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ABSTRACT In swarm robotic systems, task allocation is a challenging problem aiming to decompose
complex tasks into a series of subtasks. We propose a self-organizing method to allocate a swarm of robots to
perform a foraging task consisting of sequentially dependent subtasks. The method regulates the proportion
of robots to meet the task demands for given tasks. Our proposed method is based on the response threshold
model, mapping the intensity of task demands to the probability of responding to candidate tasks depending
on the response threshold. Each robot is suitable for all tasks but some robots have higher probability of
taking certain tasks and lower probability of taking others. In our task allocation method, each robot updates
its response threshold depending on the associated task demand as well as the number of neighbouring
robots performing the task. It relies neither on a centralized mechanism nor on information exchange
amongst robots. Repetitive and continuous task allocations lead to the desired task distribution at a swarm
level. We also analyzed the mathematical convergence of the task distribution among a swarm of robots.
We demonstrate that the method is effective and robust for a foraging task under various conditions on the
number of robots, the number of tasks and the size of the arena. Our simulation results may support the
hypothesis that social insects use a task allocation method to handle the foraging task required for a colony’s
survival.

INDEX TERMS Foraging task, response threshold model, sequential tasks, task allocation.

I. INTRODUCTION
Task allocation is a challenging subject in swarm robotic
systems [1]–[3]. Depending on the needs of the systems,
task allocation involves decomposing a task into sequentially
interdependent subtasks and allocating a group of robots to
perform different subtasks in parallel. Tasks are simultane-
ously performed at different locations and the posterior sub-
tasks should be processed after completing the prior subtasks
in order to complete the overall task. To increase the over-
all performance at a swarm level, a task allocation method
is needed for balancing the task demands of subtasks by
adaptively regulating the number of robots assigned to each
subtask.

The goal is to determine how the individuals are allocated
to each subtask in order to maximize the overall system per-
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formance. This subject has been studied in both biology and
swarm robotics. In nature, an individual agent generally has
very limited perception and knowledge of the environment,
and there is no centralized control that guides the cooperation
behaviors among a swarm of agents [4], [5]. Despite limited
abilities, a swarm of agents in nature demonstrate effective
task allocation by interacting with each other and sometimes
perform complex tasks beyond the capability of a single
agent [4]–[6].

Swarm robotic systems are primarily inspired by several
social insects based on swarm intelligence. They are typically
composed of homogeneous or heterogeneous robots. Tradi-
tionally, task allocation has used a centralizedmethod [7]–[9].
However, depending on the types of tasks, it may not be pos-
sible for a controller to obtain all the necessary information,
such as positions of robots and the current tasks assigned to all
robots, in order to allocate tasks to each robot. Nevertheless,
the goal requires to not only obtain the desired performance

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107549

https://orcid.org/0000-0003-3108-4983
https://orcid.org/0000-0001-5038-6560
https://orcid.org/0000-0003-0863-1694
https://orcid.org/0000-0001-5183-9867


W. Lee et al.: Task Allocation Into a Foraging Task With a Series of Subtasks in Swarm Robotic System

but also incorporate robustness and fault tolerance. In many
applications, no communication or only local communication
is available and knowledge of the environment is also limited.
The individual robot must use only its local information
to coordinate its tasks. Hence, the distributed method with
no centralized controller has received attention. Currently,
swarm intelligence and collective robotics have been inspired
by adaptive behaviors observed in nature [10]–[13].

Many swarm robotic systems handle tasks consisting of a
series of subtasks based on the task demand and there is an
issue with how the robots in a swarm are allocated to several
subtasks. Much research has focused on determining whether
a robot performs a given task or not and on maximizing the
colony-level performance [14], [15]. There is also a decision
making approach with consensus of members in contrast to
the task allocation of multiple subtasks. Consensus behaviors
include coordinated motion [16], [17]. Individuals aggregate
and move together in large groups that behave as if they
were single organisms. Based on this behavior, autonomous
formations of robot teams to perform more complex multi-
robot tasks have recently attracted academic attention. Some
studies have attempted to use multiple heterogeneous robots
for coordinated emergency response and forming robot
groups to undertake a number of tasks in disaster
scenarios [3], [18]–[20].

A group of autonomous robots can be used to perform
the whole task with a distributed approach [14], [15]. Task
allocation can be regulated by measuring the waiting time
between subtasks and probabilistically changing from the
current subtask to another. Multiple heterogeneous robots can
form teams to take advantage of synergies among robots and
greedily select the task with the highest payoff measure [21].

Many types of sequential subtasks can be observed
in social insects and various task allocation methods are
employed to handle the tasks required for a colony’s sur-
vival [22]–[24]. Various forms of task allocation strate-
gies are observed in nature. In a direct transfer method,
an item is transferred directly between workers. Collector
bees take water or honey from the nectar source and transfer
it directly to the resource-storing honeybees [4], [5], [25].
Efficient task allocation has been developed with the direct
transfer [25]–[27]. Another strategy is available for cooper-
ation of workers. Each worker can deliver goods to or take
goods from a fixed or temporarily changing transfer location.
There is no physical contact between individuals with an
indirect transfer in foraging. An example of a fixed transfer
area is a chamber with a pile of materials such as food or
garbage which should be transferred into the nest or out of
the nest. This transfer location can be located somewhere on
the route between the source of materials and the nest. An
example of the indirect transfer method can also be found
in the termite, Hodotermes mossambicus. One group cuts
grass and leaves into pieces and drops them on the ground.
Then another group collects the pieces and takes them to
their nest [6], [28]. This strategy can also be found in waste
disposal processing. They create a garbage heap in their nest

and this area is used as a cache for transfer. Some workers
bring a piece of garbage and drop it near the garbage heap.
Then other workers in the area remove the garbage from the
nest [29].

An interesting example of multiple transfers is found in
ants involving leaf fragment transfers [30]. There are three
types of tasks among ants; arboreal cutters, cache exploiters,
and carriers. Arboreal cutters ascend a tree to cut leaves and
drop the leaf fragments to the ground. The pile of fallen leaves
acts as a transfer location for task allocation. Cache exploiters
then find the pile caches, cut the leaves into pieces and take
them to the foraging trail, where they transfer them to carrier
ants that transport them to the nest.

