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Abstract 
 
 

Multirobot systems (MRS) hold the promise of improved performance and increased 

fault tolerance for large-scale problems. A robot team can accomplish a given task 

more quickly than a single agent by executing them concurrently. A team can also 

make effective use of specialists designed for a single purpose rather than requiring 

that a single robot be a generalist. Multirobot coordination, however, is a complex 

problem. An empirical study is described in the thesis that sought general guidelines 

for task allocation strategies. Different strategies are identified, and demonstrated in 

the multi-robot environment.  

 
Robot selection is one of the critical issues in the design of robotic workcells. Robot 

selection for an application is generally done based on experience, intuition and at 

most using the kinematic considerations like workspace, manipulability, etc. This 

problem has become more difficult in recent years due to increasing complexity, 

available features, and facilities offered by different robotic products. A systematic 

procedure is developed for selection of robot manipulators based on their different 

pertinent attributes. The robot selection procedure allows rapid convergence from a 

very large number of candidate robots to a manageable shortlist of potentially 

suitable robots. Subsequently, the selection procedure proceeds to rank the 

alternatives in the shortlist by employing different attributes based specification 

methods. This is an attempt to create exhaustive procedure by identifying maximum 

possible number of attributes for robot manipulators.  

 
Availability of large number of robot configurations has made the robot workcell 

designers think over the issue of selecting the most suitable one for a given set of 

operations. The process of selection of the appropriate kind of robot must consider 

the various attributes of the robot manipulator in conjunction with the requirement of 

the various operations for accomplishing the task. The present work is an attempt to 

develop a systematic procedure for selection of robot based on an integrated model 

encompassing the manipulator attributes and manipulator requirements. The 
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developed procedure can advantageously be used to standardize the robot selection 

process with view to perform a set of intended tasks. The work is also aimed at 

creating an exhaustive list of attributes and classifying them into different distinct 

categories. The different methods of robot selection on the basis of fittness, 

capability, task requirement and case based approach are discussed in this thesis. 

 
One of the most important aspects in the design of MRS is the allocation of tasks 

among the robots in a productive and efficient manner. Optimal solutions to 

multirobot task allocation (MRTA) can be found through an exhaustive search. Since 

there are n × m ways in which m tasks can be assigned to n robots, an exhaustive 

search is often not possible. Task allocation methodologies must ensure that not only 

the global mission is achieved, but also the tasks are well distributed among the 

robots. This thesis presents different task allocation methodologies for MRS by 

considering their capability in terms of time and space.  

 
In product assembly, optimized sequence is a prerequisite for automated systems. 

The assembly process can be further optimized through appropriate selection and 

allocation of the given tasks in a multi-device framework. These two discrete tasks 

need to be integrated to produce the optimum result and a cost effective system. In a 

MRS the possibility of parallelism need to be explored for making it time efficient. 

To cope with the needs of the system, the present work generates an automatic 

assembly sequence for multirobots and seeks for optimal allocation of tasks amongst 

the available robots. Task allocation methodologies must ensure that not only the 

global mission is achieved, but also the tasks are well distributed among the robots. 

An effective task allocation approach considers the capabilities of the deployable 

robots, and then it appropriately allocates the tasks the candidate robots.  

 
In order to make the system more practical and user friendly, the developed 

methodologies have been tried with an industrial problem. An integrated approach 

for assembly sequence generation and task allocation for MRS has been presented by 

considering their time and space. A 21 part drive assembly is given to illustrate the 

concept and procedure of the proposed methodology. 
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The different approaches are adopted to optimize the allocation process. Several 

allocation methodologies are available in texts for task allocation under various 

conditions. The following methods are picked up for task assignment to the robots. 

These are Greedy Heuristics, Linear Programming, Mixed Integer Linear 

Programming, Knapsack Algorithm, Hungarian Algorithm and Particle swarm 

optimization. PSO has the less optimimal solutions as compared to the other 

methodologies. Computational results indicate that the PSO is effective and efficient 

in solving problems of a big size as compared to other methods and PSO achieves 

the global solution. The results and the subsequent recommendations for MRS of 

different types and sizes will be handy for the planners and users in indices.  
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CHAPTER 1 
 

 

Introduction 
1.1 Background of the research work 

A robot is a virtual or mechanical artificial agent. In practice, it is usually an electro-

mechanical system which, by its appearance or movements, conveys a sense that it 

has intent or agency of its own. The word robot can refer to both physical robots and 

virtual software agents, but the latter are usually referred to as bots. There is no 

consensus on which machines qualify as robots, but there is general agreement 

among experts and the public that robots tend to do some or all of the following 

actions: move around, operate a mechanical limb, sense and manipulate 

environment, and exhibit intelligent behavior, especially those which mimics humans 

or other animals. Stories of artificial helpers and companions and attempts to create 

them have a long history but fully autonomous machines only appeared in the 20th 

century. The first digitally operated and programmable robot, the Unimate, was 

installed in 1961 to lift hot pieces of metal from a die casting machine and stack 

them. Today, commercial and industrial robots are in widespread use performing 

jobs more cheaply or with greater accuracy and reliability than humans. They are 

also employed for jobs which are too dirty, dangerous or dull to be suitable for 

humans. Robots are widely used in manufacturing, assembly and packing, transport, 

earth and space exploration, surgery, weaponry, laboratory research, and mass 

production of consumer and industrial goods.  

 
People have a generally positive perception of the robots they actually encounter. 

Domestic robots for cleaning and maintenance are increasingly common in 

developed countries. Of late, robots have gained importance in every field of work, 
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as they have greatly shrunken the workload that has to be done by man himself. Most 

robots of today have little more than a mechanical arm and a computer memory. The 

memory allows the arm to perform the motions, either it may be stretching or for 

lifting anything up. The collection of motions is stored in the memory, which easily 

enables the robots to switch from one motion into another form in quick time. 

 
Robots in antiquity and through the Middle Ages were used primarily for 

entertainment. However, the 20th century featured a boom in the development of 

industrial robots. Through the rest of the century, robots changed the structure of 

society and allowed for safer conditions for labor. In addition, the implementation of 

advanced robotics in the military and NASA has changed the landscape of national 

defense and space exploration. Robots have also been influential in the media and 

profitable for toy manufacturers. 

1.2 Multi-robot systems 

A multi-robot system (MRS) is one of the methodologies to give certain ability to a 

robot system. This approach expects emerging of new abilities through just simple 

and small interactions among multiple robots. The new abilities are not expected in a 

single robot system. An emerged ability is expected in flexibility, adaptability 

robustness. Although many researches who are interested in these ideas have 

investigated, almost all the research mainly focuses on locomotion, formation or 

reconfiguration of MRS. To expand probabilities and expectationsfor emergent 

robotics, on the other hand, focus on sensing by MRS. Sensing situations of robot 

systems will be needed in its adaptive behavior, which is also including such 

locomotion, formation and reconfiguration. There are two interactions in a MRS. 

One is physical interaction and the other is informational one. 

 
The time required to reach other planets makes planetary surface exploration 

missions prime targets for automation. Sending rovers to other iplanets instead of or 

together with people can also significantly reduce the danger cost involved. Teams of 

rovers are both more fault tolerant (through redundacy) and more efficient (through 



3 

 

parallelism) than single rovers if the rovers coordinated well. However, rovers 

cannot be easily tele-operated since this requires a large number of human operators 

and is communication intensive, error prone, and slow. Neither can they be fully 

preprogrammed since their activities depend on their discoveries. Thus, one needs to 

endowthem with the capability to coordinate autonomously with each other. It 

should be pointed out that the important applications of robots are by no means 

limited to those industrial jobs where the robot is directly replacing a human worker. 

There are many other applications of robotics in areas where the use of human is 

impractical or undesirable. Among these are under-sea and planetary exploration, 

satellite retrieval and repair, the defusing of explosive devices, and work in 

radioactive environments.  

 
Multiple cooperating robots hold the promise of improved performance and 

increased fault tolerance for large-scale problems. For many applications, a team of 

robots can be effectively used and it can accomplish a given task more quickly than a 

single agent can by dividing the task into sub-tasks and executing them concurrently. 

A team can also make effective use of specialists designed for a single purpose (e.g., 

scouting an area, picking up objects, hauling payload), rather than requiring that a 

single robot be a generalist, capable of performing all tasks but expert at no tasks. A 

group of collaborating robots performs certain tasks better than a single robot. For 

many applications using more than one robot to perform a specific task has many 

potential advantages over a single robot configuration. In short, a population of 

cooperative robots behaves like a distributed robot to accomplish tasks that would be 

difficult, if not impossible, for a single robot. However, the advantages of MRS are 

often offset by the complexity in achieving a successful implementation. The 

complex problem of multi-robot coordination can be considered in the framework of 

multi-robot dynamic task allocation. This problem can be considered in the 

framework of multi-robot dynamic task allocation under uncertainty. 

 
Research performed under such titles as distributed robotic systems, swarm robotics, 

decentralized robotic and multi-agent robotics has focused on the investigation of 

issues and applications of systems composed of groups of robots. The general idea is 
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that teams of robots, deployed to achieve a common goal, are not only able to 

perform tasks that a single robot is unable to, but also can outperform systems of 

individual robot, in terms of efficiency and quality. In addition, groups of robots 

provide a level of robustness, fault tolerance, and flexibility, as the failure of one 

robot does not result in the unsuccessfulness of the mission, as long as the remaining 

robots share the tasks of the failed robot. Examples of tasks appropriate for robot 

teams are large area surveillance, environmental monitoring, large object 

transportation, planetary exploration, and hazardous waste cleanup. 

Applications of robot teams are in four basic areas, where the requirement may be as 

follows; 

i. Large objects must be handled  

ii. Large areas must be covered  

iii. Iterative tasks must be performed and  

iv. Robustness and fault tolerance is required.  

There are a number of certain situations that lends themselves well to the task 

decomposition and allocation among multiple robots. The most significant concept in 

MRS is cooperation. It is only through cooperative task performance that the 

superiority of robot groups can be demonstrated. The cooperation of robots in a 

group can be classified into two categories of implicit cooperation and explicit 

cooperation. In the implicit cooperation case each robot performs individual tasks, 

while the collection of these tasks is toward a unified mission. For example, when 

multiple robots are engaged in collecting rock samples and returning them to a 

common place, the team is accomplishing a global mission while cooperating 

implicitly. This type of group behavior is also called asynchronous cooperation, as it 

requires no synchronization in time or space. The explicit cooperation is the case 

where robots in a team work synchronously with respect to time or space in order to 

achieve a goal. One example of such cooperation is transportation of heavy objects 

by multiple robots, each having to contribute to the lifting and moving of the object. 

This task requires the robots to be positioned suitably with respect to each other and 

to function simultaneously. Regardless of the type of cooperation, the goal of the 

team must be transformed into tasks to be allocated to the individual robots. Multi-
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robot teamwork is a complex problem consisting of task division, task allocation, 

coordination, and communication.  

 
MRS have been proposed in the last decade in a variety of settings and frameworks, 

pursuing different research goals, and successfully applied in many application 

domains. Special attention has been given to MRS developed to operate in dynamic 

environments, where uncertainty and unforeseen changes can happen due to the 

presence of robots and other agents that are external to the MRS itself. Generally 

speaking, an MRS can be characterized as a set of robots operating in the same 

environment. However, robotic systems may range from simple sensors, acquiring 

and processing data, to complex human-like machines, able to interact with the 

environment in fairly complex ways. Moreover, it is not easy to give a definition of 

the level of autonomy that is required for a robot in order to be considered an entity 

acting in the environment, as opposed to a simple machine that provides services to 

the operator (a printer or a even a light switch). The subset of MRS can be further 

characterized as the one that is addressed by considering three main aspects: (i) the 

rationale for the design of the MRS, (ii) the basic functionalities and technologies 

(both hardware and software) used in the MRS development and (iii) the tasks that 

the robots should perform and the intended application domains. From an 

engineering stand point, the MRS can improve the effectiveness of a robotic system 

either from the viewpoint of the performance in accomplishing certain tasks, or in 

the robustness and reliability of the system, which can be increased by 

modularization. The coordination of candidate robots in MRS with respect to the 

system can be suitably planned from the view point of strategic implementation. The 

coordination dimension can be related to the system dimension as presented in Table 

1.1. The MRS taxonomy is mentioned in Figure 1.1. 
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Figure 1.1 MRS taxonomy 

 
Table 1.1 Classification and dimensions 

Coordination Dimensions System Dimensions 

Cooperation Communication 

Knowledge Team Composition 

Coordination System Architecture 

Organization Team Size 

 

Cooperation Level: The first level is concerned with the ability of the system to 

cooperate in order to accomplish a specific task. At this level cooperative systems 

are distinguished from not cooperative ones. A cooperative system is composed of 

robots that operate together to perform some global task.  

 
Knowledge Level: The second level of the hierarchical structure is concerned with 

the knowledge that each robot in the team has about its team mates. Aware robots 

have some kind of knowledge of their team mates, while unaware robots act without 

any knowledge of the other robots in the system. The interest in cooperating unaware 

MRS is motivated from an engineering point of view by the simplicity of such 

systems, with respect to aware ones.  

 

Cooperative 

Aware Unaware 

Strongly 
Coordinated

Weakly 
Coordinated

Not 
Coordinated

Strongly 
Centralized 

Weakly 
Centralized

Distributed 

Cooperation 

Knowledge 

Coordination 

Organization 
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Coordination Level: The third level is concerned with the mechanisms used for 

cooperation in which the actions performed by each robotic agent take into account 

the actions executed by the other robotic agents in such a way that the whole ends up 

being a coherent and highperformance operation. However, there are different ways 

a robot can take into account the actions of the other members of the team. The 

underlying feature is the coordination protocol that is defined as a set of rules that the 

robots must follow in order to interact with each other in the environment.  

 
Organization Level: The fourth level of our hierarchical structure is concerned with 

the way the decision system is realized within the MRS. This level introduces a 

distinction in the forms of coordination, distinguishing centralized approaches from 

distributed ones. In particular, a centralized system has an agent (leader) that is in 

charge of organizing the work of the other agents; the leader is involved in the 

decision process for the whole team, while the other members can act only according 

to the directions of the leader. On the other hand, a distributed system is composed of 

agents which are completely autonomous in the decision process with respect to each 

other; in this class of systems a leader does not exist. The classification of centralized 

systems can be further refined depending on the way the leadership of the group is 

played. Specifically, strong centralization is used to characterize a system in which 

decisions are taken by the same pre-defined leader agent during the entire mission 

duration, while in a weakly centralized system more than one agent is allowed to 

take the role of the leader during the mission. Along with the classification 

introduced to characterize the form of coordination, there are a number of system 

features that are relevant to the development of the system. They can be grouped in 

the system dimensions, which include: communication, team composition, system 

architecture and team size. 

 
Communication: Cooperation among robots is often obtained by a communication 

mechanism that allows the robots to exchange messages. A detailed analysis of the 

various technical problems related to communication in Multi agent system (MAS) is 

given for example in [1]. However, when MRS are considered the communication 

mechanisms are very different; in addition most of the MRS that operate with a 
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limited number of robots (i.e. less than 10), except for a few recent projects for large-

scale MRS that take into account about 100 robots, while in large-scale MAS the 

number of agents can often be in the order of 10,000-100,000. These observations 

show that communication issues have, in general, different characteristics for MAS 

and MRS. There can be two different types of communication depending on the way 

the robots exchange information: direct or indirect communication. Direct 

communication makes use of some on board dedicated hardware device, while 

indirect communication makes use of stigmergy [2]. The fact that in MRS direct 

communication is based on a dedicated physical devices, results in a much more 

expensive and unreliable solution to attain coordination with respect to MAS. 

Therefore, indirect communication has received particular attention in MRS 

literature, to cut implementation and design costs. Stigmergic communication can 

both guarantee locality in the interactions among agents, reducing the complexity for 

the design of large scale systems, and avoid the need of synchronization between the 

agents, by providing a shared communication structure that each agent can access in 

a distributed concurrent fashion.  

 
Team Composition: According to team composition MRS can be divided in two 

main classes, heterogeneous and homogeneous. Homogeneous teams are composed 

of team members that have exactly the same hardware and control software, while in 

heterogeneous teams the robots differ either in the hardware devices or in the 

software control procedures. This distinction is used also for MAS, but in that case 

the differences are obviously only in the software implementation of the agents' 

behaviors. 

 
System Architecture: System architecture is an important feature for classifying MRS 

as well as MAS. The architecture refers to the whole MRS and not to the architecture 

of the single robotic agent. A precise characterization of MRS with respect to 

reactive or deliberative architectures is presented in [3]. Team architecture is 

considered as deliberative if it allows the team members to cope with the 

environmental changes by providing a strategy to reorganize the overall team 

behaviors. On the other hand, in reactive team architectures each robot in the team 
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copes with the environmental changes by pursuing an individual approach to 

reorganize its own task in order to accomplish the goal assigned to it. The main 

difference between deliberative and reactive team architectures relies on the different 

approaches adopted by the MRS to recover from an unpredicted situation: in a 

deliberative MRS a long term plan involving the usage of all the available resources 

to collectively accomplish a global goal is provided; in a reactive MRS a plan to 

cope with the problem at hand is provided by the robotic agent directly involved with 

it.  

 
Team Size: The team size is an important issue for MAS and it is becoming a 

relevant issue also in MRS development, actually a number of recent works 

explicitly address large scale MRS [4, 5]. However, the number of robots acting in 

the same environment is still quite limited with respect to the number of agents in 

MAS.  

 
Some of the multiple issues that can be addressed by the proper task allocation 

mechanism are:  

• The reason for robots to function in a group. 

• Whether all robots have a unique goal like soccer team or they have a 

multiple goals such as a free market system. 

• Whether the robots act in a self-centered manner or as team-aware 

individuals. 

• The mutual cooperation amongst the robots under focus. 

1.2.1 Classification of MRS 

There are many types of MRS each capable of performing a wide variety of tasks. 

Due to the wide variety of devices and configurations that may be classed as multi-

robot, some form of classification is required to put these systems into perspective. 

The classification robot systems as presented in Figure 1.2 give an indication of the 

broad scope of MRS. The robots are first classified into fixed base or mobile 

categories, with the fixed base category being subdivided into two components 

termed independent and coordinated, which may also be referred to as loosely and 
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tightly coupled systems respectively. The independent fixed base systems comprise 

of a set of fixed base robots working within a common workspace but performing 

independent tasks. These tasks are usually subtasks of the global task for the 

workcell, for example using multi-robots to perform simple pick and place 

operations off a conveyor belt, providing a higher throughput than could be achieved 

by using a single robot device.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 MRS classifications 

This class of system may be subdivided further into synchronized and concurrent 

systems. Synchronized systems are configured such that at each time instant only one 

robot may be working in the common workspace between the groups of robot, the 

common workspace being an exclusively shared resource. Concurrent systems, on 

the other hand, are more sophisticated and enable more than one robot to operate in 

the common workspace simultaneously. Coordinated fixed based systems comprise 

of a set of fixed base robots performing the same task concurrently, for example two 

robots handling a heavy object such as a beam. In this situation the robots act as a 

closed kinematic loop. 

 

 

Multi-robot Systems 

Independent Coordinated 

Mobile Fixed Base 

Synchronized Concurrent 
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1.2.2 Types of MRS  

A. Homogeneous and heterogeneous systems 

One main issue in task allocation is the division of the tasks into homogeneous 

versus heterogeneous tasks. Their implementation may range from homogenous 

system where all robots have the same task to a grouping, which divides the robots in 

different groups, and each group is assigned to do a different task. They may use 

inference and temporal parameters to evaluate different methods. The best 

performance is obtained through homogenous task allocation, i.e., the fastest 

collection of trash than others. It is too difficult to build a team of large number of 

robots, make sure that all are functioning and perform experiments with them. 

Instead, the researchers have been conducting the hardware experiments with only a 

few robots, and then they have augmented their hardware studies with computer 

modeling and simulation of robot groups with large populations. It should be noted 

that the effects of team size and its scaling are integral issues in robot group studies, 

and the reliability of the simulation results remains to be seen. In some simulation 

and analytical studies, the focus is on complex emergent behavior of a collection of 

simple robots, i.e., collective behavior. These works use mathematics to predict and 

design working group of robots.  

1.2.3 Different options for allocation in MRS 

This way, robots can develop special relations with specific other robots. These 

relations are: 

i) Single robot performing single task 

ii) Single robot performing multiple tasks 

iii) Multi-robot (homogeneous) performing single tasks 

iv) Multi-robot (heterogeneous) performing single task 

v) Multi-robot (homogeneous) performing multiple tasks 

vi) Multi-robot (heterogeneous) performing multiple tasks 
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1.2.4 Single robot vs multi-robot  

An MRS is composed of multiple, interacting robots. The study of MRS has received 

increased attention in recent years. This is not surprising, as continually improving 

robustness, availability, and cost-effectiveness of robotics technology has made the 

deployment of MRS consisting of increasingly larger numbers of robots possible. 

With the growing interest in MRS comes the expectation that, at least in some 

important respects, multiple robots will be superior to a single robot in achieving a 

given task. The benefits of a MRS over a SRS (Single robot systems) are outlined in 

order to introduce issues involved in MRS control and study their similarity and 

differences. The study of MRS has received increased attention in the recent years. 

This is not surprising as continually improving technology has made the deployment 

of MRS consisting of increasingly larger number of robots possible. It is obvious 

that, at least in some important respects, multiple robots will be superior to a single 

robot in achieving a given task. Potential advantages of MRS over a SRS include 

reduction of total system cost by employing multiple simple and cheap robots as 

opposed to a single, complex and expensive robots. Furthermore, the inherent 

complexity of certain task environment may require the use of multiple robots as the 

demand for capability is quite substantial to be met by a single robot. Multiple robots 

are assumed to increase system robustness by taking advantage of inherent 

parallelism and redundancy. Multi-robot teamwork is a complex problem consisting 

of task division, task allocation, coordination, and communication. One of the 

significant concepts in MRS is cooperation. It is only through cooperative task 

performance that the superiority of robot groups can be demonstrated. The 

cooperation of robots in a group can be classified into two categories of implicit 

cooperation and explicit cooperation. In the implicit cooperation case each robot 

performs individual tasks, while the collection of these tasks is toward a unified 

mission. This type of group behavior is also called asynchronous cooperation, as it 

requires no synchronization in time or space. The explicit cooperation is the case 

where robots in a team work synchronously with respect to time or space in order to 

achieve a goal. One example of such cooperation is transportation of heavy objects 

by multiple robots, each having to contribute to the lifting and moving of the object. 
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This task requires the robots to be positioned suitably with respect to each other and 

to function simultaneously. Regardless of the type of cooperation, the goal of the 

team must be transformed in to tasks to be allocated to the individual robots. 

 
Distributed MRS stand in contrast to centralized MRS, in which each robot’s actions 

are not completely determined locally, as they may be determined by an outside 

entity, such as another robot or by any type of external command. In distributed 

MRS, each robot must make its own control decisions based only on limited, local, 

and noisy sensor information. The consideration is limited to distributed MRS 

because they are the most appropriate for study with regard to systems that are 

scalable and capable of performing in uncertain and unstructured realworld 

environments where uncertainties are inherent in the sensing and action of each 

robot. Strictly speaking, the issues in a centralized MRS are more akin to a 

scheduling or optimal assignment and less of a problem of coordination in a 

distributed system. 

1.3 Robot performance and selection 

A robot is characterized by its degree of freedom, number of joints, type of joints, 

joint placement, link lengths and shapes, and their orientation which influence its 

performances. The speed of operation significantly depends on the complexities of 

the kinematic and dynamic equations and their computations. Aspects of kinematics 

and dynamics should be looked into for selecting a suitable robot. Usually, kinematic 

characteristics like workspace, etc. are considered for the selection of a robot for an 

application. Robots with vastly different capabilities and specifications are available 

for a wide range of applications. Various considerations such as availability, 

management policies, production systems compatibility, and economics need to be 

considered for selecting a suitable robot. The complexity of problem can be better 

appreciated when one realizes that there are large numbers of attributes that have to 

be considered in the selection of robot for particular application. Moreover, many of 

them are conflicting in nature and have different units, which cannot be unified and 

compared as they are. However, none of these solutions may take care of all the 
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demands and constraints of a specific application. There are a number of reported 

studies concerning the selection of robots for manufacturing applications. 

 
Selecting the right kind of robot for an application is not easy. In addition, just 

meeting the customer requirements can be a challenge. The addition of system 

integration in workcell design processes may further complicate the picture. In the 

robot market today, there are many robot manufacturers with number of robot 

configurations. There has been rapid increase in the number of robot systems and 

robot manufacturers. Fortunately, a number of tools and resources are becoming 

available to help designers select the most suitable robot for a new application. 

However, none of these solutions can take care of all the demands and constraints of 

a user specific robotic workcell design. Eventually the designers must use the 

available information and make their own decisions.  

1.4 Objective 

The initial study of some relevant literatures in the area of MRS for industrial 

application clearly points towards some general issues. These issues are identified as  

i)  Selection of robots for MRS. 

ii)  Strategies for employing the robots and that for coordinating/controlling them 

under MRS. 

iii) Allocation of tasks to the robots with a view to conveniently handle the desired 

tasks, to utilize the robots under question to the maximum extent possible, and to 

minimize the throughput time.  

 
Under this backdrop, the objectives of the present research work are outlined as 

follows. 

• To make an extensive study on the subject concerned as well as the research 

activities already carried out in the area and thereafter enumerating and 

analyzing the pros and cons of various methodologies. This will make the 

understanding  of the problem better about the real areas of concern and  

appreciating the scope for improvement 
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• To study the specific area of mathematical theories having greater 

capabilities for application in MRS and its issues under various conditions. 

• To develop a correct and scientific method for selection of robots for MRS.  

• To find out an appropriate task allocation methodology for industrial 

application under multi-robot environment. 

• To maximize the utilization of the candidate robots in MRS, using 

appropriate methodology of task allocation. 

 

Apart from these broad objectives the present research work also addresses several 

related issues such as;  

• To identify the robot selection attributes, and obtain the most appropriate 

combination of the attributes in conjunction with the real requirements of the 

industrial application.  

• To conduct an empirical study that seeks general guidelines for task 

allocation strategies in systems of multiple cooperating robots. Task 

allocation strategies need to be identified that aim at studying tradeoffs 

between commitment and coordination. 

• To develop an integrated approach for assembly sequence generation and 

task allocation for MRS by considering their capability in terms of time and 

space 

1.5 Scope of the work 

The domain of robotic application in industry, the environmental conditions, the 

dynamism, the strategies etc. while looking at general MRS can be very large. The 

present work is envisaged under its own scope of study. The various methodologies 

for task allocation under various conditions are studied, which are suitable to 

industrial robots with the listed options. The research work is restricted to the 

implicit cooperation where robot performs the individual tasks, while the group of 

these tasks is toward a unified assignment. It is assumed that each robot is competent 

of estimating its robustness for every task it can execute. The factors such as 

economic considerations, availability, management constraints and corporate 
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policies, international market policies etc. for the selection of robots are beyond the 

scope of this work. In the present work as many as 30 attributes of the robots are 

identified and an attempt has been made to codify most of the robot characteristics, 

which will define the robot precisely and accurately. Future research will involve 

both improvements in solution methods and extensions to the current model. 

1.6 Organization of the thesis 

This thesis is divided into seven chapters, described as follows: 

Chapter 1 provides an overview and introduction of the research. Research 

background, motivation, aims and objectives are elaborately described. Chapter 2 

reviews on several diverse streams of literature on different issues of the topic such 

as strategies, selection, task allocation, task assembly optimization techniques etc. In 

consequence, the research gaps are identified. Chapter 3 discusses the problem 

statement and strategies of robots for allocation. In this chapter attempts are made to 

empirically derive some guidelines for selecting task allocation strategies for MRS 

with implicit cooperation. Chapter 4 presents different methods suitable for selection 

of candidate robots for the problems under consideration and then the methods and 

procedures are detailed. Chapter 5 presents the general framework that is used in the 

thesis to model problem-solving in an MRS, and uses theoretical examples to 

illustrate the different task allocation strategies in systems of multiple cooperating 

robots. This chapter also introduces the different optimization techniques that are 

used for the work to solve various MRS problems. The various optimization 

algorithms for achieving better results are stated. The solution methodologies of 

these techniques are presented through coding them in Lingo, Matlab, and 

Management Scientist as applicable. Chapter 6 discusses the outcome of the research 

and also identifies the pros and cons of different methods. A comparative study of 

these methods is made in the light of the strategies, selection and task allocation in 

MRS.  The conclusions on different aspects of the entire work are presented in 

Chapter 7 along with the directions for future work. 
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1.7 Summary 

There is a growing demand for teams of multiple robots to be employed in many 

application domains. Multi-robot solutions are especially desired for tasks which are 

too dangerous, expensive, or difficult for humans to perform. It is obvious that 

multiple robots achieve both more robust and more effective behavior by 

accomplishing coordinated tasks that are not possible for single robots. Groups of 

homogeneous and heterogeneous robots have a great potential for application in 

complex domains that may require the intelligent use and merge of diverse 

capabilities. The chapter presents a brief study of the subject and describes the 

importance of robotic applications in industries along with the areas that need focus 

for research and improvement. 
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CHAPTER 2 
 

Literature Survey 

2.1 Introduction 

As research progresses in robotic systems, more and more aspects of MRS are being 

explored. Several researchers began investigating issues in multiple mobile robot 

systems. Prior to this time, research had concentrated on either single robot systems 

or distributed problem-solving systems that did not involve robotic components. 

Since this early research in robotics, the field has grown dramatically, with a much 

wider variety of topics being addressed. Several new robotic application areas, such as 

underwater and space exploration, hazardous environments, service robotics in both 

public and private domains, the entertainment field, and so forth, can benefit from 

the use of MRS. In these challenging application domains, MRS can often deal with 

tasks that are difficult, if not impossible, to be accomplished by an individual robot. 

A team of robots may provide redundancy and contribute cooperatively to solve the 

assigned task, or they may perform the assigned task in a more reliable, faster, or 

cheaper way beyond what is possible with single robots. Some areas have been 

explored more extensively, however, and the community is beginning to understand 

how to develop and control certain aspects of multi-robot teams. Many of the 

research papers address more than one of these foundational problems in MRS. 

Therefore aspects of this work as they apply to each of these key research areas are 

described. For context, other key references and examples of prior research in each 

of these principle topic areas are also discussed. However, space does not allow an 

exhaustive treatment of each of these important research areas, and thus it is not 

possible to thoroughly review all the previous literature pertinent to this subject. 
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2.2 Scenarios 

In MRS the following pertinent issues are very important to be considered: 

• There is a task/problem to be solved by the system of robots. 

• Robots are able to reason about what they are doing. 

• Robots are allowed to communicate with each other and with a human. 

• The human provides the initial goal and specifications. 

• Robots are allowed to sense their environment dynamically. 

• Robots carry out actions and contribute to the overall task (the mission). 

• There are real-time issues that need to be addressed, such as a deadline for 

mission or subtask completion, 

• The environment the robots are working in can change unexpectedly. 

 
A potential robot user is now faced with many options. The decision on which robot 

to select is made more complex because robot performance is specified by many 

parameters for which there are, as yet, no industry-wide standards. Apart from this, 

one is faced with a challenge to wisely select robots amongst the available ones for 

employment in a particular application environment. The allocation of the desired 

tasks the coordination of the robots in MRS, the cooperation amongst the robots in 

action pose several issues in designing and implemanting MRS for industrial 

applications. 

 
The following paragraphs present some of the major and relevant work in the area of 

MRS, task assignment, assignment techniques and optimization of team/group 

formation for creating the multirobotic work cell. Some of the important research 

papers with relevance to the present work are presented in Table 2.1. 
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Table 2.1 A summary of robot selection models 

Author  Application Solution approach Consideration Selection criterion 
E. Ertugrul 
Karsak  

Facility site 
selection 
system 
 

DEA 
And fuzzy robot 
selection algorithm 
 

cost and technical 
performance 
parameters 
 

Best combination of 
cost and erformance 
parameters. 
 

M. J. Khouja and   
R. L. Kumar          

General Opions model Speed,load 
,repetability  and 
price  

net present value 
 

Marcello braglia 
and Roberto 
Gabbrielli 

General Dimensional 
Analysis theory 
 

Velocity,Load 
capacity, Cost, 
repetability, 
Vendors’ service, 
Programming 
flexibility 

As per ranking 

R. Venkata Raoa, 
K.K. 
Padmanabhan  

General digraph and matrix 
methods 
 

Purchase cost, load 
capacity, velocity, 
repeatability, DOF 
and man-machine 
interface. 

