; and that concurrent runs of

the protocol could cause undesirable interference effects. The design of Sectrace was not further advanced to resolve these

issues, but the lessons learnedwere very valuable and could not have been learnedwithout such kind of formal specification

and analysis.

760 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

The work by Gutierrez-Nolasco et al. in [226] uses formal specification and verification in Maude to address a very

important and real problem: how can the security requirements of a protocol be balanced with other equally important

requirements such as timeliness or otherQoS requirements?Andhowcan adesign bemade adaptive, so that such a balancing

can take place at runtime? This problem was addressed in the context of the Secure Spread group communication protocol

[427], for which a formal specification in Maude had been previously developed. One problem with Secure Spread was

its assumption of virtual synchrony (VS), which is more restrictive and expensive than the extended virtual synchrony

(EVS) semantics. What the work in [226] accomplished was to extend the formal Maude specification of Secure Spread

to a considerably more flexible and dynamically adaptive secure group communication protocol with two simultaneous

dimensions of adaptation: (i) synchrony, which could be chosen to have the VS or EVS semantics; and (ii) group key security,

where various levels of laziness in the key establishment protocol could be specified.

Regarding availability properties, a big problem in network security is Denial of Service (DoS) attacks, which are often

distributed (DDoS) and employmany “bots,” i.e., large numbers of compromisedmachines fromwhich a simultaneous attack

is mounted. Two key questions are how to make network protocols resilient to DoS attacks, and how to formally analyze

such resilience. A probabilistic approach to the formal specification and verification of DoS-resilient protocols is very natural

for two reasons: (i) both the attacker models and the defense algorithms may be probabilistic; and (ii) the answers from

a formal analysis will typically not be “true” or “false” answers; they will instead be numerical quality of service (QoS)

answers, such as the expected latency for a client to get a response from a server during an attack of given intensity. This

means that probabilistic rewrite theories (see Section 3.10) and statisticalmodel checking of qualitative properties inQuaTEx

(see Section 3.11.1) are ideally suited for specification and analysis of DoS-resilient protocols. This is exactly the approach

taken by Agha et al. in [4] to analyze the DoS-resilience of a hardening of the TCP/IP protocol by means of the Selective

Verification (SV) probabilistic DoS-defensemechanism. This work has been later extended by AlTurki et al. [24] to the formal

specification and verification of a more sophisticated DoS-defense protocol, namely, Adaptive Selective Verification (ASV),

where both clients and servers ramp up or slow down their response to a DoS attack based on its perceived intensity. In

his recent Ph.D. thesis [18], AlTurki has modularized ASV as a meta-object wrapper that can be added to the objects of a

distributed application without changing the application code; he has also extended the study of DoS defense mechanisms

from simple client-server architectures to complex orchestrations of web services in Orc: he has shown how combinations

of web services can be secured against DoS attacks by wrapping its distributed objects with ASV wrappers (for Orc and its

rewriting logic semantics see Section 7.4.3).

However, neither the analysis nor the DoS-defense mechanisms need to be probabilistic. For example, in [424], Shankesi

et al. give a formal specification in Maude of the VoIP Session Initiation Protocol, and of defense mechanisms against

DoS amplification attacks, and use LTL model checking in Maude with parametric predicates, which can actually measure

performance metrics, to formally analyze the effectiveness of the specified defenses. Another DoS defense mechanism not

involving probabilities is that of cookies. In [88], Chadha et al. propose a formal specification of the cookie-based DoS

defense mechanisms as a modular wrapper, which can be composed with an underlying communication protocol without

any modifications to the protocol’s code; and they prove that this modular approach preserves all the safety properties,

for example secrecy properties, enjoyed by the underlying protocol. That is, the addition of this DoS defense can be made

modular both at the code level and at the level of verifying safety properties, which need not be re-verified when the cookie

wrappers are added.

7.3.3. Browser security

Toachieveend-to-endsecurity, traditionalmachine-to-machinesecuritymeasuresare insufficient if thehuman-computer

interface is compromised. This is particularly the case for browsers, where visual spoofing attacks that exploit GUI logic flaws

can lure even security-conscious users to perform unintended actions. In [92], Chen, Sasse, Wang, Wang and I called the

preventing of such visual spoofing attacks “securing the last 20 inches.” That is, all the machine-to-machine protocols, code

and hardwaremay be secure, but these visual attacks take place in the last 20 inches separating a user’s eyes from the screen

where he/she is interacting with a browser using the browser’s GUI. Before we performed a rewriting-logic based formal

analysis of Microsoft’s Internet Explorer (IE), it seems fair to say that the approach to IE security was basically reactive,

i.e., each new attack was patched up, but there was no systematic way to predict and prevent future attacks. Based on an

in-depth study of IE’s code, we developed a formal specification of IE (including a model of the user) in Maude as a rewrite

theory. We then characterized status bar and address bar spoofing attacks as violations of visual invariants, where the web

site that the user assumes he/she is interacting with is different from the real web site: what you see is not what you get. Our

model-checking-based formal analysis uncovered nine status bar types of spoofing attacks and four address bar spoofing

attack types that had not been previouslymounted against IE. For each attack type, amaliciousweb page producing an actual

attack could be built. The IE team then confirmed all these attack scenarios and proceeded to make IE secure for these new

types of attacks.

This work stimulated new research by Grier et al. at the University of Illinois at Urbana-Champaign. They asked the

question: canwe use rewriting logic not to uncover browser security flaws a posteriori, but to design a browser that is secure

by construction? This question was answered in their paper [224], where they presented the design and implementation

of the OP secure browser, whose design was specified in Maude and was subjected to model-checking analysis to uncover

design flaws. A more advanced browser variant of OP, OP2, as well as IBOS, a design and system implementation which

integrates into a single architecture a secure browser and a secure operating system, are described in detail in Tang’s thesis

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 761

[449]. This design is being submitted to detailed formal analysis by Sasse, who has already verified by model checking the

same origin policy; this and other verification results will be reported in Sasse’s upcoming doctoral dissertation at UIUC.

The security of web browsers is part of a bigger problem, namely, the security of web applications. In [15] Alpuente et

al. give a rewriting semantics of web applications which formalizes the interactions between multiple browsers and a web

server through a request/response protocol that supports the main features of HTTP and models browsers actions such as

refresh, forward/backward navigation, and window/tab openings. Their formal model also supports a scripting language

which abstracts the main common features (e.g. session data manipulation, data base interactions) of the most popular

web scripting languages and formalizes adaptive navigation, where page transitions may depend on users data or previous

computation states of the web application. They also show how the temporal logic of rewriting LTLR and its Maude-based

model checker (see Section 3.11.1) are ideally suited to express and verify various safety and security properties of web

applications specified this way.

7.3.4. Access control

Access control policies specify the conditions under which access to information is permitted or should be denied in a

system. They are a key security feature of many systems and apply way beyond the original setting of operating systems:

enterprise systems,web-based systems, and even cloud computing applications all need anduse access control policies. Such

a policies are typically specified as collections of access control rules. Several authors, e.g., [48,126,145], have formalized

access control rules as rewrite rules. To further increase the expressive power of access control rules, the corresponding

rewrite rules may be conditional, and they may be controlled by some given strategy. This leads to the notion of rewrite-

based access control policies, and to a corresponding notion of policy composition [145]. One important advantage of this

rewriting-based formalization is that sophisticated forms of formal analysis about an access control policy become possible.

Kirchner et al. show in [263] how narrowing-based analysis (see Section 3.3) with the rewrite rules formalizing an access

control policy and following given strategies can provide an in-depth understanding of policies and their dynamic behavior

to policy designers. Furthermore, since the rewrite rule formalization is directly executable and, using a language like Tom,

can be automatically translated into Java code, the paper [127] shows how rewrite-based access control policies can be

used to generate Java monitoring code for such policies. The monitoring code can then be automatically “weaved” with the

application code it monitors using aspect-oriented methods.

7.3.5. Code security

Many security attacks such as format string, heap corruption and buffer overflow involve malicious code performing

pointer manipulations. The insight of Chen and his collaborators in [93] is that all these problems have a common cause

that they call pointer taintedness, where a pointer is tainted whenever a user input can directly or indirectly be used as a

pointer value. The formal approach taken in [93] is a good example of the general way of giving a rewriting logic semantics

to a programming language already described in Sections 4.3 and 7.2.2. Indeed, what it is done in [93] is to give a rewriting

semantics to a sequential programming language (since the language used is deterministic, only equations are needed)

which includes amemorymodel. This formalmodel is then used to reason formally about pointer taintedness. This reasoning

is applied to several library functions to extract security preconditions which guarantee the absence of pointer taintedness.

In this way, various commonly occurring security vulnerabilities, such as format string, heap corruption and buffer overflow

vulnerabilities can be both detected and prevented.

The topic of application level insider attacks, where a malicious insider tries to overwrite one or more data items in an

application, has been systematically studied by Pattabiraman et al. in [380]. The application code ismodeled at the assembly

level by defining the rewriting logic semantics of assembly code. An insider attack is then represented as a corruption of data

values at specific points in the program’s execution (called attack points). The behavior of an application code subjected to

security attacks in the specified attack points is then formallymodeled by replacing concrete values by appropriate symbolic

values when attack points are reached; and by systematically modeling with rewrite rules the behaviors that such symbolic

values can generate. Given the application code and its inputs, a set of attack points, and a goal state that the attacker intends

to achieve, Maude is then used to generate a comprehensive set of insider attacks that lead to the goal state.

A very elegant application of a programming language’s abstract rewriting logic semantics (see Section 4.3) to Java code

security is presented by Alba-Castro et al. in [11,12] as part of their rewriting-logic-semantics-based approach to proof

carrying code. The key idea is to use an abstract rewriting logic semantics of Java that correctly approximates security

properties such as noninterference (that is, the specification of what objects should not have any effects on other objects

according to a stated security policy [217]) and erasure (a security policy that mandates that secret data should be removed

after its intended use). Since the abstract rewriting logic semantics is finite-state, it supports the automatic creation of

certificates for noninterference and erasure properties of Java programs that are independently checkable and small enough

to be used in practice.

Yet another code security application is LeMay and Gunter’s verification of the security and fault-tolerance requirements

of their cumulative attestation kernel (CAK). This kernel runs on a flash microcontroller unit (MCU) as part of an advanced

metering infrastructure for utilities in the Power Grid. For example, a meter for electricity consumption in a household or

business will use such anMCU, connected to a communications network, to automatically gather and send power consump-

tion data. Security threats include the installation of malware in the MCU to send false data. The CAK code protects the MCU

against such attacks and also provides fault tolerance. The CAK’s behavior has been fully specified as a rewrite theory in

762 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

Maude, and Maude’s LTL model checker has been used to verify that key security and fault tolerance requirements of the

CAK are satisfied [281].

7.4. Real-time and cyber-physical systems

I have already mentioned in Section 3.11.2 that ELAN has been used to model check timed automata in [52]. Here I

focus on the more general issue of specification and formal analysis of real-time and cyber-physical systems which, by

having arbitrary data structures in their discrete states, may not be specifiable at all as timed automata but have a natural

specification as real-time rewrite theories (see Section 3.9). The best tool currently available to specify and analyze systems

as real-time rewrite theories is Real-Time Maude (see Section 6.1.8). A wide range of applications have been specified and

analyzed in Real-Time Maude including: (i) network protocols; (ii) middleware for distributed real-time systems; (iii) real-

timeprogramming languages; (iv) real-timemodeling languages; (v) scheduling algorithms; and (vi) cyber-physical systems.

Furthermore, in some cases the Real-Time Maude specifications have been used to easily derive actual system prototypes

operating in physical time.

7.4.1. Real-time network protocols

Because of their frequent use of timers, timeouts, roundtrip times, and so on, many network protocols (discussed already

in Section 7.2.4) are in fact real-time systems. This means that their rewriting logic specification naturally takes the form

of a real-time rewrite theory, and that their model-checking analysis can best be performed by the kind of real-time model

checking supported by Real-Time Maude. Important network protocols that have been specified and have been thoroughly

analyzed in Real-Time Maude include: (i) the AER/NCA suite of active network protocols [359,365,373] already mentioned

in Section 7.2.4; (ii) the NORMmulticast protocol standard [285,286]; and (iii) the OGDCwireless sensor network algorithm

[376,452]. This last work is quite unique, because it seems to be the first time that a sensor network was fully formally

modeled in all its main aspects, such as geometry, power, transmission times, effective broadcast radius for each node, and

so on; and because the formal analysis turned out to bemore accurate than (and to uncover flaws in) prior simulation-based

analyses of OGCD. It is also noteworthy in terms of scalability, since a network of up to 600 nodeswasmodeled and analyzed.

In fact, a sensor network is more than a network: it is a cyber-physical system, which in this workwas fullymodeled as such.

7.4.2. Middleware for distributed real-time systems

Many distributed real-time systems (DRTS), such as integratedmodular avionics systems and distributed control systems

in motor vehicles, are made up of a collection of components that communicate asynchronously and that must change their

state and respond to environment inputs within hard real-time bounds. Such systems are often safety-critical and need

to be certified; but their certification is currently very hard due to their distributed nature. The Physically Asynchronous

Logically Synchronous (PALS) architectural pattern [341] can greatly reduce the design and verification complexities of

achieving virtual synchrony in a DRTS. A key property that the PALS pattern should satisfy is to be provably correct-by-

construction. This of course requires that the pattern itself should be formally specified as a parameterized construction.

In [329,330] Ölveczky and I have used Real-Time Maude to specify PALS as a formal model transformation that maps a

synchronous design, together with performance bounds of the underlying infrastructure, to a formal DRTS specification

that is semantically equivalent to the synchronous design. This semantic equivalence is proved, showing that the formal

verification of temporal logic properties of the DRTS can be reduced to their verification on the much simpler synchronous

design. Furthermore, the PALS period is shown to be the shortest possible. The issue of how tomechanize PALS at theMaude

metalevel, and an application of PALS to a wireless network protocol are discussed in [255].

7.4.3. Real-time programming languages

How should the formal semantics of a real-time programming language be defined? And how can programs in such a

language be formally analyzed? For an ordinary programming language, the rewriting logic semantics project answers the

first question by saying: “with a rewrite theory,” and the second by saying: “by model checking and/or deductive reasoning

based on such a theory.” The obvious answers for real-time programming languages are: (i) “with a real-time rewrite theory,”

and (ii) “by real-time model checking and/or deductive reasoning based on such a theory.” Of course, the effectiveness of

such answers has to be shown in actual languages. Three real-time programming languages have been given semantics in

exactly this way, and their semantics have been used to verify their programs.

In [19], AlTurki et al. present a language for real-time concurrent programming for industrial use in DOCOMO Labs called

L. The goal of L is to serve as a programming model for higher-level software specifications in SDL or UML. A related goal

is to support formal analysis of L programs by both real-time model checking and static analysis, so that software design

errors can be caught at design time. Theway all this is accomplished is by giving a formal semantics to L in Real-TimeMaude,

which automatically provides an interpreter and a real-time model checker for L. Static analysis capabilities are added to L

by using Maude to define an abstract semantics for L in rewriting logic, which is then used as the static analyzer.

As already mentioned in Section 4.2, the Orc model of real-time concurrent computation [342,343,470] has been given

semantics in rewriting logic using real-time rewrite theories [18,20,21]. Although Orc is a very simple and elegant language,

its real-time semantics is quite subtle for two reasons. First, in the evaluation of any Orc expression, internal computation

always has higher priority than the handling of external events; this means that, even without modeling time, a vanilla-

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 763

flavored SOS semantics is not expressive enough to capture these different priorities: two SOS relations are needed [343].

Second, Orc is by design a real-time language, where time is a crucial feature. Using real-time rewrite theories, this double

subtlety of the Orc semantics was faithfully captured by AlTurki and I in [20], and has been expressed in an even simpler way

using subsorts and memberships in [18]. This semantics has yielded an Orc interpreter and a real-time model checker. But

Orc is not just amodel of computation: it is also a concurrent programming language. This suggested the following challenge

question: can a correct-by-construction distributed Orc implementation be derived from its rewriting logic semantics? This

question was answered in two stages. Since, as discussed in Section 4.3, a small-step SOS semantics is typically horribly

inefficient and it was certainly so in the case of Orc, a much more efficient reduction semantics was first defined in [21],

and was proved to be bisimilar to the small-step SOS semantics. This semantics provided a much more efficient interpreter

and model checker. Furthermore, to explicitly model different Orc clients and various web sites, and their message passing

communication, the Orc semantics was seamlessly extended in [21] to a distributed object-based Orc semantics, which

modeled what a distributed implementation should look like. The only remaining step was to pass from this model of

a distributed implementation to an actual Maude-based distributed real-time implementation. This was accomplished

in [22] using three main ideas: (i) the use of sockets in Maude to actually deploy a distributed implementation; (ii) the

systematic replacement of logical time by physical time, supported by thicker objects external to Maude, while retaining

the rewriting semantics throughout; and (iii) the experimental estimation of the physical time required for “zero-time”

Maude subcomputations, to ensure that the granularity of time ticks is such that all “instantaneous transitions” have already

happened before the next tick. Ideas (i)–(iii) are of course much more widely applicable: they have subsequently been used

to derive prototypes of real-time systems from their rewriting logic specifications for other applications such as medical

devices, as explained in Section 7.4.6.

Creol is an object-oriented language supporting concurrent objects which communicate through asynchronous method

calls. Its rewriting-logic-based operational semantics was defined in [245] without real-time features. However, to support

applications such as sensor systems with wireless communication, where messages expire andmay collide with each other,

Creol’s design and operational semantics have been extended in [58] to Timed Creol using rewriting logic. The notion of

time used by Timed Creol is described as a “lightweight” one in [58]. Time is discrete and is represented by a time object.

This approach does not require a full use of the features in Real-Time Maude (Maude itself is sufficient to define the real-

time semantics). The effectiveness of Timed Creol in the modeling and analysis of applications such as sensor networks is

illustrated in [58] through a case study.

7.4.4. Real-time modeling languages

The usefulness and importance of giving a formal rewriting logic semantics to software modeling languages has already

been discussed in Sections 4.4 and 7.2.1. In particular, there is strong interest in modeling languages for real-time and em-

bedded systems. The rewriting logic semantics for such modeling languages can be naturally based on real-time rewrite

theories. Using a tool like Real-TimeMaude, what this means in practice is that suchmodels can then be simulated; and that

their formal properties, in particular their safety requirements, can be model checked. Furthermore, the simulations and

formal analysis capabilities added to the given modeling language can be offered as “plugins” to already existing modeling

tools, so that much of the formal analysis happens “under the hood,” and somebody already familiar with the given mod-

eling notation can make use of such formal analysis without needing to have an in-depth understanding of the underlying

formalism.

The Ptolemy II modeling language [170] supports design and simulation of concurrent, real-time, embedded systems

expressed in several models of computation, such as state machines, data flow, and discrete-event models, that govern

the interaction between concurrent components. A user can visually design and simulate hierarchical models, which may

combine different models of computations. Furthermore, Ptolemy II has code generation capabilities to translate models

into other modeling or programming languages such as C or Java. Discrete-event (DE) models are among the most central in

Ptolemy II. Their semantics is defined by the tagged signal model [280]. The work by Bae et al. in [42] endows DE models in

Ptolemy IIwith formal analysis capabilities by: (i) defining a semantics for themas real-time rewrite theories; (ii) automating

such a formal semantics as a model transformation using Ptolemy II’s code generation features; (iii) providing a Real-Time

Maude plugin, so that Ptolemy II users obtain an extended GUI to define temporal logic properties of their models in an

intuitive syntax and can invoke Real-Time Maude from the GUI to model check their models. This work has been further

advanced in [40] to support not just flat DE models, but hierarchical ones. That is, above tasks (i)–(iii) have been extended to

hierarchical DEmodels; this extension is nontrivial, because it requires combining synchronous fixpoint computations with

hierarchical structure.

AADL is a standard for modeling embedded systems that is widely used in avionics and other safety-critical applications.