The foraging task is one of popular subjects used to demon-
strate task allocation in swarm robotic systems. A group
of robots are assigned to search for food items and deliver
them from a resource area to specific locations. Jones and
Mataric [31] proposed a task allocation method for swarm
robots over a set of dynamically evolving concurrent tasks. It
is achieved in a distributed manner by monitoring the ratio of
task activities to the number of robots, and robots select tasks
to be performed. A stochastic decision based on the response
threshold model inspired by the behavior of insect societies
assigns given tasks to individual robots in a swarm [10].
There have been various response threshold models for
flexible task changes for the individual robot in dynamic
environment [32]–[34].

A few studies address the problem of task allocation for
sequentially interdependent subtasks. Pini et al. [14] pro-
posed a task allocation method for a swarm of foraging
robots by using a cost function, conceptually similar to the
problem presented in this article. The robots autonomously
calculate their traveled distance and deposit objects at an
appropriate site. Then the robots performing a random walk
can find objects and transfer them to the nest. The trans-
portation of the object is executed as a sequence of subtasks
performed bymultiple robots, where task allocation improves
the performance. Brutschy et al. [15] presented a method that
objects are transferred directly between robots and any task
change in the method is based on the interface delay (waiting
time) experienced by the robots in one subtask relative to
the interface delays experienced in another subtask. Zahadat
and Schmickl [35] presented an adaptable task allocation of
autonomous underwater robots based on social inhibition.
A robot selects its own task based on the relative demand for a
set of multiple tasks and response threshold values regulated
by local interactions. Task allocation can also be applied to a
group of heterogeneous robots [36], [37].

In this article, we tackle a foraging task consisting of a
series of subtasks, and present an adaptive task allocation
method based on the response threshold model [38], [39].
Thismodel is composed of two factors; demand or stimulus of
a given task and the response threshold for the corresponding
task. The demand of a task decreases as an agent performs the
task and the individuals with higher thresholds are unlikely
to perform the task because the individuals with lower
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thresholds can handle the demand. However, if agents
with lower thresholds lose the chance to perform the task,
the demand of the task will increase and so agents with
higher thresholds may be assigned to the task. Repetitive
and continuous task allocations can produce the desired task
distribution for a group of agents.

In order to achieve the optimal task allocation, robots in
a swarm should change current subtasks if necessary. Two
different levels of modeling are available; microscopic and
macroscopic view. Microscopic modeling focuses on the
individual robot and on interactions among the robots. It is
difficult to apply mathematical analysis to the microscopic
view. Yet local information can guide the global behavior for
a swarm of agents. Previouly, a response threshold model and
the threshold learning have been applied to colored puck col-
lecting behavior of swarm robots [40]. Following the classical
response thresholdmethod, the task stimuli and the thresholds
are defined such that a response threshold of each robot
converges to the equilibrium state and this leads to the desired
state of task allocation. With the convergence of the task allo-
cation, the rate of agents working on tasks can come close to
the global task demands. Since each agent has no information
about the global task demand, they use the history queue for
task demands and the proportion of neighboring agents for
each task to estimate the global information.

Macroscopic modeling handles the swarm as a single sys-
tem. The system of individual robots can be abstracted to
a linear differential equation model [41], [42]. We provide
the mathematical convergence of the task distribution in a
swarm to show that instantaneous information of the task
demands and the number of task workers in the local vicinity
without any history queue can be sufficient to achieve effi-
cient task allocation even for a series of subtasks. In addi-
tion, we demonstrate a self-organizing task allocation in the
foraging task consisting of sequentially dependent subtasks.
This work involves decomposing a task into sequentially
interdependent subtasks and allocating a group of robots to
the subtasks. The method handles an indirect transfer of food
objects in the foraging task. A swarm of robots interact in the
cache transfer area to determine their task allocation. Task
allocation with our approach is supposed to adjust the task
transition rate from one task to another in amacroscopic view,
and for the purpose, the response threshold model for each
robot controls the task change locally. There have been many
task allocation methods with the response threshold model,
but the methods often focus on the division of labor with
appropriate cost function.

The paper is structured as follows. In Section II,
we describe our task allocation problem and introduce
the method that we propose for solving this problem.
In Section III, we discuss the stability and convergence prop-
erties of the suggested method. In Section IV, we present the
simulation environment for agent behavior consisting of a
series of subtasks, and we report the corresponding results
in Section V. Finally, in Section VI, we conclude the paper
and discuss some possible future research directions.

II. PROBLEM DESCRIPTION AND MODELING
In this section, we describe the problem of task allocation for
a foraging task consisting of sequential subtasks. The purpose
of task allocation is to determine the optimal allocation of
robots to subtasks to complete each transfer task as quickly
as possible. If all the tasks take the same amount of time
to perform, one possible solution is to adjust the popula-
tion of robots performing specific tasks in proportion to the
amount of the demand of the task. This involves balancing
the number of robots performing each task and maximizing
the swarm-level performance, that is, the number of food
objects retrieved per time unit. Robots tend to specialize in
specific tasks and it minimizes the number of task changes
needed to produce the desired task distribution among robots.
In our foraging task, robots obtain items from the resource
and collected items are transported indirectly via a cache area
to the nest.

A. DESCRIPTION OF FORAGING TASK
We assume that a foraging task is composed of two interde-
pendent subtasks: resource-harvesting and resource-storing
tasks. The simplified state diagram of robots performing the
foraging task is shown in Fig. 1. Two primary behaviors will
be performed.

Robots harvest from resources and deposit food in a cache
area. Food from the cache area should be stored in a central
nest, which is accomplished by other robots that transport
food items to the nest. Harvesting robots travel to a resource
area, pick up a food pellet and deliver it so that it can be
processed later by a storing robot. To facilitate the transfer
of food items to the nest, harvesting robots deposit their
food items in a cache. Storing robots travel to a cache area,
pick up a food pellet if one is present and deliver it to the
central nest. The set of sequential tasks (harvesting from a
specific resource area and storing food obtained from the
cache in the central nest) are inter-linked. The harvesting task
is a prior condition to the resource-storing task. The entire
foraging task (that transfers one object from the resource area
to the nest), is completed if both subtasks are completed.
According to the multi-robot task allocation taxonomies
proposed by Gerkey and Matarić [43], the categorization
of the current work is given as single-task robots (ST),
multi-robot tasks (MR), and instantaneous assignment (IA)
problem.