As per the value of 
robot selection index 
 

Moutaz Khouja, 
David E. Booth, 
Michael Suh and 
John K. Haney Jr 

Robotic 
assembly      
cells 
 

fuzzy 
cluste ring 
algorithm 
 

Reach,load, 
repetability 

As per grade of 
membership 

Agrawal et el.     General 
 

Multiple Attribute 
Decision Making 

Engineering 
Attributes

DM's utility 

Booth et el.         General 
 

Statistical 
 

Engineering 
Attributes 
 

Maximum 
Mahalanobis 
distance 

S.C. Botelhoand    
R. Alami 
 

Hospital 
environment 

M+ task 
achievement 
 

re-scheduling, 
suppression 
of redundancies and 
opportunistic 
enhancement 

As per simulation 
results 

C. Micacchi and 
R. Cohen 
 

RoboCup 
Search and 
Rescue, 

Simulation 
Modelling  

Unexpected events As per the simulation  
scenario 
 

Lynne E. Parker  Hazardous 
waste cleanup 
 

ALLIANCE 
 

fault tolerant, 
reliable, and 
adaptive 

As per the 
ALLIANCE 
architecture 

Brian P. Gerkey 
and Maja J 
MatariC  
 

Cooperatively 
reallocate a 
large box to a 
specified goal 

MURDOCH 
 

pusher-watcher 
 

Using the Auction 
based  
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M. Berhauld  ,H. 
Huang P. 
Keskinocaki,         
S. Koenigi,            
W. Elmaghrabyi,   
P. Griffin, A. 
Kleywegd  
 

General Combinatorial 
Auctions 
 

combinatorial 
bidding strategies 
 

As per the Graph-cut 

Robert Zlot and 
Anthony Stentz   

Reconnaissan
ce scenario 
 

complex task 
allocation 
problem 

novel task tree 
auctions 
 

As per task tree 
allocation mechanism 
 

A.Sahu and R. 
Tapadar  

General Genetic Algorithm 
and Simulated 
Annealing 

Partially Matched 
Crossover (PMX)  
And  exponential 
cooling schedule 
based on 
Newtonian cooling 

As per the Optimized 
one 

2.3 Models for selection of robots 

Research on the industrial robot selection problem has received increased attention in 

the past decade. In this chapter, the models are reviewed. The strengths and 

weaknesses of the different approaches to the robot selection problem are 

summarized. A tabular framework is used to summarize the reviewed models. For 

quick and easy reference, the table categorizes the models by application, solution 

approach, robot attributes considered, and selection criteria. 

 
Vukobratovic [6] found that the spherical configuration was superior to the jointed-

arm, cylindrical, or rectangular robot designs in terms of speed and energy 

consumption.Robot selection problem has received increasing attention in the past 

decade, parallel to the upward trend in the usage of industrial robots. A number of 

researchers have developed computer-aided procedures to address the robot selection 

problem. Agrawal et al. [7] used Multiple Attribute Decision Making (MADM) 

approach to generate a completed “query problem” for robot selection. Khouja et.al. 

[8] consider the problem of selecting robots for an assembly cell which produces 

several products, each of which requires a number of tasks. Each task requires some 

minimal level of robot performance on attributes such as load capacity, repeatability 

and reach. Due to the large number of available robots and their wide range of 

performance, the problem of selecting robots for the cell and assigning tasks to these 
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robots can be complex. This problem will be referred to as the robotic cell design 

problem (RCDP).The proposed approach recognizes and exploits the flexibility of 

robots. It also recognizes that the manufacturer specifications of robots do not hold 

simultaneously under normal operating con ditions. A numerical example is 

presented and a small experiment is conducted to test the procedures. Booth, Khouja, 

and Hu [9] used robustified Mahalanobis distance and principal components analysis 

to identify better performing robots. Mahalanobis distance is used to identify 

outlying robots while principal components analysis is used to indicate if a robot is 

an outlier because it provides better or worse combination of specifications from the 

average robot. In robustified Mahalanobis distance, the vector of means for robot 

attributes as specified by the manufacturers is computed. To identify outlying robots, 

a weight function that assigns each observation a weight that is inversely 

proportional to its distance from the center of the data is used iteratively to 

recompute the vector of means and distances until convergence occurs. At 

convergence, Mahalanobis distances are used to identify outlying robots. Dooner 

[10] simulated robot operation in the workspace and used the workspace as an aid to 

robot selection. Huang and Ghandforoush [11] stated a procedure to evaluate and 

select the robot depending on the investment, budget requirements and comparing 

the suppliers of the robots. But they had assumed that the user knows which robot to 

buy and the question was from whom to buy. Madhuraj [12] selected robot 

considering cost as one criterion and used to shortlist the robots for the particular 

applications. In the contemporary work, Hinson [13] stated that the working 

environment of the robot is a major selection factor. He considered work envelop of 

the robot for the evaluation. Jones [14] used marginal value function to evaluate and 

rank the robots. A number of studies are reported on the selection of robots for 

various applications. Paul and Nof [15] compared humans to robots in order to 

determine which of the two was better suited for a given job. Hinson [16] stated that 

the working environment of the robot is a major selection factor. He also considered 

the work envelop of the robot for its evaluation. A body of lite rature on the design 

of robot assembly cells has been developed over the past decade [17]. 
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Offodile et al. [18] developed a coding and classification system which was used to 

store robot characteristics in a database, and then selected a robot using economic 

modeling. Liang and Wang [19] proposed a robot selection algorithm by combining 

the concepts of fuzzy set theory and hierarchical structure analysis. The algorithm 

was used to aggregate decision makers’ fuzzy assessments about robot selection 

attributes weightings, and to obtain fuzzy suitability indices.  

 
Rao and Padmanabhan [20] proposed a methodology based on digraph and matrix 

methods for evaluation of alternative industrial robots. A robot selection index was 

proposed that evaluates and ranks robots for a given industrial application. The index 

was obtained from a robot selection attributes function, in turn obtained from the 

robot selection attributes digraph. The digraph was developed based on robot 

selection attributes and their relative importance for the application considered. A 

step by step procedure for evaluation of a robot selection index was suggested. 

 
Zhao and Yashuhiro [21] introduced a genetic algorithm (GA) for an optimal 

selection and work station assignment problem for a computer-integrated 

manufacturing (CIM) system. In CIM systems, Robot Selection and Work station 

Assignment (RS/WA) problem is very important and has significant impact to 

deliver high quality and low cost products on timely basis. Specifically, the RS/WA 

problem for a CIM system seeks the optimal combination of robots of different types 

to serve all given work stations such that each work station's resource demands are 

satisfied, no robot capacity constraint is violated, and the total system cost is 

minimized. Since the problem can be considered as a generalized two-dimensional 

multi-type bin packing, a well-known NP-hard problem, it is not possible that 

directly solve the problem and provide exact solutions within a reasonable time limit. 

 
Boubekri et al. [22] developed an expert system for industrial robot selection 

considering functional, organizational and economical factors in the selection 

process. The use of data envelopment analysis (DEA) for robot selection has been 

addressed by Khouja [23]. Bhangale et al. [24] listed a large number of robot 

selection attributes, and ranked the robots using Technique for Order Preference by 
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Similarity to Ideal Solution (TOPSIS) and graphical methods, comparing the 

rankings given by these methods. However, the weights assigned by the authors to 

the attributes were not consistent. Karsak [25] proposed a two-phase methodology is 

proposed for robot selection. In phase 1, data envelopment analysis is used as a 

means to determine the technically efficient robot alternatives, considering cost and 

technical performance parameters. Using data envelopment analysis permits us to 

consider the fact that the performance parameters specified by the vendors are 

generally unattainable in practice. In the second phase, a fuzzy robot selection 

algorithm is utilized to rank the technically efficient robots according to both 

predetermined objective criteria and additional vendor-related subjective criteria. 

The algorithm is based on calculating fuzzy suitability indices for the technically 

efficient robot alternatives, and then, ranking the fuzzy indices to select the best 

robot alternative. Karsak and Ahiska [26] introduced a practical common weight 

multi-criteria decision making (MCDM) methodology using the DEA method with 

an improved discriminating power for technology selection. The results indicate that 

the proposed framework enables further ranking of DEA-efficient decision making 

unit (DMU) with a notable saving in the number of mathematical programming 

models solved.  

2.4 Task allocation 

Multi-robot teamwork is a complex problem consisting of task division, task 

allocation, coordination, and communication. The most significant concept in 

MRS is cooperation. It is only through cooperative task performance that the 

superiority of robot groups can be demonstrated. The cooperation of robots in a 

group can be classified into two categories of implicit cooperation and explicit 

cooperation. In the implicit cooperation case each robot performs individual tasks, 

while the collection of these tasks is toward a unified mission.  

 
This type of group behavior is also called asynchronous cooperation, as it requires no 

synchronization in time or space simultaneously. Regardless of the type of 

cooperation, the goal of the team must be transformed in to tasks to be allocated to the 
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individual robots. The explicit cooperation is the case where robots in a team work 

synchronously with respect to time or space in order to achieve a goal. One example 

of such cooperation is transportation of heavy objects by multiple robots, each 

having to contribute to the lifting and moving of the object. This task requires the 

robots to be positioned suitably with respect to each other and to function. 

 

Teams of robotic systems at first glance might appear to be more trouble than they 

are worth. There are several reasons why two robots or more can be better than one 

a) Distributed action: Many robots can be in many places at the same time;  

b) Inherent Parallelism: Many robots can do many, perhaps deferent things at the 

same time;  

c) Divide and conquer certain problems are well suited for decomposition and 

allocation among many robots; and  

d) Simpler is better: Often each agent in a team of robots can be simpler than a more 

comprehensive single robot solution. 

 
No doubts there are more reasons as well. Unfortunately there are also drawbacks in 

particular regarding coordination and elimination of interference. The degree of 

difficulty imposed depends heavily upon the task and the communication and control 

strategies chosen [27]. 

 
In many cases several mobile robots can be used together to accomplish tasks that 

would be either more difficult or impossible for a robot acting alone. Although most 

mobile robotic systems involve a single robot operating in an environment, a number 

of researchers have considered the problems and potential advantages involved in 

having an environment inhabited by a number of robots. For some specific robotic 

tasks, such as exploring an unknown planet, it has been suggested that rather than 

sending one very complex robot to perform the task it would more effective to send a 

large number of smaller, simpler robots. Such a collection of robots is sometimes 

described as a swarm. Using multiple robots rather than a single robot can have 

several advantages and leads to a variety of design tradeoffs. In particular, large 

numbers of simple robots may be simpler in terms of individual physical design and 
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thus the ensuing system can be more economical, more scalable and less sensitive to 

overall failure. Likewise, destruction of a single member of a large swarm may not 

be catastrophic while the failure of a single subsystem of a conventional robot is 

usually disastrous [28]. 

 
The system per say consists of set of either homogeneous or heterogeneous roots.  

While looking at the application of MRS, it involves a lot many other functions. 

Some of the functions are task allocation, robot selection for carrying out the desired 

tasks, forming of the task force amongst the available robots, control, coordination 

and scheduling, workcell design etc. The following sections present some of the 

important work carried out by various researchers and agencies towards the 

development and growth of MRS. 

 
The various issues and methodologies related to task allocating have been in the 

research and application domain since long. The applicability of this research ranges 

from Networkship, Multitasking shop floors, skilled personnels and so on. In the 

present research work, our discussion is limited to multi-robot environments. Goldberg 

and Mataric [29] studied homogeneous and heterogeneous task allocation for a 

foraging task such as trash collection. Their implementation ranged from 

homogenous system where all robots have the same task to a grouping, which 

divides the robots in different groups, and each group is assigned to do a different 

task. Inference, spatial, and temporal parameters are used to evaluate different 

methods. Their experimental result shows that the grouping system is suitable for 

reducing interference. However the best performance is obtained through 

homogenous task allocation. In a similar work Sukthanker and Sycara [30] showed 

that when systems that are substantially more efficient augmented by homogenous 

task allocation by making robots more team-aware. 

 
The study of MRS can be dealt with in hardware with small population sizes, versus 

the study of issues in MAS in simulation with large population sizes. Construction, 

maintenance, and utilization of large groups of robots are infeasible due to time and 

budget constraints. This led the researchers to conducting the hardware experiments 
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with only a few robots, and then augmenting their hardware studies with computer 

modeling and simulation of robot groups with large populations. The effect of team 

size, scaling, and the reliability of simulation are to be kept in mind while 

conducting studies on robot groups. Lerman et al. [31] evolved a mathematical 

methodology based on viewing large colonies of robots (swarms) as stochastic 

systems, Markov property, for predicting their emergent behavior. This analysis can 

be useful in many applications, as the Markov property holds good in many MRS. 

Obviously, mathematical analysis helps in predicting the collective emergent 

behavior and understands if the effects of missions are more suitable. 

 
In geometric formation, a team of mobile robots attempts to achieve and maintain a 

geometrical shape while performing the given task. This type of problem has been 

studied by researchers [32, 33]. The static task allocation usually works well if 

formation is treated like a coordination problem Balch and Arkin [27, 32] and 

Gerkey et.al [34] proposed a method of team formation where the task allocation 

takes place during system design. The common approach in all these work is that all 

of the robots have a predefined and similar task. This work essentially used a schema-

based architecture [35] to implement motor schema navigation. The schemas are 

activated in parallel by percenting the second data. These asynchronous processes 

start behaviors generated in vector format is multiplied by an importance weight. 

The sum of these factors is used to generate a global output for the control of the 

actuators of the robots. Each robot maintains the formation by calculating its proper 

position in the group and executes a motor schema to move toward the goal position. 

Some important task allocation methodologies for MRS are presented in the 

following sections. 

2.4.1 Strategies scenario 

 A. Functionally-Accurate Cooperative (FA/C) distributed problem solving 

In the FA/C distributed problem solving approach presented by Lesser [36], each 

robot in the group has just partial data for solving the imperfect and temporal sub-

problems. The FA/C paradigm provides an architecture for dealing with the 
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situations where i) agents are solving mutually dependent, large-grained sub 

problems; ii) agents can generate partial and tentative high-level solutions in spite of 

incomplete and uncertain information; and iii) agents can partly resolve 

inconsistencies and uncertainties based on constraints derived from partial solutions 

to interdependent subproblems received from other agents. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 An example of a two-agent distributed aircraft monitoring scenario 

The focal point of the approach is on the solution and control uncertainties that occur 

when a search is partitioned between agents and examines this concern from the 

conceptual viewpoint of a goal-based search and from the more practical viewpoint 

of a distributed interpretation of task. The occurrence of considerable amount of 

solution and control uncertainties in agents’ local searches gives rise to 

uncoordinated behavior among the agents. The author describes a chain of 

increasingly sophisticated mechanisms for decreasing these uncertainties with the 

consequent increase in the coherence of agent activities. They comprise of 

integrating data and goal-directed control, using static metalevel information 
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specified by an organizational structure, and using dynamic metalevel information as 

developed in the limited global planning structure. Each of these mechanisms 

provides information that reduces solution and control uncertainty. The structure of 

the two-agent distributed aircraft monitoring is presented in Figure.2.1.  

B. Alliance 

The ALLIANCE approach [37, 38, 39, 40, 41] is focused control architecture, 

ALLIANCE, that was developed essentially to facilitate fault tolerant, reliable, and 

adaptive cooperation among small- to medium-sized teams of mobile robots, 

performing in dynamic environments. ALLIANCE is a completely distributed, 

behavior-based architecture that incorporates mathematically-modeled motivations 

within each robot to achieve adaptive action selection. This architecture assumes a 

heterogeneous team of robots. A powerful force in the improvement of robotic 

systems is their prospective for reducing the need for human occurrence in 

dangerous applications.  
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Figure 2.2 The alliance architecture 

Applications such as the cleaning of toxic waste, nuclear power plant 

decommissioning, planetary exploration, fire fighting, search and rescue missions, 

security, surveillance, and reconnaissance tasks have elements of danger in which 

risks to operator are possible, or even likely. In all of these applications, it is 

desirable to decrease the risk to humans through the use of autonomous robot 

technology. Every robot just wants to run an ALLIANCE process as a requirement in 

order to assist. The ALLIANCE architecture is shown in Figure 2.2. A 

comprehensive approach, which incorporates learning, is called L. Alliance [42, 43]. 

Extensions to this approach are essential, however, when a robot must choose among 

a number of challenging actions-actions which cannot be pursued in parallel. Unlike 

characteristic behavior-based approaches, ALLIANCE delineates more than a few 

behavior sets that are either active as a grouping or are hibernating. It is attention-

grabbing to note down that with certain restrictions on parameter settings, the 

Motivational 
Behavior 

Motivational 
Behavior 

Motivational 
Behavior 

Behavior 
set 0 

Behavior 
set 1

Behavior 
set 2

Layer 2 

Layer 1 

Layer 0 

Actuators 

Sensors 

Cross-inhibition 

Inter-Robot 
Communication 



 

31 

 

ALLIANCE architecture is assured to allow the robot team to complete its 

assignment for a wide variety of applications.  

C.Task acquisition using multiple objective behavior coordination 

Pirjanian [44, 45] presented a task allocation approach for deliberative behavior-

based architecture for MRS. It is demonstrated that multiple objective assessment 

theory provides an appropriate formalism to cover thoughts from behavior based 

system synthesis and control, where each behavior is cast as an objective function 

estimator. Action selection comprises of generating and then selecting a set of 

pleasing solutions amongst a set of solutions that are Pareto-optimal. The basic 

thoughts of the planned methods are demonstrated through a set of simulated as well 

as real world experiments. Multiple objective decision making provides approaches 

to making decisions in difficult situations where more than one decision objective 

should be considered. By considering all system objectives concurrently these 

methods facilitate a smooth blending of several behaviors. However the 

investigational studies cast light on a most important problem namely deadlocks. It is 

extremely significant to deal with the deadlock problem in a structured manner. 

D. Team formation-based task allocation 

Stone and Veloso [46] introduced periodic team synchronization domains, as time-

critical environments in which agents act autonomously with limited communication, 

but they can periodically synchronize in a full communication setting. They present a 

team agent structure that allows for an agent to capture and reason about team 

agreements and achieve collaboration between agents through the introduction of 

formations. A formation decomposes the task space defining a set of roles. 

Homogeneous agents can flexibly switch roles within formations, and agents can 

change formations dynamically, according to predefined triggers to be evaluated at 

runtime. This flexibility increases the performance of the overall team.  

 

 

 

 



 

32 

 

E. Murdoch: publish/subscribe system 

Murdoch, a dynamic task allocation mechanism using a communication method 

called publish/subscribe is presented by Gerkey, and Mataric [47, 48] presented by 

for performing distributed control and multi-robot coordination. Multi-robot 

coordination is a complex control problem, particularly in tightly-coupled tasks that 

involve a mutual confidence of the robots on each others’ performance. Thus tasks 

are divided at the behavior abstraction level instead of robot abstraction level. For 

instance, a task requiring sonar, laser, and vision publishes using the tuple of sonar 

laser camera as shown in Figure 2.3 to push the box along the desired trajectory. The 

problem is even more difficult through the use of heterogeneous robots, with 

different capabilities. The scheme of the mechanism can be described as follows. 

The robots are not equipped with gripping devices, but instead move objects by 

pushing against them. The pusher robots have no global positioning information and 

cannot see over the object; thus a watcher robot has the responsibility for leading the 

team (and object) to the goal, which only it can perceive. The system is entirely 

distributed, with each robot under local control.  
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Figure 2.3 The model for deriving the pushing velocities for moving the box 
along the desired trajectory 

 
A best-fit selection algorithm is used to choose the best among robots that are 

registered for a particular subject. The human user or another component of the 

system must perform task decomposition. Each task is accompanied with a metric as a 

measure of fitness. This metric is application-dependant and can be related to the 

robot's state or other computation. Afterwards, each registered robot measures its 

own fitness based on the metric and communicates the score to the others. The 

winner gains a time limit within which to accomplish the given task. This method 

finds its applicability where normal communication techniques are not possible 

because of complex heterogeneity in the pool. 
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F. Robot exploration with combinatorial auctions 

Berhauld, Huang and Keskinocaki [49] proposed an appropriate for coordinating a 

team of mobile robots to visit a number of given targets in partially unknown terrain. 

Robotics researchers have studied single item auctions (where robots bid on single 

targets) to perform this exploration task but these do not take synergies between the 

targets into account. Therefore design of combinatorial auctions (where robots bid on 

bundles of targets), propose different combinatorial bidding strategies and compare 

their performance with each other, as well as to single item auctions and an optimal 

centralized mechanism. The results of Team Bots, a multi-robot simulator, indicate 

that combinatorial auctions generally lead to significantly superior team performance 

than single-item auctions, and generate very good results compared to an optimal 

centralized mechanism. 

 
For the exploration tasks, robots are a natural choice for the bidders, and targets are a 

natural choice for the items. The auctioneer is a virtual agent who has sole 

responsibility for holding auctions and determining their winners but has no other 

knowledge and cannot control the robots. Initially, no robot owns any targets. 

Whenever a robot visits a target or gains more information about the terrain, it shares 

this information with the other robots and the auctioneer starts a new auction that 

contains all targets that have not yet been visited. The auctioneer could hold auctions 

less frequently or with fewer targets, but this would decrease the responsiveness of 

the robots to new information about the terrain. Each robot, including the current 

owner of a target, then generates bids in light of the new information and use sealed-

bid single-round combinatorial auctions. Alternatively, multi-round combinatorial 

auctions that save bidders from specifying their bids for a large number of bundles in 

advance, and can be adapted to dynamic environments where bidders and items 

arrive and depart at different times. However, the auctioneer would then have needed 

to determine winners in every round and communicate some information about the 

current bids to the bidders, which would have increased the amount of computation 

and communication, respectively. The auctioneer closes the single-round auction 

after a predetermined amount of time, determines the winning bids, and notifies the 
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winning robots. The winning bids are those that maximize the revenue of the 

auctioneer with the restriction that each robot wins at most one bundle per auction. 

G. Auction algorithm 

Bertsekas [50] presents an auction algorithm for task allocation in multi-robot 

applications. This is especially suitable for parallel computation. The auction 

algorithm is an intuitive method for solving the classical assignment problem. It 

outperforms substantially its main competitors for important types of problems. The 

assignment problem is important in many practical contexts.  

 

 

 

 

 

 

 

 

 

Figure 2.4 The structure of auction algorithm 

The most obvious ones are resource allocation problems, such as assigning personnel 

to jobs, machines to tasks, and the like. There are also situations where the 

assignment problem appears as a subproblem in various methods for solving more 

complex problems. The assignment problem is also of great theoretical importance 

because, despite its simplicity, it embodies a fundamental linear programming 

structure. The most important type of linear programming problems such as the 

linear network flow problem can be reduced to the assignment problem by means of 

a simple reformulation. Thus, any method for solving the assignment problem can be 

generalized to solve the linear network flow problem. In fact this approach is 

particularly helpful in understanding the extension of auction algorithms to network 

flow problems that are more general than assignment. This approach attempts to find 
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the most excellent assignment between tasks and users, while maximizing the total 

benefit. The structure of the auction algorithm is presented in Figure 2.4. 

H.  A free market architecture for distributed control of MRS 

Stenz and Dias [51, 52] implement task allocation as a free market system. The 

coordination of a big group of robots to resolve a particular task is a complicated 

problem. Centralized approaches can be computationally intractable, brittle, and 

insensitive to alter. Distributed approaches are not as prone to these problems, but 

they can be extremely sub-optimal. This is a novel approach for coordinating robots 

based on the free market system. Market economies are a proven way to systematize 

a large number of individuals into a creative group. The free market approach 

defines profits and price functions across the probable strategy for executing a 

particular task. The task is accomplished by separating it into sub-tasks and allowing 

the robots to offer and discuss to bring out these sub-tasks. Cooperation and 

competition emerge as the robots perform the task while trying to make the most of 

their personal profits. The consequence promises to be an extremely robust multi-

robot team that can competently exploit resources and opportunistically deal with 

uncertainties in a dynamic environment. Considering a team of robots assembled to 

perform a particular mission, the objective of the group may be to execute the 

mission as well as to minimizing the costs. But it is not sufficient to describe just the 

income and price functions for the team. An example of the problem is presented in 

Figure 2.5. 
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Figure 2.5 The winning TSP tour from robot A 

I. Broadcast of Local Eligibility (BLE) using Port Arbitration Behavior (PAB)  

Werger and Mataric [53, 54] present the Broadcast of Local Eligibility (BLE) 

mechanism the facilities comparison of locally determined eligibility for a given task 

with the best eligibility calculated by peer behaviors on other robots. When a robot’s 

local eligibility is best for some behavior, it inhibits the peer behaviors on all other 

robots, and the task is awarded to it. In the case of robot or task failure, the resulting 

lack of inhibition will allow another robot to take over the task. Since BLE is based 

on broadcast messages to receiving ports that filter their input for the best eligibility, 

BLE-based systems are inherently scalable.  
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Figure 2.6 Initial assignments and final tours for 2 robots and 8 cities 

The broadcasting technique uses a set of well-defined abstractions and techniques for 

behavior interaction and this is referred to as port attributed behavior (PAB) 

paradigm. When the PAB paradigm is extended across networks, the resulting 

systems are able to dynamically reconfigure themselves in order to optimally allocate 

resources in response to changing environmental conditions, in a manner that is 

scalable and robust to robot failures. The scheme of the process is shown in         

Figure 2.6. 

2.4.2 Task allocation methodologies 

A. Distributed multi-robot task allocation (MRTA) for emergency handling 

Ostergaard and Mataric [55] describe a new prototype task, emergency handling, for 

multi-robot coordination. The experiments reported by the authors are to measure the 

effects of individualism and opportunism in a physically-implemented MRS. The 

authors use sound at multiple frequencies to simulate emergencies by producing 

several locally-sensable gradients in the environment. The results show that 

opportunism affords a significant performance improvement over individualism. The 

experiments also demonstrate the viability of sound for producing detectable local 

gradients in the environment. The scheme of the process is shown in Figure 2.7. 
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Definition 1: The Emergency Handling  

Task consists of: 

• An environment, E 

• A set of robots, R 

• A set of alarms, A 

• A set of tools, T 

• A capability function, c: R → T 

• A requirement function, s : A → T 

One robot can carry |c(rj)| tools, where 0 ≤ |c(rj)| < |T|,0 ≤ i < |R|.  

Each alarm can require |s (ai)|, 0 < |s(ai) |  ≤ min(|R|,|T),0 < i <|A| tools to be fixed 

and require that all alarms can be handled with one or more of the available tools. 

Robots are heterogeneous if they are equipped with different tools or have different 

capabilities.Otherwise, the robots are homogeneous. 

Figure 2.7 The elements of emergency handling 

B. Ants algorithms 

The basic idea of Ants algorithm [56] is based on adaptability of groups of ants to 

their environment changes. The method is based on some biological facts about ants, 

where they leave some amount of pheromone on their trail, and they prefer to 

follow the paths with most pheromone on it. This approach can be considered as 

task allocation, since each path/trail can be thought of as a task which must be 

selected with a probability function. This methodology is based on a few 

assumptions, including the fact that ants walk in a direct path, moving in a two-

dimensional dimension. Another assumption is that when a group of ants encounters 

an obstacle, they divide into two equal sub-groups. An important feature of this 

approach is the indirect communication between ants, resulting in emergent behavior. 

The flow chart of the single agent controller is shown in Figure 2.8. 
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Figure 2.8 Flow chart for single agent controller 

C. Task allocation in uncertain environment 

Multiple cooperating robots hold the promise of improved performance and 

increased fault tolerance for large-scale problems such as planetary survey and 

habitat construction. Multi-robot coordination, however, is a complex problem. This 

problem in the framework of multi-robot dynamic task allocation under uncertainty 

has been described as an empirical study that sought general guidelines for task 

allocation strategies in MRS. Mataric et.al [57] identified distinct task allocation 

strategies, and demonstrates them in two versions of the multi-robot emergency 

handling task. An experimental setup has been presented to compare results obtained 
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from a simulated grid world to those obtained from physical mobile robot 

experiments. Data resulting from eight hours of experiments with multiple mobile 

robots are compared to the trend identified in simulation. The data from the 

simulations show that there is no single strategy that produces best performance in 

all cases, and that the best task allocation strategy changes as a function of the noise 

in the system. The result is significant, and shows the need for further investigation 

of task allocation strategies and their application to planetary exploration. 

D. Cooperative task planning of MRS with temporal constraints 

Lian and Murray [58] discuss a design methodology of cooperative trajectory 

generation for MRS. The trajectory of achieving cooperative tasks, i.e., with 

temporal constraints, is constructed by a nonlinear trajectory generation (NTG) 

algorithm. The Advanced Highway Systems (AHS) and Mixed Initiative Control of 

Automa (MICA) hierarchies with their key elements and functions are shown in 

Figure 2.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 The AHS and MICA hierarchies with their key elements and functions 

 
Conceptually, the MICA hierarchy includes Operations and Resources Supervisory 

(ORS) for resource planning and human interaction, Team Composition and Tasking 
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(TCT) for specifying group-level tasks, Team Dynamics and Tactics (TDT) for 

tasking team activities, Cooperative Path Planning (CPP) for generating feasible 

vehicle missions, and Vehicle Dynamics and Control (VDC). 

 
There are three scenarios of robot tasking from home base to target position. 

• A single robot is tasking from the home base position to the target position. 

The target position and the designated action at the position are simply 

instructed by an upper-level command unit.  

• In the second case, three robots might be instructed by the same activity 

command, and need to move together in a designated formation. Hence, the 

controller at each individual robot should generate a set of feasible, real-time 

trajectories which guarantee the group of robot to move in the designated 

formation.  

• The third case considers a more general scenario where multiple robots from 

different home bases are commanded to either one common target or multiple 

targets. At some location, these robots are commanded to move together and 

have a certain level of formation interaction. Conceptually, this scenario can 

be viewed as a combination of the first two cases. 

 
For a given system dynamics and a set of state and input constraints, and to minimize 

a pre-specified cost function, the NTG algorithm first makes use of the differential 

flatness property to find a new set of outputs in a lower dimensional space and then 

parameterizes the outputs by the B-spline basis representation. 

E. Integer programming for combinatorial auction winner determination 

Andersson, Tenhunen and Ygge [59] recommend that on combinatorial auctions are 

important as they enable bidders to place bids on combinations of items; compared to 

other auction mechanisms, they often increase the efficiency of the auction, while 

keeping risks for bidders low. However, the determination of an optimal winner 

combination in combinatorial auctions is a complex computational problem. The 

authors compare recent algorithms for winner determination to traditional 

algorithms, and present and benchmark a mixed integer programming approach to 
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the problem, which enables very general auctions to be treated efficiently by 

standard integer programming algorithms. The impact of the probability distributions 

chosen for benchmarking is discussed at length in their work. 

F. Physical interference impact in MRTA auction methods 

Guerrero and Oliver [60] opine that task allocation is one of the main problems in 

MRS. Among other factors, to get a good task allocation, taken into account the 

physical interference effects between robots, that is, when two or more robots want 

to access to the same point at the same time. They analyze interference impact using 

auction methods, one of the most popular task allocation systems. This approach 

shows how the performance of the auction utility function can be improved if 

interference impact is included in it and also provide a framework to simplify the 

method of finding a good utility function, which happens to be one of the major 

issues in all auction systems. 

 
Classical auction methods have been modified to select which robots, and very 

specifically, how many of them are needed to execute a task. In an initial stage, each 

robot is looking for a task, and a robot finds a new task, it will try to lead it. There is 

only one leader for each task. If a robot is promoted to leader, it will create, if 

necessary, a work group; that is, a set of robots that will cooperate to execute this 

specific task. In that case, the leader must decide which the optimum group size is 

and what robots will be part of the group. To take this decision, the leader uses an 

auction like mechanism. During this process robots bid using their work capacity. 

