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Abstract

Nowadays, the computing landscape is becoming increasingly heterogeneous
and this trend is currently showing no signs of turning around. In partic-
ular, hardware becomes more and more specialized and exhibits different
forms of parallelism. For performance-critical codes it is indispensable to
address hardware-specific peculiarities. Because of the halting problem,
however, it is unrealistic to assume that a program implemented in a general-
purpose programming language can be fully automatically compiled to such
specialized hardware while still delivering peak performance.

One form of parallelism is single instruction, multiple data (SIMD). Part I
of this thesis presents Sierra: an extension for C++ that facilitates portable
and effective SIMD programming.
Part II discusses AnyDSL. This framework allows to embed a so-called

domain-specific language (DSL) into a host language. On the one hand, a
DSL offers the application developer a convenient interface; on the other
hand, a DSL can perform domain-specific optimizations and effectively map
DSL constructs to various architectures. In order to implement a DSL, one
usually has to write or modify a compiler. With AnyDSL though, the DSL
constructs are directly implemented in the host language while a partial
evaluator removes any abstractions that are required in the implementation
of the DSL.
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Zusammenfassung

Die Rechnerlandschaft wird heutzutage immer heterogener und derzeit ist
keine Trendwende in Sicht. Insbesondere wird die Hardware immer speziali-
sierter und weist verschiedene Formen der Parallelität auf. Für performante
Programme ist es unabdingbar, hardwarespezifische Eigenheiten zu adres-
sieren. Wegen des Halteproblems ist es allerdings unrealistisch anzunehmen,
dass ein Programm, das in einer universell einsetzbaren Programmierspra-
che implementiert ist, vollautomatisch auf solche spezialisierte Hardware
übersetzt werden kann und dabei noch Spitzenleistung erzielt.

Eine Form der Parallelität ist „single instruction, multiple data (SIMD)“.
Teil I dieser Arbeit stellt Sierra vor: eine Erweiterung für C++, die portable
und effektive SIMD-Programmierung unterstützt.

Teil II behandelt AnyDSL. Dieses Rahmenwerk ermöglicht es, eine soge-
nannte domänenspezifische Sprache (DSL) in eine Gastsprache einzubet-
ten. Auf der einen Seite bietet eine DSL dem Anwendungsentwickler eine
komfortable Schnittstelle; auf der anderen Seiten kann eine DSL domänen-
spezifische Optimierungen durchführen und DSL-Konstrukte effektiv auf
verschiedene Architekturen abbilden. Um eine DSL zu implementieren, muss
man gewöhnlich einen Compiler schreiben oder modifizieren. In AnyDSL
werden die DSL-Konstrukte jedoch direkt in der Gastsprache implementiert
und ein partieller Auswerter entfernt jegliche Abstraktionen, die in der
Implementierung der DSL benötigt werden.
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Preface

Since the beginnings of integrated circuits, the transistor density has ap-
proximately doubled every two years—as Moore’s famous law has correctly
predicted so far [Moo00]. Over decades, this development had gone hand in
hand with an exponential increase in processor speed. In the middle of the
2000s, this process stagnated because it was no longer possible to dissipate
the heat of the processor. This means that advances in the microprocessors’
manufacturing process do not lead to an acceleration of existing software
anymore as processors hardly become faster.
However, it is generally assumed that Moore’s law will continue to be

valid for some time [Kum15]: the additional transistors are used for spe-
cial processors that are particularly energy-efficient for certain computing
models. For example, GPUs are tailor-made for data-parallel problems;
Xeon Phis have many simple cores with very wide SIMD units. But using
this heterogeneity effectively burdens the programmer with major problems:
A high-performance implementation of an algorithm for one architecture
can differ significantly from that for another architecture. Even on today’s
systems one can rarely achieve peak performance with a “textbook im-
plementation” of an algorithm. The properties of the hardware (memory
hierarchy, memory layout, SIMD instructions, etc.) are too performance-
critical to be disregarded. However, automatically performing many of the
necessary code transformations exceeds the ability of today’s compilers.
A promising way out of this problem are DSLs. DSLs offer language

constructs which reflect the essential abstractions of a domain-specific algo-
rithm. A compiler that has been especially built for a DSL and understands
its abstractions can then generate high-performance code. On the downside,
the DSL developer needs to design a new language and craft a new compiler
for each domain. This is neither practical nor is it possible to combine
DSLs in this way.
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Preface

Part I of this thesis presents Sierra—a SIMD extension for C++. Sierra
is a domain-specific extension, which gives the programmer fine-grained
control over where and how his program is vectorized. This vectorized
program is suitable for efficient execution on the SIMD unit.
Part II discusses AnyDSL—a general approach to DSLs: Instead of

writing or extending a compiler, a DSL is embedded into a host language.
This technique makes it possible to seamlessly add and combine DSLs
while inheriting the host language’s syntax and type system. The DSL
designer implements the domain-specific extensions directly in the host
language while a partial evaluator instantiates any abstractions of this
implementation. Furthermore, the DSL designer can map code to different
hardware accelerators (SIMD units, multi-core processors, GPUs) by passing
the code in question to built-in higher-order functions. This allows the
designer to implement a DSL as a library while supporting heterogeneous
hardware without having to write her own compiler.
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Part I.

Sierra
A SIMD Extension for C++
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We should forget about small efficiencies, say about 97%
of the time [. . .]. Yet we should not pass up our oppor-
tunities in that critical 3%.
Donald Knuth,
Structured Programming With Go To Statements 1

Introduction

SIMD instructions [Fly72] allow to simultaneously process multiple data in
one operation (see right-hand side of Figure 1.1). SIMD hardware usually
provides a special SIMD register file along with appropriate instructions
to operate on these registers. We call the number of elements, which fit
into a SIMD register, the vector length. Data-parallel workloads can be
sped up by a factor of that vector length. Usually, data structures—and
hence the core algorithms working on them—must be adapted in order to
exploit SIMD effectively [e.g. Wal+01; ZR02]. For this reason, it is unlikely
that automatic vectorization techniques can catch up with languages that
directly support data parallelism.
For example, the following Vec3 type is used in many graphics applica-

tions:
struct Vec3 { float x, y, z; };

It is inefficient for SIMD hardware to fetch several logically consecutive
x-elements in parallel when using a traditional array of structures (AoS)
(see Figure 1.2a) because the x-elements are physically scattered in memory.
When using the structure of array (SoA) layout (see Figure 1.2b) we should
exploit efficient vector loads instead. However, when looping over an SoA
that needs to process x-, y-, and z-elements, the loop must maintain three
pointers: one for each element. Each iteration increments these pointers
by the underlying vector length. Yet another alternative is to inflate the
original Vec3 type by the desired vector length and group this new type
in an array. This layout is called hybrid SoA [Int16, §3.6.6] or array of
structures of arrays (AoSoA) (see Figure 1.2c).1 Now, each group of x-, y-,
and z-elements lies at a constant offset within one inflated Vec3 instance.
Hence, said loop must only maintain one pointer. Moreover, this layout

1Confusingly, this layout is often just called SoA in literature, too.
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x0 + y0

x1

y1

+

x1 + y1

x2

y2
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x2 + y2

x3

y3

+

x3 + y3

int varying(4) x;

int varying(4) y;

x + y;

Figure 1.1.: Varying types and operations in Sierra

provides better data locality because all data needed within one iteration
lies in one chunk of memory.
After the data is properly laid out, the programmer has to write the

actual code. This is arguably the biggest challenge in SIMD programming.
Often, operations should only be performed on part of a SIMD vector. Thus,
operations must be masked. Manually writing this masking code is extremely
cumbersome and error-prone as it enforces a very low-level programming
style (see Section 1.1.2). Furthermore, how should the programmer design
his program so that it scales to different vector lengths? After all, different
instruction set architectures (ISAs) support different vector lengths.

1.1. Sierra
Sierra is a proposed extension for C++. This extension gives the programmer
tools to vectorize both data and code in a semi-automatic way.

1.1.1. Vectorizing Data
Sierra enriches C++ with the varying type constructor. It can be used to
vectorize data types.2 Standard operators are overloaded to work on vectors:
int varying (4) a = {0, 1, 2, 3};
int varying (4) b = {2, 4, 8, 10};
int varying (4) c = a + b; // 2, 5, 10, 13

2The name varying is inspired by RenderMan (see Section 2.2.5).
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x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7

(a) Array of Structures (AoS)

x0 x1 x2 x3 x4 x5 x6 x7 y0 y1 y2 y3 y4 y5 y6 y7 z0 z1 z2 z3 z4 z5 z6 z7

(b) Structure of Arrays (SoA)

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 x4 x5 x6 x7 y4 y5 y6 y7 z4 z5 z6 z7

(c) Array of Structure of Arrays (AoSoA)

Figure 1.2.: Different array layouts with vector length 4 for a struct with
three members: x, y and z.

Moreover, the programmer can use this keyword to recursively inflate
derived types:

Example 1.1 (Vectorized Vec3)
The type Vec3 varying(4) has the following layout:

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3

These types can be used as building blocks to create more advanced data
structures like the aforementioned SoA or AoSoA layout. Additionally, the
varying type constructor can be tightly integrated with C++ templates.
This allows a C++ programmer to create sophisticated, generic, SIMD-
friendly data structures.

1.1.2. Vectorizing Code
Sierra’s type system does not only allow scalars as a controlling condition
of control-flow constructs but also vectors. Sierra statically marks all state-
ments that are control-dependent on a vectorial condition to be executed
in SIMD mode as opposed to the usual scalar mode. The execution model
of SIMD mode maps each element in a SIMD vector—also called SIMD
lane—to one thread. This gives the programmer the illusion that different
SIMD lanes are executed on different control-flow paths.

5



1. Introduction

Example 1.2 (Vectorized Control-Flow)
As the condition v < 3 in Listing 1.1 is of type bool varying(4), Sierra
enters SIMD mode of length 4. Since the condition only holds for the first
and fourth SIMD lane, v += 2 is only performed for the first and fourth
element of v. We say the first and the fourth lanes are active. The other
two lanes are inactive. Contrarily, v -= 3 is only applied to the second
and third element of v.
The implementation must take care that all SIMD lanes get their

opportunity to be executed in the code blocks in which they are active.
Conversely, all inactive lanes must not produce side-effects. To do this,
the compiler must linearize the control flow and emulate it by inserting
bit operations and masking instructions (see Listing 1.2).

Doing this by hand is a complicated matter. The programmer must use
so-called compiler intrinsics: compiler-known functions that directly map to
a machine instruction. These intrinsics severely degrade the readability of
the code because control statements are replaced by clumsy mask-handling
code as Listing 1.2 demonstrates. The burden of this conversion increases
even more drastically when complex control flow like nested loops and
unstructured control flow must be emulated. Furthermore, intrinsics directly
expose a concrete ISA to the programmer. Accordingly, intrinsics code is
not only inherently unportable between different processor architectures
but also within different revisions of the ISA within the same processor
family.

1.1.3. What Sierra is and is not
Sierra is not a proposal for the C++ standard.3 Due to the complexity of
C++, a proposal would be hundreds of pages long because the varying
type constructor and SIMD mode virtually interact with all aspects of
the C++ language. The ISO C++ committee would, in any case, likely
reject this proposal because of its length. Instead, Sierra should be viewed
as an extension similar to OpenMP [Ope13], Cilk4, OpenACC [Ope15] or
SYCL [Khr15]. This allows Sierra to cherry-pick a well-understood subset of

3see https://isocpp.org/std/submit-a-proposal
4see https://www.cilkplus.org/cilk-history
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1.2. Case Study: A Volume Ray Caster in Sierra

0 8 7 1

2 � � 3

� 5 4 �

2 5 4 3

int varying(4) v = {0, 8, 7, 1};

if (v < 3) v += 2;

else v -= 3;

print(v);

Listing 1.1.: Automatic masking in vectorized control flow

int4 v = {0, 8, 7, 1};
bool4 mask = lt4(v, broadcast4 (3));
int4 v_t = add4(v, broadcast4 (2));
int4 v_f = sub4(v, broadcast4 (3));
int4 v_b = blend4 (mask , v_t , v_f );
print(v_b );

Listing 1.2.: Using (pseudo)-intrinsics to implement Listing 1.1

C++ to define its semantics on. Complex features like exception handling or
multiple inheritance are simply declared incompatible with Sierra. This does
not mean that these features are completely denied to programmers. Only
Sierra-specific features cannot be mixed with these incompatible features.
Moreover, this thesis is not a technical manual for Sierra.

1.2. Case Study: A Volume Ray Caster in Sierra

In order to better understand the core concepts behind Sierra, we demon-
strate how to implement a volume ray caster [AH02]. Volume ray casting
is a technique to visualize a 3D volumetric data set by shooting rays from
the camera through each pixel of the image to be rendered. The renderer
marches along each ray that hits the volume and accumulates encountered

7



1. Introduction

void render (float volume [], float image [], /* ... */) {
for (int y = 0; y < image_height ; ++y) {

for (int x = 0; x < image_width ; ++x) {

auto ray = generate_ray (x, y, /* ... */);
auto result = raymarch (volume , ray , /* ... */);
image[y * image_width + x] = result ;

}
}

}

float
raymarch ( float volume [], Ray& ray , /* ... */) {

float rayT0 , rayT1;
if (! intersect (ray , bounding_box , rayT0 , rayT1 ))

return 0.f;
// intersect initializes rayT0 , rayT1

// radiance along the ray
float result = 0.f;

// induction variables
auto pos = ray.dir*rayT0 + ray. origin ;
auto t = rayT0;

while (t < rayT1) {
auto d = density (pos , volume , /* ... */ );

// terminate on high attenuation
auto atten = /* ... */;
if (atten > THRESHOLD )

break ;

auto light = compute_lighting (/* ... */ );
result += light * /* ... */;
pos += /* ... */;
t += /* ... */;

}

return gamma_correction ( result );
}

Listing 1.3.: Volume renderer in C++
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1.2. Case Study: A Volume Ray Caster in Sierra

void render (float volume [], float varying (L) image [], /* ... */) {
for (int y = 0; y < image_height ; ++y) {

for (int xx = 0; xx < image_width /L; ++xx) {
auto x = xx*L + seq <L >();
auto ray = generate_ray (x, y, /* ... */);
auto result = raymarch (volume , ray , /* ... */);
image[y * image_width /L + xx] = result ;

}
}

}

float varying (L)
raymarch ( float volume [], Ray varying (L)& ray , /* ... */) {

float varying (L) rayT0 , rayT1;
if (! intersect (ray , bounding_box , rayT0 , rayT1 ))

return 0.f;
// intersect initializes rayT0 , rayT1

// radiance along the ray
float varying (L) result = 0.f;

// induction variables
auto pos = ray.dir*rayT0 + ray. origin ;
auto t = rayT0;

while (t < rayT1) {
auto d = density (pos , volume , /* ... */ );

// terminate on high attenuation
auto atten = /* ... */;
if (atten > THRESHOLD )

break ;

auto light = compute_lighting (/* ... */ );
result += light * /* ... */;
pos += /* ... */;
t += /* ... */;

}

return gamma_correction ( result );
}

Listing 1.4.: Volume renderer in Sierra. Differences are highlighted.
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1. Introduction

voxel data. We need—in addition to the Vec3 data type—a Ray type:
struct Ray {

Vec3 origin ;
Vec3 dir;

};

First, we sketch the ordinary scalar version (see Listing 1.3). Then, we
demonstrate how to use Sierra for vectorization (see Listing 1.4).

1.2.1. A Scalar Volume Ray Caster
Render

The render function sets up a loop nest, which iterates over all pixels
of the image buffer. Each iteration generates an appropriate ray for the
current pixel and invokes raymarch. This function returns the current
pixel’s brightness, which is assigned to the current pixel.

Ray March

The subroutine raymarch calls intersect in order to determine whether
ray hits the bounding box of the volume at all. If this is the case, intersect
initializes the start and end parameters rayT0 and rayT1 for ray. A loop
traverses ray via its parameter t. Each iteration fetches a density for
the current position pos in the volume. As an optimization, we introduce
an early termination condition: If the current radiance result is greater
than a certain THRESHOLD, the loop will be aborted because any further
accumulation will not significantly contribute to the final brightness. Next,
we compute lighting for the current position and accumulate that value
in the radiance result. Finally, we return the computed radiance after
applying a gamma_correction.

1.2.2. A Vectorized Volume Ray Caster
In order to exploit SIMD hardware, we simultaneously shoot L rays through
the volume. We use Sierra’s type constructor varying(L) to create SIMD-
friendly variants of the original data types Vec3 and Ray. The type
Ray varying(L) consists of two Vec3 varying(L) data types. Further-

10



1.2. Case Study: A Volume Ray Caster in Sierra

more, the image buffer is composed of an array of float varying(L).5
Note that the program is parametric in the vector length L.

Render

The render function vectorizes along L consecutive pixels in x-direction.
Each iteration creates a vector x = {xx*L+0, xx*L+1, ..., xx*L+L-1} .
Thus, in the case of vector length 4, x is {0, 1, 2, 3} in the first iteration,
{4, 5, 6, 7} in the second, {8, 9, 10, 11} in the third and so on.

The loop body invokes generate_ray. In contrast to the scalar ver-
sion, the function expects an int varying(L) as x value and returns a
Ray varying(L) as result. We feed this vectorial ray to the vectorial version
of the raymarch function, which in turn produces a float varying(L).
This is stored via an efficient vector store in the image buffer.

Ray March

The function raymarch works on L rays simultaneously and returns L results.
The function intersect now expects a Ray varying(L) and returns a
bool varying(L). As the condition in the if-statement is vectorial, Sierra
only continues executing SIMD lanes that actually hit the volume. Similarly,
the condition of the while-statement is vectorial. The loop runs until all
lanes become inactive. Some lanes may terminate earlier than others and
consequently become inactive because of the break-statement.
For this reason it is a good idea to increase the likelihood that a vector

of rays shares the same control-flow. We can achieve this by vectorizing
in small tiles of the target image rather than along the x-direction. For
example, in the case of vector length 4, we could vectorize for each 2 × 2
pixel block.

1.2.3. Comparison of both Versions
The scalar and the vectorial versions are syntactically very similar. For the
most part, they just differ in typing. The use of auto even hides many of
these differences. Merely the initial loop, which sets up the vectorization,

5For the sake of simplicity, we assume that image_width is a multiple of L. If we also
want to support other image widths, we either need to process the border area in a
scalar fashion or mask it properly with an appropriate vectorial if-statement.
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1. Introduction

has to be worked on more carefully by the programmer. Thus, it is not
much effort to port a scalar program to a vectorial one.

In particular, instantiating the vectorial program with L = 1 generates the
scalar version of the program: The conditions in the if- and while-statements
become scalar again, which in turn triggers usual scalar semantics of C++.
Chapter 6 investigates the performance of several instantiations.

1.3. Contributions
After the discussion of related work in Chapter 2, this part of the thesis
makes the following contributions:

• Chapter 3 presents Sierra in more detail and discusses the issues of
integrating Sierra with the rest of C++.

• Chapter 4 introduces Imp: a small imperative language. We present
Imp’s semantics and prove its type system sound. Then, we show
how to extend Imp with SIMD types and SIMD mode—calling the
new language VecImp. We prove VecImp’s type system sound,
too. Finally, we sketch a language PolyVecImp where varying
annotations are inferred in a semi-automatic way.

• Chapter 5 discusses how to implement the execution model of SIMD
mode. We describe how to generate code from the abstract syntax
tree (AST) of a VecImp program.

• Our experiments in Chapter 6 demonstrate that our prototype imple-
mentation is able to speed up applications by 2x to 5x on SSE and
by 2.5x to 7x on AVX compared to their scalar counterparts.

1.4. Publications
The work in this part is based upon the following publications:

• Roland Leißa, Sebastian Hack, and Ingo Wald. “Extending a C-
like language for portable SIMD programming”. In: Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2012, New Orleans, LA, USA,
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1.4. Publications

February 25-29, 2012. 2012, pp. 65–74. doi: 10.1145/2145816.
2145825.

• Roland Leißa, Immanuel Haffner, and Sebastian Hack. “Sierra: a
SIMD extension for C++”. In: Proceedings of the 2014 Workshop
on Programming models for SIMD/Vector processing, WPMVP 2014,
Orlando, Florida, USA, February 16, 2014. 2014, pp. 17–24. doi:
10.1145/2568058.2568062.

• Immanuel Haffner. “Sierra: A SIMD Extension for C++”. Advi-
sors: Sebastian Hack and Roland Leißa. Bachelor’s thesis. Saarland
University, Apr. 1, 2015

Some paragraphs appear verbatim in this thesis. This applies in particular
to Chapters 2 and 6.
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Nenn’ es dann wie du willst,
Nenn’s Glück! Herz! Liebe! Gott!
Ich habe keinen Namen
Dafür! Gefühl ist alles;
Name ist Schall und Rauch,
Umnebelnd Himmelsgluth.

Johann Wolfgang von Goethe, Faust I
2

Related Work

Vectorizing compilers have a long history. Traditional approaches try to
vectorize loops or straight-line code. As these approaches to this day
have difficulties in utilizing the full potential of SIMD hardware, language
designers have tried to support SIMD directly in the programming language.
This is also Sierra’s approach. Finally, whole-function vectorization (WFV)
instantiates a whole function several times such that each instance can be
executed in a different SIMD lane. In the following, each section deals with
one of these approaches.

2.1. Automatic Vectorization Techniques
2.1.1. Loop Vectorization
Allen et al. [All+83; AK87] present a source-to-source compiler that tries
to translate FORTRAN-77-style loop nests to FORTRAN-8x-style array
statements.1 Starting from the innermost loop, their loop vectorization
instruments a loop dependence analysis in order to investigate which loops
are suitable for vectorization at all. Then, the loop body’s control flow
is converted to data flow via if-conversion. This means that conditional
branches are eliminated by guarding statements with an if. The if’s guard
boolean condition now represents the former control flow.

An alternative is outer loop vectorization using a so-called unroll-and-jam
technique [Ngo95; AK01; NZ08]: A chosen outer loop is unrolled several
times while the resulting loop bodies are re-fused (“jammed”). There is a
good chance that the instructions stemming from the same instruction in
the original version can be grouped into SIMD instructions.

1FORTRAN 8x was a draft of the evolving FORTRAN 90 standard. See Section 2.2.2
for a discussion of array programming.
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Other work on loop vectorization also considers data alignment, reduc-
tions [NRZ06] and interleaved data accesses [NH06]. Furthermore, the
polyhedral model [Fea91; Fea92a; Fea92b]—a powerful mathematical loop
analysis framework using Presburger sets—has also been instrumented for
loop vectorization [Tri+09; Nuz+11]

The volume renderer from Section 1.2 could be automatically vectorized
by vectorizing the inner loop in render. Admittedly, an interprocedural
analysis would have to find that each iteration is independent of the others.
With the presence of a complex call graph, aliasing pointers and incoherent
memory access patterns (gathers—see Section 3.1.2), this is unrealistic
because static analyses are undecidable due to the halting problem.

2.1.2. Superword Level Parallelism
Vectorization on straight-line code exploits superword-level parallelism
(SLP): The compiler tries to merge several scalar operations into a vector
operation. This can be done on a per-basic-block level [LA00] or in the
presence of control flow [SHC05]. SLP algorithms will usually give up
if the exact number of needed instructions cannot be fed into the SIMD
lanes. Padded SLP tries to overcome this limitation by injecting redundant
instructions [PMJ15].

The work in this field is orthogonal to the work in this part of the thesis.
Vectorizing straight-line code can achieve a nice performance bonus for
scalar code. On the other hand, current ISAs often take a while to “warm
up” the SIMD unit—an effect that we also observed in our experiments (see
Chapter 6). Throttled SLP uses a cost model in order to estimate whether
SLP vectorization is actually worthwhile at all [PJ15].

2.2. Support in Programming Languages
2.2.1. Short Vectors
Many C/C++ compilers provide short vector data types—similar to Sierra’s
varying types. The compiler can easily map operations on these types to
the hardware. Furthermore, such compilers provide ISA-specific intrinsics
(see Section 1.1.2). Some libraries like Boost.SIMD [Est+14] or the Generic
SIMD Library [Wan+14] wrap these functionalities in portable libraries for
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easier use. Nonetheless, the programmer still needs to manually convert
control flow to data flow and perform masking by himself.

2.2.2. Array Programming
Some languages like APL [FI73], Vector Pascal [Coc02], MatLab2, Octave3,
or FORTRAN 90, and language extensions like Intel® Array Building Blocks
(ArBB) [New+11]4 (formerly known as Ct [Ghu+07]) allow operations not
only on scalars but also on arrays. This is similar to the way Sierra overloads
standard operators to work on varying types. But, in contrast to Sierra,
where the programmer works with short vectors of known length, the
programmer typically operates with large arrays of unknown length. The
compiler automatically generates an appropriately vectorized loop.

Example 2.1
Suppose a and b are arrays of size N with element type int and c is a
scalar of type int:
a = b + c

It is straightforward to generate the following vectorized loop using vector
length L:
for i = 0 to N step L

a[i..L -1] = b[i..L -1] + [c, ..., c]
next

While this programming works well in the domain of vector and matrix
computations, other programming patterns are not easily mappable to
this paradigm. For example, the volume renderer from Section 1.2 does
not use such patterns at all. In addition, vectorization only works for
arithmetic types and not, for instance, for an array of Rays. Finally, each
array statement conceptually introduces its own loop. In order to minimize
the overhead caused by these loops, it is a good idea to fuse them. Fusing

2see https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
3see https://www.gnu.org/software/octave/doc/interpreter/Basic-Vectorization.

html
4ArBB actually is a deeply embedded DSL using C++ as host language (see Sec-
tion 10.2.3).
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these loops, however, is not always possible if they are interrupted by other
statements that produce side-effects.

2.2.3. Cilk Plus
Aside from providing facilities for multithreaded parallel computing, Intel®
Cilk™ Plus [Int13] supports SIMD in two ways.
First, a loop may be annotated by #pragma simd. This allows the

compiler to vectorize the loop even if the compiler cannot guarantee to
preserve the semantics of the original scalar program. However, the compiler
will not reorganize the program’s data structures as Sierra’s varying type
constructor does. Instead, data may be reordered on the fly. Furthermore,
calls to functions compiled in other translation units cannot be vectorized.
Usually, the compiler will try to inline functions into the loop’s body so that
vectorization does not have to be performed in an interprocedural manner.

Second, Cilk Plus provides special constructs to deal with arrays in
a convenient way much like array programming discussed earlier. Cilk
Plus can partially mimic a Sierra type T varying(L). As long as T
is an arithmetic type, the Cilk Plus type T[L] behaves similar. How-
ever, Cilk Plus does not support automatic masking. This makes short
vectors in Cilk Plus less useful. On the other hand, Sierra can mimic
Cilk Plus’s long vectors. One way would be template specializations for
std::valarray<int>, std::valarray<float>, and so forth, which inter-
nally work on int varying(L)* or float varying(L)*, respectively.

2.2.4. OpenMP
OpenMP 4.0 [Ope13] also introduces an annotation to mark loops as vectoriz-
able. Additionally, functions can be declared with #pragma declare simd.
This allows OpenMP to call a vectorized version of a function from within a
vectorized loop. A number of clauses control the behavior of the vectorized
version. The clause simdlen(L) corresponds to setting all parameters as
varying(L) types in Sierra. Additionally, parameters can be declared as
uniform like in Sierra. The clause inbranch is similar to simd(L). In
Sierra however, the programmer gets more fine-grained control over the
vectorization lengths, as Sierra allows mixing of vector lengths to a certain
degree. The OpenMP specification is intentionally unclear about how ex-
actly types are transformed. Since OpenMP 4.0 has been released after
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Intel® single program, multiple data (SPMD) compiler (ISPC) [PM12] and
our initial work on VecImp [LHW12], OpenMP 4.0 was likely influenced
by these works.

2.2.5. Data-Parallel Languages

Data-parallel languages originate from shading languages—RenderMan [HL90]
being one of the first. RenderMan also pioneered the concept of uniform
and varying variables. Modern shading languages like Cg [Mar+03],
CGiS [FLS04], GLSL [Khr13], or HLSL [SW05], and also general-purpose
data-parallel languages like CUDA [NVI17], OpenCL [Khr12], IVL (see
Section 6.1), or ISPC [PM12] still follow the same programming model: The
programmer basically writes a scalar program. The compiler instantiates
the program n times to run it simultaneously on n computing resources.
When those computing resources are only SIMD processors, all simulta-
neously running processes run in lockstep. Program instances may run
asynchronously when the compiler also leverages multithreading. Therefore,
the programmer has to use barrier synchronization in order to communicate
across program instances [Shi+08].
Sierra only deals with SIMD and therefore does not need any synchro-

nization mechanisms. Supporting asynchronous threads is orthogonal to
Sierra’s approach. For example, a Sierra programmer could use POSIX
threads or OpenMP’s threading facilities to also parallelize her program.
Sierra borrows the idea to overload control-flow constructs for vectors

from ISPC [PM12] and IVL/VecImp [LHW12]. IVL/VecImp and ISPC
were developed simultaneously and influenced each other’s design. New
to Sierra’s approach is that the program starts off in scalar mode. The
programmer explicitly triggers vectorization by using vector types. This
allows a Sierra programmer to mix various vector lengths to a certain extent.
In contrast to Sierra, an ISPC or IVL programmer has to agree on a global
vectorization length per translation unit. Therefore, Sierra does not need
a special kernel language, which then gets plugged into the host language.
We believe that this is a major obstacle in practice to adopt languages like
OpenCL, CUDA, ISPC or IVL.
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2.2.6. Domain-Specific Languages
A DSL is a language that is exactly tailored for a particular programming
domain. Actually, array programming (see Section 2.2.2) or Sierra’s SIMD
extension can be viewed as domain-specific programming. As we have
discussed in Section 2.1.1, the difficult part in automatic vectorization is to
actually prove that several consecutive iterations are independent of each
other. But if the compiler simply knows from the problem domain that this
is the case, code can be vectorized with tools like WFV (see Section 2.3).
For example, HIPAcc—a DSL for image processing—uses a vectorization
technique similar to WFV [Rei+17]. However, HIPAcc’s vectorization is
simplified because HIPAcc leverages domain knowledge. Diderot [Chi+12]
and Orion [DeV+13] generate intrinsics code. PolyMage [MVB15]—a
DSL for stencil computations—uses the polyhedral model in order to infer
dependencies between different loop iterations and generates annotated,
auto-vectorization-friendly C code. See Part II for a thorough discussion of
DSLs.

2.3. Whole-Function Vectorization
WFV [KH11; KH12; KKS13; Kar15] multiplies a whole function L times
and maps each instance to one SIMD lane.5 Thus, WFV can either be
used as a tool to vectorize a loop body or a whole function of data-parallel
languages like OpenCL. WFV’s vectorization is similar to Sierra’s SIMD
mode although WFV offers less control over this process: The Sierra
programmer can explicitly state the desired data layout and mix several
vectorization lengths to a certain extent. Moreover, WFV has not yet been
applied in an interprocedural way. The current pragmatic workaround is
to transitively inline all function calls. On the other hand, WFV uses a
sophisticated data flow analysis, which attempts to find the best possible
memory access patterns. Furthermore, WFV supports arbitrarily complex
control-flow graphs (CFGs) in contrast to Sierra. Finally, WFV tries to
keep control flow that only depends on scalar variables uniform. This can
often increase the performance significantly. In Sierra, the programmer has
to manually annotate via the types of variables which parts of the CFG

5The project has lately been renamed to region vectorizer (RV) and its source code is
available as free software. See https://github.com/cdl-saarland/rv.
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2.3. Whole-Function Vectorization

should be vectorized and which can be kept uniform. For these reason,
we plan to integrate WFV into Sierra’s code generator as future work (see
Section 5.2).
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Some believed we lacked the programming lan-
guage to describe your perfect world. But I
believe that, as a species, human beings define
their reality through suffering and misery.

The Matrix 3
A Quick Tour of Sierra

This chapter informally presents useful SIMD programming idioms that
Sierra supports. First, we introduce Sierra’s type system. Then, we discuss
Sierra’s SIMD mode.

3.1. Types and Conversions
As already discussed, Sierra introduces a new type constructor: varying(L).
Syntactically, this constructor acts as an additional type qualifier. The
argument L must be a constant expression [ISO11, §5.19], which must
evaluate to a positive integer. Additionally, the type qualifier uniform is
available, which acts as syntactic sugar for varying(1). This is also the
default qualifier if the programmer has not specified one. Thus, uniform’s
sole purpose is to stress that a variable is scalar.
Applying the varying qualifier to an arithmetic type yields a vector of

this type. All usual operators are overloaded, so they also work on vectors.
However, it is an error to mix vectors with different lengths in an operation.

Example 3.1 (Arithmetic vector types)
The following listing makes use of some arithmetic vectors:
short varying (8) s; // declaration only
int varying (4) i = {0, 1, 2, 3}; // initialization list
auto j = (int varying (4)){0 , 1, 2, 3}; // compound literal
auto k = i + j; // int varying (4)

// error: vector lengths mismatch
i + (int varying (2)){0 , 1};

// error: vector length not a constant expression
float varying (std :: strlen (/* ... */ )) x;
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// OK: std :: max specified as constexpr
float varying (std :: max (2, 4)) y;

The C++ standard defines specific rules when and how values from one
type are automatically converted to another type. In Sierra these rules
apply analogously to vectors:
short varying (4) s = /* ... */;
int varying (4) i = /* ... */;
auto x = s + i; // x is of type int varying (4)

3.1.1. Broadcast
Sierra automatically converts a scalar to a vector of the same element type
if needed. This is achieved by duplicating the value for each SIMD lane.
We call this operation broadcast.

Example 3.2 (Broadcast)
Consider the following listing:
int uniform u = /* ... */;
int varying (4) v = /* ... */;
int varying (8) w = /* ... */;
u + v; // u is broadcast to int varying (4)
v + w; // error: vector lenghts mismatch

Vec3 varying (4) cross(Vec3 varying (4) v,
Vec3 varying (4) w) { /* ... */ }

Vec3 uniform u;
Vec3 varying (4) v;
Vec3 varying (4) w = cross(u, v); // u is broadcast

Moreover, broadcasts and arithmetic conversions may happen in the same
expression:
short uniform s = /* ... */;
int varying (4) i = /* ... */;
auto x = s + i; // x is of type int varying (4)
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3.1.2. Pointers and Gather/Scatter
The density function in the vectorized volume ray caster (see Section 1.2.2)
needs to look up a vector of voxel data from incoherent memory locations.
This is expressed via a gather from a vectorial pointer to scalar data as
described in this section.
Both a pointer itself as well as its referenced type may be scalar or

vectorial. Hence, four possibilities arise:

scalar pointer to scalar data:
int uniform * uniform p;

This is an ordinary C++ pointer.

scalar pointer to vectorial data:
int varying (4)* uniform p;

A scalar pointer to a vector works like a scalar pointer to a scalar:
Dereferencing this pointer yields an lvalue of the pointer’s referenced
type. So, *p is of type int varying(4).

vectorial pointer to scalar data:
int uniform * varying (4) p;

Loading from *p (called gather) has the effect that four scalars from
different memory locations are loaded. These four scalars are assem-
bled into a new vector. Conversely, assigning a vector v to *p (called
scatter) disassembles v and writes its components into the designated
memory locations. So, *p is of type int varying(4).

vectorial pointer to vectorial data:
int varying (4)* varying (4) p;

Loading from *p (also called gather) has the effect that four vectors
from different memory locations are loaded. Then, the first element
of the first loaded vector, the second element of the second loaded
vector, and so forth, are extracted. These four elements are assembled
into a new vector. Conversely, assigning a vector v to *p (also called
scatter) inserts the first element of v into the vector pointed to by the
first element of p; the second element of v is inserted into the vector
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0246 1357

3 7 1 5

(a) a+x is of type int uniform* varying(4)* and dereferencing yields {4,0,6,2}

70 71 72 73 60 61 62 63 50 51 52 53 40 41 42 43 30 31 32 33 20 21 22 23 10 11 12 13 00 01 02 0362 40 23 01

3 7 1 5

(b) a+x is of type int varying(4)* varying(4)* and dereferencing yields {40,01,62,23}

Figure 3.1.: Address computations for vectorial pointers

pointed to by the second element of p, and so forth. So, *p is of type
int varying(4).

Analogously, a reference itself and its referenced type may be scalar or
vectorial. For example, int uniform& varying(4) denotes a vectorial
reference to scalar data which implies gathers/scatters.
Furthermore, array indices are allowed to be vectorial in Sierra. Like in

C++, an array subscript of the form E1[E2] is identical to (*((E1)+(E2)))
if E1 is a pointer. However, the semantics of binary + is overloaded to work
with vectors. In particular, E2 will be broadcast to E1’s vector length if
E2 is scalar. Similar to arithmetic types, it is an error to mix vectors with
different vector lengths.

Example 3.3 (Address computations)
The following code gathers a vector from a vectorial pointer to scalar
data. See Figure 3.1a for a graphical depiction of the underlying address
computation.
int uniform a[8] = {7, 6, 5, 4, 3, 2, 1, 0};
int varying (4) x = {3, 7, 1, 5};
int uniform * varying (4)* p = a + x;
int varying (4) v = *p; // gather : {3, 7, 1, 5}
// same as above using array indexing :
int varying (4) v = a[x]; // gather : {3, 7, 1, 5}
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The following code gathers a vector from a vectorial pointer to vectorial
data. See Figure 3.1b for a graphical depiction of the underlying address
computation.
int varying (4) a[8] = {{70 , 71, 72, 73},

/* ... */, {00, 01, 02, 03}};
int varying (4) x = {3, 7, 1, 5};
int uniform * varying (4)* p = a + x;
int varying (4) v = *p; // gather : {3, 7, 1, 5}
// same as above using array indexing :
int varying (4) v = a[x]; // gather : {3, 7, 1, 5}

Just like when programming with asynchronous threads, data races [ISO11,
§1.10] may occur. This will happen if several SIMD lanes want to write to
the same memory location.

Example 3.4 (Data races)
Suppose, p is a vectorial pointer to a scalar array. The scatter operation
in the following listing provokes a data race because both the second and
the third SIMD lane want to write to a + 1:
int uniform a[] = /* ... */;
a[( int varying (4)){0 , 1, 1, 3}] = {0, 1, 2, 3};

ISPC evaluates the stores of each element in an unspecified order; CUDA
and OpenCL define these data races as undefined behavior ; C++ defines
multi-threaded data races as undefined behavior, too. Sierra needs to decide
on one of these strategies. Undefined behavior is arguably the most portable
choice.