The performance of the swarm e.g., the total number of
objects stored in the central nest, relies on the number of
robots in each area working on the two different subtasks
and how the robots interact for object transfer. Varying the
proportion of robots assigned to each subtask yields different
performances at the overall swarm level. The subtask for
storing robots is greatly affected by the subtask for harvesting
robots, because food items should be transported by harvest-
ing robots before they are stored in the nest. As mentioned
earlier, we consider the foraging task in which object transfer
at the cache area as indirect. A robot that arrives at the cache
area (transfer area) drops its food object and returns to the
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FIGURE 1. Simplified state diagram for robots performing the foraging
task; solid line belongs to the harvesting subtask and dashed line
belongs to the storing subtask. The behavior of each robot is determined
by the subtask it is currently performing.

resource area. To obtain an optimal allocation, the number
of robots working on the storing subtask should be regulated
appropriately to transport objects located in the transfer area
to the nest. The proposed method relies on balancing the
number of objects located in the transfer area and the number
of robots working on the storing task adaptively. The total per-
formance also depends on the characteristics of the subtasks
and/or the information about the surrounding environment.

B. PROPOSED METHOD
To solve the task allocation problem, we focus on adjusting
the proportion of robots performing each subtask adaptively.
If it is assumed that all the subtasks need the same amount of
time to complete, one possible solution is tomaintain the frac-
tion of subgroup members equal to the proportion of subtasks
to be done. We presume that the overall swarm performance
is maximized when the allocation of robots to subtasks is
optimal. We explain the linear differential model briefly,
as presented byHalász et al. [41] and Berman et al. [44]. Then
we explain our proposed task allocation method for adjusting
the proportion of robots performing each subtask adaptively,
which is based on the response threshold model.

1) MODELING
We consider N robots and each robot can be allocated to
one task among M tasks. We denote the number of robots
performing task i ∈ {1, . . . ,M} at time t by ni(t). Then
the population fraction performing task i at time t is defined
as xi(t) = ni(t)/N , and the vector of population fractions
is represented by x(t) = [x1(t), . . . , xM (t)]T . The desired
number of robots for task i is defined by n̄i and the desired
target distribution is the set of population fractions for each
task, x̄ = [x̄1, . . . , x̄M ]T , where x̄i = n̄i/N .

We can model the interconnection topology between M
tasks via a directed graph, G = (V ,E). A set of vertices,
V , represents M tasks. For a set of edges, E , tasks i and j are
adjacent, (i, j), if a robot performing task i can change its task
to task j. The graph G is strongly connected if a path exists
between any task i, j ∈ V . To model the task transfer from
one task to another, every edge in E is assigned a transition
rate, kij(t), where kij(t) is the task transition probability per
unit time for one robot previously executing task i to switch

to task j. The transition rate from i to j does not equal the
transition rate from task j to i, that is, kij(t) 6= kji(t). Using
the transition rate, the population fraction of robots executing
task i is given by the linear equation [41], [42]:

dxi(t)
dt
=

∑
∀j|(j,i)∈E

kji(t)xj(t)−
∑
∀j|(i,j)∈E

kij(t)xi(t) (1)

Assume the number of robots is conserved. Then Eq. (1) can
be equivalently represented by the linear model to represent
the average change rate of the population fractions executing
their tasks.

dx(t)
dt
= Kx(t) (2)

Here, K ∈ RM×M is a task transition matrix with the property∑
∀j|(i,j)∈E

Kij = 0 (3)

with Kij = kij for i 6= j and Kii = 1 −
∑
∀j|(i,j)∈E kij. Eq. (2)

is the formulation of Eq. (1) over all M tasks as a matrix
equation, and it is referred to as the reaction rate equation.
Using this model, the steady-state distribution of a group over
various tasks can be controlled by appropriately selecting
individual transition rates.

The studies of Halász et al. [41] and Hsieh et al. [42]
show that the system in Eq. (2) always converges to a unique
task distribution regardless of the choice of K for a strongly
connected graph. That is, it always achieves a unique stable
equilibrium. With the desired distribution x̄ with M tasks,
the population can automatically distribute tasks accordingly
among robots through the selection of the individual transi-
tion rates, kij. They studied how to determine the set of con-
stant transition rates that result in fast convergence and how to
minimize task transitions at the equilibrium state. However,
constant transition rates force continuous task switching at
the equilibrium state and the optimal transition rates are
calculated with the help of the centralized method.

In our work, an individual robot selects its task
autonomously without any centralized control and the transi-
tion rates are regulated adaptively, depending on the environ-
mental conditions including the number of robots, number of
tasks and size of foraging arena.

2) TASK SELECTION METHOD
Our objective is to allocate a group of robots to achieve a
desired distribution among various tasks. We assume that
every robot has knowledge of the task demands and neigh-
boring robots within a sensing range, but does not know the
optimal task transition rate. Each individual selects a suitable
task locally using local information without communication
among robots, with no clear picture of what is occurring at
the overall system level. Each robot autonomously decides
whether to change the current task or not. The individual
changes the current task according to the task selection func-
tion. The robot has a changeable threshold for each task and
each robot responds differently to the same stimulus, which
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can coordinate the foraging behavior effectively. As a result,
a collection of each robot’s response produces swarm-level
performance in a self-organized manner.

To explain the mathematical model, we assume that each
robot x has a response threshold θix(t) for task i. Then an
individual robot’s willingness to perform task i per unit time
is a stochastic term calculated by a sigmoid function based
on the response threshold model. For each robot, the task
selection function for calculating the probability of changing
tasks is given by

Pix(t) =
1

1+ e−
1
τ
[dix (t)−θix (t)]

, ∀i = 1, . . . ,M (4)

where the task demand of task i for robot x is given as dix(t),
the threshold value is θix(t), and the control parameter is τ ,
which determines the slope of the task selection probability.
Task demand dix(t) is the number of robots required to per-
form task i and the detected task demand by robot x within a
limited sensing range is used. For dix(t) < θix(t), the prob-
ability of a given task is close to 0 and for dix(t) > θix(t),
this probability is close to 1. At dix(t) = θix(t), Pix(t) = 0.5.
In the remainder of this paper, we consider the case τ = 1
for simplicity, but similar results can be obtained for any τ
(τ > 0).