The work capacity is the amount of work that a robot can execute per time unit, thus, 

this value is the utility function of our auction method. The leader selects the robots 

with the highest work capacity, until it detects that the group is able to reach its 

deadline, that is, until this condition is verified: 

 
Also, in general, if the utility functions are not linear, the learning process can be 

very hard. To simplify the process, some parameters can be analyzed prior to the 

process, using an ideal environment, and then it can be modified during the 

execution of the task in the following 3 steps: 
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• Individual utility: during the first stage, evaluate the characteristics of each 

single robot without taking into account the others. Here it will include some 

characteristics like velocity, acceleration, etc. 

• Group utility: in this step, the robot will take into account the other ones to 

create a coalition or working group. Here some parameters, like interference 

effect, will be included. That is, the robots will calculate the utility function 

of the group. 

• Inter-Group utility: finally, the robots have to take into account that the 

decision of one group can affect to other groups. This inter-group 

dependency must be included in the utility function during the final step. 

G. Fuzzy multiple criteria assignment problems for fusion 

Gungor and Gunes [61] propose an assignment problems including multiple 

purposes and whose purposes featuring in a fuzzy way. In their work, 0-1 linear goal 

programming models of fuzzy multiple criteria assignment problems representing 

different-structured purposes are made up. Furthermore, Hungarian algorithm, is 

used for the solution of classic assignment problems obtained by changing Cij 

coefficients suitably according to fuzzy purposes in some fuzzy multiple criteria 

assignment problems. The objective of this approach includes a) to minimize total 

cost, b) to reduce the finishing time, c) to lower numbers of error, d) appointment of 

staffs numbered priority to the others, e) appointment of staffs numbered to machines 

numbered, f) appointment of staffs numbered to tasks numbered. The results of 

classical assignment problem formed by taking coefficients in the matrix into 

account with Hungarian algorithm have the same results as obtained by using linear 

goal programming model.  
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H. Algorithm of task allocation based on realizing at the lowest cost in MRS 

L.Zu et.al [62] observes that the popular and several restricted forms of task 

allocation issue are NP problems. It searches a feasible matching scheme to realize 

corresponding object models. Then their approach adopted Hungarian algorithm to 

realize task allocation of the robots based on two-dimensional assignment problem 

aiming at multi mobile robot system. It resolves the problem for the robot how to get 

the tasks and realize them at minimal cost and designed an emulational test bed 

based on the multi-robot material flow system of the storages and docks which made 

distributed Programming using LAN. They also made some emulational experiments 

on Hungarian algorithm and compared it with the other algorithms. 

I. Combinatorial bids based MRTA method  

L. Lin and Z. Zheng [63] is conclude that coordinating several robots to 

cooperatively accomplish relatively complex tasks is not an easy issue. The author 

presents a combinatorial bids based MRTA method. An important basis to this 

technique is the capability category and capability vector formal description method. 

As the typical auction (or combinatorial auctions) based mechanisms have some 

inherent disadvantages, they propose a novel method: combinatorial bids based 

mechanism. This new method provides an explicit cooperation mechanism to the 

bidding robots so that they can form a subset to bid for complex tasks. Validation of 

this approach is based upon the Player/Stage system. They carefully designed a desk 

and chair moving scenario to test the algorithm and compare it with the typical 

auction based method. Robots and tasks are both highly heterogeneous embodied in 

their variant capability vector. Carefully designed simulations indicate that the 

combinatorial bids based method is more efficient than the typical auction based one. 

J. Optimal robot selection and work station assignment for a CIM system 

Jack and Bernard [64] use a mathematical program and solution algorithm develop 

an optimal robot selection and work station assignment for a computer integrated 

manufacturing system. In specific, the model considers selection of a proper mix of 

multiple-type robots such that operational requirements from a given number of 

work stations are satisfied at minimal system cost. Each robot is characterized by its 
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fixed charge, and subject to limits on machine time and work envelope. Each work 

station has known demands on both robot machine time and work space. The model 

is formulated as a pure 0-1 mathematical program and is shown harder than two-

dimensional bin packing, a well-known NP-hard problem. A three-phase 

optimization algorithm is implemented and tested by solving 450 randomly 

generated problems. Computational results indicate the solution algorithm is 

effective in solving problems of a practical size. 

K. Simulated annealing for multi-robot hierarchical task allocation with minmax 

objective 

Mosteo and L.Montano [65] study algorithms for minimizing the worst-case cost of 

any agent in a multi-robot team in time critical missions. They propose a generalized 

model for flexible mission planning, using hierarchical task networks as the planning 

framework, and the multiple traveling salesman problems as the cost model for task 

allocation. Two approximated solutions are provided and compared for this NP-hard 

problem, one based in current research in market-based techniques, and another one 

based in the optimization technique known as simulated annealing. The authors 

provide simulation results which back the model described and the proposed 

algorithms. 

L. Task assignment for a small batch flexible assembly cell incorporating multiple 

robots 

Boneschanscher [66] presents a task assigner for a Flexible Assembly Cell (FAC) 

incorporating multiple robots and a transport system. The FAC can assemble a wide 

range of products in small batches. Parts are fed on pallets and assembled on 

fixtures, which both can route through the cell. The FAC has a limited buffer 

capacity. The task assigner determines a schedule for each batch, with minimum 

assembly time as the main objective. Task assignment is done for a limited time 

horizon, using a goal directed search. The time horizon is determined by the limited 

buffer capacity of the FAC. While assigning tasks to resources in the cell, the task 

assigner determines an appropriate assembly sequence and allocates tools such as 

grippers to workstations in the cell. 
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Sahu and Tapadar [67] attempt to solve the generalized “Assignment problem” 

through genetic algorithm and simulated annealing. The generalized assignment 

problem is basically the “N men- N jobs” problem where a single job can be assigned 

to only one person in such a way that the overall cost of assignment is minimized. 

While solving this problem through GA, a unique encoding scheme is used together 

with Partially Matched Crossover (PMX). An experimental investigation into solving 

the Assignment model using GA and Simulated Annealing (SA) is presented.  

 
Although many significant results have been obtained by the researchers in the area of 

MRS, a great deal of work remains to be done in order for the behavior of the team 

of robots and utilized in dynamic environment. The idea of task allocation remains a 

necessary component of this challenge. A survey of this field was included in this 

research work. Productive, efficient, and dynamic approaches to assignment of tasks 

to different robots will result in further utilization of multi-robot systems.  

 
Task allocation and decomposition methodologies will serve as guidelines to allow 

MRS to gain efficiency. It is significant to spend time to realize different 

methods and apply in the different applications. Some progress has been made in the 

last few years to extend and apply MRTA in the dynamic environment. With further 

research, they should become more broadly applicable and more competitive with 

the single robot systems. 

2.5 Summary 

In this chapter, the various lines of work relevant to this thesis are introduced. A 

brief overview of research on strategies, selection of robots and task allocation 

approaches are provided in this chapter. These fields are too large to be covered 

adequately within the space of a few pages, but the review is broadly categorized on 

strategies, selection and task allocation of robots. The overall goal is to construct 

reliable strategies, select the suitable robots and optimized the task allocation to 

robots that are reasonably well-specified. All of the above research works have, in 

one way or the other, attempted to solve this problem. 



              
 

       PROBLEM STATEMENT AND 
STRATEGIES  

 
 

 

 

 

 



48 

 

CHAPTER 3 
 

Problem Statement and Strategies  
3.1 Introduction 

Robotic installations, for obvious reasons, are costly propositions at the first glance. 

There has been a very strong focus on efficient robot operation in industries in order 

to make the system economically competitive and responsive. These issues, 

especially in MRS are too sensitive to make it feasible for cutting edge industries. 

However, the system and the application scenario should be thoroughly understood 

before creating the MRS. 

 
In order to make an MRS work as per the need and to make it efficient and 

competitive with available resources, there ought to be certain design and operational 

strategies. These strategies can be developed/selected and implemented to make the 

system work in the best possible manner. Strategies, as such, do change with the 

situations encountered and can be different even for the same situations. The 

following sections present the focused area of the research work and the various 

possible strategies that may be adopted in the envisaged MRS. 

 
A significant challenge in many dynamic multirobot application domains is the lack 

of complete and reliable information. Coordination strategies need to be a lot more 

flexible if all information is not known a-priori. In certain domains, often much is 

unknown about the prevailing conditions of the environment. Hence, robots need to 

rely on their sensors to discover these conditions. Thus, the information will only be 

good as the sensing capability and thus uncertainty is introduced.  
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The dynamic nature of the environment further exacerbates the challenge since 

discovered information cannot be relied on as perfect or sustained. A successful 

coordination mechanism needs to take all of this into account and deal with the 

challenges of imperfect information in an efficient manner. Some of the real life 

situations may be as follows. 

 
• Industries have variety of tasks to perform either at the same time or at 

different time thereby requiring flexible automation agents to assist in 

functioning. 

• Some tasks require multiple skills and capabilities whereas some tasks may 

require multiple agents’ simultaneous or cooperative effort for its 

accomplishment 

• Sometimes multiple types of agents are required to enhance throughputs and 

efficiency of the system. 

• Selection of candidate robots should be based on the task needs as well as the 

economic consideration of the system in order to make the system 

commercially viable and operationally efficient. 

 
The aforementioned industrial situations attract a good number of objectives to be 

handled at the same time. Some of the objectives can be precisely stated and 

quantified whereas some are sparsely stated. In order to handle the problems to the 

benefit of industries and users it is important that the problem is looked at with a 

broader and strategic perspective. 
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3.2 Problem Statement 

After going through the related literature in the focused area and in the context of the 

broad objective as mentioned in section1.10, the problem for the present work is 

described in the following lines. 

i) To identify certain areas of industrial operations where multiple robots 

are/can be employed to enhance the productivity and system efficiency. 

ii) To adopt /develop strategies for deployment of multiple robots for industrial 

applications. 

iii) To develop methodology(ies) in a systematic and scientific manner for 

selection of appropriate type(s) of robots for the intended application and to 

recommended the suitable one for a specific situation. 

iv) To explore and develop various task allocation procedures in MRS with 

different operating conditions and resource types with a view to minimize 

total cycle time and with better utilization of the resources. 

v) To recommended appropriate methodologies for selection of robots and 

assignment of tasks to the candidate robots under various working conditions 

and for different problem sizes.   

 

Since a number of strategies, selection methods for robots and assignment rules are 

applied to solve the problem so envisaged, a comparative study is necessiated. 

3.3 Strategies for accomplishing tasks by robots 

Strategies for manipulating objects in our everyday life are adopted. While 

screwing the cover onto a jar, usually one holds the jar with one hand and the 

cover with the other. It may wiggle the cover if it is detected that the jar's axis of 

symmetry is not aligned with that of its cover, or to think that the threads are not 

matching right. A similar process occurs when one tries to insert a key into a 

lock, or whenever one tries to assemble two objects, one of which fits into the 

other. 
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Figure 3.1 Abstract block diagram of MRS environment 

 
Some strategies involve rigid objects while others may operate on flexible objects 

like shoe-laces or articles of clothing. Some, like the assemblies mentioned above, 

seem to involve a constant and complicated monitoring of forces and positions. 

Others work with less complex sensing. In fact, at one extreme, there are tasks 

where strategies, that seem to require no sensing at all, are used. 

 
Figure 3.1 shows an abstract depiction of a typical task. The agent can be a 

human brain or a computer process. This agent interacts with and controls a 

plant - arms and legs in the former case, a robot manipulator in the latter. The 

plant, in turn, is assumed to be in contact with some objects which are being 

manipulated.  

3.3.1 The design and analysis of strategies 

There are two aspects of strategies that are quite important. The first involves the 

design of strategies to accomplish tasks in a given domain. The second involves the 

analysis of a strategy to understand its scope and applicability. The environment 

geometry may change between tasks. In some sense, it is this variation that requires 

using a strategy, by which to mean an abstract, generalized, parametrized description 

of what to do in order to accomplish a task. There are many important components of 

how strategies can handle variations, a few of which are mention below. 
 
1.Manipulation strategies rely on planning to predict the future outcome(s) of an 

action. In task domains where models of the world and models of the interactions 

illustrated by the arrows in Figure 3.1 are accurate, planning could play an important 

role. 
 

Agent Plant Object Environment 
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2. Strategies also involve sensing variables that relate to accomplishing a given task. 

If a strategy does not have access to accurate models which allow one to predict what 

might happen when an action is executed, then it must rely on sensing to find out. If 

one can sense such task relevant variables often enough, and exercise actions to 

guide the evolution of the task in the right way, then sensing can compensate for the 

lack of planning capability. 

3. Strategies can also use task mechanics to accomplish a task successfully. Tasks 

that can be executed in a purely sensorless fashion, and special-purpose mechanisms 

that are built to execute a single task passively, illustrate that task mechanics can be 

exploited quite effectively in some cases. 

4. Some strategies seem to rely on randomness to accomplish their goals in an 

expected (or average) sense. In some tasks, such strategies execute (on the average) 

faster than other strategies that prepare for the worst case and seek to produce 

guaranteed solutions. 

3.4 Task allocation in MRS 

To accomplish the desired tasks, it is required to judiciously plan and sense, exploit 

task mechanics where possible, and rely on randomness when guaranteed approaches 

fail. It is not a-priori clear, however, how to design strategies that involve trade-offs 

between all of these components. The analysis of strategies is a much more daunting 

task, especially when one considers the variations that must be taken into account. 

There are many interesting questions that can be asked regarding the scope and 

performance of a strategy. For example, one might be interested in how well a 

strategy handles uncertainty and whether it performs equally well in the face of small 

or large errors in control and sensing. The performance of the system under changing 

environment should also be a point of consideration. Handling uncertainty that 

cannot be predicted or taken care of during the design phase is also another 

important issue during the task accomplishment. 

 

 



53 

 

3.5 Types of strategies 

There can be number of strategies to handle real life problems. Some of the strategies 

that are considered for the present MRS are: 

i) Task allocation strategy, and 

ii) Robot operation strategy 

3.5.1 Task allocation strategies 

There can be a number of strategies for task allocation amongst a number of robots 

constituting the MRS with a given goal. The task allocation can be made depending 

upon the types of robots available, type of tasks to be carried out, nature of operation 

to be performed, economic considerations, if any, and time of completion as per 

target. One of the following strategies can be advantageously adopted for situations 

in place. 

i) motivation-based, 

ii) mutual inhibition, 

iii) team consensus, 

iv) no allocation, and 

v) auction-based. 

The first strategy, motivation-based task allocation, uses an internal motivation 

mechanism to cause behavior changes. Parker’s ALLIANCE [68] and stagnation 

recovery by Kube and Zhang [69] are two best-known examples. Motivation-based 

cooperation distributes the task allocation process equally among members of the 

team, and emergent team behavior results from simple control mechanisms within 

each agent. For example, an agent may be triggered to change its own task 

assignment because excessive time has elapsed without task progress.  

 
In task allocation through mutual inhibition, the second strategy, robots directly 

inhibit those around them from being chosen for a task, as in Werger and Matari´c’s 

Broadcast of Local Eligibility (introduced in [70] and expanded in [71]) and 

emergency handling by Ostergaard, Matari´c, and Sukhatme [72]. These mutual 

inhibition techniques require regular broadcasts by each robot communication 
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overhead for m tasks and n robots and a shared global representation of the available 

tasks. Mutual inhibition is not considered viable for task allocation with low 

communication costs. 

 
The third strategy, task allocation by team consensus, enables entire teams of robots 

to agree on a team strategy or formation. This has been used by Stone and Veloso to 

coordinate teams for RoboCup [73]. Jones and Matari´c have explored multi-robot 

coordination where robots use only their internal state with no communication [74] 

[75]. Thus, the robots coordinate through the use of shared (but locally derived) 

models. The team consensus approach is not considered as a solution to the 

recruitment problem for two reasons: it relies on agents modeling the other agents in 

what may be a dynamic team, and there is no explicit call for help to begin the 

recruitment process.  

 
Some approaches use a fourth type of strategy, no allocation, to coordinate robot 

teams, and it is assumed that all robots cooperate on the same task.  

 
In the fifth strategy, auctions, robots explicitly negotiate for tasks through a bidding 

process. A common approach to auctions is the Contract Net Protocol (CNP, 

introduced in [76] and [77]) with a first-price auction. In CNP, an announcement 

about a new task is broadcast to a team of robots. Each robot then returns a bid that 

specifies how well-suited it is for the task. A winner is selected from the bids; in the 

case of a first-price auction, the bid with the best utility (or lowest cost) is chosen. 

Auction-based approaches allow agents in the team to maximize utility or minimize 

cost that results from the task assignment. 

3.5.2 Task assignment in MRS through auction 

An auction is a process of buying and selling goods or services by offering them up 

for bid, taking bids, and then selling the item to the winning bidder. In economic 

theory, an auction may refer to any mechanism or set of trading rules for exchange. 

There are several variations on the basic auction form, including time limits, 

minimum or maximum limits on bid prices, and special rules for determining the 
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winning bidder(s) and sale price(s). Participants in an auction may or may not know 

the identities or actions of other participants. Depending on the auction, bidders may 

participate in person or remotely through a variety of means, including telephone and 

the internet. The seller usually pays a commission to the auctioneer or auction 

company based on a percentage of the final sale price. The different types of auctions 

are as follows:  

 
• English auction is also known as an open ascending price auction. This type 

of auction is arguably the most common form of auction in use today. 

Participants bid openly against one another, with each subsequent bid higher 

than the previous bid. An auctioneer may announce prices, bidders may call 

out their bids themselves (or have a proxy call out a bid on their behalf), or 

bids may be submitted electronically with the highest current bid publicly 

displayed. In some cases a maximum bid might be left with the auctioneer, 

who may bid on behalf of the bidder according to the bidder's instructions. 

The auction ends when no participant is willing to bid further. Alternatively, 

if the seller has set a minimum sale price in advance (the 'reserve' price) and 

the final bid does not reach that price the item remains unsold. Sometimes the 

auctioneer sets a minimum amount by which the next bid must exceed the 

current highest bid. The most significant distinguishing factor of this auction 

type is that the current highest bid is always available to potential bidders. 

The English auction is commonly used for selling goods, most prominently 

antiques and artwork, but also secondhand goods and real estate.  

 

• Dutch auction is also known as an open descending price auction. In the 

traditional Dutch auction the auctioneer begins with a high asking price 

which is lowered until some participant is willing to accept the auctioneer's 

price. The winning participant pays the last announced price. The Dutch 

auction is named for its best known example, the Dutch tulip auctions. In 

addition to cut flower sales in the Netherlands, Dutch auctions have also been 
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used for perishable commodities such as fish and tobacco. In practice, 

however, the Dutch auction is not widely used.  

 
• Sealed first-price auction is also known as a first-price sealed-bid auction 

(FPSB). In this type of auction all bidders simultaneously submit sealed bids 

so that no bidder knows the bid of any other participant. The highest bidder 

pays the price they submitted. This type of auction is distinct from the 

English auction, in that bidders can only submit one bid each. Furthermore, 

as bidders cannot see the bids of other participants they cannot adjust their 

own bids accordingly. This kind of bid produces the same outcome as Dutch 

auction. Sealed first-price auctions are commonly used in tendering, 

particularly for government contracts and auctions for mining leases.  

 

• Vickrey auction,  is also known as a sealed-bid second-price auction. This is 

identical to the sealed first-price auction except that the winning bidder pays 

the second highest bid rather than their own. This is very similar to the proxy 

bidding system used by eBay, where the winner pays the second highest bid 

plus a bidding increment (e.g., 10%). Although extremely important in 

auction theory, Vickrey auctions are rarely used in practice.  

The auction algorithm 

The auction algorithm is an intuitive method for solving the classical assignment 

problems. It outperforms substantially its main competitors for important types of 

problems, both in theory and practice, and is also naturally well suited for parallel 

computation. In the process, the user submits jobs to the auctioneer to start the 

process. An auctioneer is responsible for submitting and monitoring jobs on the 

user’s behalf. The auctioneer creates an auction and sets additional parameters of the 

auction such as job length, the quantity of auction rounds, the reserve price and the 

policy to be used. The auctioneer informs the robots (Robot-1, Robot-2 and Robot-3) 

that an auction is about to start. Then, the auctioneer creates a call for proposals, sets 

its initial price, and broadcasts calls to all the robots (Robot-1, Robot-2 and       

Robot-3). Robots formulate bids for selling a service to the user to execute the job. 
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The robots evaluate the proposal; they decide not to bid because the price offered is 

below what they are willing to charge for the service.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Flowchart of the auction for task 
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This makes the auctioneer to increase the price and send a new call for proposal with 

this increase in the price. Meanwhile, the auctioneer keeps updating the information 

about the auction. In the second round, Robots are decided to bid. The auctioneer 

clears the auction according to the policy specified beforehand. Once the auction 

clears, it informs the outcome to the user and the robots. The flowchart for the 

process is presented in Figure 3.2. 

The auction algorithm includes the following steps: 

In general cases, the auction proceeds in five steps  

1) Task announcement. 

2) Evaluations. Each candidate evaluates the cost and gain to execute the task 

then determine its bids. 

3) Bid submission. Each candidate publishes its “score” representing task-

specific fitness to the auctioneer. 

4) Close of auction. The auctioneer processes the bids, determines the winner, 

and notifies the bidders. 

5) Progress monitoring /contract renewal. 

Such algorithm can deal with task allocations when the environmental information 

is only partly known and the failure of some candidates is tolerable. The method can 

be modified to fit multi-task allocation problem. However, the tasks may change in a 

dynamic environment so that even single-item-multi-round auction algorithms and 

combinatorial auction are not suitable for the situations in which the tasks change 

rapidly, for example, the cooperative hunting for a high-speed target. The hunters 

might arrive to a former assigned destination whereas the target had already 

wandered to some other places. 

Auction algorithm for task allocation 

1. An auctioneer that discovers a task commences an auction by announcing the 

task’s location and requesting bids from other robots. 

2. Every robot that is within communication range of the auctioneer robot 

receives the information about the task being auctioned. 
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3. A robot that receives information about the task being auctioned can respond 

with a bid if only if it has at most one existing task in its task list. The value 

of the bid is given by the sum of straight line distances from the robot’s 

current location to the auctioned task’s location, via the location of the task, if 

any, on the robot’s task list. 

4. The auctioneer continues to receive bids till the time for that auction expires. 

The auctioneer robot then selects the top n bidders (n of the closest robots to 

the task) as the auction’s winners. If the auctioneer receives m bids, where 1 

≤ m < n, it selects only m winners. If the auctioneer does not receive any bids 

it restarts the auction. 

5. The auctioneer informs the winning robots that they were selected to perform 

the task, while the robots that lost the auction are informed that they were not 

selected to perform the task. The winning bidder with the lowest valued bid 

(robot furthest from the auctioneer) is informed by the auctioneer that it is 

going to be the last robot to visit the task for the current auction. 

6. Each selected robot visits the task to partially complete it and deposits 

pheromone at the location corresponding to the task. The updated pheromone 

value is communicated to other robots that have been selected to perform the 

task, but have not yet performed the task. 

7. A task is considered complete when the amount of pheromone associated with 

it reaches a threshold value of τ . 

8. If the last robot visiting the task observes that the pheromone value of the task 

is < τ  after it has executed the task, it starts another round of auction for the 

same task. On the other hand, if the last robot observes the pheromone value 

of the task is > = τ , it considers the task to be completed. The robot then 

communicates the task completion information for the task at that location to 

other robots within its communication range. This prevents robots from 

rediscovering the same task and initiating another auction for the task later 

on. 
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The algorithm described here can be utilized in task allocation in multi-robot 

applications, and is particularly suitable for parallel computation. This approach 

attempts to find the best assignment between tasks and robots, while maximizing the 

total benefit. It iterates between robots and in each iterations tries to assign a task to a 

robot who offers the most. In consecutive iterations, other robots may bid for other 

tasks and if more than one bid is available for the same task, it will increase the cost 

of task until finally just one task-robot pair match takes place, (iterative 

improvement). The iteration terminates when all robots are pleased with their match, 

otherwise an unhappy robot will bid higher for another task and this process will 

continue. Although auction algorithm may have some similarities to the free market 

approach, there is a little difference. One difference is that in the free market 

approach, agents can cooperate in order to gain a maximum profit for all of them, 

however in the auction algorithm every robot is considered rival. The auction 

algorithm uses an exclusive mathematical model for all the applications, while the 

free market approach does not. In addition, the free market technique is based on the 

collection of heterogeneous agents, while in the auction algorithm the robot set is 

homogeneous. 

3.5.3 Robot operation and dynamic task assignment 

The dynamic task allocation problem, i.e., the mapping from bids to tasks, can be 

performed in numerous ways. The focus is limited here to Markovian systems, where 

the task allocation mapping for a given robot is based on the mapping between that 

robot’s current task assignments and every other robot’s current bid on each task, to 

the given robot’s new task assignment, as shown in Table 3.1. Given each robot’s bid 

on each task, and its current task engagement, the new task assignment of each robot 

is required to be determined. Given the large space of possibilities, only the extreme 

cases of no commitment and full commitment, and no coordination and full 

coordination for each of the robots are considered. The combination of these 

extremes results in four task allocation strategies as shown in Table 3.2. Along the 

commitment axis, a fully committed strategy meant a robot would complete its 

assigned task before considering any new engagements, while a fully opportunistic 
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strategy allowed a robot to drop an ongoing engagement at any time in favor of a 

new one. Along the coordination axis, the uncoordinated (individualistic) strategy 

meant each robot performed based on its local information, while a coordinated 

strategy simply implemented mutual exclusion, so only one robot could be assigned 

to a task, and no redundancies were allowed. It is noted that this notion of 

coordination is simple, and it is not intended to represent explicit cooperation and 

coordination strategies (i.e., the fixed time-cost was 0). During the process three new 

tasks appear every twelve time-steps at random positions on the grid. The tasks are 

structured so that one robot is sufficient for completion of an individual task 

assignment. 

Table 3.1 An example of task allocation scenario 

 

 

 

 

 

 
 

 

Table 3.2 The task allocation strategies 

Commitment            Coordination  

 Individual Mutually exclusive 

Commitment Strategy-1 Strategy-2 

Opportunity Strategy-3 Strategy-4 
 
Thus, mutual exclusion is the simplest yet effective form of coordination. As an 

example, the fully committed mutually exclusive strategy is as follows: 

1. If a robot is currently engaged in a task, and its bid on that task is greater than 

zero, remove the row and column of the bid from the table, and set the robot’s new 

assignment to its current one. 

Current engagement Bids A B C D New engagement 

A Robot-1 6 4 2 5 ? 

   -- Robot-2 4 1 0 3 ? 

C Robot-3 7 2 3 2 ? 
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2. Find the highest bid in the remaining table. Assign the corresponding robot to the 

corresponding task. Remove the row and column of the bid from the table. 

3. Repeat from step 2 until there are no more bids. In case of individualistic 

(uncoordinated) strategies, the same algorithm is run on a separate table for each 

robot. In the opportunistic (uncommitted) case, step 1 above is skipped. 

 
In the context of multi-robot coordination, dynamic task allocation can be viewed as 

the selection of appropriate actions [78] for each robot at each point in time so as to 

achieve the completion of the global task by the team as a whole. From a global 

perspective, in multi-robot coordination, action selection is based on the mapping 

from the combined robot state space to the combined robot action space. For 

homogeneous robots, it is the mapping; 

S|R| → A|R| 

Where, S is the state space of a robot, |R| is the number of robots, and A is the set of 

actions available to a robot [79]. In practice, even with a small number of robots, this 

is an extremely high-dimensional mapping, a key motivation for decomposing and 

distributing control.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Evaluation criteria 

 
Based on the approach introduced in [80], the task allocation problem is decomposed 

into the following three steps: 
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1. Each robot bids on a task based on its perceived fitness to perform the task; 

2. An auctioning mechanism decides which robot gets the task; 

3. The winning robot’s controller performs one or more actions to execute the task. 

 
The above decomposition is aimed at constructing a general formulation for the 

multi-robot coordination problem. In this formulation, a bidding function determines 

each robot’s ability to perform a task based on that robot’s state. Next, the task 

allocation mechanism determines which robot should perform a particular task based 

on the bids. Finally, the robot controllers determine appropriate actions for each 

robot, based on the robot’s current task engagement. This partitioning, as illustrated 

in Figure 3.3, serves two purposes: it reduces the dimensionality of the coordination 

problem, and it reduces the amount of inter-robot communication required. We now 

have the mapping 

B|R||T | → T |R| 

Instead of mapping, namely from all robots’ bids B for all tasks T to a task 

assignment for each robot, this overall mapping is called the task allocation strategy 

for the system as a whole. The overall mapping is treated here as a global, 

centralized process (as depicted in Figure 3.4), but distributed auctioning 

mechanisms [81,82], blackboard algorithms [83], and cross-inhibition of behaviors 

[84] are some validated methods for distributing the task allocation function. In this 

methodology, the focus is on what the task allocation function should be, rather than 

on how it should be distributed. The above framework is a general way that dynamic 

task allocation for MRS can be formulated. 
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Figure 3.4 Reducing the dimensionality of multi-robot coordination 

3.6 Summary 

In this chapter mathematical models are developed for creating strategies for the 

robots. Considering the environment of tasks and type of robots in mind different 

strategies are identified for task as well as for robots. Finally the suitable strategies 

are sorted out for robots. An auction based algorithm is discussed in this chapter for 

allocation of robots to the tasks. A procedure for auction algorithm is outlined and 

the flowchart is presented.  
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CHAPTER 4 
 

Selection of Robots  
4.1 Introduction 

Recent developments in information technology and engineering sciences have been 

the main reason for the increased utilization of robots in a variety of advanced 

manufacturing facilities. Robots with vastly different capabilities and specifications 

are available for a wide range of applications. The selection of robots to suit a 

particular application and production environment from among the large number of 

robots available in the market has become a difficult task. Various aspects such as 

product design, production system, and economics, need to be considered before a 

suitable robot can be selected. The selection problem is particularly relevant in view 

of the likely lack of experience of prospective users in employing a robot. Indeed, 

robots are still a new concept in industry as a whole, and so it is not unusual for an 

industry to be a first-time robot purchaser.  

 
With the advancement of technology, production systems are changing from 

traditional human dependent systems to intelligent automated systems. Industrial 

Robots have been instrumental in making the production systems more efficient, 

productive, responsive and flexible. In large production systems, multiple robots of 

different types, capacities and capabilities are employed for accomplishing the 

desired tasks. The flexibility and scalability of the system is greatly enhanced by use 

of multiple types of robots. The concept of using multiple robot types comes from 

the availability of those robots in the market. However the use of multiple type 

robots in a single workcell should not be done in random manner. It is desired that all 

the, devices in a workcell are controlled and coordinated properly through a single 

point (host) so that the workcell behaves like a single entity. Hence it is important to 
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have the compatibility of the robots with the host. This calls for robot selection for 

the intended workcell. Since a multirobotic workcell is a cost intensive proposition 

the planning of such workcell should be done correctly. The selection of robots and 

subsequently the allocation of these robots for accomplishing the goal become prime 

issues in making the system efficient both from operation and economy view points. 

There is good number of tools available for optimizing the general allocation 

problems. However, if the robots under consideration are in large number possessing 

higher capability and the number of tasks to be carried out is large, then the number 

of alternatives for allocation becomes exorbitantly large, thereby making the 

allocation problem an NP-hard. Therefore, the optimization tool to be used for such 

problems need to be chosen carefully and correctly. 

 
The articulate or jointed arm robot (or sometime called Anthropomorphic arms) 

closely resembles the human arm. The mechanical structure has at least three rotary 

joints which forms a polar coordinate system. The basic three rotary joints able Arm 

swap, shoulder swivel and elbow rotations. Additional 3 revolute joints (Roll, Yaw, 

and Pitch) and one prismatic joint allow the robot to point in many directions, and 

then reach out some radial distance. 

 
This structure is very flexible and has the ability to reach over obstructions. It can 

generally achieve any position and orientation within the working envelope. As such 

articulate robots are used for a wide range of applications including paint spraying, 

arc and spot welding, machine tending, etc. For examples, the articulate robot allows 

the welding torch to be manipulated in almost the same fashion as a human being 

would manipulate it. The torch angle and travel angle can be changed to make good 

quality welds in all positions. Articulate robots also allow the arc to weld in areas 

that are difficult to reach. In addition, articulate robots are compact and provide the 

largest work envelope relative to their size. Typical articulate robots have five or six 

free programmable arms or axes. As mentioned, the flexibility of the articulate 

robots makes them well suit for a wide variety of industrial application. But, it is not 

easy to control. When driving these robots in their natural co-ordinate system (joint 

space) the motion of the robot from one point to another can be difficult to visualize 
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as the robot will move each joint through the minimum angle required. This means 

that the motion of the tool will not be a straight line. 