However, AADL lacks a formal semantics, which severely limits both unambiguous communication amongmodel developers

and the formal analysis of AADLmodels. In [363] Ölveczky et al. define a formal object-based real-time concurrent semantics

for a behavioral subset of AADL in rewriting logic, which includes the essential aspects of AADL’s behavior annex. Such a

semantics is directly executable in Real-Time Maude and provides an AADL simulator and LTL model-checking tool called

AADL2Maude. AADL2Maude is integrated with the OSATE AADL tool, so that OSATE’s code generation facility is used to

automatically transform AADL models into their corresponding Real-Time Maude specifications. Such transformed models

can then be executed andmodel checked by Real-TimeMaude. One difficulty with AADLmodels is that, by beingmade up of

various hierarchical components that communicate asynchronously with each other, their model-checking formal analysis

764 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

can easily experience a state space explosion. However,many suchmodels express designs of distributed embedded systems

which, while being asynchronous, should behave in a virtually synchronous way. This suggests the possibility of using the

PALS pattern (see Section 7.4.2) to pass from simple synchronous systems, which have much smaller state spaces and are

mucheasier tomodel check, to semantically equivalent asynchronous systems,whichoften cannot bedirectlymodel checked

but can be verified indirectly through their synchronous counterparts. This has led to the design of the Synchronous AADL

sublanguage in [41], where the user can specify synchronous AADL models by using a sublanguage of AADL with some

special keywords. A synchronous rewriting semantics for such models has also been defined in [41]. Using OSATEs code

generation facility, synchronous AADLmodels can be transformed into their corresponding Real-TimeMaude specifications

in the SynchAADL2Maude tool, which is provided as a plugin to OSATE. Likewise, the user can define temporal logic properties

of synchronous AADL models based on their features, without requiring knowledge of the underlying formalism, and can

model check such models in Real-Time Maude.

A more ambitious goal is to provide a framework, where a wide range of real-time domain-specific visual languages

(DSVLs), as well as their dynamic real-time behavior, can be specified with a rigorous semantics. This is precisely the goal of

two frameworks and associated tools: (i) the e-Motions framework [394]; and (ii) MOMENT2’s support for real-time DSVLs

[67].

• In e-Motions, DSVLs are specified by their corresponding metamodels, and dynamic behavior is specified by rules that

define in-place model transformations. But the goals of e-Motions do not remain at the syntax/visual level: they also

include giving a precise rewriting logic semantics in Real-Time Maude to the different real-time DSVLs that can be

defined in e-Motions, and to automatically support simulation and formal analysis of models by using the underlying

Real-TimeMaudeengine. The formal semantics translates themetamodel of aDSVLasanobject class, the corresponding

models as object configurations of that class, and the e-Motions rules as rewrite rules. Since all these translations are

automatic and define a DSVL’s formal semantics, a modeling language designer using e-Motions does not have to

explicitly define the DSVL’s formal semantics: it comes for free, together with the simulation and model-checking

features, once the DSVL’s metamodel and the dynamic behavior rules are specified.
• In [67], theMOMENT2 framework (see Section 6.2.5) has been extended to support the formal specification and analysis

of real-timemodel-based systems. This is achieved bymeans of a collection of built-in timed constructs for defining the

timed behavior of such systems. Timed behavior is specified using in-place model transformations. Furthermore, the

formal semantics of a timed behavioral specification inMOMENT2 is given by a corresponding real-time rewrite theory.

In this way,models can be simulated andmodel checked usingMOMENT2’s Maude-based analysis tools. In addition, by

using in-place multi-domain model transformations in MOMENT2, an existing model-based system can be extended

with timed features in a non-intrusive way, in the sense that no modification is needed for the class diagram.

7.4.5. Resource sharing protocols

Real-time resource sharing protocols are protocols governing theway inwhichmultiple tasks can share common resources

such as a data structure, a memory area, a file, a set of registers in a peripheral device, and so on. The dynamic behavior of

such protocols divides naturally into a scheduling part, and a resource access part. Although this is a very well-established

area, the emergence of multicore machines has brought about new protocols and more sophisticated approaches, for which

correctness isnotobvious, so that formalmodelingandanalysis canbeavaluabledesignmethodology. Thefirstworkapplying

rewriting logic in this areawas byÖlveczky and Caccamo,whomodeled and analyzed in Real-TimeMaude the CASH capacity

sharing scheduling algorithm [364], corresponding to the scheduling part of a resource sharing protocol. Search analysis of

CASH’s Real-Time Maude specification uncovered a previously unknown behavior that led to missed deadlines. This was a

subtle error that it would have been virtually impossible to detect by testing. Indeed, extensive Monte-Carlo simulation was

utterly incapable of detecting the flaw. The CASH protocol furthermore illustrated a broad class of applications beyond the

pale of (timed) automata-based analysis techniques. The point is that model-checking algorithms for such techniques work

only for finite-state real-time systems, but the Real-Time Maude formal analysis showed that the queues in the state of the

CASH protocol could grow in an unbounded manner.

A broader framework for formally modeling and analyzing real-time resource sharing protocols, in both their scheduling

and resource access parts, is presented by Ölveczky et al. in [374]. In particular, [374] shows how crucial properties such

as: (i) unbounded priority inversion; (ii) deadlocks; and (iii) schedulability, can be analyzed for such protocols when they

are specified as real-time rewrite theories. The effectiveness of this framework is illustrated by means of the analysis of the

priority inheritance protocol (PIP).

7.4.6. Cyber-physical systems

Cyber-physical systems are real-time systems, often distributed, which interact with the physical world by sensing and

possibly by means of actuators. A number of such systems have been specified and modeled in Real-Time Maude. One

example is the OGCD wireless sensor network algorithm in [376,452] already described in Section 7.4.1. Another example

is the family of traffic system designs specified and analyzed in [372], where one of the experiences gained was the ease

with which the use of distributed objects and class inheritance provided a very high degree of genericity and extensibility

of the different designs (including European and American light regimes, a special regime for emergency vehicles, and so

on), and allowed for a distributed control without any need for a centralized controller. A third example is the modeling in

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 765

Real-Time Maude of object-oriented real-time systems that follow the Actor model, and the application of this modeling

style to the specification and analysis of the simplex architecture [142], a software architecture for fault-tolerant real-time

control systems. Yet a fourth example is the use of Real-Time Maude to analyze embedded code in a Japanese car design;

the analysis uncovered flaws in the embedded code but has not been published for proprietary reasons.

The safe interoperationofmedical devices has been the topic of several researchpapers,whichhave formallymodeled and

analyzed various device configurations in Real-TimeMaude. For example, in [360]Ölveczky describes the application of Real-

TimeMaude to the formalmodeling and analysis of a network integrating anX-raymachine, a ventilator, and a controller. This

configuration automates a similarmanual interoperation between an X-raymachine and a ventilator forwhich an accidental

death in an operating room was reported in the literature. As part of the formal specification and analysis, [360] introduces

novel techniques for: (i) modeling nondeterministic transmission delays while maintaining completeness and reasonable

performance of the analysis; (ii) modeling clock drifts; and (iii) analyzing bounded response properties. Subsequent work

by Sun et al. in [439] has focused on the development of patterns for interoperation of medical devices (among themselves

and with a patient) that are safe by construction, and generic, so that they can be instantiated for many different devices.

Specifically, one such pattern, called the Command-Shaper pattern, is formally specified as a parameterized Real-TimeMaude

module andproved correct in [439]. Thekey ideaof theCommand-Shaper is to intercept the commands fromexternal devices

(possibly including the patient), so that the patient is never placed in amedically dangerous state, including stateswhere the

patient’s medical constants may be stressed for a dangerously long time. Instances of the Command-Shaper pattern include

a mechanism for enforcing that a sophisticated pacemaker, which can adapt to changes in the patient’s activity, will never

place the patient’s heart in stressful situations, and a patient-operated infusion pump for morphine. As already pointed out

for the Orc orchestration language in Section 7.4.3, Real-Time Maude specifications of distributed real-time systems can be

easily transformed into distributed real-time implementations usingMaude’s socket mechanism. For the Command-Shaper

pattern this has been done by Sun andme in [438]. One attractive feature of this transformation is that formal specifications

can be interoperated with actual physical devices in a system that emulates a final implementation.

Using the PALS pattern discussed in Section 7.4.2, Ölveczky and I have specified in Real-Time Maude synchronous and

asynchronous versions of an active standby avionics system [329,330], and, using the synchronous version plus its bisim-

ulation equivalence with the asynchronous one, have verified by model checking that it satisfies (appropriately enhanced

versions of) all the informal requirements listed by the designers. This example underscores the power and usefulness of

the PALS pattern, since the synchronous version had just a few hundred states and each property was model checked in less

than 0.8 seconds, whereas the simplest possible asynchronous version (with no message delays) had over 3 million states.

7.5. Probabilistic systems

Probabilistic rewrite theories (see Section 3.10) can model a wide variety of probabilistic systems, including many cyber-

physical systems. As alreadymentioned, both the environments inwhich such systems operate and the very algorithms they

use are often probabilistic. Furthermore, the verification of their quantitative properties may be just as important as that of

Boolean-valued properties such as safety requirements. For this purpose, one can use statistical model-checking methods

(see Section 3.11.2) of quantitative properties expressed in a formalism such as QuaTEx (see Section 3.11.1). As the PVeStA

tool demonstrates, such statistical model-checking analyses can be quite scalable (see Section 6.1.10).

Up to now, the probabilistic systemapplications that have been specified and analyzed using the just-mentionedmethods

fall into three areas: (i) DoS-resistant protocols; (ii) distributed embedded systems; and (iii) distributed stochastic hybrid

systems. There are of course many other possibilities, including applications for the quite different notion of probabilistic

rewriting proposed in [74,76] and discussed in Section 3.10. Since DoS-resistant protocols have already been discussed in

Section 7.3.2, I focus here on areas (ii) and (iii).

7.5.1. Distributed embedded systems

For many distributed embedded systems, particularly those including energy-constrained components such as hand-

held devices, quality of service (QoS) properties are essential. For achieving such properties in an end-to-end manner,

adaptive resource management policies across different layers of the system, such as the application, middleware, and OS

layers, are needed. Kim et al. have used probabilistic rewrite theories specified in Maude, and statistical model-checking

analysis of quantitative properties of such theories (using the algorithm described in [261]), to model and formally analyze

various sophisticated adaptive designs of distributed embedded systems that can provide desired QoS guarantees. Their

general methodology is presented in [261], where it is applied to a multi-mode multimedia case study. Furthermore, in

[259] they show how thesemethods can be combinedwith direct observation of system executions to refine the probabilistic

models of the system, and how this can be used to achieve system adaptation under timing constraints by iteratively tuning

system parameters. This line of research is continued in [260], where they present a compositional method for cross-layer

system optimization based on a constraint refinement technique which can be used to fine tune system parameters in a

compositional manner, allowing coordinated interaction among sublayer optimizers to achieve cross-layer optimization.

Experiments on a realistic multimedia application demonstrate that constraint refinement can generate robust and near

optimal parameter settings.

An important class of energy-constrained distributed embedded systems is that of wireless sensor networks, since the

powerof the sensorsmustbeusedverycarefully toensureanacceptablenetwork lifetime. In [258],Katelman, the late Jennifer

766 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

Houand I usedprobabilistic rewrite theories andqualitative analysis inVeStA to study in depth andunder realistic conditions

the design of the local minimum spanning tree (LMST) topology control protocol, which tries to maintain connectivity in

an ad-hoc wireless sensor network while minimizing power consumption and maximizing data bandwidth. Our starting

point was an idealized LMST design with perfect clocks and perfect communication, which did in fact maintain connectivity

at an abstract level. However, our formal analysis revealed that, as soon as more realistic implementation details such as

clock synchronization and network contention were introduced, the idealized LMST design failed rather badly to maintain

network connectivity. The problemwe then addressedwas how to use probabilisticmodeling and statisticalmodel checking

to redesign LMST at a realistic level, so that it wouldmeet its intended goals. For this purposewe developed a system redesign

methodology supporting threemutually-reinforcing tasks: (i) to uncover flaws in a given design; (ii) to conjecture the causes

of the various malfunctions and to confirm such conjectures by means of statistical correlations between further analyses;

and (iii) to thenuse the confirmedconjecturesof thehypothesizedcausesofflaws to redesigna systemandverifyby statistical

model checking that thefinal design satisfies the desired requirements. Our application of thismethodology to LMST resulted

in a new, implementable design that satisfied all the desired requirements under realistic operating conditions.

7.5.2. Distributed stochastic hybrid systems

Stochastic hybrid systems generalize ordinary hybrid systems by allowing continuous evolution to be governed by sto-

chastic differential equations (SDEs) and/or by allowing instantaneous changes in systemmodes to be probabilistic. This fits

well the intrinsic uncertainty of the environments in whichmany hybrid systemsmust operate, and is also very useful when

some of the systems algorithms are probabilistic. Indeed, there is a wide range of application areas, including communica-

tion networks, air traffic control, economics, fault-tolerant control, and bioinformatics. However, in practicemany stochastic

hybrid systems are not autonomous: they are distributed as collections of objects that communicate with other objects by

exchangingmessages through an asynchronousmedium such as a network. In [336], Sharikin and I used probabilistic rewrite

theories to investigate several open issues such as: (i) how to compositionally specify distributed object-based stochastic

hybrid systems; (ii) how to formally model them, and (iii) how to verify their properties. Specifically, in [336] we addressed

these issues by: (i) defining a mathematical model for such systems; (ii) proposing a formal specification language in which

system transitions are specified in a modular way by probabilistic rewrite rules; and (iii) showing how these systems can

be subjected to statistical model-checking analysis to verify their probabilistic temporal logic properties. Maude and VeStA

were used to illustrate the approach with specific examples such as: (i) an international auction system in which bidders

reside in different countries and their different currencies fluctuate according to an SDE; and (ii) a system consisting of N

rooms, each equippedwith a thermostat, plus a central server unit controlling them, where each thermostat can be in either

heating, cooling, or idle mode, and the temperature in each room changes randomly according to an SDE.

In Section 7.6.1 I discuss another very useful application of probabilistic rewriting to the modeling of biological systems

as stochastic hybrid systems [2].

7.6. Bioinformatics, chemical systems, and membranes

I discuss here several related research strands where rewriting logic has been applied to bioinformatics, to modeling the

dynamics of chemical systems, and to chemically and biologically inspired membrane systems.

7.6.1. Bioinformatics

Biology lacks at present adequatemathematicalmodels that can provide something analogous to the analytic and predic-

tive power that mathematical models provide for, say, Physics. Of course, themathematical models of Chemistry describing,

say, molecular structures are still applicable to biochemistry. The problem is that they do not scale up to something like a

cell, because they are too low-level. One can of course model biological phenomena at different levels of abstraction. Higher,

more abstract levels seem both the most crucial and the least supported. The most abstract the level, the better the chances

to scale up.

All this is analogous to the use of different levels of abstraction to model digital systems. There are great scaling up

advantages in treating digital systems and computer designs at a discrete level of abstraction, above the continuous level

provided by differential equations, or, even lower, the quantum electrodynamics (QED) level. The discrete models, when

they can be had, can also bemore robust and predictable: there is greater difficulty in predicting the behavior of a system that

can only be modeled at lower levels. Indeed, the level at which biologists like to reason about cell behavior is typically the

discrete level; however, at present descriptions at this level consist of semi-formal notations for the elementary reactions,

together with informal and potentially ambiguous notations for things like pathways, cycles, feedback, etc. Furthermore,

such notations are static and therefore offer little predictive power. What are needed are new computable mathematical

models of cell biology that are at a high enough level of abstraction so that they fit biologists’ intuitions, make those intuitions

mathematically precise, and provide biologists with the predictive power of mathematical models, so that the consequences

of their hypotheses and theories can be analyzed, and can then suggest laboratory experiments to prove them or disprove

them.

As first pointed out in [173], and vigorously developed in the subsequent Pathway Logic research which I discuss later,

rewriting logic seems ideally suited for this task. The basic idea is that we can model a cell as a concurrent system whose

concurrent transitions are precisely its biochemical reactions. In fact, the chemical notation for a reaction like A B→ C D is

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 767

exactly a rewriting notation. In this way we can develop symbolic bioinformatics models which we can then analyze in their

dynamic behavior just as we would analyze any other rewrite theory.

Implicit in the view of modeling a cell as a rewrite theory (�, E, R) is the idea of modeling the cell states as elements of

an algebraic data type specified by (�, E). This can of course be done at different levels of abstraction. We can for example

introduce basic sorts such as AminoAcid, Protein, and DNA and declare the most basic building blocks as constants of the

appropriate sort. For example,

ops T U Y S K P : -> AminoAcid .

ops 14-3-3 cdc37 GTP Hsp90 Raf1 Ras : -> Protein .

But sometimes aprotein ismodified, for examplebyoneof its component aminoacids beingphosphorylated at aparticular

site in its structure. Consider for example the c-Raf protein, denoted above by Raf1. Two of its S amino acid components can

be phosphorylated at sites, say, 259 and 261. We then obtain a modified protein that we denote by the symbolic expression,

[Raf1 \ phos(S 259) phos(S 621)]

A fragment, relevant for this example, of the signature � needed to symbolically express and analyze such modified

proteins is given by the following sorts, subsorts, and operators:

sorts Site Modification ModSet .

subsort Modification < ModSet .

op phos : Site -> Modification .

op none : -> ModSet .

op __ : ModSet ModSet -> ModSet [assoc comm id: none] .

op __ : AminoAcid MachineInt -> Site .

op [__] : Protein ModSet -> Protein [right id: none] .

Proteins can stick together to form complexes. This can be modeled by the following subsort and operator declarations

sort Complex .

subsort Protein < Complex .

op _:_ : Complex Complex -> Complex [comm] .

In the cell, proteins and other molecules exist in “soups,” such as the cytosol, or the soups of proteins inside the cell

and nucleus membranes, or the soup inside the nucleus. All these soups, as well as the “structured soups” making up the

different structures of the cell, can be modeled by the following fragment of sort, subsort, and operator declarations,

sort Soup .

subsort Complex < Soup .

op __ : Soup Soup -> Soup [assoc comm] .

op cell{_{_}} : Soup Soup -> Soup .

op nucl{_{_}} : Soup Soup -> Soup .

that is, soups are made up out of complexes, including individual proteins, by means of the above binary “soup union”

operator (with juxtaposition syntax) that combines two soups into a bigger soup. This union operator models the fluid

nature of soups by obeying associative and commutative laws. A cell is then a structured soup, composed by the above cell
operator out of two subsoups, namely the soup in the membrane, and that inside the membrane; but this second soup is

itself also structured by the cytoplasm and the nucleus. Finally, the nucleus itself is made up of two soups, namely that in the

nucleus membrane, and that inside the nucleus, which are composed using the above nucl operator. Then, the following

expression gives a partial description of a cell:

cell{cm (Ras : GTP) {cyto

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3)

nucl{nm{n}}}}

where cm denotes the rest of the soup in the cell membrane, cyto denotes the rest of the soup in the cytoplasm, and nm and

n likewise denote the remaining soups in the nucleus membrane and inside the nucleus.

Once we have cell states defined as elements of an algebraic data type specified by (�, E), the only missing information

has to do with cell dynamics, that is, with its biochemical reactions. They can be modeled by suitable rewrite rules R, giving

us a full model (�, E, R). Consider, for example, the following reaction described in a survey by Kolch [271]:

Raf-1 resides in the cytosol, tied into an inactive state by the binding of a 14-3-3 dimer to phosphoserine-259 and -621.

When activation ensues, Ras-GTP binding [. . .] brings Raf-1 to the membrane.

We can model this reaction by the following rewrite rule:

rl[10]: {CM (Ras : GTP) {CY

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3) }}

=>

{CM ((Ras : GTP) :

768 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3))

{CY}} .

where CM and CY are variables of sort Soup, representing, respectively, the rest of the soup in the cell membrane, and the

rest of the soup inside the cell (including the nucleus). Note that in the new state of the cell represented by the righthand

side of the rule, the complex has indeed migrated to the membrane.

Given a type of cell specified as a rewrite theory (�, E, R), rewriting logic then allows us to reason about the complex

changes that are possible in the system, given the basic changes specified by R. That is, we can then use (�, E, R) together
with Maude and its supporting formal tools to simulate, study, and analyze cell dynamics. In particular, we can study in this

way biological pathways, that is, complex processes involving chains of biological reactions and leading to important cell

changes. In particular we can:

• observe progress in time of the cell state by symbolic simulation, obtaining a corresponding trace;
• answer questions of reachability from a given cell state to another state satisfying some property; this can be done

both forwards and backwards;
• answer more complex questions by model checking LTL properties; and
• do meta-analysis of proposed models of the cell to weed out spurious conjectures and to identify consequences of a

given model that could be settled by experimentation.