Example 3.5 (AoS to hybrid SoA conversion)
As discussed in Chapter 1 the hybrid SoA layout is the preferred data
layout for SIMD. However, sometimes data is only available in AoS format.
The programmer can exploit Sierra’s vectorial pointer arithmetic to convert
from AoS to AoSoA and vice versa:
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Vec3 aos [] = /* ... */;

for (int i = 0; i < size; i += L) {
Vec3 varying (L) v = aos[i + seq <L >()]; // gather
/* do something with v */
aos[i + seq <L >()] = v; // scatter

}

3.1.3. Derived Types
Unlike pointers, structs and unions cannot be vectorial. Instead, vector-
ization is recursively applied to their members. Already specified members
remain untouched:

Example 3.6 (Struct)
Using this struct declaration
struct S {

int a, b;
int uniform c;
int varying (4) d;

};

to instantiate different vectors, we obtain the following layouts:
// vector length : #.a #.b #.c #.d
S uniform s; // 1 1 1 4
S varying (4) t; // 4 4 1 4
S varying (8) u; // 8 8 1 4

This schema is recursively applied to all fields. However, when encoun-
tering a pointer, the pointer itself becomes vectorial; the referenced type
remains untouched. The following example explains the rationale behind
this approach.

Example 3.7 (Vectorized linked list)
Using these data types
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struct ListNode {
int data;
ListNode * next;

};

struct List {
int size;
ListNode * root;

};

we can instantiate a vectorized list with four size elements and four root
pointers to scalar ListNodes.
List varying (4) vectorized_list ;
// ...
ListNode * varying (4) n = vectorized_list ->root ->next;
int varying (4) data = n->data; // gather

If instead the referenced type had been vectorized, we would have gotten
four size elements and vectorial ListNodes. But that makes no sense
because we just want to have a single size element in this example.
On the other hand, the programmer can easily create a list of vectorial
data. For instance, vectorial data for STL containers work out-of-the-box:
std::list<int varying(4)>.

So far we have only considered vectorization of plain-old-data structs
without any methods. Ideally, the programmer also wants to automatically
vectorize full-featured classes when using the varying type constructer:
MyFullFeaturedClass varying (4) x(/* ... */ );
if ( vector_condition ) {

x.f(/* ... */);
}

We believe that automatic vectorization is possible but is subject to certain
restrictions. To begin with and as we have already discussed, our current
proposal of Sierra is incompatible with certain complex C++ features like
exception handling, for instance. While it is possible to define semantics for
what it means when some SIMD lanes throw an exception and others do
not, the generated code would be very inefficient and inefficient code defeats
the whole purpose of SIMD programming. The reason for this inefficiency
is that exception handling cannot be mapped to a CFG. Consequently, the
code generator cannot vectorize the CFG (see Chapter 5). Furthermore,
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vectorization of full-featured classes is an intrusive venture because it
virtually interacts with the whole C++ language. For these reasons, we will
focus on plain-old-data for the time being. However, classes can be made
polymorphic in vector length by using templates.

Example 3.8 (Templated vector length)
The following variant of the Vec3 class points into the direction of how
more sophisticated polymorphic classes can be built (the simd keyword is
described in Section 3.2.1):
template <int L>
struct Vec3 {

simd(L) Vec3(float varying (L) xx ,
float varying (L) yy ,
float varying (L) zz)

: x(xx), y(yy), z(zz) {}

simd(L) Vec3 <L> operator +(Vec3 <L> v) {
Vec3 <L> result ;
result .x = x + v.x;
result .y = y + v.y;
result .z = z + v.z;
return result ;

}

float varying (L) x, y, z;
};

Extract and Insert Elements

Sierra provides the following built-in functions to insert elements into and
extract elements from a vector:
template < class T, int L>
T extract ( const T varying (L)& vec , int i);
template < class T, int L>
void insert (T varying (L)& vec , int i, T val );

Non-varying types like the Vec3 template class in Example 3.8 can pro-
vide their own template specializations for extract and insert. Thereby,
these types integrate with other generic code using extracts and inserts.
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Vector Types vs. Array Types

At first glance, a vector int varying(L) v and an array int a[L] seem
similar. However, there are a number of important differences.

First of all, arrays cannot be passed by value to a function. A function
void f(int a[L]) { /* ... */ }

is just syntactic sugar for
void f(int* a)

in C++. The given length L has no semantic meaning. Invoking
void g(int varying (L) v)

on the other hand, really copies the argument to the parameter v and the
type checker guarantees that v has L elements.

Moreover, note the difference between

• vec3 v[N] (see Figure 1.2a) and

• vec3 varying(L) v[N] (see Figure 1.2c).

Furthermore, vec3 va[N] varying(L) denotes L arrays of scalar data. The
type of &va[23] is vec3 uniform* varying(L).
In contrast to arrays, vectors do not allow the programmer to take

the address of one of its elements. Any attempt to compute the address
anyway, e.g. by utilizing unions or tricky pointer casts, leads to undefined
behavior. This makes it possible for an implementation to choose the exact
representation of vectors. For example, the internal representation of a
uint64_t varying(4) for a machine without native support for vectors
of uint64_ts may be two vectors of uint32_ts: one represents the lower
halves, one the upper halves. Moreover, a compiler can optimize more
aggressively if it knows that no other part of the program holds a reference
to an element of a vector.

Example 3.9 (No aliasing)
The compiler knows in the following code that pi does not alias with any
element in *pv:
void f(int varying (4)* pv , int* pi) { /* ... */ }

Programmers can work around this limitation by using a smart reference:
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template < class T, int L>
class SliceRef {
public :

SliceRef (T varying (L)& ref , int i)
: ref_(ref), i_(i) {}

T get () { return extract (ref_ , i); }
void set(T val) { insert (ref_ , i, val ); }

private :
T varying (L)& ref_;
int i_;

};

(a) SliceRef
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(b) a SliceRef in action

Figure 3.2.: SliceRef: a smart vectorial reference to an SoA

Example 3.10 (SliceRef)
The data layout in Figure 3.2b arises when a Vec3 varying(4) is grouped
in an array. If the programmer needs a reference to a logically scalar Vec3,
he cannot use a pointer of type Vec3 uniform* because the Vec3 instances
lie scattered in memory. A SliceRef<Vec3, 4> (see Figure 3.2a) points
to the beginning of a Vec3 varying(4) and knows the element index (2
in this example) that is referenced.

3.2. SIMD Mode
Please refer to Chapter 1 for a gentle introduction to SIMDmode; Section 4.2
gives a semantic whereas Chapter 5 an implementational view of this
execution model. This section highlights how SIMD mode interacts with
the rest of C++.
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If a control-flow-dependent expression is a vector of length L instead of a
scalar, Sierra will enter SIMD mode of length L. All parts of the program
depending on that expression are evaluated in that mode. At runtime, each
program point must know all active lanes. Therefore, Sierra maintains a
value of type bool varying(L), which we call current mask. This mask
indicates, which SIMD lanes are active. The programmer has read access
to this value via the current_mask keyword. We call L the current vector
length. As vector lengths must be constant expressions, the type checker
statically knows the vector length of each program point and, consequently,
Sierra knows statically which parts must be executed in SIMD mode and
in which length.

Sierra does not allow nesting of SIMD modes with different vector lengths,
although a reasonable semantics could be given. For example, nesting a
SIMD mode of length 4 within one of length 2 would effectively result
in 8 running threads. We leave research in this area for future work and,
currently, the programmer can only declare or use scalars or vectors of
length L inside SIMD mode of length L. The size of the element type,
however, does not introduce any constraints.

Example 3.11 (Vectors inside SIMD mode)
Since f < d causes SIMD mode of length 4, accessing i of length 8 is a
semantic error:
float varying (4) f = /* ... */;
double varying (4) d = /* ... */;
int varying (8) i = /* ... */;
if (f < d) {

d += f; // OK
i++; // error

}

Scalar variables and control flow on the other hand are always allowed.
In fact, keeping control flow scalar whenever possible usually improves
performance significantly. The reason for this is that the code generator
does not have to linearize control-flow (see Chapter 5) and many scalar
operations are more efficient than their vectorial counter parts. In particular,
a scalar load/store is vastly more efficient than gather/scatter.

The following statements will trigger SIMD mode of length L for S if Ev
is a vector of length L:
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• if (Ev) S [else S]

• switch (Ev) S

• for (Si; Ev; E) S

• while (Ev) S

• do S while (Ev);

Additionally, short-circuit evaluation might trigger SIMD mode of length L
for E if Ev is a vector of length L:

• Ev && E and E && Ev

• Ev || E and E || Ev

• Ev ? E : E

The statements break, continue, case and return can also be used
in SIMD mode. Using these unstructured control-flow statements may
cause parts of the program to be executed in SIMD mode, although these
parts are not syntactically nested within a vectorial control-flow construct
(see Chapter 5). While it is feasible to support arbitrary goto-statements
and labels, code generation and even type checking becomes complex—in
particular when working with a C++-AST (see Section 5.2).

3.2.1. Function Calls
Since arbitrary functions may be called in SIMD mode, these functions need
to know about the current mask. For example, the function density in
Listing 1.4 is called in SIMD mode. Therefore, a function can be annotated
with simd(L). This allows Sierra to pass the current mask of length L
to that function and Sierra will execute that function in SIMD mode of
length L. If this annotation is missing, the function will only work in
scalar mode. Thus, invoking a scalar-mode function in SIMD mode requires
Sierra to split currently active vectorial arguments into scalars similar to
the for_each_active statement (see Section 3.2.3). Calling a simd(L)
function in scalar mode, requires Sierra to pass an all-true mask as current
mask to that function.
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Example 3.12 (Templated SIMD mode)
This parameter can also be templated.
template <int L>
simd(L) float varying (L) dot(Vec3 varying (L) v,

Vec3 varying (L) w) {
return v.x*w.x + v.y*w.y + v.z*w.z;

}

3.2.2. The Scalar Statement
Sometimes it is desirable to deactivate vectorization within a function and
proceed with scalar computations. Therefore, Sierra offers the scalar
statement:
scalar (m) S

This statement saves the current mask in m. Then, S is executed in scalar
mode. Afterwards, the current mask is restored. The (m) is optional.

Example 3.13 (Scalar statement)
The following example demonstrates the use of the scalar-statement:
// scalar mode
int varying (4) a = /* ... */;
int varying (4) b = /* ... */;
if (a < b) {

// SIMD mode of length 4
scalar (m) { /*m is of type bool varying (4) */ }
// SIMD mode of length 4

}

3.2.3. For-Each-Active
A common programming pattern is to fetch all active values from a vector:
for_each_active (m, i) S

The statement S is now in scalar mode and each iteration assigns the next
prior active lane index to i. The prior active mask is copied to m.
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scalar (m) {
for (int i= next_true (m, 0); i >=0; i= next_true (m, i+1)) S

}

(a) for_each_active(m, i) S is equivalent to the above listing

for_each_active (m, i) {
auto x = extract (v, i);
auto dup = x == v; // indicates duplicates
// activate duplicates in prior active lanes
if (m & dup) S
m &= ~dup; // blend out duplicates

}

(b) for_each_unique(x, v) S is equivalent to the above listing

Figure 3.3.: for_each_active and for_each_unique

Example 3.14 (Scalarize each active lane)
This statement comes in handy if something scalar must be performed in
SIMD mode:
simd (4) int varying (4) f(int varying (4) v) {

int varying (4) result ;
for_each_active (m, i)

insert (res , i, do_sth_scalar ( extract (v, i)));
return result ;

}

The for_each_active statement translates to the code in Figure 3.3a:
The scalar-statement switches to scalar mode. The for loop iterates over all
active lanes with the help of the next_true(m, i) function. This function
essentially performs a bit scan. It returns the index of the next true value
in m greater than or equal to i. The function will return -1 if there is no
further true value in m.

3.2.4. For-Each-Unique
A related idiom scans a vector v in each active lane.
for_each_unique (x, v) S
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For each found unique value x, the body S will be executed in SIMD mode.
Only lanes that have been active beforehand and contain x, will be activated.
The iteration order is implementation-defined. The for_each_unique state-
ment translates to the pattern in Figure 3.3b.1 The statement’s usefulness
is best demonstrated by an example.

Example 3.15 (Scalarize each active lane uniquely)
In the following snippet of a rendering code each Material instance has
a function pointer to compute its transparency. Suppose, the vectorial
pointer m is {m1, m2, m2, m1} and the current mask is {1, 1, 1, 0}.
Then, for_each_unique performs two iterations: One iteration invokes
p1->get_transparency using a current mask of {1, 0, 0, 0}; the
other iteration invokes p2->get_transparency using a current mask of
{0, 1, 1, 0}.
Material uniform * m varying (4) = /* ... */;
Vec3 varying (4) transparency ;
for_each_unique (mm , m)

transparency = mm -> get_transparency (mm , /* ... */);

Similar code occurs in the OSPRay renderer, which is partially written in
ISPC [Wal+17].

Example 3.16 (Virtual method calls)
Similarly, invoking a virtual method on a vectorial this pointer can be
implemented:
struct A {

virtual simd(L) R f(/* params */) = 0;
};
struct B : public A {

virtual simd(L) R f(/* params */) { /* ... */ }
};
struct C : public A {

virtual simd(L) R f(/* params */) { /* ... */ }
};

1Note that only the scalar-statement needs to be implemented inside the compiler. Both
for_each_active and for_each_unique can be implemented as macro. Obviously,
error messages can be more precise if these statements are built into the compiler.
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A* varying (4) a = /* ... */;
a->f(/* args */ );

Just like for_each_unique Sierra searches the vectorial this pointer
for duplicates and groups SIMD lanes that reference the same virtual
method in one call. The current mask, which Sierra passes to that method,
indicates the pointers that were active beforehand and actually reference
that method.
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A type system is a tractable syntactic method
for proving the absence of certain program be-
haviors by classifying phrases according to the
kinds of values they compute.
Benjamin C. Pierce,

Types and Programming Languages 4
Semantics

This chapter takes a formal look on Sierra’s type system and semantics.
To this end, we introduce Imp—a small imperative language—and show
how to extend it with varying types and SIMD mode to obtain VecImp.
In VecImp the if- and while-statements are overloaded such that a vector
of booleans is also allowed as a controlling condition. Finally, we briefly
sketch PolyVecImp, a language that uses type inference in order to infer
proper vector types.

The notation used is described in Appendix A; more extensive proofs can
be found in Appendix B.

4.1. Imp
Imp mimics a subset of C. The term “subset” is not meant in a strict
mathematical sense in this context. It rather relates to the feature set Imp
offers compared to C.
On the one hand, Imp behaves more like a real language as opposed to

small imperative languages typically formalized in semantics lectures [e.g.
Mye13]. This is because Imp supports functions and full recursion. Function
calls are particularly interesting when discussing VecImp later on but
require a more complex discussion of both Imp and VecImp.

On the other hand, we elide features that are straightforward to add like,
for example, struct types and appropriate expressions. Furthermore, we
would like to study a sound calculus. For this reason, we also elide unsound
features like, for instance, C-style (i.e., memory-unsafe) pointers.1

1see Norrish [Nor98] for a formal discussion of C and undefined behavior

39



4. Semantics

Γ ∶∶= ∅ ∣ Γ, x ∶ t (typing environment)
σ ∶∶= ∅ ∣ σ,x ∶ vt (state)
t ∶∶= bool ∣ int ∣ float ∣ � (type)

Φ ∶∶= ∅ ∣ Φ, f (program)
f ∶∶= t `(t x) { s } (function)
s ∶∶= (statement)

skip (skip)
∣ return e; (return)
∣ ŝ s (list)

ŝ ∶∶= (head)
e; (expression statement)

∣ t x; (declaration)
∣ x = e; (assignment)
∣ if (e) s else s (if)
∣ while (e) s (while)

e ∶∶= (expression)
x (variable)

∣ νt (value)
∣ `(e) (call)
∣   s ¡σ (statement expression)

a ∶∶= s ∣ e (term)

Figure 4.1.: Syntax of Imp. Expanded syntax is grayed out.

4.1.1. Syntax

Figure 4.1 depicts Imp’s syntax. The grayed out part of the syntax is
expanded syntax. An Imp program consists of a sequence Φ of functions.
Function names range over `, variable names over x. We require all function
and variable names to be unique. In order to pass information from one
statement to the next one, statements are organized as lists, which consist
of a head ŝ and a subsequent statement s. The skip and return statements
mark the end of a statement list. Furthermore, skip and return νt; are
statement values—they cannot be further reduced. An Imp programmer
has access to three types: bool, int and float. We write νt to denote
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some expression value of type t. For example, the value νbool is either true
or false.
Term denotes either an expression or a statement. A term value is either

an expression value or a statement value.
We use the following syntactic sugar in both Imp and VecImp:

t x = e; ∶= t x; x = e;
if (e) s ∶= if (e) s else skip

for (t x = ei; ec; xs = es) sb ∶= t x = ei; while (ec) { sb xs = es; }

x = e1 ⊕ e2 ∶= x = `⊕,t1,t2(e1, e2)

We map binary operators to function calls. We mangle the operator symbol
and the expressions’ types into a unique function label `⊕,t1,t2 . We assume
that the implementation of these functions is built-in.
Additionally, we use { s } in the concrete syntax to disambiguate state-

ment nesting and also elide the closing skip within s if applicable. A real
language would also “forget” the names declared within the braces. But
since we require all names to be unique anyway, we do not model this in
our theoretical considerations.

Example 4.1 (Mandelbrot in Imp)
Listing 4.1 computes the famous Mandelbrot set in Imp.

4.1.2. Typing
Imp’s type system is presented in Figure 4.2. T-Prg checks all functions
in a program. In order to check a function, typing rules maintain a typing
environment Γ, which keeps track of each variable and its associated type.
T-Fun populates this environment with each parameter and its associated
type in order to check a function’s body.
Statement typing rules have the form Φ; Γ ⊢ s ∶ t. Read: Statement s

returns a value of type t assuming the program Φ and the typing environ-
ment Γ. At this point the � type, which is part of the expanded syntax,
unveils. This type indicates that a statement list ends with skip. Note
that T-If and T-While allow �-typed statements as consequence/alterna-
tive/body.
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Program: ⊢ Φ

T-Prg
Φ ⊢ f1 ⋯ Φ ⊢ fn

⊢ f1, ... , fn

Function: Φ ⊢ f

T-Fun
Φ;x ∶ t ⊢ s ∶ tr

Φ ⊢ tr `(t x) { s }

Statement: Φ; Γ ⊢ s ∶ t

TS-Skip
Φ; Γ ⊢ skip ∶ �

TS-Ret
Φ; Γ ⊢ e ∶ t

Φ; Γ ⊢ return e; ∶ t

TS-Expr
Φ; Γ ⊢ e ∶ t Φ; Γ ⊢ s ∶ tr

Φ; Γ ⊢ e; s ∶ tr
TS-Decl

Φ; Γ[x↦ t] ⊢ s ∶ tr

Φ; Γ ⊢ t x; s ∶ tr

TS-Assign
x ∶ t ∈ Γ Φ; Γ ⊢ e ∶ t Φ; Γ ⊢ s ∶ tr

Φ; Γ ⊢ x = e; s ∶ tr

TS-If
Φ; Γ ⊢ e ∶ bool Φ; Γ ⊢ st ∶ � Φ; Γ ⊢ sf ∶ � Φ; Γ ⊢ sr ∶ tr

Φ; Γ ⊢ if (e) st else sf sr ∶ tr

TS-While
Φ; Γ ⊢ e ∶ bool Φ; Γ ⊢ sb ∶ � Φ; Γ ⊢ sr ∶ tr

Φ; Γ ⊢ while (e) sb sr ∶ tr

Expression: Φ; Γ ⊢ e ∶ t

TE-Var
x ∶ t ∈ Γ

Φ; Γ ⊢ x ∶ t
TE-Val

Φ; Γ ⊢ νt ∶ t

TE-Call
tr `(t1 x1, ... , tn xn) { s } ∈ Φ Φ; Γ ⊢ e1 ∶ t1 ⋯ Φ; Γ ⊢ en ∶ tn

Φ; Γ ⊢ `(e1, ... , en) ∶ tr

TE-Stmt
Φ; Γ ⊢ s ∶ t

Φ; Γ ⊢   s ¡σ ∶ t

Figure 4.2.: Typing in Imp
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Evaluation context:

E[⋆] ∶= return ⋆; ∣ ⋆; s ∣ x = ⋆; s ∣ if (⋆) s else s s ∣ `(νt,⋆, e) ∣   ⋆ ¡σ̂

E-Eval
Φ ⊢ σ;a→ σ′;a′

Φ ⊢ σ;E[a]→ σ′;E[a′]

Statement: Φ ⊢ σ; s→ σ′; s′

ES-Expr
Φ ⊢ σ; νt; s→ σ; s

ES-Decl
Φ ⊢ σ; t x; s→ σ[x↦ 0t]; s

ES-Assign
x ∶ ν′t ∈ σ

Φ ⊢ σ;x = νt; s→ σ[x↦ νt]; s

ES-IfT
Φ ⊢ σ; if (true) st else sf sr → σ; st ○ sr

ES-IfF
Φ ⊢ σ; if (false) st else sf sr → σ; sf ○ sr

ES-While
Φ ⊢ σ; while (e) sb sr → σ; if (e) { sb while (e) sb } sr

Expression: Φ ⊢ σ; e→ σ′; e′

EE-Var
x ∶ νt ∈ σ

Φ ⊢ σ;x→ σ; νt
EE-Call

tr `(t x) { s } ∈ Φ
Φ ⊢ σ; `(νt)→ x ∶ νt;   s ¡σ

EE-Stmt
Φ ⊢ σ;   return νt; ¡σ′ → σ′; νt

Figure 4.3.: Evaluation in Imp
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1 int
2 mandel ( float x0 , float y0 ,
3 float x1 , float y1) {
4 float dx = (x1 - x0) / WIDTH;
5 float dy = (y1 - y0) / HEIGHT ;
6 for (int j = 0; j < HEIGHT ; j = j + 1) {
7 for (int i = 0; i < WIDTH; i = i + 1) {
8

9 float x = x0 + i*dx;
10 float y = y0 + j*dy;
11 store(iter(x, y), i, j);
12 }
13 }
14 return 0;
15 }
16

17 int iter( float cr ,
18 float ci) {
19 float zr = cr;
20 float zi = ci;
21 int i = 0;
22 while ((i < MAX_ITER ) & (zr*zr + zi*zi < 4.f)) {
23 float newr = zr*zr - zi*zi;
24 float newi = 2.f*zr*zi;
25 zr = cr + newr;
26 zi = ci + newi;
27 i = i + 1;
28 }
29 return i;
30 }

Listing 4.1.: Mandelbrot set computation in Imp

Expression typing rules have the form Φ; Γ ⊢ e ∶ t. Read: Expression e is
of type t assuming the program Φ and the typing environment Γ.

Remark. Statement and expression typing rules are two relations defined
in a mutual recursive way.
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1 simd (1) int varying (1)
2 mandel ( float varying (1) x0 , float varying (1) y0 ,
3 float varying (1) x1 , float varying (1) y1) {
4 float varying (1) dx = (x1 - x0) / WIDTH;
5 float varying (1) dy = (y1 - y0) / HEIGHT ;
6 for (int j = 0; j < HEIGHT ; j = j + 1) {
7 for (int varying (1) ii = 0; ii < WIDTH; ii = ii + 4) {
8 int varying (4) i = ii + {0, 1, 2, 3};
9 float varying (4) x = x0 + i*dx;

10 float varying (4) y = y0 + j*dy;
11 store(iter(x, y), i, j);
12 }
13 }
14 return 0;
15 }
16

17 simd (1) int varying (4) iter(float varying (4) cr ,
18 float varying (4) ci) {
19 float varying (4) zr = cr;
20 float varying (4) zi = ci;
21 int varying (4) i = 0
22 while ((i < MAX_ITER ) & (zr*zr + zi*zi < 4.f)) {
23 float varying (4) newr = zr*zr - zi*zi;
24 float varying (4) newi = 2.f*zr*zi;
25 zr = cr + newr;
26 zi = ci + newi;
27 i = i + 1;
28 }
29 return i;
30 }

Listing 4.2.: Mandelbrot set computation in VecImp

4.1.3. Evaluation
Dynamic semantics is presented by a small step semantics (see Figure 4.3).
During evaluation the state σ keeps track of each variable and its associated
value. Statement rules have the form Φ ⊢ σ; s→ σ′; s′. Read: Statement s
in state σ evaluates in one step to statement s′ in state σ′ assuming the
program Φ. Similarly, expression rules have the form Φ ⊢ σ; e→ σ′; e′.
The typing environment is an overapproximation of the state as the

following definition and lemma summarize.
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Definition 4.1 (Typing Environment and State Agreement)
We define:

Γ ⋍ σ ∶⇔ dom(Γ) = dom(σ) ∧ ∀(x ∶ νt) ∈ σ ∶ (x ∶ t) ∈ Γ .

Lemma 4.1 (Uniqueness)
If Γ1 ⋍ σ and Γ2 ⋍ σ, then Γ1 = Γ2.

Proof. By a straightforward induction.

Rule E-Eval uses an evaluation context E[⋆] in order to instantiate rules
for a whole family of terms. Note that E ’s hole ⋆ may either be a statement
or expression. Thus, the resulting relation is either a statement or expression
relation. This rule evaluates all subterms to term values in a deterministic
order. All other evaluation rules deal with the case how a term evaluates if
all other subterms are values.

ES-IfT and ES-IfF concatenate two statements s1 and s2 where s1 must
end with skip. This prerequisite is checked by T-If and T-While.

s1 ○ s2 ∶= ŝ1 s2 where s1 = ŝ1 skip

Lemma 4.2 (Statement Sequence)

If Φ; Γ ⊢ s1 ∶ � and Φ; Γ ⊢ s2 ∶ t2 , then Φ; Γ ⊢ s1 ○ s2 ∶ t2 .

Proof. By a straightforward induction.

In order to support recursive function calls, EE-Call must store the
current state before descending into the called function. This is the occasion
where the expanded syntax of a statement expression (not to be confused
with an expression statement) is needed:

• The call evaluates to a statement expression   s ¡σ .

• The statement s is the called function’s body.

• The statement expression memorizes the current state σ.

• EE-Call constructs a new state, which only consists of all parameters
bound to the arguments’ values. In particular, all prior variable
bindings are now “forgotten”.
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In order to return from that call, EE-Stmt evaluates   return νt; ¡σ′ to νt
while restoring the previously memorized state σ′. By doing this, EE-Stmt
discards the previous state σ. Statement expressions are inspired by a GCC
C-extension.2

Remark. Similar to the typing rules, statement and expression evaluation
rules are defined in a mutual recursive way.

4.1.4. Soundness
Lemma 4.3 (Imp: Progress)
Every Imp term is either a term value or can be stepped into another term.
To be more precise: Let ⊢ Φ and Γ ⋍ σ.

If Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t ,

then s = skip ∨ s = return νt;
e = νt

or ∃s′, σ′ ∶ Φ ⊢ σ; s→ σ′; s′
∃e′, σ′ ∶ Φ ⊢ σ; e→ σ′; e′ .

Proof sketch. By mutual induction on a derivation of Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t .

See Section B.1 for the full proof.

Lemma 4.4 (Imp: Preservation)
If a well-typed Imp term takes a step of evaluation, the resulting term is
also well-typed. To be more precise: Let ⊢ Φ, Γ ⋍ σ, and Γ′ ⋍ σ′.

If Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t and Φ ⊢ σ; s→ σ′; s′

Φ ⊢ σ; e→ σ′; e′ , then
Φ; Γ′ ⊢ s′ ∶ t
Φ; Γ′ ⊢ e′ ∶ t .

Proof sketch. By mutual induction on a derivation of Φ ⊢ σ; s→ σ′; s′
Φ ⊢ σ; e→ σ′; e′ .

See Section B.1 for the full proof.

2see https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
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4. Semantics

Γ ∶∶= as in Imp (typing environment)
σ ∶∶= as in Imp (state)
m ∶∶= νbool varying(l) (current mask)
τ ∶∶= bool ∣ int ∣ float (element type)
t ∶∶= τ varying(l) ∣ � (type)
l ∶∶= 1 ∣ 2 ∣ 3 ∣ 4 ∣ ⋯ (vector length)

Φ ∶∶= as in Imp (program)
f ∶∶= simd(l) t `(t x) { s } (function)
s ∶∶= as in Imp (statement)
ŝ ∶∶= as in Imp (head)
e ∶∶= as in Imp (expression)

∣ {e} (vector)
a ∶∶= as in Imp (term)

Figure 4.4.: Syntax of VecImp. Expanded syntax is grayed out.

Theorem 4.1 (Imp: Soundness)
No well-typed Imp term gets stuck. To be more precise: Let ⊢ Φ, Γ ⋍ σ, and
Γ′ ⋍ σ′.

If Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t and Φ;σ; s→∗ σ′; s′

Φ;σ; e→∗ σ′; e′ ,

then s′ = skip or s′ = return νt;
e′ = νt

or ∃s′′, σ′′ ∶ Φ;σ′; s′ → σ′′; s′′
∃e′′, σ′′ ∶ Φ;σ′; e′ → σ′′; e′′ .

Proof. By Lemma 4.3 and Lemma 4.4.

4.2. VecImp
This section discusses how to extend Imp to its vector counterpart VecImp
by adding vector types and SIMD mode.

4.2.1. Syntax
Figure 4.4 depicts the required modifications of Imp’s syntax in order
to obtain VecImp. In contrast to Imp, each function in VecImp must
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be annotated with a vector length l (see Section 3.2.1). Furthermore, in
VecImp all types accessible to the programmer must be qualified with a
vector length. The following function retrieves the vector length of a type:

∥τ varying(l)∥ = l
∥�∥ = 1

Finally, VecImp adds a vector expression in order to construct a vector.
For example, assuming x is of type int, the expression {0, 1, x, 3}
is of type int varying(4) (see TE-Vec). Like in Imp, νt denotes some
expression value of type t. In particular, {0, 1, 2, 3} is an example for a
value νint varying(4) of type int varying(4).

Example 4.2 (Mandelbrot in VecImp)
Listing 4.2 computes the Mandelbrot set in VecImp. Note that all types
must include the varying qualifier. This example uses a vectorization
length of 4. The inner loop beginning in Listing 7 vectorizes in x-direction
whereas the setup of the outer loop is still scalar. The inner loop assumes
that WIDTH is a multiple of 4 and computes 4 iterations in lockstep. Note
that the condition of the while loop in line 22 is of type bool varying(4).
This causes the corresponding body to be vectorized.

4.2.2. Typing
VecImp checks each function in a program—just like Imp (see T-Prg in
Figure 4.2). As soon as VecImp checks a function, VecImp has to keep
track of the current vector length (see Figure 4.6). For this reason, VecImp
adds the current vector length l to VecImp’s statement and expression
typing relations. If l ≠ 1, the program is in SIMD mode.

Combining Vector Lengths

The current vector length restricts the occurrence of variables. For example,
TE-Var guarantees that the accessed variable

• is scalar,

• occurs in scalar mode or
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4. Semantics

1

432 5 ⋯

⊺

(a) Hasse diagram of the lattice for ld = l ⊔ ls
Assignable: l ⊢ l ← l

A-Length
ld = l ⊔ ls

l ⊢ ld ← ls
A-Splat

1 ⊢ l ← 1
A-Scalar

l ⊢ 1← 1

(b) assignable relation

Figure 4.5.: Length and assignable relations

• is compatible with the current vector length.

In order to track those restrictions, we use the lattice depicted in Figure 4.5a.
This lattice captures the intuition that everything is still well-typed as long
as scalar values are used. As soon as a vector comes into play, we ascend in
the lattice to—let us say vector length 4. At that point it is still fine to use
scalar computations and other vectorial computations of vector length 4.
But if we mix those computations with a vector of a different vector length—
let us say 8—we ascend in the lattice to ⊺, which indicates a type error.
However, we want to rule out type errors in the first place in VecImp’s
typing rules; we do not want to add many premises of the form “ld ≠ ⊺”.
For this reason, we implicitly assume premises of the form ld ≠ ⊺ for all
`d = ` ⊔ `s that occur in the rules.

Example 4.3 (Length)
It holds 1 = 1 ⊔ 1, 4 = 1 ⊔ 4, and ⊺ = 4 ⊔ 8. Thus, we cannot conclude:

TE-Val

 
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⊺ = 4 ⊔ 2

∅;∅; 4 ⊢ νint varying(2) ∶ int varying(2)
 
.
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int4 v = {0, 8, 7, 1};
bool4 mask = lt4(v, broadcast4 (3));
v = blend4 ( mask , add4(v, broadcast4 (2)) , v);
v = blend4 (neg4(mask), sub4(v, broadcast4 (3)) , v);
print(v);

Listing 4.3.: Straightforward implementation of Listing 1.1

Assignments

Both TS-Assign and TE-Call have a notion of assignment. This logic is
factored out in the assignable relation in Figure 4.5b. A-Length checks
that the vector length ld of the destination variable is the join of the vector
length ls of the source expression and the current vector length l. Moreover,
A-Scalar allows assignments from a scalar expression to a scalar variable in
SIMD mode, whereas A-Splat allows a broadcast in scalar mode. Note that
A-Length already covers a broadcast to a vector in SIMD mode.

4.2.3. Evaluation
Evaluation (see Figure 4.7) must keep track of which vector lanes are active—
the current mask (see Section 3.2). For this reason, VecImp maintains
a boolean vector m. It is important for VecImp’s soundness that ∥m∥ is
either scalar or equal to l. The former case means that the current mask is
broadcastable to the current vector length.

Definition 4.2 (Vector Length Agreement)
We define:

l ⋍m ∶⇔ ∥m∥ = 1 ∨ l = ∥m∥

In order to better understand the semantics of SIMD mode, it is a good
idea to recap Example 1.2. However, Listing 4.3 is a more straightforward
implementation of Listing 1.1 that better reflects the semantics in Figure 4.7.
When evaluating an if-statement, E-Eval ensures that the controlling

condition evaluates to a value just like in Imp. But in contrast to Imp,
VecImp cannot just select the consequence or alternative depending on the
condition because the condition can be vectorial. For this reason, VecImp
linearizes the control flow by firstly evaluating the consequence (see ES-IfT)
and then the alternative (see ES-IfF) with an appropriate mask. Note how
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Function: Φ ⊢ f

T-Fun
= l ⊔ ∥t1∥ ⋯ = l ⊔ ∥tn∥ = l ⊔ ∥tr∥ Φ;x ∶ t; l ⊢ s ∶ tr

Φ ⊢ simd(l) tr `(t1 x1, ... , tn xn) { s }

Statement: Φ; Γ; l ⊢ s ∶ t

TS-Skip
Φ; Γ; l ⊢ skip ∶ �

TS-Ret
Φ; Γ; l ⊢ e ∶ τ varying(le) lr = l ⊔ le

Φ; Γ; l ⊢ return e; ∶ τ varying(lr)

TS-Expr
Φ; Γ; l ⊢ e ∶ t = l ⊔ ∥t∥ Φ; Γ; l ⊢ s ∶ tr

Φ; Γ; l ⊢ e; s ∶ tr

TS-Decl
Φ; Γ[x↦ t]; l ⊢ s ∶ tr = l ⊔ ∥t∥

Φ; Γ; l ⊢ t x; s ∶ tr

TS-Assign

x ∶ τ varying(lx) ∈ Γ
Φ; Γ; l ⊢ e ∶ τ varying(le) l ⊢ lx ← le Φ; Γ; l ⊢ s ∶ tr

Φ; Γ; l ⊢ x = e; s ∶ tr

TS-If

Φ; Γ; l ⊢ e ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ; l′ ⊢ st ∶ � Φ; Γ; l′ ⊢ sf ∶ � Φ; Γ; l ⊢ sr ∶ tr

Φ; Γ; l ⊢ if (e) st else sf sr ∶ tr

TS-While

Φ; Γ; l ⊢ e ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ; l′ ⊢ sb ∶ � Φ; Γ; l ⊢ sr ∶ tr

Φ; Γ; l ⊢ while (e) sb sr ∶ tr

Expression: Φ; Γ; l ⊢ e ∶ t

TE-Var
x ∶ t ∈ Γ = l ⊔ ∥t∥

Φ; Γ; l ⊢ x ∶ t
TE-Val

= l ⊔ ∥t∥

Φ; Γ; l ⊢ νt ∶ t

TE-Call

simd(l`) tr `(tx1 x1, ... , txn xn) { s } ∈ Φ
Φ; Γ; l ⊢ e1 ∶ t1 ⋯ Φ; Γ; l ⊢ en ∶ tn

l ⊢ ∥tx1∥← ∥t1∥ ⋯ l ⊢ ∥txn∥← ∥tn∥ l ⊢ l` ← l = l ⊔ ∥tr∥

Φ; Γ; l ⊢ `(e1, ... , en) ∶ tr

TE-Stmt
Φ; Γ; l ⊢ s ∶ t = l ⊔ ∥t∥

Φ; Γ; l ⊢   s ¡σ ∶ t

TE-Vec
Φ; Γ; l ⊢ e1 ∶ τ varying(1) ⋯ Φ; Γ; l ⊢ en ∶ τ varying(1) = l ⊔ n

Φ; Γ; l ⊢ {e1, ... , en} ∶ τ varying(n)

Figure 4.6.: Typing in VecImp
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Evaluation context:

E[⋆] ∶= as in Imp ∣ {νt,⋆, et}

E-Eval
Φ;m ⊢ σ;a→ σ′;a′

Φ;m ⊢ σ;E[a]→ σ′;E[a′]

Statement: Φ;m ⊢ σ; s→ σ′; s′

ES-Expr
Φ;m ⊢ σ; νt; s→ σ; s

ES-Decl
Φ;m ⊢ σ; t x; s→ σ[x↦ 0t]; s

ES-Assign
x ∶ ν′τ varying(lx)

∈ σ blend(m,ντ varying(le), ν
′

τ varying(lx)
) valid

Φ;m ⊢ σ;x = ντ varying(le); s→ σ[x↦ blend(m,ντ varying(le), ν
′

τ varying(lx)
)]; s

ES-IfT
m ∧ νbool varying(l) valid Φ;m ∧ νbool varying(l) ⊢ σ; st → σ′; s′t

Φ;m ⊢ σ; if (νbool varying(l)) st else sf sr → σ′; if (νbool varying(l)) s
′

t else sf sr

ES-IfF
m ∧ ¬νbool varying(l) valid Φ;m ∧ ¬νbool varying(l) ⊢ σ; sf → σ′; s′f

Φ;m ⊢ σ; if (νbool varying(l)) skip else sf sr
→ σ′; if (νbool varying(l)) skip else s′f sr

ES-If
Φ;m ⊢ σ; if (νbool varying(l)) skip else skip sr → σ; sr

ES-While
Φ;m ⊢ σ; while (e) sb sr → σ; if (e) { sb while (e) sb } sr

Expression: Φ;m ⊢ σ; e→ σ′; e′

EE-Var
x ∶ νt ∈ σ

Φ;m ⊢ σ;x→ σ; νt
EE-Call

simd(l) tr `(t x) { s } ∈ Φ
Φ;m ⊢ σ; `(νt)→ x ∶ νt;   s ¡σ

EE-Stmt
Φ;m ⊢ σ;   return νt; ¡σ′ → σ′; νt

Figure 4.7.: Evaluation in VecImp
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ES-Assign uses the blend operation blend(m,b, a) to update only active
lanes. As indicated by ∥m∥ ⊢ ∥a∥← ∥b∥, broadcasts may be necessary (see
Section 3.1.1). Note that blend(m,b, a) is valid iff ∥m∥ ⊢ ∥a∥← ∥b∥. ES-IfT
and ES-IfF perform calculations on the mask:

• ¬m negates all elements in m;

• m ∧m′ performs a bitwise AND in an element-wise manner. Addi-
tionally, m or m′ may be scalars. In this case, m/m′ is broadcast to
the other operand’s vector length if applicable.