4.1.1 Robot specification 

In order to select a robot for a specific application one must look at some important 

specification of robot. Some of the pertinent parameters of an industrial robot 

specification are as follows. 

Accuracy: When the robot's program instruct the robot to move to a specified point, 

it does not actually perform as per specified. The accuracy measure such variance 

that is, the distance between the specified position that a robot is trying to achieve 

(programming point), and the actual X, Y and Z resultant position of the robot end 

effector. 

Repeatability: The ability of a robot to return repeatedly to a given position. It is the 

ability of a robotic system or mechanism to repeat the same motion or achieve the 

same position.  

Degree of Freedom (DOF): Each joint or axis on the robot introduces a degree of 

freedom. Each DOF can be a slider, rotary, or other type of actuator. The number of 

DOF that a manipulator possesses thus is the number of independent ways in which a 

robot arm can move.  

Resolution: The smallest increment of motion or distance that can be detected or 

controlled by the robotic control system. It is a function of encoder pulses per 

revolution and drive (e.g. reduction gear) ratio.  

Envelope: A three-dimensional shape that defines the boundaries that the robot 

manipulator can reach; also known as reach envelope.  

• Maximum envelope: the envelope that encompasses the maximum designed 

movements of all robot parts, including the end effector, workpiece and 

attachments. 

• Restricted envelope is that portion of the maximum envelope which a robot is 

restricted by limiting devices. 

• Operating envelope: the restricted envelope that is used by the robot while 

performing its programmed motions. 



68 

 

Reach: The maximum horizontal distance from the center of the robot base to the 

end of its wrist. 

Maximum speed: A robot moving at full extension with all joints moving 

simultaneously in complimentary directions at full speed. The maximum speed is the 

theoretical values which does not consider under loading condition. 

Payload: The maximum payload is the amount of weight carried by the robot 

manipulator at reduced speed while maintaining rated precision.  

 
Three groups of attributes, as shown in Table 4.1, are used to evaluate robots.The 

attributes can be grouped under engineering attributes, vendor-related attributes and 

cost attributes. 

 1. Engineering Attributes: determine the ability of robots to perform tasks and 

include load capacity, speed, repeatability, and accuracy. 

2. Vendor-related Attributes: determine the attractiveness of robot vendors. 

3. Cost Attributes: determine total costs of installing and operating robots. 

Table 4.1 Attributes used for evaluating robots 

Engineering Attributes 
 

Vendor-Related 
Attributes 

Cost Attributes 

• Load Capacity 
• Repeatability 
• Velocity 
• Programming Method 
• Vertical Reach 
• Horizontal reach 
• Memory size 
• Accelaration 
• Deceleration 
• Degrees of freedom 
• Reliability 
• Diagnostic capability 
• Programming 

Language 
• Software 
• Control type 
• Recovery from error 

• Brand 
• Availability of Training 
• Quality of Training 
• Documentation 
• Installation Support 
• Spare parts avalibility 
• Installation leadtime 
• Pre-sale services 
• Servicing ability 
• Warranty 

• Robot Cost 
• Installation Cost 
• Tooloing Cost 
• Energy 

Consumptiom 
• Labour Cost 
• Maintenance cost 
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Figure 4.1 Robot engineering attributes and performance of production systems 

Efforts need to be extended to determine attributes that influence robot selection for 

a given industrial application, using a logical approach to eliminate unsuitable 

robots, and for selection of a proper robot to strengthen the existing robot selection 

procedure. Pertinent attributes and the alternative robots involved are to be 

identified. Values of the attributes and their relative importance are to be obtained. 

An objective or subjective value, or its range, may be assigned to each identified 

attribute as a limiting value, or threshold value, for its acceptance for the considered 

robot selection problem. An alternative robot with each of its selection attributes, 

meeting the acceptance value, may be short-listed. After short-listing the alternative 

robots, the main task to choose the alternative robot is to see how it serves the 

attributes considered. Engineering attributes, as shown in Figure 4.1, have a critical 

effect on performance of production systems. 

4.2 Manipulator attributes 

Proper identification of manipulator attributes is critically important when comparing 

various alternative robots. Whenever a robot user desires to purchase or select a new 

robot, this identification of attributes attain significant importance. However, in most 

cases the user needs to be assisted in identifying the robot attributes logically. For the 
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purpose of ranking, a robot manipulator can be specified by a number of quantitative 

attributes such as payload capacity, repeatability, horizontal reach, etc. However all 

attributes cannot be expressed quantitatively. Such attributes may be built quality, after 

sales service etc. These attributes may be expressed by a rate on the scale (say 1-10). 

There are some attributes which are informative in nature, such as type of drive 

(electrical, pneumatic etc.), the coordinate system (polar, cylindrical, rectangular etc.), 

which may be denoted by some number whose numerical value will have no 

significance .There are some attributes for which the quantification is not available. For 

instance, reliability can be expressed in terms of Mean Time Between Failure (MTBF) 

or Mean Time to Repair (MTTR) methods. Attributes like life expectancy may be 

estimated through experimentation, if not mentioned by the manufacturer. The 

identification of various pertinent attributes and their values, rates and estimates help 

the user for create a database for storage and retrieval which can be used in different 

formats for different purposes by different people.  

Table 4.2 Manipulator attributes 

Attribute type Parameter 

General  Price range, Type of robot and Coordinate system 

Physical  Type of actuators, Weight of the robot, Size of the robot, 

Type of grippers supported, Number of axes, Space 

requirements of the robot 

Performance Payload of the robot, Workspace, Stroke, Maximum end 

effector speed, Accuracy, Repeatability, Resolution 

Structure/architecture  Degree of freedom ,Type of joints 

Application Working environment 

Sophistication  Maintainability and Safety features 

Control/feedback 

system 

Control of robotic joints, Gripper control, Sensors, 

Programming method, Number of input and output channels 

of the controller 

Availability/reliability  Downtime and Reliability 
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These data individually or collectively help the user to select the most suitable robot 

for a task that he intends to perform. The computational simplicity of the equations of 

motion is also an index of performance characteristics of robot. This simplicity has 

been identified as an attribute. The structure of the manipulator is very important 

feature of the manipulator and also affects the performance. These attributes get their 

fair representation in formulating the present model. The robot operating in its 

workspace does not operate with same ease everywhere. This ease of operation, termed 

as manipulability, can be quantified as manipulability measure and can be used as an 

attribute. The motion provided by actuators and motion gained with the basic structure 

of robot, i.e., motion transformation is also an important robot characteristics. 

Appropriate quantification methods are required to be standardized to guide the 

manufacturers for quantifying the attributes. The main attributes have been broken 

down to sub-attributes and sub-sub-attributes so that the robot manipulator can be 

identified in very precise and detailed manner. The manipulator attributes based on its 

broad area as general parameters, physical parameters, performance based, etc. are 

given in Table 4.2.  

4.3 The robot selection process 

The attributes can be coded as per the parameters coding scheme in Table 4.3. The 

information supplied by the manufacturer to the user is meager and it is required to be 

more elaborate. The ‘0’ represents that the information relating to the particular cell is 

not available, but it should be provided to make the database exhaustive. This coding 

scheme can be used as it is for the visual comparison between two robots up to certain 

extent. It allows faster comparison in various formats. The identification code in Table 

4.4 specifies the attribute information with the allotted code in the respective cells. 
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Table 4.3 Parameter coding scheme  

Parameter Parameter coding scheme Code 
General 1 2 3     0 9 4    
Physical 4 5 6 7 8 9 10 0 0 13 0 0 0 0 
Performance 11 12 13 14 15 16 17 5 0 0 2 0 5 0 
Structure 18 19      1 0     
Application 20       0      
Sophistication 21 22      0 0     
Control 23 24 25 26 27 28  0 0 0 1 0 0  
Availability 29 30      0 0     

 
Table 4.4 Identification code 

Sl. Attribute Information Code 
1.  Price range $ 19500 9 
2.  Type of robot 0 
3.  Swept area 50 deg/sec 4 
4.  Type of actuators 0 
5.  Weight of the robot 0 
6.  Reach 800mm 13 
7.  Type of grippers supported 0 
8.  Number of axes 0 
9.  Space requirements of the 0 
10.  Types of end effectors 0 
11.  Payload of the robot 4kg 5 
12.  Workspace 0 
13.  Stroke 0 
14.  Maximum end effector speed 1.0 m/sec 2 
15.  Accuracy 0 
16.  Repeatability ±0.1mm 5 
17.  Resolution 0 
18.  Degree of freedom 2 1 
19.  Type of joints 0 
20.  Working environment 0 
21.  Maintainability 0 
22.  Safety features - 0 
23.  Control of robotic joints 0 
24.  Gripper control - 0 
25.  Sensors 0 
26.  Programming method 0 
27.  Number of input channels - 0 
28.  Number of output channels - 0 
29.   Down time 0 
30.  Reliability 0 
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In general, the robot selection criteria include some key specifications such as; degrees 

of freedom, pay load, swept area, maximum reach, maximum speed, cost, and 

repeatability. Though most of the attributes have been identified, all of them may not 

be important for the intended application. There will be few attributes, which will have 

direct effect on the selection procedure. Some of the attributes may be selected as 

'pertinent attributes' as necessitated by the particular application and/or the user. The 

threshold values to these 'pertinent attributes' may be assigned by obtaining 

information from the user and the group of experts. The selection procedure focuses 

solely on the pertinent attributes leaving out the rest. On the basis of the threshold 

values, a shortlist of robots is obtained. This is achieved by scanning the database for 

those attributes, one at a time and eliminating the robot alternatives, which have one or 

more of these attribute values that fall short of threshold values. The step-wise 

activities for ranking and selecting the robots are presented by a flowchart (Figure 4.2). 

The robot selection architecture system is divided into four activities; i)operation 

requirements and data library of robots, ii) coding scheme, iii) selection of attributes, 

and iv) ranking of robots.  

 
The first step here will be to represent all the information available from the database 

about these satisfying solutions in the matrix form. Such a matrix is called as 

decision matrix, D. Each row of this matrix is allocated to one candidate robot and 

each column to one attribute under consideration. Therefore an element dij of the 

decision matrix D gives the value of jth attribute in the row (non-normalized) form 

and units, for the ith robot. Thus if the number of short-listed robots is ‘m’ and the 

number of pertinent attributes is ‘n’, the decision matrix is an m × n matrix. 

 
Normalization is used to bring the data within particular range that provides the 

dimensionless magnitudes. The normalized specification matrix has the magnitudes of 

all the attributes of the robots on the common scale of 0 to 1. An element nij of the 

normalized matrix ‘N’ can be calculated as; 
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Where, dij is an element of the decision matrix, ‘D’. Information is gathered in terms of 

a ratio from the user or the experts on the relative importance of one attribute with 

respect to another. All such pair-wise comparisons are stored in a matrix called relative 

importance matrix, ‘A’. Here, aij contains the relative importance of ith attribute over 

the jth attribute. A mini-database is thus formed which comprises of these satisfying 

solutions. The problem is now one of finding out the optimum or best out of these 

satisfying solutions.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Robot selection procedures 
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The first step is to represent all the information available from the database about these 

satisfying solutions in the matrix form called as decision matrix, ‘D’. Each row of this 

matrix is allocated to one candidate robot and each column to one attribute under 

consideration. An element dij of the decision matrix ‘D’ gives the value of jth attribute 

in the row (non-normalized) form and units, for the ith robot. The next step is 

construction of the normalized specification matrix, ‘N’, from the decision matrix, ‘D’. 

 
The symmetric terms of this matrix are reciprocals of each other while the diagonal is 

unity. This matrix is then modified into a representation that gives the relative weights 

of all attributes taken together so that the cumulative sum of the weights is equal to 

unity. The eigen vector method is used to find the weights. The eigen vector method 

seeks to find weight vector ‘w’ from the eigen value of the matrix, ‘A’. The weighted 

normalized matrix ‘V’ combines the relative weights and normalized specification of 

the candidates gives the true comparable values of the attributes. Therefore, 
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4.3.1 Ranking and selection procedure 

The weighted normalized matrix V is used to obtain the +ve and -ve benchmark 

robots. The benchmark robots are hypothetical robots, which are supposed to have the 

best and the worst possible attribute magnitudes. The method is based on the concept 

that the chosen option (optimum) has the shortest distance from the +ve benchmark 

robot and is farthest from the -ve benchmark robot. This measure ensures that the top 

ranked robot is closest to +ve benchmark robot and is farthest from -ve benchmark 

robot. The separation measures are calculated from +ve and -ve benchmark robots, 

respectively, as *
iS  and −

iS . These are given by 
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Then the relative closeness to the +ve benchmark robot, C*, which is a measure of the 

suitability of the robot can be calculated using equation (5).  

 )SS(SC i
*
ii

* −− +=                                        (4.5) 

A robot with the largest C* is preferable. Ranking of the candidate robots in 

accordance with the decreasing values of C* is done.  

4.4 Illustrative examples 

Now, to select the robots and validate the application of attribute based methods, three 

examples are considered. A pick-and-place task is considered with a suitable robot. 

The minimum requirement for this application is tabulated as shown in Table 4.5. 

After ‘elimination search’ using the generated database, a shortlist of candidate robots 

and their pertinent attributes are prepared as given in Table 4.6.  

Table 4.5 Minimum requirement of a robot 

Sl Parameter Values 
1 Load capacity minimum 4 kg 
2 Repeatability 0.5 mm 
3 Speed  at least 800 mm/s 
4 Types of drives (Actuators) electrical only  
5 Reach  500 mm 
6 Degree of freedom at least 4  
7 Swept area 2700 
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Table 4.6 Fixed costs and parameter values the short-listed robots 

 Robot-1 Robot-2 Robot-3 Robot-4 

Specification Puma (560-c) (Adept one XL) Fanuc Arcmate 
Sr.R.J 

Staubli RX 
130B 

DOF 6 4 6 6 

Pay Load 4 kg 12 kg 10 kg 12 kg 

Swept Area 320° 270° 300° 320° 

Max. Reach 878 mm 800 mm 1529 mm 1250 mm 

Max Speed 1.0 m/sec 1.2 m/sec 3.60 m/sec 3.09m /sec 

Cost $35,000 $19,500 $56,400 $60,000 

Repeatability  0.1 mm 0.025 mm 0.1 mm 0.03 mm 

4.4.1 Selection of robots on the basis of fitness 

An example is considered to validate the application of the attribute based selection 

process. This example problem considers four robots with seven attributes. Since 

repeatability has the smallest magnitude amongst the attributes, the reciprocal of its 

values are taken in the decision matrix ‘D’ along with the actual values of other 

attributes. The procedure for the selection of the robot is as follows:  

Step 1: Formation of decision matrix, ‘D’. 
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Step 2: Construction of relative importance matrix ‘A’.  
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Step 3: Calculation of maximum eigen value of ‘A'. 

where λ is the eigen value of A 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−

=λ−

6.1314555332
0.26.13140.6660.6660.50.50.33
0.21.56.13142110.5
0.21.50.56.13140.510.5
0.332126.131410.5
0.3321116.13141
0.5322216.1314

)IA( max

 

Since (A-λmax I) = 0,  and λ= 7.1314, 0.0066 + 0.8966 i, 0.0075+ 0.4081i-0.0798 + 

0.0356 i, λmax= 7.1314. 

 

Step 4: Calculation of weights: Since (A- λmaxI) w = 0 and                               

(w1 + w2+ w3 + w4 + w5 + w6+ w7) = 1; the weights are found to be as follows. 

 

w1 = 0.1724, w2 = 0.1145, w3 = 0.1132, w4 = 0.0766, w5 = 0.1024, w6 = 0.0591, 

and            w7 =0.3618. 

Step 5: Calculation of the normalized specification matrix.  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

204.0263.0235.0417.0485.0284.0436.0
682.0278.0202.0328.0454.034.0436.0
17.0807.0608.0628.0572.0284.0655.0
682.045.073.0572.0485.0852.0436.0

N
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Step 6: Calculation of the weighted normalized specification matrix.  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

073.0015.0024.0031.0054.0032.0075.0
246.0016.002.0025.0051.0038.0075.0
061.0047.0062.0048.0064.0032.01129.0
246.0026.0074.0043.0054.0097.0075.0

V

 

 
The weighted normalized attributes for the +ve and –ve benchmark robots can be 

obtained as follows. 

 
V*= (0.1129, 0.097, 0.064, 0.048, 0.074, 0.047, 0.246) 

V- = (0.075, 0.032, 0.051, 0.025, 0.02, 0.015, 0.061) 

 
The separation from the +ve and –ve benchmark robots are found as; 

 
196.0S,096.0S,195.0S,044.0S *

4
*
3

*
2

*
1 ====  

0083.0S,185.0S,069.0S,206.0S 4321 ==== −−−−
 

4.4.2 Selection of robots on the basis of capability 

The example problem considers four comparable robots (viz. R-1, R-2, R-3 and R-4) 

and their pertinent parameters are listed out. They are tabulated in Table 4.7. Out of all 

the parameters listed, repeatability has the smallest magnitude. Hence the reciprocal of 

the repeatability values are taken in the decision matrix ‘D’ along with the actual values 

of other parameters for further calculations.  
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The procedure for the selection of the robot is as follows:  

Step 1: Formation of decision matrix, ‘D’. 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3.3360,0003.091250320126
1056,4003.61529300106
4019,5001.2800270124
1035,0001.087832046

ityRepeatabilCostSpeedReachSwept AreaPayloadDOF

D  

 

Step 2: Formation of weight matrix, ‘W’.  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5.09614213
18525312
5.17436411

26347510
5.2525869

3416978
3416987
5.2525896

26347105
5.17436114

18525123
5.09614132

ypeatabilitReCostPayloadDOFAreaSweptachReSpeed

W  

 

Step 3: Calculation of the normalized specification matrix.  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

204.0263.0235.0417.0485.0284.0436.0
682.0278.0202.0328.0454.034.0436.0
17.0807.0608.0628.0572.0284.0655.0
682.045.073.0572.0485.0852.0436.0

N  

Step 4: Calculation of normalized value (N.V.), ranking factor (σ =W * N), and total 

score∑σ .  
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Step 5: Calculating the average of the ranking factors of all the robots. 

Table 4.7 Ranking factor with one set of weightage

 
 

Parameter Value Normalized 
value 

Weight Ranking 
factor(σ ) 

∑σ  

R-1 

Speed 1000 0.075 2 0.15 

2.471 

Max.Reach 878 0.097 13 1.261 
Swept area 5.58 0.054 4 0.216 

 
DOF 6 0.043 1 0.043 

Payload 4 0.074 6 0.444 
Cost 35,000 0.026 9 0.234 

Repeatability 0.1 0.246 0.5 0.123 

R-2 

Speed 1200 0.112 2 0.2258 
 

1.771 

Max.Reach 800 0.032 13 0.416 
Swept area 4.712 0.064 4 0.256 

DOF 4 0.048 1 0.048 
Payload 12 0.062 6 0.372 

Cost 19,500 0.047 9 0.423 
Repeatability 0.025 0.061 0.5 0.0305 

R-3 

Speed 3600 0.075 2 0.15 

1.26 

Max.Reach 1529 0.038 13 0.494 
Swept area 5.235 0.051 4 0.204 

DOF 6 0.025 1 0.025 
Payload 10 0.02 6 0.12 

Cost 56,400 0.016 9 0.144 
Repeatability 0.1 0.246 0.5 0.123 

R-4 

Speed 3090 0.075 2 0.15 

1.285 

Max.Reach 1250 0.032 13 0.416 
Swept area 5.585 0.054 4 0.216 

DOF 6 0.031 1 0.031 
Payload 12 0.024 6 0.144 

Cost 60,000 0.015 9 0.135 
Repeatability 0.03 0.073 0.5 0.0365 
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4.4.3 Selection of robots on the basis of task requirement 

In order to demonstrate and validate the methodology of the proposed method five 

robots with different configurations and capabilities are considered. The objective 

values of the robot selection attributes, which are given in Table 4.8. 

 

Table 4.8 Criteria for robot selection 

Criteria Robot-1 Robot-2 Robot-3 Robot-4 Robot-5 
Maximum Reach(MR) 1000 2000 5000 5000 5500 
DOF(DF) 2 3 4 5 6 
Payload(PL) 5 10 30 40 60 
Velocity(VL) 50 90 120 200 250 
Arm geometry(AG) 4 9 20 20 24 
Actuator(AT) 7 10 3 10 7 
Control mode(CM) 4 6 8 10 8 
Repeatability(RT) 0.02 0.1 0.5 1.0 1.0 
Robot programming(RP) 3 4 6 6 8 
Space(SC)* 0.5 0.45 0.4 0.3 0.2 
Time(TE)* 0.359 0.3 0.28 0.3 0.2 
DOF(DF1)* 3 3 3 3 3 
Force (FR)* 5 5 5 5 5 

 
*These values pertain to task-1 of the fifteen tasks actually considered for the 

problem. However only one task has been considered for calculation, similarly other 

calculations are to be made. The normalized values of all these parameters are taken to 

form the decision matrix.  
 
The procedure for the selection of the robot is as follows: 

 
Step 1: Formation of decision matrix, ‘D’. 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

53558187242506065500
5333.333.3611010202004055000
5357.35.26283201203045000
5333.322.24106109901032000
5378.2235047450521000

FR1DFTESCRPRTCMATAGVLPLDFMR

D  
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Step 2: Formation of weight matrix, ‘W’. 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1326115.0611416132
123525.11521325123
1144325.1431234114
105345.22341143105
962535.225105296
87165.331696187
78165.331686178
692535.22575269
510345.2234643510
4114325.143534411
312525.1152425312
2136115.061316213

FR1DFTESCRPRTCMATAGVLPLDFMR

W
 

 
Step 3: Calculation of the normalized specification matrix.  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

447.0447.061.0647.0252.0019.0345.0344.0145.0159.0072.0237.0155.0
447.0447.0406.0571.0337.0019.0276.0241.0174.0199.0109.0285.0171.0
447.0447.0435.0323.0337.0039.0345.0803.0174.0331.0146.00356.0171.0
447.0447.0398.0287.0505.0195.0461.0241.0388.0437.0438.0475.0428.0
447.0447.0339.0259.0674.0979.0691.0344.0876.0796.0877.0713.0844.0

N  

 
Step 4: Calculation of normalized value (N.V.), ranking factor (σ =W * N), and total 

score∑σ .  

 

Step 5: Determination of the average of the ranking factors of all the robots.  
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Table 4.9 Ranking factor with one set of weightage of robot-1 

Parameter Value Normalized 
value 

W Ranking 
factor(σ) 

∑ σ 

MR 1000 0.844 13 10.972 

35
.7

71
5 

DF 2 0.713 2 1.462 
PL 5 0.877 6 5.262 
VL 50 0.796 1 0.796 
AG 4 0.876 3 2.628 
AT 7 0.344 1 0.344 
CM 4 0.691 6 4.146 
RT 0.02 0.979 0.5 0.4895 
RP 3 0.674 1 0.674 
SC 0.5 0.259 1 0.259 
TE 0.359 0.339 6 2.034 
DF1 3 0.447 13 5.811 
FR 5 0.447 2 0.894 

 

The calculation of the total ranking factor, ∑ σ, for one set weights in robot-1 is 

presented in Table 4.9. The calculations of ranking factors are made for the other 

robots with a total of 12 different sets of weights.  

4.4.4 Selection of robots on the basis of case based approach  

The performance of industrial robots is often specified using many parameters are 

the important and practical parameters [85]. Repeatability, accuracy, load capacity, 

and velocity. Industry-wide standards for measuring these parameters are not yet 

fully established; however, improved methods for analysing robot performance are 

being developed [86]. A large number of attributes for robot selection, and ranked 

the robots using TOPSIS and graphical methods [87], comparing the rankings given 

by these methods.However, the weights assigned by the authors to the attributes 

were not consistent. Khouja and Kumar [88] used options theory and an investment 

evaluation procedure for selection of robots. An investment evaluation using data 

envelopment analysis for robot selection is carried out [89]. A decision support 

system [90] based on analytical algorithms to select machining centers and robots 

concurrently from the market milien.  
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It is a fact that practical solutions are better obtained when theoritical modelling of 

the problem is reinforced with experience.The longer the experience, the better.The 

present work aims at developing a methodology for selection of robots for industrial 

applications where the knowledge about the system, the environment, old cases of 

similar nature are considered apart from the robot’s data and task requirement.  

4.4.5 The process structure and its components 

In order to make the robot application process efficient, the selection of robots must 

be approached in an effective and systamatic methodology. Implementing a robotic 

application system is best done in the process that involves not only the robot, but 

also the tasks, the entire system, and the environment. The proposed robot selection 

procedure follows the main route according to the following five major activities: 

 
1. Information database - develop main applications, system performance, 

system requirements, and justification. 

2. Indexing - identify features, match using similarity case. 

3. Initial solution - choose the most similar and feasible robot application cases. 

4. Iteration - modify solutions to fit the current robot selection query. 

5. Implementation - apply workcell design, cost estimation, design review. 

These activities are briefly explained as follows. 

A.  Information database 

The database contains useful information pertaining to the robots and the tasks, 

system and its environments under consideration. 

a) The robots: The following information regarding the candidate robots need to be 

explored and recorded. 

i) Specification: Proper identification of manipulator attributes is critically important 

when comparing various alternative robots. Therefore, whenever a robot user goes to 

the supplier for purchase of new robot, or looks at the existing robots, the 

identification of attributes attain significant importance. The robots may have large 

number features to offer.But for the purpose of the present work, only those features 

which, make modelling the task performing capability are picked up. 
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Motion requirement:Optimum speed with which the task need to be handled.Too 

slow a speed will result in higher cycle time ,while too large speed may not be 

permissible for high precision work. 

Handling requirement: This is essentially looked at to determine the number of 

orientational /positional changes required while handling the task.This otherwise, 

means the robot must have sufficient DOF. 

Grasping requirement: It is necessary to know the type of grasping required which 

include the size, (dimensions), shape, volume, weight apart from the physical 

properties (such as, hard, soft, solid, liquid, hot, normal etc.). Additionally, things 

like the status of object e.g uncovered, covered, as-is, contained etc. should also be 

recorded.  

ii) Major attributes: Generally, there are two typologies of robot attributes: objective 

attributes and subjective attributes. Objective attributes are measured and defined in 

numerical terms. They are engineering attributes such as load capacity, accuracy, 

repeatability, speed, etc. or cost attributes such as purchase and installation cost, 

maintenance cost, training cost, etc. The subjective attributes, on the other hand 

(such as the vendor’s service quality, the programming flexibility, the man- machine 

interface, etc.) are qualitative and cannot be precisely and numerically measured by 

the decision maker. 

b) The task: Assignment of task to the robots needs a thorough analysis of the tasks 

before selecting an appropriate candidate robot.The task’s requirement are listed 

down in the context of employment of robot.These requirements are the outcome of 

the study on the motion requirement,handling requirement holding (grasping) 

requirement etc. 

DOF requirement: The number of joints, axes, and DOF were taken into account but 

the sequence of joints and their respective orientations and arrangements had not 

been considered. 
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ii) Speed requirement: In the present day robots are used for various applications, 

and improvement of robot performance such as high speed motion and high 

precision positioning is strongly required. 

iii) Payload: The static load and the dynamic load during handling and positioning, 

or the amount of force / torque during assembly is estimated. 

iv) Layout: Position, location, orientation, feeding type, rate etc. define the layout. 

Tasks that are similar in terms of their requirements for robot repeatability, load 

capacity, reach and so on will have similar values of the membership coefficients. 

Computing the reach and travel distance required for each task requires information 

about the final cell layout which has not yet been determined. While the final layout, 

information will not be available until robots have been selected. 

c) The system: This encompasses the entire focal area of the workcell.The various 

salient points of the system may be as follows. 

i) Connectivity: The devices in the shop floor /cell networked/connected or stand 

alone, if connected, wheither the information channel is biodirectional or mono-

directional (all connected, some connected, none-connected cases). When deploying 

robots to accomplish tasks in potentially unknown environments, one challenge to 

overcome is the lack of a global communication medium.  

ii) Delivery requirement: The quantity and quality of the deliverables need to 

consider. 

iii) Handling requirements: whether the component to be handled is soft, hard, 

fragile, packaged, etc.are considered. 

d) The environment: Most task allocation problems are not static; they are dynamic 

decision problems that vary in time with phenomena such environmental changes 

and robot failures. Regardless of the method used for calculation, the robots’ utility 

estimates will be inexact for a number of reasons, including specific hours of 

operation, structured/ unstructured, the type of environment and type of operation, 

and environmental change. These unavoidable characteristics of the multi-robot 
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domain will necessarily limit the efficiency with which coordination can be 

achieved. 

B.  Indexing 

This activity includes selecting of right kind of attributes from the master set of 

attributes, matching with the required task, Prioritizesthe requirements and selecting 

one (iniltialize). While looking at a specific robot, some of the attributes may be 

selected as 'pertinent attributes' as necessitated by the particular application and/or 

the user. The threshold values to these 'pertinent attributes' may be assigned by 

obtaining information from the user and the group of experts. The selection 

procedure focuses solely on the pertinent attributes leaving out the rest. On the basis 

of the threshold values, a shortlist of robots is obtained through picking -up the 

requirements of the task, incorporating the constraints of the environment, and 

prioritizing the requirements and short-listing the candidate robots.  

C.  Initial solution 

Similarity assessment is a major part of the “experts” knowledge which is necessary 

for intelligent retrieval. In order to adopt a notion of similarity, the following 

assumptions are made: 

• High similarity between the query problem and confirmed cases means high 

potential for solving problem. 

• The similarity is based on a previous experiences and records. 

• Similarity must provide a quantitative measurement. 

• Similar problems have similar solution. 

• A retrieved case is useful if it is similar to a query problem. 

In our study, common approaches using quantitative similarity measurement for the 

retrieval of useful cases are made by as pick-up any one and looking its 

matching/similarity list with respect to the task and environment. 
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D.  Iteration 

A confirmed case (Case = Problem + Solution) is set of information entities, 

which stores the previous experience of robot selection. The set of information 

entities contain the robot specification and procedures of constructing a workcell 

design from robot selection to layout and space planning.This is achieved through 

the following steps, 

• Pick-up next and follow the same procedure 

• Continue the same procedure with all available robots  

E.  Implementation 

Obviously, it is employed to reuse the experience in the context of the problem and 

complete or partially reuse or adapt according to the differences in the stored cases. 

In order to reuse the previous cases effectively, robotic adaptation rules are applied 

to the specification values and to the answers from the previous confirmed cases. 

The reuse strategy is presented as follows: 

• Calculate further information from the specification 

• Consider the differences between the previous cases and query problem 

• Change feature values when it is necessary to obtain a good start 

• Decide whether the final solution is good enough 

• Refine several times to optimize the solution. 

The simplest type of adaptation rule calculates a required value directly from the 

information that the user has already given.  

• Make a comparision  

• Draw a list of the robots as per their suitability 

4.4.6 Selection of candidate robots 

A. Analysis of robot application 

A feasible robot must, at a minimum, have specifications that are equal to or better 

than the minimum requirements of an application. For example, a material handling 

robot is not feasible unless its specification on payload equals or exceeds the weight 

of the heaviest part it will handle. The minimum requirement for this application is 
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tabulated as shown in Table 4.10. Note that a robot with specifications all equal to or 

better than the minimum requirements of the application may still fail to deliver the 

required performance during operation. This failure is because, as discussed earlier, 

the manufacturer's specifications may not hold simultaneously. Table 4.11 

summarizes the prime considerations in the selection of an industrial robot. 

