
FACULTY OF ECONOMICS

AND BUSINESS ADMINISTRATION

ADVANCES AND APPLICATIONS

IN ENSEMBLE LEARNING

MICHEL BALLINGS

2014

ADVISOR:
PROF. DR. DIRK VAN DEN POEL

Dissertation submitted to the Faculty of Economics and Business Administration,
Ghent University, in fulfillment of the requirements for the degree of

Doctor in Applied Economic Sciences

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55858863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Typeset in LATEX.

PhD Series - Ghent University, April 2014
Faculty of Economics and Business Administration
http://www.FEB.UGent.be

c©2014, Michel Ballings (Michel.Ballings@UGent.be)

All Rights Reserved. No part of this publication may be reproduced or transmitted in any form
or by any means - electronic or mechanical, including photocopying, recording, or by any other
information storage and retrieval system - without the prior written permission of the author.

Divide et impera (divide and rule)
Julius Caesar

Many ensemble learning algorithms adopt a divide-and-conquer strategy in that each
constituent learner only learns a smaller or simpler partition of the problem.

Doctoral jury

Prof. dr. Marc De Clercq
(Dean-president, Ghent University)

Prof. dr. Patrick Van Kenhove
(Academic Secretary, Ghent University)

Prof. dr. Dirk Van den Poel
(Advisor, Ghent University)

Prof. dr. Dries F. Benoit
(Ghent University)

Prof. dr. Anita Prinzie
(Ghent University)

Prof. dr. Geert Wets
(Hasselt University)

Dr. Dirk Thorleuchter
(Fraunhofer Institute)

Acknowledgements

The contributions of many different people, in their different ways, have made this research
possible. I would like to extend my appreciation especially to the following.

I wish to express my deepest gratitude towards my advisor, Prof. dr. Dirk Van den Poel.
He offered me unequivocal support and high-quality advice throughout the entire process. He
taught me invaluable skills and offered me countless opportunities enabling my development
into an independent researcher. His guidance empowered me to gain my full potential. I would
like to thank him for the first-class relationship during the years that I have been his assistant.

I am also greatly indebted to Prof. dr. Dries Benoit. His experience helped me to chart a
course towards the researcher that I am today. He has consistently laid down markers enabling
me to make informed decisions about software, productivity tools, and research.

I want to pay special tribute to my colleagues Willem Standaert and Dauwe Vercamer for
the insightful discussions and fruitful collaborations. In addition I would like to thank them for
the rich environment in which both productive interchange and sharing knowledge is valued.

Great gratitude goes to my wife Sanae Nechad, for the ample motivational support and help
in finishing this project successfully. Without her this would not have been possible. I would
like to thank my baby son, Alexander Ballings, for helping me keep things in perspective.

Special gratitude goes to my parents, Willy Ballings and Simonne Van de Velde, for instill-
ing in me confidence and a drive for pursuing my PhD. I would like to thank my father for his
expertise and excellent help with my personal computational resources that are partly used in
this dissertation.

I am greatly indebted to my thesis students for the many interesting exchanges: Matthijs
Meire, Matthias Lelie, Tessa De Backer, Ine Laleman, Matthias Bogaert, Charlotte De Baere,
Steven Hoornaert, Vanessa Rys, Ruben Gryp, Nathalie Hespeels, Dieter D’Haenens, David De
Winter, and Mathijs Depuydt.

I would like to express my gratitude to our head of department, Prof. dr. Patrick Van
Kenhove, for fostering the stimulating academic environment in the department of Marketing.
I would also like to thank the Psilogy team for providing startup funding for my PhD. Finally I
acknowledge the department of Marketing for the excellence of their professors, the possibility
to attend many international conferences, and the driven predoctoral researchers.

Ghent, April 2014, Michel Ballings

iii

Table of Contents

Acknowledgements iii

Summary (Dutch) xiii

1 Extended Abstract 3
1.1 Background . 3

1.1.1 Motivation for Ensemble Learning . 3
1.1.2 Designing Ensemble Learners . 5

1.2 Research Objectives . 8
1.2.1 Study 1: Kernel Factory . 8
1.2.2 Study 2: CRM in Social Media . 10
1.2.3 Study 3: Hybrid Ensemble . 13

1.3 Main findings, contributions and implications 16
1.4 Limitations and future research . 17
1.5 References . 21

2 Kernel Factory: An Ensemble of Kernel Machines 27
2.1 Abstract . 27
2.2 Introduction . 28
2.3 Kernels and Random Forest . 28

2.3.1 Random Forest . 28
2.3.2 Kernels and the kernel trick . 29
2.3.3 Kernel-Induced Random Forest . 31

2.4 Kernel Factory . 32
2.5 Empirical study . 32

2.5.1 Data . 32
2.5.2 Implementations of Algorithms . 36
2.5.3 Model Performance Evaluation . 36
2.5.4 Results . 38

2.6 Conclusions . 47
2.7 Future Research and Limitations . 48

v

2.8 Acknowledgment . 49
2.9 References . 49

3 CRM in Social Media: Predicting Increases in Facebook Usage Frequency 53
3.1 Abstract . 53
3.2 Introduction . 54
3.3 Literature Review . 55
3.4 Methodology . 58