Since the first paper in this direction [173], onwhich the above summary is based, this line of research has been vigorously

advanced by the Pathway Logic (PL) team of computer scientists and molecular biologists at SRI led by Talcott [2,174,442,

443,445–448,454,455] (for a good overview, see Talcott’s tutorial [445]). The PL researchers have used rewriting logic to

develop sophisticated analyses of cell behavior in biological pathways, andhave built useful notations and visualization tools,

such as the Pathway Logic Assistant [446], that can represent theMaude-based analyses in formsmore familiar to biologists.

The papers [447,448] contain good discussions of related work in this area, using other formalisms, such as Petri nets or

process calculi, that can also be understood as particular rewrite theories; and show how cell behavior can bemodeled with

rewrite rules and can be analyzed at different levels of abstraction, and even across such levels. A very exciting more recent

development is the use of several probabilistic rewriting methods to model cell behaviors as stochastic hybrid systems [2].

Yet another very exciting development is the use of rewriting logic in neuroinformatics, at a much higher level of abstraction

than that of reactions inmolecular biology.What are nowmodeled are neural systems,with neurons as objects, in the object-

oriented sense, plus what might be called “wiring information” about neuron interconnections. Changes in neuron states

due to firings are then described by rewrite rules. A Maude model of the neural system responsible for the feeding behavior

of the marine mollusk Aplysia has been used to model quite accurately Aplysia’s neural behavior in a way consistent with

other studies [2]; furthermore, using symbolic model checking, more ambitious properties of Aplysia’s neural behavior have

been verified in [454]. In general, one of the important contributions of the PL project is the combination of variousmodeling

and analysis techniques to model biological systems; in addition to all the already-mentioned techniques, SAT-solving is yet

one more weapon in PL’s arsenal [455].

The PL research has stimulated the use of rewriting logic and Maude by other bioinformatics researchers. For example,

Sriram has used Maude to model protein functional domains in signal transduction, and to obtain testable hypotheses at

various levels of abstraction [426], and,myUIUCcolleagueAnastasiohasusedMaude to analyze andobtainuseful hypotheses

about biological pathways whose malfunction is related to Alzheimer’s disease [27].

Although the research byAndrei andKirchner in [30]makes also valuable contributions to the bioinformatics applications

of rewriting logic, I discuss it in the next section because of its similarities with other work on chemical systems.

7.6.2. Chemical systems

The already-mentioned fact that the chemical notation for a reaction like A B→ C D is a rewriting notation suggests that

rewrite theories canbeused to symbolicallymodel not just cell biologybut any chemical systems,with the reactionsmodeled

as rewrite rules. This is exactly the research approach taken by Bournez et al. in [73], and further developed by Bournez et al.

in [75], andbyAndrei et al. in [29]. This researchmakes anumber of novel contributions. First of all, it emphasizes the fact that

chemical compounds are graphs, so that chemical reactions can be more properly modeled as graph rewrite rules. Second,

it identifies an appropriate term representation for chemical graphs so that: (i) equivalent representations can be effectively

identified; (ii) “soups” of different chemical compounds can be represented as multisets by an AC operator; and (iii) the

graph rewriting modeling of chemical reactions can be faithfully represented as term rewriting modulo AC. In particular,

the paper [75] provides a detailed study of this dual graph/term representation and proves the faithfulness of the associated

term rewriting in capturing the desired graph rewriting. A third contribution is the use of strategies to characterize chemical

processes, which do not correspond to arbitrary sequences of rewrites, but have to obey certain dynamic constraints. A

fourth contribution is the implementation of all these ideas in the GasEl system, first implemented in ELAN in [73], but

subsequently implemented in TOM for enhanced efficiency, as reported in [29].

The already-mentioned work by Andrei and Kirchner in [30], although belonging to the more specific area of biochem-

istry and bioinformatics applications—indeed, to the modeling of biochemical networks—has some similarities with the

just-mentioned work on chemical modeling, but makes different contributions. It models the molecular complexes appear-

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 769

ing in cell biology as labeled multigraphs with ports, with molecules represented as nodes, sites as ports, and bonds as edges.

Biochemical reactions are then modeled as graph transformation rules and biochemical networks are finally modeled as

strategies which express the appropriate control between the different reactions and the dynamic evolution of molecular

complexes. In analogy with [75], careful attention is paid to finding a faithful term representation, that is, a faithful represen-

tation as an (order-sorted) rewrite theory of the corresponding graphs and graph transformation rules associated to a given

biochemical network. A biochemical calculus where rules and strategies are port graphs has been defined and applied to

autonomic computing in [31].

7.6.3. Membrane systems

Transfer of ideas can sometimes go in both directions. Not only can rewriting logic provide formal models for cell biology

and bioinformatics, but chemical and biological metaphorsmay suggest models of computation. Indeed, chemical metaphors

understood as multiset rewriting—so that a multiset of entities is visualized as a chemical “soup,” and atomic computation

steps as chemical reactions—go back to the Gamma model of computation of Banâtre and Mètayer [47], which inspired the

Chemical Abstract Machine (CHAM) of Berry and Boudol [55]. A further development of this line of research has been the

study of membrane systems in the sense of Andrei et al. [28], who base their ideas on the cell-inspired proposal of membrane

computing by Paun [382]. The basic idea is that membrane systems are hierarchical systems consisting of nested cells, each

surrounded by a membrane enclosing a multiset of elements, which may include other cells. This bears some similarities

to the Meseguer–Talcott “Russian dolls” model of distributed object-oriented reflection [338] already mentioned in Section

7.2.4. Another important idea is that rules describing local changes in a membrane system have priorities, and that maximal

parallelism is the desired model of computation. A careful study of all these issues within the rewriting logic framework has

been presented in [28]. The issue of maximal parallelism using the idea of “promoters and inhibitors” is further studied by

Agrigoroaiei and Ciobanu in [6]. Of course, since rules in membrane systems have priorities and should fire with maximal

parallelism, not all rewriting computations are desirable; this leads to the issue of characterizing membrane computations

by appropriate rewriting strategies, a topic studied by Andrei and Lucanu in [32], and by Lucanu in [288].

8. Some future research directions

Of course, all the research areas already discussed are promising future directions. The question is rather, which new or

recent areas seemmost in need of development and look particularly promising? Answers to such questions are necessarily

subjective, and can only be guesses. In fact, the emergence of other areas which one has not anticipated should be a cause

for rejoicement. With that said, here are some directions I think need development and are promising:

1. Rewriting logic as a new paradigm for declarative concurrent programming, as well as new multicore and distributed

rewriting logic language implementations. Everybody agrees that concurrent and distributed programming are at

present quite difficult andmessy.Whatmost people fail to realize is that this is not an intrinsic necessity: programming

concurrent systems in a declarative way can be simpler than programming a sequential system in a conventional, im-

perativeway. At the sequential implementation level, the great simplicity of rewrite rules as a programming paradigm

has been amply demonstrated; what now is needed is to develop efficient concurrent implementations of rewriting

languages that show in practice their intrinsic superiority over conventional concurrent programming languages.

2. Advancing the rewriting logic semantics project, including future advances in K,matching logic, and compiler generation

from language definitions. The advances in this area have already been quite impressive: it has already been shown

that this approach can scale up to produce full executable semantics for entire languages like C or Java, and that

a wide range of semantics-based tools can then be derived from such formal definitions. But more ambitious goals

lie ahead such as, for example: (i) language-generic program verifiers; (ii) language-generic static analysis tools; (iii)

more efficient language-genericmodel checkers; and (iv) efficient language-generic compilers;where in all such cases

those meta-tools would be instantiated to specific languages by providing a rewriting logic definition of the given

language.

3. Embedded and cyber-physical systems, including safety verification and correct-by-construction code generation. Fur-

ther research in formal patterns such as PALS that can greatly simplify the design and verification of safety properties

for cyber-physical systems seems very promising to tame the many complexities involved. New formal verification

methods are also needed. But this still leaves open the additional challenge of deriving correct-by-construction real-

time implementations from formal rewriting logic specifications.

4. Deductive and symbolic verificationmethods for rewrite theories, includingnarrowing-basedmethods, their combination

with SMT solving, deductive temporal logic verification, and inductive proof methods. Symbolic methods can bring

theorem proving and model checking verification so close to each other that it will be difficult to classify some tools

as either model checkers or theorem provers. Furthermore, they can be naturally combined with temporal logic and

inductive reasoning. New proof techniques, new algorithms, and new tool implementations are needed to make all

this happen. The great advantage of developing them for suitable classes of rewrite theories is that they will be highly

generic, so that they can be amortized over many different instance languages and application domains.

770 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

5. New verification methods and tools for probabilistic rewrite theories, including languages, verification methods, and

tools. This area is still relatively undeveloped, yet quite promising advances have already been made. A PMaude

implementation shouldbedeveloped in thenear future.New,probabilisticmodel checkers complementing thealready

existing statistical model checkers should also be developed. And a more intimate integration between probabilistic

and real-time systems, including stochastic hybrid systems, should be sought.

9. Conclusions

In the introduction I raised the following questions about rewriting logic:

• How well-developed are its mathematical foundations?
• To what extent have its goals as a semantic framework for concurrency, and as a logical framework, been achieved?
• Which languages and tools supporting rewriting logic programming, specification, and verification have been devel-

oped?
• In which application areas has it been shown useful?
• What do its future prospects look like?

I believe that I have given quite extensive answers to all these questions, except perhaps for a briefer treatment of the last

one on future prospects. The foundations are in my mind rock-solid. At this point the wide range of models of concurrency

and of logics that have been naturally expressed within the rewriting logic framework provides overwhelming evidence

that it is a very suitable framework. The languages supporting rewriting logic are mature, provide many features, and are

furthermore still growing. The spectrumof formal tools is quite adequate, althoughmore advances are andwill be happening.

And the range of applications is quite wide and exciting. I think some of us will be busy pushing the envelope for years to

come; and I hope this survey will encourage other researchers to use rewriting logic in their own work and to make new

contributions.

Acknowledgements

I thank the organizers of WRLA 2010 for giving me the opportunity and the stimulus to do some reflecting, surveying,

and guessing about rewriting logic at this point, when twenty years have passed since the first papers were published,

for their further encouragement to turn my WRLA lecture into a survey paper, and for their patience in allowing me the

necessary time to finish it. As already mentioned, I feel a debt of gratitude to the many gifted researchers who have made

important contributions to the rewriting logic researchprogram. Ihavebenefitted fromveryhelpful comments to improve the

exposition by the referees and by Francisco Durán, Santiago Escobar, Maribel Fernández, Kokichi Futatsugi, Alwyn Goodloe,

Hélène Kirchner, Alberto Lluch, Narciso Martí-Oliet, Peter Ölveczky, Miguel Palomino, Camilo Rocha, Carolyn Talcott, Cesare

Tinelli and Alberto Verdejo (I apologize if I inadvertedly omitted anybody). This work has been supported in part by NSF

Grants CNS 07-16638, CNS 08-34709, CNS 08-31064, CNS 09-04749, and CCF 09-05584, AFOSR Grant FA8750-11-2-0084,

and the “Programa de Apoyo a la Investigación y Desarrollo” (PAID-02-11) of the Universitat Politècnica de València.

References

[1] A. Aziz, V. Singhal, R.K. Brayton, A.L. Sangiovanni-Vincentelli, It usuallyworks: the temporal logic of stochastic systems, in: P.Wolper (Ed.), 7th International
Conference On Computer Aided Verification, vol. 939, Springer Verlag, Liege, Belgium, 1995, pp. 155–165.

[2] A. Abate, Y. Bai, N. Sznajder, C.L. Talcott, A. Tiwari, Quantitative and probabilistic modeling in pathway logic, in: M.M. Zhu, Y. Zhang, H.R. Arabnia, Y. Deng
(Eds.), Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2007, Harvard Medical School, Boston, MA, USA,

October 14–17, 2007, IEEE, 2007, pp. 922–929.
[3] G. Agha, Actors, MIT Press, 1986.

[4] G.A. Agha, M. Greenwald, C.A. Gunter, S. Khanna, J. Meseguer, K. Sen, P. Thati, Formal modeling and analysis of DoS using probabilistic rewrite theories, in:

A. Sabelfeld (Ed.), Proceedings of the Workshop on Foundations of Computer Security, FCS’05, (Affiliated with LICS’05), Chicago, IL, June 30–July 1, 2005,
2005, pp. 91–102.

[5] G.A. Agha, J. Meseguer, K. Sen, PMaude: rewrite-based specification language for probabilistic object systems, in: A. Cerone, H.Wiklicky (Eds.), Proceedings
of the Third Workshop on Quantitative Aspects of Programming Languages, QAPL 2005, Edinburgh, UK, April 2–3, 2005, Electronic Notes in Theoretical

Computer Science, vol. 153(2), Elsevier, 2006, pp. 213–239.
[6] O. Agrigoroaiei, G. Ciobanu, Rewriting logic specification of membrane systems with promoters and inhibitors, in Roşu [403], pp. 5–22.

[7] W. Ahrendt, A. Roth, R. Sasse, Automatic validation of transformation rules for Java verification against a rewriting semantics, in: G. Sutcliffe, A. Voronkov

(Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, 12th International Conference, LPAR 2005,Montego Bay, Jamaica, December 2–6, 2005,
Proceedings, Lecture Notes in Computer Science, vol. 3835, Springer, 2005, pp. 412–426.

[8] B. Alarcón, R. Gutiérrez, S. Lucas, Context-sensitive dependency pairs, Information and Computation 208 (8) (2010) 922–968.
[9] B. Alarcón, R. Gutiérrez, S. Lucas, R. Navarro-Marset, Proving termination properties with MU-TERM, in Johnson and Pavlovic [246], pp. 201–208.

[10] B. Alarcón, S. Lucas, J. Meseguer, A dependency pair framework for A∨ C-termination, in Ölveczky [362], pp. 35–51.
[11] M. Alba-Castro, M. Alpuente, S. Escobar, Abstract certification of global non-interference in rewriting logic, in: M. Leuschel, S. Hallerstede, F. de Boer, M.

Bonsangue (Eds.), Formal Methods for Components and Objects, 8th International Symposium, FMCO 2009, Eindhoven, The Netherlands, November 4–6,

2009, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6286, Springer, 2010, pp. 105–124.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 771

[12] M. Alba-Castro,M. Alpuente, S. Escobar, Approximating non-interference and erasure in rewriting logic, in: T. Ida (Ed.), Proceedings of the 12th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2010, Timisoara, Romania, September 23–26, 2010, IEEE Computer

Society, 2010, pp. 124–132.
[13] A. Albarrán, F. Durán, A. Vallecillo, From Maude specifications to SOAP distributed implementations: a smooth transition, in: O. Díaz, A. Illarramendi, M.

Piattini (Eds.), Actas de las VI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2001, Almagro (Ciudad Real), España, Noviembre 21–23, 2001,

2001, pp. 419–434.
[14] A. Albarrán, F. Durán, A. Vallecillo, Maude meets CORBA, in: G. Fernandez, C. Pons (Eds.), Proceedings of the Second Argentine Symposium on Software

Engineering, ASSE 2001, Buenos Aires, Argentina, September 10–11, 2001, 2001.
[15] M. Alpuente, D. Ballis, D. Romero, Specification and verification of web applications in rewriting logic, in: A. Cavalcanti, D. Dams (Eds.), FM 2009: Formal

Methods, SecondWorld Congress, Eindhoven, The Netherlands, November 2–6, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5850, Springer,
2009, pp. 790–805.

[16] M. Alpuente, S. Escobar, J. Meseguer, P. Ojeda, A modular equational generalization algorithm, in: M. Hanus (Ed.), Logic-Based Program Synthesis and

Transformation, 18th International Symposium, LOPSTR 2008, Valencia, Spain, July 17–18, 2008, Revised Selected Papers, Lecture Notes in Computer
Science, vol. 5438, Springer, 2009, pp. 24–39.

[17] M.Alpuente, S. Escobar, J.Meseguer, P.Ojeda,Order-sortedgeneralization, in:M.Falaschi (Ed.), Proceedingsof the17th InternationalWorkshoponFunctional
and (Constraint) Logic Programming, WFLP 2008, Siena, Italy, July 3–4, 2008, Electronic Notes in Theoretical Computer Science, vol. 246, Elsevier, 2009,

pp. 27–38.
[18] M. AlTurki, Rewriting-based formal modeling, analysis and implementation of real-time distributed services, Ph.D. thesis, University of Illinois at Urbana-

Champaign, 2011. Available from: <http://hdl.handle.net/2142/26231>.

[19] M. AlTurki, D. Dhurjati, D. Yu, A. Chander, H. Inamura, Formal specification and analysis of timing properties in software systems, in Chechik and Wirsing
[90], pp. 262–277.

[20] M. AlTurki, J. Meseguer, Real-time rewriting semantics of Orc, in Leuschel and Podelski [284], pp. 131–142.
[21] M. AlTurki, J. Meseguer, Reduction semantics and formal analysis of Orc programs, in: D. Ballis, S. Escobar, M. Marchiori (Eds.), Proceedings of the 3rd

International Workshop on Automated Specification and Verification of Web Systems, WWV 2007, Venice, Italy, December 14, 2007, Electronic Notes in
Theoretical Computer Science, vol. 200(3), Elsevier, 2008, pp. 25–41.

[22] M. AlTurki, J. Meseguer, Dist-Orc: a rewriting-based distributed implementation of Orc with formal analysis, in Ölveczky [361], pp. 26–45.

[23] M. AlTurki, J. Meseguer, PVeStA: a parallel statistical model checking and quantitative analysis tool, in Corradini et al. [124], pp. 386–392.
[24] M. AlTurki, J. Meseguer, C.A. Gunter, Probabilistic modeling and analysis of DoS protection for the ASV protocol, in Dougherty and Escobar [144], pp. 3–18.

[25] R. Alur, C. Courcoubetis, D.L. Dill, Model-checking for real-time systems, in: LICS’90, IEEE, 1990, pp. 414–425.
[26] R. Alur, D.L. Dill, A theory of timed automata, Theoretical Computer Science 126 (2) (1994) 83–235.

[27] T.J. Anastasio, Data-driven modeling of Alzheimer disease pathogenesis, Journal of Theoretical Biology 290 (2011) 60–72.
[28] O. Andrei, G. Ciobanu, D. Lucanu, A rewriting logic framework for operational semantics of membrane systems, Theoretical Computer Science 373 (3)

(2007) 163–181.
[29] O. Andrei, L. Ibănescu, H. Kirchner, Non-intrusive formal methods and strategic rewriting for a chemical application, in: K. Futatsugi, J.-P. Jouannaud, J.

Meseguer (Eds.), Algebra,Meaning, andComputation, EssaysDedicated to JosephA.Goguenon theOccasion ofHis 65thBirthday, LectureNotes in Computer

Science, vol. 4060, Springer, 2006, pp. 194–215.
[30] O. Andrei, H. Kirchner, Graph rewriting and strategies for modeling biochemical networks, in: V. Negru, T. Jebelean, D. Petcu, D. Zaharie (Eds.), Proceedings

of theNinth International Symposiumon Symbolic andNumeric Algorithms for Scientific Computing, SYNASC 2007, Timisoara, Romania, September 26–29,
2007, IEEE Computer Society, 2007, pp. 407–414.

[31] O. Andrei, H. Kirchner, A port graph calculus for autonomic computing and invariant verification, Electronic Notes in Theoretical Computer Science 253 (4)
(2009) 17–38.

[32] O. Andrei, D. Lucanu, Strategy-based proof calculus for membrane systems, in Roşu [403], pp. 23–43.

[33] N. Aoumeur, G. Saake, Integrating and rapid-prototyping UML structural and behavioural diagrams using rewriting logic, in: A.B. Pidduck, J. Mylopoulos,
C.C. Woo, M.T. Özsu (Eds.), Advanced Information Systems Engineering, 14th International Conference, CAiSE 2002, Toronto, Canada, May 27–31, 2002,

Proceedings, Lecture Notes in Computer Science, vol. 2348, Springer, 2002, pp. 296–310.
[34] A. Avron, F. Honsell, I.A. Mason, R. Pollack, Using typed lambda calculus to implement formal systems on a machine, Journal of Automated Reasoning 9 (3)

(1992) 309–354.
[35] F. Baader (Ed.), Term Rewriting and Applications, 18th International Conference, RTA 2007, Paris, France, June 26–28, 2007, ProceedingsLecture Notes in

Computer Science, vol. 4533, Springer, 2007.