 

Table 4.10 Minimum requirement of a Robot 

Sl Parameter Values 
1 Working envelop ≤  minimum 30 m3 

2 Payload ≤ 120 kg 

3 Repeatability   ± 0.1 mm 

4 Work lot size ≥  25 tasks 

5 Number of different work 
pieces per Processes 

≤  10 
 

6 Cycle time ≥ 5 sec 
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Table 4.11 Criteria for robot selection 

 

 Robot-1 Robot-2 Robot-3 Robot-4 Robot-5 

Reach (R) ≤ 1 m. 1m< R ≤2m 2m< R ≤ 5m R >5m  

DOF 2 3 4 5 6 
Payload 5 10 30 60 60 
Velocity (mm/s) 250  500  1000 2500 5000  
Arm Geometry RE CY SP AR SP 

Actuator Types H EL PN PN PN 

Control Modes NS PTP CP PTP and CP CP 

Repeatability(MM) 0.02  0.1 0.5 1.0 1.0 

Robot Programming LT TP O OF TO 
 

RE: Rectangular; CY: Cylinderical; SP: Spherical; AR: Articulated 

NS: Non-servo; PTP: Servo Point-to-Point; CP: Servo Continious Path; PTP & CP: 

Combined PTP and CP 

H: Hydraulic; EL: Electric; PN: Pneumatic 

LT: Lead through teach Programming; TP: Teach-pendant Programming; O: On-line 

Programming; OF: Off-line Programming; TO: Task-oriented Programming 

B. Methodology for robot selection 

This system consists of several major modules as shown in the selection process 

architecture in Figure 4.3. The retrieval mechanism consists of:  

• The structure of the case,  

• Concept of similarity, and  

• Semantic of taxonomy 

This retrieval mechanism is used to measure the similarity between the present 

problem and previous cases already in the record. In general, the robot selection 

criteria include some key specifications such as; degrees of freedom, pay load, swept 

area, maximum reach, maximum speed, cost, and repeatability. Though most of the 

attributes have been identified, all of them may not be important for the intended 

application. There will be few attributes, which will have direct effect on the 
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selection procedure. Some of the attributes may be selected as 'pertinent attributes' as 

necessitated by the particular application and/or the user. The threshold values to 

these 'pertinent attributes' are assigned by obtaining information from the user and 

the group of experts. The selection procedure focuses solely on the pertinent 

attributes leaving out the rest. On the basis of the threshold values, a shortlist of 

robots is obtained. This is achieved by scanning the database for those attributes, one 

at a time and eliminating the robot alternatives, which have one or more of these 

attribute values that fall short of threshold values. The robot selection architecture 

system is divided into five activities;  

i) Initial operation survey,  

ii) Operation qualification,  

iii) Robot selection, and  

iv) Robotic workcell Engineering and  

v) Robotic workcell implementation.  

The Continuous-type similarity measurement with the features like cost difference, 

price etc .are shown in Figure 4.4. 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 4.3 Robot selection process architecture 
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Figure 4.4 Similarity for the price difference of two robots 

A few similarity measurement methods are considered in the present work. It is 

obvious that they have to be treated differently for the similarity computation. The 

current situation during the elaboration of a selection process is described by the 

information features known at the time point. The final problem, as it later may 

appear in the case memory, is a completed set of information features. The collected 

information features result form the real implementation case study.The geometry 

value of different types of robot are given in Table 4.12. Table 4.13 show a query 

problem and confirmed case for palletizing robot selection. Different features have 

different importance (weights). The following weights are considered for the 

similarity computation: 

• Very important = 10 (Ex: repeatability, production rate, , etc);  

• Important = 6 (Ex: payload, Degrees of freedom, etc);  

• Somewhat important = 3 (Ex: velocity); and  

• Unimportant = 1 (Ex: arm geometry) 

For easy reference, all useful notations for our model are summarized in Table 4.15. 

 

 

 

-5,000 0 +2,500 +5,000 +10,000 0 -2,500-10,000 

1.0 

0.95

Price Similarity = 
(Standard-Robot)/ Higest
between two 
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Table 4.12 Geometrical value of different robots 

Robot arm 
geometry 

Cartesian Cylinderical Spherical Articulated 

Cartesian 1.0 0.6 0.4 0.2 

Cylinderical 0.6 1.0 0.6 0.4 

Spherical 0.4 0.6 1.0 0.6 

Articulated 0.2 0.4 0.6 1.0 

 

Table 4.13 A simplified example 1 

Query problem 
Operation features Feature values Weight 

1 Production rate: 480 task/hour 10 
 
 
 
2 

Operational Apple. Spec Palletizing 6 
Repeatability R ≤ ± 2 mm 10 
Work envelop (reach) 2600 mm /102.3 in 10 
Payload 100 kg / 220 lbs 6 
Velocity S > 5000 mm 3 
Arm geometry Articulated robot 1 
Degrees of freedom 6 6 
price $ 100,000 10 

3 End-of-tooling Spec.: Sucking cup type 6 
4 Complexity of the task 15 different boxes 1 

5 Layout and space remit. 16 m2 3 
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Table 4.14 Similarity computation for example-1 

Features Q Similarity Confirmed case 1 

price $100,000 0.952 $105,000 

Production rate: 480 task/hour 0.872 550 boxes/hour 

Repeatability R ≤ ± 2 mm 0.5 R ≤ ± 1 mm 

Work envelop 2600 mm 0.923 2400mm 
Payload 100 kg 0.83 120kg 
Velocity S > 5000 mm 0.909 5500mm/s 

Degrees of freedom 5 0.833 6 

Arm geometry Cartesian 0.2 Articulated 

 

Table 4.15 Notation for case 

Notations Definition 
C’  Confirmed case 
i  Number of cases 
Q  Query case 
I   Factor index set, I = {1, 2, ..., n} 
n Number of factors to be shortlisted 
S’ Similarity case 
J Factor index set,J={ 1,2,…,n} 
M weight 

 
Similarity for individual features ( ) ))/(1)( ''

ii CQCS −−=   

Similarity query case= )*((1
1,1

'∑∑ ==

n

JI
JI

I
SMM  

Similarity (Case 1)= 1/56 [10 × 0.872 + 10×0.5 + 10 ×0.923 + 10×0.952 + 6 × 0.83 

+3 ×0.909 + 6 × 0.833+1 ×0.2]= 45.375/56 = 0.810 

Similarity (Case 2)= 1/56 [10 × 0.97 + 10×0.872 + 10 ×0.5 + 10 × 0.923 +6 ×0.833 

+3 ×0.909 + 6 × 1.0 + 1×1.0 ]= 47.305/56 = 0.845 

Similarity (Case 3) = 1/56 [10 × 0.952 + 10×0.872 + 10 ×0.5 + 10 × 0.923 +6 ×0.833 

+3 ×1.0 + 6 × 1.0 + 0.4×1.0 ] =46.868/56=0.836 
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Similarity (Case 4) = 1/56 [10 × 0.952 + 10×0.872 + 10 ×0.5 + 10 × 0.846 +6 ×0.833 

+3 ×0.925 + 6 × 0.838 + 0.2×1.0 ]=44.671/56=0.798 

Similarity (Case 5) = 1/56 [10 × 0.97 + 10×0.872 + 10 ×0.5 + 10 × 0.846 +6 ×0.833 

+3 ×0.909 + 6 × 1.0 + 1.0×1.0 ] =46.605/56=0.832  

 

Table 4.16 Similarity computation example -2 

Features Query Case Similarity Confirmed Case 2 

price $100,000 0.97 $103,000 

Production rate 480 task/hour 0.872 550 task /hour 

Repeatability R ≤ ± 2 mm 0.5 R ≤ ± 1 mm 

Work envelop 2600 mm 0.923 2400mm 
Payload 100 kg 0.833 120kg 
Velocity S > 5000 mm 0.909 5500mm/s 

Degrees of 
freedom 5 1 5 

Arm Geometry Cartesian 1 Cartesian 
 
For the purpose of simplification, we suggest to compute the global similarity 

between two cases based on the weighted sum of local similarity from all the robot 

features shown in Table 4.14 and Table 4.16.  

4.5 Overview of task assignment 

The most significant concept in MRS is cooperation. It is only through cooperative 

task performance that the superiority of robot groups can be demonstrated. The 

cooperation of robots in a group can be classified into two categories of implicit 

cooperation and explicit cooperation. In the implicit cooperation case each robots 

performs individual tasks, while the collection of these tasks is toward a unified 

mission. For example, when multiple robots are engaged in collecting rock samples 

and returning them to a common place, the team is accomplishing a global mission 

while cooperating implicitly. This type of group behavior is also called asynchronous 

cooperation, as it required no synchronization in time or space. The explicit 

cooperation is the case where robots in a team work synchronously with respect to 
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time or space in order to achieve a goal. One example of such cooperation is 

transportation of heavy objects by multiple robots, each having to contribute to the 

lifting and moving of the object. This task requires the robots to be positioned 

suitably with respect to each other and to function simultaneously. Regardless of the 

type of cooperation, the goal of the team must be transformed into tasks to be 

allocated to the individual robots. 

4.6 Summary 

This chapter makes some contributions for robot selection. Firstly, it uses the fittness 

model based on attribute based theory for robot selection, which in turn allows the 

selected robot a better one as per the decision matrix. Secondly, the capability model 

takes into account the weight matrix for robot selection. The robots are selected as 

per the ranking results. Thirdly, the task requirement based model for selection of 

robots is developed for ranking of robots by combining manipulator attributes and 

task requirements in a comprehensive manner. The case based model takes into 

account a standard problem and compares with the robots’ parameters as usually 

specified by the manufacturers which are used for ranking of the candidate robots. 

 

 

 



              
 

 TASK ASSIGNMENT IN MRS 
 

 

 

 

 

 

 

 



98 

 

CHAPTER 5 
 

Task Allocation in MRS 

5.1 Introduction 

As a result of the growing focus on MRS, multi-robot coordination has received 

significant attention. In particular, MRTA has recently risen to prominence and 

become a key research topic in its own right. Task means a subgoal that is necessary 

for achieving the overall goal of the system, and that can be achieved independently 

of other subgoals (i.e., tasks). Tasks can be discrete or continuous and can also vary 

in a number of other ways, including time scale, complexity, and specificity. Task 

independence is a strong assumption, and one that clearly limits the scope of this 

study. For example, ordering constraints on a set of tasks are not allowed, in general 

it is required that individual tasks can be considered and assigned independently of 

each other. The approach presented in the present work can be advantageously used 

in real-world problems. 

 
An attempt is made to empirically derive some guidelines for selecting task 

allocation strategies for MRS. The allocation model is equivalent to a two-

dimensional multi-type bin packing problem. Mathematical models and solution 

algorithms are presented for abetting task allocation in multirobot environment for 

accomplishing tasks.The explored strategies are individualistic in that they do not 

involve explicit coordination and negotiation among the robots. However, they are a 

part of a large class approaches that produce coherent and efficient cooperative 

behavior. The work aims at proposing a methodology to allocate tasks to available 

multiple type robots based on their capacity, availability and allocation cost. The 

focus here is on the development and implementation of an optimization algorithm 

for solving allocation model. Specifically, the objective of this work is to develop a 
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solution algorithm that can be used to solve problems of a practical size within 

acceptable computational times. The characteristics of the allocation model warrant 

the development of an off-line algorithm. Although the procedures described here 

are in the context of robotics, these are general and applicable to any real-world 

application. 

5.2 Allocation model formulation  

One of the most important aspects in the design of MRS is the allocation of tasks 

among the robots in a productive and efficient manner. An empirical study is 

described for task allocation strategies. In general, optimal solutions are found 

through an exhaustive search, but because there are nxm ways in which m tasks can 

be assigned to n robots, an exhaustive search is often not possible with increased 

number of tasks. Task allocation methodologies must ensure that not only the global 

mission is achieved, but also the tasks are well distributed among the robots. The 

capability in terms of time and space are considered in the task allocation 

methodologies for MRS.  

 
The task allocation approach considers the available resources, the capabilities of the 

deployable robots, and then it appropriately allocates the tasks to the candidate 

robots. Different approaches are presented and their results are analyzed for the 

suitability of the methods for an allocation problem. 

 

Historical research in bin packing has focused on optimization problems involve 

some resource, and the task for algorithm designers is typically to get the job done 

using the minimum amount of resources. Bin packing is the problem of packing 

items of sizes between zero and one in the smallest possible number of bins of unit 

size [91, 92, 93]. Numerous investigators [94, 95] have examined the performance 

analysis of approximation algorithms designed for a number of two-dimensional bin 

packing variants. Optimal procedures for the constrained two-dimensional cutting 

problem have been proposed by several authors [96, 97]. Heuristic procedures for the 

constrained two-dimensional cutting problem have also been developed for using a 
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problem representation which encodes the order in which pieces should be cut. The 

multi-choice multidimensional knapsack problem [98] is a combinatorial 

optimization problem. Given a set of groups of variables, one tries to select the best 

variable in each group. Both types of algorithms are practical in real-world 

applications.  

 
The problem explicitly addresses robots of different types with various service time 

and space capacities. The assignment model seeks an optimal selection of robots to 

perform all given tasks such that each task’s resource demands are satisfied, no robot’s 

capacity constraints are violated, and the total system cost is minimized. A 

mathematical model along with its solution procedure is presented for allocation of 

tasks to the robots which is efficient and can serve as a planning tool. The model is 

formulated as a pure 0-1 mathematical program. Although, the key parameters for the 

model can be categorized as geometrical, kinematic, dynamic, power and noise, and 

thermal, the two most important factors while assigning tasks to robots are the 

geometrical work envelope and the kinematic machine cycle time. The work envelope 

for a typical robot is represented by a diameter of a circle. However, for the present 

model, it is not required that the work envelope be a complete circle. The time 

requirement of any task depends upon its relative distance from the robot. 

 

The task can be represented by a workstation located at a definite distance from the 

robot and occupying a certain amount of space. In addition, the space requirement of a 

workstation also depends upon its relative location. If the workstation is assigned to 

location nearer to the robot its space requirement is smaller than what is required if 

assigned at location one. In contrast, the time requirement of a workstation 

assigned at location farther to robot is smaller than the time requirement 

associated with location which is nearer from robot because the latter incurs a 

longer travel time. Thus, there exists a trade-off between the space requirement and 

machine cycle time requirement. In fact, both the requirements are a function of the 

workstation's relative position from the robot. The primary objective is to minimize the 

total robot acquisition costs while satisfying workstation resource demands. In order to 
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make the assignment model computationally tractable, it is assumed that all 

workstations are placed at the most remote location within the work envelope of the 

robot(s). This assumption decouples the interaction between space and time by 

allowing the resource requirements of a given workstation to be constant. Without this 

assumption, the model complexity is significantly increased. This trade-off between 

the number of robots required serving a given set of workstations and the time 

required to serve a workstation could be considered by iteratively solving the 

assignment model. The formulation of the model is as follows. 

 
A set of robot types indexed by K = {1, 2, …, k}, is considered where each robot 

type is characterized by its time and space capacity. Specifically, space is measured 

in terms of the work envelope's swept area. The swept area is the total number of 

degrees around the central vertical axis that is within reach of the robot arm. All 

given workstations are indexed by I = {1, 2, …, n}.  

 Table 5.1 Notation for assignment model 

Notation Definition 

k Number of robot types 

K Robot type index set, K = {1, 2, ..., k} 

n Number of workstations 

I Workstation index set, I = {1, 2, ..., n} 

mk Maximum number of type k robots Kk ∈∀   

tik Normalized time requirement of workstation i when served by a 

type k robot, KkIi ∈∈∀ ,  

sik Normalized space requirement of workstation i when served by 

a type k robot, KkIi ∈∈∀ ,  

 
Each workstation i demand a known amount of time and space when served by robot 

type k, denoted by tik and sik respectively. In addition, for a given set of n 

workstations, let mk denote the maximum number of robots of type k necessary to 

serve all workstations assuming only robots of type k are available. Further, let K = 

{1, 2, ..., k} denote the index set for type k robots. For easy reference, all useful 
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notations for the model are summarized in Table 5.1. A decision variable, xik, is 

defined as: 

otherwise
ktypeofrobottoassignedisinworkstatioif

xik
⎩
⎨
⎧

=
0
1

 

With no loss of generality, the time and space requirements for each workstation 

(i.e., tik, and sik , respectively) can be normalized by dividing the robot resource 

capacities into the corresponding workstation resource demands. This macro 

planning model does not consider variable costs and the solution algorithm 

developed is general. The robot selection and assignment (RSA) can be written as 

equation (5.1) through equation (5.5): 

(RSA) MIN
k k

k ik
k K

f x
∈∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑Z                (5.1) 

Such that 

Ii1x
Kk kk

ik ∈∀=∑ ∑
∈ ∈

                (5.2) 

Kk1xt
Ii

ikik ∈∀=∑
∈

                (5.3) 

Kk1xs
Ii

ikik ∈∀≤∑
∈

                (5.4) 

}{ Kk,Ii1,0xik ∈∈∀∈               (5.5) 

 
Condition (5.2) ensures that each workstation i is assigned to exactly one robot. 

Conditions (5.3) and (5.4) ensure that workstations assigned to any robot will not 

violate the corresponding time and space constraints. The model is a pure 0-1 integer 

program (IP). Therefore, it is impractical to directly solve model by using any 

available IP code. Two different routes are followed to solve the model. In the first 

method, an optimization algorithm based on a greedy heuristic covering all the 

necessary parameters is developed for solving the task assignment problem in a 

heterogeneous multirobot environment. 
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5.3 Task analysis 

The problem of task assignment in multirobot environment has been conceived with 

fifteen workstations and four robots. The robots under consideration are standard 

industrial robots. The pertinent parameters of the robots such as the number of DOF, 

pay load, swept area, maximum reach, maximum speed, type and cost are different. 

For the different tasks, normalized time and normalized space requirements are 

considered and then the load balance factor is determined. According to capabilities 

of the robots and requirement of the tasks some combinations of the robot and task 

may be time intensive whereas some other become space intensive. Then the 

adjusted demand is determined as per the assignment heuristic. The cost of allocation 

is determined by the product of cost of robots and adjusted demand. Before 

allocation of tasks to the robots, it is important to determine the loading capacity of 

the robots. The loading capacity of a robot depends on its individual capability which 

can be generally determined by its reach, speed, and pay load specifications. Besides 

the robot’s capability, the loading capacity also depends on the requirement of the 

task (e.g. kind of operation, motion, and dimensions) and its location in the 

workspace. The methodology determines the loading capacity through the load 

deviation ratio which uses the normalized time and space requirement for various 

combinations of robot-task. The load deviation ratio encompasses all the required 

parameters for deciding the loading capacity. Load deviation ratio is the ratio of 

difference between the normalized space requirement (si1) and normalized time 

requirement (ti1) to the summation of normalized space requirement (si1) and 

normalized time requirement (ti1). After taking into account the absolute value of the 

load deviation ratio, the capacity of each individual robot is determined. 
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Figure 5.1 Time and space requirement for handling task 

 
The time and space to handle a task are dependent upon the positions of the initial 

point and the target point of the part within the available workspace of a robot. To 

explain this point in a better way, a diagram is shown in Figure 5.1. Let the initial 

position of an object is at Y and the target point is at Z’. If the object is situated at 

Y’, the work envelop is covering an area at an angle θ1 is πR2/ θ1 (R is the maximum 

reach). That means the robot handle the task within that area. The angle θi (i = 1, 2) 

is in ‘rad’. If the object is moved to a distance along that centerline at position B, the 

covering area is reduced to πR2/ θ2, where θ2 < θ1. But the handling distance is 

increased from the center point. Again during the assembly if there is change of 

angular displacement Li (i = 1, 2), then the work coverage at arc ZZ’ is more than 

that of YY’. This directly increases the time of assembly and space. 

 

 

 

 

 

 

 

Y’

Z’ 

L2

L1

Y
Z

θ2
θ1

R 



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2 Analysis of motion requirement of handling a task 
 
An example of how an object is handled by a robot and what its time during 

assembly is shown in Figure 5.2. After picking up from the feeder the object is 

moved to assembly station. The assembly work is done at that station. In the 

example, there is four positions of movements and they are; O, A, B, C. ‘O’ is the 

feeder position. From O to A the robot needs prismatic motion. At A there is change 

in orientation at an angle θ; here it needs the rotary motion. And the last two 

positions it needs the prismatic motion. 

 
Hence, the total time of task is the addition of time taken for distances Xi (i = 1, 2, 3) 

and the rotational time. The time to complete one task is dependent upon the angular 

velocity. Once the layout of the various stations as dictated by the assembly 

sequence and the consequent allocation are decided, the distance of travel and the 

orientation is constant for a particular part. The addition of all the time to assemble a 

sequence of parts of a product is called the cycle time, which is considered as a 

candidate for minimization.  
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5.4 Assignment Heuristic (AH) 

Given any workstation, three possibilities exist. The workstation can be time 

intensive, space intensive or neither. A heuristic is developed by examining these 

three cases, and the load balance on each candidate robot. The AH is based on the 

concept of allocation cost, which is computed as a function of the resource demands 

of each workstation and a robot's load balance. Let kΔ  denote the load balance factor 

associated with the robot of type k. That is, kΔ is defined as the difference between 

the total allocated (normalized) machine time and the total allocated (normalized) 

work space for robot of type k. Let and where xik is a 0-1 variable. Hence, kΔ  can be 

expressed as follows 

KkST kkk ∈∀−=Δ             (5.6) 

The following conditions are adopted for the model. 

(i) If a robot’s resource load is nearly balanced, then the load balance factor will be 

approximately zero.  

(ii) If the robot's load is time intensive, then 0 < kΔ < 1, and  

(iii) If the robot's load is space intensive, then -1 < kΔ  < 0.  

Hence, the further the resource load factor is away from zero, the greater the load 

imbalance is. In addition, let ikδ denote the adjusted demand when the ith workstation 

is served by the robot of type k. That is, 

}{
}{⎩

⎨
⎧

≤ΔΔ+
>ΔΔ−

=
0if,MAX
0if,MAX

kikkik

kkikik
ik st

st
δ                (5.7) 

Since 0<tik ≤ 1, 0 <sik ≤ 1, and -1< kΔ <1, we know 10 ≤< ikδ . 

To illustrate how the adjusted demand is employed by AH, consider two robots of 

type k, say A and B. Assume that 4.0=ΔAk  and 3−=ΔBk . Therefore, robot A is 

time intensive. In order to improve the load balance for robot A, one should prefer 

the assignment of a workstation which is space intensive (i.e., tik < sik) to those which 

are time intensive. By contrast, for robot B, the assignment of workstations which 

are time intensive should be given preference over workstations which are space 
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intensive. An example is given below for illustration. Suppose the workstation to be 

assigned next is time intensive; that is, tik= 0.3 and sik= 0.2. Also, assume both robot 

A and B have enough remaining time and space capacities to serve this candidate 

workstation. The goal of our assignment heuristic is to balance the resource load on 

each robot. Since the candidate workstation is time intensive, it should be assigned to 

a robot which is space intensive. Plugging the given figures into equation (8) and 

have 3.0=iAkδ  and 2.0=iBkδ . These adjusted demands, i.e., ikδ  contribute to the 

“allocation costs”. In general, if the fixed cost of all robot types is equal, the 

workstation should be assigned to the robot which produces the smallest adjusted 

demand. Since, not all robots have equal fixed cost, the allocation cost, aik incurred 

by the ith workstation when served by the robot of type k is the product of its adjusted 

demand and the fixed cost of the robot. That is, 

 
ikkik fa δ*=                   (5.8) 

 
Since 10 ik ≤δ< , we know that kik fa ≤<0 . Thus, ika reflects the adjusted proportion 

of the fixed cost that workstation i incurs when it is assigned to robot of type k. The 

heuristic is used to produce a good feasible solution. For each robot type k, the 

heuristic calculates the load deviation ratios and sorts them into a nondecreasing 

order. These load deviation ratios indicate the balance between the time and space 

requirements of each workstation when served by each robot type k. Then, the AH is 

employed to assign workstations to robots based on the sorted load deviation ratios. 

Since AH is simple and efficient, it is rerun once more based on a nonincreasing 

order of load deviation ratios. Our computational results indicate that AH provides a 

very good feasible and optimal solution.  

 
It is assumed that each robot is capable of estimating its fitness for every task it can 

perform. This estimation includes factors, which are both task and robot dependent. 
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5.5 The example problem 

Using realistic data, the following example is provided to highlight the solution 

process for an Allocation Model (AM) problem. While Table 5.2 summarizes major 

parameter values for four different robot types, Table 5.3 presents the normalized 

space and time requirements of fifteen workstations. 

 
Robot-4 has a fixed charge of $60,000, a swept area of 320°, a maximum reach of 

1250 mm, and an average arm movement speed of 3.09 m/sec. Each entry in column 

two of Table 3 provides the diameter (D’) of a circle encompassing the workstation. 

It is assumed that each workstation is placed at the most remote location within the 

work envelope. Therefore, the D’ associated with each workstation is in fact a chord 

to the work envelope. Knowing the value of D’ and the maximum reach (R) of a 

robot, we can derive the arc length subtended by a workstation, which 

is )2/(sin2 '1 RDwhereR −=θθ . Here,θ represents the workstation's space 

requirement in degrees. Usingθ and the swept area (S), a workstation's normalized 

space requirement can be determined. Considering workstation one and robot type 

one, we have D’ = 1.0 meter, R = 1.25 meters, and S = 320°. Using this data, we 

haveθ=47.15° and thus 147.0)32015.47(11 ==S . In contrast, the time requirement 

of a workstation can only be determined after a thorough motion study of robot. In 

this macro planning model, the time requirement for each workstation is estimated 

based on two major components:  

 
i) Robot arm travel time;  

ii) Robot service time.  

 
Both components are normalized by the total available machine time, which in 

practice is defined by the time available during peak machine hours. Using the above 

data and the aforementioned optimization algorithm, the allocation model is 

optimally solved. To proceed with the solution for allocation model, all the options 

of employing the available robot types are tried. The load balance factor jkΔ and the 

allocation cost for each option are determined. There is a clear indication that the 
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individual robots are better suited for the tasks only on the basis of their allocation 

cost than any of their combinations. This is a problem specific condition and it 

largely depends on number of factors such as time and space requirement. In other 

words, this is mainly due to low value of workstation size and relatively high value 

of the speed of the robots. The load balance factor, time requirement, space 

requirement and allocation cost are considered for the assignment of the robots to the 

workstations in question. 

Table 5.2 Fixed costs and parameter values of the robots 

 Robot-1 Robot-2 Robot-3 Robot-4 
Specification (Puma 560-c) (Adept one 

XL) 
Fanuc 

Arcmate 
Sr.R.J 

Staubli RX 
130B 

DOF 6 4 6 6 

Pay Load 4 kg 12 kg 10 kg 12 kg 

Swept Area 320° 270° 300° 320° 

Max. Reach 878 mm 800 mm 1529 mm 1250 mm 

Max Speed 1.0 m/sec 1.2 m/sec 3.60 m/sec 3.09m /sec 

Type Jointed Scara Jointed Jointed 

Cost $35,000 $19,500 $56,400 $60,000 
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Table 5.3 Normalized space and time requirements of workstations 

Workstation Normalized space requirement Normalized time requirement 
No.(i) Size(D) R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 

  Si1 Si2 Si3 Si4 ti1 ti2 ti3 ti4 
1 1.0 0.216 0.286 0.127 0.147 0.214 0.216 0.203 0.2 
2 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.141 0.142
3 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.225 0.228
4 1.05 0.229 0.303 0.133 0.155 0.224 0.229 0.213 0.216
5 0.9 0.192 0.253 0.114 0.131 0.188 0.191 0.181 0.184
6 1.01 0.219 0.289 0.128 0.148 0.215 0.219 0.205 0.208
7 0.65 0.135 0.177 0.081 0.094 0.133 0.134 0.13 0.131
8 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.14 0.142
9 0.75 0.158 0.207 0.094 0.109 0.154 0.156 0.15 0.152
10 0.85 0.18 0.237 0.107 0.124 0.177 0.179 0.171 0.173
11 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.224 0.227
12 1.5 0.366 0.515 0.195 0.23 0.359 0.39 0.313 0.322
13 1.4 0.33 0.452 0.181 0.212 0.324 0.342 0.29 0.297
14 1.2 0.269 0.359 0.154 0.179 0.264 0.272 0.246 0.25 
15 1.18 0.263 0.351 0.151 0.176 0.258 0.266 0.241 0.245

 
To proceed with the solution for allocation model, all the options of employing 

individual and/or combination of available robot types are tried. Table 5.4 provides 

the load balance factors calculated for four robots. There is a clear indication that the 

individual robots are better suited for the tasks only on the basis of their allocation 

cost than any of their combinations. Figure 5.3 shows the capacity curves of the four 

individual robots that decide the distribution of load between robots.  
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Table 5.4 Load deviation ratio (LDR) 

Task Robot-1 Robot-2 Robot-3 Robot-4 

 LDR LDR LDR LDR 

1 0.004 0.139 0.23 0.153 

2 0.01 0.139 0.231 0.169 

3 0.01 0.138 0.232 0.166 

4 0.011 0.139 0.231 0.164 

5 0.01 0.139 0.227 0.168 

6 0.009 0.137 0.231 0.169 

7 0.007 0.138 0.232 0.164 

8 0.01 0.139 0.228 0.169 

9 0.012 0.14 0.229 0.165 

10 0.008 0.139 0.23 0.165 

11 0.01 0.138 0.23 0.164 

12 0.009 0.138 0.232 0.167 

13 0.009 0.138 0.231 0.167 

14 0.009 0.137 0.23 0.166 

15 0.009 0.137 0.229 0.164 
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Figure 5.3 LDR of individual robot 

 
Table 5.5 presents the allocation cost of the four robots for carrying out the 

designated tasks. The load balance factor, time requirement, space requirement and 

allocation cost are considered for the assignment of the robots to the tasks in 

question.  
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Figure 5.4 Allocation cost with all options 
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Figure 5.5 Allocation cost with truncated options 

 
Figure 5.4 shows the allocation cost of all the 15 options of the robot combinations 

for the 21 workstations. However, on the relative allocation cost of six of the options 

(combination of robots for single task) came to be out of proportion and hence those 

options were left out of the set in the first instance. Figure 5.5 shows the allocation 

cost of the truncated 9 combinations. There is a clear indication that the individual 

robots are better suited for the tasks only on the basis of their allocation cost than any 

of their combinations. 
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Table 5.5 Allocation cost of assigned task 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6 Task assignment methods  

With the advancement of technology, production systems are changing from 

traditional human dependent systems to intelligent automated systems. Industrial 

Robots have been instrumental in making the production systems more efficient, 

productive, responsive and flexible. In large production systems, multiple robots of 

different types, capacities and capabilities are employed for accomplishing the 

desired tasks. The flexibility and scalability of the system is greatly enhanced by use 

of multiple types of robots. The concept of using multiple robot types comes from 

the availability of those robots in the market. However the use of multiple type 

robots in a single workcell should not be done in random manner. It is desired that all 

Task Robot-1 Robot-2 Robot-3 Robot-4 

1 0.475 0.355 0.733 0.786 

2 0.513 0.384 0.795 0.852 

3 0.513 0.384 0.79 0.852 

4 0.553 0.414 0.846 0.912 

5 0.592 0.444 0.902 0.972 

6 0.633 0.475 0.964 1.038 

7 0.658 0.5 1.015 1.086 

8 0.674 0.507 1.021 1.104 

9 0.699 0.526 1.06 1.14 

10 0.759 0.573 1.145 1.2 

11 0.767 0.579 1.156 1.248 

12 0.803 0.607 1.201 1.296 

13 0.848 0.642 1.269 1.368 

14 0.848 0.643 1.263 1.362 

15 0.923 0.703 1.359 1.47 
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the, devices in a workcell are controlled and coordinated properly through a single 

point (host) so that the workcell behaves like a single entity. Hence it is important to 

have the compatibility of the robots with the host. This calls for robot selection for 

the intended workcell. Since a multirobotic workcell is a cost intensive proposition 

the planning of such workcell should be done correctly. The selection   of robots and 

subsequently the allocation of these robots for accomplishing the goal become prime 

issues in making the system efficient both from operation and economy view points. 

There is good number of tools available for optimizing the general allocation 

problems. However, if the robots under consideration are in large number possessing 

higher capability and the number of tasks to be carried out is large, then the number 

of alternatives for allocation becomes exorbitantly large, thereby making the 

allocation problem an NP-hard. Therefore, the optimization tool to be used for such 

problems need to be chosen carefully and correctly. 

 
In order to treat task allocation in an optimization context, one must decide what 

exactly is to be optimized. Ideally the goal is to directly optimize overall system 

performance, but that quantity is often difficult to measure during system execution. 

Furthermore, when selecting among alternative task allocations, the impact on 

system performance of each option is usually not known. It is based on the notion 

that each individual can internally estimate the value (or the cost) of executing an 

action. Depending on the context, utility is also called fitness, valuation, and cost. 

 
The different approaches are adopt and followed to optimize the assignment process. 