Note thatm∧m′ is valid iff = ∥m∥⊔∥m′∥. Furthermore, ifmr =m∧m′, then
∥mr∥ = ∥m∥ ⊔ ∥m′∥. Finally, if both the consequence and the alternative
have been evaluated to skip, evaluation continues with the rest of the
program in sr (see ES-If).

4.2.4. Soundness
Lemma 4.5 (VecImp: Progress)
Every VecImp term is either a term value or can be stepped into another
term. To be more precise: Let ⊢ Φ, Γ ⋍ σ, and l ⋍m.

If Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t ,

then s = skip; ∨ s = return νt;
e = νt

or ∃s′, σ′ ∶ Φ;m ⊢ σ; s→ σ′; s′
∃e′, σ′ ∶ Φ;m ⊢ σ; e→ σ′; e′ .

Proof sketch. By mutual induction on a derivation of Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t .

See Section B.2 for the full proof.

Lemma 4.6 (VecImp: Preservation)
If a well-typed VecImp term takes a step of evaluation, the resulting term
is also well-typed. To be more precise: Let ⊢ Φ, Γ ⋍ σ, Γ′ ⋍ σ′, and l ⋍m.

If Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t and Φ;m ⊢ σ; s→ σ′; s′

Φ;m ⊢ σ; e→ σ′; e′ , then
Φ; Γ′; l ⊢ s′ ∶ t
Φ; Γ′; l ⊢ e′ ∶ t .

Proof sketch. By mutual induction on a derivation of Φ;m ⊢ σ; s→ σ′; s′
Φ;m ⊢ σ; e→ σ′; e′ .

See Section B.2 for the full proof.
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1 int mandel (float x0 , float y0 , float x1 , float y1) {
2 float dx = (x1 - x0) / WIDTH;
3 float dy = (y1 - y0) / HEIGHT ;
4 for (int j = 0; j < HEIGHT ; j = j + 1) {
5 for (int ii = 0; ii < WIDTH; ii = ii + 4) {
6 int i = ii + {0, 1, 2, 3};
7 float x = x0 + i*dx;
8 float y = y0 + j*dy;
9 store(iter(x, y), i, j);

10 }
11 }
12 return 0;
13 }

Listing 4.4.: Mandelbrot set computation in PolyVecImp; iter is iden-
tical to the Imp version (see Listing 4.1).

Theorem 4.2 (VecImp: Soundness)
No well-typed VecImp term gets stuck. To be more precise: Let ⊢ Φ, Γ ⋍ σ,
Γ′ ⋍ σ′, and l ⋍ ∥m∥.

If Φ; Γ, l ⊢ s ∶ t
Φ; Γ, l ⊢ e ∶ t and Φ;m ⊢ σ; s→∗ σ′; s′

Φ;m ⊢ σ; e→∗ σ′; e′ ,

then s′ = skip; ∨ s′ = return νt;
e′ = νt

or ∃s′′, σ′′ ∶ Φ;m ⊢ σ′, s′ → σ′′; s′′
∃e′′, σ′′ ∶ Φ;m ⊢ σ′, e′ → σ′′; e′′ .

Proof. By Lemma 4.5 and Lemma 4.6.

4.3. PolyVecImp
We have often stressed the similarities between the scalar and the vectorial
version of a program. This raises the question whether appropriate varying
annotations can be inferred. The answer is “yes”.
This section briefly presents yet another language called PolyVecImp,

which uses type inference in order to propagate vector lengths. To our
knowledge, there is no other language that supports this kind of polymor-
phism. But even this section only provides a brief sketch. We leave a
thorough discussion of this topic as future work.
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PolyVecImp differentiates between mono and poly types. This is a short-
hand for monomorphic and polymorphic, respectively, and should not be
confused with uniform and varying. Poly types are types without a speci-
fied vector length like int or float; mono types are types with an explicitly
specified vector length like int varying(1) or float varying(8):

f ∶∶= as in Imp (function)
τ ∶∶= bool ∣ int ∣ float (element type)
t ∶∶= τ (poly type)

∣ τ varying(l) (mono type)
⋯ rest as in VecImp

In contrast to VecImp, functions are not annotated with simd(l). Instead,
all functions are polymorphic in their vector length; moreover, all functions
are polymorphic in the vector lengths of all poly-typed parameters. The
type checker optimistically assumes that all poly types are scalar. According
to the lattice in Figure 4.5a and rules similar to Figure 4.6, the type checker
corrects vector lengths. When inspecting a function call, PolyVecImp tries
to instantiate a function with the current inferred vector length and the
vector lengths of the inferred argument types. If this fails, PolyVecImp
ascends in the lattice where necessary and retries. Since the call graph may
be arbitrarily complex and even cyclic, PolyVecImp must use a fixed-point
iteration. If no valid configuration can be inferred, the program is ill-typed.

Example 4.4 (Min in PolyVecImp)
Consider the following function:
int min(int a, int b) {

int result = a;
if (b < a)

result = b;
return result ;

}

Suppose a call site min(u, v) in scalar mode where u has mono type
int varying(1) and v has mono type int varying(4). For this special-
ization of min it seems at first glance that PolyVecImp infers the mono
type int varying(1) for the poly-typed local variable result due to the
initialization of this variable with a. However, the assignment with b yields
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mono type int varying(4) for result in this specialization. Hence, the
function’s return type is int varying(4) for the given call site.

At some point the programmer must tell the compiler when and how to
initiate vectorization by using mono types. The vector lengths of all other
types can be inferred using poly types.

Example 4.5 (Mandelbrot in PolyVecImp)
Listing 4.4 computes the Mandelbrot set in PolyVecImp. The setup of the
loop nest itself is similar to VecImp although no varying annotations are
needed in PolyVecImp because the expression {0, 1, 2, 3} is of type
int varying(4). This causes i to have the same type while x is of type
float varying(4). Thus, iter is instantiated with float varying(4)
and float varying(1) in scalar mode. With this configuration PolyVec-
Imp infers that all local variables must be vectors of length 4. Note that
iter is syntactically identical to the Imp version.

Once PolyVecImp has found a valid configuration, it is straightforward
to translate a PolyVecImp program with the help of the inferred vector
lengths to VecImp.
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On the other side of the screen,
it all looks so easy.

Tron 5
Code Generation

This chapter discusses how to generate code for VecImp. We assume that
the VecImp’s AST is available and a code generator targets a static single as-
signment (SSA)-based intermediate representation (IR) like LLVM [Adv+03],
GIMPLE [Mer03] or Thorin (see Part II). Translating an imperative pro-
gram to SSA-form is a well-known procedure [see Cyt+91; Bra+13]. For this
reason, this chapter focuses on generating code for vectorized constructs.

5.1. SSA Construction for Statements
To make VecImp more useful and closer to Sierra, we enhance VecImp
with a break- and continue-statement:

s ∶∶= ⋯ (statement)
∣ break; (break)
∣ continue; (continue)

Additionally, we allow the consequence/alternative of an if-statement as
well as the body of a while-statement to end with a return-, break- or
continue-statement.

Example 5.1 (Vectorized Return-Statement)
Listing 5.1 demonstrates the use of a return-statement in the consequence
of an if-statement. Since the first and fourth SIMD lanes become inactive
after evaluating the first return-statement, the rest of the function stays
in SIMD mode and must be masked accordingly. Hence, the final return-
statement must be combined with the former return value and the function
returns {42, 23, 23, 42}.
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� � � �

42 � � 42

� 23 23 �

42 23 23 42

bool varying(4) v = {1, 0, 0, 1};

if (v) return 42;

return 23;

Vector returned by the function =

Listing 5.1.: Vectorized return

entry

s

exit

incoming mask

outgoing mask

Figure 5.1.: Code generation for a vectorial statement s
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For this reason, each statement conceptually produces a new outgoing
mask because some substatement might have issued a return. The subse-
quent statement receives this mask as incoming mask and uses it as current
mask in order to deactivate all SIMD lanes that have already returned from
the function (see Figure 5.11). In addition, break- and continue-statements
temporarily deactivate SIMD lanes (see Section 5.1.4). As usual, each
instruction that produces a side-effect must be masked such that only active
lanes are effected (see ES-Assign in Figure 4.7).
Scalar statements do not need any incoming or outgoing mask. Either

a statement is executed or not. This means that whenever the program
switches from scalar to SIMD mode, the code generator must create an
appropriate incoming mask.

Example 5.2 (Entering SIMD mode)
Suppose the following code starts off in scalar mode:
bool varying (4) cond = /* ... */;
// ...
if (cond) {

// SIMD mode
}

As cond is vectorial, so is the body of the if-statement. At that point, the
code generator has to create an incoming mask, which is simply cond.

5.1.1. Nested Statements
In VecImp the only statements that have substatements are if- and while-
statements. The consequence of an if-statement and the body of a while-
statement, respectively, use as current mask the incoming mask combined
via bitwise AND with the controlling condition. The alternative of an
if-statement has to additionally negate the controlling condition.

Example 5.3 (Nested Statements)
Suppose the following code starts off in scalar mode:
1A cloud in this and subsequent figures represents an arbitrary control-flow subgraph
whereas a box represents a single basic block.

61



5. Code Generation

int varying (4) v = {0, 1, 2, 3};
while (v >= 2) { // current mask = {0, 0, 1, 1}

if (v % 2 == 1) {
/* ... */ // current mask = {0, 0, 0, 1}

} else {
/* ... */ // current mask = {0, 0, 1, 0}

}
}

As the condition in the while loop is of type bool varying(4), Vec-
Imp enters SIMD mode. The incoming mask for the loop’s body is
{0, 0, 1, 1}. Since v % 2 == 1 evaluates to {0, 1, 0, 1}, the current
mask in the consequence of the if-statetment is {0, 0, 0, 1}. Accord-
ingly, the current mask in the alternative is {0, 0, 1, 0}.

5.1.2. Branching on Vectorial Conditions
In order to implement vectorial versions of control-flow constructs, we often
have to check whether all or any elements in a bool varying(L) are true:

• all(v): Evaluates to true if all elements in v are true.

• any(v): Evaluates to true if any element in v is true.

Many ISAs provide specialized instructions that implement these tests in
one instruction. Armed with these insights, we now take a closer look on
how to implement vectorial if- and while-statements.

5.1.3. Vectorial If-Statement
For a vectorial if-statement the code generator has to emit the pattern in
Figure 5.2. Let us ignore the dashed edges for a moment and only follow the
solid ones. This results in a linearized control flow where the if-statement’s
entry block entryi jumps to the control flow related to the consequence. Its
exit block exitt in turn jumps to the control flow related to the alternative.
Its exit block exite finally jumps to the if-statement’s exiti. The entryi
block sets up the incoming masks incoming_maskt for the consequence and
incoming_maske for the alternative by using the if-statement’s incoming
mask incoming_maski as already discussed.
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As the consequence might use break, continue or return, the conse-
quence’s outgoing mask outgoing_maskt is not necessarily the same as
its incoming mask. The same holds true for the alternative. This is
why exiti has to combine a new outgoing mask outgoing_maski. If nei-
ther the consequence nor the alternative uses break, continue or return,
outgoing_maski is equal to incoming_maski.
If it is likely that none of the elements in incoming_maskt is true, the

code generator can insert a dynamic check and jump as a shortcut directly
to the alternative. Similarly, the code generator can check if all elements
in incoming_maske are false and skip the alternative in that case. These
shortcuts are depicted as dashed edges in the figure. Note that these
additional branches require some φ-functions in order to properly select
outgoing masks, depending on which branches have been taken.

In ISPC the programmer can use the cif statement, in order to give the
code generator a hint that probably either all SIMD lanes are true or all are
false. Note that this is more conservative than the shortcut conditions we
have just mentioned. The reason for this is that ISPC generates specialized
code paths that do not need masking at all.

5.1.4. Vectorial While-Statement
For a vectorial while-statement, the code generator has to emit the pattern
in Figure 5.3. Again, let us ignore the dashed edge for a moment. The
while-statement’s entryw selects via a φ-function as temporary incoming
mask incoming_maskt either the while-statement’s incoming_maskw when
first entering the loop or outgoing_mask otherwise. Then, the block com-
putes the incoming mask for the body incoming_maskb. As long as any
of its elements is true, the body must be executed. Each time a lane
becomes inactive via a break, continue or return, the outgoing mask of
the corresponding statement will be adjusted. However, the body’s exit
block exitb must reactivate all lanes that have continued before jump-
ing to the next iteration. For this reason, each loop maintains a boolean
vector cont_vec, which indicates the lanes to reactivate. Thus, the final
outgoing_mask to feed into entryw’s φ-function is the body’s outgoing mask
outgoing_maskb combined via a bitwise OR with that cont_vec. After all
SIMD lanes have finished the loop, the while-statement’s exitw must compute
outgoing_maskw. This is achieved by deactivating all lanes that returned
(indicated by the boolean vector ret_vec) from incoming_maskw.
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. . .

. . .

cond ← eval condition
incoming_maskt ← incoming_maski and cond
incoming_maske ← incoming_maski and neg cond
br any( incoming_maskt), then, else

then

tmp ← any( incoming_maske)
br tmp , else, exiti

else

exite

⋯

outgoing_maski ← outgoing_maskt or outgoing_maske

entryi

exiti

exitt

Figure 5.2.: Code generation for if statement
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break,
continue

. . .

incoming_maskt ← φ( incoming_maskw , outgoing_mask )
cond ← eval condition
incoming_maskb ← incoming_maskt and cond
br any( incoming_maskb), body, exitw

body

outgoing_mask = outgoing_maskb or cont_vec
br entryw

outgoing_maskw = incoming_maskw and ret_vec

. . .

entryw

exitb

exitw

Figure 5.3.: Code generation for while statement
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In the case that coherent control flow is likely, the code-generator may
insert shortcuts to skip part of the loop body (see the dashed edge). Note
that these additional branches again require some φ-functions in order to
select the proper masks depending on which branches have been taken.

5.2. Conclusions
This chapter has discussed a syntax-directed code generator for vectorial
programs. When using unstructured control flow, statements that are
control-dependent on vectors are not necessarily syntactically nested inside
the corresponding control-flow statement. As we have seen, supporting break-
and continue-statements as well as return-statements in an unstructured
way already makes code generation quite complicated. The use of goto
and labels creates arbitrary CFGs. Generating valid and efficient code,
requires several non-trivial analyses (see Section 2.3). These analyses are
cumbersome to implement on a C++ AST. For this reason, we plan to
generate scalar instead of vectorial code as future work. Then, the burden
of vectorization will be shifted to a third-party vectorizer (see Section 2.3).
However, this does not solve type checking since the type checker must
know the current vector length of each statement. A working solution is to
type-check during vectorization. This solution, however, is unsatisfactory:
The quality of the error messages significantly suffers from this approach
because we do not have the original AST at hand anymore. Supporting
arbitrary, unstructured control flow while maintaining sophisticated error
messages with a reasonable code base is an unsolved engineering problem.
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“[. . .] Take thy beak from out my heart, and
take thy form from off my door!”
— Quoth the Raven “Nevermore.”

Edgar Allan Poe, The Raven 6
Evaluation

To evaluate our programming model, we first experimented with IVL in
collaboration with Ingo Wald. As a C-like language, IVL is conceptually
similar to VecImp and supports a simplified model of polymorphism.
Furthermore, we modified an industry-strength C++ compiler to incorporate
a prototypical version of Sierra.

6.1. The IVL Vectorizing Language
IVL is a prototypical compiler written by Ingo Wald [LHW12]. IVL embraces
many of VecImp’s concepts to generate vectorized code for Intel® Many
Integrated Core Architecture (MIC) and the SSE instruction set.

6.1.1. IVL’s Back Ends
MIC is a many-core x86 architecture in which each x86 core is augmented
with a 16-wide vector unit accessed through a rich vector instruction set.
MIC supports both scatter/gather as well as efficient masking/predication
via a separate set of 16-bit mask registers. In a vectorized context, IVL
emits MIC code that runs on all lanes in parallel. All scalar constructs are
executed in the core’s scalar pipe and scalar data is held in scalar registers.
Rather than allowing arbitrary vector lengths, IVL only supports one vector
length per translation unit. In particular, on MIC we currently support
16-wide and (“double-pumped”) 32-wide vectorization—with 16 being the
default. The SSE back end supports 4-wide vectorization. A successor
version of IVL also supports the Intel® AVX instruction set for 8-wide
vectorization.

Note that MIC and SSE instruction sets fundamentally differ in many
aspects: SSE and MIC have different native vector lengths, SSE does not
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support hardware accelerated scatter/gather and uses blending in order
to emulate predicated execution. Given our experience in implementing
the SSE and MIC back ends, we think implementing additional back ends
supporting other SIMD CPU types and ISAs is straightforward.
IVL acts as source-to-source compiler: It translates IVL code to “C++

with intrinsics” code that is then passed to the Intel® C/C++ compiler (ICC)
for MIC. This does not only leave all the heavy-lifting in code generation
and optimization to this compiler, it also allows the programmer to visually
inspect (and possibly modify) the emitted code and to use this code with
tools like debuggers, performance analyzers, etc. Furthermore this means
that cross-linking with other C modules is fully supported.

6.1.2. Supported Types and Language Constructs
IVL currently supports a significant subset of C and a small set of additional
keywords to guide vectorization. In terms of types, IVL supports bools as
well as (32-bit) ints, uints, and floats but only partially supports 8-bit,
16-bit, and 64-bit data types. Furthermore, IVL supports structs, arrays,
and references (including vector references to vectorized types) but only
partially supports pointers.
As IVL currently only supports one global vector length n per trans-

lation unit, VecImp’s varying(n) type qualifier is called varying, and
varying(1) is called uniform. In terms of control flow, IVL supports all
of if/else, do, while, for, break, continue, and return. In addition,
IVL also supports some simple reduction operations like all or any (see
Section 5.1.2).

6.1.3. Vectorization
Vectorization in IVL is done on demand: Similar to templates in C++,
IVL parses struct and function definitions but does not emit code until
instances of those types and functions are required. Vectorization of code is
triggered when IVL encounters a function with the kernel keyword. IVL
will then emit a C function for this kernel (plus some additional helper
functions to allow calling this function from the host machine if required),
and vectorize this kernel’s body, which in turn will emit all functions called
by this body on-demand, etc.
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Statements and expressions operating on varying types will emit vector
intrinsics, while purely uniform expressions/statements will emit only scalar
code even when inside a vectorized function (like proposed by VecImp).
This is highly desirable because the code will use precious vector registers and
costly vector instructions only where required, and enables a mix of scalar
and vector expressions that MIC’s superscalar architecture (with parallel
scalar U- and vectorial V-pipes) is particularly good at. For example, if a
for-loop in a (vectorized) function uses a loop condition that only depends
on a uniform function parameter, that respective loop control code will
only use scalar x86 instructions.

6.1.4. Polymorphism
IVL supports a limited form of polymorphism. IVL instantiates poly-typed
function parameters when IVL encounters the function’s call site. If any
argument including the hidden current mask argument is vectorial, all
parameters and local poly-typed variables will become vectorial. Like
templates in C++ this mechanism requires the function to be known at
compile-time. To use a function across different translation units, the
programmer must either explicitly specify all parameters’ vector lengths or
explicitly instantiate this function in one translation unit.

Example 6.1 (Min in IVL)
Reconsider Example 4.4. When IVL instantiates the call site min(u,v)
where u is uniform and v is varying, IVL will use varying types for the
parameters a and b as well as for the local variable result because one
of the arguemts—namely v—is varying.

6.1.5. IVL Examples
We give an overview over some examples realized with the IVL compiler,
all running on a 32-core 900MHz Knights Ferry prototype board.

Proof-of-Concept Examples

We ported mandelbrot, volumerender, and nbody from the CUDA SDK
(see Figure 6.1a–c). These examples ran more or less “out of the box”.
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(a) mandelbrot (b) volumerender

(c) nbody (d) aobench

(e) eyelight (f) ambient occlusion

Figure 6.1.: Several examples compiled with our prototypical IVL compiler
running on an Intel® “Knights Ferry” prototype board
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Since IVL does not currently support any native hardware texturing, the
volumerender example has to resort to “manual” tri-linear interpolation
to sample the volume but nevertheless already reaches roughly 30 frames
per second. For all other examples, both ease of porting and resulting
performance matched or exceeded expectations. As just one example, the
publicly available aobench benchmark1 required only trivial modification
to port to IVL, while rendering a 1024 × 1024 frame (with 16 samples per
pixel and 16 rays per sample) in 402ms (see Figure 6.1d).

Ray Tracer Examples

As a more challenging example, we also implemented an IVL ray tracer with
various shaders into an existing Knight’s Ferry ray tracing system [Wal12].
The IVL-based traversal, intersection, and shading code was linked together
with manual intrinsics code for data structure construction and other
renderers. In this setting, IVL and manual C code were actually sharing
the same data structures. First, we integrated an intentionally simple
eyelight shader into the framework (see Figure 6.1e). As a next step,
we included an ambient occlusion renderer requiring random number
generation, quasi-Monte-Carlo-sampling, cumulative distribution function
inversions and recursion, involving both incoherent data access patterns
and SIMD lane utilization (see Figure 6.1f).

Comparison to hand-written Code

To better quantify the performance of IVL’s code, we also ran some ex-
periments where we compared IVL-generated code to manually-written
reference intrinsics code. In all cases, the reference code was written before
the IVL code. For the eyelight ray tracer, IVL renders a 1600 × 1024
frame in 13.8 million cycles, vs. 13.28 million cycles in the reference in-
trinsics code: a difference of only 4%. An exact reference version for the
ambient occlusion renderer is not available, due to that code’s complexity.

Finally, we also ran an artificial k-nearest neighbor benchmark for which
we had reference code for a variety of architectures. This benchmark is
highly non-trivial in both control-flow and data access patterns. In this
workload, IVL requires 755 million cycles (for 1 million 50-neighbor queries
in a 1 million point dataset), as compared to 656 million cycles for the

1see https://code.google.com/archive/p/aobench/
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hand-coded version—a difference of only 15%. The IVL version is also
roughly two orders of magnitude faster than (single-threaded) scalar host
code, and roughly twice as fast as a CUDA version of that kernel running
on a Fermi GT480 GPU.
The performance gap is mostly encumbered by the fact that IVL is a

source-to-source compiler emitting vectorized code and relies on ICC for
optimizations. This compiler does not yet recognize some patterns that
are suitable for optimizations but would have been applied by a human
intrinsics programmer.

6.2. Sierra
We also implemented a prototype of our proposed C++-extension.2 The
Sierra compiler is a fork of the LLVM-based compiler Clang 3.3, and thus,
supports the complete C++11 standard. The extension must be explicitly
enabled via the switch -fsierra.

6.2.1. Supported Types and Language Constructs
In contrast to IVL or ISPC, Sierra supports fine-grained control over the
vectorization length as in VecImp. All integer and floating-point types can
be qualified with varying(n). If no varying(n) qualifier is given, Sierra
defaults to usual scalar semantics. Thus, activating the Sierra extension will
not break any existing C++ code: Without using any Sierra types, the Sierra
compiler is still a usual C++ compiler. Furthermore, Sierra has limited
support for varying struct variables. Like in ISPC or IVL, vectorization
is recursively applied to all fields.
In terms of control flow, the Sierra compiler supports if/else, while,

for, break, continue, return, and short circuit evaluation. Although
Sierra does not directly support polymorphism, it can be mimicked to a
certain degree with C++ templates (see Example 3.8).

Example 6.2 (Min in Sierra)
Reconsider Examples 4.4 and 6.1. Sierra can mimic IVL’s behavior by
using one template parameter:
2see http://sierra-lang.github.io/
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template <int L>
simd(L)
int varying (L) min(int varying (L) a, int varying (L) b) {

int varying (L) result = a;
if (b < a)

result = b;
return result ;

}

To some extent Sierra can also mimic PolyVecImp’s behavior by using one
template parameter for each argument. However, as template parameter
deduction in C++ only happens locally, the programmer must manually
encode the math to derive a suitable vector length:
template <int L, int A, int B>
simd(L)
int varying (max(A,B)) min(int varying (A) a, int varying (B) b) {

int varying (max(A,B)) result = a;
if (b < a)

result = b;
return result ;

}

6.2.2. Implementation
Sierra compiles arithmetic vector types to LLVM vector types. During
its type legalization phase [BR13] LLVM in turn splits vectors to the
machine’s native vector length if necessary. In particular, this allows for
double-pumping, e.g., using float varying(8) on SSE.
As outlined in Chapter 5, Sierra vectorizes code from its AST represen-

tation. Consequently, Sierra directly emits vectorized LLVM code. From
there on, Sierra runs Clang’s default driver to steer the LLVM pipeline.
Sierra does not rely on any specific LLVM patches.

6.2.3. Sierra Examples
We implemented several programs in order to evaluate the performance
of Sierra. As demonstrated in Section 1.2, we reuse the same program for
all variants: We exposed the desired vector length as macro, such that
passing -DVECTOR_LENGTH=L via command line sets the vector length of
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 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

volumerenderer aobench mandelbrot binomial blackscholes

scalar SSE, no auto−vectorization

scalar AVX, no auto−vectorization

auto−vectorized SSE

auto−vectorized AVX

4x SSE

8x SSE

8x AVX

16x AVX

Figure 6.2.: Speedups compared to the scalar SSE version

the benchmark to L. No changes to the code were necessary to create the
variants. We compiled all programs with -O3 and -ffast-math to allow for
further optimizations. We tested our programs with SSE 4.2 (-msse4.2)
and AVX (-mavx).
Our test ran on an Intel® Ivy Bridge Core™ i7-3770K CPU. We used

the median performance of 11 runs for computing the speedups shown in
Figure 6.2.

Like in the IVL evaluation, we ported the publicly available aobench. Fur-
thermore, we also ported volumerender (see also Section 1.2), mandelbrot,
the binomial options pricing model, and the blackscholes algorithm from
the CUDA SDK.
First, we measured the performance of scalar programs without using

LLVM’s built-in auto vectorization.3 This scalar variant compiled for SSE
serves as baseline for all other variants of the same program. Consequently,
all non-auto-vectorized SSE programs have a speedup of 1x. Next, we
explicitly enabled LLVM’s auto-vectorizer for all programs. Then, we

3This can be controlled via -fno-vectorize, -fno-slp-vectorize and
-fno-slp-vectorize-aggressive.
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instantiated vectorized versions. In the case of SSE, we instantiated variants
with vector length 4 (native) and 8 (double-pumped). In the case of AVX, we
instantiated variants with vector length 8 (native) and 16 (double-pumped).
Without using any vectorization techniques, compiling for AVX instead

of SSE did not make any notable difference except for blackscholes that
ran slightly faster. Surprisingly, auto-vectorization either did not affect
the runtime at all or even imposed a performance penalty. The loop
vectorizer was never triggered; the SLP vectorizer introduces an overhead
for pooling scalars into vectors; finally, the CPU’s SIMD unit might cause
slowdowns if it is only barely used. Using Sierra’s 4x vectorization on SSE
resulted in a speedup of roughly 2x for volumerender, 2.5x for aobench and
mandelbrot, almost 4x for binomial, and about 4.5x for blackscholes.
Double-pumping yielded a small improvement most of the time. Using
Sierra’s 8x vectorization on AVX resulted in a speedup of roughly 2.5x for
volumerender, 3x for aobench, 3.5x for mandelbrot, 4x for binomial, and
7x for blackscholes. We obtained mixed results when double-pumping
AVX. We believe this is due to the fact that AVX is internally already
double-pumped on Ivy Bridge. Moreover, many AVX instructions still use
a native vector length of 4 instead of 8.

6.2.4. Further Improvements
Overall, LLVM’s generated code is of modest quality. A major dilemma
is that most ISAs are unclear about the exact representation of boolean
vectors. For example, comparing two float varying(4) values actually
yields a uint32_t varying(4) on SSE. Each uint32_t component repre-
sents a mask consisting of either 0 or ~0. Special blend instructions (or bit
arithmetic on older SSE versions) use these masks as input to implement
the masking for vectorized control flow (see Section 3.2). But a comparison
of double varying(4) values yields a uint64_t varying(4). The reason
for this is that this comparison is double-pumped on SSE. In Sierra, all
comparisons yield boolean vectors, which get translated to boolean vectors
in LLVM. But LLVM’s representation for boolean vectors is a consecutive
sequence of bytes. Indeed, LLVM tries to eliminate conversions, but cur-
rently this only works on a per-basic-block level. Thereby, LLVM introduces
superfluous conversions, which additionally increase register pressure.

A related problem is the implementation of any and all (see Section 5.1.2).
SSE and AVX offer special instructions for this, but it is difficult to provoke
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the emission of these instructions in LLVM. The same is true for other
patterns that are mappable to built-in assembly instructions of the ISA.
For instance, AVX supports an instruction to find the minimum of two
float vectors. The front end could directly emit the machine instruction
in question (via an LLVM intrinsic), but this is a mixed blessing. On the
one hand, one can be sure that the intended instruction is selected during
code generation. On the other hand, LLVM’ analyses and transformations
do not know the semantics of these intrinsics. Even simple transformations
like constant folding usually don’t work on intrinsics.
Furthermore, LLVM’s analyses and transformations are just not as so-

phisticated for vectors as for scalars in many areas. Additionally, special
transformations may be needed in order to use some tricks an experienced
human intrinsic programmer would have used.

For these reasons, we believe that there is still much room to improve the
performance of Sierra’s emitted vectorized code. Moreover, we hope that
AVX-512, which is similar to MIC’s SIMD instruction set, will solve many
of these problems. AVX-512 introduces a special predication register file
that resolves the discussed ambiguity for boolean vectors.
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The Ultimate Answer to Life, The Universe and
Everything is. . . 42!
Douglas Adams,

The Hitchhiker’s Guide to the Galaxy 7
Conclusions

This part of the thesis presents a SIMD extension for C++. Although this
extension focuses more on the C subset of C++, it integrates well with
many C++ features like templates. Our implementation demonstrates that
such an extension is effective while our benchmarks back that SIMD is too
important to be ignored.

Furthermore, Sierra is in the spirit of C++ [Str07]:

• Explicit vector types provide predictable performance gains on SIMD
hardware.

• Vector types are portable.

• Vectorization of data types provides the programmer with a tool to
build SIMD-friendly data structures.

• Automatic masking massively eases programming and makes vector
code almost look like scalar code. For this reason, Sierra is attractive
for existing C++ projects that want to adopt SIMD.

On the downside, actually implementing Sierra is an intrusive venture
because Sierra interacts with many aspects of the C++ language and C++ is
already very complex in itself. Furthermore, albeit Sierra already takes much
work out of the programmer’s hands, she still has to manually annotate
many types with varying. Ideally, the programmer would only instruct
the compiler to enter SIMD mode at some point in the code, and the
compiler would automatically transform the code as necessary—including
the inference of varying annotations. Finally, non-SIMD accelerators are
not supported by Sierra. In order to address these, the programmer must
resort to other techniques like OpenCL, OpenACC, or OpenMP. Part II of
this thesis addresses all these concerns.
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Part II.

AnyDSL
Building Domain-Specific

Languages for Productivity and
Performance
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When we had no computers, we had no programming
problem either. When we had a few computers, we
had a mild programming problem. Confronted with
machines a million times as powerful, we are faced with
a gigantic programming problem.

Edsger W. Dijkstra 8
Introduction

To achieve optimum performance, programs have to be transformed in a
way that is beyond the scope of ordinary compiler optimizations. These
transformations have two goals: First, to exploit domain knowledge, which
is lost in the implementation and not accessible to the compiler. Second, to
utilize features of the target hardware architecture to improve performance
(vectorization, memory hierarchy, etc.).

One way to achieve this performance is to design a DSL that provides
language constructs to express domain knowledge. A special DSL compiler
can use this knowledge to generate highly-optimized code for a specific
architecture. A popular approach to implement a DSL is to embed the
DSL into a host language. This allows the DSL designer to reuse the lexer,
parser and type checker of the host language.

8.1. Deep vs. Shallow Embedding of DSLs
Gibbons and Wu [GW14], for instance, distinguish between deep and shallow
embeddings.1 We discuss the differences of these styles by means of the
domain-specific construct range (see Listing 8.1). This construct iterates
from a (inclusive) to b (exclusive) and executes body each time whereby i
serves as induction variable.

8.1.1. Deep Embedding
In a deep embedding, the application developer writes a program genera-
tor p_gen. This generator is the embedded DSL program (see Listing 8.2a).
Executing this generator creates a representation p_spec of the program

1Boulton et al. [Bou+92] were likely the first who coined these terms.
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for i in range(a, b) {
body

}

Listing 8.1.: Domain-specific range loop

AST::Range

AST::Lit 0 AST::Lit 4 AST::Fun

"i" ast_body

Figure 8.1.: Program representation p_spec of Listing 8.2a

as data structure (see Figure 8.1) available in the host language H. Fur-
thermore, the generator can be made parametric in certain aspects of the
embedded DSL program. Thus, executing this program partially evaluates
the embedded program with respect to the given input. For example, we
can construct an unrolled program representation:
let p_spec = unroll (0, 4, fun("i", ast_body ));

It is straightforward to implement an interpreter for p_spec (see List-
ing 8.2b). Note how the interpreter for the deep embedding needs to match
the returned values of eval within the AST::Range case in order to make
sure that the returned values are properly tagged. This issue is known
as the tag problem [CKS07, §1.1]. However, in order to achieve perfor-
mance, we need to compile the program. Therefore, we have to write a code
generator that inspects p_spec and emits code for some language (like C
or LLVM). Since p_spec is a data structure, deep embeddings allow for
powerful, domain-specific optimizations [e.g. Cha+10; Rag+13; Klo+14;
Rat+17], which can be applied beforehand. Note that p_gen, the optimizer,
and the code generator are all written in H.

In terms of programming experience, one drawback of deep embeddings is
that the application developer actually writes a program generator instead
of a program. Modern deep embedding frameworks alleviate this problem
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// DSL implementation
fn range(a: AST , b: AST , body: AST) -> AST {

AST :: Range{a, b, body}
}
// ...

// DSL program
// ...
let p_spec = range(lit (0), lit (4), fun("i", ast_body ));

(a) Deeply embedded DSL program p_gen to construct p_spec

fn eval(ast: AST) -> Val {
match ast {

AST :: Range{ast_a , ast_b , ast_fun } => {
match (eval(ast_a), eval(ast_b), eval( ast_fun )) {

(Val :: Int{a}, Val :: Int{b}, Val :: Fun{fun }) => {
let mut i = a;
while i < b {

apply(fun , i);
++i;

}
Val :: Unit

},
_ => error("type error")

}
},
AST :: Lit{i} => Val :: Int{i},
// other cases

}
}

(b) Interpreter for a deeply embedded DSL. The environment to track variable bindings
has been elided.

Listing 8.2.: Deep embedding of range. For the sake of simplicity, some
pointer indirections, which would be needed in actual code, have been
elided.
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// DSL implementation
fn range(a: int , b: int , body: fn(int) -> ()) -> () {

let mut i = a;
while i < b {

body(i);
++i;

}
}

// DSL program
// ...
range (0, 4, |i| body );

Listing 8.3.: Tagless interpreter for a shallowly embedded range. The
expression |i| body means λi.body.

by virtualizing the host language [Cha+10]: Via clever overloading of
H’s language constructs, an H-expression like a + b does not perform an
addition; instead, executing this expression constructs a domain-specific
program representation that represents this addition. This virtualization is
intrinsically not entirely faithful and compromises the illusion of actually
writing a DSL program in several ways [Jov+14]:

• The host language cannot be virtualized entirely. For example, while
many languages allow overloading the +-operator, only few provide a
mechanism to overload a while-loop. What is more, overloading a
continue-statement is not possible per se because of its unstructured
nature. See Section 8.2.1 below for our take on this problem.

• On the other hand, implementation details of the embedded DSL leak
to the application developer. For example, the integer type of the
DSL is the type of an appropriate AST node instead of just int.

• This immediately leads to the effect that error messages are more
difficult to understand for the application developer. Even worse, the
embedded program may be a well-typed H program but an ill-typed
DSL program. In this case, the error message will not be emitted
during the compilation of the H program; instead, the error message
will appear when running p_gen.
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• While debugging tools for H are usually available, the tool support for
the constructed program p_spec is usually rather modest. Each new
domain-specific program representation on which p_gen, the optimizer,
and the code generator work, must have support for debugging. Even
if those tools were available, the application developer still would still
have to figure out which parts of his program run at which stage and
how to properly instrument these tools at the given stage.

• Although the compiler for H already features a code generator, the
DSL designer has to write a different code generator that emits code
for the domain-specific program representation p_spec.

• To reason about the embedded program p_spec, the application
developer ultimately has to understand how the generator p_gen
works.

8.1.2. Shallow Embedding
In a shallow embedding the domain-specific constructs are defined by simply
implementing their semantics in the host language (see Listing 8.3). This
version semantically resembles the interpreter in Listing 8.2b but does not
suffer from the tag problem. For this reason, Carette, Kiselyov, and Shan
[CKS07] call this approach a tagless interpreter. The application developer
directly writes the embedded program in language H.