[36] M. Backes, P. Ning (Eds.), Computer Security – ESORICS 2009, 14th European Symposium on Research in Computer Security, Saint-Malo, France, September
21–23, 2009, ProceedingsLecture Notes in Computer Science, vol. 5789, Springer, 2009.

[37] K. Bae, J. Meseguer, A rewriting-based model checker for the temporal logic of rewriting, in Kniesel and Pinto [270], pp. 46–60.
[38] K. Bae, J. Meseguer, The linear temporal logic of rewriting Maude model checker, in Ölveczky [362], pp. 208–225.

[39] K. Bae, J. Meseguer, State/event-based LTL model checking under parametric generalized fairness, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided
Verification – 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011, Proceedings, Lecture Notes in Computer Science, vol. 6806,

Springer, 2011, pp. 132–148.

[40] K. Bae, P.C. Ölveczky, Extending the Real-Time Maude semantics of Ptolemy to hierarchical DE models, in Ölveczky [361], pp. 46–66.
[41] K. Bae, P.C. Ölveczky, A. Al-Nayeem, J. Meseguer, Synchronous AADL and its formal analysis in Real-TimeMaude, Technical report, Department of Computer

Science, University of Illinois at Urbana-Champaign, 2011.
[42] K. Bae, P.C. Ölveczky, T.H. Feng, S. Tripakis, Verifying Ptolemy II discrete-event models using Real-Time Maude, in: K. Breitman, A. Cavalcanti (Eds.), Formal

Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9–12,
2009, Proceedings, Lecture Notes in Computer Science, vol. 5885, Springer, 2009, pp. 717–736.

[43] C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking of continuous-time markov chains, in: CONCUR’99, LNCS, vol. 1664, Springer,

1999, pp. 146–161.
[44] H. Baker, C. Hewitt, Laws for communicating parallel processes, in: Proceedings of the 1977 IFIP Congress, IFIP Press, 1977, pp. 987–992.

[45] P. Baldan, C. Bertolissi, H. Cirstea, C. Kirchner, A rewriting calculus for cyclic higher-order term graphs, Mathematical Structures in Computer Science 17 (3)
(2007) 363–406.

[46] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles, Tom: Piggybacking rewriting on Java, in Baader [35], pp. 36–47.
[47] J.-P. Banâtre, D.L. Mètayer, The Gamma model and its discipline of programming, Science of Computer Programming 15 (1990) 55–77.

[48] S. Barker, M. Fernández, Term rewriting for access control, in: E. Damiani, P. Liu (Eds.), DBSec, Lecture Notes in Computer Science, vol. 4127, Springer, 2006,
pp. 179–193.

[49] G. Barthe, F.S. de Boer (Eds.), Formal Methods for Open Object-Based Distributed Systems, 10th IFIPWG 6.1 International Conference, FMOODS 2008, Oslo,

Norway, June 4–6, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5051, Springer, 2008.
[50] D. Basin, M. Clavel, J. Meseguer, Reflective metalogical frameworks, ACM Transactions on Computational Logic 5 (3) (2004) 528–576.

[51] D.A. Basin, R.L. Constable, Metalogical frameworks, in: G. Huet, G. Plotkin (Eds.), Logical Environments, Cambridge University Press, 1993, pp. 1–29.
[52] E. Beffara, O. Bournez, H. Kacem, C. Kirchner, Verification of timed automata using rewrite rules and strategies, in:N. Dershowitz, A. Frank (Eds.), Proceedings

of the Seventh Biennial Bar-Ilan International Symposium on the Foundations of Artificial Intelligence, BISFAI 2001, Ramat-Gan, Israel, June 25–27, 2001,
Computing Research Repository (CoRR), 2001.

http://hdl.handle.net/2142/26231

772 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

[53] S. Berardi, Towards a mathematical analysis of the Coquand-Huet calculus of constructions and other systems in Barendregt’s cube, Technical report,
Carnegie-Mellon University and Università di Torino, 1988.

[54] J. Bergstra, J. Tucker, Characterization of computable data types by means of a finite equational specification method, in: J.W. de Bakker, J. van Leeuwen
(Eds.), Automata, Languages and Programming, Seventh Colloquium, LNCS, vol. 81, Springer-Verlag, 1980, pp. 76–90.

[55] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1) (1992) 217–248.

[56] C. Bertolissi, H. Cirstea, C. Kirchner, Translating combinatory reduction systems into the rewriting calculus, in: J.-L. Giavitto, P.-E. Moreau (Eds.), Proceedings
of the 4th InternationalWorkshop onRule-Based Programming, RULE 2003, Valencia, Spain, June 9, 2003, Electronic Notes in Theoretical Computer Science,

vol. 86(2), Elsevier, 2003, pp. 28–44.
[57] E. Best, R. Devillers, Sequential and concurrent behavior in Petri net theory, Theoretical Computer Science 55 (1989) 87–136.

[58] J. Bjørk, E.B. Johnsen, O. Owe, R. Schlatte, Lightweight time modeling in timed Creol, in Ölveczky [361], pp. 67–81.
[59] M.M. Bonsangue, E.B. Johnsen (Eds.), FormalMethods for OpenObject-Based Distributed Systems, 9th IFIPWG6.1 International Conference, FMOODS 2007,

Paphos, Cyprus, June 6–8, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4468, Springer, 2007.

[60] A. Boronat, MOMENT: A Formal Framework for MOdel ManageMENT, Ph.D. thesis, Universitat Politècnica de València, Spain, 2007.
[61] A. Boronat, J.A. Carsí, I. Ramos, Automatic reengineering in MDA using rewriting logic as transformation engine, in: N. Gold, T. Systä (Eds.), Proceedings of

the 9th European Conference on Software Maintenance and Reengineering, CSMR 2005, Manchester, UK, March 21–23, 2005, Proceedings, IEEE Computer
Society, 2005, pp. 228–231.

[62] A. Boronat, R. Heckel, J. Meseguer, Rewriting logic semantics and verification of model transformations, in Chechik and Wirsing [90], pp. 18–33.
[63] A. Boronat, A. Knapp, J. Meseguer, M. Wirsing, What is a multi-modeling language? In Corradini and Montanari [125], pp. 71–87.

[64] A. Boronat, J. Meseguer, Algebraic semantics of OCL-constrained metamodel specifications, in: M. Oriol, B. Meyer (Eds.), Objects, Components, Models and

Patterns, 47th International Conference, TOOLS EUROPE2009, Zurich, Switzerland, June 29–July 3, 2009, Proceedings, LectureNotes in Business Information
Processing, vol. 33, Springer, 2009, pp. 96–115.

[65] A. Boronat, J. Meseguer, MOMENT2: EMF model transformations in Maude, in A. Vallecillo, G. Sagardui (Eds.), Actas de las XIV Jornadas de Ingeniería del
Software y Bases de Datos, JISBD 2009, San Sebastián, España, Septiembre 8–11, 2009, 2009, pp. 178–179.

[66] A. Boronat, J. Meseguer, An algebraic semantics for MOF, Formal Aspects of Computing 22 (3–4) (2010) 269–296.
[67] A. Boronat, P.C. Ölveczky, Formal real-time model transformations in MOMENT2, in: D.S. Rosenblum, G. Taentzer (Eds.), Fundamental Approaches to

Software Engineering, 13th International Conference, FASE 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

2010, Paphos, Cyprus, March 20–28, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6013, Springer, 2010, pp. 29–43.
[68] P. Borovanský, C. Castro, Cooperation of constraint solvers: using the new process control facilities of ELAN, in Kirchner and Kirchner [262], pp. 1–20.

[69] P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau, Q.-H. Nguyen, C. Ringeissen, M. Vittek, ELAN v 3.6 user manual, Technical report,
INRIA Lorraine & LORIA, Nancy, France, February 2004.

[70] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, ELAN from a rewriting logic point of view, Theoretical Computer Science 285 (2) (2002) 155–185.
[71] P. Borovanský, C. Kirchner, H. Kirchner, C. Ringeissen, Rewriting with strategies in ELAN: a functional semantics, International Journal of Foundations of

Computer Science 12 (1) (2001) 69–95.
[72] A. Bouhoula, J.-P. Jouannaud, J. Meseguer, Specification and proof in membership equational logic, Theoretical Computer Science 236 (1–2) (2000) 35–132.

[73] O. Bournez, G.-M. Côme, V. Conraud, H. Kirchner, L. Ibănescu, A rule-based approach for automated generation of kinetic chemicalmechanisms, inNieuwen-

huis [355], pp. 30–45.
[74] O. Bournez, M. Hoyrup, Rewriting logic and probabilities, in Nieuwenhuis [355], pp. 61–75.

[75] O. Bournez, L. Ibănescu, H. Kirchner, From chemical rules to term rewriting, in: H. Cirstea, N. Martí-Oliet (Eds.), Proceedings of the 6th International
Workshop on Rule-Based Programming, RULE 2005, Nara, Japan, April 23, 2005, Electronic Notes in Theoretical Computer Science, vol. 147(1), Elsevier,

2006, pp. 113–134.
[76] O. Bournez, C. Kirchner, Probabilistic rewrite strategies. Applications to ELAN, in: S. Tison (Ed.), Rewriting Techniques and Applications, 13th International

Conference, RTA 2002, Copenhagen, Denmark, July 22–24, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2378, Springer, 2002, pp. 252–266.

[77] C. Braga, J. Meseguer, Modular rewriting semantics in practice, in: Martí-Oliet [297], pp. 393–416.
[78] R. Bruni, Tile Logic for Synchronized Rewriting of Concurrent Systems, Ph.D. thesis, Dipartimento di Informatica, Università di Pisa, 1999, Technical report

TD-1/99.
[79] R. Bruni, J. Meseguer, Generalized rewrite theories, in: J.C.M. Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (Eds.), Automata, Languages and Programming,

30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30–July 4, 2003, Proceedings, Lecture Notes in Computer Science, vol. 2719,
Springer, 2003, pp. 252–266.

[80] R. Bruni, J. Meseguer, Semantic foundations for generalized rewrite theories, Theoretical Computer Science 360 (1–3) (2006) 386–414.

[81] R. Bruni, J. Meseguer, U. Montanari, Symmetric monoidal and cartesian double categories as a semantic framework for tile logic, Mathematical Structures
in Computer Science 12 (1) (2002) 53–90.

[82] R. Bruni, J. Meseguer, U. Montanari, Tiling transactions in rewriting logic, in Gadducci and Montanari [205], pp. 90–109.
[83] R. Bruni, U. Montanari, J. Meseguer, Internal strategies in a rewriting implementation of tile systems, in Kirchner and Kirchner [262], pp. 263–284.

[84] G. Carabetta, P. Degano, F. Gadducci, CCS semantics via proved transition systems and rewriting logic, in Kirchner and Kirchner [262], pp. 369–387.
[85] M. Casadei, L. Gardelli, M. Viroli, Simulating emergent properties of coordination inMaude: the collective sort case, in: C. Canal, M. Viroli (Eds.), Proceedings

of the Fifth International Workshop on the Foundations of Coordination Languages and Software Architectures, FOCLASA 2006, Bonn, Germany, August 31,

2006, Electronic Notes in Theoretical Computer Science, vol. 175(2), Elsevier, 2007, pp. 59–80.
[86] M. Casadei, A. Omicini,M. Viroli, PrototypingA&AReSpecT inMaude, in: C. Canal, P. Poizat,M. Viroli (Eds.), Proceedings of the 6th InternationalWorkshopon

the Foundations of Coordination Languages and Software Architectures, FOCLASA 2007, Lisbon, Portugal, September 8, 2007, Electronic Notes in Theoretical
Computer Science, vol. 194, Elsevier, 2008, pp. 93–109.

[87] I. Cervesato,M.-O. Stehr, Representing theMSR cryptoprotocol specification language in an extension of rewriting logicwith dependent types, Higher-Order
and Symbolic Computation 20 (1–2) (2007) 3–35.

[88] R. Chadha, C.A. Gunter, J. Meseguer, R. Shankesi, M. Viswanathan, Modular preservation of safety properties by cookie-based DoS-protection wrappers, in

Barthe and de Boer [49], pp. 39–58.
[89] F. Chalub, C. Braga, Maude MSOS tool, in Denker and Talcott [139], pp. 133–146.

[90] M. Chechik, M. Wirsing (Eds.), Fundamental Approaches to Software Engineering, 12th International Conference, FASE 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22–29, 2009, Proceedings, Lecture Notes in Computer Science, vol.

5503, Springer, 2009.
[91] F. Chen, G. Roşu, R.P. Venkatesan, Rule-based analysis of dimensional safety, in Nieuwenhuis [355], pp. 197–207.

[92] S. Chen, J. Meseguer, R. Sasse, H.J. Wang, Y.-M. Wang, A systematic approach to uncover security flaws in GUI logic, in: B. Pfitzmann, P. McDaniel (Eds.),
Proceedings of the 2007 IEEE Symposium on Security and Privacy (S&P 2007), Oakland, California, USA, May 20–23, 2007, IEEE Computer Society, 2007,

pp. 71–85.

[93] S. Chen, K. Pattabiraman, Z. Kalbarczyk, R.K. Iyer, Formal reasoning of various categories of widely exploited security vulnerabilities by pointer taintedness
semantics, in: Y. Deswarte, F. Cuppens, S. Jajodia, L. Wang (Eds.), 19th International Information Security Conference, SEC 2004, Toulouse, France, August

22–27, 2004, Proceedings, Kluwer, 2004, pp. 83–100.
[94] H. Cirstea, C. Kirchner, Theorem proving using computational systems: the case of the B predicate prover, Presented at CCL’97Workshop, Schloss Dagstuhl,

Germany, September 1997.
[95] H. Cirstea, C. Kirchner, Combining higher-order and first-order computations using ρ-calculus: Towards a semantics of ELAN, in: D. Gabbay, M. de Rijke

(Eds.), Frontiers of Combining Systems, Research Studies, vol. 2, Wiley, 1999, pp. 95–120.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 773

[96] H. Cirstea, C. Kirchner, The rewriting calculus – Part I, Logic Journal of the IGPL 9 (3) (2001) 363–399.
[97] H. Cirstea, C. Kirchner, The rewriting calculus – Part II, Logic Journal of the IGPL 9 (3) (2001) 401–434.

[98] H. Cirstea, C. Kirchner, L. Liquori, The rho cube, in: F. Honsell, M. Miculan (Eds.), Foundations of Software Science and Computation Structures, 4th
International Conference, FOSSACS 2001, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2001, Genova, Italy,

April 2–6, 2001, Proceedings, Lecture Notes in Computer Science, vol. 2030, Springer, 2001, pp. 168–183.

[99] H. Cirstea, C. Kirchner, L. Liquori, Rewriting calculus with(out) types, in Gadducci and Montanari [205], pp. 3–19.
[100] H. Cirstea, C. Kirchner, L. Liquori, B. Wack, Rewrite strategies in the rewriting calculus, in: B. Gramlich, S. Lucas (Eds.), Proceedings of the 3rd International

Workshop on Reduction Strategies in Rewriting and Programming, WRS 2003, Valencia, Spain, June 8, 2003, Electronic Notes in Theoretical Computer
Science, vol. 86(4), Elsevier, 2003, pp. 593–624.

[101] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, 2001.
[102] M. Clavel, Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications, CSLI Publications, 2000.

[103] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, Unification and narrowing in Maude 2.4, in: R. Treinen (Ed.),

Rewriting Techniques and Applications, 20th International Conference, RTA 2009, Brasília, Brazil, June 29–July 1, 2009, Proceedings, Lecture Notes in
Computer Science, vol. 5595, Springer, 2009, pp. 380–390.

[104] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, Metalevel computation in Maude, in Kirchner and Kirchner [262], pp. 331–352.
[105] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, J.F. Quesada, Maude: specification and programming in rewriting logic, Theoretical

Computer Science 285 (2) (2002) 187–243.
[106] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, All About Maude – A High-Performance Logical Framework, How to Specify,

Program and Verify Systems in Rewriting Logic, Lecture Notes in Computer Science vol. 4350, Springer (2007).

[107] M. Clavel, F. Durán, S. Eker, J. Meseguer, Building equational proving tools by reflection in rewriting logic, in Futatsugi et al. [203], pp. 1–31.
[108] M. Clavel, F. Durán, S. Eker, J. Meseguer, M.-O. Stehr, Maude as a formal meta-tool, in Wing et al. [471], pp. 1684–1703.

[109] M. Clavel, F. Durán, N. Martí-Oliet, Polytypic programming in Maude, in Futatsugi [200], pp. 339–360.
[110] M. Clavel, M. Egea, ITP/OCL: a rewriting-based validation tool for UML+OCL static class diagrams, in Johnson and Vene [247], pp. 368–373.

[111] M. Clavel, S. Eker, P. Lincoln, J. Meseguer, Principles of Maude, in Meseguer [317], pp. 65–89.
[112] M. Clavel, N. Martí-Oliet, M. Palomino, Formalizing and proving semantic relations between specifications by reflection, in Rattray et al. [389], pp. 72–86.

[113] M. Clavel, J. Meseguer, Reflection and strategies in rewriting logic, in Meseguer [317], pp. 126–148.

[114] M. Clavel, J. Meseguer, Internal strategies in a reflective logic, in: B. Gramlich, H. Kirchner (Eds.), Proceedings of the CADE-14 Workshop on Strategies in
Automated Deduction, Townsville, Australia, 1997, pp. 1–12.

[115] M. Clavel, J. Meseguer, Reflection in conditional rewriting logic, Theoretical Computer Science 285 (2) (2002) 245–288.
[116] M. Clavel, J. Meseguer, M. Palomino, Reflection inmembership equational logic, many-sorted equational logic, Horn logic with equality, and rewriting logic,

Theoretical Computer Science 373 (1–2) (2007) 70–91.
[117] M. Clavel, M. Palomino, A. Riesco, Introducing the ITP tool: a tutorial, Journal of Universal Computer Science 12 (11) (2006) 1618–1650.

[118] M. Clavel, J. Santa-Cruz, ASIP + ITP: a verification tool based on algebraic semantics, in: F.J. López-Fraguas (Ed.), Actas de las V Jornadas sobre Programación
y Lenguajes, PROLE 2005, Granada, España, Septiembre 14–16, 2005, Thomson, 2005, pp. 149–158.

[119] W. Clinger, Foundations of actor semantics, Technical report AI-TR-633, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1981.

[120] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree automata techniques and applications, 2007. Available
from: <http://www.grappa.univ-lille3.fr/tata>, Release October, 12th 2007.

[121] H. Comon-Lundth, S. Delaune, The finite variant property: how to get rid of some algebraic properties, in: Proc RTA’05, LNCS vol. 3467, Springer (2005)
294–307.

[122] T. Coquand, G. Huet, The calculus of constructions, Information and Computation 76 (1988) 95–120.
[123] A. Corradini, F. Gadducci, U. Montanari, Relating two categorial models of term rewriting, in Hsiang [243], pp. 225–240.

[124] A. Corradini, B. Klin, C. Cîrstea (Eds.), Algebra and Coalgebra in Computer Science – 4th International Conference, CALCO 2011, Winchester, UK, August

30–September 2, 2011, Proceedings, Lecture Notes in Computer Science, vol. 6859, Springer, 2011.
[125] A. Corradini, U. Montanari (Eds.), Recent Trends in Algebraic Development Techniques, 19th International Workshop, WADT 2008, Pisa, Italy, June 13–16,

2008, Revised Selected Papers, Lecture Notes in Computer Science, vol. 5486, Springer, 2009.
[126] A.S. de Oliveira, Rewriting-based access control policies, Electronic Notes in Theoretical Computer Science 171 (4) (2007) 59–72.

[127] A.S. de Oliveira, E.K. Wang, C. Kirchner, H. Kirchner, Weaving rewrite-based access control policies, in: P. Ning, V. Atluri, V.D. Gligor, H. Mantel (Eds.),
Proceedings of the 2007 ACM Workshop on Formal Methods in Security Engineering, FMSE 2007, Fairfax, VA, USA, November 2, 2007, ACM, 2007, pp.

71–80.

[128] P. Degano, F. Gadducci, C. Priami, A causal semantics for CCS via rewriting logic, Theoretical Computer Science 275 (1–2) (2002) 259–282.
[129] P. Degano, J. Meseguer, U. Montanari, Axiomatizing the algebra of net computations and processes, Acta Informatica 33 (1996) 641–667.