Several methods are available in texts for task assignment under various conditions. 

However, in view of the constraints and conditions existing in MRS, the following 

methods are picked up for task assignment to the robots. These are  

i) Greedy Heuristics (GH) 

ii) Linear Programming (LP) 

iii) Mixed Integer Linear Programming (MILP) 

iv) Knapsack Algorithm (KA) 

v) Hungarian Algorithm (HA) 

vi) Particle swarm optimization (PSO) 
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Once a particular task is assigned to a robot, the same is not considered for 

assignment to any other robots. The next step of the algorithm looks for the similar 

conditions as above amongst the rest of the tasks till the robots capacity constraints 

are satisfied.  

5.6.1 Task assignment using Greedy Heuristics  

In the first approach a greedy heuristic algorithm is used to assign tasks based upon 

the minimum allocation cost and the load deviation ratio. A GH is an algorithm that 

follows the problem solving metaheuristic of making the locally optimum choice at 

each stage with the hope of finding the global optimum. At each phase: 

• You take the best you can get right now, without regard for future 

consequences 

• You hope that by choosing a local optimum at each step, you will end up at a 

global optimum 

In general, GH has five pillars:  

i) A candidate set, from which a solution is created, 

ii)  A selection function, which chooses the best candidate to be added to the 

solution ,  

iii) A feasibility function, that is used to determine if a candidate can be used to 

contribute to a solution,  

iv) An objective function, which assigns a value to a solution, or a partial 

solution, and  

v) A solution function, which will indicate when we have discovered a complete 

solution.  

 
GH produces good solutions on some mathematical problems, but not on others. A 

GH may depend on choices made so far but not on future choices or all the solutions 

to the subproblem. It iteratively makes one greedy choice after another, reducing 

each given problem into a smaller one. In other words, a greedy algorithm never 

reconsiders its choices. This is the main difference from dynamic programming, 

which is exhaustive and is guaranteed to find the solution. After every stage, 
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dynamic programming makes decisions based on all the decisions made in the 

previous stage, and may reconsider the previous stage's algorithmic path to solution. 

A problem exhibits optimal substructure if an optimal solution to the problem 

contains optimal solutions to the sub-problems. The solution algorithm for the 

assignment model uses a greedy heuristic-First Fit by Ordered Deviation (FFOD) to 

generate an initial feasible solution. The algorithm is used to search for the optimum. 

The heuristic provides an initial feasible solution which serves as an upper bound. 

This solution and its corresponding objective function value are then iteratively 

expanded and solved by using a decomposition procedure. This iterative solution 

process continues to refine the objective function [99,100]. If the final solution is all 

integers, then an optimal solution to the original assignment model problem has been 

found and the algorithm terminates. The tasks are carried out one after the other and 

for each task one robot is selected for carrying out the task. This algorithmic frame is 

presented in Table 5.6 and the details are given in A1 of Appendices. 

Table 5.6 Algorithm frame for GH 

Algorithm 

1. J = Set of Jobs 

2. s = Ø 

3. while J ≠ Ø do 

4. choose j ∈  J  ; J = J \ {j};  

5. choose p ∈P; s= s∪ (j,p) 

6. end while 

7. return s; 
 

In the heuristic, the task j to be carried out next (line 4) and the robot p to be selected 

for the task j is scheduled (line 5). The following greedy approach for the selection 

of a robot for a task j is followed. 
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5.6.2 Task assignment using Linear Programming 

Cooperative control of multiple-robots is a complicated problem that requires real-

time planning under communication constraints [101]. A cooperative controller must 

deal with a variety of problems such as sensor information, sub-team formation, and 

optimal task assignment; time/space coordinated control, and optimal trajectory 

generation. The present work focuses on the problem of task assignment, its 

formulation, and modeling. In fact, task assignment is a research topic studied for 

many years in the literature of operations research. However, task assignment in 

cooperative control requires online real-time solution. A single robot is able to 

service multiple tasks. Furthermore, some tasks must be serviced following a specific 

sequence in time. Therefore, task assignment for cooperative control is 

fundamentally different from off-line static task assignment studied in the literature. 

When a task is to be performed, it needs to be classified at the first instance and then 

its assignment is to be sought. Once a task is assigned, the task is viewed by other 

robots to ensure that it has been assigned. The tasks must be correctly assigned and 

distributed as per the load deviation ratio. Therefore, the task assignment in 

cooperative control is a dynamic process with changes, unexpected or expected, in 

the task in the system, and in the environment. The model of task assignment to 

multiple robots has been viewed as a problem for optimization using of LP 

technique. The software tool LINGO has been used to model and solve the problem. 

For creating a LINGO model, an optimization model consists of three parts: 

• Objective function: This is single formula that describes exactly what the 

model should optimize: A general manufacturing example of an objective 

function would be to minimize the cycle time for a given product. 

• Variables: These are the quantities that can be changed to produce the 

optimal value of the objective function.  

• Constraints: These are formulas that define the limits on the values of the 

variables.  
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LP problems are mathematical programming formulations [102], where the objective 

and the constraints are linear functions of {X1, X2,…,Xn}. Therefore, an LP 

formulation would look like this:  

Minimize  c1x1 + c2x2 +· · ·+ cnxn 

subject to  a11x1 + a12x2 +· · ·+ a1nxn  ≤ b 

  ... ... ...  

  ak1x1 + ak2x2 +· · ·+ aknxn ≥ b 

                          ...    ... ... 

am1x1 + am2x2 +· · ·+ amnxn= bm 

where x represents the vector of variables (to be determined), while c  and b are 

vectors of (known) coefficients and a is a (known) matrix of coefficients.  

 
The problem of multiple task assignment is formulated using LP. The generalized LP 

formulation consists of n robots and m tasks so as to minimize the overall allocation 

cost. The cost matrix is for the problem has the size of 15×15, wherein 225 numbers 

of variables and 31 numbers of constraints are considered. All the variables with 

constraints are programmed in the LINGO software to optimize the objective 

function. The detailed programming is mentioned in A2 of Appendices. 

5.6.3 Task Assignment using Mixed Integer Linear Programming  

Mixed Integer Linear programs (MILP) techniques are effective not only for mixed 

problems like real and integer problems , but also for pure-integer problems, pure-

binary problems, or in fact any combination of real, integer, and binary-valued 

variables. Fixed charges or set-up costs are incurred when there is some kind of fixed 

initial cost associated with the use of any amount of a variable, even a tiny amount. 

Fixed charges and set-up costs occur frequently in practice, so it is important to be 

able to model them. 
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While the MILP formulation is designed to be as flexible as possible to take many 

different parameters into account, the nature of MILP techniques makes it necessary 

to make a few simplifying assumptions in our problem model. 

Assumption 1: Job pre-emption is not allowed 

Once a robot begins to execute a task, it must continue to completion without 

interruption. Also, a robot may process only one task at a time. 

Assumption 2: All relevant parameters to the problem are known in advance 

To compute the task allocation to optimality, information about all available robots 

including services offered, execution delays, and communication delays are needed. 

If information about robots is not known apriori, those resources will not be taken 

into account when solving the problem.  

Assumption 3: The robot network is static 

Because the entire allocation is computed prior to execution, any dynamic changes in 

the robot organization or job precedence graph during execution of the schedule may 

result in a sub-optimal or infeasible solution. 

Assumption 4: Each individual task can be completed with a single robot 

If a task requires a combination of services from multiple robots to be completed, 

that job must be further decomposed into smaller tasks specific to each service 

before the optimal allocation is computed, or that group of robots must be modeled 

as a single robot. While these assumptions place some limits on the types of 

problems that can be solved using this technique, the algorithm is still flexible 

enough to be used for modeling task allocation problems in many different scenarios. 

 

An MILP [103] is to coordinate multiple heterogeneous robots for detecting and 

controlling multiple regions of interest in an unknown environment. The objective 

function should contain four basic requirements of a multi-robot system serving this 

purpose: control regions of interest, provide communication between robots, control 

maximum area and detect regions of interest. This solution defines optimum 

locations of robots in order to maximize the objective function while efficiently 

satisfying some constraints such as avoiding obstacles and staying within the speed 

capabilities of the robots. 
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An approach is developed for solving the MRTA problem considering a reduced 

domain. A generalized problem is formulated and considering the robots under 

question in terms of their space and time capabilities and the requirement of tasks an 

initial solution is obtained on the number of tasks that can be allocated to the 

candidate robots. Thereafter, MILP technique is used to obtain the optimized MRTA.  

 
An MILP approach is presented in the context of a MRTA problem framework that 

enables optimal makespans to be computed for complex classifications of scheduling 

problems taking multiple parameters into account. Many LP problems exist where it 

is necessary to restrict the decision variables to integer or binary values. Examples 

include cases where the decision variable represents a nonfractional entity such as 

people or bicycles, or where a decision variable is needed to model a logical 

statement (such as whether or not to assign task A to agent B). These problems are 

called MILP problems, and are often much harder to solve than LP problems. This is 

because instead of having feasible solution points at the easily computed corners of 

the feasible region, they are instead usually internal and more difficult to locate. For 

example, constraining X and Y from the LP formulation to have integer values, the 

feasible solution points are shown in Figure 5.6.The first step in solving a MILP 

problem such as this is to solve the linear relaxation of that problem. This simply 

means removing the constraints that any decision variables have integer values and 

solving the resulting LP problem using an algorithm such as the Simplex Method. 

The result is one of the following outcomes: 

• The LP problem is infeasible, so the MILP problem is also infeasible. 

• The LP is unbounded and is probably not a well-posed problem. 

• The LP has a feasible solution and all integrality constraints are satisfied, so 

the MILP has also been solved. 

• The LP has a feasible solution, but not all of the decision variables have 

integer values. 
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Figure 5.6 A MILP problems showing all feasible integer solutions 

 
A new, flexible MILP is formulated that can be used to solve task allocation 

problems with a variety of parameters in the context of a multirobot problem solving 

framework. MILP techniques are chosen to model task allocation problems because 

of the intuitive nature of modeling these problems as a set of constraints with an 

objective function, and because these techniques produce optimal solutions. A 

significant amount of work has been done in developing and optimizing this MILP 

formulation by reducing the number of binary variables and redundant constraints 

used in the model. The algorithm uses MILP techniques to solve the most 

complicated classifications of the task allocation problem.  

 
MILP technique has several advantages. Firstly, MILP produces exact optimal 

solutions instead of approximate ones. Secondly, being a general-purpose 

optimization method, software tools such as Management Scientist are available to 

efficiently solve an MILP problem once it has been formulated. The MILP approach 

offers more flexibility than most existing task allocation algorithms and heuristics. 

 
The algorithm achieves completely optimal task allocation for multi-robot problems. 

The disadvantage of using MILP techniques is that they are NP-hard, and therefore 

may be infeasible to use for solving larger MRTA problem. Another drawback in 

using MILP algorithm is that since it runs in exponential time it is only feasible to 

Feasible Integer Solution 

Linear Constraints
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use on smaller-scale problems, where there are a limited number of robots and tasks. 

As the algorithm is static rather than dynamic, all information about the robot 

network must be known apriori to solving the problem.  

5.6.4 Task assignment using Knapsack Algorithm 

The KA problem [104] considers each robot as a two-dimensional bin [105] and each 

task as a two-dimensional object to be packed. The model is viewed as assigning 

objects into an optimal set of bins such that both resource demands of each object are 

satisfied and neither of the capacity constraints of each selected bin is violated. This 

KA problem’s solving goal is to find a subset of objects that maximizes the total 

profit while satisfying some resource constraints and allocation of task suitably.  The 

problem of task allocation in MRS is modeled accordingly where, m is the number of 

robots and n is the number of tasks. Let p’ be an n × m profit matrix. The value of p’ 

[i, j] indicates the profit of task i when selected for robot j with capacity c’. The 

solution is a valid assignment since no item can be assigned to more than their 

capacity of robots. Given a set of tasks, each with a cost and a value, the objective is 

to determine the number of each task so that the total profit is maximized and the 

total value is as large as possible. The developed algorithm chooses the objective 

function and makes the allocation of task to individual robot. The 0-1 KA problem is 

posed as follows. For n tasks; the ith task is worth pj and weighs wj, where pj and wj 

are integers. The 0-1 KA wants to take as valuable a load as possible, but carry at 

most w in the knapsack for some integer w. This is called the 0-1 KA problem 

because each item must either be taken or left behind. The problem has 15 tasks, and 

the knapsack can hold profit of 15. The detailed procedure to solve the knapsack 

problems is mentioned in A3 of Appendices. 
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Considering a bounded amount mj of each item type j, the bounded KA problem 

arises as:   
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=

n

j
jj xp

1
'  

 subject to  ,'
1

cxw j

n

j
j ≤∑

=
  

 { } .,...,1,,...,1,0 njmx jj =∈  

Savk= 4,...,1;1 =
∑
∑
= k

n

S
n

i
ik

 

 
where, Sik is the space requirement of task when served by robot k, and n- number of 

tasks.  

Considering unit weight for all the tasks, task 1 is worth 8 for robot-1. Similarly, 

worth of task 1 is 14, 5 and 5 for robot-2, robot-3 and robot-4 respectively. In the 

same way, the profit and capacity of robots for all fifteen tasks are determined and 

are presented in Table 5.7 and Table 5.8 respectively. The average task serving 

capacity may be taken as inverse of Savk i.e 1/ Savk. Cost of individual robot, expected 

period of robot, average working hour per day and the time requirement of the task 

are taken into account to determine the profit function, The profit is assumed as the 

inverse of cost, where the cost is defined as;  
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where fk is the cost function of a robot type 
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Table 5.7 The profit values 

Task Robot-1 Robot- 2Robot- 3Robot- 4
1 8 14 5 5 
2 7 13 5 4 
3 7 13 5 4 
4 7 12 4 4 
5 6 11 4 4 
6 6 10 4 4 
7 5 10 3 3 
8 5 9 3 3 
9 5 9 3 3 
10 5 8 3 3 
11 4 8 3 3 
12 4 8 3 3 
13 4 7 3 2 
14 4 7 3 2 
15 4 6 3 2 

 

Table 5.8 Capacity of robots 

Robot-1 Robot-2 Robot-3 Robot-4 

3 3 5 4 
 

5.6.5 Task assignment using Hungarian Algorithm 

Before allocation of tasks to the robots, it is important to determine the loading 

capacity of the robots. The loading capacity of a robot depends on its individual 

capability which can be generally determined by its reach, speed, and pay load 

specifications. Besides the robot’s capability, the loading capacity also depends on 

the requirement of the task (e.g. kind of operation, motion, and dimensions) and its 

location in the workspace. The loading capacity is determined through the load 

deviation ratio which uses the normalized time and space requirement for various 

combinations of robot-task. Load deviation ratio is the ratio of difference between 

the normalized space requirement (si1) and normalized time requirement (ti1) to the 

summation of normalized space requirement (si1) and normalized time requirement 

(ti1). After taking into account the absolute value of the load deviation ratio, the 
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capacity of each individual robot is determined. As per LDR, the distributions of 

robot are balanced in HA. The popular and several restricted forms of task 

allocation issues are NP problems. It searches a feasible matching scheme to 

realize corresponding object models. The Hungarian algorithm [106,107] is a 

combinatorial optimization algorithm which solves assignment problems in 

polynomial time. The algorithm models an assignment problem as n×m cost matrix, 

where each element represents the cost of assigning the robot to the task. By default, 

the algorithm performs minimization on the elements of the matrix; hence in the case 

of a price-minimization problem, it is sufficient to begin Gaussian elimination to 

make zeros appear (at least one zero per line and per column). However, in the case 

of a profit-maximization problem, the cost matrix needs to be modified so that 

minimization of its elements results in maximizing the original cost values. In an 

infinite-cost problem, the initial cost matrix can be re-modeled by subtracting every 

element of each line from the maximum value of the element of that line (or column 

respectively). In a finite-cost problem, all the elements are subtracted from the 

maximum value of the whole matrix. It resolves the problem for the robot how to get 

the tasks and realize them at minimal cost. In this algorithm the input is a cost table 

established according to the cost needed for completing different tasks, and the 

output is an equivalent cost table in which a complete assignment constitutes an 

optimal assignment. The main idea of the algorithm is to modify the cost table's 

columns and rows until there is at least one zero in every column or row so as to find 

an complete assignment scheme according to the zeroes. This scheme is an optimal 

assignment when it is applied to the cost matrix for the total cost in this scheme is the 

least, and the algorithm can be always converging on an optimal solution in finite 

steps. The basic theory of this algorithm is that when you add a constant to any row 

(column) or subtract a constant form any row (column), the optimal assignment will 

not change.  
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Hungarian algorithm is feasible in the multi robot system domain, and it can 

efficiently and evenly distribute tasks among the candidate robots. The solution steps 

are as follows: 

Step l: Modify the cost matrix. First, subtract the smallest element in every row from 

the row, and then subtract the smallest element in every column from the column in 

the matrix so that there is at least one zero in every row and column. 

Step 2: If there is a complete assignment scheme, a cost matrix is obtained with N 

zeroes in different columns and rows which is the optimal solution and the algorithm 

is over, else go to next step. 

Step 3: Cover all the zeroes in the cost matrix with the least lines, then find the 

smallest element in the remaining matrix and subtract it from every element not 

covered and add it to the line-cross elements. 

Step 4: If the zero elements in the matrix constitute a complete assignment, go to 

step 5, else go to step 3. 

Step 5: Add the cost to the zero elements located, then the sum is the total cost and 

the assignment is the optimal one. 

 
The Hungarian algorithm is used to realize task allocation of the robots based on 

two-dimensional assignment problem aiming at multi-robot system. Hungarian 

algorithm is used to realize the task allocation of the multi robot system and then 

compare it with other task allocation methods. The procedure of Hungarian 

Algorithm is mentioned in A4 of Appendices. 

5.6.6 Task assignment using particle swarm optimization (PSO) 

PSO is a population based stochastic optimization technique, inspired by social 

behavior of bird flocking or fish schooling, and is developed by Dr. Eberhart and Dr. 

Kennedy in 1995[108]. The system is initialized with a population of random 

solutions and searches for optima by updating generations. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current 

optimum particles. The advantages of PSO are easy to implement and there are few 

parameters to adjust. PSO has been successfully applied in many areas: function 
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optimization, artificial neural network training, fuzzy system control, and other areas 

where GA can be applied. 

 

As stated before, PSO simulates the behaviors of bird flocking. This can be 

explained by the following scenario: a group of birds are randomly searching food in 

an area. There is only one piece of food in the area being searched. The birds do not 

know where the food is. But they know how far the food is in each iteration. So the 

best strategy to find the food is to follow the bird which is nearest to the food. PSO is 

learnt from the scenario and this technique is used to solve the optimization 

problems. In PSO, each single solution is a "bird" in the search space. We call it 

"particle". All of particles have fitness values which are evaluated by the fitness 

function to be optimized, and have velocities which direct the flying of the particles. 

The particles fly through the problem space by following the current optimum 

particles. PSO is initialized with a group of random particles (solutions) and then 

searches for optima by updating generations. In every iteration, each particle is 

updated by following two "best" values. The first one is the best solution (fitness) it 

has achieved so far. (The fitness value is also stored.) This value is called pbest. 

Another "best" value that is tracked by the particle swarm optimizer is the best value, 

obtained so far by any particle in the population. This best value is a global best and 

called gbest. When a particle takes part of the population as its topological 

neighbors, the best value is a local best and is called lbest. After finding the two best 

values, the particle updates its velocity and positions with following equation (5.1) 

and (5.2). 

Velocity update : vi(t+1)=w vi(t) + c1*rand*(pbest(t) - xi(t)) + c2*rand                       

*  (gbest(t) - xi(t))                       (5.1) 

Position update: xi(t+1)=xi(t) + vi(t+1)                       (5.2) 
Where  
w > (1 / 2) (C1 + C2) – 1  
0 < w < 1  
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Most of evolutionary techniques have the following procedure: 

1. Random generation of an initial population 

2. Reckoning of a fitness value for each subject. It will directly depend on the 

distance to the optimum.  

3. Reproduction of the population based on fitness values. 

4. If requirements are met, then stop. Otherwise go back to 2. 

 
The PSO-based algorithm is the optimization problem for task allocation on the basis 

of global optimization. The problem that n tasks on m robots with an objective of 

minimizing the completion time and utilizing the resources effectively. If the number 

of tasks is less than the number of robots in dynamic environment, the tasks can be 

allocated on the robots according to the first-come-first-serve rule. If the number of 

task is more than the number of robots, the allocation of tasks is to be made as per 

the algorithm. Considering the number of tasks is more than the robots, one task 

cannot be assigned to different robots, implying that the task is not allowed to be 

migrated between robots. The aim of this problem is to improve the efficiency of 

robots and to minimize the completion time at the same time. PSO can be 

implemented to solve various function optimization problems. The code of PSO is 

mentioned in A5 of Appendices. 

5.7 Integration of task allocation with task planning in MRS 

In practice, the processes of robot selection and task assignment cannot be treated in 

isolation. These processes are to be considered in an integrated manner in order to 

perform the desired task. Hence, there should be an integrated approach towards this. 

An example problem of assembly under MRS is considered here to validate the 

suitability of methodologies already mentioned in the previous sections. 

 
An assembly task involves joining two or more components or subassemblies 

together. An assembly plan for a given product consists of a set of assembly tasks 

with ordering constraints among its elements. Each assembly task consists of joining 

a set of subassemblies to yield a larger subassembly. Given an assembly plan, an 
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assembly sequence is an ordered sequence of the assembly tasks that satisfies all the 

ordering constraints. Each assembly plan corresponds to one or more assembly 

sequences. Efficient manufacturing in industries is conditioned by assembly. 

 
The problem explicitly addresses robots of different types with various DOF and 

capacities. The assignment model seeks an optimal selection of robots to perform all 

given tasks such that each task’s resource demands are satisfied, no robot capacity 

constraints are violated, and the distribution is balanced. Multi-robot teamwork is a 

complex problem consisting of task division, task allocation, coordination, and 

communication. The most significant concept in multi-robot systems is 

cooperation. The problem of task assignment in multirobot environment has been 

conceived with twenty one parts with twenty two task assemblies and two robots. 

 
The objective of the assembly plan is to minimize the total assembly time. The 

algorithm takes into account the consideration of robots specifications, the dexterity 

of robots and the motion requirements for accomplishing the tasks. To meet the 

objective the process starts from the disassembly completed graph. The best 

sequence is generated through the evolutionary computation (ant colony) technique 

by considering the assembly constraints, the in-process stability and the motion 

studies of the parts to be assembled. The evolution technique Ant Colony 

Optimization (ACO) is a model-based metaheuristic approach for solving hard 

combinatorial optimization problems. The term metaheuristic is a set of algorithms 

concepts that can be used to define heuristic methods applicable to a wide set of 

different problems, and combinatorial optimization problem is either a maximization 

or a minimization problem which has associated with a set of problem instances. The 

term instances refer to a problem with specified values for all the parameters. The 

inspiring source of ACO is the foraging behaviors of the real ants which enables 

them to find shortest path between a food source and their nest. Some other type of 

such evolutionary approaches are; SA, Neural Network, Evolutionary Computation, 

PSO, Artificial Immune System, and so on. The ACO algorithms have been applied 

successfully in a variety of optimization problems that can be expressed as searching 

for optimal paths on graphs, such as the traveling salesman problem (TSP), Just-in-
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time (JIT) sequencing, job-shop scheduling etc. It is best suitable for combinatorial 

optimization problems. During the construction of sequences in ACO, local 

pheromone updating encourages exploration of alternative solutions, while global 

pheromone updating encourages exploitation of the most promising solutions. The 

work in ACO is further extended to multirobot allocation model. The principle of 

sequential and parallel execution of tasks through the parameters involved in total 

assembly time is worked out. Once the sequence is generated it is time to implement 

the part sequences to a multi-robotic environment in the industries. Before evaluating 

the best possible combinations of robots assignment one criterion is taken into effect 

i.e. to maximize the amount of parallelism that is possible in the execution of the 

assembly tasks. This drastically reduces the total assembly time of a sequence. The 

methodology is developed on the concept of increase in system flexibility by shared 

manufacturing, material handling resources, and reduction in cycle time by 

concurrent work. Task-sharing and resource-sharing are repetitively investigated 

during the running of the problem. While allocating assembly tasks, the following 

three different options are taken into account; 

 
Option 1: Task allocation to the robots are made on the basis of the robot’s capability 

to fulfill the motion conditions is made on the basis of robot’s capability to fulfill the 

motion conditions (type of its and DOFs); 

Option 2: Tasks are allocated to robots alternatively as per the generated sequence; 

Option 3: Tasks are allocated to robots in accordance with their capabilities and time 

availability. 

5.7.1 Illustrative example 

The robots under consideration are standard industrial robots. The two robots 

(PUMA 560 and Adept One Xl) have been selected on the basis of motion and 

stability requirements of this kind of problem. The aim of the selection is to reduce 

the total assembly time and optimize the robot selection sequence for assigning the 

tasks.  The pertinent parameters of the robots such as the number of DOF, pay load, 

swept area, maximum reach, maximum speed, type and cost are different. The tasks 

are characterized with the movement and orientation values of the respective task 
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sequences. According to capabilities of the robots and requirement of the tasks some 

task may be 6 DOF whereas some other becomes 4 DOF. Using realistic data, the 

following example is provided to highlight the solution process for an allocation 

problem. Puma 560 robot has a swept area of 320°, a maximum reach of 878 mm, 

and an average arm movement speed of 1.0 m/sec with rotational jointed type. Adept 

one XL robot has a swept area of 270°, a maximum reach of 800 mm, and an average 

arm movement speed of 1.2 m /sec with prismatic jointed type. For the different 

tasks, DOF requirements are considered and then the distribution is determined. Let 

us example task 7 is a screw is to assemble in task 16. To assemble the task 7 in task 

16, there are requirements of 5 DOF. Finally PUMA 560 robot is assigned to task 7 

because Adept one XL is only for 4 DOF. The detail procedure of finding the 

optimal allocation is represented as flow diagram in the Figure 5.7. 
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Figure 5.7 Flow chart of the proposed methodology 
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5.7.2 The assembly problem 

In order to work on the proposed method, an example product (Drive Assembly) is 

considered. The assembly is an electro-motor device with casing used as a drive 

motor. The exploded view of the assembly is shown in Figure 5.8 having 21 numbers 

of parts including 10 screws. The part description and the part connections with are 

given in Table 5.9 and Table 5.10 respectively.  

  
Figure 5.8 Exploded view of a drive assembly 
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Table 5.9 Part description 

Part Number Part description 

1, 13 Stud- I 

4, 11 Stud-II 
2, 3, 6, 7, 10, 14, 17, 21 Screw-I 

8, 9 Screw-II 

18 Screw-III 

5 Shell 

12 Electromotor 

15 Washer 

16 Cover Plate 

19 Plug 

20 Base 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 

 

Table 5.10 Part description with connectivity relation 

Part number Connectivity relation with 

1 16, 20 

2 05, 20 

3 05, 16 

4 07, 16, 20 

5 02, 03, 10, 14, 16, 17, 19, 20, 21 

6 11, 16 

7 04, 16 

8 12, 20 

9 12, 20 

10 05, 20 

11 06, 16, 20 

12 08, 09, 15, 16, 20 

13 16, 20 

14 05, 16 

15 12, 18, 20 

16 01, 03, 04, 05, 06, 07, 11, 12, 13, 14, 19 

17 05, 20 

18 15, 20 

19 05, 16 

20 01, 02, 04, 05, 08, 09, 10, 11, 12, 13, 15, 17, 18, 21 

21 05, 20 
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As found from the liaison diagram shown in Figure 5.9 the product contains 38 

numbers of liaisons. The dotted boundary in the diagram (Figure 5.9) envelopes a 

possible subassembly of the product. The liaisons can be represented as; 
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Figure 5.9 Liaison diagram of the drive assembly 

The Figure 5.10, Figure 5.11 and Figure 5.11(a) shows below the front view, liaison 

graph model and directions of subassembly of an electromotor having the part 

numbers 08, 09, 12, and 20.  
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Figure 5.10 Front view of electromotor subassembly 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 (a): Liaison graph model of electromotor subassembly; (b): Directions 
for assembly or disassembly 

 
For the purpose of understanding the proposed methodology, let’s consider three 

alternatively sequences of the drive assembly including one subassembly (shown 

within the dotted rectangle). These sequences are taken from the results of generation 

of assembly sequence using ACO.  
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Part Sequence 1: 

20-12-15-18-8-9-4-11-13-1-5-17-2-21-10-16-14-3-7-6-19 

Part Sequence 2: 

20-12-15-18-8-9-4-11-13-1-16-7-6-5-17-2-14-3-21-10-19 

Part Sequence 3: 

20-12-8-9-15-18-4-11-13-1-16-7-6-5-17-2-14-3-21-10-19 
 
Sequence 3 is arbitrarily chosen only for the sake of understanding the methodology. 

In practice, the optimization techniques are applied to determine the optimal 

sequence and then the same is picked for allocation to the robots. For the same 

problem of task assignment in multirobot environment has been conceived with 

twenty two task assemblies with two robots. 

Task allocation to the available robots can be made using the three options.The 

allocations are made on the basis of capability of the robots so that the motion 

conditions are satisfied. For the purpose of a sample study, option-1 is used and the 

following allocations are made. 

Task Allocation 1:  

P→P→P→P→A→P→P→A→A→A→A→A→P→P→A→A→A→A→P→P→P

→P 

Task Allocation 2: 

A→A→P→P→P→P→P→A→A→A→A→A→P→P→P→P→P→P→A→A→A

→A 

Task Allocation 3: 

A→P→P→P→A→P→A→P→P→A→A→P→P→P→A→A→A→A→A→A→A
→A 

 
In the task allocation ‘A’ represents Adept One XL robot and ‘P’ represents Puma 

560 robot. These three allocations are considered as candidates for optimization on 

the basis of a single objective called cyclic time of assembly. 

 

 



141 

 

5.7.3 Determination of cycle time 

i) Allocation 1  

a) Time taken by Puma 560 

12X + (θ/1.138)10 = 12X + 8.78 θ  

The equivalent time (Єi) = A.X+0.5.B.R.X, where, A and B are the coefficient of X 

and θ respectively. R is the maximum reach of the robot arm. i = 1 for Puma and i = 

2 for Adept. 