In contrast to deep embedding, shallow embedding cannot manipulate
the embedded program since it is not available as a data structure. For this
reason, shallowly embedding a high-performance DSL (e.g. HIPAcc [Mem+16]
or SYCL [Khr15]) involves the unpleasant task of modifying an existing
compiler.

8.2. The AnyDSL Way
In this part of the thesis we present the AnyDSL framework. AnyDSL
consists of the language Impala and its IR Thorin (see Section 8.2.2 below).
Impala offers both imperative as well as functional programming and thus is
an attractive host language for shallow DSL embedding. Embedding a DSL
into Impala means that the DSL designer implements a domain-specific
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fn main () {
let g = stencil (jacobi , field );

}

(a) Application developer

fn stencil (s: Stencil , field: Field) -> Field {
let mut out: Field = { /* ... */ };

for x, y in @ iterate (out) {
out.data(x, y) = apply_stencil (x, y, field , s);

}
out

}

(b) DSL designer

fn iterate (field: Field , body: fn(int , int) -> ()) -> () {
let grid = (field .cols , field.rows , 1);
let block = (128 , 1, 1);
with nvvm(grid , block) {

let x = nvvm_tid_x () + nvvm_ntid_x () * nvvm_ctaid_x ();
let y = nvvm_tid_y () + nvvm_ntid_y () * nvvm_ctaid_y ();
body(x, y);

}
}

(c) Machine expert

Listing 8.4.: Dissecting performance-critical code into layers of abstractions
using AnyDSL
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construct as a tagless interpreter—just like in Listing 8.3. As calling higher-
order functions like this is very common, Impala features a for-expression
as syntactic sugar such that the application developer can instead write:
for i in range (0, 4) { body }

In order to eliminate any overhead that shallow embedding imposes, Impala
features a partial evaluator, which the programmer can steer with a few
annotations.

Let us now see how everything fits together in the case of an image pro-
cessing DSL (see Listing 8.4). The application developer (see Listing 8.4a)
uses domain-specific constructs such as applying a Jacobi stencil to a field.
He does not need to know the implementation details of these constructs.
The DSL designer (see Listing 8.4b) provides implementations for these
constructs, which in turn use certain abstractions: a function that iterates
over the output field and a convolution operation on the field point. The
convolution is parameterized by the concrete coefficients of the stencil s.
A machine expert then provides an optimized implementation of these
primitives for each target platform. See Listing 8.4c for an implementation
of iterate tuned for execution on an NVIDIA GPU. Similarly, a differ-
ent machine expert might provide an implementation for iterate which
triggers SIMD vectorization by using the built-in function vectorize (see
Listing 10.11 and Section 10.7.1). Note how stencil resembles a tagless
interpreter in the sense that it “interprets” s on the field. In order to
completely remove the overhead of the interpreter, the DSL designer invokes
the partial evaluator (controlled by the @-operator) to link the individual
components together. The resulting code looks just as if a programmer had
written it precisely for the Jacobi stencil and optimized it for an NVIDIA
GPU. Section 10.7.2 presents the sketched DSL for stencil computations in
more detail and discusses its performance.

This paradigm addresses the concerns of Chapter 7:
• The shallow embedding does not require to implement or modify a

compiler.

• The function that is passed to the built-in vectorize function enters
SIMD mode and the programmer does not need to annotate types
with varying.

• With the same mechanism, AnyDSL supports different accelerators
(see Section 10.7.1).
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Using partial evaluation, we are limited to optimizations that can be
expressed by specializing code. Optimizations that analyze and rewrite
programs are not possible without modifying Impala’s compiler. We argue
that many of such optimizations can be expressed by proper abstractions
in the style of iterate. For example, one common objection is: “How do
you fuse loops?”. The V-Cycle DSL in Section 10.7.3 demonstrates how to
pass loop bodies as functions and invoke them in a single fused loop. Other
optimizations that cannot be expressed in this way have to be implemented
on Thorin, which is sufficiently high-level to facilitate this. For the DSLs
we present in Section 10.7, we did not have to modify Impala’s compiler.

8.2.1. Continuations
To allow for non-trivial control flow in embedded DSLs, Impala embraces
continuation-passing style (CPS). As Appel [App06, p.2] aptly puts it:

Continuation-passing style is a program notation that makes
every aspect of control flow and data flow explicit. It also has
the advantage that it’s closely related to Church’s λ-calculus,
which has a well-defined and well-understood meaning.

Continuations are functions that never return; think of a parameterized
code block that can be passed around as a first-class citizen and must end
again with a call to another continuation. CPS allows us to uniformly
represent control flow by continuations: jumps to basic blocks, function
calls, generators, exceptions, etc.
Impala represents all control flow (including functions) as continua-

tions. In fact, direct-style functions and function calls—the usual style
of programming—are only syntactic sugar for their CPS counterparts. List-
ing 8.5 showcases Impala’s internal CPS representation of a for-expression
that uses unstructured control flow. Note that break, continue, and
return are not actually keywords. Impala will usually name the return
parameter of a function “return” if the programmer uses direct style. How-
ever, when using a for-expression, Impala names the return parameter
of the passed continuation “continue”. On the one hand, this is more
appropriate for the semantic effect when calling this continuation. On
the other hand, continue will not shadow the implicitly declared return
parameter of the contained function. Similarly, break denotes the return
continuation that is passed to range when using the for-expression. This
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makes break, continue, and return first-class citizens, which can be cap-
tured, invoked, or passed to other functions. This allows the DSL designer
to build her own sophisticated generators while still supporting (poten-
tially multi-leveled) break and continue—or even pass them around—as
Listing 8.6 demonstrates. This mechanism makes Impala’s for-expression
already quite powerful. But since the DSL designer can use continuations
as she likes, she can invent completely original control-flow patterns. See
Section 10.7.2 for an example.

8.2.2. Thorin
Higher-order programs are deemed to be slow because the standard tech-
nique to implement a function value with free variables is a closure: a data
structure that must be allocated at runtime and consists of a pointer to a
function and bindings of all free variables. Ideally, Listing 8.5 should be
compiled into a simple loop without the need to allocate a closure. Even
Listing 8.6 can be compiled into two nested loops if g is inlined and does
not pass continue to yet another function.

Impala compiles the input program into Thorin (see Listing 8.5b). Thorin
only knows three concepts: continuations, their parameters, and direct-
style primitive operations (primops) like +, −, etc. This makes Thorin
straightforward to use and analyse. Yet, Thorin allows to directly represent
higher-order functions and is thus more powerful and expressive than classic
first-order compiler IRs like LLVM [Adv+03] or GIMPLE [Mer03].

Thorin employs an aggressive closure elimination phase, which optimizes
typical uses of higher-order functions—like generators—in a way such hat
no expensive closures are needed at runtime. Furthermore, the above-
mentioned partial evaluator is also implemented on top of Thorin.

8.3. Contributions
This part of the thesis makes the following contributions:

• Chapter 9 discusses Thorin formally. We show how to translate Thorin
to λcps, a CPS-based variant of PCF [Plo77], because it is more elegant
to formally argue about λcps than directly about Thorin. On top
of λcps, we introduce a type system as well as an indeterministic
reduction system and prove type preservation and confluence.

89



8. Introduction

fn f(a: int , b: int) -> () {

for i in range(a, b) {
if i == 23 {

continue ()
} else if i == 42 {

break ()
} else if i == 97 {

return ()
}
print(i)

}
}

(a) Original direct-style Impala code

f(a: int , b: int , return : cn ()):
range(a, b, body , break )

body(i: int , continue : cn ()):
br(i == 23, A, B)

A(): continue ()
B(): br(i == 42, C, D)
C(): break ()
D(): br(i == 97, E, F)
E(): return ()

F(): print(i, K)
K(): continue ()
break (): return ()

(b) Internal CPS representation (Thorin)

fn f(a: int , b: int , return : fn () -> !) -> ! {
fn body(i: int , continue : fn() -> !) -> ! {

if i == 23 {
continue ()

} else if i == 42 {
break ()

} else if i == 97 {
return ()

}
fn K() -> ! { continue () }
print(i, K)

}
fn break () -> ! { return () }
range(a, b, body , break )

}

(c) Desugared Impala program in CPS. Note that -> ! acknowledges the fact that
continuations do not return.

Listing 8.5.: Impala blurs the line between direct style and CPS. cn(T) de-
notes the type of a continuation expecting an argument of type T. Direct-
style functions do not exist in the CPS presentation.
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// This generator allows the user to skip several iterations
// by feeding an appropriate skip amount into ’continue ’.
// The generator returns how many iterations have been performed .
fn sum_range (mut a: int , b: int , body: fn(int) -> int) -> int {

let mut sum = 0;
while a < b {

++ sum;
a += body(a)

}
sum

}

fn f(/* ... */) -> int {
let sum = for i in sum_range (0, 23) {

// capture ’break ’ continuation of outer loop
let outer_break = break ;

if condition_i {
continue (3) // skip 3 iterations

}

// pass ’continue ’ continuation to some function
g( continue );

for j in range(a, b) {
if emergency_condition {

outer_break (-1) // break both loops with sum -1
}

if condition {
return (42) // leave f completely with result 42

}

}
1 // default : only advance one iteration

}
sum

}

Listing 8.6.: Unstructured, higher-order control flow in Impala using
first-class continuations
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• Chapter 10 presents a pragmatic algorithm for partial evaluation—
the technique we use to remove the overhead of shallowly embedded
DSLs. We present our partial evaluation algorithm as a deterministic
reduction system—a subset of the aforementioned reduction relation.
This allows us to prove our partial evaluator correct and formally
describe a termination property of it.
Furthermore, we show how mapping to different hardware accelera-
tors can be neatly expressed by higher-order functions. Our approach
allows to weave in platform-specific mapping strategies such as execut-
ing code on a GPU or vectorizing code for a CPU by compiler-known,
higher-order functions. We demonstrate that our partial evaluation
approach enables an efficient shallow embedding of high-performance
DSLs for visual and high-performance computing in Impala.

• Chapter 11 discusses how to generate code for Thorin programs. We
present a novel, aggressive closure elimination, which relies on a sim-
ple, yet versatile transformation: lambda mangling. Our experiments
evaluate Thorin on The Computer Benchmark Game, a set of small
programs to benchmark performance across various programming
languages—imperative as well as functional ones. We show that the
Impala programs, which use higher-order functions, match the perfor-
mance of the corresponding C implementations. Finally, we employ
software engineering statistics to back that code transformations for
Thorin programs are actually easier to implement than for a classic
SSA-based CFG representation, although Thorin programs are more
expressive because Thorin supports higher-order functions.

Since the Chapters 9–11 cover quite different topics, each chapter discuses
relevant related work on its own.

8.4. Publications
The work in this part is based upon the following publications:

• Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa,
Christoph Mallon, and Andreas Zwinkau. “Simple and Efficient
Construction of Static Single Assignment Form”. In: Compiler Con-
struction - 22nd International Conference, CC 2013, Held as Part of
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the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 2013,
pp. 102–122. doi: 10.1007/978-3-642-37051-9_6.

• Marcel Köster, Roland Leißa, Sebastian Hack, Richard Membarth, and
Philipp Slusallek. “Code Refinement of Stencil Codes”. In: Parallel
Processing Letters 24.3 (2014). doi: 10.1142/S0129626414410035.

• Richard Membarth, Philipp Slusallek, Marcel Köster, Roland Leißa,
and Sebastian Hack. “Target-specific refinement of multigrid codes”.
In: Proceedings of the Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing, WOLFHPC ’14, New Orleans, Louisiana, USA, November
16-21, 2014. 2014, pp. 52–57. doi: 10.1109/WOLFHPC.2014.5.

• Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and
Philipp Slusallek. “Shallow embedding of DSLs via online partial eval-
uation”. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences,
GPCE 2015, Pittsburgh, PA, USA, October 26-27, 2015. Best Paper
Award. 2015, pp. 11–20. doi: 10.1145/2814204.2814208.

• Roland Leißa, Marcel Köster, and Sebastian Hack. “A graph-based
higher-order intermediate representation”. In: Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2015, San Francisco, CA, USA, February 07
- 11, 2015. 2nd place: Artifact Evaluation for CGO/PPoPP’15. 2015,
pp. 202–212. doi: 10.1109/CGO.2015.7054200.

Some paragraphs of these publications appear verbatim in this thesis. This
applies in particular to Sections 9.1, 10.2, 10.7, 11.3, and 11.4.
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“Hush!” said Gandalf. “Let Thorin speak!”
And this is how Thorin began.

J.R.R. Tolkien, The Hobbit 9
Thorin and λcps

This chapter first recaps properties of existing IRs and thus motivates the
design of Thorin. We also recommend Appel’s [App06, §1.2] discussion
of several IRs from various points of view. In contrast to existing CPS
representations, Thorin is characterized by the fact that it does not have
an explicit scope nesting. This chapter discusses exactly what that means
and what benefits it has. However, for a formal discussion, an explicit
scope nesting is very helpful. For this reason, we introduce λcps—a variant
of Thorin with explicit scope nesting. Furthermore, we introduce a type-
preserving and confluent reduction system for λcps. This machinery will be
needed for the next chapter when discussing partial evaluation.

The notation used is described in Appendix A; more extensive proofs can
be found in Appendix B.

9.1. Related Work
9.1.1. The λ-Calculus
The λ-calculus [Chu32] is a minimalistic formal system that expresses
computations. We refer readers interested in the history of the λ-calculus
to Cardone and Hindley [CH06]. As the λ-calculus is syntactically very
simple and represents higher-order functions naturally, IRs for functional
languages are often based upon the λ-calculus. For example:

• GHC’s Core [TC10; CR14] is used for type inference, type checking,
and several optimizations before translating Core to a lower level
language.

• The OCaml compiler uses its Lambda IR [MMH13, chap. 23] for
several optimizations.
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• Lift [SRD17] is a data-parallel, functional IR, which encodes OpenCL-
specific constructs as functional patterns.

Name Capture

A well-known problem when transforming programs is name capture [Bar84].

Example 9.1 (Name Capture)
The following naïve β-reduction of λx is incorrect:

λa.(λx.(λa.x)) a ⇒ λa.λa.a

Originally, the variable a referred to the outer λa, but now it refers to the
inner λa.

One solution is to introduce new names during β-reduction:

λa.λa′.a

This technique is used by the inliner of GHC, for example [PM02]. The
downside is that additional bookkeeping in the compiler is necessary.
De Bruijn [De 72] indices (not to be confused with De Bruijn [De 80]

notation) provide another option. Each occurrence of a variable is replaced
by an index. This indicates the number of binders in scope between the
occurrence and its associated binder.

Example 9.2 (De Bruijn Indices)
Using De Bruijn indices we rewrite Example 9.1 as follows:

λ.(λ.(λ.2)) 3 ⇒ λ.λ.2

De Bruijn indices have the advantage that they obviate α-conversion.

Example 9.3 (α-Equivalence)
Using De Bruijn indices we identify both

λa.(λb.a) and λx.(λy.x) with λ.1(λ.2) .
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A disadvantage of De Bruijn indices is that these indices depend on the
context in which they occur. For instance, in the latter example both
indices refer to the same binder. Analyses have to keep track of the binding
level in order to figure out which indices identify. Furthermore, code
transformations, for example β-reduction, must adjust indices.
Yet another alternative is to give up on names and use a graph. Each

occurrence directly points to its definition:

(λ(λ(λ ● )) ● ) ⇒ λ λ ●

It is now straightforward to perform a β-reduction. Thereby, it is not
necessary to rename anything: We simply update the body of the inner
function to point to the substituting argument. This way, the reference in
the substituting argument to the outer function still points to its proper
definition.

9.1.2. Continuation-Passing Style
Although the λ-calculus’ simplicity makes this language an attractive IR, it
also has its downsides. Most notably, we must be careful during β-reduction.

Example 9.4 (Dangerous β-reduction)
Reducing

(λx.23)(fy) ⇒ 23

is problematic if f diverges or has side effects—assuming an extension of
the λ-calculus that allows this.

The reason is that the λ-calculus does not impose a strict evaluation
order. CPS on the other hand establishes a well-defined evaluation order.
Furthermore, CPS allows us to represent any control flow in a uniform way.
Section 8.2.1 has already discussed, how to model basic blocks, ordinary
jumps, loops, and generators with CPS. As another example, consider how
Listing 9.1 models Java-style checked exceptions in Impala without syntax
support. These properties make CPS an attractive IR and, thus, CPS has
been used in several compilers [e.g. Ste78; Kra+86; App06].
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fn fopen(name: string , throw : fn( FileError ) -> !) -> File {
if sth_went_wrong {

throw ( FileError {/* ... */ })
}
File{/* ... */}

}

// ...
let file = fopen(" some_file ", catch );
// ...
fn catch( file_error : FileError ) {

// error handler
}

(a) Java-style checked exceptions in Impala

fopen(name: string , throw : cn( FileError ), return : cn(File )):
br( sth_went_wrong , T, F)

T():
throw ( FileError {/* ... */ })

F():
return (File{/* ... */})

// ...
fopen(" some_file ", catch , k);

k(file: File ):
// ...

catch ( file_error : FileError ):
// error handler

(b) Thorin representation

Listing 9.1.: Checked exceptions modeled in CPS
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+(a, b, AB): where
AB(ab):

+(c, d, CD) where
CD(cd):

*(ab , cd , R)

(a) compute a+b first

+(c, d, CD) where
CD(cd):

+(a, b, AB): where
AB(ab):

*(ab , cd , R)

(b) compute c+d first

Listing 9.2.: The order of computing ab and cd does not matter as long
as the multiplication happens last.

Since invoking a continuation does not return, we have to equip it with
an additional higher-order “return” parameter in order to mimic direct-style
functions in CPS. At the call site, this parameter is fed an appropriate
continuation that retrieves the result. This process is called CPS conversion.

Example 9.5 (CPS Conversion)
CPS converting Example 9.4 yields

f y (λrf .(λx.λr.r 23) rf R)

where R represents the rest of the program. If we allow ourselves functions
of multiple variables and a bit of syntactic sugar, we can rewrite the
example like this:
f(y, kf ) where

kf (rf ):
g(rf , R) where

g(x, r):
r(23)

Note how CPS conversion turns function applications inside out and names
all intermediate results of computations.

The fixed evaluation order in CPS is both a curse and a blessing. On
the one hand, the compiler does not have to worry about side-effects and
non-termination during β-reduction. On the other hand, a fixed evaluation
order suggests false dependencies between calculations. This complicates
code motion (see Listing 9.2), common subexpression elimination, and many
other optimizations. Other arguments against CPS are the complexity
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a(x: int , ret: int -> �) -> �:
b() where

b() -> �:
c() where

c() -> �:
ret(x)

(a) Classic CPS version

a(x: int , ret: int -> �) -> �:
br(x = 0, b, z) where

b() -> �:
c()

z() -> �:
c()

c() -> �:
ret(x)

(b) Classic CPS with new branch z

a(x: int , ret: cn(int )):
b()

b():
c()

c():
ret(x)

(c) Thorin version

a(x: int , ret: cn(int )):
br(x = 0, b, z)

b():
c()

z():
c()

c():
ret(x)

(d) Thorin version with new branch z

Listing 9.3.: This example illustrates Thorin’s blockless representation.

of CPS terms, the need to allocate closures for continuations, and the
cumbersome nesting of continuations as opposed to a flat program structure
used by CFG-based representations.
The disadvantage of nesting unveils in Listing 9.3. Assume we want to

add a conditional branch in a to b and an additional continuation z that in
turn branches to c. The original nesting must be repaired since c needs to
be visible from both b and z (see Listing 9.3b). Block/let floating [San95]
has to be applied to float c into a. The reverse transformation, i.e. sinking c
into b, is known as block sinking. Such situations occur during several
optimizations like, for example, jump threading1.

9.1.3. A-Normal Form

administrative normal form (ANF) [Fla+93] is a direct-style program rep-
resentation that still maintains the property of CPS programs to name all
intermediate computations. Hence, ANF does not allow nested function

1see http://beza1e1.tuxen.de/articles/jump_threading.html

100

http://beza1e1.tuxen.de/articles/jump_threading.html


9.1. Related Work

calls—unlike the usual λ-calculus. Thus, compared to CPS, terms in ANF
are less complicated.

Example 9.6 (ANF)
This is the term from Example 9.4 in ANF:
let rf = f(y) in

let g = λ x. 23 in
let rg = g(rf ) in R

However, as Kennedy [Ken07] points out, in contrast to a faithful CPS
representation ANF requires a re-normalization phase after β-reduction.

9.1.4. SSA Form vs. CPS
SSA form [RWZ88; Cyt+91] is a popular first-order program representa-
tion, which is typically used in compilers for imperative languages. This
program representation is characterized by the fact that each variable is
exactly defined once—just like in CPS. Consider the imperative program
in Listing 9.4a, its translation into SSA form (see Listing 9.4b), as well as
its CPS conversion (see Listing 9.4c). The CPS version acknowledges the
fact that functions never return by using � as return type.
SSA form introduces φ-functions in order to merge values from different

predecessors (see the definitions of r1 and i1 in Listing 9.4b). The CPS
version, however, introduces parameters for a continuation (parameters i
and r in the continuation head). The arguments to the φ-function in the
SSA-form version appear as arguments to a call of head in the CPS version.
The continuation next in Listing 9.4c makes use of fac’s higher-order

parameter ret. This is legitimate as continuations may use parameters of
other continuations in which they are nested. In the scope of the inner
continuation these uses appear as free variables. Suppose next were not
defined locally in fac. In that case, callers of next would have to pass ret
as an additional parameter to next. To keep the number of parameters low,
continuations are nested. Nesting continuations according to the dominance
tree results in the minimal number of parameters [DS00, sec. 4.1].

As we have seen, differences between the SSA form and CPS are mostly
syntactical. This has already been noted by Kelsey [Kel95] and Appel

101



9. Thorin and λcps

fn fac(n: int) -> int {
if n <= 1 {

1
} else {

let mut r: int = 1;
let mut i: int = 2;
while i <= n {

r *= i;
++i;

}

r
}

}

(a) Original program

fn fac(n: int) -> int {
br(n ≤ 1, then , else)

then:
return 1;

else:
int r0 ← 1;
int i0 ← 2;

head:
int r1 ← φ(r0 [else], r2 [body ]);
int i1 ← φ(i0 [else], i2 [body ]);
br(i1≤n, body , next)

body:
int r2 ← r1 * i1;
int i2 ← i1 + 1;
goto head;

next:
return r1;

}

(b) SSA-form version

Listing 9.4.: Factorial in different versions. In Thorin, each definition is a
node. Every use is an edge to this node.

[App98]. To sum up: In contrast to SSA form, a CPS program can be
higher-order. Furthermore, a CPS program requires continuations to be
nested in order to disambiguate a variable use when the variable name is
defined more than once in the program.

Graph-Based IRs

Classic SSA-based representations consist of a CFG and each basic block
in turn consists of a rather rigid instruction list. Inspired by program de-
pendence graphs (PDGs) [FOW87] and program dependence webs (PDWs)
[BMO90], Click and Paleczny [CP95] promoted the idea of replacing these
instruction lists with a data dependence graph. Each node in that graph
represents an operation and each outgoing edge represents an operand
of that operation (see Figure 9.1). Graph nodes also prevent name cap-
ture as discussed at the end of Section 9.1.1. The exact placement of a
node—this means its associated basic block as well as its exact place within
that block—is by design not recorded. Instead, a scheduler decides on the
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fac(n: int , ret: int -> �):
br(n ≤ 1, then , else) where

then ():
ret (1)

else ():
head (2, 1) where

head(i: int , r: int ):
br(i ≤ n, body ,

next) where
body ():

head(i + 1, i * r)
next ():

ret(r)

(c) Classic CPS version

fac(n: int , ret: cn(int )):
n≤0

br(●, then , else)

then ():

ret(1)

else ():

he ad(2, 1)

head(i: int , r: int ):
i≤n

br(●, body , next)

body ():
i+1 i*r

he ad(●, ●)

next ():

ret(r)

(d) Thorin version (blockless)

Listing 9.4. (cont.): Names are solely present for readability. They do not
possess any semantic meaning.

×

+ +

a b dc

Figure 9.1.: Data dependence graph for Listing 9.2
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placement of each node late during compilation. This corresponds to code
motion in a classic IR. Click [Cli95] coined the term “sea of nodes” for this
compiler design and argues that besides code motion several optimizations
such as (conditional) constant propagation, dead code elimination, or global
value numbering work well on a “sea of nodes”. Other compilers such as
FIRM [BBZ11], the Java HotSpot compiler [PVC01], and TurboFan2 also
employ a “sea of nodes”.

Higher-Order Programs

A major restriction of SSA-form programs is that these programs can only
be of first order. But many modern imperative programming languages like
C++11, Java 8, Scala, Go, Rust, and Swift support higher-order functions.
As already mentioned in Section 8.2.2, the common way to implement a
function value is a closure. For example, the C++ code in Listing 9.5a
results into the (stylized) code in Listing 9.5b. This transformation is
called closure-conversion [App06, chap. 10]. However, a straightforward
implementation of closures can incur a significant performance penalty:
Ideally, the code in this example is compiled into a simple loop.

Since SSA-based IRs are too low-level to represent free variables directly,
compilers already implement closure-conversion in the front end. This has
several drawbacks:

• The implementation is language-specific and can hardly be reused in
another front end.

• The IR code is significantly bloated. For every function abstraction a
new struct is created. For example, the LLVM code for Listing 9.5b
consists of over 600 lines.

• Finally, it is inelegant and inefficient to lower constructs that have
to be restored later on. LLVM, for example, uses a combination
of carefully coordinated analyses and transformations to eliminate
closures: Inline the call to the closure’s function pointer to be able to
SSA-construct (mem2reg) the closure struct and finally dissolve the
struct to scalar values. This strategy, for instance, fails to optimize
recursive higher-order functions, like the one in the example above.

2see https://github.com/v8/v8/wiki/TurboFan
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After optimizations, the example in Listing 9.5a is still more than 250
lines of LLVM bitcode long.

9.2. Thorin
9.2.1. Overview
Thorin blends concepts of a graph-based SSA-form and CPS and is equally
well-suited to represent imperative as well as functional programs. Like
SSA-form but unlike conventional functional IRs, Thorin has no scope
nesting. Instead, Thorin embraces the “sea of nodes” paradigm and does
not use named variables. In Thorin, each expression is a node in a graph
and every reference to an expression is an edge to this node. Therefore,
Thorin does not require explicit scope nesting. Listing 9.4d shows the
Thorin graph for the factorial function: A Thorin program consists of a
set of continuations. In Thorin, a continuation introduces parameters and
in turn solely consists of a call. The callee and the arguments to that
call reference other definitions: continuations (dotted edges), parameters
(dashed edges), or primops (solid edges). A primop is a simple operation,
which references other expressions to produce a new value—just like in
Figure 9.1. Note that examples nevertheless use names in Thorin programs
to make the presentation more accessible for humans. Names have no
meaning otherwise.
In Thorin, the nesting is implicitly given by data dependencies between

continuations. If a continuation f uses a variable defined in another con-
tinuation g, f is implicitly nested in g. Since Thorin does not have nesting,
it abolishes block floating and sinking (see Listing 9.3c-d). We say Thorin
is blockless.

Another reason to abandon nesting is that a given nesting is not necessarily
minimal.

Example 9.7 (Let-Floating)
Suppose, a compiler wants to inline the call to f in the Listing 9.6a. The
inliner would inline g as well although g does not use any of f’s parame-
ters. This is why compilers for functional languages usually perform the
aforementioned let-floating transformation beforehand [San95, chap. 3.4].
Now, inlining f does not touch g (see Listing 9.6b).
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void range(int a, int b,
function <void(int)> f) {

if (a < b) {
f(a);
range(a+1, b, f);

}
}

void foo(int n) {
range (0, n, [=] (int i) {

use(i, n);
});

}

(a) Original C++ program

struct closbase {
void (*f)( void* c, int i);

};

struct closure {
closbase base;
int n;

};

void lambda (void* c, int i) {
use(i, ( closure * c)->n);

}

void range(int a, int b,
void* c) {

if (a < b) {
(( closbase *) c)->f(c, a);
range(a+1, b, c);

}
}

void foo(int n) {
closure c = {{& lambda }, n};
range (0, n, &c);

}

(b) Stylized imperative IR

Listing 9.5.: A higher-order function range and a call site within foo
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ran ge(a: int , b: int ,
f: cn(int , cn ()), rret: cn ()):

a<b
br(●, then , el se)

th en ():

f(a, cont)

co nt ():
a+1

ran ge(●, b, f, rr et)

el se ():

rret()

foo(n: int , fr et: cn ()):

ra nge (0, n, lam bda , ne xt)

lam bda(i: int , out: cn ()):

use(i, n, out)

ne xt ():

fret()

(c) Thorin version

foo(n: int , fr et: cn ()):

range ’(0)

range ’(a ’: int ):
a’<n

br(●, then’, else’)

then ’():

use(a’, n, cont’)

cont ’():
a+1

range ’(●)

else ’():

next()
ne xt ():

fret()

(d) Optimized Thorin version

Listing 9.5. (cont.): the example in Thorin
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let f a b =
let g x =

x+1
in

a + (g b)
in

(f ...)

(a) g is nested in f

let g x =
x+1

in
let f a b =

a + (g b)
in

(f ...)

(b) let-float g out of f

Listing 9.6.: Let-floating

Put another way, a classic compiler asks the question:

Here is a function f . Are there any functions nested inside of f
that I can block float outwards?

Whereas Thorin asks the question:

Here is a function f . Which functions belong to f?

It is neither necessary to explicitly construct nesting when translating the
source program to Thorin nor to repair nesting after code transformations.
In fact, Impala exploits an SSA construction algorithm [Bra+13] to directly
construct a Thorin program from the AST without further analyses like
the computation of a dominance tree.

Let us come back to Listing 9.5a. The Thorin version (see Listing 9.5c) of
that program is a straightforward translation of the source program because
Thorin can directly represent free variables. In Chapter 11, we will discusses
how to optimize this program (see Listing 9.5d) and generate code that
does not need costly closures at runtime.

We argue that even classic compilers for imperative languages would profit
from a higher-order IR. It is often important to annotate code regions (such
as to mark a loop for parallelization). LLVM, for example, uses metadata
to annotate code. This introduces many subtle problems. For instance,
transformations must pay attention to not mistakenly destroy metadata
designated for a different pass. Higher-order functions solve this problem in
a clean and type-safe way by wrapping the code region to be annotated in
a higher-order function (see Section 10.7.1).

108



9.2. Thorin

9.2.2. Syntax
A Thorin program Φ (see Figure 9.2) is a set of continuations. A continuation
consists of its label, signature, and body b = e0(e). This in turn is a call
to e0 with arguments e. An expression is either

1. a primop ⊠(e), where ⊠ is an operator (e.g. +, −, ...),

2. the abstraction of a continuation `, or

3. a parameter x of a continuation.

Remark. Values of type int or bool are just nullary primops. We use 42
and true as syntactic sugar for 42() and true(), respectively. We write νt
to denote some value of type t. For example, the value νbool is either the
primop true() or false().

Continuation labels range over `, parameter names over x. We require
both to be unique. Note that continuations may reference each other in
a (possibly mutually) recursive way. Furthermore, mind that we use the
label ` only in the formalism of Thorin to refer to the node that contains the
continuation `. In Thorin’s implementation, labels do not exist. In the last
section, we have already discussed how a Thorin graph looks like. However,
for the remainder of this thesis, we waive edges and use unique names to
resolve the declaration of a definition in order to increase readability.

9.2.3. The Scope
As outlined in previous sections, continuations in a Thorin program are
not explicitly nested. For example, in Listing 9.4d the continuations then
and next directly depend on fac as both continuations use fac’s parame-
ter ret. Likewise, head directly depends on fac because head uses fac’s
parameter n. In Listing 9.4d the continuation else depends on fac al-
beit else’s body does not directly use any of fac’s parameters. How-
ever, else invokes head, which directly depends on fac. Therefore, the
continuation else indirectly depends on fac and, hence, is also implicitly
nested in fac. For many analyses and transformations (including lambda
mangling, as presented in Section 11.1), we need to know all direct and
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t ∶∶= bool ∣ int (type)
∣ cn(t) (continuation type)

Φ ∶∶= ∅ ∣ Φ ∪ {f} (program)
f ∶∶= `(x ∶ t) ∶ b (continuation)
b ∶∶= e(e) (body)
e ∶∶= (expression)

⊠ (e) (primop)
∣ ` (abstraction)
∣ x (parameter)

Figure 9.2.: Syntax of Thorin

Φ ⊢ ` live `′

L-Abs
`′(⋯) ∶ b′ ∈ Φ `′′ ⪯ b′ Φ ⊢ ` live `′′

Φ ⊢ ` live `′

L-Param
`(... , x ∶ t, ...) ∶ b ∈ Φ `′(⋯) ∶ b′ ∈ Φ x ⪯ b′

Φ ⊢ ` live `′

L-Refl
Φ ⊢ ` live `

L-Trans
Φ ⊢ `′′ live `′ Φ ⊢ `′ live `

Φ ⊢ `′′ live `

Figure 9.3.: Liveness in Thorin

indirect dependencies from the view of a continuation. A liveness anal-
ysis (see Figure 9.3) obtains this information. It holds Φ ⊢ `′ live ` if
continuation `′ is live in `. This means ` might depend on `′. L-Param
finds direct dependencies, whereas L-Abs determines indirect dependencies.

Definition 9.1 (Liveness)
We call all continuations that are live from the view of an another con-
tinuation `e the scope of `e. We call `e the entry continuation of that
scope:

scopeΦ(`e) ∶= {`(⋯) ∶ b ∣ `(⋯) ∶ b ∈ Φ ∧ Φ ⊢ `e live `} .
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Remark. Although a scope is also just a program, we use the term scope
in order to stress that the scope is a subset of the original program under
consideration.

Definition 9.2 (Well-Formedness)
A program Φ is well-formed if (Φ, live) is a tree.

This definition implies that (Φ, live) must be a partially ordered set.
Reflexivity and transitivity hold by definition. Antisymmetry means:

If Φ ⊢ ` live `′ and Φ ⊢ `′ live `, then ` = `′.

This condition is violated if two continuations reference a parameter of each
other, and liveness becomes cyclic:

Example 9.8 (Ill-Formed Program: Antisymmetry (L-Param))
Consider the following program Φ:
f(x: int ): g(y)
g(y: int ): f(x)

The continuation f uses g’s parameter y. Conversely, the continuation g
uses f’s parameter x. We can now derive:

L-Param
x ⪯ f(x)

Φ ⊢ f live g
L-Param

y ⪯ g(y)

Φ ⊢ g live f

Hence, the program Φ is ill-formed because f ≠ g. Of course, there can
also be longer dependency chains that form a cycle.

This effect can be disguised by adding continuations as indirection:

Example 9.9 (Ill-Formed Program: Antisymmetry (L-Abs))
As a second example consider the following program Φ:
f(x: int ): i()
g(y: int ): h()
h(): a(x)
i(): a(y)
a(z: int ): a(z)

111



9. Thorin and λcps

We can now derive:

L-Abs
h ⪯ h()

L-Param
x ⪯ a(x)

Φ ⊢ f live h

Φ ⊢ f live g

L-Abs
i ⪯ i()

L-Param
y ⪯ a(y)

Φ ⊢ g live i

Φ ⊢ g live f

Hence, the program Φ is ill-formed because f ≠ g.

Finally, (Φ, live) must form a tree. This is not the case in the following
example, as liveness forms a directed acyclic graph (DAG):

Example 9.10 (Ill-Formed Program: DAG)
As a third example consider the following program Φ:
a(x: int ): foo(b, c)
b(y: int ): bar(x, d)
c(z: int ): bar(x, d)
d(): ...y...z...

We can now derive:

L-Param
x ⪯ bar(x, d)

Φ ⊢ a live b
L-Param

x ⪯ bar(x, d)

Φ ⊢ a live c

L-Param
y ⪯ ...y...z...

Φ ⊢ b live d
L-Param

z ⪯ ...y...z...

Φ ⊢ c live d

This yields a DAG and not a tree:

a

b c

d

Φ ⊢
liv
e live

live liv
e
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Since liveness in well-formed Thorin programs induces a tree order for
continuations, we can always reconstruct a nesting and translate such a pro-
gram to λcps—a variant of Thorin with explicit nesting (see Section 9.3 and
Example 9.11). This property is akin to the strictness property [Bud+02]
in SSA-form programs:

Each definition must dominate all of its uses.

However, this definition is actually “heavier” than ours: It requires a
dominance analysis on a CFG—and a CFG is not part of Thorin’s syntax
and would have to be inferred (see Section 10.6). Our definition is more
basic and avoids the notion of a CFG or dominance. It merely restricts the
use of continuations and their parameters in a “strict” way.

Convention 9.1 (Well-Formedness)
From now on, we only consider well-formed Thorin programs.

9.3. λcps

The language λcps (see Figure 9.4) differs from Thorin in that nesting is
explicitly given by the where-clause. The body b wheref1, ... , fn binds f1
to fn in a mutually recursive way and makes these continuations visible
in b. This is similar to Haskell’s whererec or an upside-down version of
letrec as in LISP/Scheme, ML, or other functional languages:
letrec f1 ... fn in b

For this reason, a λcps program is just a body b. In contrast to Thorin,
there is no need to pool all continuations into a set. Additionally, λcps

introduces closures as expanded syntax because expressions can reduce to
continuations. Otherwise, λcps and Thorin are identical. Furthermore, we
say term if we either mean an expression or a body.
λcps can also be seen as

• a CPS variant of Programming Computable Functions (PCF) [Plo77]
because the where-clause allows (mutually) recursive functions,

• a higher-order variant of IL [SSH15], or

• a close relative of Appel’s [App06] CPS language. However, Appel
does not describe his language formally.
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Example 9.11 (Reconstruct Nesting)
Reconsider the program Φ in Listing 9.4d. We can derive:

fac

then else

head

body next

Φ ⊢

liv
e live

liv
e

liv
e live

Using this tree, we reconstruct nesting and translate the Thorin- to the
λcps-program in Listing 9.4c.

Of course, we can trivially translate a λcps program to Thorin by simply
“forgetting” the nesting.

9.3.1. Typing
For the purpose of presentation, we restrict the type system of λcps to
three types: the zeroth-order types int and bool, and the higher-order
continuation type cn(t). As continuations do not return, they do not possess
a return type.