Each robot decides to change the current task or not, rely-
ing on the probability obtained from Eq. (4). A robot can
change the currently assigned task to task j if the probabil-
ity of task j is the largest among all tasks. The threshold
θix(t) decreases and the task selection probability for task i
increases. If the task demand is relatively lower than the frac-
tion of robots performing that task, its threshold increases.
From the overall system viewpoint, the task transition rate,
kij(t), can be defined as

kij(t) =
nji(t)

ni(t)
(5)

where ni(t) is the number of robots performing task i, and nji(t)
represents the number of robots currently performing task i
and approaching the maximum probability for task j. That is,
those robots will change their task to task j. The value kij(t)
changes depending on the condition of each robot but will
decrease as the overall system converges to the desired task
distribution.

3) THRESHOLD REGULATION METHOD
To obtain an adaptive task distribution, the task selection
probability for a specific task can be increased by lowering
the threshold of that task, or can be decreased by increasing
the threshold. This threshold-updating process results in the
emergence of specialized robots who are more responsive
to tasks with lower thresholds than other robots, and this
tendency produces a gradual migration of task allocation.

In the response threshold model, the threshold is usually
updated after performing a task [38], [39], [45]. Completing
a task induces a decrease in the threshold of that task and an
increase in the thresholds of the other tasks not performed.

The more often a robot performs a specific task, the lower its
response threshold to this type of task, and vice versa, which
leads to the robot specializing in performing a specific task.

In our task allocation method, the individual robot updates
its response threshold considering not only the associated task
demand but also using local information from other robots,
that is, the task state of other robots. This tendency can be
represented as follows:

θix(t + 1) = θix(t)− η {dix(t)− nix(t)} (6)
where η is a learning rate as a strengthening or weakening
factor to regulate the threshold over time and nix(t) is the
number of robots performing task i observed by robot x.
θix(t) is constrained to the interval [θmin, θmax]. In this paper,
the range of the threshold is set to [θmin, θmax] = [1, 50]
for simple application and η is selected as 1 to change the
tendency of individuals for a specific task 2% per unit time.

Equation (6) means that threshold θix(t) for task i is regu-
lated by the fraction of robots performing that task. If the task
demand dix(t) is above nix(t), the threshold of the correspond-
ing task is decreased and thus the task selection probability
for that task is increased. We refer to such a tendency as task
specialization and this is further accelerated until dix(t) drops
below nix(t). If there are more task demands than the fraction
of robots performing that task, then another robot increases
its chance to work on the task by lowering its threshold and
increasing the probability to perform the new task. From this
repetitive process, each robot eventually has a tendency to
perform one specific task and this specialization reduces task
changes at the equilibrium state, thus maintaining the desired
division of labor.

III. ANALYSIS
In this section, we show that our task allocation method
described in Eq. (1) has a stable equilibrium point that
satisfies the desired target distribution x̄i for task i, for
i = 1, . . . ,M (M is the number of tasks). We argue that with
the help of the system described by the above equation for
i = 1, . . . ,M for all (i, j) ∈ E , with the condition in
Eq. (7), the response threshold updating rule in Eq. (6) and
the task selection function in Eq. (4), the robot population
will converge almost certainly to x̄ = [x̄1, . . . , x̄M ]T .
We consider the stability of the equilibrium state for our

proposed method. The balancing condition needed is
kijx̄i = kjix̄j, ∀(i, j) ∈ E (7)

Then, consider the following Lyapunov function given by

V =
M∑
i=1

x̄i
2

(
1−

xi
x̄i

)2

(8)

where the time derivative of Eq. (8) is

dV
dt
=

M∑
i=1

(xi − x̄i)
x̄i

dx i
dt

=

M∑
i=1

(xi − x̄i)
x̄i

 ∑
∀j|(j,i)∈E

kjixj −
∑
∀j|(i,j)∈E

kijxi

 (9)
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Then, from Eq. (7), the above equation can be changed to

dV
dt
=

M∑
i=1

(xi − x̄i)
x̄i

 ∑
∀j|(i,j)∈E

x̄i
x̄j
kijxj −

∑
∀j|(i,j)∈E

kijxi


=

M∑
i=1

∑
∀j|(i,j)∈E

(
xj
x̄j
−
xi
x̄i

)
kij(xi − x̄i)

=

∑
∀j|(i,j)∈E

(
xj
x̄j
−
xi
x̄i

)
φij (10)

where φij = kij(xi − x̄i).
We can set up the convergence condition such that φij has

an opposite sign to (xj/x̄j− xi/x̄i). Thus, if xj/x̄j > xi/x̄i, then
φij < 0 and similarly, if xj/x̄j < xi/x̄i, then φij > 0. That is,

dV
dt
=

∑
∀j|(i,j)∈E

(
xj
x̄j
−
xi
x̄i

)
φij < 0 (11)

Thus, the time derivative of the Lyapunov function evaluates
to negative. In addition, consider that when all φij = 0
or when xi/x̄i = xj/x̄j for all i, j, the time derivative of
the Lyapunov function is always non-positive, so the system
converges almost certainly to the desired distribution, x̄i.
If the number of robots are totally conserved,

M∑
i=1

xi = 1 (12)

and there are two types of tasks (M = 2), then Eq. (10) always
satisfies the following condition

dV
dt
=

∑
∀j|(i,j)∈E

(
1− xi
1− x̄i

−
xi
x̄i

)
kij(xi − x̄i) < 0 (13)

The task transition rate kij has a positive value, kij > 0, and
if (xi − x̄i) > 0, then ((1− xi)/(1− x̄i)− xi/x̄i) < 0 because
(1−xi)/(1− x̄i) < 1 and xi/x̄i > 1. Similarly, if (xi− x̄i) < 0,
then ((1− xi)/(1− x̄i)− xi/x̄i > 0).
If there are more than two types of tasks, (M ≥ 3), Eq. (10)

might produce a positive value. However, if we assume that
task assignment is regulated between the robots performing
task i and the other robots not performing task i, then this case
satisfies the convergence condition

dV
dt
=

∑
∀j|(i,j)∈E

(
1−

∑M
k=1,k 6=i xk

1−
∑M

k=1,k 6=i x̄k
−
xi
x̄i

)
kij(xi − x̄i) < 0

(14)

