66 research outputs found

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Task Allocation into a Foraging Task with a Series of Subtasks in Swarm Robotic System

    Get PDF
    This is the final version. Available from IEEE via the DOI in this record. In swarm robotic systems, task allocation is a challenging problem aiming to decompose complex tasks into a series of subtasks. We propose a self-organizing method to allocate a swarm of robots to perform a foraging task consisting of sequentially dependent subtasks. The method regulates the proportion of robots to meet the task demands for given tasks. Our proposed method is based on the response threshold model, mapping the intensity of task demands to the probability of responding to candidate tasks depending on the response threshold. Each robot is suitable for all tasks but some robots have higher probability of taking certain tasks and lower probability of taking others. In our task allocation method, each robot updates its response threshold depending on the associated task demand as well as the number of neighbouring robots performing the task. It relies neither on a centralized mechanism nor on information exchange amongst robots. Repetitive and continuous task allocations lead to the desired task distribution at a swarm level. We also analyzed the mathematical convergence of the task distribution among a swarm of robots. We demonstrate that the method is effective and robust for a foraging task under various conditions on the number of robots, the number of tasks and the size of the arena. Our simulation results may support the hypothesis that social insects use a task allocation method to handle the foraging task required for a colony’s survival

    Cooperative Robotics in Marine Monitoring and Exploration

    Get PDF
    Marine robotics play a great role in modern exploration of marine environments. The Laboratory for Underwater Systems and Technologies of the Faculty of Electrical Engineering and Computing of the University of Zagreb is involved in marine robotics research and is currently participating in a number of marine robotics related projects. This paper addressed the issue of using multiple cooperative marine robots (surface and underwater) for marine monitoring and exploration within the scope of CroMarX project. The project brings a new dimension to marine monitoring and exploration by introducing cooperative marine robots that increase operational efficiency. The main objective of the CroMarX project is to investigate and develop cooperative control algorithms in the area of marine robotics, taking into account both unmanned surface marine vehicles (USVs) and an unmanned underwater vehicle (UUV) for the purpose of marine monitoring and exploration

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Robotics, AI, and Humanity

    Get PDF
    This open access book examines recent advances in how artificial intelligence (AI) and robotics have elicited widespread debate over their benefits and drawbacks for humanity. The emergent technologies have for instance implications within medicine and health care, employment, transport, manufacturing, agriculture, and armed conflict. While there has been considerable attention devoted to robotics/AI applications in each of these domains, a fuller picture of their connections and the possible consequences for our shared humanity seems needed. This volume covers multidisciplinary research, examines current research frontiers in AI/robotics and likely impacts on societal well-being, human – robot relationships, as well as the opportunities and risks for sustainable development and peace. The attendant ethical and religious dimensions of these technologies are addressed and implications for regulatory policies on the use and future development of AI/robotics technologies are elaborated

    Task Allocation Strategies in Multi-Robot Environment

    Get PDF
    Multirobot systems (MRS) hold the promise of improved performance and increased fault tolerance for large-scale problems. A robot team can accomplish a given task more quickly than a single agent by executing them concurrently. A team can also make effective use of specialists designed for a single purpose rather than requiring that a single robot be a generalist. Multirobot coordination, however, is a complex problem. An empirical study is described in the thesis that sought general guidelines for task allocation strategies. Different strategies are identified, and demonstrated in the multi-robot environment.Robot selection is one of the critical issues in the design of robotic workcells. Robot selection for an application is generally done based on experience, intuition and at most using the kinematic considerations like workspace, manipulability, etc. This problem has become more difficult in recent years due to increasing complexity, available features, and facilities offered by different robotic products. A systematic procedure is developed for selection of robot manipulators based on their different pertinent attributes. The robot selection procedure allows rapid convergence from a very large number of candidate robots to a manageable shortlist of potentially suitable robots. Subsequently, the selection procedure proceeds to rank the alternatives in the shortlist by employing different attributes based specification methods. This is an attempt to create exhaustive procedure by identifying maximum possible number of attributes for robot manipulators.Availability of large number of robot configurations has made the robot workcell designers think over the issue of selecting the most suitable one for a given set of operations. The process of selection of the appropriate kind of robot must consider the various attributes of the robot manipulator in conjunction with the requirement of the various operations for accomplishing the task. The present work is an attempt to develop a systematic procedure for selection of robot based on an integrated model encompassing the manipulator attributes and manipulator requirements