Definition 9.3 (Order)
The order of a type is defined as follows:

order(bool) = 0
order(int) = 0

order(cn(t1, ... , tn)) = 1 +max(order(t1), ... ,order(tn))
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Remark. Continuation types are at least of first order. Parameters can be
of zeroth order or higher.

Example 9.12 (Order)
The type cn(int,cn(bool)) denotes a type of a second-order continuation
that expects two arguments: an integer and a first-order continuation that
expects a boolean.

In both Thorin and λcps we use the continuation br of type
cn(bool , cn(), cn ())

for conditional branches. Furthermore, invoking exit(ν) of type cn(int)
ends evaluation with the result ν.

Definition 9.4 (Exits)
Let exits(b) ∶= {exit e ∣exit e ⪯ b} be the set of exits in the body b.

The type system of λcps is presented in Figure 9.5. Note that body rules
do not yield a type in contrast to expression rules since calling continuations
never returns. T-Where checks all bound continuations and the body of a
where-clause by putting all bound continuations into the typing environment.
T-App checks all arguments and whether the type of the callee e0 actually
fits to the argument list. T-Abs resolves the type of a continuation by
looking up its signature in the typing environment. T-Param infers the
type of a parameter by projecting from its continuation’s signature the
corresponding type. A primop only expects specific input types and in turn
has a specific output type. The function check⊠(e) in T-Primop handles
these primop-specific rules. T-Clos puts the closure’s parameters along with
their associated types into the typing environment and checks the closure’s
body.

Definition 9.5 (Well-Typedness)
We call a body b well-typed under Γ iff Γ ⊢ b holds.

Remark. Note that ⊢ b implies b not having free variables (see below).
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Γ ∶∶= ∅ ∣ Γ, v ∶ t (typing environment)
t ∶∶= bool ∣ int (type)

∣ cn(t) (continuation type)
f ∶∶= `(x ∶ t) ∶ b (continuation)
b ∶∶= (body)

e(e) (application)

∣ b where f (where)
e ∶∶= (expression)

⊠ (e) (primop)
∣ ` (abstraction)
∣ x (parameter)
∣ f (closure)

v ∶∶= ` ∣ x (variable)

Figure 9.4.: Syntax of λcps. Expanded syntax is grayed out.

Definition 9.6 (Value)
We call an expression e a value iff e is a normal form and ⊢ e ∶ t for some
type t.

Remark. These are all primop values and continuations without free
variables (see below).

9.3.2. Reduction
In this section we are working towards a reduction system for λcps. Before
delving into the reduction relation, we first have to discuss free variables
and substitution.

Definition 9.7 (Free Variables)
The set of of free variables in a λcps term constitutes all variables that occur
in this term and are not bound by any continuation/where-clause:
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Body: Γ ⊢ b

T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(tn)
Γ′ ⊢ b0 Γ′, x1 ∶ t1 ⊢ b1 ⋯ Γ′, xn ∶ tn ⊢ bn
Γ ⊢ b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn

T-App
Γ ⊢ e0 ∶ cn(t1, ... , tn) Γ ⊢ e1 ∶ t1 ⋯ Γ ⊢ en ∶ tn

Γ ⊢ e0(e1, ... , en)

Expression: Γ ⊢ e ∶ t

T-Abs
` ∶ cn(t) ∈ Γ
Γ ⊢ ` ∶ cn(t)

T-Param
x ∶ t ∈ Γ
Γ ⊢ x ∶ t

T-Clos
Γ, x ∶ t ⊢ b

Γ ⊢ (`(x ∶ t) ∶ b) ∶ cn(t)

T-Primop
t = check⊠,Γ(e)

Γ ⊢ ⊠(e) ∶ t

Figure 9.5.: Typing in λcps

FV (v) ∶= {v} remember that v ∶∶= ` ∣ x
FV (e0(e1, ... , en)) ∶= FV (e0) ∪⋯ ∪FV (en)

FV (`(x ∶ t) ∶ b) ∶= FV (b) ∖ {x}

FV (⊠(e1, ... , en)) ∶= FV (e1) ∪⋯ ∪FV (en)

FV (b where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn) ∶=

FV (b) ∪FV (`1(x1 ∶ t1) ∶ b1) ∪⋯ ∪FV (`n(xn ∶ tn) ∶ bn) ∖ {`1, ... , `n}

Definition 9.8 (Substitution)
Up to renaming of bound variables, substitution is defined as follows:

[v ↦ es]v ∶= es

[w ↦ es]v ∶= v if v ≠ w
[v ↦ es](e0(e1, ... , en)) ∶= [v ↦ es]e0([v ↦ es]e1, ... , [v ↦ es]en)

[v ↦ es](`(x ∶ t) ∶ b) ∶= `(x ∶ t)[v ↦ es]b if v ∉ x and x ∉ FV (es)

[v ↦ es] ⊠ (e1, ... , en) ∶= ⊠([v ↦ es]e1, ... , [v ↦ es]en)
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b→ b′

R-Cong1a
b0 → b′0

b0 where f → b′0 where f
R-Cong2a

e0 → e′0
e0(e)→ e′0(e)

R-Cong1b
bi → b′i 1 ≤ i ≤m

b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ bi, ... , `n(xn ∶ tn) ∶ bn
→ b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ b

′

i, ... , `n(x
n ∶ tn) ∶ bn

R-Cong2b
ei → e′i

e0(e1, ... , ei, ... , en)→ e0(e1, ... , e
′

i, ... , en)

R-Where
b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
→ [`1 ↦ `1(x1 ∶ t1) ∶ b1 where f]⋯[`n ↦ `n(xn ∶ tn) ∶ bn where f]b0

R-App (`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)→ [x1 ↦ e1]⋯[xn ↦ en]b

e→ e′

R-Primop
ei → e′i

⊠(... , ei, ...)→ ⊠(... , e′i, ...)
R-Fold

n > 0
⊠(ν1

t1, ... , ν
n
tn)→ ⊗(ν1

t1, ... , ν
n
tn)

R-Clos
b→ b′

(`(t) ∶ b)→ (`(t) ∶ b′)

Figure 9.6.: Reduction (→) in λcps

[v ↦ es](b where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn) ∶=

[v ↦ es]b where [v ↦ es](`1(x1 ∶ t1) ∶ b1), ... , [v ↦ es](`n(xn ∶ tn) ∶ bn)

if v ∉ `1, ... , `n and `1, ... , `n ∉ FV (es)

Remark. At first glance, the guards in the definition of FV seem to be
non-exhaustive. However, since this definition is “up to renaming of bound
variables”, we α-convert terms until the required guards are met.

Example 9.13 (α-conversion)
Since x ∈ {x}, the guard for the case of a closure is not met in the
following substitution: [x ↦ es](f(x ∶ t) ∶ b). After α-conversion, we
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b_ b′

P-Cong1
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(t1) ∶ b1, ... , `n(tn) ∶ bn _ b′0 where `1(t1) ∶ b′1, ... , `n(tn) ∶ b
′

n

P-Cong2
e0 _ e′0 ⋯ en _ e′n

e0(e1, ... , en)_ e′0(e
′

1, ... , e
′

n)

P-Where
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
_ ⋯[`i ↦ `i(xi ∶ ti) ∶ b

′

i where `1(x1 ∶ t1) ∶ b′1, ... , `n(x
n ∶ tn) ∶ b′n]⋯b

′

0

P-App
b_ b′ e1 _ e′1 ⋯ en _ e′n

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)_ [x1 ↦ e′1]⋯[xn ↦ e′n]b
′

e_ e′

P-Abs
`_ `

P-Param
x_ x

P-Primop
e1 _ e′1 ⋯ en _ e′n

⊠(e1, ... , en)_ ⊠(e′1, ... , e
′

n)

P-Fold
⊠(ν1

t1, ... , ν
n
tn)_ ⊗(ν1

t1, ... , ν
n
tn)

P-Clos
b_ b′

(`(x ∶ t) ∶ b)_ (`(x ∶ t) ∶ b′)

Figure 9.7.: Parallel reduction (_) in λcps

obtain: [x ↦ es](f(y ∶ t) ∶ b). Now the guard is satisfied and we can
proceed.

Substitution preserves well-typedness as the following lemma states.
Lemma 9.1 (λcps: Substitution – Typing)

If Γ ⊢ b̂
Γ ⊢ ê ∶ t̂ ,Γ ⊢ v ∶ t, and Γ ⊢ e ∶ t, then Γ ⊢ [v ↦ e]b̂

Γ ⊢ [v ↦ e]ê ∶ t̂
.

Proof sketch. By mutual induction on a derivation of Γ ⊢ b̂
Γ ⊢ ê ∶ t̂ .

See Section B.3 for the full proof.
The relation → (see Figure 9.6) defines a reduction system for λcps. Rules

R-Cong1a and R-Cong1b allow us to arbitrarily descend into a where-clause,
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whereas rules R-Cong2a and R-Cong2b allow us to arbitrarily descend into
an application. R-Where substitutes all recursively bound functions into
themselves and into the where-clause’s body b. R-App reduces a closure
in callee position to its body while substituting all parameters with their
associated arguments. R-Primop allows us to arbitrarily descend into any
of the primop’s operand. R-Fold folds a primop that just consists of values;
the symbol ⊠ is meant purely syntactically, while ⊗ refers to the actual
mathematical operations like actually adding two values. Finally, R-Clos
reduces the body of a closure.

Remark. The reduction rules are indeterministic. One is free to choose

• R-Cong1a/R-Cong1b over R-Where,

• R-Cong2a/R-Cong2b over R-App,

• any operand in R-Primop, or

• R-Fold instead of R-Primop if all operands are values.

Remark. Actually, Figure 9.6 defines two relations in a mutually recursive
way. The relation e→ e′ uses b→ b′ and vice versa. However, for the sake
of readability, we will often pretend that → is just one relation in the case
that definitions, statements and so forth in fact hold for both relations
alike.

We assume that primops are total. Lemma 9.2 establishes type preserva-
tion for total primops. In practice, however, not every primop meets this
assumption. For instance, division by zero is not defined. Moreover, primops
that cause side-effects are modeled with functional loads and stores [Ste95;
Str00]. Dereferencing a dangling pointer (“use after free”) is another exam-
ple of a partial primop. As a consequence of Lemma 9.2, we know that the
loss of preservation that we experience when we move to partial primops
stems indeed from them and not from a foul design of continuations.
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Lemma 9.2 (λcps: →-Preservation)
If a well-typed λcps term reduces with →, the resulting term is also well-typed.
To be more precise:

If Γ ⊢ b
Γ ⊢ e ∶ t and b→ b′

e→ e′ , then
Γ ⊢ b′

Γ ⊢ e′ ∶ t .

Proof sketch. By mutual induction on a derivation of b→ b′

e→ e′ and Lem-
ma 9.1. See Section B.3 for the full proof.

9.3.3. Confluence
This section proves confluence of →. The proof is based upon the tech-
nique of Tait/Martin-Löf as, for instance, presented by Barendregt [Bar84,
Chapter 3]. We strongly recommend readers not familiar with this proof
technique to first study it in the context of confluence for β-reduction in
the untyped lambda calculus. In addition to Barendregt [Bar84], Pollack
[Pol95], Selinger [Sel08, Chapter 4], and Smolka [Smo15], for example,
discuss the proof thoroughly.

Definition 9.9 (Diamond Property)
Let ⇀ be a binary relation on a set A. We say ⇀ satisfies the diamond
property (notation dp(⇀)) if holds:
Whenever

a⇀ a′ and a⇀ a○

then there exists an a† ∈ A such that

a′ ⇀ a† and a○ ⇀ a† .

We graphically represent this property in the following picture:
a

a′ a○

a†
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Lemma 9.3 (Strip Lemma)
Let ⇀ be a binary relation and ⇀∗ its reflexive transitive closure.

If dp(⇀), then dp(⇀∗) .

Proof. By a simple diagram chase as the following figure suggests:
●

● ●

● ● ●

● ● ● ●

● ● ●

● ●

●

Remark. Pollack [Pol95, Section 2] gives a more technical proof.

Unfortunately, → does not satisfy the diamond property. Thus, we cannot
simply apply Lemma 9.3 on → in order to prove dp(→∗). There are two
reasons why dp(→) does not hold [cf. Pol95, Section 1.2]: Relation → can

1. “forget” subterms but is not reflexive, and

2. copy subterms but is not parallel.

The parallel reduction _ (see Figure 9.7) fixes these issues. This relation’s
reflexive transitive closure is the same as the reflexive transitive closure
of → (see Lemma 9.5). So, if we prove dp(_) (see Lemma 9.8), we also
know dp(→∗) (see Theorem 9.1).

Lemma 9.4 (Reflexivity of _)

For all b
e
holds b _ b

e _ e
.
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Proof. As base we have P-Abs, P-Param, and P-Fold with n = 0. When
reducing a body, we can always choose between P-Cong, P-App, and P-
Where. So let us choose P-Cong. When reducing a primop we can always
choose between P-Fold and P-Primop. So let us choose P-Primop. By a
straightforward induction we show reflexivity for the remaining cases.

Lemma 9.5 (→∗ = _∗)

(a) Whenever b→ b′

e→ e′ , then
b _ b′

e _ e′ .

(b) Whenever b _ b′

e _ e′ , then
b→∗ b′

e→∗ e′ .

(c) →∗ is the reflexive transitive closure of _.

Proof sketch.
(a) By mutual induction on a derivation of b→ b′

e→ e′ and Lemma 9.4.

(b) By mutual induction on a derivation of b _ b′

e _ e′ and transitivity
of →∗.

(c) • By (a) we have → ⊆ _, hence →∗ ⊆ _∗.
• By (b) we have _ ⊆ →∗, hence _∗ ⊆ →∗.
• Thus, →∗ = _∗.

See Section B.3 for the full proof.

Lemma 9.6 (λcps: Substitution – Reduction)

If b̂ _ b̂′

ê _ ê′
and e _ e′ then [v ↦ e]

b̂
ê

_ [v ↦ e′] b̂
′

ê′
.

Proof sketch. By mutual induction on a derivation of b̂ _ b̂′

ê _ ê′
.

See Section B.3 for the full proof.
Finally, we have to prove the diamond property for _. A direct proof

requires a complicated double induction on R′ and R○:
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b
e

b′

e′
b○

e○

b†

e†

R′ R○

S′ S○

For all combinations of possible rules for R′ and R○ we have to find rules S′
and S○ to close the diamond. This requires us to consider a quadratic
number of cases. Pfenning [Pfe92], for example, gives a direct proof in the
context of the untyped lambda calculus. However, the maximal parallel
one-step reduct [Tak95] offers a more elegant way:

Definition 9.10 (Maximal parallel one-step reduct)
The maximal parallel one-step reduct is defined as follows:

ρ[e0(e1, ... , en)] ∶= ρ[e0] (ρ[e1] , ... , ρ[en]) if e0 is not a closure
ρ[(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)] ∶= [x1 ↦ ρ[e1]]⋯[xn ↦ ρ[en]]ρ[b] otherwise

ρ[`] ∶= `

ρ[x] ∶= x

ρ[`(x ∶ t) ∶ b] ∶= `(x ∶ t) ∶ ρ[b]

ρ[⊠(e1, ... , en)] ∶= ⊠(ρ[e1] , ... , ρ[en])
if e1,. . . ,en are not values

ρ[⊠(ν1
t1, ... , ν

n
tn)] ∶= ⊗(ν1

t1, ... , ν
n
tn) otherwise

ρ[b0 where f] ∶=

⋯ [`i ↦ `i(xi ∶ ti) ∶ ρ[bi] where `1(x1 ∶ t1) ∶ ρ[b1] , ... , `n(xn ∶ tn) ∶ ρ[bn]]⋯ρ[b0]

if ∣f ∣ ≥ 1 where f ∶= `1(t1) ∶ b1, ... , `n(tn) ∶ bn

Remark. In contrast to the relations → and _, the function ρ is determin-
istic due to the case distinctions in its definition.

Intuitively, the function ρ recursively disassembles a body/an expression,
reduces closure applications and where-bindings, folds primops whenever
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possible, and reassembles everything again. But since ρ first recurses into
subterms and then reduces closure applications/where-bindings and folds
primops, it will reduce each closure application and where-binding/fold
each primop exactly once. For this reason, the maximal parallel one-step
reduct is also sometimes called complete development. The following lemma
implies the diamond property for _. What is more, the proof only requires
a linear number of cases to consider.

Lemma 9.7 (λcps: Maximal parallel one-step reductions)

Whenever b _ b̂
e _ ê

, then b̂ _ ρ[b]
ê _ ρ[e]

.

Proof sketch. By mutual induction on a derivation of b _ b̂
e _ ê

and Lem-

ma 9.6. See Section B.3 for the full proof.

Lemma 9.8 (Diamond property for _)
The relation _ satisfies the diamond property.

Proof. Take b† = ρ[b]
e† = ρ[e]

with Lemma 9.7.

Theorem 9.1 (Confluence)
The relation →∗ satisfies the diamond property.

Proof.

• By Lemma 9.8 we know dp(_).

• Lemma 9.3 implies dp(_∗).

• Thus, by Lemma 9.5 we conclude dp(→∗).

Remark. This property is equivalent to the Church–Rosser prop-
erty [CR36].

125





He who controls the past controls the future.
He who controls the present controls the past.

George Orwell, 1984 10
Partial Evaluation

The last chapter presents an indeterministic reduction system for λcps.
However, an interpreter or compiler for λcps needs an evaluation strategy,
i.e., a deterministic reduction system. This is why this chapter introduces a
new relation⇒ ⊂ →: a call-by-value evaluation strategy. We will enhance⇒
to work on programs with free variables in a deterministic way. This allows
us to use ⇒ for both full as well as partial evaluation. Equipped with these
insights, we will discuss how to embed and guide the partial evaluator from
within a program and how this affects termination. Then, we take a look
on how we can partially evaluate data structures. A crucial aspect of our
partial evaluation algorithm is a higher-order notion of post-dominators.
This requires a control-flow analysis (CFA). Finally, our experiments
demonstrate that the presented partial evaluation approach is able to
remove the overhead of two shallowly embedded high-performance DSLs.
But first, let us informally introduce our partial evaluation algorithm and
discuss related work.

10.1. Overview
The partial evaluator works as follows:

1. If the callee of a function application is known, unfold this call and
proceed.

2. Otherwise, skip to a post-dominator of that call and proceed evaluation
there.
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fn count(i: int , N: int) -> int {
if i<N {

count(i+1, N)
} else {

i
}

}

fn loops(a: int , b: int) -> int {
let x = count (0, a);
let y = count (0, b);
x + y

}

let z = @ loops (3, D)

Listing 10.1.: Two instances of the counting-loop problem

Example 10.1 (Partial Evaluation)
Consider function count in Listing 10.1. It consists of two counting loops—
two instances of the counting loop problem (see Section 10.2.4). Using
our partial evaluation strategy, we evaluate the program as depicted in
Listing 10.2. Each step refers to one step in that figure.

(a) After having inlined loops, the partial evaluator inlines count.
(b) The evaluator folds the condition 0<3 and keeps the call

count(1, 3).
(c) The evaluator keeps inlining count until . . .
(d) . . . the condition 3<3 evaluates to false.
(e) Thus, 3 is propagated for x and the evaluator inlines count for y.
(f) As the condition 0<D is dynamic the evaluator continues at the

post-dominator . . .
(g) . . . and the partial evaluator terminates with the final residual pro-

gram.
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let z = {
let x = count (0, 3);

let y = count (0, D);
x + y

}

(a)

let z = {
let x = if 0<3 {

count (1, 3)
} else {

0
};

let y = count (0, D);
x + y

}

(b)

let z = {
let x = count (1, 3);

let y = count (0, D);
x + y

}

(c)

let z = {
let x = if 3<3 {

count (4, 3)
} else {

3
};

let y = count (0, D);
x + y

}

(d)

let z = {
let y = count (0, D);

3 + y
}

(e)

let z = {
let y = if 0<D {

count (1, D)
} else {

0
};

3 + y
}

(f)

let z = 3 + if 0<D { count (1, D) } else { 0 };

(g)

Listing 10.2.: Step-by-step example of the partial evaluation algorithm
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P BTA Pann cogen Pgen Pspec

mixonline

mixoffline

run

fn Pann(x:int , n:int) -> int {
if n == 0 {

1
} else if n % 2 == 0 {

let r = Pann(x, n/2)
r * r

} else {
x * Pann(x, n -1)

}
}

(a) Pann

fn Pspec(x:int) -> int {
let r = x*x;
r*r

}

(b) Pspec with Pgen(4)

fn Pgen ’(n:int) -> code {
if n == 0 {

"1"
} else if n % 2 == 0 {

let r:code = Pgen ’(n/2);
r + "*" + r

} else {
"x*" + Pgen ’(n -1)

}
}

fn Pgen(n:int) -> () {
emit(

"fn Pspec(x:int) -> int {"
);
emit(Pgen ’(n));
emit("}");

}

(c) Pgen

Listing 10.3.: Partial evaluation and metaprogramming

10.2. Related Work

Program specialization goes back to Kleene’s [Kle38] smn -theorem. It states
that there exists a particular algorithm that acceptsm values and a program
with m + n free variables. This algorithm generates a program that only
has n free variables by substituting the m values for the m free variables.

As running example to discuss prior work, we review how to specialize
the power function to its exponent.
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let rec pow x n =
if n = 0 then

.<1>.
else if even n then

let r = pow x (n/2) in
r * r

else
.<.~x *

.~( pow x (n -1)) >.

let Pspec =
.<fun x ->

.~( pow .<x>. 4)>.

(a) MetaOCaml

function pow(x, n)
if n == 0 then

return 1
elseif n % 2 == 0 then

local r = pow(x, n/2)
return ‘[r]*[r]

else
return ‘[x]*[ pow(x, n -1)]

end
end

terra Pspec(y: int)
return [pow(y, 4)]

end

(b) Terra

trait Pow { this: Arith =>
def pow(x:Rep[Int], n:Int ):

Rep[Int]= {
if (n == 0) {

1
} else if (n % 2 == 0) {

val r = pow(x, n/2);
r * r

} else {
x * pow(x, n -1)

}
}

}
// ...
val o = new Pow with ArithExp
import o._
val Pspec = pow( fresh[Int ],4)

(c) Scala/LMS

fn pow(x: int , n: int) -> int {
if n == 0 {

1
} else if n % 2 {

let r = pow(x, n/2);
r * r

} else {
x * pow(x, n -1)

}
}

fn Pspec(y: int) -> int {
@pow(y, 4)

}

(d) Impala

Listing 10.4.: Specializing the power function to its exponent with metapro-
gramming and partial evaluation. Code needed to achieve this specialization
is highlighted.
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10.2.1. Partial Evaluation

In this thesis, we advocate online partial evaluation [Lom67; Ruf93; CL11;
SC11]: We directly specialize the source program P (see Listing 10.4d) on the
fly without prior analysis to the specialized program or residuuum Pspec (see
Listing 10.3b). This corresponds to the first Futamura [Fut99] projection:
Specializing an interpreter P to an input program produces a compiled
version of that program. The specializer is often called mix in literature.

Specializing the specializer for itself yields a compiler generator (cogen)
or generating extension generator (gegen): a program that converts an
interpreter to an equivalent compiler (the third [Fut99] projection). In
order to actually achieve this, the specializer must be self-applicable—a
requirement which is hard to realize in practice [Glü12]. This is much
easier for an offline [JSS89; Jon95; BJ93] evaluator: First, a binding-time
analysis (BTA) [JS86; JSS89] identifies which parts of the program can
be static and which ones must remain dynamic. The result is Pann (see
Listing 10.3a)—a program in which the binding-time, i.e. static or dynamic,
is annotated. Then, the specializer (mixoffline) runs on that annotated
program as opposed to directly running the specializer (mixonline) on P .
Birkedal andWelinder [BW94] discovered that hand-writing cogen is actually
not more difficult than writing an ordinary offline evaluator. In particular,
a hand-written cogen does not require a bootstrapping process. This has
the additional advantage that cogen’s output language can be different
from its input language while cogen itself may even be written in a third
language. Given the annotated program Pann , cogen produces its generating
extension Pgen (see Listing 10.3c): All static parts of Pann are copied over
to Pgen. Dynamic parts are converted into a program that generates the
specialized program Pspec. Thus, Pgen is parametric in Pann’s static input.
Running Pgen with a specific static input generates a program Pspec, which
is parametric in Pann’s dynamic input. For example, invoking Pgen(4)
generates Pspec (see Listing 10.3b).1 From a different point of view, cogen
transforms the one-stage program P into a two-stage program. Moreover,
once cogen’s compiler has been generated, the performance of running this
generator is usually much better than running an online evaluator.

1This listing assumes that the code generator that emits Pspec is smart enough to also
fold x * 1 to x.
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On the downside, a BTA analysis is inherently less precise than a sophis-
ticated online evaluator because a BTA only differentiates between static
and dynamic. For example, an online evaluator like ours folds
if x == 23 { T } else { F }

to T if x == 23. A BTA only knows that x is static but not what value.
Furthermore, when dealing with higher-order programs as we do, a BTA
requires a CFA (see Section 10.6) which might introduce even more impre-
cisenesses: as argued in Section 10.6, in our setting an on-the-fly CFA is
more precise than a CFA that runs once beforehand because evaluating the
program yields full context-sensitivity. In addition, a CFA can be quite
costly depending on the desired precision.

Partial evaluation has also been used to optimistically optimize dynamic
languages like Python, JavaScript [Wür+13; Wür14; Hum+14; Wür+17;
Wim+17], or R [Sta+16; Fum+17]. The implementation of the language
consists of an interpreter that is aware of the partial evaluator. This means
that the programmer must annotate the interpreter in several ways. For
example: fields that are candidates for specialization, functions which should
not be entered by the evaluator, or the AST data structure such that the
evaluator understands which fields are the children of an AST node. After
starting the interpreter for a given program, the runtime system might
detect after running several iterations of a “hot” loop that the iteration
variable was always an int. Assumptions like these will be specialized by
partial evaluation. The resulting code is then just-in-time (JIT)-compiled
to machine code in order to speed up the execution of such “hot code
regions”. Runtime checks are inserted to verify that the assumptions made
still hold as the compiled version runs. If one of these assumptions is no
longer correct, the code must be deoptimized. This means that control is
transferred back to the interpreter.

10.2.2. Metaprogramming
Metaprogramming allows the programmer to write a program that generates
another program. In other words, the programmer manually implements
the generating extension Pgen. For this reason, metaprograms conceptu-
ally look like the pseudocode in Listing 10.3c and the programmer can
explicitly stage a DSL interpreter [Cza+03]. Many projects implement Pgen
in a scripting language like Python. The script is invoked at build-time
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to generate Pspec—usually in a low-level language like C [e.g. Pro+13;
Rat+17]. As such scripts simply splice strings, the residuum may be ill-
typed. Another possibility is to run a C++ program as generator in order
to construct a GPU program [HG14; Hai+16]. The focus of this line of
work is to increase programmer productivity by only using C++ but also
target GPU code generation. Other approaches like C++ template metapro-
gramming [Vel98], Terra [DeV+13] (see Listing 10.4b), (quasi-)quotation
and macros in Scheme/Lisp, or Racket [Tob+11] increase programmer pro-
ductivity by incorporating metaprogramming facilities into the language
but still may construct an ill-typed residuum. MetaML [TS00] and MetaO-
Caml2 (see Listing 10.4a) on the other hand, guarantee well-typedness of
the residuum if the metaprogram is well-typed.
With partial evaluation, well-typedness of the residuum comes for free

because type checking is independently performed prior to specialization.
Moreover, the intrusive staging annotations make it difficult for the pro-
grammer to read and understand the program: The shape of the residuum
is concealed by the metaprogram. To really understand what the residuum
actually does, the programmer has to execute the metaprogram in her mind.
With partial evaluation on the other hand, the programmer can ignore the
different stages if she just wants to understand the program. Finally, since
the stage is a feature of the syntax, functions are not polyvariant. This
means that it is not possible to write a function that is polymorphic in
the binding time of its parameters. Dynamic staging [Dan+14] tackles this
problem by introducing the stage as a first-class citizen to the language at
the cost of an unsound type system.

10.2.3. DSL Embedding
Hudak [Hud98] was one of the first to embed a DSL into a host language
in order to inherit much of its infrastructure. Carette, Kiselyov, and Shan
[CKS07] suggested to embed a typed language by ordinary functions instead
of object terms. Based on this work, Hofer et al. [Hof+08] have described a
polymorphic embedding that supports multiple interpretations including
an optimizer as yet another interpretation. Rompf and Odersky [RO10]
extend this work even further to lightweight modular staging (LMS) with
a focus on performance-oriented DSLs [Cha+10] like OptiML [Suj+11] or

2see http://www.cs.rice.edu/~taha/MetaOCaml/
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Liszt [DeV+11]. LMS does not rely on explicit staging capabilities of the
host language Scala. Instead, executing the host program constructs a
second domain-specific program representation like Delite [Bro+11] (deep
embedding—see Section 8.1). Values of type T are wrapped into a type
operator Rep[T] to represent values that should appear in the residuum. As
the stage is encoded in the type system, Scala’s type inference works akin to
a local BTA [PS94]. Lancet [Rom+14] is an online partial evaluator for Java
bytecode and serves as a front end for LMS. This is an alternative to explicit
programming with Rep types. The deferred stage can also be executed at
runtime in the setting of a JIT compiler. Comparable to other explicit
metaprogramming techniques, LMS essentially requires the programmer to
write the generating extension. However, via overloading and type inference
the staged program is somewhere between P and Pgen (see Listing 10.4c).
For example, n % 2 is of type Int. Thus, the expression is executed when
the host program runs. But since r is of type Rep[Int], executing r * r
results in a residuum containing a multiplication. The implementation of
cogen lies in LMS’ library, which implements a * b for Rep[Int]. The
downside of this approach is that for data types unknown to LMS, the
programmer must implement appropriate overloads (“cogen for these types”)
himself. To some extent, LMS can also be made polyvariant at the cost of
introducing type variables for each desired staging combination [Ofe+13]:

def f[I[_]](i: I[Int ])= { /* ... */ }

ArBB [New+11] and Halide [Rag+13] leverage a staging mechanism similar
to LMS to construct the domain-specific program representation with C++

as host language.
HIPAcc [Mem+16] and SYCL [Khr15], on the other hand, are shallowly

embedded DSLs in C++. These DSLs rely on a modified C++ compiler
that recognizes domain-specific patterns and manipulates the program
representation in order to achieve performance. Jovanovic et al. [Jov+14]
present a technique based on Scala macros to generate a deep embedding
from a shallow one. An alternative is to use a partial evaluator that removes
the overhead of the shallow embedding [Hud98; CKS07; Lei+15]. This
approach is attractive as no dedicated DSL compiler is required. For this
reason, this part of the thesis focusses on this idea. However, we have not
found a partial evaluator, whose behavior is predictable for the programmer,
that reliably supports higher-order functions, and can be easily integrated
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fn count(i: int , n: int) -> int {
if i < n {

count(i+1, n)
} else {

i
}

}

Listing 10.5.: The counting loop problem

into a performance-oriented programming language. This has motivated
the work presented in this thesis.

10.2.4. Divergence in Partial Evaluation
Katz and Weise [KW92] distinguish three classes of divergence that may
occur during partial evaluation:

True divergence: If the full evaluation of the program does not terminate
for some inputs, partial evaluation might also not terminate.

Hidden divergence: A program may contain unreachable code that is di-
vergent. Partially evaluating this divergent code may cause the partial
evaluator to diverge.

Induced divergence: The partial evaluator diverges although neither true
nor hidden divergences are present because the evaluator is too greedy.
Consider the counting loop problem [BJ93] (see Listing 10.5): an
aggressive partial evaluator might infinitely expand count(0, d) if d
is dynamic, although full evaluation terminates for every d ≥ 0.

It is easy to avoid all forms of divergence if recursive calls are not
specialized. Hybrid partial evaluation [SC11] on the other hand, does not
give any termination guarantees. For this reason, hybrid partial evaluation
uses annotations similar to our approach.
A well-known technique [Fut99; CL11] we also employ to avoid at least

obvious endless recursions, is to memoize each specialized call site. If the
evaluator is about to specialize a memoized call, it will reuse that call
instead of specializing again. However, this technique does not prevent the
counting loop problem.
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LMS has special behavior for a while loop: If the termination condition is
of type Boolean, the loop will be running when the host program runs; if it
is of type Rep[Boolean], LMS will construct a residual loop. This approach
only works since Scala does not support unstructured control flow as we
do. In particular, the programmer cannot use break or continue within
a loop.3 LMS also leverages the aforementioned memoization technique
for recursive calls. This has the effect that a counting while-loop with
a dynamic conditional terminates when the host program runs, whereas
a recursive implementation with an Int counter and a Rep[Int] bound
diverges.

Both Similix [Jør98] and Schism [Con93] are offline evaluators using BTA.
These evaluators will not evaluate a cycle if the condition that breaks the
cycle remains dynamic. On the one hand, this is slightly more aggressive
than our approach because our approach will also jump over an acyclic,
dynamic conditional. On the other hand, both evaluators suffer from the
inherent imprecisions caused by the BTA and CFA (see above).

Other more complex termination heuristics, like monitoring the argument
sizes of recursive calls, have been applied in the past [JG02; JGS93]. We
believe such heuristics are difficult for the programmer to understand.

10.3. Full and Partial Evaluation

The relation ⇒ (see Figure 10.1 and Appendix A for the notation) defines a
call-by-value semantics. It is similar to → (see Figure 9.6) but deterministic.
E-Eval corresponds to the congruence rules (R-Cong∗ and R-Primop) but
evaluates all subterms in a deterministic order until they are in normal
form. E-Where, E-App, and E-Fold correspond to R-Where and R-App,
respectively, but require all subterms to be in normal form in order to fire.
E-Skip is the rule where partial evaluation kicks in. If a call in normal form
cannot be folded via E-App because the callee e0 is not a closure, evaluation
proceeds at the post-dominator (see Section 10.3.2). These insights lead to
the following lemma:

3There are workarounds in Scala, which leverage exceptions, but these workarounds do
not work well with LMS.
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Evaluation context:

E[⋆] ∶= ⋆ where f ∣ ⋆(e) ∣ e0� (e1�, ... ,⋆, ... , en) ∣ ⊠(e1�, ... ,⋆, ... , en)

E-Eval
a⇒ a′

E[a]⇒ E[a′]

b⇒ b′

E-Where
b0� ⋯ bn�

b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
→ [`1 ↦ `1(x1 ∶ t1) ∶ b1 where f]⋯[`n ↦ `n(xn ∶ tn) ∶ bn where f]b0

E-App
e1� ⋯ en�

(`(x ∶ t) ∶ b)(e1, ... , en)⇒ [x1 ↦ e1]⋯[xn ↦ en]b

E-Skip
e0� ⋯ en� e0 not a closure `p(x ∶ t) ∶ bp = postdom(e0(e1, ... , en))

e0(e1, ... , en)⇒ bp

e⇒ e′

E-Fold
n > 0

⊠(ν1
t1, ... , ν

n
tn)⇒ ⊗(ν1

t1, ... , ν
n
tn)

Figure 10.1.: Evaluation (⇒) in λcps

Lemma 10.1 (⇒ ⊂ →)

For all b, b′

e, e′ if b⇒ b′

e⇒ e′ , then
b→ b′

e→ e′ .

Proof. By a straightforward mutual induction on a derivation of b⇒ b′

e⇒ e′ .

Lemma 10.2 (λcps: ⇒-Progress)
Every λcps term is either a term value or can be stepped with ⇒ into another
term. To be more precise:

If Γ ⊢ b
Γ ⊢ e ∶ t , then

b = exit(ν)
e = ν

or ∃b′ ∶ b⇒ b′

∃e′ ∶ e⇒ e′ .
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Proof sketch. By mutual induction on a derivation of Γ ⊢ b
Γ ⊢ e ∶ t .

See Section B.3 for the full proof.

Lemma 10.3 (λcps: ⇒-Preservation)
As we reduce a λcps term with ⇒, its type is preserved at each step. To be
more precise:

If Γ ⊢ b
Γ ⊢ e ∶ t and b⇒ b′

e⇒ e′ then Γ ⊢ b′
Γ ⊢ e′ ∶ t .

Proof. By Lemma 9.2 and Lemma 10.1.

Theorem 10.1 (λcps: ⇒-Soundness)
No well-typed λcps term gets stuck while reducing with ⇒. To be more
precise:

If Γ ⊢ b
Γ ⊢ e ∶ t and b⇒∗ b′

e⇒∗ e′ then b′ = exit(ν)
e′ = ν or ∃b′′ ∶ b′ ⇒ b′′

∃e′′ ∶ e′ ⇒ e′′ .

Proof. By Lemma 10.2 and Lemma 10.3.

10.3.1. Full Evaluation
If we evaluate a well-typed program, we will never have to handle the case
that an expression does not reduce to a constant. In particular, when
stumbling upon a call in normal form during evaluation, the callee e0 will
be a closure and consequently E-Skip will never trigger.

Definition 10.1 (Valid Configuration)
Let `(x ∶ t) ∶ b be a continuation without free variables. We call an argument
sequence ν of values a valid configuration for ` iff the application `(ν) is
well-typed. The set C(`) denotes all valid configurations for `.

Lemma 10.4 (Full Evaluation)
Let ` be a continuation value (see Definition 9.6). Evaluating `(ν) where
ν ∈ C(`) never triggers E-Skip.

Proof. See proof of Lemma 10.3.
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10.3.2. Partial Evaluation
Reconsider Kleene’s [Kle38] smn -theorem (see Section 10.2): Partial evalua-
tion means to reduce terms that may still contain free variables. This what
we will discuss now.

Suppose a body b contains the free variable x and partial evaluation of b
yields a new body b′ that still contains x. Since x is bound by f in the
programs

f(x ∶ int) b and f(x ∶ int) b′ ,

both programs do not contain any free variables. If for each input νi, for
which f(νi) reduces to exit(νr(νi)),

1. f ′(νi) reduces to the same exit(νr(νi)), we know that partial evalu-
ation is correct, and

2. b reduces in finitely many steps to a normal form b’, we know that par-
tial evaluation is neither subject to induced nor to hidden divergence
(see Section 10.2.4).

The rest of this section discusses how⇒ also partially evaluates a program
and proves that ⇒ indeed satisfies both properties. But first we need to
clarify how exactly we can get rid of free variables.
We have already discussed free variables in Section 9.3.2. We assume

that the type of a free variable is known. The function FV (b) determines
the free variables of b like FV but puts them additionally into an arbitrary
sequence along with their associated types. Lambda lifting [Joh85] eliminates
free variables by wrapping all free variables in a body into a continuation.
Section 11.1 thoroughly discusses lambda lifting.