If more robots are assigned to task i than the desired number,
some robots currently performing task i should switch to
other tasks including task j. Then sequentially, it can be
assumed that a task is regulated between two groups, those
performing task j and those not performing task j. In this man-
ner, Eq. (10) converges asymptotically to x̄ = [x̄1, . . . , x̄M ]T .
In a given foraging task, each robot has no information

about the desired target distribution, x̄i, and the current distri-
bution, xi, so they instead regulate the task distribution with

the following assumption,

xj
x̄j
'

nj/N

dj/
∑M

j=1 dj
∝
nj
dj

(15)

where nj is the number of robots performing task j and dj
is the demand of task j where the demand can be estimated
by the number of observed objects. Equation (15) indicates
that task demand, dj, is instead used to estimate the desired
distribution, x̄j, and the number of robots observed in the
vicinity, nj, is used to estimate the current distribution, xj.
Then Eq. (10) can be rewritten as

dV
dt
=

∑
∀j|(i,j)∈E

(
xj
x̄j
−
xi
x̄i

)
kijx̄i

(
xi
x̄i
− 1

)

'

∑
∀j|(i,j)∈E

(
nj
dj
−
ni
di

)
kij
x̄i
di
(ni − di) (16)

where x̄i and di are non-negative values. If we design
kij(ni−di) to have an opposite sign to (nj/dj−ni/di), by design
if nj/dj > ni/di, then kij(ni − di) < 0; thus the transition rate
kij has an opposite sign to (ni − di), and if nj/dj < ni/di,
then kij(ni − di) > 0; the transition rate kij has the same
sign as (ni − di), Thus Eq. (11) can converge to the desired
distribution.

dV
dt
'

∑
∀j|(i,j)∈E

(
nj
dj
−
ni
di

)
kij
x̄i
di
(ni − di) < 0 (17)

The design rule obtained for converging to the desired per-
formance is reflected in the threshold updating rule in Eq. (6).
If the task demand dix(t) of task i for robot x is relatively
higher than the number of robots nix(t) in the neighborhood,
performing task i, it is necessary to increase the probability
Pix(t) by decreasing the threshold θix(t) for task i, which
induces an increasing number of robots performing that task,
so the transition rates kij and kji are regulated adaptively at the
overall system level.

IV. SIMULATION ENVIRONMENT
In our foraging task scenario, the overall foraging task is
partitioned into two subtasks; the harvesting subtask and the
storing subtask. The harvesting and the storing subtasks have
a sequential interdependency as they should be performed one
after the other in order to complete the overall task sequence;
transporting an object from the resource to the nest. We first
explain the simulation environment. Then we evaluate the
method using a swarm of robots in various simulations.

A. TASK DESCRIPTION
Fig. 2 shows a snapshot of the simulation. The environment is
partitioned into three areas.We refer to the three areasmarked
with three different ground colors as the harvesting area,
containing food items to be collected, the cache area (transfer
area) as a common storage where objects are collected or
dropped, and the central nest where objects are finally stored.
The radius of the inner circle is 1 m while the middle radius
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FIGURE 2. Snapshot of simulation: (a) initial state where all robots are
assigned to the harvesting task, and (b) desired state where the proper
number of robots are assigned to each subtask, harvesting and storing,
according to task demands. A swarm of robots are allocated to two
subtasks, harvesting and storing tasks that are sequentially
interdependent. Robots working on the harvesting task are represented
by red circles and robots working on the storing task are represented by
blue circles. Unladen robots moving to pick up objects are shown with
empty circles and robots that transfer objects to their destination are
shown with color-filled circles, respectively. The ground colors of the
harvesting area (outer area), cache area (middle zone), and the central
nest (inner circle) are white, sky-blue, and yellow, respectively. Food
objects represented by star shapes are randomly scattered.

and outer radius (that limits the range of the harvesting and
storing tasks) are 3 m and 5 m, respectively. Additionally,
a light source is located at the center of arena. All robots can
sense the direction of the light source, which plays the role of
a reference compass.

Each robot is equally capable of completing any subtask
and only one type of subtask can be assigned to a robot at
any time. A robot working in the harvesting area picks up an
object and transports it to the cache area. By dropping the
carrying object in the cache area, the object is transferred
indirectly to robots working on the storing task. The robots
working in the cache area collect objects only in that area
and transport them to the nest. As objects are transferred
indirectly, an additional behavior for object transfer between
robots is not necessary.

Each robot moves around in the harvesting area, picks up
one food pellet at a time, and delivers it to the cache (transfer)
area. To transfer objects, robots head towards the light source
until they arrive in the transfer area. They drop their object
at random locations along the path to the light source and
then go back to the harvesting area and move around to pick
up another object. Robots working on the harvesting subtask
shuttle between a food resource and the transfer area. Robots
performing the storing task can pick up food pellets only
within the transfer area and transport them to the central
nest. In Fig. 2, robots working on the harvesting task are
represented by red-colored circles and robots working on the
storing task are represented by blue-colored circles. Unladen
robots are shown with red or blue-colored empty circles and
laden robots that transport food objects to their destination
are shown with red or blue color-filled circles, respectively.

There are a fixed number of objects in the environment at
any given time, given that they are simulated to appear and
disappear, and no depletion occurs. The black star shapes
represent objects. An object is picked up by a robot in the

harvesting area and is transported to the central nest via the
transfer area. A new object is generated in an arbitrary place
in the harvesting area only after the object is dropped in the
central nest, and the former object is simply cleared. The
central nest has an infinite capacity for storage.

B. ROBOT BEHAVIORS
The simulation is implemented based on a Khepera-like robot
model [46] usingMATLAB. The robot has a round shapewith
a diameter of 12 cm. It can hold an object to be transported.
The robot is equipped with infra-red sensors, used to perceive
obstacles up to a distance of 20 cm and to sense the direction
of a light source up to a distance of 16 m. Ground sensors
positioned underneath the robot can detect the color of the
floor ground. An omni-directional camera is mounted on top
of a robot to perceive objects as well as neighboring robots up
to a distance of approximately 3m. Each robot can emit a light
depending on what type of task it is currently performing,
which helps to count the number of neighboring robots for
each task. There is no communication between robots and the
maximum moving speed of robots is 10 cm per time step.