[130] P. Degano, C. Priami, Proved trees, in: Proc. ICALP’92, LNCS, vol. 623, Springer, 1992, pp. 629–640.
[131] G. Denker, J.J. García-Luna-Aceves, J. Meseguer, P.C. Ölveczky, J. Raju, B. Smith, C.L. Talcott, Specification and analysis of a reliable broadcasting protocol in

Maude, in: B. Hajek, R.S. Sreenivas (Eds.), Proceedings of the 37th Allerton Conference on Communication, Control and Computation, University of Illinois,
1999, pp. 738–747.

[132] G. Denker, J. Meseguer, C.L. Talcott, Protocol specification and analysis in Maude, in: N. Heintze, J. Wing (Eds.), Proceedings of the Workshop on Formal

Methods and Security Protocols, FMSP’98, Indianapolis, Indiana, June 25, 1998, 1998.
[133] G. Denker, J. Meseguer, C.L. Talcott, Formal specification and analysis of active networks and communication protocols: the Maude experience, in Koob et

al. [272], pp. 251–265.
[134] G. Denker, J. Meseguer, C.L. Talcott, Rewriting semantics of meta-objects and composable distributed services, in Futatsugi [200], pp. 405–425.

[135] G. Denker, J. Millen, CAPSL and CIL language design: a common authentication protocol specification language and its intermediate language, Technical
report SRI-CSL-99-02, Computer Science Laboratory, SRI International, 1999.

[136] G. Denker, J. Millen, CAPSL intermediate language, in: N. Heintze, E. Clarke (Eds.), Proceedings of theWorkshop on Formal Methods and Security Protocols,

FMSP’99, Trento, Italy, July 5, 1999, 1999.
[137] G. Denker, J. Millen, CAPSL integrated protocol environment, in Koob et al. [272], pp. 207–222.

[138] G. Denker, J. Millen, The CAPSL integrated protocol environment, Technical report SRI-CSL-2000-02, Computer Science Laboratory, SRI International, 2000.
[139] G. Denker, C. Talcott (Eds.), Proceedings of the Sixth International Workshop on Rewriting Logic and its Applications, WRLA 2006, Vienna, Austria, April

1–2, 2006, Electronic Notes in Theoretical Computer Science, vol. 176(4), Elsevier, 2007.
[140] E. Deplagne, C. Kirchner, H. Kirchner, Q.H. Nguyen, Proof search and proof check for equational and inductive theorems, in: F. Baader (Ed.), Automated

Deduction – CADE-19, 19th International Conference on Automated Deduction Miami Beach, FL, USA, July 28–August 2, 2003, Proceedings, Lecture Notes
in Computer Science, vol. 2741, Springer, 2003, pp. 297–316.

[141] R. Diaconescu, K. Futatsugi, CafeOBJ Report. The Language, Proof Techniques, andMethodologies for Object-Oriented Algebraic Specification, AMAST Series

in Computing, vol. 6, World Scientific, 1998.
[142] H. Ding, C. Zheng, G. Agha, L. Sha, Automated verification of the dependability of object-oriented real-time systems, in: Proceedings of the 9th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003 Fall), Anacapri (Capri Island), Italy, October 1–3, 2003, IEEE
Computer Society, 2004, pp. 171–178.

[143] J.S. Dong, H. Zhu (Eds.), FormalMethods and Software Engineering – 12th International Conference on Formal EngineeringMethods, ICFEM 2010, Shanghai,
China, November 17–19, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6447, Springer, 2010.

http://www.grappa.univ-lille3.fr/tata

774 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

[144] D.J. Dougherty, S. Escobar (Eds.), Proceedings of the Third InternationalWorkshop on Security and Rewriting Techniques, SecReT 2008, Pittsburgh, PA, USA,
June 22, 2008, Electronic Notes in Theoretical Computer Science, vol. 234, Elsevier, 2009.

[145] D.J. Dougherty, C. Kirchner, H. Kirchner, A.S. de Oliveira, Modular access control via strategic rewriting, in: J. Biskup, J. Lopez (Eds.), Computer Security –
ESORICS 2007, 12th European Symposium On Research In Computer Security, Dresden, Germany, September 24–26, 2007, Proceedings, Lecture Notes in

Computer Science, vol. 4734, Springer, 2007, pp. 578–593.

[146] G. Dowek, T. Hardin, C. Kirchner, Higher order unification via explicit substitutions, Information and Computation 157 (1–2) (2000) 183–235.
[147] G. Dowek, T. Hardin, C. Kirchner, HOL-λσ : an intentional first-order expression of higher-order logic, Mathematical Structures in Computer Science 11 (1)

(2001) 21–45.
[148] G. Dowek, T. Hardin, C. Kirchner, Theorem proving modulo, Journal of Automated Reasoning 31 (1) (2003) 33–72.

[149] G. Dowek, C. Muñoz, C. Rocha, Rewriting logic semantics of a plan execution language, in: B. Klin, P. Sobociński (Eds.), Proceedings of the Sixth Workshop
on Structural Operational Semantics, SOS 2009, Bologna, Italy, August 31, 2009, Electronic Proceedings in Theoretical Computer Science, vol. 18, 2010, pp.

77–91.

[150] F. Durán, A Reflective Module Algebra with Applications to the Maude Language, Ph.D. thesis, Universidad de Málaga, Spain, June 1999.
[151] F. Durán, The extensibility of Maude’s module algebra, in: T. Rus (Ed.), Algebraic Methodology and Software Technology. 8th International Conference,

AMAST 2000, Iowa City, Iowa, USA, May 20–27, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1816,. Springer, 2000, pp. 422–437.
[152] F. Durán, S. Eker, S. Escobar, J. Meseguer, C.L. Talcott, Variants, unification, narrowing, and symbolic reachability in Maude 2.6, in: M. Schmidt-Schauß (Ed.),

Proceedings of the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011, Novi Sad, Serbia, May 30–June 1, 2011, Leibniz
International Proceedings in Informatics (LIPIcs), vol. 10, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2011, pp. 31–40.

[153] F. Durán, F. Gutiérrez, P. López, E. Pimentel, A formalization of the SMEPP model in Maude, in: V. Cahill (Ed.), Proceedings of the 5th Annual International

Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, MobiQuitous 2008, July 21–25, 2008, Dublin, Ireland, ACM, 2008.
[154] F. Durán, J. Herrador, A. Vallecillo, Using UML and Maude for writing and reasoning about ODP policies, in: J. Moffett, F. Garcia (Eds.), Proceedings of the

4th IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY 2003, Lake Como, Italy, June 4–6, 2003, IEEE Computer Society,
2003, pp. 15–25.

[155] F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving operational termination of membership equational programs, Higher-Order and Symbolic
Computation 21 (1–2) (2008) 59–88.

[156] F. Durán, S. Lucas, J. Meseguer, MTT: the Maude termination tool (system description), in: A. Armando, P. Baumgartner, G. Dowek (Eds.), Automated

Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12–15, 2008, Proceedings, Lecture Notes in Computer Science, vol.
5195, Springer, 2008, pp. 313–319.

[157] F. Durán, S. Lucas, J. Meseguer,Methods for proving termination of rewriting-based programming languages by transformation, in: J.M. Almendros-Jiménez
(Ed.), Proceedings of the Eighth Spanish Conference on Programming and Computer Languages, PROLE 2008, Gijón, Spain, October 8–10, 2008, Electronic

Notes in Theoretical Computer Science, vol. 248, Elsevier, 2009, pp. 93–113.
[158] F. Durán, S. Lucas, J. Meseguer, Terminationmodulo combinations of equational theories, in: S. Ghilardi, R. Sebastiani (Eds.), Frontiers of Combining Systems,

7th International Symposium, FroCoS 2009, Trento, Italy, September 16–18, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5749, Springer,
2009, pp. 246–262.

[159] F. Durán, J. Meseguer, An extensible module algebra for Maude, in Kirchner and Kirchner [262], pp. 174–195.

[160] F. Durán, J. Meseguer, Maude’s module algebra, Science of Computer Programming 66 (2) (2007) 125–153.
[161] F. Durán, J. Meseguer, On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories, Journal of Logic and Algebraic Program-

ming, this volume.
[162] F. Durán, P.C. Ölveczky, A guide to extending Full Maude illustrated with the implementation of Real-Time Maude, in Roşu [403], pp. 83–102.

[163] F.Durán,M.Ouederni, G. Salaün, Checkingprotocol compatibilityusingMaude, in:G. Salaün,M. Sirjani (Eds.), Proceedingsof the8th InternationalWorkshop
on the Foundations of Coordination Languages and Software Architectures, FOCLASA 2009, Rhodes, Greece, July 11, 2009, Electronic Notes in Theoretical

Computer Science, vol. 255, Elsevier, 2009, pp. 65–81.

[164] F. Durán, C. Rocha, J.M. Álvarez, Tool interoperability in the Maude formal environment, in Corradini et al. [124], pp. 400–406.
[165] F. Durán, C. Rocha, J.M. Álvarez, Towards a Maude formal environment, in: G. Agha, O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open Systems,

Biological Systems – Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, Lecture Notes in Computer Science, vol. 7000, Springer,
2011, pp. 329–351.

[166] F. Durán, M. Roldán, A. Vallecillo, Using Maude to write and execute ODP information viewpoint specifications, Computer Standards & Interfaces 27 (6)
(2005) 597–620.

[167] F. Durán, A. Vallecillo, Specifying the ODP information viewpoint usingMaude, in: H. Kilov, K. Baclawski (Eds.), Proceedings of the Tenth OOPSLAWorkshop

on Behavioral Semantics, Tampa Bay, Florida, October 2001, pp. 44–57.
[168] F. Durán, A. Vallecillo, Formalizing ODP enterprise specifications in Maude, Computer Standards & Interfaces 25 (2) (2003) 83–102.

[169] M. Egea, V. Rusu, Formal executable semantics for conformance in the MDE framework, Innovations in Systems and Software Engineering 6 (1–2) (2009)
73–81.

[170] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. Xiong, Taming heterogeneity – the Ptolemy approach, Proceedings of the
IEEE 91 (1) (2003) 127–144.

[171] S. Eker, Fast matching in combination of regular equational theories, in Meseguer [317], pp. 90–109.

[172] S. Eker, Associative-commutative rewriting on large terms, in Nieuwenhuis [355], pp. 14–29.
[173] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, M.K. Sönmez, Pathway logic: symbolic analysis of biological signaling, in: R.B. Altman, A.K. Dunker,

L. Hunter, T.E. Klein (Eds.), Proceedings of the 7th Pacific Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, January 3–7, 2002, January 2002, pp.
400–412.

[174] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, C. Talcott, Pathway logic: executable models of biological networks, in Gadducci and Montanari [205], pp.
144–161.

[175] S. Eker, N. Martí-Oliet, J. Meseguer, A. Verdejo, Deduction, strategies, and rewriting, in: M. Archer, T.B. de la Tour, C. Muñoz (Eds.), Proceedings of the

6th International Workshop on Strategies in Automated Deduction, STRATEGIES 2006, Seattle, WA, USA, August 16, 2006, Electronic Notes in Theoretical
Computer Science, vol. 174(11), Elsevier, 2007, pp. 3–25.

[176] C. Ellison, G. Roşu, A formal semantics of Cwith applications, Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign,
2010.

[177] C. Ellison, T.F. Şerbănuţă, G. Roşu, A rewriting logic approach to type inference, in Corradini and Montanari [125], pp. 135–151.
[178] S. Escobar, J. Hendrix, C. Meadows, J. Meseguer, Diffie-Hellman cryptographic reasoning in the Maude-NRL Protocol Analyzer, in: M. Nesi, R. Treinen (Eds.),

Proceedings of the Second International Workshop on Security and Rewriting Techniques, SecReT 2007, Paris, France, June 29, 2007, 2007.
[179] S. Escobar, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Narendran, R. Sasse. Protocol analysis in Maude-NPA using unification modulo homomorphic

encryption, in Schneider-Kamp and Hanus [416], pp. 65–76.

[180] S. Escobar, C.Meadows, J.Meseguer, A rewriting-based inference system for theNRLProtocol Analyzer and itsmeta-logical properties, Theoretical Computer
Science 367 (1–2) (2006) 162–202.

[181] S. Escobar, C. Meadows, J. Meseguer, Equational cryptographic reasoning in theMaude-NRL Protocol Analyzer, in:M. Fernández, C. Kirchner (Eds.), Proceed-
ings of the First International Workshop on Security and Rewriting Techniques, SecReT 2006, Venice, Italy, July 15, 2006, Electronic Notes in Theoretical

Computer Science, vol. 171(4), Elsevier, 2007, pp. 23–36.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 775

[182] S. Escobar, C. Meadows, J. Meseguer, State space reduction in the Maude-NRL Protocol Analyzer, in: S. Jajodia, J. López (Eds.), Computer Security – ESORICS
2008, 13th European Symposium on Research in Computer Security, Málaga, Spain, October 6–8, 2008, Proceedings, Lecture Notes in Computer Science,

vol. 5283, Springer, 2008, pp. 548–562.
[183] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: cryptographic protocol analysis modulo equational properties, in: A. Aldini, G. Barthe, R. Gorrieri (Eds.),

Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, Lecture Notes in Computer Science, vol. 5705, Springer, 2009,

pp. 1–50.
[184] S. Escobar, C.Meadows, J.Meseguer, State space reduction in theMaude-NRL protocol analyzer,May 2011. Available from: <http://arxiv.org/abs/1105.5282>.

[185] S. Escobar, C.Meadows, J.Meseguer, S. Santiago, Sequential protocol composition inMaude-NPA, in:D. Gritzalis, B. Preneel,M. Theoharidou (Eds.), Computer
Security – ESORICS 2010, 15th European SymposiumonResearch in Computer Security, Athens, Greece, September 20–22, 2010, Proceedings, Lecture Notes

in Computer Science, vol. 6345, Springer, 2010, pp. 303–318.
[186] S. Escobar, J. Meseguer, Symbolic model checking of infinite-state systems using narrowing, in Baader [35], pp. 153–168.

[187] S. Escobar, J. Meseguer, R. Sasse, Effectively checking the finite variant property, in: A. Voronkov (Ed.), Rewriting Techniques and Applications, 19th

International Conference, RTA 2008, Hagenberg, Austria, July 15–17, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5117, Springer, 2008, pp.
79–93.

[188] S. Escobar, J. Meseguer, P. Thati, Narrowing and rewriting logic: from foundations to applications, in: F.J. López-Fraguas (Ed.), Proceedings of the 15th
Workshop on Functional and (Constraint) Logic Programming,WFLP 2006,Madrid, Spain, November 16–17, 2006, Electronic Notes in Theoretical Computer

Science, vol. 177, Elsevier, 2007, pp. 5–33.
[189] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and optimal variant termination, in Ölveczky [362], pp. 52–68.

[190] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and optimal variant termination, Journal of Logic and Algebraic Programming, this volume.

[191] A. Farzan, F. Chen, J. Meseguer, G. Roşu, Formal analysis of Java programs in JavaFAN, in: R. Alur, D. Peled (Eds.), Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA, USA, July 13–17, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3114, Springer, 2004, pp.

501–505.
[192] A. Farzan, J. Meseguer, State space reduction of rewrite theories using invisible transitions, in Johnson and Vene [247], pp. 142–157.

[193] A. Farzan, J. Meseguer, Partial order reduction for rewriting semantics of programming languages, in Denker and Talcott [139], pp. 61–78.
[194] A. Farzan, J. Meseguer, G. Roşu, Formal JVM code analysis in JavaFAN, in Rattray et al. [389], pp. 132–147.

[195] S. Feferman, Finitary inductively presented logics, in: R. Ferro, et al (Ed.), Logic Colloquium’88, North-Holland, 1989, pp. 191–220.

[196] A. Felty, D. Miller, Encoding a dependent-type λ-calculus in a logic programming language, in: M. Stickel (Ed.), Proceedings of the 10th International
Conference on Automated Deduction, Kaiserslautern, Germany, July 1990, LNCS, vol. 449, Springer-Verlag, 1990, pp. 221–235.

[197] J.L. Fernández Alemán, J.A. Toval Álvarez, Can intuition become rigorous? Foundations for UMLmodel verification tools, in: F.M. Titsworth (Ed.), Proceedings
of the 11th International Symposium on Software Reliability Engineering, ISSRE 2000, San Jose, CA, USA, October 8–11, 2000, IEEE Computer Society, 2000,

pp. 344–355.
[198] O. Fissore, I. Gnaedig, H. Kirchner, System presentation – CARIBOO: an induction based proof tool for termination with strategies, in: C. Kirchner (Ed.),

Proceedings of the 4th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2002, Pittsburgh, PA, USA,
October 6–8, 2002 (affiliated with PLI 2002), ACM, 2002, pp. 62–73.

[199] O. Fissore, I. Gnaedig, H. Kirchner, Simplification and termination of strategies in rule-based languages, in: D. Miller, K. Sagonas (Eds.), Proceedings of the

5th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2003, Uppsala, Sweden, August 27–29, 2003,
ACM, 2003, pp. 124–135.

[200] K. Futatsugi (Ed.), Proceedings of the Third International Workshop on Rewriting Logic and its Applications, WRLA 2000, Kanazawa, Japan, September
18–20, 2000, Electronic Notes in Theoretical Computer Science, vol. 36, Elsevier, 2000.

[201] K. Futatsugi, Verifying specifications with proof scores in CafeOBJ, in: S. Uchitel, S. Easterbrook (Eds.), Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2006, Tokyo, Japan, September 18–22, 2006, IEEE Computer Society, 2006, pp. 3–10.

[202] K. Futatsugi, Fostering proof scores in CafeOBJ, in Dong and Zhu [143], pp. 1–20.

[203] K. Futatsugi, A.T. Nakagawa, T. Tamai (Eds.), Cafe: An Industrial-Strength Algebraic Formal Method, Elsevier, 2000.
[204] D.M. Gabbay, A. Pnueli, A sound and complete deductive system for CTL* verification, Logic Journal of the IGPL 16 (6) (2008) 499–536.

[205] F. Gadducci, U. Montanari (Eds.), Proceedings of the Fourth International Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy,
September 19–21, 2002, Electronic Notes in Theoretical Computer Science, vol. 71, Elsevier, 2004.

[206] P. Gardner, Representing Logics in Type Theory, Ph.D. thesis, Technical report CST-93-92, Department of Computer Science, University of Edinburgh, 1992.
[207] A. Garrido, J. Meseguer, Formal specification and verification of Java refactorings, in: Proceedings of the Sixth IEEE International Workshop on Source Code

Analysis and Manipulation, SCAM 2006, Philadelphia, Pennsylvania, September 27–29, 2006, IEEE, 2006, pp. 165–174.

[208] A. Garrido, J. Meseguer, R. Johnson, Algebraic semantics of the C preprocessor and correctness of its refactorings, Technical report UIUCDCS-R-2006-2688,
Department of Computer Science, University of Illinois at Urbana-Champaign, February 2006.

[209] J. Giesl (Ed.), Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April 19–21, 2005, Proceedings, Lecture Notes in
Computer Science, vol. 3467, Springer, 2005.

[210] J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke, Automated termination proofs with AProVE, in: RTA 2004, LNCS vol. 3091, Springer (2004) 210–220.
[211] P. Glynn, The role of generalized semi-Markov processes in simulation output analysis, 1983.

[212] I. Gnaedig, Induction for positive almost sure termination, in Leuschel and Podelski [284], pp. 167–178.

[213] I. Gnaedig, H. Kirchner, Computing constructor forms with non terminating rewrite programs, in: A. Bossi, M.J. Maher (Eds.), Proceedings of the 8th
International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2006, Venice, Italy, July 10–12, 2006, ACM, 2006, pp.

121–132.
[214] I. Gnaedig, H. Kirchner, Termination of rewriting under strategies, ACM Transactions on Computational Logic 10 (2) (2009).

[215] J. Goguen, OBJ as a theorem prover with application to hardware verification, in: P. Subramanyam, G. Birtwistle (Eds.), Current Trends in Hardware
Verification and Automated Theorem Proving, Springer Verlag, 1989, pp. 218–267.

[216] J. Goguen, R. Burstall, Institutions: abstract model theory for specification and programming, Journal of the ACM 39 (1) (1992) 95–146.

[217] J. Goguen, J. Meseguer, Security policies and security models, in: Proceedings of the 1982 Symposium on Security and Privacy, IEEE, 1982, pp. 11–20.
[218] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, J.-P. Jouannaud, Introducing OBJ, in: Software Engineering with OBJ: Algebraic Specification in Action,

Kluwer (2000) 3–167.
[219] J.A. Goguen, A. Stevens, K. Hobley, H. Hilberdink, 2OBJ: ameta-logical framework based on equational logic, Philosophical Transactions of the Royal Society,

Series A 339 (1992) 69–86.
[220] A. Goodloe, Private communication, May 25, 2011.