3.4.1 Data and Time Window . 58
3.4.2 Predictors . 59
3.4.3 Algorithms . 65

3.4.3.1 Logistic Regression . 65
3.4.3.2 Random Forest . 65
3.4.3.3 Stochastic AdaBoost . 65
3.4.3.4 Support Vector Machines 65
3.4.3.5 Kernel Factory . 66
3.4.3.6 Neural Network . 66

3.4.4 Assessment Criteria . 67
3.4.5 Variable importance evaluation . 67
3.4.6 Partial Dependence Plots . 68
3.4.7 Cross Validation . 68

3.5 Results . 69
3.5.1 Models . 69
3.5.2 Predictors . 73

3.6 Conclusions . 77
3.7 Managerial Implications . 77
3.8 Limitations and directions for Future Research 78
3.9 Acknowledgements . 80
3.10 References . 80

4 Hybrid Ensembles: Many Ensembles is Better Than One 89
4.1 Abstract . 89
4.2 Introduction . 90
4.3 Related Work . 91
4.4 Hybrid Ensemble . 93

4.4.1 Base classifiers . 93
4.4.2 Classifier combination . 95
4.4.3 Pseudo code . 98

4.5 Experimental Design . 100
4.5.1 Implementation details . 100

4.5.1.1 Base algorithm parameters 100
4.5.1.2 Combination Algorithms 102

4.5.2 Data . 104
4.5.3 Model performance evaluation . 104

4.6 Discussion of results . 106
4.6.1 Performance of the Hybrid Ensemble compared to the Single Best . . . 106
4.6.2 Performance improvement by classification difficulty 106
4.6.3 Analysis of the ensemble size . 106

4.7 Conclusions . 112
4.8 Acknowledgments . 113
4.9 References . 113

List of Figures

1.1 Reasons why an ensemble may outperform a single classifier 5
1.2 Motivation for using kernels . 8
1.3 Trade-off between flexibility and interpretability 11
1.4 Selected components of the proposed Hybrid Ensemble. 15

2.1 Input space X and Feature space F . 30

3.1 Comparison of study sample and demographic characteristics of top 25 Face-
book countries . 59

3.2 Time window . 60
3.3 Cross validated AUC. LR=Logistic Regression, RF=Random Forest, AB=AdaBoost,

KF=Kernel Factory, NN=Neural Network, SV=Support Vector Machines . . . 70
3.4 Cross validated Accuracy for a cutoff corresponding to the top 10%. LR=Logistic

Regression, RF=Random Forest, AB=AdaBoost, KF=Kernel Factory, NN=Neural
Network, SV=Support Vector Machines . 70

3.5 Cross validated ROC. LR=Logistic Regression, RF=Random Forest, AB=AdaBoost,
KF=Kernel Factory, NN=Neural Network, SV=Support Vector Machines . . . 71

3.6 Cross validated Accuracy Curve. LR=Logistic Regression, RF=Random Forest,
AB=AdaBoost, KF=Kernel Factory, NN=Neural Network, SV=Support Vector
Machines . 71

3.7 Scree plot of importance of 200 top predictors 73
3.8 Partial Dependence Plots for a selection of predictor variables 76

4.1 Plots comparing the AUC of the Hybrid Ensemble given a specific combiner
and the Single Best . 108

4.2 Cont’d: Plots comparing the AUC of the Hybrid Ensemble given a specific
combiner and the Single Best . 109

4.3 Performance improvement through Hybrid Ensemble by difficulty 110
4.4 Weights per data set . 112
4.5 Sorted weights . 113

ix

List of Tables

1.1 Link to literature of the studies Kernel Factory and Hybrid Ensemble 8
1.2 Contribution to literature, main findings, and practical implications 18

2.1 Some examples of kernels . 31
2.2 Properties of the data sets used in the empirical study 35
2.3 The median of the 10 folds for PCC . 39
2.4 The inter quartile range of the 10 folds for PCC 40
2.5 The median of the 10 folds for AUC . 41
2.6 The inter quartile range of the 10 folds for AUC 42
2.7 Average rankings of the folds (per data set) for PCC 43
2.8 Selected differences of the average rankings of the folds (per data set) for PCC 44
2.9 Average rankings of the folds (per data set) for AUC 45
2.10 Selected differences of the average rankings of the folds (per data set) for AUC 46

3.1 Predictive aCRM studies per industry . 56
3.2 Overview of predictors . 60
3.3 Average ranks . 72
3.4 Inter Quartile Ranges of the AUCs and accuracies obtained through 5x2f cv . . 72
3.5 Variable importance of top 50 predictors . 74

4.1 Hybrid Diversity Generation Strategies . 93
4.2 Characteristics of the base classifiers . 96
4.3 Characteristics of the data sets used in the empirical study 104
4.4 Median AUC of five times twofold cross-validation 107
4.5 Median ranks across data sets . 110
4.6 IQR AUC of five times twofold cross-validation 111

xi

Summary (Dutch)

Groepsleren, ook commissie-gebaseerd leren of het leren van systemen met meerdere classi-
ficatiemodellen, is ontstaan in de jaren 90 en is uitgegroeid tot een zeer belangrijk paradigma
(Zhou, 2012). Groeps- leeralgoritmen worden gebruikt om problemen met evaluatie, optimal-
isatie, voorstelling en numerieke berekeningen op te lossen (Dietterich, 2000).