Each robot performs a foraging task by collecting the clos-
est object. It finds an object near itself and moves to grip the
object. Robots can detect objects and neighboring robots by
using their omni-directional camera. Simultaneously, a robot
performs collision avoidance behaviors to prevent collisions
with other robots or the outer wall of the arena. Each robot
uses eight infrared sensors to estimate how close other robots
or obstacles are positioned to them. The sensors are posi-
tioned uniformly around the robot to cover 180 degrees in
front of the robot. A robot can change direction when the
sensors detect any obstacle within sensing range.

Initially, all robots start at random positions in the harvest-
ing area.When robot iwith a food object arrives in the transfer
area, it drops the object and updates its threshold θi. In our
foraging task, a robot decides whether to change the current
task or not, so only one threshold θi for the storing task is
needed. For this, a robot handles the visual information from
the omni-directional camera. The necessary information for
threshold updating is a task demand di, which is estimated as
the number of objects in the transfer area and the number of
robots ni performing the storing task. We assume that a robot
can distinguish objects and robots from visual information
obtained using an omni-directional camera mounted on top
of a robot to perceive objects as well as neighboring robots
up to a distance of about 3 m.

Each robot initially has the minimum threshold θi = θmin
and updates it. Harvesting robots pick up a food pellet in the
harvesting area and drop it in the cache area. If a robot’s
task selection probability becomes lower than that of the
other tasks, they decide to switch to the other subtask. They
stay in the cache area and start to perform the storing task
from that moment. Here, there is no delay or extra cost
involved in changing to a new task. Robots working on
the storing task also decide whether to continue to perform
the current task or change to the harvesting task based on
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local information. While robots perform the storing task, they
update their thresholds every fixed period (every 20 time
steps). Harvesting robots update their thresholds after they
drop a food object in the cache area. To imitate the real robots
with noise, maximum 10% random noise signals are added
to sensor data and motor control for movement in simulation
experiments. However, they never fail to obtain information
from the camera image and picking or dropping behaviors
never fail when transferring an object. These behaviors differ
somewhat from real robots; therefore, the performance of
real swarm robots may be slightly different from that of the
simulated robots used in our experiments.

V. SIMULATION RESULTS
In the beginning of the foraging task, all robots are in the
harvesting area (all robots are assigned to the harvesting task)
and the number of food objects transported to the transfer area
increases as time passes. Some robots with lower thresholds
start switching to the storing task, and ns (number of robots
for the storing task) increases while nh (for harvesting task)
decreases. Then a smaller number of objects in the harvest-
ing area will be delivered to the cache (transfer) area and
an appropriate number of robots are eventually assigned to
each subtask. We first show that the proposed task allocation
method can regulate the labor by adjusting the number of
robots performing the storing task properly depending on
the changes in the number of food pellets in the cache area.
Then we take various simulations to observe the performance
of the proposed method by changing specific environmental
conditions or robot parameters.

In the dynamic task allocation environment, the amount of
task demands or the number of robots may be changed, for
example, by adding new objects or removing some robots.
A robot may switch its task depending on the environmental
situation. In a typical foraging task, the performance can be
determined by the number of foraged objects, elapsed time,
or consumed energy. If there is some cost associated with
changing a task, it is also recommended to minimize task
switching while maintaining the desired division of labor. In
the simulations, we measure the number of objects located in
the cache area, the number of robots working on the storing
task, and the proportion of robots assigned to each subtask.
Each simulation normally runs for 2,000 time steps in the test
with 50 robots and 50 food objects, but it is changed depend-
ing on environmental conditions. The same number of robots
as food items is used to compare the performance with the
theoretical expectation (see Appendix A). Each simulation is
repeated twenty times.

A. DIVISION OF LABOR
Fig. 3 shows the overall task allocation process of the pro-
posed method (black line). The number of robots needed for
the storing task is 20 in the test with 50 robots and 50 food
objects, and the average number of objects remaining in the
transfer area is also approximately 20 – see Fig. 3(a)-(b);
similar to the theoretical estimation in Appendix A.

FIGURE 3. Various results from an original simulation, (a) change in the
number of robots working on storing task, (b) change in the number of
objects remaining in the transfer area, (c) progress of the proportion of
robots assigned to harvesting task, and (d) progress of the proportion of
robots assigned to storing task. As all robots are assigned to the
harvesting task initially, they all start harvesting. Then the swarm is split
properly by switching a proper number of robots from harvesting to
storing.

One robot is needed to collect an object in the transfer area.
It is expected that almost the same number of storing robots
as the number of food objects in the transfer area will be
maintained. For comparison, different numbers of robots and
objects are considered (red and blue lines, respectively).
Both values show the dynamic change of states with some
variance as shown in Fig. 3(a)-(b), but the proportion of robots
assigned to each task converges to a stable state as shown
in Fig. 3(c)-(d). When the number of robots and objects are
simultaneously doubled (red lines), similar proportions of
robots are assigned to harvesting and storing tasks, as shown
in Fig. 3(c)-(d), while the number of robots for the storing task
and the number of objects in the transfer area are doubled,
as shown in Fig. 3(a)-(b). However, when only the number
of robots is doubled (blue lines), the objects in the transfer
area remain at 20 and fewer robots compared to the total
number of robots are needed to perform the storing task.
Thus, the proportion of robots assigned to the harvesting task
is higher.

In the foraging task, when the group harvesting the
resource confronts a higher task demand at the transfer area
by observing many food objects, some harvesting robots have
a higher probability of switching to the storing subtask.When
the storing group experiences a lower task demand, some
robots storing objects will therefore be more likely to switch
to the harvesting task. The number of objects remaining in
the transfer area will gradually reach the equilibrium state.
Additionally, the proportion of the two groups will become
equal. There is some overshoot at an earlier time due to the
tipping effect. This occurs because the initial thresholds of all
robots are identical and improvements occur once individual
thresholds begin to fluctuate.
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FIGURE 4. Results with varying numbers of robots and objects, (a) the
total number of task changes of overall groups of robots, and (b) objects
stored in nest.

In simulation experiments, all robots start with the min-
imum threshold (θmin) and after updating the threshold,
the distribution of thresholds changes. Each robot thus has
a different threshold and this tendency induces a different
response to the changes of environment and finally leads to
the division of labor. A robot with lower thresholds has higher
tendency to perform a specific task without task change
(specializes at one task) and this leads to less frequent task
changes for the individual robots. This type of task adapt-
ability induces frequent task changes initially and fewer task
changes are necessary after the task distribution converges to
the stable state.