[221] A. Goodloe, C.A. Gunter, M.-O. Stehr, Formal prototyping in early stages of protocol design, in: C. Meadows (Ed.), Proceedings of the POPL 2005 Workshop
on Issues in the Theory of Security, WITS 2005, Long Beach, California, USA, January 10–11, 2005, ACM, 2005, pp. 67–80.

[222] A. Goodloe, M. Jacobs, G. Shah, C. Gunter, L3A: a protocol for layer three accounting, in: Proceedings of the First Workshop on Secure Network Protocols,

NPSEC 2005, Boston, Massachusetts, November 6, 2005, IEEE Computer Society, 2005, pp. 1–6.
[223] A. Goodloe,M.McDougall, C.A. Gunter, M.-O. Stehr, Design and analysis of Sectrace: a protocol to set up security associations and policies in ipsec networks,

Technical report, CIS Department, University of Pennsylvania, 2004. Available from: <http://seclab.web.cs.illinois.edu/penn-security-lab>.
[224] C. Grier, S. Tang, S.T. King, Secureweb browsingwith the OPweb browser, in: 2008 IEEE Symposiumon Security and Privacy (S&P 2008), Oakland, California,

May 18–21, 2008, IEEE Computer Society, 2008, pp. 402–416.
[225] R. Gutiérrez, S. Lucas, Proving termination in the context-sensitive dependency pair framework, in Ölveczky [362], pp. 18–34.

http://arxiv.org/abs/1105.5282
http://seclab.web.cs.illinois.edu/penn-security-lab

776 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

[226] S. Gutierrez-Nolasco, N. Venkatasubramanian, M.-O. Stehr, C.L. Talcott, Exploring adaptability of secure group communication using formal prototyping
techniques, in: F. Kon, F.M. Costa, N. Wang, R. Cerqueira (Eds.), Proceedings of the 3rd Workshop on Adaptive and Reflective Middleware, Toronto, Ontario,

Canada, October 19, 2004, ACM, 2004, pp. 232–237.
[227] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects of Computing 6 (5) (1994) 512–535.

[228] N.A. Harman, Correctness and verification of hardware systems using Maude, Technical report 3-2000, Department of Computer Science, University of

Wales Swansea, 2000.
[229] N.A. Harman, Verifying a simple pipelinedmicroprocessor usingMaude, in:M. Cerioli, G. Reggio (Eds.), Recent Trends inAlgebraicDevelopment Techniques,

15th International Workshop, WADT 2001, Joint with the CoFI WG Meeting, Genova, Italy, April 1–3, 2001, Selected Papers, Lecture Notes in Computer
Science, vol. 2267, Springer, 2001, pp. 128–151.

[230] R. Harper, F. Honsell, G. Plotkin, A framework for defining logics, Journal of the Association Computing Machinery 40 (1) (1993) 143–184.
[231] J. Hendrix,DecisionProcedures for Equationally BasedReasoning, Ph.D. thesis, Department of Computer Science,University of Illinois atUrbana-Champaign,

2008. Available from: <http://hdl.handle.net/2142/10967>.

[232] J. Hendrix, M. Clavel, J. Meseguer, A sufficient completeness reasoning tool for partial specifications, in Giesl [209], pp. 165–174.
[233] J. Hendrix, D. Kapur, J. Meseguer, Coverset induction with partiality and subsorts: a powerlist case study, in: M. Kaufmann, L.C. Paulson (Eds.), Interactive

Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11–14, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6172,
Springer, 2010, pp. 275–290.

[234] J. Hendrix, J. Meseguer, On the completeness of context-sensitive order-sorted specifications, in Baader [35], pp. 229–245.
[235] J. Hendrix, J. Meseguer, Order-sorted equational unification revisited, in Kniesel and Pinto [270], pp. 16–29.

[236] J. Hendrix, J. Meseguer, H. Ohsaki, A sufficient completeness checker for linear order-sorted specificationsmodulo axioms, in: U. Furbach, N. Shankar (Eds.),

Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings, Lecture Notes in Computer
Science, vol. 4130, Springer, 2006, pp. 151–155.

[237] J. Hendrix, H. Ohsaki, J.Meseguer, Sufficient completeness checkingwith propositional tree automata, Technical report UIUCDCS-R-2005-2635, Department
of Computer Science, University of Illinois at Urbana-Champaign, 2005.

[238] J. Hendrix, H. Ohsaki, M. Viswanathan, Propositional tree automata, in: F. Pfenning (Ed.), Term Rewriting and Applications, 17th International Conference,
RTA 2006, Seattle, WA, USA, August 12–14, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4098, Springer, 2006, pp. 50–65.

[239] M. Hills, T.B. Aktemur, G. Roşu, An executable semantic definition of the Beta language using rewriting logic, Technical report UIUCDCS-R-2005-2650,

Department of Computer Science, University of Illinois at Urbana-Champaign, 2005.
[240] M. Hills, F. Chen, G. Roşu, A rewriting logic approach to static checking of units of measurement in C, in Kniesel and Pinto [270], pp. 76–91.

[241] M. Hills, G. Roşu, KOOL: an application of rewriting logic to language prototyping and analysis, in Baader [35], pp. 246–256.
[242] M.M. Hölzl, M. Meier, M. Wirsing, Which soft constraints do you prefer? In Roşu [403], pp. 189–205.

[243] J. Hsiang (Ed.), Rewriting Techniques andApplications, 6th International Conference, RTA-95, Kaiserslautern, Germany, April 5–7, 1995, Proceedings, Lecture
Notes in Computer Science, vol. 914, Springer, 1995.

[244] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, Journal of the Association for Computing Machinery 27
(1980) 797–821.

[245] E.B. Johnsen, O. Owe, E.W. Axelsen, A run-time environment for concurrent objects with asynchronous method calls, in Martí-Oliet [297], pp. 375–392.

[246] M. Johnson, D. Pavlovic (Eds.), Algebraic Methodology and Software Technology, 13th International Conference, AMAST 2010, Lac-Beauport, QC, Canada,
June 23–25, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6486, Springer, 2011.

[247] M. Johnson, V. Vene (Eds.), Algebraic Methodology and Software Technology, 11th International Conference, AMAST 2006, Kuressaare, Estonia, July 5–8,
2006, Proceedings, Lecture Notes in Computer Science, vol. 4019, Springer, 2006.

[248] J.-P. Jouannaud, Hélène Kirchner, Completion of a set of rules modulo a set of equations, SIAM Journal of Computing 15 (1986) 1155–1194.
[249] J.-P. Jouannaud, C. Kirchner, H. Kirchner, Incremental construction of unification algorithms in equational theories, in: Proc. ICALP’83, LNCS vol. 154, Springer

(1983) 361–373.

[250] D. Kapur,M. Subramaniam,Mechanical verification of adder circuits using rewrite rule laboratory, FormalMethods in SystemDesign 13 (2) (1998) 127–158.
[251] M. Katelman, AMeta-Language for Functional Verification, Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, 2011.

Available from: <http://hdl.handle.net/2142/29614>.
[252] M. Katelman, S. Keller, J. Meseguer, Concurrent rewriting semantics and analysis of asynchronous digital circuits, in Ölveczky [362], pp. 140–156.

[253] M. Katelman, S. Keller, J. Meseguer, Rewriting semantics of production rule sets, Journal of Logic and Algebraic Programming, this volume.
[254] M. Katelman, J. Meseguer, A rewriting semantics for ABEL with applications to hardware/software co-design and analysis, in Denker and Talcott [139], pp.

47–60.

[255] M. Katelman, J. Meseguer, Using the PALS architecture to verify a distributed topology control protocol for wireless multi-hop networks in the presence of
node failures, in Ölveczky [361], pp. 101–116.

[256] M. Katelman, J. Meseguer, vlogsl: a strategy language for simulation-based verification of hardware, in: S. Barner, I.G. Harris, D. Kroening, O. Raz (Eds.),
Hardware and Software: Verification and Testing – 6th International Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4–7, 2010. Revised

Selected Papers, Lecture Notes in Computer Science, vol. 6504, Springer, 2011, pp. 129–145.
[257] M.Katelman, J.Meseguer, S. Escobar, Directed-logical testing for functional verificationofmicroprocessors, in: S.A. Edwards, K. Schneider (Eds.), Proceedings

of the 6th ACM & IEEE International Conference on Formal Methods and Models for Co-Design, MEMOCODE 2008, Anaheim, CA, USA, June 5–7, 2008, IEEE

Computer Society, 2008, pp. 89–100.
[258] M. Katelman, J. Meseguer, J.C. Hou, Redesign of the LMST wireless sensor protocol through formal modeling and statistical model checking, in Barthe and

de Boer [49], pp. 150–169.
[259] M. Kim, M.-O. Stehr, C.L. Talcott, N. Dutt, N. Venkatasubramanian, Combining formal verification with observed system execution behavior to tune system

parameters, in: J.-F. Raskin, P.S. Thiagarajan (Eds.), FormalModeling and Analysis of Timed Systems, 5th International Conference, FORMATS 2007, Salzburg,
Austria, October 3–5, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4763, Springer, 2007, pp. 257–273.

[260] M. Kim, M.-O. Stehr, C.L. Talcott, N. Dutt, N. Venkatasubramanian, Constraint refinement for online verifiable cross-layer system adaptation, in: Design,

Automation and Test in Europe, DATE 2008, Munich, Germany, March 10–14, 2008, IEEE, 2008, pp. 646–651.
[261] M. Kim, M.-O. Stehr, C.L. Talcott, N.D. Dutt, N. Venkatasubramanian, A probabilistic formal analysis approach to cross layer optimization in distributed

embedded systems, in Bonsangue and Johnsen [59], pp. 285–300.
[262] C. Kirchner, H. Kirchner (Eds.), Proceedings of the Second International Workshop on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson,

France, September 1–4, 1998, Electronic Notes in Theoretical Computer Science, vol. 15, Elsevier, 1998.
[263] C. Kirchner, H. Kirchner, A.S. de Oliveira, Analysis of rewrite-based access control policies, in Dougherty and Escobar [144], pp. 55–75.

[264] H. Kirchner, P.-E. Moreau, Prototyping completion with constraints using computational systems, in Hsiang [243], pp. 438–443.
[265] H. Kirchner, P.-E. Moreau, Promoting rewriting to a programming language: a compiler for non-deterministic rewrite programs in associative-commutative

theories, Journal of Functional Programming 11 (2) (2001) 207–251.

[266] H. Kirchner, C. Ringeissen, Combining symbolic constraint solvers on algebraic domains, Journal of Symbolic Computation 18 (2) (1994) 113–155.
[267] H. Kirchner, C. Ringeissen, Constraint solving by narrowing in combined algebraic domains, in: Proceedings of the 11th International Conference on Logic

Programming, The MIT Press, 1994, pp. 617–631.
[268] A. Knapp, Generating rewrite theories from UML collaborations, in Futatsugi et al. [203], pp. 97–120.

[269] A. Knapp, A Formal Approach to Object-Oriented Software Engineering, Shaker Verlag, Aachen, Germany, 2001, Ph.D. thesis, Institut für Informatik, Uni-
versität München, 2000.

http://hdl.handle.net/2142/10967
http://hdl.handle.net/2142/29614

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 777

[270] G. Kniesel, J.S. Pinto (Eds.), Preliminary Proceedings of the Ninth International Workshop on Rule-Based Programming, RULE 2008, Hagenberg Castle,
Austria, June 18, 2008, 2008, Technical report IAI-TR-08-02, Institut für Informatik III, Rheinische Friedrich-Wilhelm-Universität Bonn.

[271] W. Kolch, Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions, Biochemical Journal 351 (2000) 289–305.
[272] G. Koob, D. Maughan, S. Saydjari (Eds.), Proceedings of the DARPA Information Survivability Conference and Exposition, DISCEX 2000, Hilton Head Island,

South Carolina, January 25–27, 2000, IEEE Computer Society Press, 2000.

[273] P. Kosiuczenko, M. Wirsing, Timed rewriting logic for the specification of time-sensitive systems, in: H. Schwichtenberg (Ed.), Proceedings of the NATO
Advanced Study Institute on Logic of Computation, Held in Marktoberdorf, Germany, July 25–August 6, 1997, NATO ASI Series F: Computer and Systems

Sciences, vol. 157, Springer, 1997, pp. 229–264.
[274] P. Kosiuczenko, M. Wirsing, Timed rewriting logic with an application to object-based specification, Science of Computer Programming 28 (2–3) (1997)

225–246.
[275] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Systems 2 (4) (1990) 255–299.

[276] N. Kumar, K. Sen, J.Meseguer, G. Agha, Probabilistic rewrite theories: unifyingmodels, logics and tools, Technical report UIUCDCS-R-2003-2347, Department

of Computer Science, University of Illinois at Urbana-Champaign, May 2003.
[277] N. Kumar, K. Sen, J. Meseguer, G. Agha, A rewriting based model for probabilistic distributed object systems, in Najm et al. [349], pp. 32–46.

[278] C. Laneve, U. Montanari, Axiomatizing permutation equivalence, Mathematical Structures in Computer Science 6 (3) (1996) 219–249.
[279] F.W. Lawvere, Functorial semantics of algebraic theories, Proceedings, National Academy of Sciences 50 (1963) 869–873, Summary of Ph.D. thesis, Columbia

University.
[280] E.A. Lee, Modeling concurrent real-time processes using discrete events, Annals of Software Engineering 7 (1999) 25–45.

[281] M. LeMay, C.A. Gunter, Cumulative attestation kernels for embedded systems, in Backes and Ning [36], pp. 655–670.

[282] D. Lepri, E. Ábrahám, P. Ölveczky, Timed CTL model checking in Real-Time Maude, in: Proceedings of the WRLA, Springer LNCS, 2012, submitted for
publication.

[283] D. Lepri, P.C. Ölveczky, E. Ábrahám, Model checking classes of metric LTL properties of object-oriented Real-Time Maude specifications, in Ölveczky [361],
pp. 117–136.

[284] M. Leuschel, A. Podelski (Eds.), Proceedings of the 9th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP
2007, Wroclaw, Poland, July 14–16, 2007, ACM, 2007.

[285] E. Lien, Formal Modelling and Analysis of the NORM Multicast Protocol Using Real-Time Maude, Master’s thesis, Department of Linguistics, University of

Oslo, April 2004.
[286] E. Lien, P.C. Ölveczky, Formal modeling and analysis of an IETF multicast protocol, in: D.V. Hung, P. Krishnan (Eds.), Proceedings of the Seventh IEEE

International Conference on Software Engineering and FormalMethods, SEFM 2009, Hanoi, Vietnam, November 23–27, 2009, IEEE Computer Society, 2009,
pp. 273–282.

[287] L. Liquori, B. Wack, The polymorphic rewriting-calculus: [type checking vs. type inference], in Martí-Oliet [297], pp. 89–111.
[288] D. Lucanu, Strategy-based rewrite semantics for membrane systems preserves maximal concurrency of evolution rule actions, in: A. Middeldorp (Ed.),

Proceedings of the Eighth International Workshop on Reduction Strategies in Rewriting and Programming, WRS 2008, Castle of Hagenberg, Austria, July
14, 2008, Electronic Notes in Theoretical Computer Science, vol. 237, Elsevier, 2009, pp. 107–125.

[289] S. Lucas, Context-sensitive computations in functional and functional logic programs, Journal of Functional and Logic Programming 1998 (1) (1998).

[290] S. Lucas, Context-sensitive rewriting strategies, Information and Computation 178 (1) (2002) 294–343.
[291] S. Lucas, C. Marché, J. Meseguer, Operational termination of conditional term rewriting systems, Information Processing Letters 95 (4) (2005) 446–453.

[292] S. Lucas, J. Meseguer, Order-sorted dependency pairs, in: S. Antoy, E. Albert (Eds.), Proceedings of the 10th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, PPDP 2008, Valencia, Spain, July 15–17, 2008, ACM, 2008, pp. 108–119.

[293] S. Lucas, J. Meseguer, Termination of just/fair computations in term rewriting, Information and Computation 206 (5) (2008) 652–675.
[294] S. Lucas, J. Meseguer, Operational termination of membership equational programs: the order-sorted way, in Roşu [403], pp. 207–225.

[295] P. Manolios, A compositional theory of refinement for branching time, in: CHARME 2003, Lecture Notes in Computer Science vol. 2860, Springer (2003)

304–318.
[296] C. Marché, X. Urbain, Modular and incremental proofs of AC-termination, Journal of Symbolic Computation 38 (1) (2004) 873–897.

[297] N.Martí-Oliet (Ed.), Proceedings of the Fifth InternationalWorkshop on Rewriting Logic and its Applications,WRLA 2004, Barcelona, Spain,March 27–April
4, 2004, Electronic Notes in Theoretical Computer Science, vol. 117, Elsevier, 2004.

[298] N. Martí-Oliet, J. Meseguer, General logics and logical frameworks, in: D.M. Gabbay (Ed.), What is a Logical System?, Studies in Logic and Computation, vol.
4, Oxford University Press, 1994, pp. 355–392.

[299] N.Martí-Oliet, J.Meseguer, Action and change in rewriting logic, in: R. Pareschi, B. Fronhöfer (Eds.), DynamicWorlds: From the FrameProblem toKnowledge

Management, Applied Logic Series, vol. 2, Kluwer Academic Publishers, 1999, pp. 1–53.
[300] N. Martí-Oliet, J. Meseguer, Rewriting logic as a logical and semantic framework, in: D.M. Gabbay, F. Guenthner (Eds.), Handbook of Philosophical Logic,

vol. 9, second ed., Kluwer Academic Publishers., 2002, pp. 1–87.
[301] N. Martí-Oliet, J. Meseguer, Rewriting logic: roadmap and bibliography, Theoretical Computer Science 285 (2) (2002) 121–154.

[302] N. Martí-Oliet, J. Meseguer, M. Palomino, Theoroidal maps as algebraic simulations, in: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Recent Trends in Algebraic
Development Techniques, 17th International Workshop, WADT 2004, Barcelona, Spain, March 27–29, 2004, Revised Selected Papers, Lecture Notes in

Computer Science, vol. 3423, Springer, 2004, pp. 126–143.

[303] N. Martí-Oliet, J. Meseguer, A. Verdejo, A rewriting semantics for Maude strategies, in Roşu [403], pp. 227–247.
[304] I.A. Mason, C.L. Talcott, Simple network protocol simulation within Maude, in Futatsugi [200], pp. 274–291.

[305] S. Matthews, A. Smaill, D. Basin, Experience with FS0 as a framework theory, in: G. Huet, G. Plotkin (Eds.), Logical Environments, Cambridge University
Press, 1993, pp. 61–82.

[306] C. Meadows, The NRL protocol analyzer: an overview, Journal of Logic Programming 26 (2) (1996) 113–131.
[307] P. Meredith, M. Hills, G. Roşu, An executable rewriting logic semantics of K-Scheme, in: D. Dube (Ed.), Proceedings of the 2007 Workshop on Scheme and

Functional Programming, SCHEME 2007, Freiburg, Germany, September 30, 2007, Laval University, 2007, pp. 91–103.

[308] P. Meredith, M. Hills, G. Roşu, A K definition of Scheme, Technical report UIUCDCS-R-2007-2907, Department of Computer Science, University of Illinois at
Urbana-Champaign, 2007.

[309] P. Meredith, M. Katelman, J. Meseguer, G. Roşu, A formal executable semantics of Verilog, in: B. Jobstmann, L. Carloni (Eds.), Proceedings of the Eighth
ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2010, Grenoble, France, July 26–28, 2010, IEEE Computer

Society, 2010, pp. 179–188.
[310] J. Meseguer, General logics, in: H.-D. Ebbinghaus et al. (Eds.), Logic Colloquium’87, North-Holland, 1989, pp. 275–329.

[311] J. Meseguer, A logical theory of concurrent objects, in: N. Meyrowitz (Ed.), Proceedings of the ECOOP-OOPSLA’90 Conference on Object-Oriented Program-
ming, Ottawa, Canada, October 21–25, 1990, ACM Press, 1990, pp. 101–115.