Hence, Є1 = 12X + 0.5×8.78×0.878X = 15.854X  

b) Time take by Adept one XL  

10(X/1.2) + (θ /1.5) 8 = 8.3X + 5.33 θ 

Є2 = 8.3X + 0.5×5.33×0.8X = 10.432X 

Total equivalent cycle time taken by the robots is 

Є = Є1 + Є2 = 15.854X + 10.432X = 26.286X 

ii) Allocation 2 

a) Time taken by Puma 560 

11X + (θ /1.138) 8= 11X + 7.02 θ 

Є1 = 11X + 0.5×7.02×0.878X = 14.082X 

b) Time take by Adept one XL  

11(X/1.2) + (θ /1.5) 10 = 9.16X + 6.66 θ 

Є1 = 9.16X + 0.5×6.66×0.8X = 11.824X  

Є = Є1 + Є2 = 25.906 

iii) Allocation 3 

a) Time taken by Puma 560 

9X + (θ /1.138) 8= 9X + 7.02 θ 

Є1 = 9X + 0.5×7.02×0.878X = 12.082X 

b) Time take by Adept one XL  

13(X/1.2) + (θ /1.5) 9 = 10.83X + 6 θ 

Є1 = 10.83X + 0.5×6×0.8X = 13.23X 

Є = Є1 + Є2 = 25.312X 
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5.8 Summary 

In this chapter, different methods of task allocation for MRS, based on six different 

methods viz. GH, LP, MILP, KA, HA and PSO.  A comparative study vis-à-vis their 

applicability of these methods is also presented. Each method has been applied on 

same example problem to evaluate them on a common platform. In order to combine 

the processes and approach the problem in a holistic manner, a separate example of 

drive assembly is considered for task allocation. The results have been critically 

viewed for their suitability in the context of the present goal set and are discussed in 

Chapter 6.  
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CHAPTER 6 
 

Results and Discussions 

6.1 Introduction 

The strategies for robot selection, formation of multi-robot cells and operation of the 

same have been presented in chapter-3. The model for robot selection and those for 

task assignment under individualistic manner and in integrated manner are presented 

with all details in chapter-4 and chapter-5 respectively. The results obtained by using 

various models and methods for the MRS under consideration are presented in the 

following sections in the broad category of;  

• Results on strategies for task allocation 

• Results on robot selection 

• Results on task assignment 

• Results on integrated task assignment 

6.2 Strategies for task allocation 

An empirical study is described in the present work that sought general guidelines 

for task allocation strategies. Different task allocation strategies are identified, and 

demonstrated in the multi-robot environment. A simulation study of the methodology 

is carried out in a simulated grid world. The results show that there is no single 

strategy that produces best performance in all cases, and that the best task allocation 

strategy changes as a function of the noise in the system. This result is significant, 

and shows the need for further investigation of task allocation strategies. 
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6.2.1 Results of grid world frame work 

A simplified v ersion of the above described multi-robot task in a grid world is 

illustrated in Figure 6.1. As the base case of the grid world implementation, a 10×10 

grid inhabited by 10 robots is considered. Robots bid on tasks depending on their 

capability (expressed by a number) to those tasks. The bid was set to 20- d, where d 

is the Manhattan distance to the task. In each time-step, any robot assigned to a 

particular task selects that task. When a robot selects a task, that task goes off the list 

and new tasks are added to it. In the context of emergency handling, commitment 

means that robots stay focused on a single task, until the task is over. The opposite, 

opportunism, means that robots can switch tasks, if for example another task is found 

with greater intensity or priority. In the experiments, coordination is linked to 

communication, namely the ability of robots to communicate about who should 

service which tasks, as opposed to individualism, where robots have no awareness of 

each other. Communication is used to prevent multiple robots from trying to 

accomplish the same task; robots inhibit others from engaging in the same task. The 

goal is to reduce interference among robots, and to prevent loss of coverage in some 

areas because all the robots rush to perform task in another area. Deciding the level 

of commitment and collaboration are key aspects of the multi-robot task allocation 

problem. The strategies are obtained by crossing individualism (I) and mutual 

exclusion (M) with opportunism (O) and commitment (C). Four alternatives were 

designed resulting from the combinations in varying the two parameters, 

coordination and commitment. The results of the grid world simulation are presented 

in Table 6.1. On one axis commitment versus opportunism is considered while on the 

other individualism versus mutual exclusion is considered.  
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Figure 6.1 An example 10 x 10 grid world with four robots (R) and three tasks (T) 

 

Table 6.1 Results from base case grid world 

 

 

 

6.2.2 Discussions of strategies for task allocation 

The grid world results are interesting if they actually represent real world system 

behavior. The fact that the best performing task allocation strategy changes as to 

vary noise parameters in the grid world implies that it can be very difficult to decide 

apriori which task allocation strategy should be used in a given task for any real 

world implementation. The results clearly show that the opportunistic strategy 

worked significantly better than the commitment-based strategy. This might be 

because the time to reach a task was significantly larger than the time to complete a 

task, once a robot was there. This choice of parameters favors opportunism over 

commitment since the former effectively uses the presence of robots near 

emergencies by harnessing them immediately. In other regions of the parameter 

space of the emergency handling task (e.g., where the ratio of time-to-reach-task to 
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time-to-complete-task is small) opportunism might not be as effective. The present 

study excluded the case where several robots would be required to do a task in a 

cooperative fashion, a regime in which performance might improve with 

commitment.  

 
The selected four task allocation strategies are extreme, in that they take into 

consideration only the complete presence or absence of commitment and 

coordination in the given context. Arguably, the best strategy for any particular task 

would most likely be a carefully balanced compromise. However, as stated 

previously, the goal of this work was not to attempt to find the best strategy (which is 

necessarily task- and parameter-specific), but rather to gain some insight into task 

allocation in general. The four strategies explored provide a reasonable span of 

strategy space and provide leading insights for further study. In practice, the robot 

capability ratings can be obtained from the databases. Therefore, one can 

automatically select appropriate candidate for a given task by using the proposed 

matching procedure and databases.  

6.3 Selection of robot 

Essentially four different types of approaches are adopted in selection of robot. 

These are: 

• In the first kind of approach, a methodology based on fittness methods is 

adopted which helps in selection of a suitable robot from among a large 

number of available alternative robots.  

• The second approach is a capability based method and can consider any 

number of quantitative and qualitative robot selection attributes 

simultaneously and offers a more objective, simple and consistent robot 

selection approach.  

• The third approach considers the robot parameters as well as the task 

parameters to form a model for relative ranking of the available candidate 

robots. 
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• The fouth method is a cases based method and it is different from existing 

commercial design systems. The method proposed can provide designers an 

advisory service based on previous experience. 

 
The following sections present the results obtained through all these methods and the 

related discussions and comparisons. 

6.3.1 Results of selection of robots by fittness 

The weighted normalized attributes for the +ve and –ve benchmark robots are 

obtained through the methods described in section 4.4.1. The results are as 

follows; 

V*= (0.1129, 0.097, 0.064, 0.048, 0.074, 0.047, 0.246) 

V- = (0.075, 0.032, 0.051, 0.025, 0.02, 0.015, 0.061) 

The separation from the +ve and –ve benchmark robots are found as; 

196.0,096.0,195.0,044.0 *
4

*
3

*
2

*
1 ==== SSSS  

0083.0,185.0,069.0,206.0 4321 ==== −−−− SSSS  

 
The relative closeness values of the robots to the ideal solution are given in Table 6.2. 

The robots are ranked in order of preference based on the significant attributes chosen 

keeping the intended application in view. According to the results of the example 

problem, Robot-4 that has the lowest closeness value should be recommended as the 

best robot alternative. The 1st ranked robot has the highest DOF, cost, payload and 

swept area the best repeatability figures amongst all the robots. The 2nd ranked robot 

has the lowest cost, swept area, max.reach and repetability with highest pay load 

capacity. In order to discriminate between these two robot alternatives the closeness 

rating should be looked at. In the data set, P, G and VG denote poor, good, and very 

good respectively (Table 6.2). In order to determine the order of preference of the 

robot alternatives with respect to the closeness increase in throughput criterion, a 

ranking procedure becomes essential.  

 

 



148 

 

Table 6.2 Selection of robot 

 Sl. No Robot Closeness Ranking Rating 

1 Robot-1 0.824 4 P 

2 Robot-2 0.261 2 VG 

3 Robot-3 0.658 3 G 

4 Robot-4 0.04 1 VG 

 

6.3.2 Results of selection of robots on the basis of capability  

The relative ranking and ranking factors are calculated in section 4.4.2. The robots 

are arranged in order of their ranking factor based on the significant attributes chosen 

keeping the application of the robots in view. According to the results obtained and 

the analysis thereby, Robot-4 that has the lowest ranking factor should be 

recommended as the best robot alternative. The 1st ranked robot has the highest DOF, 

cost and payload. The 2nd ranked robot has the highest reach and repeatability. These 

robots are recommended for selection for performing the intended tasks. As a result 

of the application of both numerical and qualitative inputs and outputs, two robot 

alternatives are found to be more efficient compared to other candidates. In order to 

discriminate between these two robot alternatives the ranking factor should be 

looked at. The ranking curves of robots are shown in Figure 6.2. The average values 

of the ranking factor are presented in Figure 6.3.  
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Figure 6.2 Ranking curves of robots 

 

 

Figure 6.3 Comparison of robots 

 
On the basis of the ranking factors the robots are rated as ‘Low’ or ‘High’ in relation 

to the group of the robots under consideration and are shown in Table 6.3. The 

procedure provides a coding system for robots depicting the various attributes. It 

recognizes the need for, and processes the information about, relative importance of 
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attributes for a given application without which inter-attribute comparison is not 

possible.  

 
In this work also as many as 30 attributes of the robots are recognized and codify 

successfully. The methodology developed through this work would help production 

engineers to select robots for the intended application.  

Table 6.3 Scores of robot 

Sl. No Robot Ranking 
factor 

Relative 
ranking 

Relative 
rating 

1 Robot-1 2.65 4 Low 

2 Robot-2 2.3 3 Low 

3 Robot-3 1.871 2 High 

4 Robot-4 1.571 1 High 

 

6.3.3 Results of selection of robots on the basis of task requirement  

The robots are arranged in order of their ranking factor based on the significant 

attributes chosen keeping the application of the robots in view. The details of 

calculations are explained in section 4.4.3. According to the results obtained and the 

analysis thereby, Robot-5 and Robot-4 has the highest ranking factors should be 

recommended as the best robot alternative. The 1st and 2nd ranked robots have the 

highest figures amongst all the robots. As a result, two robot alternatives are found to 

be more competent compared to other robots. The ranking curves of robots are 

shown in Figure 6.4. The average values of the ranking factor are presented in Figure 

6.5.  
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Figure 6.4 Ranking curves of robots 

 

 
Figure 6.5 Comparison of robots 

 
Although ranking of robots on the basis of the manipulators parameters alone has 

been attempted by some previous researchers, ranking of the robots in view of 

performing a given set of tasks is a novel attept. The values of these ranking factors 

for all the robots are given Table 6.4. On the basis of the ranking factors the scores of 

robots are rated as ‘Low’, ‘Medium’ and ‘High’ and in relation to the group of the 

robots under consideration and are shown in Table 6.5. The procedure provides a 

coding system for robots depicting the various attributes. It recognizes the need for, 
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and processes the information about, relative importance of attributes for a given 

application without which inter-attribute comparison is not possible.  Essentially the 

present work contributes to developing a methodology based on matrix methods 

which helps in selection of a suitable robot from among a large number of available 

alternative robots. 

 

Table 6.4 Values of total ranking factor 

Value of ∑ σ with different set of weights 
Weight/ Robot Robot-1 Robot-2 Robot-3 Robot-4 Robot-5 
W1 35.7355 23.7325 17.5315 16.1235 17.2025 
W2 36.799 24.1855 18.6095 16.8095 17.688 
W3 37.8625 24.6385 19.6875 17.4955 18.1735 
W4 38.926 25.0915 20.7655 18.1815 18.659 
W5 39.9895 25.5445 21.8435 18.8675 19.1445 
W6 41.053 25.9975 22.9215 19.5535 19.63 
W7 41.798 26.4325 23.2805 19.8415 19.857 
W8 42.2245 26.8495 22.9205 19.7315 19.8255 
W9 42.651 27.2665 22.5605 19.6215 19.794 
W10 43.0775 27.6835 22.2005 19.5215 19.7625 
W11 43.504 28.1005 21.8405 19.4015 19.731 
W12 43.9305 28.5175 21.4505 19.2915 19.6995 

Table 6.5 Scores of robot 

Sl. No Robot Average 
ranking factor 

Relative 
ranking 

Relative 
rating 

1 Robot-1 40.6293 4 Low 

2 Robot-2 26.17 3 Medium 

3 Robot-3 21.304 2 Medium 

4 Robot-4 18.703 1 High 

5 Robot-5 18.703 1 High 
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6.3.4 Results of selection of robots using case based approach  

The detailed calculations for selection of robots are explained in section 4.4.4. In the 

query problem, a user is requested to fill up the required data such as price, reach, 

production rate, and work envelop requested by the system. After the user has 

specified the input requirements, they can use the search function to find out 10 of 

the most similar cases to generate final solutions. The efficiency of the system is 

primarily related with the representation of the query problem. The answer of the 

query problem cannot be retrieved until each matching case is analyzed, mapped, 

and transferred. In this process, reuse of case solution not only increases the 

efficiency, but also improves the quality of solving new problems. 

 

Table 6.6 Comparision of robots with the standard one 

Features Query 
problem 

Robot -1 Robot -2 Robot -3 Robot - 4 Robot -5 

Similarity 
(%) 

100 81 84.5 83.6 79.7 83.2 

Price 
(In 1000 

US$) 

100 105 103 105 105 103 

Repetability 
(mm) 

± 2 ± 1 ± 1 ± 1 ± 1 ± 1 

Reach 
(mm) 

2600 2400 2200 2400 2200 2200 

Payload 
(kg) 

100 120 120 120 120 120 

Velocity 
(mm/s) 

5000 5500 5400 5000 5400 5500 

D.O.F 5 6 6 5 5 5 
Geometry Cartesian Articulated Articulated Sphrical Articulated Cartesian

 
After having completed the initial retrieval, the best matching case is presented in 

front of the user in Table 6.6. Then, users have to select one of the optimal cases to 

adapt and refine the solution. In the step of selecting the optimal cases, many 

similarity features (or attributes) are employed to calculate the final similarity. 

Because each feature of the case has different effects on solving the query problem, 

and assign the weight to each feature as well. In our example, confirmed case 2 is the 
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most similar to the query problem with final similarity value 84.5%. In order to 

improve the quality of the selecting process, retrieval mechanisms and case 

representations have become a major topic to increase system performance. The case 

of similarity between robot features is shown in Figure 6.6. 

 

 
Figure 6.6 Comparison of robots as per similarity case 

6.3.5 Discussions 

The fittness based method presents a robot selection procedure based on the multiple 

attribute based approach, which is a concept used not so frequently for this purpose. 

It identifies the various attributes needing to be considered for the optimum 

evaluation and selection of robots. A robot alternative with a relatively low closeness 

is more likely to exhibit good performance. 

 
Robot selection is a multi-attribute decision making process and the result can 

provide an optimum solution for selecting candidate robots in the capability based 

method. On the basis of the relative ranking factors the selection robots are finalized. 

 
The robot selection on the basis of task requirement is aimed at developng a 

generalized tool to combine manipulator attributes and task requirements in a 

comprehensive manner for relative ranking of the manipulators. In the intial phase of 

the formulation, 35 attributes of the robots are identified and consciously coded to 

take care of the characterstics of a robot manipulator precisely. The methodology 
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developed through this work can be applied to any similar set-up .This is sure to help 

the designers and users in selecting the robots correctly for the intended application. 

 
There have been many studies on production process and robot selection. The case 

based methodology is useful for selecting robots and workcell design. The technique 

presented is useful in reducing the chance of poor quality design, inexperienced 

mistakes, and long development lead time. As mentioned previously, selecting the 

right robots for workcell design may not be a simple and obvious task.  The 

methodology is to help those inexperienced designers, as it bridges the gaps between 

product design and manufacturing stages and leaves no room for misconceptions and 

a poor foundation for design decision making. 

6.4 Task allocation 

The results obtained by using different methods for the allocation of MRS under 

consideration are presented in the following sections. As presented in chapter-5, six 

different types of allocation methods are adopted in the MRS. These are: 

• Greedy Heuristic (GH) which help allocate the task to robot and is handled to 

obtain a feasible solution. 

• Linear Programming (LP) based method. The technique is quite suitable and 

efficient for problems with limited number of tasks. 

• Mixed Integrated Linear Programming (MILP) that yields optimized 

multirobot task allocation. This approach can be advantageously used in real-

world problems. 

• Knapsack Algorithm (KA) that can be advantageously used for problems of 

large size. The method proposed can provide designers an advisory service 

based on previous experience. 

• Hungarian Algorithm (HA) for task allocation and the solutions obtained 

from this algorithm are feasible and the assignment of task to robot is 

uniformly distribured. 
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• Particle Swarm Optimization (PSO) is one of the latest evolutionary 

optimization techniques for MRS. Furthermore, PSO algorithm works well 

on most global optimal problems. 

• An integrated approach for assembly sequence generation and task allocation 

for MRS by considering their capability in terms of time and space. 

 
For all test problems excluding the integrated approach, four robot types with fixed 

charges are considered as candidate robots. The test problems are created by a 

problem generator using four major design parameters. These are: 

i) The average robot service capacity (i.e., the average number of workstations 

that can be served by a robot based on one-dimensional resource demand of 

workstations);  

ii) The average space required by the given workstations;  

iii) The average machine time required by the given workstations;  

iv) The number of workstations to be assigned.   

 
For the integrated approach, an example of a 21-part drive assembly with 2 robots is 

taken for the task allocation. The following sections present the results obtained from 

the aforementioned task allocation methods and the allied discussions and 

comparisons. 

6.4.1 Results of Greedy Heuristic for assignment  

The robustness and effectiveness of the optimization algorithms are examined by 

generating problems and testing them based on the key design parameters. The first 

optimization algorithm was coded in MATLAB for solving the greedy heuristic 

problems. GH is usually faster, since they don't consider the details of possible 

alternatives. An algorithm that always takes the best immediate or local solution has 

the possibility of getting trapped locally. Hence, greedy algorithms find the overall 

or globally optimal solution for some optimization problems, but may find less-than-

optimal solutions for some instances.  
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The results of the allocation obtained from the GH approach are presented in Table 

6.7. Since macro planning for a multi-robot system is quite important to a designer, 

the onetime computing cost for optimization should not be a major concern. 

Considerable and valuable results are developed in GH. The total cost of   assigned 

task is 14.563 as per GH solution. The utilizatios of GH is shown in Figure 6.7. 

 

Table 6.7 Task assignment using GH  

Robot Assigned workstation 

Robot-1 Task-1 

Robot-2 Task -2, Task -3, Task -4 

Robot-3 Task -5, Task -6, Task -7, Task -8, Task -9 

Robot-4 Task -10, Task -11, Task -12, Task -13, Task -14, Task -15 

 
 

 
Figure 6.7 Utilization of robots using GH 

6.4.2 Results of Linear Programming for assignment 

The second optimization algorithm based on LP was coded in LINGO. The total cost 

of assigned task is 13.931. The results of the allocation are presented in Table 6.8. 

Overall, the computational results indicate the initial feasible solution generated by 

the LINGO takes no more than a second. The quality of the solution is reasonably 

good. The solution times for finding a near-optimum or an optimum are also 
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recorded. Thus, the algorithms developed in this work provide significant and useful 

results. The result also implies that the size of the LP problem is determined by the 

number of tasks, and is independent of the number of robots.  

 

Figure 6.8 Results of the LP using LINGO 

 

Figure 6.9 Solution report of the LP using LINGO 
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Table 6.8 Task assignment using LP 

Robot Assigned workstation 

Robot-1 Task -13 

Robot-2 Task -12, Task -14, Task -15,  

Robot-3 Task -5, Task -6, Task -7, Task -8, Task -10, Task -11 

Robot-4 Task -1, Task -2, Task -3, Task -4, Task -9 

 
The Solver Status box as shown in Figure 6.8 details the model classification (LP, 

QP, ILP, IQP, NLP, etc.), state of the current solution (local or global optimum, 

feasible or infeasible, etc.), the value of the objective function, the infeasibility of the 

model (amount constraints are violated by), and the number of iterations required to 

solve the model. After the solver status box the LINGO displays a solution report 

regarding the values of each variable and the complete allocation that will produce 

the optimal value of the objective function. The reduced cost for any variable that is 

included in the optimal solution is always zero. For variables not included in the 

optimal solution, the reduced cost shows how much the value of the objective 

function would decrease (for a MAX problem) or increase (for a MIN problem) if 

one unit of that variable were to be included in the solution. The solution report of 

the LP using Lingo with the detailed assignment with the optimized value is shown 

in Figure 6.9. The utilization of robots using LP is shown in Figure 6.10. 
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Figure 6.10 Utilization of robots using LP 

 

6.4.3 Results of MILP for assignment  

The results of allocation obtained from the MILP are presented in Figure 6.11. Due 

to the restrictions of Management Scientist software 10 tasks with four robots are 

solved and are compared with all methods with 10 tasks and it is to be found that it is 

suitable for practical size problems. It may be mentioned that MILP problems can 

also be solved using LINGO but the third optimization algorithm was coded in 

Management Scientist for solving the MILP for the sake of testing the effectiveness 

of the tool. The comparison of run time between LINGO and Management Scientist 

is checked and it is observed that both the tools are equally effective for the problem. 
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Figure 6.11 Results of the MILP using Management Scientist 

Therefore, while the MILP can model the most complex classifications of task 

allocation problems, the solutions are limited to instances where there is small 

number of robots or tasks. By modeling the MILP problem using Management 

Scientist optimization software, one can gather data about the complexity of different 

problem instances and determine the limits to the problem size that the simulation 

can feasibly handle.The rate of complexity grows as more variables are added. The 

total cost of assigned task is determined to be 8.714.  

Table 6.9 Task assignment using MILP 

Robot Assigned workstation 

Robot-1 Task-8 

Robot-2 Task-9, Task-10 

Robot-3 Task-4, Task-5, Task-6, Task-7 

Robot-4 Task-1, Task-2, Task-3 
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Figure 6.12 Utilization of robots using MILP 

 
The outcome of the method of allocation in terms of the robots utilization is presented 

in Figure 6.12. The initial feasible solution generated by the heuristic takes no more 

than a second. The solution times for finding a near-optimum or an optimum are also 

recorded. The results of the allocation are presented in Table 6.9.  

6.4.4 Results of Knapsack Algorithm for assignment 

The fourth optimization algorithm based on KA was coded in LINGO. The results of 

the allocation are presented in Table 6.10. Furthermore, it is possible to use KA for 

solving the large scale knapsacks, as it is independent of robots as well as number of 

tasks. The total cost of assigned task for the present example problems is found to be 

13.794. Solution report and utilization of the results of allocation are obtained from 

this method is presented in Figure 6.13 and Figure 6.14, where from it is evident that 

the allocation cost is lower in KA compared to LP, MILP and GH, KA is more 

capable for large scale problems. 
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Figure 6.13 Results of the KA using LINGO 

 

Table 6.10 Task assignment using KA 

Robot Assigned workstation 

Robot-1 Task-4, Task-5, Task-6 

Robot-2 Task-1, Task-2, Task-3 

Robot-3 Task-7, Task-8, Task-9, Task-13, Task-14 

Robot-4 Task-10, Task-11, Task-12, Task-15 
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Figure 6.14 Utilization of robots in KA  

 
In an MRS typically multiple robots are available to accomplish large number of 

tasks. Any robot can be assigned to perform any task, incurring some cost that may 

vary depending on the robot-task combination. Large multiple knapsack problems, 

despite the NP-hardness, generally are as easy to solve as ordinary 0-1 knapsack 

problems.  
 

6.4.5 Results of Hungarian Algorithm for assignment 

The fifth optimization algorithm based on HA was coded in Matlab. The total cost of 

assigned task is 15.032. From the Matlab program it is observed that the runtime of 

HA is very small. HA will iterate several times until a feasible schedule is obtained 

where all tasks are assigned to robots. After every iteration the resulting assignments 

are checked for the overlapping and conflict of tasks in terms of robots’ schedules 

(two robots must not be scheduled in the same time where a task must attend both). 

The results of the allocation are presented in Table 6.11. The outcome of the method 

of allocation in terms of the robots utilization is presented in Figure 6.15. 
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Table 6.11 Task assignment using HA 

Robot Assigned workstation 

Robot-1 Task-4 

Robot-2 Task-1, Task-2, Task-3 

Robot-3 Task -5, Task -6, Task -7, Task -8,Task -9, Task -10 

Robot-4 Task -11, Task -12, Task -13, Task -14, Task -15 

 
 

 

Figure 6.15 Utilization of robots in HA 

6.4.6 Results of particle swarm optimization for assignment 

The sixth optimization algorithm based on PSO was coded in Matlab. The total cost 

of assigned task is 13.674. It has the better ability of global searching and has been 

successfully applied to many areas. PSO algorithm is employed to solve the MRTA 

problem in a dynamic environment. The results show that PSO algorithm is effective 

for task allocation problems.This approach aims to generate an optimal schedule so 

as to get the minimum completion time while completing the tasks. PSO algorithm is 

an adaptive method that can be used to solve optimization problem. The task 

assignment and the robot utilizaions using PSO are shown in Table 6.12 and Figure 

6.16.  
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Table 6.12 Task assignment using PSO 

Robot Assigned workstation 

Robot-1 Task-13 

Robot-2 Task-10, Task-12, Task-15 

Robot-3 Task -1, Task -2, Task -5, Task -6,Task -7, Task -8 

Robot-4 Task -3, Task -4, Task -9, Task -11, Task -14 

 

 

 
 

Figure 6.16 Utilization of robots in PSO 

6.4.7 Discussions  

The outcome implies that the size of the GH is independent to the number of tasks, 

and independent of the number of robots. GH problems can be successfully 

implemented in large size problems.  

 
The utilization of robots are not taken care of properly in LP. The LP problems are 

only suitable for practical size problems. The task assignment is well distributed in 

LP.  

 
The MILP provides significant and useful results. The MILP is also not suitable for 

larze size problems. The quality of the solution is reasonably good. 
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All the robots are utilized decently in the KA. As per utilization concerned, KA is the 

best methods as compared to the other methods. The KA achieves a good efficiency 

which is independent on the number of task and robots. 

 
The results show that HA is able to be applied to the MRS effectively and it can 

satisfy the optimal need. It was observed that the runtime of HA is very small, but its 

allocation cost is high as compared to other methods.  

 

PSO problems are well suited to larger size problems. The simulation of the program 

shows that it achieves the global solutions in a fraction of second. 

6.5 Results of integrated method for MRTA 

In order to test the developed methodology for practical problems and treat the 

methods in a holistic manner an example problem is considered wherein the 

integrated method of task division, robot selection and task assignment is followed. 

The problem is conceived with two industrial robots of different configurations as 

mentioned in the previous section. There are two sets of results for any assembly 

problem under consideration. The first set gives the alternate feasible and stable 

sequence of assembly while the second set gives the optimized cycle time for a 

production of a single product. 

6.5.1 Calculation of cycle time 

i) Allocation 1 
 
a) Time taken by Puma 560 
12X + (θ/1.138)10 = 12X + 8.78 θ  
The equivalent time (Єi) = A.X+0.5.B.Ri.X, where, A and B are the coefficient of X 

and θ respectively. Ri is the maximum reach of the robot arm. i = 1 for Puma and i = 

2 for Adept. 

Hence, Є1 = 12X + 0.5×8.78×0.878X = 15.854X  

b) Time take by Adept one XL  

10(X/1.2) + (θ /1.5) 8 = 8.3X + 5.33 θ 
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Є2 = 8.3X + 0.5×5.33×0.8X = 10.432X 

Total equivalent cycle time taken by the robots is 

Є = Є1 + Є2 = 15.854X + 10.432X = 26.286X 

ii) Allocation 2 
 
a) Time taken by Puma 560 

11X + (θ /1.138) 8= 11X + 7.02 θ 

Є1 = 11X + 0.5×7.02×0.878X = 14.082X 

b) Time take by Adept one XL  

11(X/1.2) + (θ /1.5) 10 = 9.16X + 6.66 θ 

Є1 = 9.16X + 0.5×6.66×0.8X = 11.824X  

Є = Є1 + Є2 = 25.906 

iii) Allocation 3 

 
a) Time taken by Puma 560 

9X + (θ /1.138) 8= 9X + 7.02 θ 

Є1 = 9X + 0.5×7.02×0.878X = 12.082X 

b) Time take by Adept one XL  

13(X/1.2) + (θ /1.5) 9 = 10.83X + 6 θ 

Є1 = 10.83X + 0.5×6×0.8X = 13.23X 

Є = Є1 + Є2 = 25.312X 

Table 6.13 Summary of cycle time 

Option No. X θ Є 
P A P A 

1 12 8.3 8.78 5.33 26.286 
2 11 9.16 7.02 6.66 25.906 
3 9 10.83 7.02 6 25.312 

 
It can be observed from Table 6.13 that, the option no-3 for allocation of tasks to the 

available robots yields the minimum cycle time with an equivalent total time of 

25.312.  This option is optimized with satisfying all the criteria mentioned in the 

formulation of allocation model. The quality of the solution is reasonably good. As 

noticed, the computing efficiency is very sensitive to the problem size. Thus, the 
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technique developed in this work provides significant and useful results. The 

technique has been tested in a variety of situations, considering different product 

structures (number of parts, number of connections between parts), different type of 

optimized assembly sequences, and different assembly resources (number of robots 

and its specifications). The number of robots can be increased depending on the 

number of parts and their manipulation requirements. From the capacity and DOF, 

there are number of sequences to complete the task by the robots.  In the example, 

since option-3 for task allocation has produced optimized time, the same is accepted 

for allocation to the robots. The results of the allocation are presented in Table 6.14. 

 

Table 6.14 Task assignment using integration model 

Robot Assigned workstation 

Robot-1       

(PUMA 560) 

Task-18, Task-4, Task-11,,Task-6, Task-16, Task-7, 

Task-6, Task-12, Task-8, Task-9 

Robot-2 

(Adept one XL) 

Task-20-A, Task-15, Task-13, Task-1, Task-5, Task-17, 

Task-2, Task-14, Task-3, Task-21, Task-10, Task-19, 

Task-20, 

 

6.5.2 Discussions 

The present work is an integrated approach towards designing an effective robotic 

assembly system environment for industries. The advanced manufacturing 

technology of today requires the use flexible devices for becoming more agile and 

competitive. An approach has been made through this work to plan for an effective, 

cost efficient and assembly system with minimum cycle time. The benefits such as 

ability to perform complex operations simultaneously by several arms increase of 

work cell reliability by sharing of responsibilities, reduction in space by space-

sharing, increase in system flexibility by shared manufacturing and material handling 

resources, and reduction in cycle time by concurrent work amply justifies the use of 

multirobot systems in industries. 
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6.6 Observations  

However, before a final decision is taken, the factors such as economic considerations, 

availability, management constraints and corporate policies, international market 

policies etc. may be considered. As many as 30 attributes of the robots are identified 

and an attempt has been made to codify most of the robot characteristics, which will 

define the robot precisely and accurately. The coding scheme is illustrated with 

example. The methodology developed through this work would help production 

engineers to select robots for robotic workcell design.  
 
Diverse approaches have been proposed in the past decade to deal with industrial 

robot selection. In general, it is assumed that engineering attributes are mutually 

independent; however, this is a very critical assumption and might result in the 

selection of a robot alternative.  

 
It also provides a coding system for robots depicting the various attributes. It 

recognizes the need for, and processes the information about, relative importance of 

attributes for a given application without which inter-attribute comparison is not 

possible. It presents the result of the information processing in terms of a merit 

value, which is used to rank the robots in the order of their suitability for the given 

application. The contributions of this work can be summarized as; 

1. The method is especially suitable for generating database of robots available in the 

market and their subsequent retrieval. It provides coding scheme to produce 

electronic database of globally available robots. 

2. This database will be helpful to all sorts of people related to robots from 

manufacturer, designers, and users to maintenance personnel. It will be helpful to 

improve the overall productivity of the organization. 

3. Here by identifying 35 attributes of the robots, the attempt has been made to 

codify most of the robot characteristics, which will define the robot precisely and 

accurately. The coding scheme is illustrated with examples. 

4. Evaluation and ranking based on the mathematical approaches along with the 

illustrative examples are given. 
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The robot selection on the basis of task requirement is aimed at developng a 

generalized tool to combine manipulator attributes and task requirements in a 

comprehensive manner for relative ranking of the manipulators. The methodology 

developed through this work can be applied to any similar set-up .This is sure to help 

the designers and users in selecting the robots correctly for the intended application. 

In this example a total of 13 parameters are taken into account. The factors such as 

arm geometry, actuator, control mode, robot programming, space and time are to be 

considered in this example for better selection of robots. As per the analysis, robot 

selection on the basis of task requirement is a best method for robot selection as 

compared to the other methods. 

 
The case based method has presented a method for helping production engineers to 

select robots for robotic workcell design. On the basis of these example results, it 

may be concluded that this method is a suitable system as a robot selection 

application. When the cases increase, the system will become more useful for robot 

selection. In order to improve the performance, it is recommended that the system 

user should collect more cases from historical robot applications and production 

processes. The need to combine the product development activities with production 

process and robot selection information has been emphasized for many years.  

 
Multirobot facility design and planning have become increasingly important in 

modem production over the past decade. In this work, a mathematical model and 

solution algorithm is developed to support robot selection and task assignment in a 

system employing multiple robot types. Specifically, our model considers selection 

of a proper mix of multipletype robots such that operational requirements for a given 

number of tasks are satisfied. Each robot is characterized by its unique fixed charge 

and subject to its machine time and space capacity constraints. Each task has known 

time and space demands for each type of robot. 

 
An optimization algorithm is developed using a greedy heuristic. The model is 

formulated as a pure 0-1 mathematical program, which is shown harder than the two-
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dimensional bin packing problem, a well-known NP-hard problem. Computational 

results indicate that the algorithm is effective and efficient in solving problems of a 

practical size. The algorithm serves as a practical tool for planning facilities with 

multiple types of robots. 