Ondanks de excellente voorspellende classificatieperformantie van groeps- leeralgoritmen
worden deze vaak in diskrediet gebracht op het gebied van interpreteerbaarheid (De Bock and
Van den Poel, 2012; Gareth et al., 2013). De mogelijkheid om het geleerde model te kunnen
interpreteren wordt door meerdere auteurs aangeprezen als een van de basisvereisten voor een
succesvol model (Qi et al., 2009; De Bock and Van den Poel, 2012). In klantenbeheersyste-
men, zijn interpreteerbare en intuı̈tieve modellen belangrijk opdat beslissingsnemers inzichten
zouden kunnen verwerven in klantengedrag (Masand et al., 1999).

Deze dissertatie focust zowel op een aantal van de bovengenoemde sterktes als zwaktes van
groepsleren. Studie 1 gebruikt groepsleren om berekeningsproblemen gerelateerd aan kern-
matrices op te lossen aan de hand van een verdeel-en-heers techniek. Studie 2 vergelijkt de
performantie van de techniek voorgesteld in studie 1 met andere algoritmen en toont eveneens
aan dat de kritiek in verband met de interpreteerbaarheid van groepsleren onterecht is. Studie 3
focust op groepsleren om het voorstellingsprobleem op te lossen dat inherent verbonden is aan
de industriestandaard ”Single Best”. De ”Single Best” techniek evalueert meerdere technieken
en houdt enkel de beste techniek over voor het verdere proces. Studie 2 gebruikt deze indus-
triestandaard. Studie 3 argumenteert dat deze technieken moeten worden gecombineerd aan de
hand van groepsleren. In de volgende paragrafen vatten we de drie studies samen.

In studie 1 stellen we een groepsleermethode voor kernmachines voor. De leergegevens
worden willekeurig opgesplitst in een aantal wederzijds exclusieve partities gedefinieerd door
een rij- en kolomparameter. Elke partitie vormt een invoerruimte en wordt getransformeerd
door een kernfunctie in een kernmatrix K. Vervolgens wordt elke K gebruikt als leergegevens
om een binair ”Random Forest” basisclassificatiemodel te schatten. Dit resulteert in een aantal
voorspellingen gelijk aan het aantal partities. Een gewogen gemiddelde combineert de voor-
spellingen in een finale voorspelling. Om de gewichten te optimaliseren wordt een Genetisch
Algoritme gebruikt. Deze aanpak heeft het voordeel om tegelijkertijd (1) diversiteit, (2) nauw-
keurigheid (3) en berekeningssnelheid te promoten. (1) Diversiteit is gecreëerd omdat de in-
dividuele Ks zijn gebaseerd op een subset van kermerken en observaties, (2) nauwkeurigheid

xiii

wordt nagestreefd door sterke ”Random Forest” modellen te gebruiken, en (3) berekeningssnel-
heid wordt bekomen omdat de berekening van elkeK in parallel kan gebeuren. De performantie
van het voorgestelde algoritme (”Kernel Factory”) wordt vergeleken met ”Random Forest” en
”Kernel- Induced Random Forest” aan de hand van vijf keer tweevoudige kruisvalidatie. De
resultaten tonen aan dat ”Kernel Factory” significant beter presteert dan ”Kernel- Induced Ran-
dom Forest”. Wanneer de juiste kernfunctie is gespecificeerd is ”Kernel Factory” ook significant
beter dan ”Random Forest”. Een R-programma van het algoritme (kernelFactory) is beschik-
baar gemaakt op CRAN.

Het doel van studie 2 is om (1) de haalbaarheid te toetsen van het voorspellen van de toename
in gebruiksfrequentie van Facebook, (2) te evalueren welke algoritmes het beste presteren, en
(3) inzicht te verwerven in welke variabelen belangrijk zijn. De performantie van ”Kernel Fac-
tory”, ”Random Forest”, ”Stochastic Adaptive Boosting”, Neurale Netwerken, ”Support Vector
Machines”, en Logistische Regressie wordt vergeleken aan de hand van vijf keer tweevoudige
kruisvalidatie. De resultaten tonen aan dat het haalbaar is om modellen te schatten met hoge
voorspellende waarde. Het beste algoritme was ”Stochastic Adaptive Boosting” met een kruis-
gevalideerde AUC van 0.66 en een accuraatheid van 0.74. De belangrijkste voorspellers zijn
onder andere de afwijking van reguliere gebruikspatronen, frequenties van specifieke gedragin-
gen en groepslidmaatschappen, gemiddelde fotoalbum privacy instellingen, en de recentheid
van geplaatste commentaar. Facebook en andere sociale netwerken kunnen voorspellingen van
de toename in gebruiksfrequentie gebruiken om hun diensten aan te passen aan de gebruikers.
Voorbeelden zijn het aanpassen van het tempo van advertenties en vriendschapsverzoeken, of
zelfs het aanpassen van de persoonlijk nieuwsstroom. De grootste contributie van deze studie is
dat het de eerste is om de toename in gebruiksfrequentie te voorspellen in een sociaal netwerk.