Definition 10.2 (Lambda Lifting)
Let FV (b) = x ∶ t be the sequence of free variables in a body b well-typed
under FV (b). Then, λb ∶= `(x ∶ t) ∶ b is the lambda-lifted continuation of b.

Let us come back to rule E-Skip. This rule uses a function postdom(b)
to get a post-dominator of b if the callee e0 is not a closure. Evaluation will
continue at that post-dominator. For the time being, we are not interested
in how post-dominators are computed. We will discuss this in Section 10.6.
We merely require postdom(b) to exist and to compute a valid but not
necessarily the immediate post-dominator of b.
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Definition 10.3 (Post-Dominator)
Let b be a body well-typed under FV (b). We call `p a post-dominator of b
iff `p = ⊺ or all possible finite evaluations from b to any exit visit `p:

∀ν ∈ C(λb)∶ (λb)(ν)⇒∗ exit e� implies (λb)(ν)⇒∗ `p(⋯) ∶ bp .

Remark. Hence, ⊺ designates the point in execution after all exits(b) and
is always a valid post-dominator—even for diverging programs. This is a
common trick in compilers to implement a sane post-dominance analysis
for programs with no or multiple exits. See Section 10.6.4 for a thorough
discussion.

If we lambda-lift all free variables into a continuation λb, all variables in λb
will be bound and we can perform a full evaluation (see Lemma 10.4). If we
perform n steps on b, we will partially evaluate b and obtain b′—possibly
by using E-Skip. If we lambda-lift b′, we can perform a full evaluation on
that program. The following theorem states that both bodies still compute
the same result.

Theorem 10.2 (Correctness)
Let b be a body well-typed under FV (b) = x ∶ t. Furthermore, let b ⇒n b′

and ` defined as `(x ∶ t) ∶ b′. For each input ν, for which (λb)(c) terminates
with result νr(ν), `(ν) terminates with the same result.

∀ν ∈ C(λb)∶ (λb)(ν)⇒∗ exit νr(ν) implies `(ν)⇒∗ exit νr(ν) .

Remark. Note that ` uses the free variables of b and not b′. This is because
partial evaluation might eliminate some free variables, but we would like
both λb and ` to have the same signature.

Proof. By Lemma 10.1 and Theorem 9.1.

Remark. In fact, any partial evaluation strategy R ⊂ ⇒ is correct!

Finally, the following theorem states that partial evaluation is neither
subject to induced nor to hidden divergence:
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@f(args );
/* next */;

(a) Impala

@f(args , k) where
k(/* ... */): b_next

(b) λcps

Listing 10.6.: Run-annotated call

Theorem 10.3 (Termination Guarantee)
Let b be a body well-typed under FV (b). For each input ν, for which (λb)(c)
terminates, partially evaluating b terminates to a normal form b′ in finitely
many steps:

∀ν ∈ C(λb) ∶ (λb)(ν)⇒∗ exit νr(ν) implies b⇒∗ b′� .

Proof. By Lemma 10.4 and Definition 10.3.

10.4. Run and Halt Annotations
Until now, we have studied partial evaluation of a whole program. But
in practice, the programmer only wants to specialize certain parts of the
program while other parts should be excluded from specialization (see
Section 10.7). For this reason, we introduce a run annotation that causes
@f(args , k)

to be specialized by triggering rule E-App (see Listing 10.6). As partial
evaluation should only run until a continuation (e.g. k) outside the body
is called, all remaining free variables, together with any exit, must be
considered local exits for the purpose of evaluation and the definition of
post-dominators in particular (see Section 10.6). Similarly, a halt annotation
$g(args , l)

causes the evaluator to stop specialization at that point and resume evalua-
tion at l.

10.4.1. Termination Implications
Run annotations impact the termination of partial evaluation. If a run-
annotated code block is unreachable, the partial evaluator might be subject
to hidden divergence:
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fn count(i: int , N: int)
-> int {

if i < N {
@count(i+1, N)

} else {
i

}
}

(a) Impala

count(i: int , N: int ,
ret: cn(int )):

br(i<N, T, F) where
T():

@count(i+1, N, ret)
F():

ret(i)

(b) λcps

count(i: int , N: int , ret: cn(int )):
br(i<N, T, F) where

T():
br(i+1<N, T’, F’) where

T ’():
@count(i+2, N, ret)

F ’():
ret(i)

F():
ret(i)

(c) After one partial evaluation run

Listing 10.7.: Run-annotated recursive call
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if i_am_always_false_but_the_compiler_does_not_know () {
@ i_will_not_terminate (42)

}

However, trivial unreachable code will be removed by the compiler, so the
following annotated call will be removed before the partial evaluator runs:

if false {
@ i_will_not_terminate (42)

}

Under certain circumstances, run annotations might induce divergence.
Reconsider the function count from Listing 10.5 where the recursive call
is annotated with @ (see Listing 10.7a–b). Substitution of count and
application of E-App renders Listing 10.7c. This program contains a new
call @count. After partial evaluation has terminated, the compiler looks for
the next run annotation and stumbles upon that @count. Consequently,
rule E-App triggers again, causing the compiler to diverge. This divergence
does not violate Theorem 10.3. As already stressed, the theorem merely
guarantees that one partial evaluation run will not induce divergence.

This situation only occurred because a recursive call had been annotated.
A call to a recursive continuation outside its definition is not recursive and,
thus, does not induce divergence. Hence, annotating all other calls to count,
like @count(0, N, RET), is not problematic. We would like to stress that
a single partial evaluation run is already Turing-complete. Therefore, the
partial evaluator completely folds @ackermann(3, 4) to 125. As outlined
above, this call is not recursive.

If we disallow recursive bindings in the where-clause of λcps, the resulting
language will not have a fixed-point operator anymore. Thus, the resulting
language is just like the simply-typed lambda calculus strongly normaliz-
ing [Tai67]. In particular, it is no longer possible to replicate a fixed-point
operator like the Y combinator as in the untyped lambda calculus. In
reverse, this means that the compiler can statically over-approximate all
recursions in a λcps program. Thus, the compiler can warn the programmer
about potentially dangerous run annotations.
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fn foo(mut a: [ float * 2],
i: int , cond: bool)
-> int {

if cond {
a(0) = 42

} else {
++a(1)

}
a(i)

}

(a) Impala

foo(a: [int * 2],
i: int , cond: bool ,
ret: cn(int )):

br(cond , T, F) where
T():

N(ins(a, 0, 42))
F():

N(ins(a, 1, ex(a, 1)+1))
N(b: [int * 2]):

ret(ex(b, i))

(b) λcps

Listing 10.8.: Functional arrays

10.5. Dealing with Compound Data Types
Consider the imperative program in Listing 10.8a, which resorts to the
mutable array a. As long as the address of a variable is not taken, the Impala
compiler translates a mutable variable with state into a stateless functional
program (see Listing 10.8b). Each lookup translates to an extract operation
in λcps, which conceptually creates a copy of the indexed element. Each
update translates to an insert operation, which conceptually creates a copy
of the whole array where the element in question has been updated. When
different values from different control-flow paths meet, the Impala compiler
installs a parameter to that continuation (see N’s parameter b). This is
akin to a Φ-function in SSA form (see Section 9.1.4). Indeed, the Impala
compiler uses an SSA construction algorithm for this translation [Bra+13].

Now suppose the partial evaluator would like to specialize
foo ([x, 22], 1, false , k)

where x is some value unknown to the evaluator and k is some known
continuation. As cond is false the evaluator continues in F and computes:
N(ins ([x, 22], 1, ex([x, 22], 1)+1))
N(ins ([x, 22], 1, 22+1))
N(ins ([x, 22], 1, 23))
N([x, 23])

This in turn causes the evaluator to enter N:
k(ex([x, 23], 1))
k(23)
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Note how the whole array has collapsed and the evaluator will continue
with k(23). In this fashion, Impala supports arrays, structs, and tuples,
which may be nested in any combination.

10.6. Local Control-Flow Analysis
So far, we have assumed that the postdom continuation in rule E-Skip will
obey Definition 10.3. The prerequisite for computing post-dominance is a
CFG. If the input program is of first order, continuations cannot be passed
as arguments to other continuations. Hence, all callees are statically known
and it is straightforward to construct a CFG from that program.
But higher-order programs may call parameters. In order to compute a

CFG in this setting, we need to statically know, which continuations may
actually reach a parameter at runtime. A k-CFA [Shi91; NN92; Mid12]
computes this information for calling contexts of length k. With increasing k
the analysis becomes more costly but also more precise. Hence, a 0-CFA is
context-insensitive, leading to imprecisions as continuation arguments are
merged from all calling contexts.
One possibility would be to apply a k-CFA prior to partial evaluation

in order to determine an appropriate post-dominator in the context of a
dynamic branch or call. However, for calls deeper than k contexts, the
analysis information becomes imprecise. The computed post-dominator
might then lie closer to the exits, causing the evaluator to skip more code
than necessary. The programmer would have a hard time to understand,
track, and work around such imprecisions.
For this reason, our partial evaluator follows a different approach. As

long as the evaluator does not hit a dynamic branch or call (see E-Skip), the
evaluator does not need any post-dominance information. Until such a point,
evaluation will have expanded all calls, resulting in full context-sensitivity.
Whenever the evaluator needs to apply rule E-Skip, it runs a CFA. This
enables construction of a CFG to compute a post-dominator. The CFA we
employ is local. This means that it starts at the run-annotation and only
analyzes continuations currently declared within that scope. We call these
continuations inside continuations. We call continuations declared outside
the scope, in particular continuations defined in other translation units or
intrinsic higher-order continuations such as br or nvvm (see Section 10.7.1),
outside continuations. Suppose partial evaluation of program start to end
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in Listing 10.9 meets a dynamic branch in f. The continuation out and the
higher-order parameter end are not defined within start’s scope and are
thus outside continuations. All other continuations are inside.
To begin with, we describe a simple CFA, explain the reason for its

impreciseness, and then motivate a better CFA.

10.6.1. Non-Symbolic CFA
A simple (non-symbolic) CFA works as follows: The CFA handles inside
continuations context-insensitively. References to outside continuations and
free variables are unknown and yield ⊺. So propagation from F through C
yields the value N for parameter pb, which is precise. However, this CFA
must propagate ⊺ to the parameters of the higher-order continuations A
and C. This results in the CFG shown in Figure 10.2a, which in turn
yields the post-dominator ⊺—the unique local exit node in the CFG (see
Definition 10.3). Partial evaluation would then skip the remainder of the
scope.

10.6.2. Symbolic CFA
To precisely deal with references to outside continuations, the CFA deals
with them symbolically: each outside continuation’s control flow is rep-
resented via one symbolic value (see Figure 10.2b). Have a look at the
call to out, which receives A and C as arguments. As the CFA does not
analyze out, the CFA must assume that continuations within out’s scope
might call A and C. For this reason, the CFA draws the edges out→ A and
out→ C. Furthermore, the CFA propagates out as value for A’s parameter
pa and C’s parameter pc. As A calls pa and C calls pc, the CFA draws the
edges A → out and C→ out.

Note that this CFA merges all control flow over all contexts for out into
one single CFG node. This yields the imprecise post-dominator N.

10.6.3. Partially Context-Sensitive CFA
Instead of merging the arguments over all calls when constructing the CFG,
we give one level of context to outside continuations. Thus, the resulting
CFA creates a node outT for the call to out within T and propagates outT

as value for pa and pc. This value ends up in the call in A. This instantiates
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start(/* ... */, end: cn ()):
/* program already evaluated */
f():

br(/* dynamic */ , T, F) where
F():

C(B)
T():

out(A, C) where
A(pa: cn(int )):

pa (42)
B(pb: cn ()):

pb()
C(pc: cn(cn ())):

pc(N) where
N():

end ()

Listing 10.9.: Partial evaluation from start to end hits a dynamic branch
in f.

f

T F

C

B

NA

⊺

(a) Non-symbolic

f

T F

out

A

C

B

N

end

⊺

(b) Context-insensitive

f

T F

outT C

outCA

outA N B

end

⊺

(c) Partially context-sensitive

Figure 10.2.: CFGs obtained by applying various flavors of CFAs on
Listing 10.9. Light nodes represent inside, dark nodes represent outside
continuations. The marked inside node is the resulting post-dominator of f
in its respective graph.
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A

B

C

D

E

⊺

(a) CFG

⊺

CBA E

D
(b) Postdom-tree with C → ⊺

⊺

E

D

A B

C
(c) Postdom-tree without C → ⊺

Figure 10.3.: Fake edges (dashed) in a CFG not connected to the exit (⊺).
The fake edge C → ⊺ is superfluous.

outA and causes the edges outA → outT and A → outA. Similarly, the CFA
draws the edges outC → outT and C→ outC. Hence, the CFG in Figure 10.2c
separates the calls to out in T, A and C. From this underlying graph, C
results as post-dominator of f.

In these cases, however, the partial evaluator cannot guarantee termina-
tion anyway (see Theorem 10.3). Continuing evaluation from the computed
post-dominator remains sound for returning cases.

10.6.4. Finding a Unique Exit
In practice a CFG obtained by a CFA does not necessarily contain a unique
exit. The CFG may contain multiple exits or no exit at all. However, for
a post-dominance analysis, we need a unique exit and each node must be
reachable from that exit in the reverse CFG that is retrieved by reversing
the direction of all edges.

For a CFG with multiple exits we simply introduce a virtual exit node ⊺
and draw fake edges from each exit to ⊺. If a CFG (or one of its subgraphs)
does not contain exits at all, we need a different strategy to connect the
graph to ⊺. The CFG in Figure 10.3a, for example, is not connected to ⊺.
A naïve approach is a post-order walk of the CFG and to connect each
node that is not reachable from ⊺ in the reverse CFG. A valid post-order
walk is CEDBA. Since both C and E are not reachable from ⊺ in the
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10. Partial Evaluation

reverse CFG, we draw the fake edges C → ⊺ and E → ⊺. Consequently,
the post-dominator tree in Figure 10.3b emerges. Another valid post-order
walk is EDCBA. By first adding the edge E → ⊺, C becomes reachable
and we do not draw the edge C → ⊺. For this reason, we can compute a
more precise post-dominator tree (see Figure 10.3c).
The algorithm in Listing 10.10 performs a post-order walk. Each time

it becomes evident that a fake edge is necessary, the algorithm tries to
backtrack in order to find a different post-order walk. By doing so, this
algorithm never draws superfluous fake edges such as C → ⊺ in Figure 10.3a.

10.7. Evaluation

We demonstrate the effectiveness of our partial evaluator on two shallowly
embedded DSLs:

1. We present a small framework for stencil computations in image pro-
cessing: The framework is essentially an “interpreter” that applies a
stencil to an image. The aspects of boundary handling, application of
the stencil, and the stencil itself are cleanly separated. Partial evalua-
tion composes those aspects together and produces high-performance
code that we specialize for execution on CPU and GPU targets.

2. We present a DSL for the V-cycle multigrid iteration; a multigrid
method important in high-performance computing. The V-cycle
employs different stencils to smooth the error on different resolutions
of the same data. Passing the V-cycle components as functions to the
DSL allows us to merge multiple components in order to reduce high
latency memory accesses.

These DSL embeddings have been developed in collaboration with Richard
Membarth [Lei+15]. He also provided the HIPAcc implementations for the
V-cycle. The focus on our side was the work on the compiler.

Before delving into the DSLs, we will discuss how a machine expert (see
Section 8.2) employs Impala in order to abstract from hardware-dependent
details of the target hardware.
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function connect_to_exit
stack← empty stack

function backwards-reachable(n)
mark all nodes reachalbe from n in reverse(G) as
reachable-from-exit

end

function backtrack(n)
backtrack-stack← empty stack
candidate← nil
for n ∈ post-order(reverse(G),⊺, backtrack-stack) :

if n ∈ stack and n not done during outer postorder-walk
candidate← n

end
if candidate

i← find(stack.begin(), stack.end(), candidate)
move(i + 1, stack.end(), i)
stack.back()← candidate
return true

end
return false

end

backwards-reachable(⊺)
for n ∈ post-order(G, entry, stack) :

if n not reachable-from-exit
if not backtrack(n)

draw n→ ⊺
backwards-reachable(n)

end
end

end

Listing 10.10.: Backtracking algorithm to draw fake edges to exit
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fn iterate (field: Field , body: fn(int , int) -> ()) -> () {
let vector_length = 8;
for y in range (0, field.rows) {

for x in vectorize ( vector_length , 0, field.cols) {
body(x, y);

}
}

}

Listing 10.11.: Iterator implementation for SIMD hardware

10.7.1. Dealing with Hardware Details
Mapping Algorithms to Different Architectures

In order to abstract from specific target platforms, Impala provides intrin-
sic higher-order functions. For example, invoking the following function
enters SIMD mode of vector length L (see Part I) for body and creates an
appropriate loop from a to b:
fn vectorize (L: int , a: int , b: int , body: fn(int) -> ()) -> ()

Internally, Thorin instruments RV for the vectorization (see Section 2.3).
Likewise, invoking the following function causes body to be executed via
NVVM [NVI14] on an NVIDIA GPU:
fn nvvm(grid: (int , int , int),

block: (int , int , int),
body: fn () -> ()) -> ()

The execution runs in parallel by the threads defined by grid with the given
blocking. Similarly, Impala supports code generation for CUDA [NVI17],
OpenCL [Khr12], and SPIR [Khr14]. In contrast to pragma-based solutions
like OpenACC or OpenMP, Impala’s intrinsics integrate seamlessly with
Impala’s type system. This allows the programmer to hide the use of these
functions behind other functions. Reconsider the higher-order function
iterate from Listing 8.4b in order to iterate over a field:
iterate (fld , |x, y| { /* some loop body */ });

Listing 8.4c depicts an implementation that schedules the loop body on the
GPU. Listing 10.11 is a different implementation that vectorizes the loop
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body. Other iterator implementations may use other intrinsics and/or more
sophisticated blocking schemes.

Memory Management

Example 10.2 (Free Variables in Accelerator Intrinsic)
A function passed to an intrinsic like nvvm typically contains free variables:
let mut array: &[ float ] = /* ... */;
with nvvm(/* ... */) {

array(i) = /* ... */;
}

Impala currently supports scalar variables, arrays, tuples, and structs to
be used across devices, as long as they do not contain pointers. All required
memory transfers from the host device to the accelerator and back are
automatically generated by Impala. More fine-grained control is possible
by the provided mmap and munmap functions.

Example 10.3 (Memory Management)
The following code transfers memory to the global device memory on the
first GPU and releases it afterwards:
let mut array: &[ float ] = /* ... */;
let gpu_array = mmap(array , GPU0 , Global , offset , size );
with nvvm(/* ... */) {

gpu_array (i) = /* ... */;
}
munmap ( gpu_array );

This allows fine-grained control over memory lifetimes and transfers be-
tween host and device memory. In a similar fashion, different memory
types like read-only texture memory or on-chip shared memory can be
utilized. These memory types are tuned for specific use-cases and can
speed up a program significantly.
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GTX 970 Radeon R9 290X Iris 5100 Core i5-4288U

NVVM OpenCL SPIR OpenCL CPU AVX
LU – ✓ – ✓ – ✓ – ✓ – –

SS 2.34 2.26 2.34 2.26 1.02 0.97 17.49 17.15 85.69 155.57
+ BH 2.36 2.30 2.38 2.28 1.05 0.99 17.00 16.87 23.56 23.23
+ SM 1.61 1.28 1.67 1.27 0.82 0.76 24.21 12.84 16.67 15.98

OCV 2.4 2.24 2.17 0.89 18.55 27.21
OCV 3.0 2.24 2.11 1.42 16.61 26.63
LU loop unrolling; “–”: disabled, “✓”: enabled
SS stencil specialization

BU boundary handling
SM scratchpad memory

OCV OpenCV version used

Figure 10.4.: Execution times in ms for the Gaussian blur of size 5 × 5 on
an image of 4096 × 4096 pixels

10.7.2. Stencil Computations
A linear filter convolves an image with a filter mask by applying the filter
mask to each pixel. Examples of linear filters are the Gaussian blur filter,
the Laplace operator, or the Sobel operator. Since the filter mask for linear
filters like the Gaussian blur or the Sobel operator are separable, we split
a filter mask of N ×M in a row and column component of size N × 1 and
1 ×M , respectively. This reduces the number of required memory accesses
from N ⋅M + 1 to N +M + 2 and is, hence, used for our implementation.

Stencil Specialization (SS)

We describe linear filters using the apply_stencil function of our stencil
framework. This function receives a filter mask and applies it to a field.
Using the run, annotation we create a specialization for a given linear filter
where the filter values are propagated into the code instead of reading them
from memory:
let stencil : Stencil = /* Gaussian blur *:
let mut out: Field = /* ... */;
for x, y in iterate (out) {

out(y)(x) = @ apply_stencil (x, y, arr , stencil , /* ... */);
}
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fn iterate (out: Field , body: fn(int , int) -> ()) -> () {
let unroll_factor = 4;
let grid = (out.cols , out.rows/ unroll_factor , 1);
let block = (128 , 1, 1);
with nvvm(grid , block) {

let x = tid_x () + ntid_x ()* ctaid_x ();
let y = tid_y () + ntid_y ()* ctaid_y ()* unroll_factor ;
for i in @ range (0, unroll_factor ) {

body(x, y + i * ntid_y ());
}

}
}

Listing 10.12.: Loop unrolling

All variants in Figure 10.4 are specialized in this way for the Gaussian blur.

Loop Unrolling (LU)

The discussed iterate functions abstract the iteration order. On a GPU,
for example, it is beneficial to process multiple pixels by the same thread.
To achieve this, we call body that is passed to iterate multiple times for
different iteration points. This unrolls the iteration space by unroll_factor
(4 in the example below). We keep the implementation parametric in
its unroll factor and use partial evaluation for the actual unrolling (see
Listing 10.12). Variants in Figure 10.4 checked in column LU, use this
technique.

Boundary Handling (BH)

To handle array boundaries, we clamp the index to the last valid element
within the array in the apply_stencil function. Considering the row
component, we need only to apply boundary handling at the left and
right border of the image. Therefore, we introduce a region parameter to
apply_stencil (see Listing 10.13a). Now, the iterate function iterates
over different regions of each line instead of naïvely iterating over the whole
image. Due to the run annotation on the loop, which iterates over the
regions, boundary checks will only appear in the residual code for the left and
right regions and will be specialized into apply_stencil. The programmer
passes the functions for boundary handling as higher-order arguments to the
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type boundary_handler = fn(int , int , int , cn(float )) -> int;

fn apply_stencil ( region : int , /* ... */,
bh_lower : boundary_handler ,
bh_upper : boundary_handler ) -> float {

// ...
if region ==0 { // left

x = bh_lower (x, 0, arr.cols , return );
}
if region ==2 { // right

x = bh_upper (x, 0, arr.cols , return );
}
// ...

}

fn iterate (/* ... */) -> () {
let limits = /* lower and upper limits for each region */;
for y in $ range (0, out.rows) {

for region in @ range (0, 3) { // left , center , right
let bounds = limits ( region );
for x in $range( bounds (0), bounds (1)) {

@body(x, y, region );
}

}
}

}

(a) apply_stencil

fn clamp_lower (idx: int , low: int , up: int ,
out: cn( float )) -> int {

if idx < low { low } else { idx }
}

fn const_lower (idx: int , low: int , up: int ,
out: cn( float )) -> int {

if idx < low { out (1.0f) } else { idx }
}

(b) Boundary Handler

Listing 10.13.: Boundary Handling
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stencil DSL, for example clamp_lower or const_lower (see Listing 10.13b).
The function const_lower always skips further computations in the case
that idx lies outside the given range. const_lower achieves this by passing
the constant 1.0f to the continuation out. This is the return continuation
in apply_stencil. During partial evaluation it is important to infer that
the function passed to out is the proper post-dominator (see Section 10.6).

Scratchpad Memory (SM)

The stencil operation of the filter has high spatial locality and neighboring
elements are read by multiple threads. Therefore, we can first load data for
a group of threads to fast scratchpad memory (shared or local memory) and
then read the neighboring elements from this scratchpad. This also allows us
to fuse the row and column component of the filter into a single kernel. We
use the scratchpad memory as output memory for the first component and
as input memory for the second component. Fusing multiple components is
outlined in Section 10.7.3.

Evaluation

For our measurements we use a separated version of the Gaussian blur
filter with a 5 × 5 filter mask and an image of 4096 × 4096pixels. All
specialized versions are generated from the same generic description using
partial evaluation. Figure 10.4 shows the median execution time in ms on
the GTX 970 using the CUDA 7.5 drivers and toolkit, on the R9 290X
using the Crimson 15.11 drivers as well as on the Iris 5100 and on the Intel
Core i5-4288U on a MacBook Pro running OS X 10.11.2. On the discrete
GPUs, the median of seven runs is used while 17 runs are used on the
embedded GPU and 27 runs on the CPU.
The last two lines show the execution for hand-tuned CUDA, OpenCL,

and CPU (vectorized C++) implementations from OpenCV (version 2.4.12
and 3.0.0), a state-of-the-art image processing toolbox. The CUDA im-
plementation in OpenCV is provided by NVIDIA experts and uses similar
optimizations: the filter is separated, the iteration space is unrolled, border
handling is limited to thread blocks at the image border, and fast on-chip
scratchpad memory is used to stage data. Different OpenCL implemen-
tations in OpenCV are provided by AMD and Intel experts: The former
implementation merges the row and column components into a single kernel
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whereas the latter keeps the row and column components as separate kernels.
The merged kernel first loads the data to fast on-chip scratchpad memory
and then executes the column component, storing its results again to the
scratchpad memory. Afterwards, the row component is executed, loading
its input from scratchpad and storing the result back to device memory. On
the CPU, the row component is manually vectorized via double-pumped
SSE instructions. The column component uses superword-level parallelism
(SLP), unrolling multiple loop iterations such that the compiler can merge
them easily into vector operations. The schedule always applies the row
component first and then the column component. This allows the CPU to
hold the intermediate results in cache.
It can be seen from Figure 10.4 that the specialized versions we obtain

through partial evaluation even outperform the hand-tuned implementations
in OpenCV. At the same time, our implementation is more concise: The
hand-tuned CUDA version from OpenCV consists of 251 lines of CUDA code
plus 330 kernel instantiations for different filter mask sizes and boundary
handling modes. For OpenCL, OpenCV provides two different kernel imple-
mentations: one that merges the row and column component into a single
kernel (142 lines of code) and one that implements the row and column
component in separate kernels (278 lines of code). Boundary handling is
realized via macros that wrap memory accesses. OpenCV’s CPU implemen-
tations requires more than 1500 lines of code that consists of specialized
implementations for different data types, kernel sizes, and target instruction
sets (SSE, Neon). On the other hand, our implementation in Impala only
requires 62 lines of code for the high-level algorithm and boundary handling
description. The best performing CPU and GPU mappings only need
50 lines and 89 lines of Impala code, respectively.
We use the run annotations highlighted in the sample codes to trigger

partial evaluation; none of them annotates a “dangerous” recursive call (see
Section 10.4). We need halt annotations only to prevent loops that iterate
over a field from being evaluated at compile time.

Note that we generate multiple NVVM/OpenCL kernels for the different
boundary handling regions. These are executed serially by our runtime.
Since the kernels at the image border process only a small amount of data,
they do not utilize the GPU completely. Consequently, several of these
kernels can also be executed in parallel, which would reduce our execution
time further.
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10.7.3. The V-Cycle Multigrid Solver

The basic idea of the multigrid method is to smooth the error (e. g., using an
iterative method like Jacobi or Gauss-Seidel) on different resolutions of the
same data. The V-cycle (see Listing 10.15) describes one possible multigrid
iteration [BEM00; TS01]. To transform data between different resolutions of
the multigrid, the algorithm leverages the restrict and interpolate methods.
On each level, the error is smoothed (smoother) and estimated (residual).
This process is recursive and starts at the finest resolution.

For a V-cycle DSL, we would like to have the different methods pluggable.
Using Impala (see Listing 10.14), we pass the multigrid components as
functions to vcycle. Furthermore, we use the iterate function introduced
in Section 10.7.2. The partial evaluator inlines the multigrid components,
unrolls the recursion and propagates other inputs (stencils, etc.). Fur-
thermore, the evaluator weaves in the special higher-order functions for
hardware-specific code generation. By providing specialized iterate im-
plementations for CPU and GPU, we map the same algorithm to different
target platforms.

This is a naïve implementation as each multigrid component is run after
another. However, hand-tuned implementations of the V-cycle might merge
multiple multigrid components in order to save unnecessary memory accesses.
In Impala, we achieve the same optimization by custom iterate functions
that compute multiple components at once. As an example, consider the
computation of the residual component followed by the restrict component:
Instead of computing the residual for the whole field first and then restrict
the field produced by the residual, we compute the residual only for two
rows and restrict the residual before the next rows are processed. This
pipelined processing allows us to hold the result of the restrict component
in cache on the CPU and to merge compute kernels on the GPU when
using scratchpad (local or shared) memory. On the GPU, this has the same
effect as loop fusion. Listing 10.16 illustrates this for the CPU. The index
passed to the residual and restrict component refers to the temporary
field. The offset to the current row of the other fields is tracked in the
Field object and is used when accessing field elements. Merging the two
components is only valid if the operation of the multigrid components is
known: in our example, the restrict component is allowed to access two
rows only. Otherwise, a larger temporary array has to be allocated and
pre-computed before applying restrict.
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fn vcycle (field: Field , lvls: int , vsteps : int , ssteps : int ,
smoother : fn(/* ... */) -> (),
residual : fn(/* ... */) -> (),
restrict : fn(/* ... */) -> (),
interpolate : fn(/* ... */) -> ()) -> Field {

// allocate memory for all lvls: Sol , RHS , Res , Tmp
fn vcycle_rec (lvl: int) -> () {

if lvl == lvls -1 {
for i in range (0, ssteps ) { // solve by ssteps smooths

if i>0 { swap(Sol(lvl), Tmp(lvl )); }
for x, y in iterate (Sol(lvl )) {

solver (x, y, /* fields */ );
}

}
} else {

for i in range (0, ssteps ) { // pre - smoothing
if i>0 { swap(Sol(lvl), Tmp(lvl )); }
for x, y in iterate (Sol(lvl )) {

solver (x, y, /* fields */ );
}

}
for x, y in iterate (Res(lvl )) { // compute residual

residual (x, y, /* fields */ );
}
for x, y in iterate (RHS(lvl +1)) { // restrict residual

restrict (x, y, /* fields */ );
}
vcycle_rec (lvl +1); // recurse
for x, y in iterate (Sol(lvl )) { // interpolate error and

interpolate (x, y, /* fields */ ); // coarse grid correction
}
for i in range (0, ssteps ) { // post - smoothing

if i>0 { swap(Sol(lvl), Tmp(lvl )); }
for x, y in iterate (Sol(lvl )) {

solver (x, y, /* fields */ );
}

}
}

}

for i in range (0, vsteps ) {
vcycle_rec (0);

}
}

let res = @ vcycle (field , lvls , vsteps , ssteps ,
jacobi , residual , restrict , interpolate );

Listing 10.14.: V-cycle implementation in Impala
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Listing 10.15.: V-cycle: u(k+1)
h = Vh (u

(k)
h ,Ah, fh, ν1, ν2) .

fn iterate_rr (Sol: Field , Res: Field , RHSF: Field , RHSC: Field ,
residual : fn(/* ... */) -> (),
restrict : fn(/* ... */) -> ()) -> () {

let mut tmp: Field = { /* ... */ }; // temp array for 2 rows

for y in $ range_step (0, Res.rows , 2) {
for yi in @range (0, 2) {

for x in $range (0, Res.cols) { // residual for two rows
@ residual (x, yi /* ... */ Sol , tmp , RHSF );

}
}
for x in $ range (0, RHSC.cols) { // restrict the residual

@ restrict (x, 0 /* ... */ tmp , RHSC );
}

}
}

Listing 10.16.: Merging residual and restrict on the CPU
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Results

While we have shown in Section 10.7.2 that we achieve competitive perfor-
mance for stencil codes, the multigrid iteration offers further optimization
opportunities when components are scheduled in a clever way. Figure 10.5
shows the speedup we get by merging the residual and restrict components
for the first level of the V-cycle (smooth, residual, restrict, interpolate).
The speedup is between 11% on the CPU and up to 20% on the GPU.
Considering only the residual and restrict component, the computation is
25% (27%) faster on the CPU (AVX) and 42% (45%) faster on the GPU
when using NVVM (SPIR). For AVX, we only vectorize the smooth and
residual component. Vectorizing the restrict and interpolate components
would be slow due to their incoherent memory access patterns. On the
Iris 5100, the execution takes 16% longer when the two components are
merged. Note that this is expected since the scratchpad memory is mapped
to slow global memory in the Iris 5100 architecture. Consequently, the
specialization for the Iris 5100 would not make use of scratchpad memory.
Furthermore, we compare the performance of our specialized V-cycle

implementation against the performance of generated implementations by
HIPAcc, a DSL framework for stencil computations [Mem+16]. HIPAcc

provides CUDA and OpenCL back ends for execution on GPUs. We use
the HIPAcc implementation from [Mem+14a], which uses the same V-cycle
components as our implementation. For the first level of the V-cycle, our
normal implementation has the same performance on the Iris 5100 (32.54
ms vs. 32.81 ms), is 8% faster on the Radeon R9 290X (2.26 ms vs. 2.43
ms), and is 9% slower on the GTX 680 (4.78 ms vs. 4.35 ms). Our merged
implementation (see Figure 10.5) outperforms the HIPAcc implementations
on the Radeon R9 290X by 34% and on the GTX 680 by 12%.

Discussion

Our implementation can be easily extended to express different multigrid
iterations. It is actually sufficient to change the recursion in the V-cycle
implementation in order to get the schedule for the W-cycle multigrid
iteration.
The evaluation has shown that we can map the same high-level descrip-

tion to different target platforms by providing target-specific mappings.
Moreover, we merge multiple components as shown exemplarily for the
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Figure 10.5.: Speedup from fusing the residual and restrict computation
for the first level (4096 × 4096) of the V-cycle (smooth, residual, restrict,
interpolate). The speedup over HIPAcc implementations is also given where
available.
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residual and restrict components. This yields specialized implementations
that outperform the implementations generated by HIPAcc because HIPAcc

does not fuse the kernels.
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A very large part of space-time must be inves-
tigated, if reliable results are to be obtained.

Alan Turing 11
Closure Elimination and

Code Generation

This chapter leaves λcps behind and comes back to Thorin. We have already
discussed how to translate Thorin to λcps and vice versa. This chapter
now investigates how to optimize Thorin programs and how to generate
low-level code for them.

To this end, we introduce a well-defined subset of Thorin programs called
control-flow form (CFF), which is akin to an SSA-based CFG. These pro-
grams do not need closure allocation. Furthermore, we define the set of
CFF-convertible programs, a superset of CFF programs. This superset
includes typical higher-order programming idioms like map, fold, and gen-
erators. With the help of lower-to-CFF, an aggressive closure elimination,
Thorin transforms CFF-convertible programs into CFF programs (see Fig-
ure 11.1). The main ingredient for closure elimination is lambda mangling,
a novel program transformation that partially in- and outlines functions.

Coming back to Listing 9.5, Listing 9.5c depicts the Thorin representation
of the range function. This program is CFF-convertible. Applying lower-
to-CFF generates Listing 9.5d, which is in CFF.

First, we discuss lambda mangling, then code generation and closure
elimination. Afterwards, we evaluate the presented techniques in terms of
the generated code’s efficiency and lambda mangling’s software-engineering
complexity. Finally, we give an overview of related work. At that point, it
will be easier to understand the differences to our own work.
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explicit closures

CFF-convertible

CFF

lower-to-CFF

Figure 11.1.: Classes of Thorin programs

11.1. Lambda Mangling
This section presents Thorin’s main transformation primitive: lambda
mangling—a combination of lambda lifting [Joh85] and dropping [DS00].
We demonstrate how many traditional compiler optimizations can be im-
plemented with this transformation.In addition, the closure elimination
algorithm in Section 11.2 resorts to lambda mangling.

When reading Figure 11.2a from left to right, we see how continuation g
is lambda-lifted out of f by introducing a new parameter ret’, which
eliminates g’s free variable ret. The new lifted version is then called g’.
Likewise—when reading Figure 11.2a from right to left—we see how continu-
ation g’ is lambda-dropped into the body of f by eliminating g’’s parameter
ret’ and introducing a free variable ret.
Figure 11.2b depicts the same procedure for a Thorin program. Since

Thorin programs are blockless, we do not have to move g/g’ out of/into f.
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f(ret: cn(int )):
g(23) where

g(x: int ):
ret(x)

f(ret: cn(int )):
g ’(23 , ret)

g’(x: int , ret ’: cn(int )):
ret ’(x)

lift

drop

(a) λcps

f(ret: cn(int )):
g(23)

g(x: int ):
ret(x)

f(ret: cn(int )):
g ’(23 , ret)

g’(x: int , ret ’: cn(int )):
ret ’(x)

lift

drop

(b) Thorin

Figure 11.2.: Lambda lifting/dropping

The scope analysis (see Section 9.2.3) will identify g to be a continuation
nested in f (in the left box) whereas g’ and f will be discovered as two
independent continuations (in the right box).