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Animal-Robot Interactions: Electrocommunication, Sensory Ecology, and Group Dynamics in a Mormyrid Weakly Electric Fish

    Get PDF
    Mormyrid weakly electric fish possess a specialized electrosensory system. During the process of active electrolocation, these animals perceive self-generated electric organ dis-charges (EOD) and are thereby able to detect objects in their nearby environment. The EOD is a short, biphasic pulse, which is simultaneously used to communicate with conspe-cifics. There are two principles according to which information exchange occurs during electrocommunication. The waveform of the EOD constitutes a relatively stable identity marker that signals species, gender, and status of an individual. In contrast, the temporal sequence of inter-discharge intervals (IDI) is highly variable and encodes context-specific information. Modifications of IDI-duration not only alter the instantaneous discharge fre-quency but also enable the generation of specific signaling patterns and interactive dis-charge sequences. One such interactive discharge behavior is the so-called echo response, during which a fish responds with a constant latency of only a few milliseconds to the EOD of a conspecific. Animals can synchronize their signaling sequences by mutually generating echoes to each other's signals over a coherent period. Although active electrolocation and electrocommunication are mediated by different types of electroreceptor organs and neural pathways, an unambiguous assignment of electromotor behavior to only one of the two functions is often problematic. In this thesis, the significance of IDI-based signaling sequences during motor and electro-motor interactions of the mormyrid fish Mormyrus rume proboscirostris were investigated. To this end, different electrical playback sequences of species-specific EODs were generated via mobile fish dummies, and the motor and electromotor responses of live fish were analyzed. In Part One of this thesis, electrocommunication strategies of the fish were analyzed, and particularly the functions of double pulses, discharge regularizations, and echo responses were examined in an adaptive context. Double pulses were classified as an aggressive mo-tivation signal, whereas regularizations may have a communicative function during the early stages of the sequential assessment of a potential opponent. In this context, discharge synchronization by means of echo responses may enable a mutual assessment for the net benefit of both contestants. Because echo responses occur in various behavioral contexts, and artificial echoes of the dummy evoked increased echoing by the fish, it was hypothesized that the echo response serves a more general purpose by enabling mutual allocation of social attention between two fish. In Part Two of this thesis, a biomimetic robotic fish was designed to investigate the senso-ry basis on which fish followed the dummy. It was shown that electrical playback signals induced following-behavior in live fish, whereas biomimetic motility patterns had no ef-fect. By subsequently reducing the mobile dummy to only the electric signaling sequence from the perspective of the fish, it could be shown that passive perception of electrical communication signals is also involved in mediating the spatial coordination of social in-teractions. This passive perception is likely mediated by the same electroreceptor organs that are used during electrocommunication. The EOD can therefore be considered to be an essential social stimulus that makes it possible to integrate a dummy into a group of weak-ly electric fish as an artificial conspecific. The influence of an interactively signaling mobile dummy fish on small groups of up to four individuals was investigated in Part Three of this thesis. Typical schooling behavior was a rare occurrence in this context. However, EOD-synchronizations through mutual echo responses between two fish, or between a fish and the interactive dummy, were fre-quently observed during social interactions in small groups. Motor interactions during synchronization episodes supported the hypothesis that mormyrids may use discharge synchronizations between individuals to allocate social attention, and the echo response may thus adopt a particularly useful function during communication in groups.Schwach elektrische Fisch aus der Familie der Mormyriden verfügen über ein spezialisier-tes