As shown in Fig. 4(a), during the first 200 simulation
time steps, a steep increase is observed at the number of
task changes, but after that time, the curve follows a gentle
slope. The number of task changes becomes low as the task
allocation converges to the desired stable state. Differences
in the performances are evident if there are costs associ-
ated with task changes. In a constraint condition involving
consumed energy for a task change, if the number of task
changes increases, the total energywasted in the foraging task
increases rapidly. When there are more robots than objects
(blue line), the number of task changes does not increase.
A more detailed analysis about the effect of the ratio between
the robots and objects will be future work. The performance
of an overall system can be also evaluated by the number of
objects stored in the nest. As shown in Fig. 4(b), the per-
formance increases linearly without fluctuation despite task
changes, indicating the task allocation method is effective.
Improved performance is obtained by increasing the number
of robots and objects. In our previous work [12], we show
that an individual robot has to exert energy for wandering,
gripping food objects, and task changes. The total number of
wandering steps is almost constant and the energy required
for performing foraging tasks is mainly dependent on the
number of foraged objects and the number of task changes.
Therefore, the difference in the performances among results
is evident when there are differences in the number of task
changes and gripping behaviors. If the cost of each behav-
ior increases, the total energy wasted in the foraging task
increases rapidly.

Fig. 5 shows the effect of using the response thresh-
old model in the test with 50 robots and 50 food objects.

FIGURE 5. Comparison of the results with threshold and without
threshold for the task selection function, (a) the number of objects in the
transfer area, (b) the number of robots for the storing task, (c) the total
number of task changes for the overall group, and (d) the total number of
food objects stored in the nest.

FIGURE 6. Results using only the number of objects for threshold
regulation, but holding information of the desired target distribution,
(a) the number of robots assigned to the storing task and (b) the total
number of task changes.

Instead of using thresholds for task selection function (black
line), each robot can just determine its task based on the
instantaneous information (red line) for task i and robot x,
which is given below:

Pix(t) =
1

1+ e−
1
τ
[dix (t)−nix (t)]

, ∀i = 1, . . . ,M (18)

where θix in Eq. (4) with our approach is replaced by nix and
nix is the number of robots performing task i observed by
robot x. We can say that this approach is similar to the work
found in Parker et al. [21]. As shown in Fig. 5(a), the number
of objects in the transfer area reaches the desired level faster
in the case without thresholds, but fewer robots with larger
variations are assigned to the storing task and manymore task
changes are required even for similar conditions, as shown
in Fig. 5(b)-(d). This implies that the method using the
threshold θi benefits the decrease of the task switches. From
the experiments, the work from Parker et al. [21] can have
shortcomings of inducing frequent task changes, compared
with our approach.
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FIGURE 7. Comparison of the results using different foraging area sizes,
(a) number of objects remaining in the transfer area, (b) number of
robots assigned to storing task, (c) proportion of robots assigned to
harvesting task, (d) proportion of robots assigned to storing task.

If the omni-directional camera has short-ranged detection,
the performance may degrade, since only local area informa-
tion can be covered to estimate the task demand or the current
taskworkers. To confirm that the proposed response threshold
model has a stable equilibrium point that satisfies the desired
target distribution, we take another experiment, assuming
each robot knows the desired number of robots remaining in
the transfer area with an unlimited detective range of omni-
directional camera as a special case. The desired number of
robots is proportional to the size of the area in which they
move around. Then the threshold can be updated depending
only on the current number of robots in the transfer area as
follows:

θi(t + 1) = θi(t)− η {n̄i − ni(t)} (19)

Fig. 6 shows that the stable state is reached quickly and
fewer task changes are needed using this approach under the
same simulation conditions with Fig. 5. The number of robots
for the storing task is the same as the result in Fig. 3(a).
In Fig. 3(a) and Fig. 6(a), the number of robots performing
storing tasks (ns) is approximately 20, which is similar to the
theoretical expectation as calculated by (see Appendix A)

ns =
rs

rs + rh
N (20)

Then ns = 3/(3 + 5) × 50 = 18.8 for the case of 50 robots.
From this result, we note that our proposed method nearly
converges to the optimal task distribution.

B. EFFECT OF ARENA SIZE
We investigate the adaptability to the changes in the size of
the foraging area. Fig. 7 shows comparison results to the
previous simulations. In an original simulation, the radius of
the harvesting area is 5 m (black line) and we change it to

FIGURE 8. Comparison of the results with different moving speeds of
robots performing storing task, (a) number of objects remaining in the
transfer area, (b) number of robots assigned to storing task,
(c) proportion of robots assigned to harvesting task, (d) proportion of
robots assigned to storing task.

15 m (red line). The number of robots performing storing
tasks is approximately 20 when the radius of the harvesting
area is 5 m.When the radius of the harvesting area is changed
to 15 m, the number of storing robots is a little less than
10. This agrees with the expected results using Eq. (20);
ns = 3/(3+ 15)× 50 = 8.3 when radius rh is 15 m.
As the size of the foraging arena increases, robots need

to move over longer distances to gather food objects and
transport them to the transfer area, so the object-transfer
rate is reduced and more robots are assigned to the foraging
task. Then half as many robots are sufficient to perform
the storing task to handle the lower number of food objects
present in the transfer area. Depending on the environmental
situation, an adaptive task allocation within the swarm group
autonomously regulates the division of labor for sequential
subtasks.

C. EFFECT OF MOVING SPEED
In the next simulation, we investigate adaptability of the
swarm to change in the moving speed of robots. To evaluate
the difference in completing each subtask, we change the
speed of robots performing the storing task while the speed
of robots performing the harvesting task remains unchanged.

Fig. 8 presents the results. If the robot’s speed is the same
in the two groups, similar results (black line) are achieved to
those shown in Fig. 3 and the proportion of robots assigned
to the storing task converges to 40%. When we reduce the
speed of robots working on the storing task by half (blue
line), more robots are assigned to that task to reduce the
number of objects collected in the cache transfer area. If the
speed of robots performing the storing task is four times faster
than robots performing the harvesting task (red line), fewer
robots are needed to transport objects to the nest and the
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FIGURE 9. Comparison of the results with time delay and without delay
for task changes, (a) number of objects remaining in the transfer area,
(b) number of robots assigned to storing task, (c) proportion of robots
assigned to harvesting task, (d) proportion of robots assigned to storing
task.

proportion of robots performing the storing task is reduced to
30%. In each case, the number of objects in the transfer area
changes, as shown in Fig. 8(a) because our method in Eq. (6)
depends on the number of robots working on the storing task.
We confirm that our method dynamically allocates the task to
a swarm of robots.

