6,756 research outputs found

    Re-purposing Heterogeneous Generative Ensembles with Evolutionary Computation

    Full text link
    Generative Adversarial Networks (GANs) are popular tools for generative modeling. The dynamics of their adversarial learning give rise to convergence pathologies during training such as mode and discriminator collapse. In machine learning, ensembles of predictors demonstrate better results than a single predictor for many tasks. In this study, we apply two evolutionary algorithms (EAs) to create ensembles to re-purpose generative models, i.e., given a set of heterogeneous generators that were optimized for one objective (e.g., minimize Frechet Inception Distance), create ensembles of them for optimizing a different objective (e.g., maximize the diversity of the generated samples). The first method is restricted by the exact size of the ensemble and the second method only restricts the upper bound of the ensemble size. Experimental analysis on the MNIST image benchmark demonstrates that both EA ensembles creation methods can re-purpose the models, without reducing their original functionality. The EA-based demonstrate significantly better performance compared to other heuristic-based methods. When comparing both evolutionary, the one with only an upper size bound on the ensemble size is the best.Comment: Accepted as a full paper for the Genetic and Evolutionary Computation Conference - GECCO'2

    Diversity creation methods: a survey and categorisation

    Get PDF

    New perspectives and methods for stream learning in the presence of concept drift.

    Get PDF
    153 p.Applications that generate data in the form of fast streams from non-stationary environments, that is,those where the underlying phenomena change over time, are becoming increasingly prevalent. In thiskind of environments the probability density function of the data-generating process may change overtime, producing a drift. This causes that predictive models trained over these stream data become obsoleteand do not adapt suitably to the new distribution. Specially in online learning scenarios, there is apressing need for new algorithms that adapt to this change as fast as possible, while maintaining goodperformance scores. Examples of these applications include making inferences or predictions based onfinancial data, energy demand and climate data analysis, web usage or sensor network monitoring, andmalware/spam detection, among many others.Online learning and concept drift are two of the most hot topics in the recent literature due to theirrelevance for the so-called Big Data paradigm, where nowadays we can find an increasing number ofapplications based on training data continuously available, named as data streams. Thus, learning in nonstationaryenvironments requires adaptive or evolving approaches that can monitor and track theunderlying changes, and adapt a model to accommodate those changes accordingly. In this effort, Iprovide in this thesis a comprehensive state-of-the-art approaches as well as I identify the most relevantopen challenges in the literature, while focusing on addressing three of them by providing innovativeperspectives and methods.This thesis provides with a complete overview of several related fields, and tackles several openchallenges that have been identified in the very recent state of the art. Concretely, it presents aninnovative way to generate artificial diversity in ensembles, a set of necessary adaptations andimprovements for spiking neural networks in order to be used in online learning scenarios, and finally, adrift detector based on this former algorithm. All of these approaches together constitute an innovativework aimed at presenting new perspectives and methods for the field

    Advances and applications in Ensemble Learning

    Get PDF

    The diversity-accuracy duality in ensembles of classifiersd

    Get PDF
    Horizontal scaling of Machine Learning algorithms has the potential to tackle concerns over the scalability and sustainability of Deep Learning methods, viz. their consumption of energy and computational resources, as well their increasing inaccessibility to researchers. One way to enact horizontal scaling is by employing ensemble learning methods, since they enable distribution. There is a consensus on the point that diversity between individual learners leads to better performance, which is why we have focused on it as the criterion for distributing the base models of an ensemble. However, there is no standard agreement on how diversity should be defined and thus how to exploit it to construct a high-performing classifier. Therefore, we have proposed different definitions of diversity and innovative algorithms which promote it in a systematic way. We have first considered architectural diversity with an algorithm called WILDA: Wide Learning of Diverse Architectures. In a distributed fashion, this algorithm evolves a set of neural networks that are pretrained on the target task and diverse w.r.t. architectural feature descriptors. We have then generalised this notion by defining behavioural diversity on the basis of the divergence between the errors made by different models on a dataset. We have defined several diversity metrics and used them to guide a novelty search algorithm which builds an ensemble of behaviourally diverse classifiers. The algorithm promotes diversity in ensembles by explicitly searching for it, without selecting for accuracy. We have then extended this approach with a surrogate diversity model, which reduces the computational burden of this search by eliminating the need to train each network in the population with stochastic gradient descent at each step. These methods have enabled us to investigate the role that both architectural and behavioural diversity play in contributing to the performance of an ensemble. In order to study the relationship between diversity and accuracy in classifier ensembles, we have then proposed several methods that extend the novelty search with accuracy objectives. Surprisingly, we have observed that, with the highest-performing diversity metrics, there is an equivalence between searching for diversity objectives and searching for accuracy objectives. This contradicts widespread assumptions that a trade-off must be found by balancing diversity and accuracy objectives. We therefore posit the existence of a diversity-accuracy duality in ensembles of classifiers. An implication of this is the possibility of evolving diverse ensembles without detriment to their accuracy, since it is implicitly ensured.Open Acces

    New perspectives and methods for stream learning in the presence of concept drift.