Het doel van studie 3 is om de toegevoegde waarde te toetsen van algoritme- geı̈nduceerde
diversiteit over gegevens- geı̈nduceerde diversiteit in groepsleren. We ontwikkelen een Hybride
Groepsleer- Algoritme bestaande uit zes sub- groepsleer algoritmen: ”bagged” Logistische Re-
gressie, ”Random Forest”, ”Kernel Factory”, ”bagged Support Vector Machines”, ”Stochastic
Adaptive Boosting”, en ”bagged” Neurale Netwerken. We testen het algoritme op elf gegevens-
sets aan de hand van vijf keer tweevoudige kruisvalidatie. Het Hybride Groepsleer-Algoritme is
consistent en significant beter dan het ”Single Best” sub-groepsleer algoritme op alle gegevens-
sets wanneer de performantiemethode of het ”Self Organizing Migrating Algorithm” wordt
gebruikt voor het schatten van de gewichten in de fusiemethode. Analyses tonen eveneens aan
dat het Hybride Groepsleer- Algoritme grotere verbeteringen vertoont als de classificatietaak
moeilijker wordt. Voor zover wij weten, is dit de eerste studie die de toegevoegde waarde
van algoritme- geı̈nduceerde diversiteit toetst over gegevens- geı̈nduceerde diversiteit in groep-
sleren. Om onze resultaten gemakkelijk repliceerbaar te maken, hebben we R-programmatuur
(genaamd hybridEnsemble) afgeleverd aan CRAN.

Referenties
De Bock, K. W., Van den Poel, D., Jun. 2012. Reconciling performance and interpretability

in customer churn prediction using ensemble learning based on generalized additive models.
Expert Systems with Applications 39 (8), 6816–6826.

Dietterich, T. G., 2000. Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.),
Multiple Classifier Systems. Vol. 1857. pp. 1–15.

Gareth, J., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning
with application in R. Springer Texts in Statistics. Springer.

Masand, B., Datta, P., Mani, D. R., Li, B., Jun. 1999. CHAMP: a prototype for automated
cellular churn prediction. Data Mining and Knowledge Discovery 3 (2), 219–225.

Qi, J., Zhang, L., Liu, Y., Li, L., Zhou, Y., Shen, Y., Liang, L., Li, H., Apr. 2009. ADTreesLogit
model for customer churn prediction. Annals of Operations Research 168 (1), 247–265.

Zhou, Z.-H., 2012. Ensemble Methods: Foundations and Algorithms. Machine Learning &
Pattern Recognition Series. Chapman & Hall/CRC, Boca Raton FL.

1
Extended Abstract

Since this is a PhD by publication, as opposed to a PhD as monograph, the manuscript is a
collection of research papers which are organized in chapters. Every chapter can be read inde-
pendently from the others.

The first chapter is an extended abstract in that it discusses the background of ensemble
learning, research objectives, main findings, contributions, practical implications, limitations,
and directions for future research. This chapter is meant to link the research papers to the
common theme and provide and overview of the entire dissertation. After reading it, readers
should be able to place all the remaining chapters in this dissertation in context.

1.1 Background

1.1.1 Motivation for Ensemble Learning

Machine learning algorithms, also called learners, consist of combinations of three components:
representation, evaluation and optimization (Domingos, 2012). Representation stands for the
structure of the learner (e.g., networks, trees), evaluation represents the objective function (e.g.,
accuracy, likelihood, squared error, information gain), and optimization denotes the method
to search in a given representation for the highest performance of the objective function (e.g.,
greedy search, branch-and-bound, gradient descent). A learner inputs a data set of instances
(xi,yi), also called patterns, objects or observations, with (i = 1, 2, 3, . . . , N), where xi =

(xi1, . . . , xin) ∈ Rn is the feature vector of instance i, yi ∈ {0,1} is the class label of instance
i, n is the dimensionality of the input space, and N is the number of instances. The goal of a

3

EXTENDED ABSTRACT

learner is to output a classifier, also called hypothesis or classification model1.
Many different classifiers, can be learned from making specific combinations of input data,

representation languages, evaluation functions and optimization methods. The resulting set
of all possible classifiers that might be learned is called the hypothesis space H. Consider
the hypothesis space denoted by the outer curve in the left panel of Figure 1.1 (adapted from
Dietterich, 2000). A learner searches the space H to identify the best hypothesis, h ∈ H.
The inner curve depicts a set of accurate hypotheses. Since one only disposes of a limited
amount of data, it is possible that the learner finds different hypotheses (h1, h2, h3) of equal
overall accuracy. If in some region of the input domain, some hypotheses perform better than
others, averaging reduces the risk of selecting the wrong hypothesis in a specific region. The
point labeled g is the average of those three hypotheses and f is the true hypothesis. Point
g is closer to f than any of the constituent hypotheses meaning that the combination of those
points reduces the risk of selecting the wrong classification model. In this case combining or
ensembling solves an evaluation problem (called a statistical problem by Dietterich, 2000). It
has to be noted that there is no guarantee that the ensemble improves upon the best constituent
classifier (Fumera and Roli, 2005). However, combining models does reduce the probability of
selecting a poor model.

The middle panel in Figure 1.1 refers to how ensembling may solve optimization problems
(called computational problems by Dietterich, 2000). Learners employ optimization methods
for local searches (e.g., trees use greedy search) that may get stuck in local optima. When
there are sufficient data and the evaluation problem does not exist, an algorithm may still strug-
gle to find the best hypothesis. By averaging different hypotheses, obtained by starting local
searches from different points, the true hypothesis f may be better approximated than any of
the individual hypotheses.