 
A model of LP is developed for multirobot assignment. The result implies that that 

the size of the linear programming is determined by the number of tasks, 

independent of robots linear. The model is initially formulated as a pure 0-1 

mathematical program. The initial solution obtained from the first phase is utilized to 

decide the task performing capacities of the candidate robots. The model is then 

simulated by number of tasks to make it suitable for application of LP in order to 

find out the optimized task allocation. In order to test the efficiency of the 

methodology an example problem with four heterogeneous robots and fifteen 

different tasks is worked out. Computational results indicate that the algorithm is 

effective and efficient in solving problems of a practical size.  

 
A mathematical model and solution algorithms are developed to support robot 

selection and task assignment in a system employing multiple robot types. Models of 

MILP are developed to solve the task allocation problem of multiple heterogeneous 

robots for optimization an unknown environment under defined constraints. The 

results indicate that the MILP is effective and efficient in solving problems of a 

practical size. The result implies that that the size of the MILP is determined by the 

number of tasks, and is independent of number of robots.  The main drawback of 

using MILP techniques is that the problem is NP-hard, and takes exponential time to 

solve. The initial solution obtained from the first phase is utilized to decide the task 

performing capacities of the candidate robots. The model is then simulated by 

number of tasks to make it suitable for application of MILP in order to find out the 

optimized task allocation. But in the MILP, utilization of robots is not taken care of 

properly. In order to test the efficiency of the methodology an example problem with 

four heterogeneous robots and fifteen different tasks is worked out.  
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Computational results indicate that the KA is effective and efficient in solving 

problems of a big size as compared to other models. Future research will involve 

both improvements in solution methods and extensions to the current model. The 

large muliple knapsack prolems, despite the NP-hardness, generally are as easy to 

solve as ordinary 0-1 Knapsack Problems. Small instances with a reasonable n/m 

ratio can also be handled, although large instances of the same kind are almost 

intractable.Thus future study should be focused on those instances, where n/m is 

small. 

 
The HA cannot get the result in small matrices. In HA the utilization of robots is not 

taken care of properly. The results prove that HA is able to be applied to the MRS 

and can satisfy the optimal need. 

 
In this task allocation, a mathematical model and six efficient allocation methods are 

developed to support multiple-type robot acquisition in a CIM system. Five efficient 

methods are developed: (1) Greedy heuristic, (2) Linear Programming, (3) Mixed 

Integer Linear Programming, (4) Knapsack Algorithm, (5) Hungarian Algorithm, 

and (6) Particle Swarm Optimization. The allocation methods are implemented in 

MATLAB and Lingo and tested by solving different problems based on major design 

parameters. Computational results indicate that the greedy heuristic is significantly 

more effective and efficient than an exact solution algorithm in solving problems of a 

practical size. In this task allocation, PSO has the less optimimal solutions as 

compared to the other methods. The size of the LP problem is determined by the 

number of tasks, and is independent of the number of robots and it is not suitable for 

large problems. 

 
The integration of task allocation with assembly planning in MRS adopted here 

generally gives emphasis on the number of robot sequences in which assembly tasks 

can be executed. The larger the sequences and number of parallel actions of the 

assembly, the more is the flexibility in assigning the assembly tasks. Each robot is 

characterized by its capability in terms of the number and type of joints.  The 

analysis of the capability of the candidate robot helps select the robot for a particular 
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task. From the different task allocation and the associated motion study the cycle 

time for producing an assembly is determined and is compared with other 

alternatives that are generated through the process. This investigation also gives an 

indication about the advantage of parallelism of the execution of assembly task. The 

total cycle time is reduced to a large extent with parallelism/simultaneity in the 

execution of the assembly task. In future the work can be extended to the designing 

of the entire assembly system. 

6.7 Summary  

An empirical study is described in the MRS that sought general guidelines for task 

allocation strategies. It is clearly show that the opportunistic strategy worked 

considerably advanced to the commitment-based strategy. 

 
From the description of the different methods for robot selection, the features of the 

robot selection process that fit well with the methodology can be summarized as 

follows: 

1.  Robot selection is a multi-attribute decision making process. The method can 

provide a complete solution for selecting process. 

2.  Expertise for robot selection process is trivial and time-consuming. The method 

can save designers a lot of efforts to get the answers. 

3.  The systems can be built without too much knowledge-elicitation effort. In the 

system, users do not have to understand how to solve the robot selection problem. 

4.  Robot selection knowledge evolves over time. The method can be used in training 

professional in robotic design domain. 

5.  Finally, by acquiring robot selection new cases, the selection system can grow to 

reflect their company’s robotic experience. 

 
It is noticed that the methodology may provide a useful tool for designers and 

managers attempting to increase design quality and efficiency. It is interesting to 

note that the widespread use of this method is likely to lead many designers to put 

their knowledge into library, that is, this method may allow developers to provide 
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intelligent robotics knowledge services and coordinate highly collaborative design 

activities for designers and users. 

 
Task allocation in MRS is inferred logically in case of both mathematical based 

methods and greedy heuristics based method. Conventional methods produce 

number of alternative solutions. The conventional methods may produce single 

solution depending upon type of the product and the applied logic. However, there is 

no means to claim that the solutions obtained through application of these 

conventional methods are optimal from cost, time and motion perspectives.  On the 

other hand, the ACO method produces the optimal or near optimal solution. In 

conventional methods, stability of the in-process assembly is checked by the 

experience of assembler, whereas, stability of the in-process assembly is checked by 

mathematical modeling in case of ACO. The fit type relationship among the 

components and part handling stability are not taken into consideration while 

deriving the assembly sequence in case of conventional methods, whereas, this very 

concept is incorporated in ant algorithm.  
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CHAPTER 7 
 

Conclusion and Scope for Future Work 

7.1 General 

Multirobot facility design and planning have become increasingly important in 

modem production over the past decade. There is no general theory of task allocation 

in uncertain multi-robot domains. In Chapter 3, an attempt is made to empirically 

derive some guidelines for selecting task allocation strategies for MRS with implicit 

cooperation. The explored strategies are individualistic in that they do not involve 

explicit cooperation and negotiation among the robots. However, they are a part of a 

large class approaches that produce coherent and efficient cooperative behavior. 

Given the empirical nature of this work and the scope of the problem being 

addressed, these guidelines are necessarily incomplete, though they provide useful 

insight. The choice of task allocation strategy is far from trivial and that no optimal 

task allocation strategy exists for all domains. It can be very difficult to identify the 

optimal task allocation strategy even for a particular task. These results are derived 

through the use of a framework developed for understanding the task allocation 

problem, which illustrates a common approach to decomposing the problem.  

7.2 Robot selection for MRS 

In Chapter 4, a new mathematical based methodology is proposed for robot selection 

to help designers identify feasible robots, and then outline the most appropriate cases 

for smoothing robot selection process. It deals with the issues of using past 

experiences or cases to understand, plan for, or learn from novel situations. The 
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results of this study will help robot workcell designers to develop a more efficient 

and effective method to select robots for robot applications. 

 
The robot selection on the basis of task requirement is aimed at developng a 

generalized tool to combine manipulator attributes and task requirements in a 

comprehensive manner for relative ranking of the manipulators. The methodology 

developed through this work can be applied to any similar set-up. This is sure to help 

the designers and users in selecting the robots correctly for the intended application. 

In the example a total of 13 parameters are taken into account. The factors such as 

arm geometry, actuator, control mode, robot programming, space and time are 

considered in this example for better selection of robots. As per the analysis, robot 

selection on the basis of task requirement is the best method as compared to the other 

methods. 

 
The case based method presented in section 4.4.4 is useful for helping production 

engineers to select robots for robotic workcell design. On the basis of these example 

results, it may be concluded that this method is a pragmatic approach for robot 

selection application. When the cases increase, the system becomes more useful for 

robot selection. In order to improve the performance, it is recommended that the 

system user should collect more cases from historical robot applications and 

production processes. The need to combine the product development activities with 

production process and robot selection information has been emphasized. 

 
In the present work, a mathematical model and solution algorithm is developed 

section 4.4.3 to support robot selection and task assignment in a system employing 

multiple robot types. Specifically, the developed model considers selection of a 

proper mix of multiple type robots such that operational requirements for a given 

number of tasks are satisfied. Each robot is characterized by its unique fixed charge 

and subject to its machine time and space capacity constraints. Each task has known 

time and space demands for each type of robot. 
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7.3 Task assignment in MRS 

In Chapter 5, a mathematical allocation model and six efficient allocation methods 

are developed to support multiple-type robot acquisition for MRS. Six efficient 

methods are developed. These are: (1) Greedy Heuristic, (2) Linear Programming, 

(3) Mixed Integer Linear Programming, (4) Knapsack Algorithm, (5) Hungarian 

Algorithm, and (6) Particle swarm optimization.  

 
The allocation methods are implemented in MATLAB and Lingo and tested by 

solving different problems based on major design parameters.  

 
The models of GH, LP, MILP, KA, HA and PSO are developed for multirobot 

assignment in Chapter 5. An optimization algorithm is developed using a greedy 

heuristic. The model is formulated as a pure 0-1 mathematical program, which is 

shown harder than the two-dimensional bin packing problem, a well-known NP-hard 

problem. Computational results indicate that the algorithm is effective and efficient 

in solving problems of a large size. The algorithm serves as a practical tool for 

planning facilities with multiple types of robots.  

 
The result implies that the size of the linear programming problem is determined by 

the number of tasks, and is independent of number of robots. The model is initially 

formulated as a pure 0-1 mathematical program. The initial solution obtained from 

the first phase is utilized to decide the task performing capacities of the candidate 

robots. The model is then simulated by number of tasks to make it suitable for 

application of LP for finding out the optimized task allocation. In order to test the 

efficiency of the methodology an example problem with four heterogeneous robots 

and fifteen different tasks is worked out. Computational results indicate that the 

algorithm is effective and efficient in solving problems of a practical size. Since size 

of the LP problem is determined by the number of tasks, and is independent of the 

number of robots, hence it is not suitable for large problems. 
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A mathematical model and the solution algorithms are developed to support robot 

selection and task assignment in a system employing multiple robot types. Models of 

MILP are developed to solve the task allocation problem of multiple heterogeneous 

robots for optimization an unknown environment under defined constraints. The 

results indicate that the MILP is effective and efficient in solving problems of 

practical size. The result implies that that similar to the LP the size of the MILP is 

determined by the number of tasks, and is independent of number of robots. The 

main drawback of using MILP techniques is that the problem is NP-hard, and takes 

exponential time to solve. The initial solution obtained from the first phase is utilized 

to decide the task performing capacities of the candidate robots. The model is then 

simulated by number of tasks to make it suitable for application of MILP in order to 

find out the optimized task allocation. But in the MILP, utilization of robots is not 

taken care of properly. In order to test the efficiency of the methodology an example 

problem with four heterogeneous robots and fifteen different tasks is worked out.  It 

is only feasible to use on smaller-scale problems, where there are a limited number 

of robots and tasks. Because the algorithm is static rather than dynamic, all 

information about the robots must be known apriori to solve the problem. However, 

this method is unable to adapt the schedule to dynamic changes in the agent network 

during execution of the schedule itself; if a change is made the entire schedule must 

be re-computed based on the new input data. 

 
Computational results indicate that the KA is quite effective and efficient in solving 

problems of a big size as compared to other models. The large muliple knapsack 

prolems, despite the NP-hardness, generally are as easy to solve as ordinary 0-1 

Knapsack Problems. Small instances with a reasonable n/m ratio can also be handled, 

although large instances of the same kind are almost intractable.Thus future study 

should be focused on those instances, where n/m is small. 

 
The HA cannot get the result in small matrices. In HA the utilization of robots is not 

taken care of properly. The results prove that HA is able to be applied to the MRS 
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and can satisfy the optimal need. PSO method balances between the global and local 

search can be adjusted through the inertial weight factor. 

 
Computational results indicate that the PSO is significantly more effective and 

efficient than an exact solution algorithm in solving problems of a large size. In this 

task allocation, PSO exhibits the best value of optimal solution as compared to the 

other methods.  

 
The integration of task allocation with assembly planning in MRS adopted in the 

work (section 5.7) generally gives emphasis on the number of robot sequences in 

which assembly tasks can be executed. The larger the sequences and number of 

parallel actions of the assembly, the more is the flexibility in assigning the tasks. 

Each robot is characterized by its capability in terms of the number and type of 

joints.  The analysis of the capability of the candidate robot helps select the robot for 

a particular task. From the different task allocation and the associated motion study 

the cycle time for producing an assembly is determined and is compared with other 

alternatives that are generated through the process. This investigation also gives an 

indication about the advantage of parallelism of the execution of assembly task. The 

total cycle time is reduced to a large extent with parallelism/simultaneity in the 

execution of the assembly task.  

7.4 Contributions 

The following are the prime contributions towards the enrichment of the research 

work in planning and designing MRS for industrial purpose. 

i. The present work addresses the issues of robot selection in a pragmatic 

manner and takes all the necessary and pertinent parameters into 

consideration in the developed model whereas the previous studies, as 

observed from literature, do consider only some specific parameters while 

modeling the robot selection process. 
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ii. The strategy for operation and task assignment in MRS are novel things that 

have been considered while conceptualizing the MRS and modeling the task 

assignment process. These strategies have been inbuilt in the models and 

hence the results are more realistic than other theoretical models reported in 

various literatures. 

iii. All possible types of task assignments methodologies have been tried and 

compared. Their suitability for different size of MRS has been explained in 

the present work for the benefit of the designers of MRS, thereby increasing 

the domain of application of the developed methodology. 

iv. Previous studies focus discretely on robot selection and task assignment. 

Realizing the strong relationship between the two, the present work takes a 

holistic view of both the processes and an attempt has been made to integrate 

the two processes. 

v. In order to make the work practicable, an integrated approach to deal with a 

practical problem dealing with processes of task decomposition, task 

planning, robot selection and task assignment has been developed. The 

procedure has been explained in detail through example. 

7.5 Scope for future work 

Extensions to the work done in this thesis may include exploring a dynamic 

programming approach to the same problem that is capable of taking into account the 

uncertainty levels or a limited view of the agent environment, and can adapt to 

unexpected changes in the environment or problem domain during execution of the 

actual execution. Other future areas of research related to this thesis may also include 

dynamically re-organizing teams of agents that respond to changing objectives and 

environments. Future research will involve both improvements in solution methods 

and extensions to the current model. 

 
Problem formulation and decomposition techniques are also introduced in this thesis, 

but no formula is developed to compute optimal task decompositions. Optimization 
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techniques to determine the best way to formulate and decompose a problem for a 

given agent organization is another promising research avenue that may be pursued 

based on the work done in this thesis, although in many cases the optimal 

decomposition seems to vary depending on the nature of each individual problem. 

 
Furthermore, it may be helpful to perform additional studies on the convergence rate 

of the different techniques relative to the number of robots and tasks in the problem, 

so that approximate computation times may be predicted in advance  

 
In future the work can be extended to the designing of the entire assembly system. 

The research presented in this thesis has been built upon previous work in MRTA, 

but some questions were not adequately answered in the literature and were beyond 

the scope of this work. This section identifies some topics that merit further 

exploration.  
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Appendices 
 

A1: Algorithm for task allocation using Greedy Heuristics 

The following is the pseudocode of GH: 
Z := oo /* Initial feasible solution upper bound*/ 
for k = 1 to K 
begin 
Initialization of decisions variables 
for i= 1 to n /*For robot type k, calculate load 
deviation ratios */ 

)(/: ''''
ikikikikik ststd +−=  

Reindex work stations such that dlk < d2k < ... < rink 
for i= 1 to n /* Work Station Assignment Heuristic (WSAH) */ 
begin 
Calculate adjusted allocation costs 
for work station i 
Assign work station i 
end 
if Z < Z then 
begin 
Z'--- Z 
Update incumbent robot configuration 
and work station assignment 
end 
end 
 

 

 

 

 

 

 

 

 



194 

 

 

A2: Algorithm for task allocation using Linear Programming 

MIN=0.475*X1+0.355*X2+0.355*X3+0.355*X4+0.786*X5+0.786*X6+0.786*X7
+0.786*X8+0.786*X9+0.733*X10+0.733*X11+0.733*X12+0.733*X13+0.733*X1
4+0.733*X15+0.513*X16+0.384*X17+0.384*X18+0.384*X19+0.852*X20+0.852*
X21+0.852*X22+0.852*X23+0.852*X24+0.795*X25+0.795*X26+0.795*X27+0.7
95*X28+0.795*X29+0.795*X30+0.513*X31+0.384*X32+0.384*X33+0.384*X34+
0.852*X35+0.852*X36+0.852*X37+0.852*X38+0.852*X39+0.79*X40+0.79*X41
+0.79*X42+0.79*X43+0.79*X44+0.79*X45+0.553*X46+0.414*X47+0.414*X48+
0.414*X49+0.912*X50+0.912*X51+0.912*X52+0.912*X53+0.912*X54+0.846*X5
5+0.846*X56+0.846*X57+0.846*X58+0.846*X59+0.846*X60+0.633*X61+0.475*
X62+0.475*X63+0.475*X64+1.038*X65+1.038*X66+1.038*X67+1.038*X68+1.0
38*X69+0.964*X70+0.964*X71+0.964*X72+0.964*X73+0.964*X74+0.964*X75+
0.658*X76+0.5*X77+0.5*X78+0.5*X79+1.086*X80+1.086*X81+1.086*X82+1.08
6*X83+1.086*X84+1.015*X85+1.015*X86+1.015*X87+1.015*X88+1.015*X89+1
.015*X90+0.674*X91+0.507*X92+0.507*X93+0.507*X94+1.104*X95+1.104*X96
+1.104*X97+1.104*X98+1.104*X99+1.021*X100+1.021*X101+1.021*X102+1.02
1*X103+1.021*X104+1.021*X105+0.699*X106+0.526*X107+0.526*X108+0.526
*X109+1.14*X110+1.14*X111+1.14*X112+1.14*X113+1.14*X114+1.06*X115+1
.06*X116+1.06*X117+1.06*X118+1.06*X119+1.06*X120+0.759*X121+0.573*X1
22+0.573*X123+0.573*X124+1.2*X125+1.2*X126+1.2*X127+1.2*X128+1.2*X1
29+1.145*X130+1.145*X131+1.145*X132+1.145*X133+1.145*X134+1.145*X13
5+0.767*X136+0.579*X137+579*X138+579*X139+1.248*X140+1.248*X141+1.2
48*X142+1.248*X143+1.248*X144+1.156*X145+1.156*X146+1.156*X147+1.15
6*X148+1.156*X149+1.156*X150+0.803*X151+0.607*X152+0.607*X153+0.607
*X154+1.296*X155+1.296*X156+1.296*X157+1.296*X158+1.296*X159+1.201*
X160+1.201*X161+1.201*X162+1.201*X163+1.201*X164+1.201*X165+0.848*X
166+0.642*X167+0.642*X168+0.642*X169+1.368*X170+1.368*X171+1.368*X1
72+1.368*X173+1.368*X174+1.269*X175+1.269*X176+1.269*X177+1.269*X17
8+1.269*X179+1.269*X180+0.848*X181+0.643*X182+0.643*X183+0.643*X184
+1.362*X185+1.362*X186+1.362*X187+1.362*X188+1.362*X189+1.263*X190+
1.263*X191+1.263*X192+1.263*X193+1.263*X194+1.263*X195+0.923*X196+0.
703*X197+0.703*X198+0.703*X199+1.47*X200+1.47*X201+1.47*X202+1.47*X
203+1.47*X204+1.359*X205+1.359*X206+1.359*X207+1.359*X208+1.359*X20
9+1.359*X210+0.942*X211+0.719*X212+0.719*X213+0.719*X214+1.5*X215+1.
5*X216+1.5*X217+1.5*X218+1.5*X219+1.387*X220+1.387*X221+1.387*X222+
1.387*X223+1.387*X224+1.387*X225; 
 
 
1*X1+1*X2+1*X3+1*X4+1*X5+1*X6+1*X7+1*X8+1*X9+1*X10+1*X11+1*X1
2+1*X13+1*X14+1*X15=1; 
1*X16+1*X17+1*X18+1*X19+1*X20+1*X21+1*X22+1*X23+1*X24+1*X25+1*
X26+1*X27+1*X28+1*X29+1*X30=1; 
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1*X31+1*X32+1*X33+1*X34+1*X35+1*X36+1*X37+1*X38+1*X39+1*X40+1*
X41+1*X42+1*X43+1*X44+1*X45=1; 
1*X46+1*X47+1*X48+1*X49+1*X50+1*X51+1*X52+1*X53+1*X54+1*X55+1*
X56+1*X57+1*X58+1*X59+1*X60=1; 
1*X61+1*X62+1*X63+1*X64+1*X65+1*X66+1*X67+1*X68+1*X69+1*X70+1*
X71+1*X72+1*X73+1*X74+1*X75=1; 
   1*X76+1*X77+1*X78+1*X79+1*X80+1*X81+1*X82+1*X83+1*X84+1* 
X85+1*X86+1*X87+1*X88+1*X89+1*X90=1; 
1*X91+1*X92+1*X93+1*X94+1*X95+1*X96+1*X97+1*X98+1*X99+1*X100+1
*X101+1*X102+1*X103+1*X104+1*X105=1; 
X106+1*X107+1*X108+1*X109+1*X110+1*X111+1*X112+1*X113+1*X114+1*
X115+1*X116+1*X117+1*X118+1*X119+1*X120=1; 
1*X121+1*X122+1*X123+1*X124+1*X125+1*X126+1* 
X127+1*X128+1*X129+1*X130+1*X131+1*X132+1*X133+1*X134+1*X135=1; 
1*X136+1*X137+1*X138+1*X139+1*X140+1*X141+1*X142+1*X143+1*X144+
1*X145+1*X146+1*X147+1*X148+1*X149+1*X150=1; 
1*X151+1*X152+1*X153+1*X154+1*X155+1*X156+1*X157+1*X158+1*X159+
1*X160+1*X161+1*X162+1*X163+1*X164+1*X165=1; 
   1*X166+1*X167+1*X168+1* 
X169+1*X170+1*X171+1*X172+1*X173+1*X174+1*X175+1*X176+1*X177+1*
X178+1*X179+1*X180=1; 
1*X181+1*X182+1*X183+1*X184+1*X185+1*X186+1*X187+1*X188+1*X189+
1*X190+1*X191+1*X192+1*X193+1*X194+1*X195=1; 
1*X196+1*X197+1*X198+1*X199+1*X200+1*X201+1*X202+1*X203+1*X204+
1*X205+1*X206+1*X207+1*X208+1*X209+1*X210=1; 
X211+1*X212+1*X213+1*X214+1*X215+1*X216+1*X217+1*X218+1*X219+1*
X220+1*X221+1*X222+1*X223+1*X224+1*X225=1; 
1*X1+1*X16+1*X31+1*X46+1*X61+1*X76+1*X91+1*X106+1*X121+1*X136+
1*X151+1*X166+1*X181+1*X196+1*X211=1; 
1*X2+1*X17+1*X32+1*X47+1*X62+1*X77+1*X92+1*X107+1*X122+1*X137+
1*X152+1*X167+1*X182+1*X197+1*X212=1; 
1*X3+1*X18+1*X33+1*X48+1*X63+1*X78+1*X93+1*X108+1*X123+1*X138+
1*X153+1*X168+1*X183+1*X198+1*X213=1; 
1*X4+1*X19+1*X34+1*X49+1*X64+1*X79+1*X94+1*X109+1*X124+1*X139+
1*X154+1*X169+1*X184+1*X199+1*X214=1; 
1*X5+1*X20+1*X35+1*X50+1*X65+1*X80+1*X95+1*X110+1*X125+1*X140+
1*X155+1*X170+1*X185+1*X200+1*X215=1; 
1*X6+1*X21+1*X36+1*X51+1*X66+1*X81+1*X96+1*X111+1*X126+1*X141+
1*X156+1*X171+1*X186+1*X201+1*X216=1; 
1*X7+1*X22+1*X37+1*X52+1*X67+1*X82+1*X97+1*X112+1*X127+1*X142+
1*X157+1*X172+1*X187+1*X202+1*X217=1; 
1*X8+1*X23+1*X38+1*X53+1*X68+1*X83+1*X98+1*X113+1*X128+1*X143+
1*X158+1*X173+1*X188+1*X203+1*X218=1; 
1*X9+1*X24+1*X39+1*X54+1*X69+1*X84+1*X99+1*X114+1*X129+1*X144+
1*X159+1*X174+1*X189+1*X204+1*X219=1; 
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1*X10+1*X25+1*X40+1*X55+1*X70+1*X85+1*X100+1*X115+1*X130+1*X14
5+1*X160+1*X175+1*X190+1*X205+1*X220=1; 
1*X11+1*X26+1*X41+1*X56+1*X71+1*X86+1*X101+1*X116+1*X131+1*X14
6+1*X161+1*X176+1*X191+1*X206+1*X221=1; 
1*X12+1*X27+1*X42+1*X57+1*X72+1*X87+1*X102+1*X117+1*X132+1*X14
7+1*X162+1*X177+1*X192+1*X207+1*X222=1; 
1*X13+1*X28+1*X43+1*X58+1*X73+1*X88+1*X103+1*X118+1*X133+1*X14
8+1*X163+1*X178+1*X193+1*X208+1*X223=1; 
1*X14+1*X29+1*X44+1*X59+1*X74+1*X89+1*X104+1*X119+1*X134+1*X14
9+1*X164+1*X179+1*X194+1*X209+1*X224=1; 
1*X15+1*X30+1*X45+1*X60+1*X75+1*X90+1*X105+1*X120+1*X135+1*X15
0+1*X165+1*X180+1*X195+1*X210+1*X225=1; 
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A3: Algorithm for task allocation using Knapsack Algorithm 

MODEL: 
!   Robot 1 with 15 tasks; 
 
SETS: 
   ITEMS: INCLUDE, WEIGHT, RATING; 
ENDSETS 
 
DATA: 
        ITEMS          WEIGHT       RATING = 
     Task1          1        7.87; 
     Task2          1        7.299 
   Task3          1        7.299; 
     Task4          1        6.8 
     Task5          1        5.91 
     Task6          1        5.55 
     Task7          1        5.37 
     Task8          1        4.878 

Task9          1   4.854    
 Task10         1      4.672     
 Task11         1      4.405     
 Task12         1      4.405     
 Task13         1      4.048     
 Task14         1      3.95     
 Task15         1       3.508; 

 
   KNAPSACK_CAPACITY = 3; 
ENDDATA 
 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
 
@SUM( ITEMS: WEIGHT * INCLUDE) <=  
 KNAPSACK_CAPACITY; 
 
@FOR( ITEMS: @BIN( INCLUDE)); 
 
END 
 
MODEL: 
!   Robot 2 with 15 tasks; 
 
SETS: 
   ITEMS: INCLUDE, WEIGHT, RATING; 
ENDSETS 
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DATA: 
      ITEMS       WEIGHT  RATING = 
     Task1         1        13.966 
     Task2         1        12.987 
     Task3         1        12.987 
     Task4         1        12.004 
     Task5         1        10.52 
     Task6         1        9.803 
     Task7         1        9.433 
     Task8         1        8.695 

Task9         1   8.62    
 Task10        1      8.196     
 Task11        1      7.751     
 Task12        1      7.751     
 Task13        1      7.042     
 Task14        1      6.896    
 Task15        1       6.068; 

 
   KNAPSACK_CAPACITY = 3; 
ENDDATA 
 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
 
@SUM( ITEMS: WEIGHT * INCLUDE) <=  
 KNAPSACK_CAPACITY; 
 
@FOR( ITEMS: @BIN( INCLUDE)); 
 
END 
MODEL: 
!   Robot 3 with 15 tasks; 
 
SETS: 
   ITEMS: INCLUDE, WEIGHT, RATING; 
ENDSETS 
 
DATA: 
      ITEMS       WEIGHT  RATING = 
    Task1          1       5 
     Task2        1       4.651 
     Task3          1       4.608 
     Task4          1       4.329 
     Task5          1       3.802 
     Task6          1       3.597 
     Task7          1       3.46 
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     Task8          1       3.205 
Task9          1  3.174    

 Task10         1     3.048     
 Task11        1     2.898     
 Task12         1     2.89     
 Task13         1     2.695     
 Task14         1     2.645    
 Task15         1      2.392; 

 
   KNAPSACK_CAPACITY = 5; 
ENDDATA 
 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
 
@SUM( ITEMS: WEIGHT * INCLUDE) <=  
 KNAPSACK_CAPACITY; 
 
@FOR( ITEMS: @BIN( INCLUDE)); 
 
END 
 
 
MODEL: 
!   Robot 4 with 15 tasks; 
 
SETS: 
   ITEMS: INCLUDE, WEIGHT, RATING; 
ENDSETS 
 
DATA: 
      ITEMS       WEIGHT  RATING = 
   Task1         1        4.651 
     Task2         1        4.291 
     Task3         1        4.291 
     Task4         1        4.016 
     Task5         1        3.521 
     Task6         1        3.311 
     Task7         1        3.205 
     Task8         1        3.048 

Task9         1   2.932    
 Task10        1      2.824   
 Task11        1      2.68     
 Task12        1      2.673     
 Task13       1      2.487     
 Task14        1      2.439    
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 Task15        1       2.192; 

 
   KNAPSACK_CAPACITY = 4; 
ENDDATA 
 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
 
@SUM( ITEMS: WEIGHT * INCLUDE) <=  
 KNAPSACK_CAPACITY; 
 
@FOR( ITEMS: @BIN( INCLUDE)); 
 
END 

 
MODEL: 
!   All Robots with 15 tasks; 
 
SETS: 
   ITEMS: INCLUDE, WEIGHT, RATING; 
ENDSETS 
 
DATA: 
      ITEMS       WEIGHT  RATING = 
    Task1        1       0.355 
     Task2        1       0.384 
   Task3        1       0.384 
    Task4        1       0.553 
     Task5        1       0.592 
     Task6        1       0.633 
     Task7        1       1.015 
     Task8        1       1.021 

Task9        1   1.06    
 Task10       1      1.145     
 Task11       1      1.156     
  Task12       1      1.296     
 Task13       1      1.368     
 Task14       1      1.362     
 Task15       1      1.47; 

 
   KNAPSACK_CAPACITY = 15; 
ENDDATA 
 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
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@SUM( ITEMS: WEIGHT * INCLUDE) <=  
 KNAPSACK_CAPACITY; 
 
@FOR( ITEMS: @BIN( INCLUDE)); 
 
END 
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A4: Algorithm for task allocation using Hungarian Algorithm 

Assumption: There are n “tasks” and n “robots”. 
 
Step 0: If necessary, convert the problem from a maximum assignment into a 
minimum assignment. We do this by letting C = maximum value in the assignment 
matrix.Replace each cij with C − cij. 
 
Step1: From each row subtract off the row min. 
 
Step 2: From each column subtract off the row column min. 
 
Step 3: Use as few lines as possible to cover all the zeros in the matrix. There is no 
easy rule to do this – basically trial and error. 
Suppose you use k lines. 

• If k < n, let m be the minimum uncovered number. Subtract m from every 
uncovered number. Add m to every number covered with two lines. Go back 
to the start of step 3. 

• If k = n, goto step 4. 
 
Step 4: Starting with the top row, work your way downwards as you make 
assignments. An assignment can be (uniquely) made when there is exactly one zero 
in a row. Once an assignment it made, delete that row and column from the matrix. If 
you cannot make all n assignments and all the remaining rows contain more than one 
zero, switch to columns. Starting with the left column, work your way rightwards as 
you make assignments. Iterate between row assignments and column assignments 
until you’ve made as many unique assignments as possible. If still haven’t made n 
assignments and you cannot make a unique assignment either with rows or columns, 
make one arbitrarily by selecting a cell with a zero in it. Then try to make unique 
row and/or column assignments. (See the examples below). 
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A5: Algorithm for task allocation using Particle swarm optimization 

The pseudo code of the procedure is as follows 
 
For each particle  
    Initialize particle 
END 
 
Do 
    For each particle  
        Calculate fitness value 
        If the fitness value is better than the best fitness value (pBest) in history 
            set current value as the new pBest 
    End 
 
    Choose the particle with the best fitness value of all the particles as the gBest 
    For each particle  
        Calculate particle velocity according to  equation  
        Update particle position according equation  
    End  
While maximum iterations or minimum error criteria is not attained 
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