    Get PDF
    153 p.Applications that generate data in the form of fast streams from non-stationary environments, that is,those where the underlying phenomena change over time, are becoming increasingly prevalent. In thiskind of environments the probability density function of the data-generating process may change overtime, producing a drift. This causes that predictive models trained over these stream data become obsoleteand do not adapt suitably to the new distribution. Specially in online learning scenarios, there is apressing need for new algorithms that adapt to this change as fast as possible, while maintaining goodperformance scores. Examples of these applications include making inferences or predictions based onfinancial data, energy demand and climate data analysis, web usage or sensor network monitoring, andmalware/spam detection, among many others.Online learning and concept drift are two of the most hot topics in the recent literature due to theirrelevance for the so-called Big Data paradigm, where nowadays we can find an increasing number ofapplications based on training data continuously available, named as data streams. Thus, learning in nonstationaryenvironments requires adaptive or evolving approaches that can monitor and track theunderlying changes, and adapt a model to accommodate those changes accordingly. In this effort, Iprovide in this thesis a comprehensive state-of-the-art approaches as well as I identify the most relevantopen challenges in the literature, while focusing on addressing three of them by providing innovativeperspectives and methods.This thesis provides with a complete overview of several related fields, and tackles several openchallenges that have been identified in the very recent state of the art. Concretely, it presents aninnovative way to generate artificial diversity in ensembles, a set of necessary adaptations andimprovements for spiking neural networks in order to be used in online learning scenarios, and finally, adrift detector based on this former algorithm. All of these approaches together constitute an innovativework aimed at presenting new perspectives and methods for the field

    The place of qualia in a relational universe

    Get PDF
    We propose an approach to the question of how qualia fit into the physical world, in the context of a relational and realist completion of quantum theory, called the causal theory of views\cite{views}. This is a combination of an approach to a dynamics of discrete causal structures, called energetic causal sets, developed with M. Cortes, with a realist approach to quantum foundations, called the real ensemble formulation. In this theory, the beables are the information available at each event from its causal past, such as its causal predessesors and the energy and momentum they transfer to the event. We call this the view of an event. That is, we describe a causal universe that is composed of a set of partial views of itself. We propose that conscious perceptions are aspects of some views. This addresses the problem of why consciousness always involves awareness of a bundled grouping of qualia that define a momentary self. This gives a restricted form of panpsychism defined by a physically based selection principle which selects which views have experiential aspects. We further propose that only those views which are novel, in the sense that they are not duplicates of the view of any event in the event's own causal past, are the physical correlates of conscious experience

    DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF PROTEIN STRUCTURES

    Get PDF
    Proteins play crucial roles in a variety of biological processes. While we know that their amino acid sequence determines their structure, which in turn determines their function, we do not know why particular sequences fold into particular structures. My work focuses on discretized geometric descriptions of protein structure—conceptualizing native structure space as composed of mostly discrete, geometrically defined fragments—to better understand the patterns underlying why particular sequence elements correspond to particular structure elements. This discretized geometric approach is applied to multiple levels of protein structure, from conceptualizing contacts between residues as interactions between discrete structural elements to treating protein structures as an assembly of discrete fragments. My earlier work focused on better understanding inter-residue contacts and estimating their energies statistically. By scoring structures with energies derived from a stricter notion of contact, I show that native protein structures can be identified out of a set of decoy structures more often than when using energies derived from traditional definitions of contact and how this has implications for the evaluation of predictions that rely on structurally defined contacts for validation. Demonstrating how useful simple geometric descriptors of structure can be, I then show that these energies identify native structures on par with well-validated, detailed, atomistic energy functions. Moving to a higher level of structure, in my later work I demonstrate that discretized, geometrically defined structural fragments make good objects for the interactive assembly of protein backbones and present a software application which lets users do so. Finally, I use these fragments to generate structure-conditioned statistical energies, generalizing the classic idea of contact energies by incorporating specific structural context, enabling these energies to reflect the interaction geometries they come from. These structure-conditioned energies contain more information about native sequence preferences, correlate more highly with experimentally determined energies, and show that pairwise sequence preferences are tightly coupled to their structural context. Considered jointly, these projects highlight the degree to which protein structures and the interactions they comprise can be understood as geometric elements coming together in finely tuned ways

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
    • 

    corecore