The third problem that ensemble methods can alleviate is representational in nature (Di-
etterich, 2000). When f /∈ H, averaging can expand the space of representable functions as
depicted in the right panel of Figure 1.1. For example, a linear learner cannot learn non-linear
boundaries, while a combination of linear learners can learn any boundary. In essence, an en-
semble effectively follows a divide and conquer approach in that each individual only learns a
smaller or simpler partition of the problem. Note that very flexible learners such as neural net-
works and trees can represent all possible classifiers (i.e., f always falls in H). However, this
capability only holds asymptotically. In reality only a finite set of hypotheses can be generated
given a finite input data set (Dietterich, 2000).

Computational problems such as data size limitations and execution time constraints, not
depicted in Figure 1.1, can also be alleviated by ensemble methods. Instead of learning one
model on the whole data set, multiple smaller models can be learned on different smaller sub-
sets, as such reducing computer hardware requirements. Processing speed can also be increased
since most ensembles are inherently parallel.

1This dissertation focuses on binary classification.

4

CHAPTER 1

h1

h2

h3
h1

h2

h3

h1

h2 h3

f
g g f g f

Evaluation Optimization Representation

Figure 1.1: Reasons why an ensemble may outperform a single classifier

An algorithm that suffers from the evaluation issue or the optimization issue is said to have
high variance. A algorithm suffering from the representational issue is said to have high bias.
Hence, ensembling may reduce both variance and bias (Zhou, 2012, p67).

The next section covers the design considerations of ensemble learners. The two main topics
are ensemble member generation and member combination.

1.1.2 Designing Ensemble Learners

Ensemble learning, also called committee-based learning or learning multiple classifier sys-
tems, has become a major paradigm since the 1990s and has roots in three distinct communities
(Zhou, 2012). The pattern recognition community has mainly worked on combining strong clas-
sifiers. Research in this community has focused on designing powerful combination rules. In
contrast, the machine learning community has mostly studied ensembles of weak learners, en-
gendering methods such as Bagging (Breiman, 1996a) and Boosting (Schapire, 1990; Freund,
1995). Finally, the neural networks community has worked on mixtures of experts (ME). A
ME is different from the other two approaches in that it employs a divide-and-conquer strategy
while the other do not (or to a lesser degree). In ensembles of weak classifiers and ensembles
of strong classifiers, the base learners, also called individual learners or team members, are
trained on the same problem and similar data and are generally highly correlated (Zhou, 2012).
In those cases the focus is on constructing diverse base classifiers. In ME, base classifiers are
generated for different subtasks yielding inherently diverse individuals. The key problem is to
find a natural divisions of the task, make the experts local, and derive a global solution from
the individuals. An example of ME is when a pulmonologist has to combine the information
in a PET scan and subject demographics. One classifier could be trained to learn the PET scan
image and another one to learn the data set with subject demographics stored in more traditional
features. Decisions of both models can then be combined by a combination rule (Parikh and
Polikar, 2007).

All ensembles are created in two phases: base classifier generation and base classifier com-
bination. To obtain a high performing ensemble the main focus in the generation step should be

5

EXTENDED ABSTRACT

on creating accurate and diverse team members (Sharkey and Sharkey, 1997). On the one hand,
combining the same classifiers does not yield better performance and only increases the sys-
tem’s complexity. On the other hand, different but much worse performing models are unlikely
to increase ensemble performance neither (Ruta and Gabrys, 2005).

Diversity can be generated using either a data- strategy or an algorithm- strategy. The main
focus of the former strategy is perturbing or partitioning the input data. For example, Bag-
ging (Breiman, 1996a), short for bootstrap aggregating, creates diversity by generating multiple
bootstrap samples. Another example is adaptive resampling, with Boosting (Freund, 1995) as
its prime representative, that resamples data biased towards misclassified observations. The
disadvantage of the latter is that it is iterative in nature whereas the other methods are par-
allel. In contrast to creating partitions on the instance level, the Random Subspace method
(Ho, 1998), or attribute bagging (Bryll et al., 2003), focuses on the features. Random For-
est (Breiman, 2001) combines both an instance- and feature- strategy. The algorithm- strategy
mainly consists in using different learning algorithms in the ensemble (e.g., Tsoumakas et al.,
2005)(resulting in a heterogeneous ensemble) or manipulating parameter settings for a given
learner (e.g., Windeatt, 2005; Ueda, 2000). Both data-and algorithm-strategies result in a set of
L hypotheses (h1, h2, . . . , hL) that are aimed to be diverse and accurate.

In the second phase, base classifier combination, the first step is to choose the fusion rule.
Depending on the output that is received from the base classifiers, different types of fusion
rules exist. In case of binary classification, two levels of outputs can be distinguished: (1) class
label outputs, and (2) scores, also called measurement level. The latter can be transformed
into confidences, also called a posteriori probabilities, by applying a calibration function. For
the former output type, majority vote is the most popular combination rule while the simple
mean is the most popular for the latter. An overview of these and other methods can be found
in Kuncheva (2004). Measurement level output usually is preferred as it contains the largest
amount of information (Xu et al., 1992; Al-Ani and Deriche, 2002) and is able to reduce the
total generalization error (Bauer and Kohavi, 1999). The goal of fusion functions is to integrate
the different classifiers’ output into one generalized output.