[312] J.Meseguer, Rewriting as a unifiedmodel of concurrency, in: J.C.M. Baeten, J.W. Klop (Eds.), CONCUR ’90, Theories of Concurrency: Unification and Extension,

Amsterdam, The Netherlands, August 27–30, 1990, Proceedings, Lecture Notes in Computer Science, vol. 458, Springer, 1990, pp. 384–400.
[313] J. Meseguer, Rewriting as a unified model of concurrency, Technical report SRI-CSL-90-02, SRI International, Computer Science Laboratory, February 1990,

Revised June 1990.
[314] J. Meseguer, Conditional rewriting logic: deduction, models and concurrency, in: S. Kaplan, M. Okada (Eds.), Conditional and Typed Rewriting Systems, 2nd

International CTRS Workshop, Montreal, Canada, June 11–14, 1990, Proceedings, Lecture Notes in Computer Science, vol. 516, Springer, 1991, pp. 64–91.
[315] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical Computer Science 96 (1) (1992) 73–155.

778 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

[316] J. Meseguer, A logical theory of concurrent objects and its realization in theMaude language, in: G. Agha, P.Wegner, A. Yonezawa (Eds.), Research Directions
in Concurrent Object-Oriented Programming, The MIT Press, 1993, pp. 314–390.

[317] J. Meseguer (Ed.), Proceedings of the First International Workshop on Rewriting Logic and its Applications, WRLA’96, Asilomar, California, September 3–6,
1996, Electronic Notes in Theoretical Computer Science, vol. 4, Elsevier, 1996.

[318] J. Meseguer, Rewriting logic as a semantic framework for concurrency: a progress report, in: U. Montanari, V. Sassone (Eds.), CONCUR ’96, Concurrency

Theory, 7th International Conference, Pisa, Italy, August 26–29, 1996, Proceedings, LectureNotes in Computer Science, vol. 1119, Springer, 1996, pp. 331–372.
[319] J. Meseguer, Membership algebra as a logical framework for equational specification, in Parisi-Presicce [378], pp. 18–61.

[320] J. Meseguer, Rewriting logic and Maude: a wide-spectrum semantic framework for object-based distributed systems, in: S.F. Smith, C.L. Talcott (Eds.),
Formal Methods for Open Object-Based Distributed Systems IV, IFIP TC6/WG6.1 Fourth International Conference on Formal Methods for Open Object-

Based Distributed Systems, FMOODS 2000, Stanford, California, USA, September 6–8, 2000, Proceedings, IFIP Conference Proceedings, vol. 177, Kluwer,
2000, pp. 89–117.

[321] J. Meseguer, Rewriting logic and Maude: concepts and applications, in: L. Bachmair (Ed.), Rewriting Techniques and Applications, 11th International

Conference, RTA 2000, Norwich, UK, July 10–12, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1833, Springer, 2000, pp. 1–26.
[322] J.Meseguer, Functorial semantics of rewrite theories, in:H.-J. Kreowski, U.Montanari, F. Orejas, G. Rozenberg, G. Taentzer (Eds.), FormalMethods in Software

and Systems Modeling, Essays Dedicated to Hartmut Ehrig on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, vol. 3393, Springer,
2005, pp. 220–235.

[323] J. Meseguer, Localized fairness: a rewriting semantics, in Giesl [209], pp. 250–263.
[324] J. Meseguer, A rewriting logic sampler, in: D.V. Hung, M. Wirsing (Eds.), Theoretical Aspects of Computing – ICTAC 2005, Second International Colloquium,

Hanoi, Vietnam, October 17–21, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3722, Springer, 2005, pp. 1–28.

[325] J. Meseguer, The temporal logic of rewriting: a gentle introduction, in: P. Degano, R.D. Nicola, J. Meseguer (Eds.), Concurrency, Graphs and Models, Essays
Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in Computer Science, vol. 5065, Springer, 2008, pp. 354–382.

[326] J. Meseguer, K. Futatsugi, T. Winkler, Using rewriting logic to specify, program, integrate, and reuse open concurrent systems of cooperating agents, in:
Proceedings of the 1992 International Symposium on NewModels for Software Architecture, Tokyo, Japan, November 1992, Research Institute of Software

Engineering, 1992, pp. 61–106.
[327] J. Meseguer, N. Martí-Oliet, From abstract data types to logical frameworks, in: E. Astesiano, G. Reggio, A. Tarlecki (Eds.), Recent Trends in Data Type

Specification, 10th Workshop on Specification of Abstract Data Types Joint with the 5th COMPASS Workshop, S. Margherita, Italy, May 30–June 3, 1994,

Selected Papers, Lecture Notes in Computer Science, vol. 906, Springer, 1995, pp. 48–80.
[328] J. Meseguer, U. Montanari, Mapping tile logic into rewriting logic, in Parisi-Presicce [378], pp. 62–91.

[329] J. Meseguer, P.C. Ölveczky, Formalization and correctness of the PALS architectural pattern for distributed real-time systems, in Dong and Zhu [143], pp.
303–320.

[330] J. Meseguer, P.C. Ölveczky, Formalization and correctness of the PALS architectural pattern for distributed real-time systems, Technical report, Department
of Computer Science, University of Illinois at Urbana-Champaign, 2010.

[331] J. Meseguer, M. Palomino, N. Martí-Oliet, Equational abstractions, Theoretical Computer Science 403 (2–3) (2008) 239–264.
[332] J. Meseguer, M. Palomino, N. Martí-Oliet, Algebraic simulations, Journal of Logic and Algebraic Programming 79 (2) (2010) 103–143.

[333] J. Meseguer, G. Roşu, Rewriting logic semantics: from language specifications to formal analysis tools, in: D. Basin, M. Rusinowitch (Eds.), Automated

Reasoning – Second International Joint Conference, IJCAR 2004, Cork, Ireland, July 4–8, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3097,
Springer, 2004, pp. 1–44.

[334] J. Meseguer, G. Roşu, The rewriting logic semantics project, Theoretical Computer Science 373 (3) (2007) 213–237.
[335] J. Meseguer, G. Roşu, The rewriting logic semantics project: a progress report, in: O. Owe, M. Steffen, J.A. Telle (Eds.), Fundamentals of Computation Theory

– 18th International Symposium, FCT 2011, Oslo, Norway, August 22–25, 2011, Proceedings, Lecture Notes in Computer Science, vol. 6914, Springer, 2011,
pp. 1–37.

[336] J.Meseguer, R. Sharykin, Specification and analysis of distributed object-based stochastic hybrid systems, in: J.P. Hespanha, A. Tiwari (Eds.), Hybrid Systems:

Computation and Control, 9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29–31, 2006, Proceedings, Lecture Notes in Computer
Science, vol. 3927, Springer, 2006, pp. 460–475.

[337] J. Meseguer, C.L. Talcott, A partial order event model for concurrent objects, in: J.C.M. Baeten, S. Mauw (Eds.), CONCUR’99: Concurrency Theory, 10th
International Conference, Eindhoven, The Netherlands, August 24–27, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1664, Springer, 1999, pp.

415–430.
[338] J. Meseguer, C.L. Talcott, Semantic models for distributed object reflection, in: B. Magnusson (Ed.), ECOOP 2002 – Object-Oriented Programming, 16th

European Conference, Malaga, Spain, June 10–14, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2374, Springer, 2002, pp. 1–36.

[339] J. Meseguer, P. Thati, Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols, in Martí-Oliet [297], pp.
153–182.

[340] J. Meseguer, P. Thati, Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols, Higher-Order and
Symbolic Computation 20 (1–2) (2007) 123–160.

[341] S. Miller, D. Cofer, L. Sha, J. Meseguer, A. Al-Nayeem, Implementing logical synchrony in integrated modular avionics, in: Proceedings of the 28th Digital
Avionics Systems Conference, IEEE, 2009.

[342] J. Misra, Computation orchestration: a basis for wide-area computing, in: M. Broy (Ed.), Proceedings of the NATO Advanced Study Institute, Engineering

Theories of Software Intensive Systems Marktoberdorf, Germany, 2004, NATO ASI Series, 2004.
[343] J. Misra, W.R. Cook, Computation orchestration, Software and System Modeling 6 (1) (2007) 83–110.

[344] H. Miyoshi, Modelling conditional rewriting logic in structured categories, in Meseguer [317], pp. 20–34.
[345] F. Mokhati, M. Badri, Generating Maude specifications from UML use case diagrams, Journal of Object Technology 8 (2) (2009) 136–319.

[346] F.Mokhati, P. Gagnon,M. Badri, VerifyingUMLdiagramswithmodel checking: a rewriting logic based approach, in:A.Mathur,W.E.Wong (Eds.), Proceedings
of the Seventh International Conference on Quality Software, QSIC 2007, Portland, Oregon, USA, October 11–12, 2007, IEEE Computer Society, 2007, pp.

356–362.

[347] F. Mokhati, B. Sahraoui, S. Bouzaher, M.T. Kimour, A tool for specifying and validating agents’ interaction protocols: from Agent UML to Maude, Journal of
Object Technology 9 (3) (2010) 59–77.

[348] G. Nadathur, D.Miller, An overview ofλProlog, in: K. Bowen, R. Kowalski (Eds.), Fifth International Joint Conference and Symposiumon Logic Programming,
The MIT Press, 1988, pp. 810–827.

[349] E. Najm, U. Nestmann, P. Stevens (Eds.), Formal Methods for Open Object-Based Distributed Systems, 6th IFIP WG 6.1 International Conference, FMOODS
2003, Paris, France, November 19–21, 2003, Proceedings, Lecture Notes in Computer Science, vol. 2884, Springer, 2003.

[350] E. Najm, J.-B. Stefani, A formal semantics for the ODP computational model, Computer Networks and ISDN Systems 27 (8) (1995) 1305–1329.
[351] S. Nakajima, Using algebraic specification techniques in development of object-oriented frameworks, in Wing et al. [471], pp. 1664–1683.

[352] S. Nakajima, K. Futatsugi, An object-orientedmodelingmethod for algebraic specifications in CafeOBJ, in: Proceedings of the 19th International Conference

on Software Engineering, ICSE’97, Boston, Massachussets, May 17–23, 1997, ACM Press, 1997.
[353] P. Naumov, M.-O. Stehr, J. Meseguer, The HOL/NuPRL proof translator (a practical approach to formal interoperability), in: R.J. Boulton, P.B. Jackson (Eds.),

Theorem Proving in Higher Order Logics, 14th International Conference, TPHOLs 2001, Edinburgh, Scotland, UK, September 3–6, 2001, Proceedings, Lecture
Notes in Computer Science, vol. 2152, Springer, 2001, pp. 329–345.

[354] Q.H. Nguyen, C. Kirchner, H. Kirchner, External rewriting for skeptical proof assistants, Journal of Automated Reasoning 29 (3–4) (2002) 309–336.
[355] R. Nieuwenhuis (Ed.), Rewriting Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9–11, 2003, Proceedings,

Lecture Notes in Computer Science, vol. 2706, Springer, 2003.

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 779

[356] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T),
Journal of the ACM 53 (6) (2006) 937–977.

[357] K. Ogata, K. Futatsugi, Proof scores in the OTS/CafeOBJ method, in Najm et al. [349], pp. 170–184.
[358] E. Ohlebusch, Advanced Topics in Term Rewriting, Springer Verlag, 2002.

[359] P.C. Ölveczky, Specification and Analysis of Real-Time and Hybrid Systems in Rewriting Logic, Ph.D. thesis, University of Bergen, Norway, 2000.

[360] P.C. Ölveczky, Towards formal modeling and analysis of networks of embedded medical devices in Real-Time Maude, in: P. Muenchaisri (Ed.), Proceedings
of the Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2008,

Phuket, Thailand, August 6–8, 2008, IEEE Computer Society, 2008, pp. 241–248.
[361] P.C.Ölveczky (Ed.), Proceedingsof the First InternationalWorkshoponRewritingTechniques forReal-TimeSystems, RTRTS2010, Longyearbyen, Spitsbergen,

Norway, April 6–9, 2010, Electronic Proceedings in Theoretical Computer Science, vol. 36, Computing Research Repository (CoRR), 2010.
[362] P.C. Ölveczky (Ed.), Rewriting Logic and its Applications. 8th International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos, Cyprus,

March 20–21, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6381, Springer, 2010.

[363] P.C. Ölveczky, A. Boronat, J. Meseguer, Formal semantics and analysis of behavioral AADL models in Real-Time Maude, in: J. Hatcliff, E. Zucca (Eds.), Formal
Techniques for Distributed Systems, Joint 12th IFIP WG 6.1 International Conference, FMOODS 2010 and 30th IFIP WG 6.1 International Conference, FORTE

2010, Amsterdam, The Netherlands, June 7–9, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6117, Springer, 2010, pp. 47–62.
[364] P.C. Ölveczky,M. Caccamo, Formal simulation and analysis of the CASH scheduling algorithm inReal-TimeMaude, in: L. Baresi, R. Heckel (Eds.), Fundamental

Approaches to Software Engineering, 9th International Conference, FASE 2006, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March 27–28, 2006, Proceedings, Lecture Notes in Computer Science, vol. 3922, Springer, 2006, pp. 357–372.

[365] P.C. Ölveczky, M. Keaton, J. Meseguer, C.L. Talcott, S. Zabele, Specification and analysis of the AER/NCA active network protocol suite in Real-Time Maude,

in: H. Hußmann (Ed.), Fundamental Approaches to Software Engineering, 4th International Conference, FASE 2001, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001, Genova, Italy, April 2–6, 2001, Proceedings, Lecture Notes in Computer Science, vol. 2029,

Springer, 2001, pp. 333–348.
[366] P.C. Ölveczky, P. Kosiuczenko, M. Wirsing, An object-oriented algebraic steam-boiler control specification, in: J.-R. Abrial, E. Börger, H. Langmaack (Eds.),

Formal Methods for Industrial Applications, Specifying and Programming the Steam Boiler Control, Lecture Notes in Computer Science, vol. 1165, Springer,
1996, pp. 379–402.

[367] P.C. Ölveczky, J. Meseguer, Specifying real-time systems in rewriting logic, in Meseguer [317], pp. 284–309.

[368] P.C. Ölveczky, J. Meseguer, Specification of real-time and hybrid systems in rewriting logic, Theoretical Computer Science 285 (2) (2002) 359–405.
[369] P.C. Ölveczky, J. Meseguer, Real-Time Maude 2.1, in Martí-Oliet [297], pp. 285–314.

[370] P.C. Ölveczky, J. Meseguer, Abstraction and completeness for Real-Time Maude, in Denker and Talcott [139], pp. 5–27.
[371] P.C. Ölveczky, J. Meseguer, Semantics and pragmatics of Real-Time Maude, Higher-Order and Symbolic Computation 20 (1–2) (2007) 161–196.

[372] P.C. Ölveczky, J. Meseguer, Specification and verification of distributed embedded systems: a traffic intersection product family, in Ölveczky [361], pp.
137–157.

[373] P.C. Ölveczky, J. Meseguer, C.L. Talcott, Specification and analysis of the AER/NCA active network protocol suite in Real-Time Maude, Formal Methods in
System Design 29 (3) (2006) 253–293.

[374] P.C. Ölveczky, P. Prabhakar, X. Liu, Formal modeling and analysis of real-time resource-sharing protocols in Real-Time Maude, in: Y. Robert (Ed.), 22nd IEEE

International Symposium on Parallel and Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14–18, 2008, IEEE, 2008, pp. 1–8.
[375] P.C. Ölveczky, S. Thorvaldsen, Formalmodeling and analysis of the OGDCwireless sensor network algorithm in Real-TimeMaude, in Bonsangue and Johnsen

[59], pp. 122–140.
[376] P.C. Ölveczky, S. Thorvaldsen, Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude,

Theoretical Computer Science 410 (2–3) (2009) 254–280.
[377] M.Palomino, J.Meseguer,N.Martí-Oliet, A categorical approach to simulations, in: J.L. Fiadeiro,N.Harman,M.Roggenbach, J.J.M.M.Rutten (Eds.), Algebraand

Coalgebra in Computer Science: First International Conference, CALCO 2005, Swansea, UK, September 3–6, 2005, Proceedings, Lecture Notes in Computer

Science, vol. 3629, Springer, 2005, pp. 313–330.
[378] F. Parisi-Presicce (Ed.), Recent Trends inAlgebraicDevelopment Techniques, 12th InternationalWorkshop,WADT’97, Tarquinia, Italy, June3–7, 1997, Selected

Papers, Lecture Notes in Computer Science, vol. 1376, Springer, 1997.
[379] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, R.K. Iyer, SymPLFIED: symbolic program-level fault injection and error detection framework, in: Proceedings

of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, Anchorage, Alaska, USA, June 24–27, 2008, IEEE
Computer Society, 2008, pp. 472–481.

[380] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, R.K. Iyer, Discovering application-level insider attacks using symbolic execution, in: D. Gritzalis, J. Lopez (Eds.),

Emerging Challenges for Security, Privacy and Trust, 24th IFIP TC 11 International Information Security Conference, SEC 2009, Pafos, Cyprus, May 18–20,
2009, Proceedings, IFIP Advances in Information and Communication Technology, vol. 297, Springer, 2009, pp. 63–75.

[381] L.C. Paulson, Isabelle, Lecture Notes in Computer Science, vol. 828, Springer Verlag, 1994.
[382] G. Paun (Ed.), Membrane Computing. An Introduction, Springer, 2002.

[383] G.E. Peterson, M.E. Stickel, Complete sets of reductions for some equational theories, Journal of the Association for Computing Machinery 28 (2) (1981)
233–264.

[384] F. Pfenning, Elf: a language for logic definition and verifiedmetaprogramming, in: Proceedings of the Fourth Annual IEEE Symposium on Logic in Computer

Science, Asilomar, California, June 1989, pp. 313–322.
[385] A. Pnueli, Deduction is forever, invited talk at FM’99, 1999. Avaliable from: <http://cs.nyu.edu/pnueli/fm99.ps>.

[386] S. Porat, N. Francez, Fairness in term rewriting systems, in: RTA’85, LNCS vol. 202, Springer (1985) 287–300.
[387] S. Porat, N. Francez, Full-commutation and fair-termination in equational (and combined) term-rewriting systems, in: CADE’86, LNCS vol. 230, Springer

(1986) 21–41.
[388] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley and Sons, 1994.

[389] C. Rattray, S. Maharaj, C. Shankland (Eds.), AlgebraicMethodology and Software Technology, 10th International Conference, AMAST 2004, Stirling, Scotland,

UK, July 12–16, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3116, Springer, 2004.
[390] S. Reich, Implementing and Extending theMSRCrypto-Protocol Specification Language,Master’s thesis, Fachbereich Informatik, Universität Hamburg, April

2006.
[391] A. Riesco, A. Verdejo, Implementing and analyzing in Maude the Enhanced Interior Gateway Routing Protocol, in Roşu [403], pp. 249–266.

[392] A. Riesco, A. Verdejo, N. Martí-Oliet, R. Caballero, Declarative debugging of rewriting logic specifications, Journal of Logic and Algebraic Programming, this
volume.

[393] J.E. Rivera, F. Durán, A. Vallecillo, A graphical approach for modeling time-dependent behavior of DSLs, in: R. DeLine, M. Minas (Eds.), Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2009, Corvallis, OR, USA, September 20–24, 2009, IEEE, 2009, pp. 51–55.

[394] J.E. Rivera, F. Durán, A. Vallecillo, On the behavioral semantics of real-time domain specific visual languages, in Ölveczky [362], pp. 174–190.

[395] C. Rocha, J. Meseguer, A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements, Revista Colombiana de Computación 8 (2)
(2007).

[396] C. Rocha, J. Meseguer, Theorem proving modulo based on Boolean equational procedures, in: R. Berghammer, B. Möller, G. Struth (Eds.), Relations and
Kleene Algebra in Computer Science, 10th International Conference on Relational Methods in Computer Science, and 5th International Conference on

Applications of Kleene Algebra, RelMiCS/AKA 2008, Frauenwörth, Germany, April 7–11, 2008, Proceedings, Lecture Notes in Computer Science, vol. 4988,
Springer, 2008, pp. 337–351.

http://cs.nyu.edu/pnueli/fm99.ps

780 J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781

[397] C. Rocha, J. Meseguer, Constructors, sufficient completeness and deadlock freedom of rewrite theories, in: C.G. Fermüller, A. Voronkov (Eds.), Logic for
Programming, Artificial Intelligence, and Reasoning, 17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10–15, 2010, Proceedings,

Lecture Notes in Computer Science, vol. 6397, Springer, 2010, pp. 594–609.
[398] C. Rocha, J. Meseguer, Proving safety properties of rewrite theories, in Corradini et al. [124], pp. 314–328.