11.1.1. Combining Lambda Lifting and Dropping
The continuation pow(a, b) in Listing 11.1a computes ab. The continuation
has two call sites: in calcx and calcy. As both callers pass 3 for parameter b
to pow, we would like to specialize pow. For this reason, we drop pow’s
parameter b and substitute each occurrence of b with 3. In doing so, we also
apply local optimizations (constant propagation, common subexpression
elimination, etc.). Thus, the check b = 0 and related blocks are eliminated
in the new continuation powd (see Listing 11.1b). Moreover, we update the
call sites in calcx and calcy to call the new continuation powd instead.
The scope of continuation pow in Listing 11.1a contains f’s parameter

ret. Thus, ret is a free variable in pow’s scope. Suppose, we would like to
eliminate pow’s dependency on f. To this end, we lift pow by introducing a
new parameter retl (see Listing 11.1c).
We can apply both transformations by either first dropping and then

lifting or first lifting and then droping (see Listing 11.1d). In order to reduce
compile time, we can apply both transformations simultaneously. Both,
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f(x: int , y: int ,
ret: cn(int )):

br(/* ... */, calcx , calcy)
pow(a: int , b: int ):

br(b=0, then , else)
then ():

ret (1)
else ():

head (0, a)
head(i: int , r: int ):

br(i<b, body , next)
body ():

head(i+1, r*a)
next ():

ret(r)
calcx ():

pow(x, 3)
calcy ():

pow(y, 3)

(a) The nested pow computes ab.

f(x: int , y: int ,
ret: cn(int )):

br(/* ... */ , calcx , calcy)
powd(ad: int ):

head (0, ad)

head(i: int , r: int ):
br(i<3, body , next)

body ():
head(i+1, r*ad)

next ():
ret(r)

calcx ():
powd(x)

calcy ():
powd(y)

(b) Dropped powd computes ad3.

powl(al: int , bl: int ,
retl: cn(int )):

br(bl=0, then , else)
then ():

retl(1)
else ():

head (0, al)
head(i: int , r: int ):

br(i<bl, body , next)
body ():

head(i+1, r*al)
next ():

retl(r)

f(x: int , y: int ,
ret: cn(int )):

br(/* ... */, calcx , calcy)
calcx ():

powl(x, 3, ret)
calcy ():

powl(y, 3, ret)

(c) Lifted powl doesn’t use free variables.

powm(am: int , retm: cn(int )):
head (0, am)

head(i: int , r: int ):
br(i<3, body , next)

body ():
head(i+1, r*am)

next ():
retm(r)

f(x: int , y: int ,
ret: cn(int )):

br(/* ... */ , calcx , calcy)
calcx ():

powm(x, ret)
calcy ():

powm(y, ret)

(d) Dropped and lifted powm

Listing 11.1.: Lambda Mangling
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dropping and lifting, extend the program Φ (see Section 9.2.2) by a clone
of a continuation’s scope while rewriting all expressions with respect to a
mapM. First, we have to define how to recursively rewrite an expression

MJeK =M(e) if e ∈ dom(M)

MJ`K = `

MJxiK = x′i where `(x ∶ t) andMJ`K(x′ ∶ t′)
MJ⊠(e1, ... , en)K = ⊠(MJe1K, ... ,MJenK)

and a body

MJe0(e1, ... , en)K =MJe0K(MJe1K, ... ,MJenK) .

Reconsider Listing 11.1a as a starting point. In the case of lambda
dropping (see Listing 11.1b), we substitute b with 3 and keep the parameter a
called ad in the dropped version. We specify this mapping as follows:

Md ∶= {a↦ ad,b↦ 3} .

In the case of lambda lifting (see Listing 11.1c), we substitute ret with
powl’s new parameter retl and keep parameters a and b called al and bl in
the lifted version:

Ml ∶= {a↦ al,b↦ bl,ret↦ retl} .

We can simultaneously drop b with 3 and lift (see Listing 11.1d) pow’s free
variable ret to a new parameter retm while obeying the mapping

Mm ∶= {a↦ am,b↦ 3,ret↦ retm} .

The algorithm in Listing 11.2 performs this reconstruction for the whole
scope of an entry label `e, with the new signature x′e ∶ t′e, and a corresponding
mappingM. In our example:
mangle(Φ, pow , (am: int , retm: cn(int )), Mm)

All newly created continuations are added to the program Φ.

11.1.2. Recursion
As all calls in CPS occur in tail position, it is tempting to think that only
tail-recursion happens in a CPS program. This is not the case as can
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function mangle(Φ, `e, x′e ∶ t′e,M)
let `e(xe ∶ te) ∶ be ∈ Φ ◁ get `e’s signature and body
◁ for each continuation in scope except the entry
foreach (`(x ∶ t) ∶ b) ∈ scopeΦ(`e) ∖ (`e(xe ∶ te) ∶ be) do
MJ`K← fresh continuation name
foreach xi ∈ x do
MJxiK← fresh parameter name

end
end
◁ for each continuation in scope except the entry
foreach (`(x ∶ t) ∶ b) ∈ scopeΦ(`e) ∖ (`e(xe ∶ te) ∶ be) do

◁ rewrite continuation and add to program
Φ← Φ ∪ {MJ`K(MJx1K ∶ t1, ... ,MJxnK ∶ tn) ∶MJbK}

end
◁ now deal with entry
`′e ← fresh continuation name for new entry
◁ rewrite entry and add to program
Φ← Φ ∪ {`′(x′e1

∶ t′e1
, ... , x′en ∶ t

′
en) ∶MJbeK}

return `′e ◁ return entry to new mangled region
end

Listing 11.2.: Lambda mangling expects the program Φ to work on, the
entry label `e of the scope to mangle, the new signature x′e ∶ t′e, and a
mapM that maps `e’s signature to the new scope.
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fn fac(n: int) -> int {
if n <=1 {

1
} else {

fac(n -1) * n
}

}

(a) Impala

fac(n: int , ret: cn(int )):
br(n≤1, then , else)

then ():
ret (1)

else ():
fac(n-1, cont)

cont(res: int ):
ret(n*res)

(b) Thorin

Listing 11.3.: Naïve, recursive implementation of factorial

be seen in Listing 11.3: The continuation else passes cont to fac. The
continuation cont evaluates to a closure. This closure captures the state
of this iteration. For this reason, fac itself is not tail-recursive albeit the
recursive call of fac occurs in else’s tail position.

Compare this to the tail-recursive implementation in Listing 11.4a. This
version consists of a base case fac and a helper continuation help that
implements the loop. The recursive call in help passes reth to help.
Parameter reth is not a continuation abstraction but a parameter that is
just passed around. Therefore, no closure has to be captured.
In conclusion, it is important to distinguish tail-recursion and recur-

sive tail-calls; standard text book definitions for tail-recursion [e.g., HR99,
chap. 17.4] do not apply to CPS programs. Thus, we introduce our own
nomenclature that is based on the CFG obtained by a CFA (see Sec-
tion 10.6).

Definition 11.1 (CFG Node Classification)
We say a call is

• recursive if it is part of a strongly connected component (SCC) within
the CFG,

• simply recursive if it is recursive and within the scope of its callee,

• mutually recursive if it is recursive and not simply recursive, and

• first-order recursive if it is recursive and only uses static parameters
(see below) as higher-order arguments.

We call
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• a parameter that does not change its value within an SCC a static
parameter, and

• an SCC that is only formed by recursive calls taking arguments of
zeroth order a loop.

Example 11.1 (CFG Node Classification)
Reconsider Listing 11.4a. The call of help within then′ is simply recursive
since then′ belongs to help’s scope. The call of help within else is not
recursive as it is not part of the SCC formed by help and then′. The
parameter reth is static in that SCC. This makes the call of help in
then′ first-order recursive.

The call of fac within else in Listing 11.3b is not first-order recursive
as the call passes the higher-order argument cont. Note how the definition
of first-order recursion reflects non-CPS tail-recursion.

Mangling Simple Recursion

In the following, we describe how to perform several code transformation
with the help of lambda mangling by means of Listing 11.4a.

Tail-Recursion Elimination. Let us drop help into fac by dropping help’s
parameters nh and reth with fac’s parameters n and retf . However, our
algorithm would not touch the recursive call within help’s scope because we
do not put the entry `e = help into the mapM. We would obtain a dropped
version of help, say helpd, which still calls the original continuation help.
Just substituting `e with the new mangled continuation would create an
ill-typed call site:
helpd(i+1, r*i, nh, reth)

But the recursive call
help(i+1, r*i, nh, reth)

uses as third argument nh and fourth argument reth. These are help’s static
parameters. For this reason, we replace this call with helpd(i+1, r*i) in
Listing 11.4b. Moreover, we replace the call site help(1, 2, n, retf) in
else nested inside fac with helpd(1, 2) as holds:
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help (1, 2, n, retf ) ≡ help (1, 2, nh, reth) ≡ helpd(1, 2)

Note that the resulting program is α-equivalent to the iterative implemen-
tation in Listing 9.4d. In other words, with lambda mangling we performed
tail-recursion elimination by transforming help to a loop helpd.

Loop Peeling. When we drop all parameters of the resulting continuation
helpd with 1 and 2, we perform loop peeling (see Listing 11.4c). In this
case, we cannot substitute the recursive call
helpd(i+1, i*r)

by helpp() as the arguments are not static parameters.

Loop Unrolling. Based on the program in Listing 11.4b, we can also drop
all parameters of helpd with i+1 and r*i. This performs loop unrolling (see
Listing 11.4d). For the same reason as above, we cannot substitute the
recursive call
helpd(i+1, i*r)

by calling the new continuation helpu(), either.

Summary. In general, we substitute calls to the entry continuation by
calls to the mangled one if all dropped parameters are static. We can simply
add a check for this pattern in Listing 11.2 to perform this rewrite.

Mangling Mutual Recursion

Finally, we discuss an extension of lambda mangling that allows us to
transform first-order, mutually recursive functions into a loop.

Mutual Tail-Recursion Elimination. In Listing 11.5a continuations is_even
and is_odd invoke each other in a mutually recursive way. There exists
only a single user from the outside: continuation foo calls is_even. For
performance reasons, we would like to drop is_even and is_odd into foo
by substituting rete/reto with foo’s parameter ret. So far, our mangling
algorithm does not support this transformation: When dropping is_even
to is_even′, we do not know that we are going to analogously drop is_odd,
too, and thus, cannot substitute the recursive call
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fac(n: int , retf : cn(int )):
br(n≤1, then , else)

then ():
retf (1)

else ():
help (1, 2, n, retf )

help(i: int , r: int ,
nh: int , reth: cn(int )):

br(i≤nh, then ′, else ′)
then ′():

help(i+1, r*i, nh, reth)
else ′():

reth(r)

(a) Tail-recursive factorial

fac(n: int , retf : cn(int )):
br(n≤1, then , else)

then ():
retf (1)

else ():
helpd(1, 2)

helpd(i: int , r: int ):

br(i≤n, then ′d, else ′d)
then ′d():

helpd(i+1, r*i)
else ′d():

retf (r)

(b) Tail-recursion elimination

fac(n: int , retf : cn(int )):
br(n≤1, then , else)

then ():
retf (1)

else ():
helpp()

helpp():
br(1≤n, then ′d, else ′d)

then ′p():
helpd(2, 2)

else ′p():
retf (2)

helpd(i: int , r: int ):
br(i≤n, then ′d, else ′d)

then ′d():
helpd(i+1, r*i)

else ′d():
retf (r)

(c) Loop peeling

fac(n: int , retf : cn(int )):
br(n≤1, then , else)

then ():
retf (1)

else ():
helpd(1, 2)

helpd(i: int , r: int ):
br(i≤n, then ′d, else ′d)

then ′d():
helpu()

helpu():
br(i+1 ≤ n, then ′u, else ′u)

then ′u():
helpd(i+2, r*i*i)

else ′u():
retf (r*i)

else ′d():
retf (r)

(d) Loop unrolling

Listing 11.4.: Various optimizations using lambda mangling
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foo(i: int , ret: cn(bool )):
is_even (i, ret)

is_even (ie: int , rete: cn(bool )):
br(ie >0, thene, elsee)

thene():
is_odd (ie -1, rete)

elsee():
rete(true)

is_odd (io: int , reto: cn(bool )):
br(io >0, theno, elseo)

theno():
is_even (io -1, reto)

elseo():
reto(false )

(a) Functions is_even and is_odd are first-
order recursive.

foo(i: int , ret: cn(bool )):
is_even ′(i)

is_even ′(i′e: int ):
br(i′e >0, then ′e, else ′e)

then ′e():
is_odd ′(i′e -1)

else ′e():
ret(true)

is_odd ′(i′o: int ):
br(i′o >0, thene, elseo)

then ′o():
is_even ′(i′o -1)

else ′o():
ret(false )

(b) The optimized version consists of a
loop.

Listing 11.5.: Lambda mangling to eliminate mutual tail-recursion formed
by is_even, thene, is_odd, and theno.

is_odd (ie -1, rete)

with
is_odd ′(i′e -1)

Likewise, we cannot replace the call
is_even (io -1, reto)

with
is_even ′(i′o -1)

when dropping is_odd.
However, we know beforehand the mapping

Me ∶= {ie ↦ i′e,rete ↦ ret}

when dropping is_even to is_even′ and the mapping

Mo ∶= {io ↦ i′o,reto ↦ ret}

175



11. Closure Elimination and Code Generation

when dropping is_odd to is_odd′. Considering this during mangling, we
can directly substitute any call of the form
is_even (Xe, rete)

with
is_even ′(Xe)

and any call of the form
is_odd (Xo, reto)

with
is_odd ′(Xo)

as both rete and reto are static parameters in the SCC formed by is_even,
thene, is_odd, and theno. Finally, we obtain Listing 11.5b. Note that the
recursive calls now form a loop.1 Thus, we performed mutual tail-recursion
elimination.

11.2. Code Generation
In order to translate Thorin programs to a lower-level program represen-
tation like machine code or an SSA-based representation (like LLVM), we
classify Thorin continuations in the following way:

Definition 11.2 (Continuation Classification)
We say a continuation is

• basic-block-like if it is of first-order,

• returning if it is of second-order with exactly one first-order parameter,

• top-level if its scope does not contain free variables, and

• bad if it is neither basic-block-like, nor a top-level, returning continu-
ation.

1This loop is by the way irreducible [see HU72] as it has two entries.
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Example 11.2 (Continuation Classification)
Reconsider Listing 9.4. All basic blocks in the SSA-form version are basic-
block-like continuations in Thorin. The continuation fac is returning and
top-level.

Based on this classification we find the following definition:

Definition 11.3 (CFF)
We say a scope is in CFF if it does not contain bad continuations.

Example 11.3 (CFF)
As fac’s scope (see Listing 9.4) does not contain any bad continuations
the scope is in CFF.

11.2.1. Converting CFF-Thorin to SSA Form
It is straightforward to generate code from a CFF program. For example,
we can use Kelsey’s algorithm [Kel95] to translate the program to SSA
form:

• All returning continuations become ordinary continuations in the
SSA-form program. The first-order parameter acts as “return”.

• All basic-block-like continuations become basic blocks. For each
parameter we introduce a φ-function. The corresponding arguments
of the basic-block’s predecessors determine the φ-function’s arguments.

• Calls to returning continuations become “normal” calls. The parame-
ter of the call’s continuation forms the result value in the SSA-form
program.

Example 11.4 (Convert CFF to SSA form)
Using this algorithm we obtain Listing 9.4b from Listing 9.4d.
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function lower-to-CFF(Φ)
foreach bad continuation ` reachable from main do

foreach u ∈ uses(`) do
if u calls `

`d ← drop all higher-order arguments using
Listing 11.2

rewrite u to call `d instead;
end

end
end

end

Listing 11.6.: Lower-to-CFF: this algorithm eliminates bad continuations.

11.2.2. Closure Elimination
The remaining top-level continuations that are not in CFF can be trans-
lated with standard code generation techniques for higher-order CPS pro-
grams [Ste78; Kra+86; App06]. An alternative is to eliminate bad continu-
ations as the remainder of this section discusses.
Suppose main is a special continuation within Φ that is axiomatically

reachable. All continuations not reachable from main are unreachable and
can be removed (see Section 10.6). Now, the idea is to specialize (via mangle
from Listing 11.2) all higher-order arguments in all reachable calls of bad
continuations (see Listing 11.6). This routine will only terminate if all bad
continuations become unreachable. In general, it is undecidable whether
this will be the case for an arbitrary program because the algorithm is yet
another partial evaluation strategy that can also induce divergence (see
Example 11.6). Nevertheless, the lowering algorithm always reduces non-
recursive calls of bad continuations since each specialized call removes one
use of the bad continuation. This property still holds when mangling first-
order recursive continuations because the mangled version does not reference
the original continuation anymore (see Section 11.1.2). When mangling
recursive but not first-order recursive continuations, those references usually
stay there. In this case, specializing the call does not decrease the number of
uses of the bad continuation. Only if some other optimizations are triggered,
these references may disappear.
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foo(n: int , fret: cn ()):
range ’(0, n)

range ’(a’: int , b’: int ):
br(a’<b’, then ’, else ’)

then ’():
lambda (a’, cont ’)

cont ’():
range ’(a’+1, b’)

else ’():
next ()

lambda (i: int , out: cn ()):
use(i, n, out)

next ():
fret ()

(a) Mangling range

foo(n: int , fret: cn ()):
range ’(0, n)

range ’(a’: int , b’: int ):
br(a’<b’, then ’, else ’)

then ’():
lambda ’(a’)

cont ’():
range ’(a’+1, b’)

else ’():
next ()

lambda ’(i’: int ):
use(i’, n, cont ’)

next ():
fret ()

(b) Mangling lambda

Listing 11.7.: Lower-to-CFF optimizes the program in Listing 9.5c.

Definition 11.4 (CFF-Convertible)
We call a program CFF-convertible if all bad continuations are either non-
recursive or first-order-recursive.

Example 11.5 (Closure Elimination)
Listing 9.5c invokes the higher-order continuation range. We now apply
lower-to-CFF. First, lower-to-CFF mangles range to range’ because
range is a bad continuation with the higher-order parameters yield
and ret. Note how mangling eliminates the static parameters (see List-
ing 11.7a). The returning continuation lambda with the higher-order
parameter out is bad since it is nested inside of f due to its dependency
on f’s parameter n. For this reason, lower-to-CFF mangles lambda and
renders the program in shown Listing 11.7b, which is in CFF, and the
algorithm terminates. Using lambda mangling, we also inline lambda’
and specialize range’’s parameter b’ to n to finally obtain Listing 9.5d.

Example 11.6 (Endless Mangling)
The following program is not first-order recursive because f’s parameters
ret1 and ret2 are not static:
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f(a: int , ret1: cn(int), ret2: cn(int )): f(a+1, R, S)
R(i: int ): ret2(a+i)
S(j: int ): ret1(a+j)

main(i: int , ret: cn(int )): f(i, ret , ret)

Thus, naïvely invoking lower-to-CFF will not terminate. This program
must be closure-converted and compiled with traditional compilation
techniques for higher-order continuations.

11.2.3. Enhancements
The presented lowering algorithm always uses lambda dropping. Neverthe-
less, in certain cases it is worthwhile to use lambda lifting instead as lifting
will not increase the code size. However, lambda lifting is only reasonable
in the case of returning, non-top-level continuations that only contain free
variables of zeroth order (lambda in Listing 11.7a, for example). Then, the
lifted continuation will be a returning, top-level continuation. Otherwise,
when lifting free variables of order one or higher, the resulting continuation
will not be a returning continuation anymore.

Moreover, lower-to-CFF always specializes all higher-order arguments.
But in order to use Kelsey’s algorithm, it suffices to have top-level, returning
continuations. This means that it is fine to keep one first-order, potentially
non-static parameter (the “return”) of top-level, bad continuations. The
property of first-order recursion must then only hold for the remaining
parameters. This would allow us to transform a greater class of programs
to CFF.

11.2.4. Summary
Compilation works as follows:

1. Identify all bad continuations.

2. Use lower-to-CFF to eliminate all non-recursive and first-order recur-
sive uses. For such uses, lower-to-CFF will terminate. If all uses are
of these kinds, the original bad continuation will become unreachable
and can be removed.
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C Impala Rust GHC
aobench 1.220 1.357 n/a 22.540
fannkuch-redux 27.137 28.070 n/a 34.670
fasta 2.313 1.517 n/a 1.443
mandelbrot 2.143 2.113 n/a 2.013
meteor-contest 0.047 0.043 0.050 0.327
n-body 5.497 6.130 5.163 6.867
pidigits 0.710 0.763 4.940 0.903
regex 6.477 6.470 18.020 7.720
reverse-complement 1.090 1.220 n/a 1.300
spectral-norm 4.423 4.480 n/a 19.347

Figure 11.3.: Median execution times in seconds (lower is better)

3. Translate all continuations that are not bad with Kelsey’s [Kel95]
algorithm.

4. Translate remaining continuations with conservative code generation
techniques (closure conversion).

11.3. Evaluation
This section evaluates Thorin. We have already argued that Thorin is more
expressive than classic SSA-based representations because Thorin supports
higher-order functions. To begin with, we want to examine whether we
have to pay for this expressiveness with less efficient code. Then, we
investigate whether this expressiveness complicates the implementation of
code transformations.

11.3.1. Performance
The Impala2 compiler translates the source program to Thorin. Partial
evaluation (see Chapter 10), closure elimination (see Section 11.2.2), and
other standard optimizations are performed on top of this IR. Finally,
Thorin either translates to C/CUDA/OpenCL or LLVM/SPIR/NVVM (see

2see http://anydsl.github.io
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also Sections 10.7 and 11.2.1). Beside the semantic analysis, the Impala
compiler does not perform any further analyses or transformations on the
AST. In particular, Impala directly translates higher-order functions to
Thorin in a straightforward manner.

In order to evaluate the effectiveness of our approach, we ported The
Computer Benchmark Game3 to Impala. We elided some programs that
focus on measuring API or runtime overhead. Additionally, we ported
aobench4. Figure 11.3 shows the median execution times of eleven runs
for C, Impala, Rust (if available), and GHC in seconds. Our benchmark
ran on an Intel® Ivy Bridge Core™ i7-3770K CPU. We consider the C
implementations as baseline. We included Rust in our measurements as
Impala has a similar syntax. We also included Haskell versions of the
benchmarks in order to see how well GHC’s Core IR performs. From the
original benchmark suite, we selected programs that were neither hand-
vectorized nor hand-parallelized. We used clang 3.4.2, rustc 0.11 and
GHC 7.8.3. The exact compile flags and benchmarks are apparent in our
benchmark suite.5

Although we used the C versions of the benchmarks as a template for the
Impala version, it is important to note that Impala does not offer C-style
for-loops. Instead, we use higher-order functions to write appropriate
generators and rely on Thorin’s lower-to-CFF phase. For example, in order
to iterate over an interval, we use the higher-order function range.

To sum up, the performance of the Impala programs is mostly on a
par with the C implementations except for fasta where Impala is about
1.5 times faster than C. Rust’s performance depends on the quality of
the libraries used under the hood. GHC is roughly on a par with C/Im-
pala. However, some benchmarks—in particular aobench—run significantly
slower.

We conclude that Thorin’s expressiveness does not impact the quality of
the generated code. In particular, a C-like implementation will also give
the performance of a C implementation.
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SLoC Volume Difficulty Effort
CloneFunction.cpp 359 21298 107 2269693
CodeExtractor.cpp 523 34599 124 4287983
InlineFunction.cpp 526 32288 109 3511359
LoopUnroll.cpp 279 15393 80 1229623
total 1687 120421 207 24968883
mangle.cpp 132 6636 75 496757

Figure 11.4.: Source lines of code (SLoC) and Halstead numbers for
LLVM’s C++ implementations compared to Thorin’s mangle implementa-
tion

11.3.2. Engineering Effort

In order to estimate the engineering effort to develop code transformations,
we compare the Halstead metric [Hal77] of Thorin’s lambda mangling
implementation (see Section 11.1) versus LLVM 3.4.2 (see Figure 11.4).6
On the one hand, LLVM is a full featured compiler suite which biases these
metrics towards Thorin. On the other hand, lambda mangling is much
more versatile: For LLVM we did not include any source code to eliminate
tail-recursion (see Section 11.1.2). Furthermore, LLVM completely lacks
functionality for partial inlining or partial outlining and cannot represent
higher-order functions at all. Still, LLVM’s pendants are in total roughly
2.8 times more difficult to implement while they take about 50 times longer
to program.

3see http://benchmarksgame.alioth.debian.org/
4see https://code.google.com/p/aobench
5see https://github.com/AnyDSL/benchmarks-impala
6SLoC were generated using David A. Wheeler’s ’SLOCCount’; Halstead numbers were
computed with c3ms [GF10].
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11. Closure Elimination and Code Generation

11.4. Related Work
11.4.1. Lambda Lifting and Dropping
Lambda lifting was invented by Johnsson [Joh85]. His algorithm uses
currying in order to abstract free variables:

λx. x + y ⇒ λy.λx. x + y .

Danvy and Schultz [DS00] observe that we can directly append y to the
parameter list in the case of first-order programs with multi-ary functions:

λ(x). x + y ⇒ λ(x, y). x + y .

Danvy and Schultz invented lambda dropping as a reverse transformation
to Johnsson’s algorithm. When dealing with higher-order functions, their
algorithm uses Johnsson’s currying approach since in general a compiler
cannot rewrite call sites of a function passed as argument to another
function. As we want to eliminate closures, currying is not an option for
us. After all, a curried function is not a returning function anymore (see
Definition 11.2). For this reason, lambda mangling does not use currying to
introduce or eliminate parameters. It rather produces one new generalized
and/or specialized function with an updated signature, which is at that
point not connected to the rest of the program. It is in the responsibility of
other passes to orchestrate mangling in a reasonable way and to connect
a mangled function to the rest of the program properly. Due to Thorin’s
blockless representation, we can fuse both algorithms into one simple,
recursive rewrite algorithm, which does not need the block floating/sinking
pass of the original algorithms.

11.4.2. Static Argument Transformation
We are not the first to note that an argument/parameter pair of a recursive
call is superfluous if the argument is just the parameter. The static argument
transformation [San95] identifies such recursive calls and eliminates them.

Example 11.7 (Static Argument Transformation)
Consider Listing 11.8. Note that f itself is not recursive anymore and,
hence, is a potential candidate for inlining.
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f: (a, b)
... use(a) ...
f(a, x)

(a) before

f: (a, b)
letrec f’: (b)

... use(a) ...
f’(x)

in f’(b)

(b) after

Listing 11.8.: Static argument transformation

For mutually recursive functions, we must find out which parameters do
not change their values within an SCC. For this reason, we rather speak of
static parameters than of arguments. However, applying the static argument
transformation on a mutual recursive function still leaves the function
recursive whereby further inlining becomes problematic. Our algorithm on
the other hand considers all functions within one SCC simultaneously and,
thus, can eliminate static parameters (see Section 11.1.2).

11.4.3. Super-β Inlining
Super-β inlining [see Shi91, chap. 10] enables inlining of a closure call c
with a function literal f . This transformation is only valid if

1. all applications of c are closures over f and

2. the environment at c is always equivalent to the one where the closure
is captured.

A CFA (see Section 10.6) addresses the first requirement. ∆-CFA [MS06]
also takes into account the environment where a closure is captured. This
allows aggressive inlining and, hence, aggressive closure elimination.

The focus in our work is different: The presented lower-to-CFF algorithm
(see Section 11.2.2) specializes higher-order functions even more aggressively
(in contrast to inlining):

Example 11.8
Consider the function range from Listing 9.5. Suppose, there are two call
sites of range that pass different function literals g1 and g2 to range’s
parameter f:
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range (... , g1 , ...)
range (... , g2 , ...)

A ∆-CFA discovers that inlining the closure call of f within range’s scope
is not possible since condition (1) is violated. Thorin’s lower-to-CFF
on the other hand, specializes each call site and, thus, gets rid of the
higher-order function range (see Section 11.2.2).

11.4.4. Other Closure-Elimination Strategies
The SML/NJ compiler [App06] allocates garbage-collected closures on the
heap. An additional phase tries to find closures whose lifetime can be
statically proven to be nested in a simple way. These closures can be
allocated on the stack instead. Additionally, the compiler lambda-lifts
functions that are not passed as argument to other functions. Then, these
so-called known functions (as opposed to escaping functions) do not require
a closure at all. An additional η-split phase splits functions that are used
in a known as well as in an escaping context. Finally, SML/NJ’s inliner
tries to decrease escaping contexts. Other compilers like Scala7 also rely on
inlining to eliminate explicit closures.

In summary, state-of-the-art functional compilers rely on inline heuristics
to eliminate closures. Thorin guarantees to eliminate all closures in CFF-
convertible programs.

7see http://magarciaepfl.github.io/scala
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Don’t adventures ever have an end? I suppose not.
Someone else always has to carry on the story.

J.R.R. Tolkien, The Lord of the Rings 12
Conclusions

The AnyDSL framework presented in this part of the thesis allows a DSL
designer to embed her language as a library in the host language Impala;
she does not need to implement or modify a compiler (as in Part I). The
application programmer, on the other hand, only sees the DSL interface,
which is just a usual library. Using this interface, he can write concise,
readable, and maintainable code. Furthermore, with the help of higher-
order functions, the DSL designer can abstract from hardware details and
algorithmic variants. Experts for different machines can provide different
implementations in order to effectively map the DSL to these machines.
This paradigm allows a clean separation between the application devel-

oper, the DSL designer, and the machine expert. Using partial evaluation
and an aggressive closure elimination, all aspects are woven together. We
demonstrate on two example DSLs that the resulting code even outperforms
code that has been hand-optimized for various architectures. In addition,
Pérard-Gayot et al. [Pér+17] show similar results for ray traversal (the core
of a ray tracer).

AnyDSL’s IR Thorin blends concepts from functional, classic SSA-based,
and modern graph-based representations. Therefore, Thorin is very expres-
sive and equally well-suited for imperative as well as functional programs.
At the same time, we show that code transformations are in fact simpler to
implement on Thorin than on classic SSA-based representations because
Thorin knows fewer concepts: every aspect of control flow is uniformly
represented by continuations.

The partial evaluation strategy presented in Chapter 10 might not be the
end of the line. But for any evaluation strategy (including partial ones) that
is a subset of the indeterministic reduction system presented in Section 9.3
preservation (see Lemma 9.2) and confluence (see Theorem 10.2) hold. This
builds a profound basis for future work.
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Noli turbare circulos meos!
presumably Archimedes A

Notation

This chapter briefly discusses the notation used throughout this thesis.

A.1. Functions and Sequences
Let f be a function, then dom(f) denotes the domain and codom(f) the
codomain of f . We write f[x ↦ y] to express a function that is identical
to f except that we add or update the mapping x↦ y:

f[x↦ y] ∶ dom(f) ∪ {x}→ codom(f) ∪ {y}

x′ ↦
⎧⎪⎪
⎨
⎪⎪⎩

y if x′ = x
f(x′) otherwise.

We write a sequence as a1, ... , an =∶ a while ∅ denotes the empty sequence
although it is sometimes just omitted. We write a ∈ A if a occurs in
the sequence A and use a ∈ A as shorthand for ∀ai ∈ A ∶ ai ∈ A. The
comma operator performs concatenation. Thus, “A,B” concatenates two
sequences A and B whereas “A,a” adds the element a to the sequence A.
We will often write a ∶ b to designate a pair if we want to stress that b is
associated to a. We also view a sequence of pairs

A ∶= a1 ∶ b1, ... , an ∶ bn =∶ a ∶ b

in which each ai is unique as bijective function:

A ∶ {a1, ... , an}→ {b1, ... , bn}

a1 ↦ b1

⋯

an ↦ bn
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This is, for example, the case for typing environments or states as we require
all variable names to be unique. Following these definitions, we find

dom(A) = {a1, ... , an}

codom(A) = {b1, ... , bn}

A[x↦ y] = a ∶ b, x ∶ y

A[a1 ↦ y] = a1 ∶ y, a2 ∶ b2, ... , an ∶ bn .

A.2. Relations
Definition A.1
Let ⇀ be a binary relation. The following constructors define its reflexive
transitive closure ⇀∗:

Id
a⇀ b

a⇀∗ b
Refl

a⇀∗ a
Trans

a⇀∗ b b⇀∗ c

a⇀∗ c .

Definition A.2 (Normal form)
Let ⇀ be a binary relation on a set A. We say a ∈ A is in normal form if
there is no a′ ≠ a such that a⇀ a′. We write aC as shorthand if we require a
to be in normal form. Likewise, we write a⇂ if we require a to be not in
normal form.

Remark. This definition also works for a reflexive relation—say ↔. Al-
though a ↔ a holds for all a, â� denotes an element â that cannot be
stepped into another element different from â.

A.3. Syntax
In this thesis we use Backus-Naur [Bac59] form to describe the abstract
syntax of a language. Expanded syntax is a subset of the abstract syntax
and appears grayed out in the presentation. Expanded syntax is not directly
accessible to the programmer. It solely materializes internally, for instance,
in typing or evaluation rules. The concrete syntax extends the abstract
syntax by parentheses, for example, in order to disambiguate expression
nesting. Additionally, we sometimes define syntactic sugar : This syntax
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directly translates to a more verbose concrete syntax and is merely used to
make examples “sweeter” to read.
The abstract syntax of some language L induces a tree. Let a, b ∈ L.

We write a ⪯ b to denote that a is a subtree of b. The trees a and b may
coincide.
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There is only an idea. And ideas are bulletproof.
V for Vendetta B

Full Proofs

B.1. Imp
Lemma 4.3 (Imp: Progress)
Every Imp term is either a term value or can be stepped into another term.
To be more precise: Let ⊢ Φ and Γ ⋍ σ.

If Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t ,

then s = skip ∨ s = return νt;
e = νt

or ∃s′, σ′ ∶ Φ ⊢ σ; s→ σ′; s′
∃e′, σ′ ∶ Φ ⊢ σ; e→ σ′; e′ .

Proof. By mutual induction on a derivation of Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t .

Case: TS-Skip
Φ; Γ ⊢ skip ∶ �

This is the final configuration.

Case: TS-Ret
Φ; Γ ⊢ e ∶ t

Φ; Γ ⊢ return e; ∶ t

Using the induction hypothesis we deduce:

return νt: This is the final configuration.
otherwise: E-Eval applies.
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Case: TS-Expr
Φ; Γ ⊢ e ∶ te Φ; Γ ⊢ s ∶ t

Φ; Γ ⊢ e; s ∶ t

Using the induction hypothesis we deduce:

νt; s: ES-Expr applies.
otherwise: E-Eval applies.

Case: TS-Decl
Φ; Γ[x↦ tx] ⊢ s ∶ t

Φ; Γ ⊢ tx x; s ∶ t

Axiomatically, ES-Decl applies.

Case: TS-Assign
x ∶ t ∈ Γ Φ; Γ ⊢ e ∶ te Φ; Γ ⊢ s ∶ t

Φ; Γ ⊢ x = e; s ∶ t

e = νt: Since x ∶ te ∈ Γ and Γ ⋍ σ we know x ∶ ν′te ∈ σ for some ν′te .
Thus, ES-Assign applies.

otherwise: E-Eval applies.

Case: TS-If
Φ; Γ ⊢ e ∶ bool Φ; Γ ⊢ st ∶ � Φ; Γ ⊢ sf ∶ � Φ; Γ ⊢ sr ∶ t

Φ; Γ ⊢ if (e) st else sf sr ∶ t

Using the induction hypothesis we deduce:

e = νtrue: ES-IfT applies.
e = νfalse: ES-IfF applies.
otherwise: E-Eval applies.
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Case: TS-While
Φ; Γ ⊢ e ∶ bool Φ; Γ ⊢ sb ∶ � Φ; Γ ⊢ sr ∶ t

Φ; Γ ⊢ while (e) sb sr ∶ t

Axiomatically, ES-While applies.

Case: TE-Var
x ∶ t ∈ Γ

Φ; Γ ⊢ x ∶ t

Since x ∶ t ∈ Γ and Γ ⋍ σ we know x ∶ νt ∈ σ for some νt. Thus, EE-Var
applies.

Case: TE-Val
Φ; Γ ⊢ νt ∶ t

This is the final configuration.

Case: TE-Call
t `(t1 x1, ... , tn xn) { s } ∈ Φ Φ; Γ ⊢ e1 ∶ t1 ⋯ Φ; Γ ⊢ en ∶ tn

Φ; Γ ⊢ `(e1, ... , en) ∶ t

Using the induction hypothesis we deduce:

e = νt: Hence, EE-Call applies.
otherwise: E-Eval applies.

Case: TE-Stmt
Φ; Γ ⊢ s ∶ t

Φ; Γ ⊢   s ¡σ ∶ t

Using the induction hypothesis we deduce:

s = return νt;: EE-Stmt applies.
otherwise: E-Eval applies.

Lemma 4.4 (Imp: Preservation)
If a well-typed Imp term takes a step of evaluation, the resulting term is
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also well-typed. To be more precise: Let ⊢ Φ, Γ ⋍ σ, and Γ′ ⋍ σ′.

If Φ; Γ ⊢ s ∶ t
Φ; Γ ⊢ e ∶ t and Φ ⊢ σ; s→ σ′; s′

Φ ⊢ σ; e→ σ′; e′ , then
Φ; Γ′ ⊢ s′ ∶ t
Φ; Γ′ ⊢ e′ ∶ t .

Proof. By mutual induction on a derivation of Φ ⊢ σ; s→ σ′; s′
Φ ⊢ σ; e→ σ′; e′ . Many

evaluation rules do not produce a new state. Thus, σ′ = σ in these cases.
By Lemma 4.1 this means that Γ′ = Γ. Many case distinctions will silently
make use of this insight.

Case: E-Eval
Φ ⊢ σ; â→ σ′; â′

Φ ⊢ σ;E[â]
´¸¶
a

→ σ′;E[â′]
´¹¹¸¹¹¶
a′

By the induction hypothesis we know
Φ; Γ′ ⊢ â′ ∶ t where Γ′ ⋍ σ′ .

Using the appropriate typing rule we find
Φ; Γ′ ⊢ E[â′]

´¹¹¸¹¹¶
a′

∶ t

as expected:

E[â]
´¸¶
a

= return â;
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-Ret
Φ; Γ′ ⊢ â′ ∶ t

Φ; Γ′ ⊢ return â′;
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t

E[â]
´¸¶
a

= â; s
´¸¶
a

TS-Expr
Φ; Γ′ ⊢ â′ ∶ ta Φ; Γ′ ⊢ s ∶ t

Φ; Γ′ ⊢ â′; s
´¹¸¶
a′

∶ t

E[â]
´¸¶
a

= x = â; s
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-Assign
x ∶ t ∈ Γ′ Φ; Γ′ ⊢ â′ ∶ ta Φ; Γ′ ⊢ s ∶ t

Φ; Γ′ ⊢ x = â′; s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t

E[â]
´¸¶
a

= if (â) st else sf sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-If

Φ; Γ′ ⊢ â′ ∶ bool Φ; Γ′ ⊢ st ∶ �
Φ; Γ′ ⊢ sf ∶ � Φ; Γ′ ⊢ sr ∶ t
Φ; Γ ⊢ if (â′) st else sf sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a′

∶ t
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E[â]
´¸¶
a

= `(νt, â, e)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TE-Call

t `(t1 x1, ... , ta xa, ... , tn xn) { s } ∈ Φ
Φ; Γ′ ⊢ v1 ∶ t1 ⋯ Φ; Γ′ ⊢ â′ ∶ t ⋯

Φ; Γ′ ⊢ en ∶ tn
Φ; Γ ⊢ `(v1, ... , â

′, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t

E[â]
´¸¶
a

=   a ¡σ̂
´¹¹¹¹¹¸¹¹¹¹¶
a

TE-Stmt
Φ; Γ′ ⊢ â′ ∶ t

Φ; Γ′ ⊢   â′ ¡σ̂
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
a′

∶ t

Case: ES-Expr
Φ ⊢ σ; νt; s→ σ; s

Straightforward from the induction hypothesis.