Measurement level output can be combined as follows. Each hypothesis (i.e., base classifier)
h(l,1)(x) outputs the chance that x belongs to class 1. When using a posteriori probabilities, the
fusion function F then gives the combined output g1(x) as the confidence that object xi has
class yi = 1.

g1(x) = F(h(1,1)(x), . . . , h(L,1)(x)) (1.1)

Here, F can be based on (1) fixed rules or (2) trained weights (Roli et al., 2002). While
fixed rules have a very small time complexity and provide simplicity, their result is expected
to be worse than that of the trained ones. Depending on the size of the data and the number
of classifiers available, one should carefully decide which one to take (Duin, 2002). For linear
combiners, one can speak of a fixed rule if all the weights are equal (e.g., simple average). One

6

CHAPTER 1

can speak of a trained rule if the weights are different (e.g., weighted averaging) (Roli et al.,
2002). A weight wl,1 is given to every classifier for class 1.

g1(x) =
L∑
l=1

w(l,1)h(l,1)(x) (1.2)

In case of simple averagingw(l,1) = 1
L

. The performance of the simple average is often close
to that of the weighted average (Fumera and Roli, 2005). It has however, been proven that the
simple average is the optimal weighting only when the individual classifiers exhibit identical
error rates and identical pair-wise correlations between the estimation errors (Fumera and Roli,
2005). Otherwise, a weighted average is always able to outperform it.

In this dissertation three classes of linear weight estimation methods are considered: the
authority- based method, specialized optimization methods (i.e., traditional numerical methods
such as logistic regression), and general purpose optimization methods (i.e., heuristics). For the
latter method both population- based methods (e.g., genetic algorithms), and single solution or
trajectory- based methods (e.g., simulated annealing) are considered.

In authority- based weight estimation the weight wl,1 of each classifier l for class 1 is set
proportional to its performance α on a validation set (Opitz and Shavlik, 1996).

w(l,1) =
αi∑l
l=1(αl)

(1.3)

When specialized optimization methods and general purpose optimization methods (see
Equation 1.2) are used an extra model is learned on top of the base classifiers. The first layer
includes the base classifiers and the second layer is stacked on top of the first layer.

For the sake of completeness2, in case of a mixture of experts, gating is used instead of
stacking. The key difference with stacking is that weight estimation also incorporates the input
data. Gating is defined as follows:

g1(x) =
L∑
l=1

w(l,1)(x)h(l,1)(x) (1.4)

This dissertation contains three studies in the field of ensemble learning. The first study
introduces a novel method called Kernel Factory and validates the method on multiple data
sets. The second study is an application study and benchmarks Kernel Factory in the domain
of Customer Relationship Management. The third study proposes Hybrid Ensemble along with
applications to several distinct problems. Table 1.1 summarizes the design elements of Kernel
Factory and Hybrid Ensemble.

The following subsection leans on the current section to cover the research objectives of this
dissertation. The penultimate section provides the main findings and the final section discusses
limitations and directions for future research.

2This dissertation focuses on the simple average, authority- based weighting and stacking

7

EXTENDED ABSTRACT

Table 1.1: Link to literature of the studies Kernel Factory and Hybrid Ensemble

Design phase Characteristic Study:
Kernel Factory

Study:
Hybrid Ensemble

Motivation Main focus Computational Representational
Generation Strength base classifiers Strong Strong

Samples Disjoint Intersecting
Ensemble homogeneity Homogeneous Heterogeneous
Diversity strategy Data Data and algorithm

Combination Weighting method Stacking Simple average, Au-
thority, Stacking

1.2 Research Objectives

1.2.1 Study 1: Kernel Factory

The main objective of this study is to assess whether a divide- and- conquer approach can
alleviate the computational problems of kernels. First, consider the main motivation for using
kernels. The left panel in Figure 1.2 (adapted from Noble, 2006) illustrates a one-dimensional
data set. The problem is that the dots and circles are inseparable by a single point. By adding an
additional dimension to the data (in this case squaring the original expression) the circles and
dots become separable by a straight line in the two-dimensional space.

●● ● ●● ●●● ● ● ●●● ●●● ●●●● ● ● ●●●● ● ●● ●● ● ●● ●● ●● ● ●

−4 −2 0 2 4

Expression

●● ● ●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●● ●●
●

−4 −2 0 2 4

0
5

10
15

20
25

Expression

E
xp

re
ss

io
n*

E
xp

re
ss

io
n

●●
●

●
●

●● ●●
●

Inseparable one-dimensional data set Separable data set

Figure 1.2: Motivation for using kernels

Despite the clear advantages of this approach, analysis may soon become intractable. If
there are 100 features in the data set instead of one, the resulting data set will contain 5050
features. The computational effort for a subsequent learner scales with the dimensionality (i.e.,
number of features n) of the new higher dimensional space, also called linearization (Jäkel
et al., 2007) or feature space F . Kernels offer a solution to this feature explosion so that the
computational effort scales linearly with the size (i.e., number of observationsN) of the original

8

CHAPTER 1

space, called input space X (Schölkopf and Smola, 2002).
Consider an n dimensional input space X and a mapping function φ that transforms X to F .