[399] C. Rocha, C. Muñoz, H. Cadavid, A graphical environment for the semantic validation of a plan execution language, in: S. Grenander, L. Bergman (Eds.),

Proceedings of the Third IEEE International Conference on Space Mission Challenges for Information Technology, SMC-IT 2009, Pasadena, California, USA,
July 19–23, 2009, IEEE Computer Society, Los Alamitos, CA, USA, 2009, pp. 201–207.

[400] D.E. Rodríguez, Case studies in the specification and analysis of protocols in Maude, in Futatsugi [200], pp. 257–273.
[401] D.E. Rodríguez, A secret-sharing protocol modelled in Maude, in Gadducci and Montanari [205], pp. 223–239.

[402] J.R. Romero, A. Vallecillo, F. Durán, Writing and executing ODP computational viewpoint specifications using Maude, Computer Standards & Interfaces 29
(4) (2007) 481–498.

[403] G. Roşu (Ed.), Proceedings of the Seventh International Workshop on Rewriting Logic and its Applications, WRLA 2008, Budapest, Hungary, March 29–30,

2008, Electronic Notes in Theoretical Computer Science, vol. 238(3), Elsevier, 2009.
[404] G. Roşu, A. Ştefănescu, Matching logic: a new program verification approach (new ideas and emerging results track), in: R.N. Taylor, H. Gall, N. Medvidovic

(Eds.), Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21–28, 2011, ACM, 2011, pp.
868–871.

[405] G. Roşu, S. Eker, P. Lincoln, J. Meseguer, Certifying and synthesizing membership equational proofs, in: K. Araki, S. Gnesi, D. Mandrioli (Eds.), FME 2003:
Formal Methods, International Symposium of Formal Methods Europe, Pisa, Italy, September 8–14, 2003, Proceedings, Lecture Notes in Computer Science,

vol. 2805, Springer, 2003, pp. 359–380.

[406] G. Roşu, C. Ellison, W. Schulte, Matching logic: an alternative to Hoare/Floyd logic, in Johnson and Pavlovic [246], pp. 142–162.
[407] G. Roşu, W. Schulte, T.F. Şerbănuţă, Runtime verification of C memory safety, in: S. Bensalem, D. Peled (Eds.), Runtime Verification, 9th International

Workshop, RV 2009, Grenoble, France, June 26–28, 2009, Selected Papers, Lecture Notes in Computer Science, vol. 5779, Springer, 2009, pp. 132–151.
[408] G. Roşu, T.F. Şerbănuţă, An overview of the K semantic framework, Journal of Logic and Algebraic Programming 79 (6) (2010) 397–434.

[409] V. Rusu, Combining theorem proving and narrowing for rewriting-logic specifications, in: G. Fraser, A. Gargantini (Eds.), Tests and Proofs, 4th International
Conference, TAP 2010, Málaga, Spain, July 1–2, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6143, Springer, 2010, pp. 135–150.

[410] V. Rusu, M. Clavel, Vérification d’invariants pour des systèmes spécifiés en logique de réécriture, in: A. Schmitt (Ed.), JFLA 2009, Vingtièmes Journées

Francophones des Langages Applicatifs, Saint Quentin sur Isère, France, January 31–February 3, 2009, Proceedings, Studia Informatica Universalis, vol. 7.2,
2009, pp. 317–350.

[411] G. Santos-García,M. Palomino, A. Verdejo, Rewriting logic using strategies for neural networks: an implementation inMaude, in: J.M. Corchado, S. Rodríguez,
J. Llinas, J.M. Molina (Eds.), Proceedings of the International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2008, University of

Salamanca, Spain, October 22–24, 2008, Advances in Soft Computing, vol. 50, Springer, 2009, pp. 424–433.
[412] R. Sasse, S. Escobar, C.Meadows, J. Meseguer, Protocol analysismodulo combination of theories: a case study inMaude-NPA, in: J. Cuéllar, J. Lopez, G. Barthe,

A. Pretschner (Eds.), Security and Trust Management – 6th International Workshop, STM 2010, Athens, Greece, September 23–24, 2010, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 6710, Springer, 2011, pp. 163–178.

[413] R. Sasse, J. Meseguer, Java+ITP: a verification tool based on Hoare logic and algebraic semantics, in Denker and Talcott [139], pp. 29–46.

[414] F. Schernhammer, B. Gramlich, Characterizing and proving operational termination of deterministic conditional term rewriting systems, Journal of Logic
and Algebraic Programming 79 (7) (2010) 659–688.

[415] F. Schernhammer, J. Meseguer, Incremental checking of well-founded recursive specifications modulo axioms, in Schneider-Kamp and Hanus [416], pp.
5–16.

[416] P. Schneider-Kamp,M.Hanus (Eds.), Proceedingsof the13th InternationalACMSIGPLANSymposiumonPrinciples andPracticesofDeclarativeProgramming,
PPDP 2011, Odense, Denmark, July 20–22, 2011, ACM, 2011.

[417] C. Schürmann, M.-O. Stehr, An executable formalization of the HOL/Nuprl connection in the metalogical framework Twelf, in: M. Hermann, A. Voronkov

(Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, 13th International Conference, LPAR 2006, Phnom Penh, Cambodia, November 13–17,
2006, Proceedings, Lecture Notes in Computer Science, vol. 4246, Springer, 2006, pp. 150–166.

[418] R. Segala, Modelling and Verification of Randomized Distributed Real Time Systems, Ph.D. thesis, Massachusetts Institute of Technology, 1995.
[419] K. Sen, M. Viswanathan, G. Agha, On statistical model checking of stochastic systems, in: 17th conference on Computer Aided Verification (CAV’05), LNCS

vol. 3576, Springer, Edinburgh, Scotland (2005) 266–280.
[420] K. Sen, M. Viswanathan, G.A. Agha, VESTA: a statistical model-checker and analyzer for probabilistic systems, in: QEST 2005, 2005, pp. 251–252.

[421] T.F. Şerbănuţă, ARewritingApproach toConcurrent ProgrammingLanguageDesignandSemantics, Ph.D. thesis, Departmentof Computer Science,University

of Illinois at Urbana-Champaign, 2010. Available from: <http://hdl.handle.net/2142/18252>.
[422] T.F. Şerbănuţă, G. Roşu, K-Maude: a rewriting based tool for semantics of programming languages, in Ölveczky [362], pp. 104–122.

[423] T.F. Şerbănuţă, G. Roşu, J. Meseguer, A rewriting logic approach to operational semantics, Information and Computation 207 (2) (2009) 305–340.
[424] R. Shankesi, M. AlTurki, R. Sasse, C.A. Gunter, J. Meseguer, Model-checking DoS amplification for VoIP session initiation, in Backes and Ning [36], pp.

390–405.
[425] R.M. Smullyan, Theory of Formal Systems, Annals of Mathematics Studies, vol. 47, Princeton University Press, 1961.

[426] M.G. Sriram, Modelling protein functional domains in signal transduction using Maude, Briefings in Bioinformatics 4 (3) (2003) 236–245.

[427] J.R. Stanton, Y. Amir, D. Hasse, G. Ateniese, Y. Kim, C. Nita-Rotaru, T. Schlossnagle, J.L. Schultz, G. Tsudik, Secure group communication in asynchronous
networks with failures: Integration and experiments, in: ICDCS, 2000, pp. 330–343.

[428] V. Stavridou, J.A. Goguen, A. Stevens, S.M. Eker, S.N. Aloneftis, K.M. Hobley, Funnel and 2obj: towards an integrated hardware design environment, in:
Theorem Provers in Circuit Design (TPDC), Proceedings of the IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit Design: Theory,

Practice and Experience, IFIP Transactions, vol. A-10, North-Holland, 1992, pp. 197–223.
[429] L.J. Steggles, P. Kosiuczenko, A timed rewriting logic semantics for SDL: a case study of the alternating bit protocol, in Kirchner and Kirchner [262], pp.

83–104.

[430] M.-O. Stehr, CINNI — a generic calculus of explicit substitutions and its application to λ-, ς- and π-calculi, in Futatsugi [200], pp. 70–92.
[431] M.-O. Stehr, Programming, Specification, and Interactive Theorem Proving — Towards a Unified Language based on Equational Logic, Rewriting Logic, and

Type Theory, Ph.D. thesis, Fachbereich Informatik, Universität Hamburg, 2002.
[432] M.-O. Stehr, The open calculus of constructions (part I): an equational type theory with dependent types for programming, specification, and interactive

theorem proving, Fundamenta Informaticae 68 (1–2) (2005) 131–174.
[433] M.-O. Stehr, The open calculus of constructions (part II): an equational type theory with dependent types for programming, specification, and interactive

theorem proving, Fundamenta Informaticae 68 (3) (2005) 249–288.
[434] M.-O. Stehr, J. Meseguer, Pure type systems in rewriting logic: specifying typed higher-order languages in a first-order logical framework, in: O. Owe, S.

Krogdahl, T. Lyche (Eds.), From Object-Orientation to Formal Methods, Essays in Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, vol. 2635,

Springer, 2004, pp. 334–375.
[435] M.-O. Stehr, J. Meseguer, P.C. Ölveczky, Rewriting logic as a unifying framework for Petri nets, in: H. Ehrig, G. Juhás, J. Padberg, G. Rozenberg (Eds.), Unifying

Petri Nets, Advances in Petri Nets, Lecture Notes in Computer Science, vol. 2128, Springer, 2001, pp. 250–303.
[436] J.G. Stell, Modelling term rewriting systems by sesqui-categories, Technical report TR94-02, Keele University, 1994.

[437] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton, 1994.
[438] M. Sun, J. Meseguer, Distributed real-time emulation of formally-defined patterns for safe medical device control, in Ölveczky [361], pp. 158–177.

[439] M. Sun, J. Meseguer, L. Sha, A formal pattern architecture for safe medical systems, in Ölveczky [362], pp. 157–173.

http://hdl.handle.net/2142/18252

J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 721–781 781

[440] C.L. Talcott, Actor theories in rewriting logic, Theoretical Computer Science 285 (2) (2002) 441–485.
[441] C.L. Talcott, Coordinationmodels based on a formal model of distributed object reflection, in: L. Brim, I. Linden (Eds.), Proceedings of the First International

Workshop onMethods and Tools for Coordinating Concurrent, Distributed andMobile Systems, MTCoord 2005, Namur, Belgium, April 23, 2005, Electronic
Notes in Theoretical Computer Science, vol. 150(1), Elsevier, 2006, pp. 143–157.

[442] C.L. Talcott, Formal executable models of cell signaling primitives, in: T. Margaria, B. Steffen (Eds.), Proceedings of the Leveraging Applications of Formal

Methods Second International Symposium, ISoLA 2006, Paphos, Cyprus, November 15–19, 2006, IEEE, 2006, pp. 298–302.
[443] C.L. Talcott, Symbolic modeling of signal transduction in Pathway Logic, in: L.F. Perrone, B. Lawson, J. Liu, F.P. Wieland (Eds.), Proceedings of the Winter

Simulation Conference, WSC 2006, Monterey, California, USA, December 3–6, 2006, WSC, 2006, pp. 1656–1665.
[444] C.L. Talcott, Policy-based coordination in PAGODA: a case study, in: G. Boella, M. Dastani, A. Omicini, L. van der Torre, I. Cerna, I. Linden (Eds.), Combined

Proceedings of the Second International Workshop on Coordination and Organization, CoOrg 2006, and the Second International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems, MTCoord 2006, Bologna, Italy, June 13, 2006, Electronic Notes in Theoretical

Computer Science, vol. 181, Elsevier, 2007, pp. 97–112.

[445] C.L. Talcott, Pathway logic, in: M. Bernardo, P. Degano, G. Zavattaro (Eds.), Formal Methods for Computational Systems Biology, 8th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2008, Bertinoro, Italy, June 2–7, 2008, Advanced Lectures,

Lecture Notes in Computer Science, vol. 5016, Springer, 2008, pp. 21–53.
[446] C.L. Talcott, D.L. Dill, The pathway logic assistant, in: G. Plotkin (Ed.), Proceedings of the Third International Workshop on Computational Methods in

Systems Biology, 2005, pp. 228–239.
[447] C.L. Talcott, D.L. Dill, Multiple representations of biological processes, in: C. Priami, G.D. Plotkin (Eds.), Transactions on Computational Systems Biology VI,

Lecture Notes in Computer Science, vol. 4220, Springer, 2006, pp. 221–245.

[448] C.L. Talcott, S. Eker, M. Knapp, P. Lincoln, K. Laderoute, Pathway logic modeling of protein functional domains in signal transduction, in: R.B. Altman, A.K.
Dunker, L. Hunter, T.A. Jung, T.E. Klein (Eds.), Proceedings of the 9th Pacific Symposium on Biocomputing, PSB 2004, Fairmont Orchid, Hawaii, USA, January

6–10, 2004, World Scientific, January 2004, pp. 568–580.
[449] S. Tang, Towards Secure Web Browsing, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2011, 2011-05-25. Available from:

<http://hdl.handle.net/2142/24307>.
[450] P. Thati, J. Meseguer, Complete symbolic reachability analysis using back-and-forth narrowing, Theoretical Computer Science 366 (1–2) (2006) 163–179.

[451] P. Thati, K. Sen, N.Martí-Oliet, An executable specification of asynchronous pi-calculus semantics andmay testing inMaude 2.0, in Gadducci andMontanari

[205], pp. 261–281.
[452] S. Thorvaldsen, Modeling and Analysis of the OGDC Wireless Sensor Network Algorithm in Real-Time Maude, Master’s thesis, Department of Informatics,

University of Oslo, June 2005.
[453] C. Tinelli, A DPLL-based calculus for ground satisfiability modulo theories, in: G. Ianni, S. Flesca (Eds.), Proceedings of the 8th European Conference on

Logics in Artificial Intelligence (Cosenza, Italy), Lecture Notes in Artificial Intelligence, vol. 2424, Springer, 2002, pp. 308–319.
[454] A. Tiwari, C.L. Talcott, Analyzing a discrete model of aplysia central pattern generator, in: M. Heiner, A.M. Uhrmacher (Eds.), Computational Methods in

Systems Biology, 6th International Conference, CMSB 2008, Rostock, Germany, October 12–15, 2008, Proceedings, Lecture Notes in Computer Science, vol.
5307, Springer, 2008, pp. 347–366.

[455] A. Tiwari, C.L. Talcott,M. Knapp, P. Lincoln, K. Laderoute, Analyzing pathways using SAT-based approaches, in: H. Anai, K. Horimoto, T. Kutsia (Eds.), Algebraic

Biology, Second International Conference, AB 2007, Castle of Hagenberg, Austria, July 2–4, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4545,
Springer, 2007, pp. 155–169.

[456] X. Urbain, Modular & incremental automated termination proofs, Journal of Automated Reasoning 32 (4) (2004) 315–355.
[457] A. van Deursen, J. Heering, P. Klint, Language Prototyping: An Algebraic Specification Approach, World Scientific, 1996.

[458] A. Verdejo, Building tools for LOTOS symbolic semantics inMaude, in: D. Peled,M.Y. Vardi, (Eds.), Formal Techniques forNetworked andDistributed Systems
– FORTE 2002, 22nd IFIP WG 6.1 International Conference Houston, Texas, USA, November 11–14, 2002, Proceedings, Lecture Notes in Computer Science,

vol. 2529, Springer, 2002, pp. 292–307.

[459] A. Verdejo, Maude como Marco Semántico Ejecutable, Ph.D. thesis, Facultad de Informática, Universidad Complutense de Madrid, Spain, March 2003.
[460] A. Verdejo, N. Martí-Oliet, Two case studies of semantics execution in Maude: CCS and LOTOS, Formal Methods in System Design 27 (1–2) (2005) 113–172.

[461] A. Verdejo, N. Martí-Oliet, Executable structural operational semantics in Maude, Journal of Logic and Algebraic Programming 67 (1–2) (2006) 226–293.
[462] A. Verdejo, I. Pita, N. Martí-Oliet, Specification and verification of the tree identify protocol of IEEE 1394 in rewriting logic, Formal Aspects of Computing

14 (3) (2003) 228–246.
[463] P. Viry, La Réécriture Concurrente, Ph.D. thesis, Université de Nancy I, 1992.

[464] P. Viry, Rewriting: an effective model of concurrency, in: C. Halatsis, D.G. Maritsas, G. Philokyprou, S. Theodoridis, (Eds.), PARLE’94: Parallel Architectures

and Languages Europe, 6th International PARLE Conference, Athens, Greece, July 4–8, 1994, Proceedings, Lecture Notes in Computer Science, vol. 817,
Springer, 1994, pp. 648–660.

[465] P. Viry, Input/output for ELAN, in Meseguer [317], pp. 51–64.
[466] P. Viry, Adventures in sequent calculus modulo equations, in Kirchner and Kirchner [262], pp. 21–32.

[467] P. Viry, Equational rules for rewriting logic, Theoretical Computer Science 285 (2) (2002) 487–517.
[468] E. Visser, Program transformation with Stratego/XT: rules, strategies, tools, and systems in Stratego/XT 0.9, in: C. Lengauer, D.S. Batory, C. Consel, M.

Odersky, (Eds.), Domain-Specific Program Generation, International Seminar, Dagstuhl Castle, Germany, March 23–28, 2003, Revised Papers, Lecture Notes

in Computer Science, vol. 3016, Springer, 2004, pp. 216–238.
[469] L.Wang, Z. Kalbarczyk, R.K. Iyer, Formalizing systembehavior for evaluating a systemhang detector, in: Proceedings of the 27th IEEE SymposiumonReliable

Distributed Systems, SRDS 2008, Napoli, Italy, October 6–8, 2008, IEEE, 2008, pp. 269–278.
[470] I. Wehrman, D. Kitchin, W.R. Cook, J. Misra, A timed semantics of Orc, Theoretical Computer Science 402 (2–3) (2008) 234–248.

[471] J.M.Wing, J.Woodcock, J. Davies, (Eds.), FM’99 – FormalMethods,World Congress on FormalMethods in the Development of Computing Systems, Toulouse,
France, September 20–24, 1999, Proceedings, Volume II, Lecture Notes in Computer Science, vol. 1709, Springer, 1999.

[472] M. Wirsing, G. Denker, C.L. Talcott, A. Poggio, L. Briesemeister, A rewriting logic framework for soft constraints, in Denker and Talcott [139], pp. 181–197.

[473] M. Wirsing, A. Knapp, A formal approach to object-oriented software engineering, in Meseguer [317], pp. 322–360.
[474] M. Wirsing, A. Knapp, A formal approach to object-oriented software engineering, Theoretical Computer Science 285 (2) (2002) 519–560.

[475] H.L.S. Younes, R.G. Simmons, Statistical probabilistic model checking with a focus on time-bounded properties, Information and Computation 204 (9)
(2006) 1368–1409.

[476] M. Zhang, K. Ogata, M. Nakamura, Specification translation of state machines from equational theories into rewrite theories, in Dong and Zhu [143], pp.
678–693.

http://hdl.handle.net/2142/24307

	Twenty years of rewriting logic
	Contents
	1 Introduction
	1.1 How to read this survey

	2 Rewriting logic in a nutshell
	2.1 Semantic framework uses: a communication protocol example
	2.2 Logical framework uses: a propositional satisfiability example

	3 Foundations
	3.1 Rewriting logic
	3.2 Computability and coherence
	3.3 Unification, generalization, narrowing, and symbolic reachability
	3.4 Reflection
	3.5 Strategies
	3.6 The -calculus
	3.7 Sufficient completeness
	3.8 Termination
	3.9 Real-time rewrite theories
	3.10 Probabilistic rewrite theories
	3.11 Temporal logic properties
	3.12 Simulation and abstraction

	4 Rewriting logic as a logical and semantic framework
	4.1 Representing logics
	4.2 Representing models of concurrency
	4.3 Rewriting logic semantics of programming languages
	4.4 Representing distributed systems, software architectures, and models

	5 Rewriting logic languages
	5.1 CafeOBJ
	5.2 ELAN
	5.3 Maude

	6 Tools
	6.1 Formal tools for rewriting logic
	6.2 Some domain-specific tools

	7 Some applications
	7.1 Automated deduction applications
	7.2 Software and hardware specification and verification
	7.3 Security
	7.4 Real-time and cyber-physical systems
	7.5 Probabilistic systems
	7.6 Bioinformatics, chemical systems, and membranes

	8 Some future research directions
	9 Conclusions
	Acknowledgements
	References