D. EFFECT OF DELAY FOR TASK CHANGE
In our simulations, we assume that there is no delay or
extra cost to change tasks. However, in reality, some cost is
incurred when changing a task; elapsed time, or consumed
energy. Fig. 9 shows the comparison results when the robots
pause at their current location for 50 simulation steps after
changing their task. If extra time is required to change the
task, the performances are overall worse. There are many
overshoots, time is required for the robots to become stable,
and higher numbers of task changes occur. However, the task
distribution eventually converges to the previous results. The
same number of objects remains in the transfer area and the
same number of robots perform the storing task. The method
remains effective even if the original (no-cost) assumption is
changed.

E. EFFECT OF DISTURBANCE IN TASK
ASSIGNMENT DISTRIBUTION
Finally, we investigate how robustly the system responds to
an abrupt change in the task distribution. At time step 1,000,
all robots assigned to the storing task are kidnapped from the
swarm. The environment is the same as the original simula-
tion. Fig. 10 presents the behaviors of the swarm in response
to the change and shows that the swarm reacts properly by
allocating a proper number of robots to the storing task. The
task allocation among the remaining robots performing the
harvesting task is regulated and the robots with low thresholds

FIGURE 10. Results with sudden changes in the number of robots,
(a) number of objects remaining in the transfer area, (b) number of
robots assigned to the storing task, (c) proportion of robots assigned to
the harvesting task, (d) proportion of robots assigned to the storing task.

switch their current task to the storing task. Thus, it eventually
reduces the task demand of the storing task as robots switch
to it. A new proportion of robots are assigned to each task,
and the proportion converges to a stable state within a short
time.

VI. DISCUSSION
Comparing to prior works that generally update the response
threshold after performing tasks, our method suggests that
task allocation is regulated by the relative difference between
the number of tasks not completed and the number of neigh-
boring robots performing their corresponding subtasks. Per-
formance of a task affects not only the task demand per-
ceived by other robots but also the individual’s preference
with regard to that task. Task allocation can be efficiently
organized by considering the internal state preference of the
individual such as the task preference and also the external
state obtained from the interaction with the environment. We
also show the mathematical convergence of task distribution
for the suggested approach. Our proposed method demon-
strates a self-organizing process to allocate the whole task
to a group of mobile robots, where the individual decisions
of robots are based on the surrounding local information.
Thus, it does not require a central controller and the robots
do not require communication with each other. Each robot
decides whether to switch between subtasks depending on
the local information available. Repetitive and continuous
task allocation leads to the desired task distribution at a
group level. Especially for our foraging task, the system will
approximately converge to the desired task distribution as
demonstrated in the simulations.

The individual decision to switch between multiple sub-
tasks depends on the response threshold, which differentiates
responses to the same task demand, and the threshold value
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is updated by relying on a robot’s individual perception. The
simulation results show that a swarm using the proposed
method is able to allocate its individuals to sequential sub-
tasks adaptively and we can conclude that the method is
adaptive as the robots successfully re-distribute the robots
to subtasks even if the environmental conditions change. We
will further study the efficiency with much more dynamic
environments, such as the RoboCup domain. It would provide
more convincing argument if this proposed method is indeed
effective even in real dynamic environments.

VII. CONCLUSION
Task allocation in a swarm of robots involves decomposing
a complex task into subtasks. In this paper, we present a
foraging task in which a group of robots are supposed to
collect food pellets and transfer them to the central nest.
Harvesting robots transport them from the resource area to
a common storage called the cache area (transfer area), and
storing robots transport them from the common storage area
to the central nest. We propose a dynamic task allocation
method for regulating the fraction of robots proportionally to
the fraction of task demands. Our contribution is to provide
effective local task change of the individual robots with the
response threshold model but without commuication, ulti-
mately reaching the desired task distribution for a swarm, and
also show the mathematical convergence of the task distri-
bution. It is a self-organized method for decomposing a task
into sequentially interdependent subtasks and allocating the
individuals in a swarm to perform subtasks in parallel. This
approach has the effect of reducing interference among the
individual robots because different types of workers become
more segregated and the improved transport efficiency allows
for better overall swarm performance.

A further direction of work concerns the method for select-
ing task allocation strategies adaptively. Atta cephalotes,
known as leaf-cutting ants, use various strategies to handle
their materials such as food and garbage [29], [47]. When
an ant finds a food source, it selects one of three strategies.
The first strategy is to just return to the nest, carrying food
by itself; in this case, the ant has no task allocation strategy.
As another strategy, the forager ant directly passes the food
to another ant. In the last strategy, it drops the food in the
middle of the pheromone trail so that other ants can bring it
to the nest by an indirect transfer. They freely change their
strategies and this could be a possible extension of the work
presented in this article. Furthermore, the idea can be applied
to task transfer between heterogeneous robots. In addition,
we wish to test experiments in the real world by building a
swarm of real mobile robots.

APPENDIX A
If there are two types of foraging tasks in a circular arena,
the desired task distribution can be calculated mathemati-
cally. To balance the workload among sequential subtasks
in Euclidean space, the desired number of robots for each
task is proportional to the number of objects in the given

area and is inversely proportional to the area in which they
move around if all robots are homogeneous in their ability
for performing tasks. Then for a stable equilibrium point,
the balancing condition is defined as

ds
r2s
ns =

dh
r2h
nh (21)

where ds and dh are the number of objects in storing and
harvesting areas with radius rs and rh, respectively. If the
number of robots and objects are the same, Eq. (21) can be
rewritten as

ns
r2s
ns =

(N−ns)

r2h
(N − ns) (22)

where N is the number of robots and objects. Then,

n2s
r2s
=

(N − ns)2

r2h
→

ns
rs
=

(N − ns)
rh

(23)

Equation (23) means that the proportion of task allocation is
decided according to the radius of the foraging area. Finally,
the number robots performing storing task can be defined as

ns =
rs

rs + rh
N (24)
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