The function φ creates all nd possible ordered3 monomials of degree d = 3. For the mapping
φ : Rn → Rnd , and two instances xi and xj , it holds that (Jäkel et al., 2007):

〈φ(xi), φ(xj)〉 =
n∑

p1=1

n∑
p2=1

· · ·
n∑

pd=1

xip1xip2 . . . xipdxjp1xjp2 . . . xjpd

=
n∑

p1=1

xip1xjp1

n∑
p2=1

xip2xjp2 . . .
n∑

pd=1

xipdxjpd

=

(
n∑
p=1

xipxjp

)d

= 〈xi, xj〉d (1.5)

Equation 1.5 shows that the dot product in F equals the dot product in X to the power of d.
It is unnecessary to map xi and xj to nd dimensional feature space to calculate the inner product
(Jäkel et al., 2007). The function 〈φ(xi), φ(xj)〉 = 〈xi, xj〉d is called a kernel, short for kernel
function, and is denoted by k(xi, xj). The kernel in Equation 1.5 is a polynomial kernel.

A kernel matrix K, also called Gram matrix, is a matrix that collects all pairwise applica-
tions of a kernel function k(., .) to a set of instances x1 to xN . K is an N x N matrix

K =

k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

...
k(xN , x1) k(xN , x2) · · · k(xN , xN)

with an entry in the ith row and jth column denoted as kij:

kij = k(xi, xj) (1.6)

Kernels provide a novel data representation in that data are not represented individually
anymore, but through a set of pairwise comparisons or similarities (Vert et al., 2004). A kernel
matrix acts as an information bottleneck, since all the information available to a kernel learner
(e.g., about distribution, model, noise) must be extracted from this matrix (Shawe-Taylor and
Cristianini, 2004, p47). It is perhaps surprising how much information about an input data set
can be obtained simply from its kernel matrix (Shawe-Taylor and Cristianini, 2004, p138).

Kernels have been introduced to mainstream machine learning literature in 1992 with the
paper of Boser et al. (1992) on support vector machines. While for some time after that pa-
per kernels were only used with large margin algorithms, the idea emerged that other types of
algorithms could also be used in this way (Shawe-Taylor and Cristianini, 2004, p138). Any

3The order does not matter because of the commutativity of the product, but for simplicity we take the ordered
monomials.

9

EXTENDED ABSTRACT

algorithm that can be kernelized (i.e., its dependence on the data is only through dot products)
can be used with kernels (e.g., kernel logistic regression, parzen windows) (Ben-Hur and We-
ston, 2010, p4). Moreover, more recently it has been shown that training algorithms need not
be kernelizable to be used with kernel matrices (Balcan et al., 2006, 2008; Fan, 2009). Fan
(2011) professes that any algorithm can be used. Fan (2009); Fan et al. (2010); Cao and Fan
(2010) show that, similar to tree procedures in input space, one can recursively partition the
data space using kernel-induced features and aim to obtain homogeneous distributions of the
response variable in the terminal nodes of the tree. The kernel- induced features are inherently
linked to instances. For example, the fifth column in the kernel matrix, k(., x5), is constructed
by, at each row taking the inner product of the respective row with the fifth row of the input
space. In other words, the fifth column contains the degree of similarity of row five with all
rows. This is what Fan (2009) calls a kernel-induced feature and x5 is what Balcan et al. (2008,
p91) call a landmark data point. The combination of kernels and trees, or a forest of trees, is
called Kernel-Induced Classification Trees and Kernel-Induced Random Forest (Fan, 2009).

One of the main advantages of using kernel functions is that the resulting kernel matrix is
always N x N , regardless of the complexity of the instances. This is very attractive when the
number of instances is smaller than the number of features that would have been created if they
were computed explicitly. For example, a data set with 5000 instances and 150 dimensions,
and a polynomial function of degree 2 would result in 11325 dimensions. Using a kernel the
dimensionality would only be 5000. Kernels become even more attractive when a relatively
small number of complex objects needs to be processed (Vert et al., 2004).

Although kernels can reduce the computational effort from scaling with the number of fea-
tures to scaling with the number of instances, the data set can still grow too large to analyze. To
alleviate the problem Study 1 introduces a divide-and-conquer approach. Instead of computing
K on the entire input data set, data are randomly split into equally sized disjoint sub-samples.
Each sample is subsequently transformed by a kernel function into a kernel matrix K. Next
each K is used as training data for a Random Forest. The predictions are then combined using a
weighted average. The weights are computed using a genetic algorithm. This approach reduces
memory requirements as the maximum used memory is now bounded by N of the sub-samples
instead of N of the entire input data set (the latter being the case in Kernel-Induced Random
Forest). The main research question is then whether the predictive performance of this approach
can match the performance of Kernel-Induced Random Forest.

1.2.2 Study 2: CRM in Social Media

The purpose of this study is to assess the feasibility of predicting increases in Facebook usage
frequency and to benchmark the performance of Kernel Factory in a Customer Analytics con-
text. Kernel Factory is compared to Logistic regression, Random Forest, Stochastic Boosting,
Support Vector Machines and a feed-forward Neural Network.