elektrosensorisches Sinnessystem. In einem Prozess, der als aktive Elektroortung be-zeichnet wird, sind diese Tiere in der Lage, selbstgenerierte elektrische Organentladungen (EOD) wahrzunehmen, und dadurch Objekte in ihrer unmittelbaren Nähe zu detektieren. Das EOD ist ein kurzer bipolarer Puls, der gleichzeitig auch zur Kommunikation mit Artge-nossen dient. Informationsaustausch während der Elektrokommunikation basiert auf zwei verschiedenen Prinzipien: Die Wellenform des EOD stellt einen relativ konstanten Identi-tätsmarker dar, der beispielsweise Art, Geschlecht und Status eines Individuums signali-siert. Die zeitliche Abfolge der Intervalle zwischen den EODs ist hingegen höchst variabel und kodiert kontextspezifische Information. Durch Modifikation der Intervalldauer ändert sich nicht nur die Entladungsfrequenz, sondern es können auch spezifische Signalmuster und interaktive Entladungssequenzen generiert werden. Ein interaktives Entladungsver-halten stellt beispielsweise die Echoantwort dar, bei der ein Fisch mit einer konstanten Latenz von wenigen Millisekunden auf das EOD eines Artgenossen reagiert. Zwei Tiere können ihre Entladungssequenzen synchronisieren, indem sie ihre Signale über einen kohärenten Zeitraum gegenseitig mit Echos beantworten. Obwohl aktive Elektroortung und Elektrokommunikation über unterschiedliche Rezeptororgansysteme und neuronale Pfade vermittelt werden, ist eine eindeutige Zuordnung der elektromotorischen Verhal-tensäußerungen der Fische zu nur einer der beiden Funktionen oft problematisch. In der vorliegenden Arbeit wurde die Bedeutung intervallbasierter EOD-Sequenzen für motorische und elektromotorische Interaktionen des Mormyriden Mormyrus rume proboscirostris erforscht. Hierzu wurden verschiedene elektrische Playbacksequenzen artspezifischer EODs generiert und durch mobile Fischattrappen wiedergegeben. Die mo-torischen und elektromotorischen Verhaltensreaktionen der Fische wurden analysiert. Im ersten Teil der Arbeit wurden Elektrokommunikationsstrategien der Fische analysiert und die adaptive Funktion insbesondere von Doppelpulsen, Entladungsregularisierungen und Echoantworten untersucht. Doppelpulse wurden als aggressives Motivationssignal kategorisiert, wohingegen die Kommunikationsfunktion von Regularisierungen im gegen-seitigen Einschätzen zu Beginn einer kompetitiven Begegnung zu liegen scheint. Entla-dungssynchronisation durch gegenseitige Echoantworten kann dabei eine Einschätzung des Gegenübers zum Vorteil beider Parteien erleichtern. Da Echoantworten in verschiede-nen Verhaltenssituationen auftreten und artifizielle Echoantworten der Attrappe vermehrt zu Echos vonseiten der Fische führten, wurde postuliert, dass die Echoantwort eine generellere Funktion bei der Fokussierung gegenseitiger sozialer Aufmerksamkeit über-nehmen kann. Im zweiten Teil der Arbeit wurde ein biomimetischer Fischroboter konstruiert, um zu untersuchen, auf welcher sensorischen Grundlage die Fische der Attrappe folgen. Es konnte gezeigt werden, dass elektrische Playbacksignale, nicht aber biomimetische Bewe-gungsmuster, Folgeverhalten der Fische induzieren. In einem weiteren Schritt konnte durch die Reduktion der Attrappe auf die elektrischen Signalsequenzen aus der Perspektive der Versuchsfische gezeigt werden, dass passive Wahrnehmung elektrischer Kommu-nikationssignale auch bei der räumlichen Koordination sozialer Interaktionen von Bedeu-tung ist. Dies wird mutmaßlich über die gleichen Rezeptororgane vermittelt, die auch für die Elektrokommunikation verantwortlich sind. Das EOD kann daher als ein soziales Signal betrachtet werden, das es ermöglicht, eine Attrappe als künstlichen Artgenossen in eine Gruppe schwach elektrischer Fische zu integrieren. Der Einfluss einer elektrisch interaktiven mobilen Fischattrappe auf kleine Gruppen von bis zu vier Individuen wurde im dritten Teil der Arbeit getestet. Typisches Schwarmver-halten konnte in diesem Zusammenhang nur selten beobachtet werden. In kleinen Gruppen kam es während sozialer Interaktionen jedoch häufig zu EOD-Synchronisationen durch Echoantworten zwischen zwei Fischen, oder zwischen einem Fisch und der interaktiven Attrappe. Motorische Verhaltensinteraktionen im Zeitraum dieser Synchronisationen stützen die Hypothese, dass Mormyriden durch elektrische Entladungssynchronisation soziale Aufmerksamkeit zwischen Individuen herstellen können, und die Echoantwort somit besonders in Gruppen eine nützliche Kommunikationsfunktion übernehmen kann
    corecore