Case: ES-Decl
Φ ⊢ σ; tx x; ŝ

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
s

→ σ[x↦ 0tx ]; ŝ
´¸¶
s′

We know:
Γ ⋍ σ and Γ[x↦ tx] = Γ′ ⋍ σ′ = σ[x↦ 0tx ] .

Thus, by the induction hypothesis:
Φ; Γ′ ⊢ s′ ∶ t .

Case: ES-Assign
x ∶ ν′t ∈ σ

Φ ⊢ σ;x = νtx ; s→ σ[x↦ νtx ]; s

Similar to the previous case.

Case: ES-IfT
Φ ⊢ σ; if (true) st else sf sr → σ; st ○ sr

By the induction hypothesis we know
Φ; Γ ⊢ st ∶ � and Φ; Γ ⊢ sr ∶ t .

By Lemma 4.2 we conclude:
Φ; Γ ⊢ st ○ sr

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
s′

∶ t .
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Case: ES-IfF
Φ ⊢ σ; if (false) st else sf sr → σ; sf ○ sr

Dual to the previous case.

Case: ES-While
Φ ⊢ σ; while (e) sb sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s

→ σ; if (e) { sb while (e) sb } sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s′

Using the induction hypothesis and having the syntactic sugar in mind (see
Section 4.1.1) we derive:

TS-If
Φ; Γ ⊢ e ∶ bool Φ; Γ ⊢ sb ∶ �

TS-Skip
Φ; Γ ⊢ skip ∶ � Φ; Γ ⊢ sr ∶ t

Φ; Γ ⊢ if (e) sb else skip sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s′

∶ t

Case: EE-Var
x ∶ νt ∈ σ

Φ ⊢ σ;x→ σ; νt
We simply derive:

TE-Val
Φ; Γ ⊢ νt ∶ t

Case: EE-Call
t `(t x) { s } ∈ Φ

Φ ⊢ σ; `(νt)
´¹¹¸¹¶
e

→ x ∶ νt
´¹¹¸¹¹¶
σ′

;   s ¡σ
´¹¹¹¹¸¹¹¹¹¶
e′

By this lemma’s premise and with x ∶ t = Γ′ ⋍ σ′ we know:

T-Prg
Φ ⊢ f1 ⋯

T-Fun
Φ;

Γ′
³·µ
x ∶ t ⊢ s ∶ t

Φ ⊢ t `(t x) { s } ⋯ Φ ⊢ fn
⊢ f1, ... , t `(t x) { s }, ... , fn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ
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Using the induction hypothesis we derive:

TE-Stmt
Φ; Γ′ ⊢ s ∶ t

Φ; Γ′ ⊢   s ¡σ
´¹¹¹¹¸¹¹¹¹¶
e′

∶ t

Case: EE-Stmt
Φ ⊢ σ;   return νt; ¡σ′ → σ′; νt

We simply derive with Γ′ ⋍ σ′:
TE-Val

Φ; Γ′ ⊢ νt ∶ t

B.2. VecImp
Lemma 4.5 (VecImp: Progress)
Every VecImp term is either a term value or can be stepped into another
term. To be more precise: Let ⊢ Φ, Γ ⋍ σ, and l ⋍m.

If Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t ,

then s = skip; ∨ s = return νt;
e = νt

or ∃s′, σ′ ∶ Φ;m ⊢ σ; s→ σ′; s′
∃e′, σ′ ∶ Φ;m ⊢ σ; e→ σ′; e′ .

Proof. By mutual induction on a derivation of Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t .

Case: TS-Skip
Φ; Γ; l ⊢ skip ∶ �

This is the final configuration.

Case: TS-Ret
Φ; Γ; l ⊢ e ∶ τ varying(le) lr = l ⊔ le

Φ; Γ; l ⊢ return e; ∶ τ varying(lr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

Using the induction hypothesis we deduce:

201



B. Full Proofs

return ντ varying(le) This is the final configuration.
otherwise: E-Eval applies.

Case: TS-Expr
Φ; Γ; l ⊢ e ∶ te = l ⊔ ∥te∥ Φ; Γ; l ⊢ s ∶ t

Φ; Γ; l ⊢ e; s ∶ t

Using the induction hypothesis we deduce:

νt; s: ES-Expr applies.
otherwise: E-Eval applies.

Case: TS-Decl
Φ; Γ[x↦ tx]; l ⊢ s ∶ t = l ⊔ ∥tx∥

Φ; Γ; l ⊢ tx x; s ∶ t

Axiomatically, ES-Decl applies.

Case: TS-Assign

Φ; Γ; l ⊢ ŝ ∶ t
l ⊢ lx ← le x ∶ τ varying(lx) ∈ Γ Φ; Γ; l ⊢ e ∶ τ varying(le)

Φ; Γ; l ⊢ x = e; ŝ
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

s

∶ t

e = ντ varying(le):
• Since

x ∶ τ varying(lx) ∈ Γ and Γ ⋍ σ

we know
x ∶ ν′τ varying(lx)

∈ σ for some ν′τ varying(lx)
.
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• Since
l ⊢ lx ← le and l ⋍m

we know that
blend(m,ντ varying(le), ν

′

τ varying(lx)
)

is valid.
• Thus, we derive:

ES-Assign

x ∶ ν′τ varying(lx)
∈ σ

blend(m,ντ varying(le), ν
′

τ varying(lx)
) valid

Φ;m ⊢ σ;x = ντ varying(le); ŝ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

→

σ[x↦ blend(m,ντ varying(le), ν
′

τ varying(lx)
)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ′

; ŝ
´¸¶
s′

otherwise: E-Eval applies.

Case: TS-If

Φ; Γ; l ⊢ sr ∶ t Φ; Γ; l ⊢ e ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ; l′ ⊢ st ∶ � Φ; Γ; l′ ⊢ sf ∶ �
Φ; Γ; l ⊢ if (e) st else sf sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s

∶ t

e = νbool varying(lc)

• Since
l′ = l ⊔ lc and l ⋍m

we know that
m ∧ νbool varying(lc)

is valid.
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• Using the induction hypothesis we derive:

ES-IfT

m ∧ νbool varying(lc) valid
Φ;m ∧ νbool varying(lc) ⊢ σ; st → σ′; s′t

Φ;m ⊢ σ; if (νbool varying(lc)) st else sf sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

→

σ′; if (νbool varying(lc)) s
′

t else sf sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s′

e = νbool varying(lc)
st = skip Similar to the previous case using E-IfF.

e = νbool varying(lc)
st = skip
sf = skip

ES-If applies.

otherwise: E-Eval applies.

Case: TS-While

Φ; Γ; l ⊢ e ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ; l′ ⊢ sb ∶ � Φ; Γ; l ⊢ sr ∶ t

Φ; Γ; l ⊢ while (e) sb sr ∶ t

Axiomatically, ES-While applies.

Case: TE-Var
x ∶ t ∈ Γ = l ⊔ ∥t∥

Φ; Γ; l ⊢ x ∶ t

Since x ∶ t ∈ Γ and Γ ⋍ σ we know x ∶ νt ∈ σ for some νt. Thus, EE-Var
applies.

Case: TE-Val
= l ⊔ ∥t∥

Φ; Γ; l ⊢ νt ∶ t

This is the final configuration.
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Case: TE-Call

simd(l`) t `(tx1 x1, ... , txn xn) { s } ∈ Φ
Φ; Γ; l ⊢ e1 ∶ t1 ⋯ Φ; Γ; l ⊢ en ∶ tn

l ⊢ ∥tx1∥← ∥te1∥ ⋯ l ⊢ ∥txn∥← ∥ten∥ l ⊢ l` ← l = l ⊔ ∥t∥

Φ; Γ; l ⊢ `(e1, ... , en) ∶ t

Using the induction hypothesis we deduce:

e = νt: Hence, EE-Call applies.
otherwise: E-Eval applies.

Case: TE-Stmt
Φ; Γ; l ⊢ s ∶ t = l ⊔ ∥t∥

Φ; Γ; l ⊢   s ¡σ ∶ t

Using the induction hypothesis we deduce:

s = return νt;: EE-Stmt applies.
otherwise: E-Eval applies.

Case: TE-Vec
Φ; Γ; l ⊢ e1 ∶ τ varying(1) ⋯ Φ; Γ; l ⊢ en ∶ τ varying(1) = l ⊔ n

Φ; Γ; l ⊢ {e1, ... , en} ∶ τ varying(n)

Using the induction hypothesis we deduce that either E-Eval applies or we
have the final configuration

{ν1
τ varying(1), ... , ν

n
τ varying(n)} = ντ varying(n) .

Lemma 4.6 (VecImp: Preservation)
If a well-typed VecImp term takes a step of evaluation, the resulting term
is also well-typed. To be more precise: Let ⊢ Φ, Γ ⋍ σ, Γ′ ⋍ σ′, and l ⋍m.

If Φ; Γ; l ⊢ s ∶ t
Φ; Γ; l ⊢ e ∶ t and Φ;m ⊢ σ; s→ σ′; s′

Φ;m ⊢ σ; e→ σ′; e′ , then
Φ; Γ′; l ⊢ s′ ∶ t
Φ; Γ′; l ⊢ e′ ∶ t .
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Proof. By mutual induction on a derivation of Φ;m ⊢ σ; s→ σ′; s′
Φ;m ⊢ σ; e→ σ′; e′ . Many

evaluation rules do not produce a new state. Thus, σ′ = σ in these cases.
By Lemma 4.1 this means that Γ′ = Γ. Many case distinctions will silently
make use of this insight.

Case: E-Eval
Φ;m ⊢ σ; â→ σ′; â′

Φ;m ⊢ σ;E[â]
´¸¶
a

→ σ′;E[â′]
´¹¹¸¹¹¶
a′

By the induction hypothesis we know
Φ; Γ′; l ⊢ â′ ∶ t where Γ′ ⋍ σ′ .

Using the appropriate typing rule we find
Φ; Γ′; l ⊢ E[â′]

´¹¹¸¹¹¶
a′

∶ t

as expected:

E[â]
´¸¶
a

= return â;
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-Ret
Φ; Γ; l ⊢ â′ ∶ τ varying(la) lr = l ⊔ la

Φ; Γ; l ⊢ return â′;
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ τ varying(lr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

E[â]
´¸¶
a

= â; s
´¸¶
a

TS-Expr

Φ; Γ′; l ⊢ â′ ∶ ta = l ⊔ ∥ta∥
Φ; Γ′; l ⊢ s ∶ t

Φ; Γ′; l ⊢ â′; s
´¹¸¶
a′

∶ t

E[â]
´¸¶
a

= x = â; s
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-Assign

x ∶ τ varying(lx) ∈ Γ l ⊢ lx ← la
Φ; Γ; l ⊢ â′ ∶ τ varying(la) Φ; Γ; l ⊢ s ∶ t

Φ; Γ; l ⊢ x = â′; s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t

E[â]
´¸¶
a

= if (â) st else sf sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TS-If

Φ; Γ; l ⊢ â′ ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ; l′ ⊢ st ∶ � Φ; Γ; l′ ⊢ sf ∶ � Φ; Γ; l ⊢ sr ∶ t

Φ; Γ; l ⊢ if (â′) st else sf sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t

E[â]
´¸¶
a

= `(νt, â, e)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TE-Call

simd(l`) t `(tx1 x1, ... , txa xa, ... , txn xn) { s } ∈ Φ
Φ; Γ; l ⊢ ν1 ∶ t1 ⋯ Φ; Γ; l ⊢ â′ ∶ ta

⋯ Φ; Γ; l ⊢ en ∶ tn
l ⊢ ∥tx1∥← ∥t1∥ ⋯ l ⊢ ∥txa∥← ∥ta∥

⋯ l ⊢ ∥txn∥← ∥tn∥
l ⊢ l` ← l = l ⊔ ∥t∥

Φ; Γ; l ⊢ `(νt, â′, e)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a′

∶ t
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E[â]
´¸¶
a

=   a ¡σ̂
´¹¹¹¹¹¸¹¹¹¹¶
a

TE-Stmt
Φ; Γ; l ⊢ â′ ∶ t = l ⊔ ∥t∥

Φ; Γ; l ⊢   â′ ¡σ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
a′

∶ t

E[â]
´¸¶
a

= {ντ varying(1), â, e}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

TE-Vec

Φ; Γ; l ⊢ ντ varying(1) ∶ τ varying(1) ⋯

Φ; Γ; l ⊢ â′ ∶ τ varying(1) ⋯
Φ; Γ; l ⊢ en ∶ τ varying(1) = l ⊔ n

Φ; Γ; l ⊢ {ντ varying(1), ... , â
′, ... , en}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a′

∶ τ varying(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

Case: ES-Expr
Φ;m ⊢ σ; νt; s→ σ; s

Straightforward from the induction hypothesis.

Case: ES-Decl
Φ;m ⊢ σ; tx x; ŝ

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
s

→ σ[x↦ 0tx ]; ŝ
´¸¶
s′

We know:
Γ ⋍ σ and Γ[x↦ tx] = Γ′ ⋍ σ′ = σ[x↦ 0tx ] .

Thus, by the induction hypothesis:
Φ; Γ′ ⊢ s′ ∶ t .

Case: ES-Assign
x ∶ ν′τ varying(lx)

∈ σ blend(m,ντ varying(le), ν
′

τ varying(lx)
) valid

Φ;m ⊢ σ;x = ντ varying(le); s→
σ[x↦ blend(m,ντ varying(le), ν

′

τ varying(lx)
)]; s

Similar to the previous case.

Case: ES-IfT
m ∧ νbool varying(lc) valid Φ;m ∧ νbool varying(lc) ⊢ σ; st → σ′; s′t

Φ;m ⊢ σ; if (νbool varying(lc)) st else sf sr →
σ′; if (νbool varying(lc)) s

′

t else sf sr

We know
l ⋍m, Γ′ ⋍ σ′, l′ = l ⊔ lc, Φ; Γ; l′ ⊢ sf ∶ � and Φ; Γ; l ⊢ sr ∶ t .
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Thus, using the induction hypothesis we derive:

TS-If

Φ; Γ; l ⊢ νbool varying(lc) ∶ bool varying(lc) l′ = l ⊔ lc
Φ; Γ′; l′ ⊢ s′t ∶ � Φ; Γ; l′ ⊢ sf ∶ � Φ; Γ; l ⊢ sr ∶ t

Φ; Γ; l ⊢ if (νbool varying(lc)) s
′

t else sf sr ∶ t

Case: ES-IfF
Φ;m ⊢ σ; if (false) st else sf sr → σ; sf ○ sr

Similar to the previous case.

Case: ES-If
Φ;m ⊢ σ; if (νbool varying(l)) skip else skip sr → σ; sr

Straightforward from the induction hypothesis.

Case: ES-While
Φ;m ⊢ σ; while (e) sb sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s

→ σ; if (e) { sb while (e) sb } sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s′

Using the induction hypothesis and having the syntactic sugar in mind (see
Section 4.1.1) we derive:

TS-If

TS-Skip
Φ; Γ; l′ ⊢ skip ∶ � l′ = l ⊔ lc

Φ; Γ; l ⊢ e ∶ bool varying(lc) Φ; Γ; l′ ⊢ sb ∶ � Φ; Γ; l ⊢ sr ∶ t
Φ; Γ; l ⊢ if (e) sb else skip sr ∶ t

Case: EE-Var
x ∶ νt ∈ σ

Φ;m ⊢ σ;x→ σ; νt
We simply derive:

TE-Val
Φ; Γ ⊢ νt ∶ t
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Case: EE-Call
simd(l) t `(t x) { s } ∈ Φ

Φ;m ⊢ σ; `(νt)
´¹¹¸¹¶
e

→ x ∶ νt
´¹¹¸¹¹¶
σ′

;   s ¡σ
´¹¹¹¹¸¹¹¹¹¶
e′

By this lemma’s premise and with x ∶ t = Γ′ ⋍ σ′ and l ⋍m we know:

T-Prg
Φ ⊢ f1 ⋯

T-Fun

Φ;

Γ′
³·µ
x ∶ t ; l ⊢ s ∶ t = l ⊔ ∥t∥

= l ⊔ ∥t1∥ ⋯ = l ⊔ ∥tn∥

Φ ⊢ simd(l) t `(t x) { s } ⋯ Φ ⊢ fn
⊢ f1, ... ,simd(l) t `(t x) { s }, ... , fn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ

Using the induction hypothesis we derive:

TE-Stmt
Φ; Γ′; l ⊢ s ∶ t = l ⊔ ∥t∥

Φ; Γ′; l ⊢   s ¡σ
´¹¹¹¹¸¹¹¹¹¶
e′

∶ t

Case: EE-Stmt
Φ;m ⊢ σ;   return νt; ¡σ′ → σ′; νt

We simply derive with Γ′ ⋍ σ′:
TE-Val

Φ; Γ′ ⊢ νt ∶ t

B.3. λcps

Lemma 9.1 (λcps: Substitution – Typing)

If Γ ⊢ b̂
Γ ⊢ ê ∶ t̂ ,Γ ⊢ v ∶ t, and Γ ⊢ e ∶ t, then Γ ⊢ [v ↦ e]b̂

Γ ⊢ [v ↦ e]ê ∶ t̂
.

Proof. By mutual induction on a derivation of Γ ⊢ b̂
Γ ⊢ ê ∶ t̂ . We assume

without loss of generality that any bound variables of b̂
ê

are different

from v and from the free variables of e.
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Case: T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(tn)
Γ′ ⊢ b̂0 Γ′, x1 ∶ t1 ⊢ b̂1 ⋯ Γ′, xn ∶ tn ⊢ b̂n
Γ ⊢ b̂0 where `1(x1 ∶ t1) ∶ b̂1, ... , `n(xn ∶ tn) ∶ b̂n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b̂

Using the induction hypothesis we deduce:

T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(tn) Γ′ ⊢ [v ↦ e]b̂0
Γ′ ⊢ `1(x1 ∶ t1) ∶ [v ↦ e]b̂0 ⋯ Γ′ ⊢ `n(xn ∶ tn) ∶ [v ↦ e]b̂n

Γ ⊢ [v ↦ e]b̂0 where `1(x1 ∶ t1) ∶ [v ↦ e]b̂1, ... , `n(xn ∶ tn) ∶ [v ↦ e]b̂n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

Case: T-App
Γ ⊢ ê0 ∶ cn(t1, ... , tn) Γ ⊢ ê1 ∶ t1 ⋯ Γ ⊢ ên ∶ tn

Γ ⊢ ê0(ê1, ... , ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

Using the induction hypothesis we deduce:

T-App
Γ ⊢ [v ↦ e]ê0 ∶ cn(t1, ... , tn) Γ ⊢ [v ↦ e]ê1 ∶ t1 ⋯ Γ ⊢ [v ↦ e]ên ∶ tn

Γ ⊢ [v ↦ e]ê0([v ↦ e]ê1, ... , [v ↦ e]ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

Case: T-Abs
` ∶ cn(t) ∈ Γ

Γ ⊢ `
´¸¶
ê

∶ cn(t)

If v = `, we have by premise:
Γ ⊢ e

´¸¶
[v↦e]ê

∶ cn(t)

Otherwise we have ê = [v ↦ e]ê.

Case: T-Param
x ∶ t̂ ∈ Γ

Γ ⊢ x
´¸¶
ê

∶ t̂

If v = x, we have by premise:
Γ ⊢ e

´¸¶
[v↦e]ê

∶ t̂
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B.3. λcps

Otherwise we have ê = [v ↦ e]ê.

Case: T-Clos
Γ, x ∶ t ⊢ b̂

Γ ⊢ (`(x ∶ t) ∶ b̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

∶ cn(t)

Using the induction hypothesis we deduce:

T-Clos
Γ, x ∶ t ⊢ [v ↦ e]b̂

Γ ⊢ (`(x ∶ t) ∶ [v ↦ e]b̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]ê

∶ cn(t)

Case T-Primop straightforward by the induction hypothesis.

Lemma 9.2 (λcps: →-Preservation)
If a well-typed λcps term reduces with →, the resulting term is also well-typed.
To be more precise:

If Γ ⊢ b
Γ ⊢ e ∶ t and b→ b′

e→ e′ , then
Γ ⊢ b′

Γ ⊢ e′ ∶ t .

Proof. By mutual induction on a derivation of b→ b′

e→ e′ and Lemma 9.1.

Case: R-Cong1a
b0 → b′0

b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ b′0 where f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Using the induction hypothesis we derive:

T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(tn)
Γ′ ⊢ b′0 Γ′ ⊢ `1(x1 ∶ t1) ∶ b′0 ⋯ Γ′ ⊢ `n(xn ∶ tn) ∶ bn

Γ ⊢ b′0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′
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Case: R-Cong1b
bi → b′i 1 ≤ i ≤m

b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ bi, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ b
′

i, ... , `n(x
n ∶ tn) ∶ bn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b′

Using the induction hypothesis we derive:

T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(t)n Γ′ ⊢ b0
Γ′ ⊢ `1(x1 ∶ t1) ∶ b0 ⋯ Γ′ ⊢ `i(xi ∶ ti) ∶ b′i ⋯ Γ′ ⊢ `n(xn ∶ tn) ∶ bn

Γ ⊢ b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ b
′

i, ... , `n(x
n ∶ tn) ∶ bn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b′

Case: R-Cong2a
e0 → e′0

b = e0(e)→ e′0(e) = b′

Using the induction hypothesis we derive:

T-App
Γ ⊢ e′0 ∶ cn(t1, ... , tn) Γ ⊢ e1 ∶ t1 ⋯ Γ ⊢ en ∶ tn

Γ ⊢ e′0(e1, ... , en) = b′

Case: R-Cong2b
ei → e′i

b = e0(e1, ... , ei, ... , en)→ e0(e1, ... , e
′

i, ... , en) = b′

Using the induction hypothesis we derive:

T-App
Γ ⊢ e0 ∶ cn(t1, ... , tn) Γ ⊢ e1 ∶ t1 ⋯ Γ ⊢ e′i ∶ ti ⋯ Γ ⊢ en ∶ tn

Γ ⊢ e0(e1, ... , e′i, ... , en) = b′

Case: R-Clos
b→ b′

e = (`(x ∶ t) ∶ b)→ (`(x ∶ t) ∶ b′) = e′

Using the induction hypothesis we derive:

T-Clos
Γ, x ∶ t ⊢ b′

Γ ⊢ (`(x ∶ t) ∶ b′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e′

∶ cn(t)
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B.3. λcps

Cases R-Where and R-App by Lemma 9.1.
Case R-Primop straightforward by the induction hypothesis.
Case R-Fold is trivial.

Lemma 9.5 (→∗ = _∗)

(a) Whenever b→ b′

e→ e′ , then
b _ b′

e _ e′ .

(b) Whenever b _ b′

e _ e′ , then
b→∗ b′

e→∗ e′ .

(c) →∗ is the reflexive transitive closure of _.

Proof.

(a) By mutual induction on a derivation of b→ b′

e→ e′ and Lemma 9.4.

Case: R-Cong1a
b0 → b′0

b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ b′0 where f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-Cong1
b0 _ b′0 b1 _ b1 ⋯ bn _ bn

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ b′0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′
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B. Full Proofs

Case: R-Cong1b
bi → b′i 1 ≤ i ≤m

b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ bi, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ b
′

i, ... , `n(x
n ∶ tn) ∶ bn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-Cong1
b0 _ b0 ⋯ bi _ b′i ⋯ bn _ bn

b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ bi, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ b0 where `1(x1 ∶ t1) ∶ b1, ... , `i(xi ∶ ti) ∶ b
′

i, ... , `n(x
n ∶ tn) ∶ bn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b′

Case: R-Cong2a
e0 → e′0

b = e0(e)→ e′0(e) = b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-Cong2
e0 _ e′0 e1 _ e1 ⋯ en _ en

b = e0(e)_ e′0(e) = b′

Case: R-Cong2b
ei → e′i

b = e0(e1, ... , ei, ... , en)→ e0(e1, ... , e
′

i, ... , en) = b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-Cong2
e0 _ e0 ⋯ ei _ e′i ⋯ en _ en

b = e0(e1, ... , ei, ... , en)_ e0(e1, ... , e
′

i, ... , en) = b′
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B.3. λcps

Case: R-Where
b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ [`1 ↦ `1(x1 ∶ t1) ∶ b1 where f]⋯[`n ↦ `n(xn ∶ tn) ∶ bn where f]b0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-Where
b0 _ b0 ⋯ bn _ bn

b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ [`1 ↦ `1(x1 ∶ t1) ∶ b1 where f]⋯[`n ↦ `n(xn ∶ tn) ∶ bn where f]b0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Case: R-App
(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b̂)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

→ [x1 ↦ e1]⋯[xn ↦ en]b̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Using the induction hypothesis and Lemma 9.4 we derive:

P-App
b̂_ b̂ e1 _ e1 ⋯ en _ en

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b̂)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ [x1 ↦ e1]⋯[xn ↦ en]b̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Cases R-Clos and R-Fold are trivial.
Case R-Primop straightforward by the induction hypothesis and Lem-
ma 9.4.

(b) By mutual induction on a derivation of b _ b′

e _ e′ and transitivity of →∗.

Case: P-Cong1
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ b′0 where `1(x1 ∶ t1) ∶ b′1, ... , `n(x
n ∶ tn) ∶ b′n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b′

Using the induction hypothesis we apply R-Cong1a and n-times R-
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B. Full Proofs

Cong1b. We combine the results via transitivity of →∗ to obtain b′.

Case: P-Cong2
e0 _ e′0 ⋯ en _ e′n

e0(e1, ... , en)_ e′0(e
′

1, ... , e
′

n)

Using the induction hypothesis we apply R-Cong2a and n-times R-
Cong2b. We combine the results via transitivity of →∗ to obtain b′.

Case: P-Where
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ ⋯[`i ↦ `i(xi ∶ ti) ∶ b
′

i where `1(x1 ∶ t1) ∶ b′1⋯`n(x
n ∶ tn) ∶ b′n]⋯b

′

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b′

Using the induction hypothesis we apply R-Cong1a, n-times R-Cong1b
and finally R-Where. We combine the results via transitivity of →∗

to obtain b′.

Case: P-App
b_ b′ e1 _ e′1 ⋯ en _ e′n

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ [x1 ↦ e′1]⋯[xn ↦ e′n]b
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b̂′

Using the induction hypothesis we apply R-Cong2a, n-times R-Cong2b
and finally R-App. We combine the results via transitivity of →∗ to
obtain b′.
Cases P-Abs, P-Param, and P-Fold are trivial.
Cases P-Primop and P-Clos straightforward by the induction hypo-
thesis and transitivity of →∗.

(c) • By (a) we have → ⊆ _, hence →∗ ⊆ _∗.
• By (b) we have _ ⊆ →∗, hence _∗ ⊆ →∗.
• Thus, →∗ = _∗.

Lemma 9.6 (λcps: Substitution – Reduction)

If b̂ _ b̂′

ê _ ê′
and e _ e′ then [v ↦ e]

b̂
ê

_ [v ↦ e′] b̂
′

ê′
.
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B.3. λcps

Proof. By mutual induction on a derivation of b̂ _ b̂′

ê _ ê′
. We assume without

loss of generality that any bound variables of b̂
ê

are different from v and

from the free variables of e.

Case: P-Cong1
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ b′0 where `1(x1 ∶ t1) ∶ b′1, ... , `n(x
n ∶ tn) ∶ b′n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b̂′

Using the induction hypothesis we derive:

P-Cong1

[v ↦ e]b0 _ [v ↦ e′]b′0 ⋯ [v ↦ e]bn _ [v ↦ e′]b′n

[v ↦ e]b0 where `1(x1 ∶ t1) ∶ [v ↦ e]b1, ... , `n(xn ∶ tn) ∶ [v ↦ e]bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

_ [v ↦ e′]b′0 where `1(x1 ∶ t1) ∶ [v ↦ e′]b′1, ... , `n(x
n ∶ tn) ∶ [v ↦ e′]b′n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
[′S]b̂′

Case: P-Cong2
e0 _ e′0 ⋯ en _ e′n

e0(e1, ... , en)_ e′0(e
′

1, ... , e
′

n)

Using the induction hypothesis we derive:

P-Cong2

[v ↦ e]e0 _ [v ↦ e′]e0 ⋯ [v ↦ e]en _ [v ↦ e′]e′n

[v ↦ e]e0([v ↦ e]e1, ... , [v ↦ e]en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

_ [v ↦ e′]e′0([v ↦ e′]e′1, ... , [v ↦ e′]e′n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e′]b̂
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B. Full Proofs

Case: P-Where
b0 _ b′0 ⋯ bn _ b′n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ ⋯[`i ↦ `i(xi ∶ ti) ∶ b
′

i where `1(x1 ∶ t1) ∶ b′1⋯`n(x
n ∶ tn) ∶ b′n]⋯b

′

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂′

Using the induction hypothesis we derive:

P-Where
[v ↦ e]b0 _ [v ↦ e′]b′0 ⋯ [v ↦ e]bn _ [v ↦ e′]b′n

[v ↦ e]b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

_

⋯[`i ↦ `i(xi ∶ ti) ∶ [v ↦ e′]b′i where `1(x1 ∶ t1) ∶ [v ↦ e′]b′1⋯`n(x
n ∶ tn) ∶ [v ↦ e′]b′n]⋯]b0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e′]⋯[`i↦`i(x
i ∶ti)∶b′

i
where `1(x1 ∶t1)∶b′1⋯`n(xn ∶tn)∶b′n]⋯b′0=[v↦e

′]b̂′

Case: P-App
b_ b′ e1 _ e′1 ⋯ en _ e′n

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ [x1 ↦ e′1]⋯[xn ↦ e′n]b
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b̂′

Using the induction hypothesis we derive:

P-App
[v ↦ e]b_ [v ↦ e′]b′ [v ↦ e]e1 _ [v ↦ e′]e′1 ⋯ [v ↦ e]en _ [v ↦ e′]e′n

[v ↦ e](`(x1 ∶ t1, ... , xn ∶ tn) ∶ b)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]b̂

_ [x1 ↦ [v ↦ e′]e′1]⋯[xn ↦ [v ↦ e′]e′n][v ↦ e′]b′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
[v↦e′][x1↦e′1]⋯[xn↦e′n]b′=[v↦e′]b̂′

Case: P-Abs
ê = `_ ` = ê′

If v = `, we have by premise:
[`↦ e]` = e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]ê

_ e′ = [`↦ e′]`
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e′]ê′
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B.3. λcps

Otherwise we derive:

P-Abs
[v ↦ e]ê = `_ ` = [v ↦ e′]ê′

Case: P-Param
ê = x_ x = ê′

If v = x, we have by premise:
[x↦ e]x = e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]ê

_ e′ = [x↦ e′]x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e′]ê′

Otherwise we derive:

P-Param
[v ↦ e]ê = x_ x = [v ↦ e′]ê′

Case: P-Clos
b_ b′

(`(x ∶ t) ∶ b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

_ (`(x ∶ t) ∶ b′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê′

Using the induction hypothesis we derive:

P-Clos
[v ↦ e]b_ [v ↦ e′]b′

(`(x ∶ t) ∶ [v ↦ e]b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e]ê

_ (`(x ∶ t) ∶ [v ↦ e′]b′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[v↦e′]ê′

Case P-Fold is trivial.
Case P-Primop straightforward by the induction hypothesis.

Lemma 9.7 (λcps: Maximal parallel one-step reductions)

Whenever b _ b̂
e _ ê

, then b̂ _ ρ[b]
ê _ ρ[e]

.

Proof. By mutual induction on a derivation of b _ b̂
e _ ê

and Lemma 9.6.
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B. Full Proofs

Case: P-Cong1, where ∣f ∣ ≥ 1
b0 _ b̂0 ⋯ bn _ b̂n

b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_

b̂0 where `1(x1 ∶ t1) ∶ b̂1, ... , `n(xn ∶ tn) ∶ b̂n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

Using the induction hypothesis we derive:
P-Where

b̂0 _ ρ[b0] ⋯ b̂n _ ρ[bn]

b̂0 where `1(x1 ∶ t1) ∶ b̂1, ... , `n(xn ∶ tn) ∶ b̂n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ ⋯[`i ↦ `i(xi ∶ ti) ∶ ρ[bi] where `1(x1 ∶ t1) ∶ ρ[b1]⋯`n(xn ∶ tn) ∶ ρ[bn]]⋯ρ[b0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[b]

Case: P-Cong1
b0 _ b̂0

b = b0 _ b̂0 = b̂
, no where -bindings

Using the induction hypothesis we derive:

P-Cong1
b̂0 _ ρ[b0]

b̂ = b̂0 _ ρ[b0] = ρ[b]

Case: P-Cong2
e0 _ ê0 ⋯ en _ ên

e0(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

_ ê0(ê1, ... , ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

, where e0 is not a closure

Using the induction hypothesis we derive:

P-Cong2
ê0 _ ρ[e0] ⋯ ên _ ρ[en]

ê0(ê1, ... , ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

_ ρ[e0] (ρ[e1] , ... , ρ[en])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[e]
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B.3. λcps

Case:

P-Cong2

P-Clos
b_ b̂

(`(x ∶ t) ∶ b)_ (`(x ∶ t) ∶ b̂)
e1 _ ê1 ⋯ en _ ên

(`(x ∶ t) ∶ b)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

_ (`(x ∶ t) ∶ b̂)(ê1, ... , ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

, where e0 = (`(x ∶ t) ∶ b)

Using the induction hypothesis we derive:

P-App
b̂_ ρ[b] ê1 _ ρ[e1] ⋯ ên _ ρ[en]

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ b̂)(ê1, ... , ên)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

_ [x1 ↦ ρ[e1]]⋯[xn ↦ ρ[en]]ρ[b]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[e]

Case: P-Where
b0 _ b̂0 ⋯ bn _ b̂n

b0 where `1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ ⋯[`i ↦ `i(xi ∶ ti) ∶ b̂i where `1(x1 ∶ t1) ∶ b̂1⋯`n(xn ∶ tn) ∶ b̂n]⋯b̂0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

Using the induction hypothesis and Lemma 9.6 we deduce:

⋯[`i ↦ `i(xi ∶ ti) ∶ b̂i where `1(x1 ∶ t1) ∶ b̂1⋯`n(xn ∶ tn) ∶ b̂n]⋯b̂0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ ⋯[`i ↦ `i(xi ∶ ti) ∶ ρ[bi] where `1(x1 ∶ t1) ∶ ρ[b1]⋯`n(xn ∶ tn) ∶ ρ[bn]]⋯ρ[b0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[b]

Case: P-App
bclos _ b̂clos e1 _ ê1 ⋯ en _ ên

(`(x1 ∶ t1, ... , xn ∶ tn) ∶ bclos)(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

_ [x1 ↦ ê1]⋯[xn ↦ ên]b̂clos
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

Using the induction hypothesis and Lemma 9.6 we deduce:
[x1 ↦ ê1]⋯[xn ↦ ên]b̂clos
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b̂

_ [x1 ↦ ρ[e1]]⋯[xn ↦ ρ[en]]b̂clos
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[b]
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B. Full Proofs

Case: P-Clos
b_ b̂

(`(x ∶ t) ∶ b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

_ (`(x ∶ t) ∶ b̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

Using the induction hypothesis we derive:

P-Clos
b̂_ ρ[b]

(`(x ∶ t) ∶ b̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ê

_ (`(x ∶ t) ∶ ρ[b])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ρ[e]

Cases P-Abs, P-Param, and P-Fold are trivial.
Case P-Primop straightforward by the induction hypothesis.

Lemma 10.2 (λcps: ⇒-Progress)
Every λcps term is either a term value or can be stepped with ⇒ into another
term. To be more precise:

If Γ ⊢ b
Γ ⊢ e ∶ t , then

b = exit(ν)
e = ν

or ∃b′ ∶ b⇒ b′

∃e′ ∶ e⇒ e′ .

Proof. By mutual induction on a derivation of Γ ⊢ b
Γ ⊢ e ∶ t .

Case: T-Where

Γ′ ∶= Γ, `1 ∶ cn(t1), ... , `n ∶ cn(tn)
Γ′ ⊢ b0 Γ′ ⊢ `1(x1 ∶ t1) ∶ b0 ⋯ Γ′ ⊢ `n(xn ∶ tn) ∶ bn

Γ ⊢ b0 where

f

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

`1(x1 ∶ t1) ∶ b1, ... , `n(xn ∶ tn) ∶ bn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

Using the induction hypothesis we deduce:

b0�, ... , bi⇓, ... , bn⇓: E-Eval applies.
b0�, ... , bn�: E-Where applies.
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B.3. λcps

Case: T-App
Γ ⊢ e0 ∶ cn(t1, ... , tn) Γ ⊢ e1 ∶ t1 ⋯ Γ ⊢ en ∶ tn

Γ ⊢ e0(e1, ... , en)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

Using the induction hypothesis we deduce:

e0�, ... , ei⇓, ... , en⇓: E-Eval applies.
e0�, ... , en�, e0 closure with corresponding arity: E-App applies.

Note that E-Skip can never be triggered in a well-typed program. See
Section 10.3.1.
Cases T-Abs, T-Param, T-Primop, and T-Clos are trivial.

223





Acronyms

ANF administrative normal form

AST abstract syntax tree

AoSoA array of structures of arrays

AoS array of structures

ArBB Intel® Array Building Blocks

BTA binding-time analysis

CFA control-flow analysis

CFF control-flow form

CFG control-flow graph

CPS continuation-passing style

CPU central processing unit

DAG directed acyclic graph

DSL domain-specific language

GCC GNU Compiler Collection

GHC Glasgow Haskell Compiler

GPU graphics processing unit

ICC Intel® C/C++ compiler
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Acronyms

IR intermediate representation

ISA instruction set architecture

JIT just-in-time

LMS lightweight modular staging

MIC Intel® Many Integrated Core Architecture

PCF Programming Computable Functions

PDG program dependence graph

PDW program dependence web

RV region vectorizer

SCC strongly connected component

SIMD single instruction, multiple data

SLP superword-level parallelism

SPMD single program, multiple data

SSA static single assignment

SoA structure of array

WFV whole-function vectorization

ISPC Intel® SPMD compiler

primop primitive operation

cogen compiler generator

gegen generating extension generator
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