10

CHAPTER 1

This study also touches upon the issue of interpretability. While ensemble methods are of-
ten credited for creating powerful predictive models, they are discredited for having low inter-
pretability (see Figure 1.3; adapted from Gareth, Witten, Hastie, and Tibshirani 2013) (De Bock
and Van den Poel, 2012; Gareth et al., 2013). Neslin et al. (2006) clearly denote that different
algorithms are often required depending on whether the goal is description or prediction. Gareth
et al. (2013) proclaim that as flexibility of a method increases, its interpretability decreases. In
Gareth et al. (2013) flexibility is synonymous to non-linearity which is a proxy for predictive
performance. It is important to note that it might not always pay off to select the most flexi-
ble method because more flexibility can translate into a higher potential for overfitting (Gareth
et al., 2013, p26).

Flexibility High Low

In
te

rp
re

ta
b

il
it

y

L
o

w

H
ig

h

Subset

Selection

Lasso

Least

Squares

Generalized

Additive Models

Trees

Bagging, Boosting

Support Vector

Machines

Figure 1.3: Trade-off between flexibility and interpretability

Because ensemble methods have low interpretability they are often not considered in fields
such as Business Analytics. Model interpretability is advocated by several authors to be one
of the main requirements for a successful model (Qi et al., 2009; De Bock and Van den Poel,
2012). In Customer Relationship Management, interpretable and intuitive models allow deci-
sion makers to gather valuable insights into the drivers of customer behavior (Masand et al.,
1999). While it is common knowledge that the importance of predictors can easily be deter-
mined using permutation based measures (Breiman, 2001), the criticisms surrounding ensem-
bles about interpretation mainly focus on their incapability of describing the sign or form of the
relationship between a predictor and response.

11

EXTENDED ABSTRACT

There is however, a method for describing the relationship between a predictive feature
and the response (in this case the probability to increase Facebook usage) using an ensemble
model. This method is based on visualization: one of the most informative interpretational tools
(Friedman and Meulman, 2003, p24). Partial Dependence Plots (Friedman, 2001; Hastie et al.,
2009, Section 10.13.2) can describe the effects of features on the predictions of any black box
learning method (Hastie et al., 2009; Cutler et al., 2007).

In general, a classification function h depends on many predictors x = (x1, . . . , xn). Con-
sider a subset xs containing p < n of those predictors that are of interest to the researcher. The
predictors xc are the complement such that x = xs ∪ xc and h(x) = h(xs, xc). The partial or
average dependence of h(x) on xs is then defined by (Hastie et al., 2009)

fs(xs) =
1

N

N∑
i=1

h(xs, xic) (1.7)

where {x1C , x2C , . . . , xNC} are the values of xc that occur in the training data. This method
requires a pass over the data for each set of joint values of xs (Hastie et al., 2009).

In classification tasks, h(x) is computed on a logit scale. According to Liaw (2014) the
underlying reason is that that is where the predictions are closer to symmetric (normal) and
homoscedastic, where computing the mean makes sense. Let Pk(x) be the probability of mem-
bership of the kth class and N the number of instances. For K-classification the kth response
function is then given by Equation 1.8 (Hastie et al., 2009). In case of binary classification
Equation 1.8 can be reduced to Equation 1.9.

fs(xs) =
1

N

N∑
i=1

(
log
(
Pk(xs, xic)

)
− 1

K

K∑
k=1

log
(
Pk(xs, xic)

))
(1.8)

fs(xs) =
1

N

N∑
i=1

(
log
(
P (xs, xic)

)
− 1

2

(
log
(
P (xs, xic)

)
+ log

(
1− P (xs, xic)

)))

=
1

N

N∑
i=1

1

2

(
log
(
P (xs, xic)

)
− log

(
1− P (xs, xic)

))

=
1

N

N∑
i=1

1

2

(
logit

(
P (xs, xic)

))
(1.9)

Thus, the scale in Partial Dependence Plots is half of the logit (log of the odds) of the prob-
ability of the event. Please note that Partial Dependence Plot do not follow the convention to
take one class as reference category (Berk, 2008, p224). While the overall fit is independent
of the choice of reference category, coefficients are affected of by choosing one reference cate-
gory over the other. Since there is no statistical justification for choosing a particular reference

12

CHAPTER 1

category, and the choice is mostly made on subject matter grounds, the choice varies from re-
searcher to researcher. To avoid these complications, Partial Dependence Plots take the simple
mean of the predictions of the K categories as reference. The response variable units are then
deviations from the mean or the disparity between the logged predictions for category k and the
mean of the logged predictions for all K categories. The units are logits but with the mean over
the K categories as reference. Each category has its own equation and its own Partial Depen-
dence Plot. This convention is used even when K = 2 and the conventional logit may not result
in interpretation issues (Berk, 2008, p224).

From a more practical perspective, Partial Dependence Plots (for ensemble models) are
created by the following procedure (Berk, 2008, p222):

1. Grow an ensemble model

2. For a specific predictor xp, create a Partial Dependence Plot as follows:

(a) Let v be the number of distinct values of a predictor xp

(b) For each value of the v values

i. Create a novel data set where xp only takes on that value and leave all other
variables untouched

ii. Predict the response for all instances in that novel data set using the ensemble

iii. Calculate the mean of the half logit of the predictions yielding one single value
for all instances

(c) Plot the mean of half the logit of the predictions against the v values

3. Return to step 2 and repeat for other predictors of interest

It is important to note that Partial Dependence Plots represent the effect of a predictor or
a subset of predictors after accounting for the effects of the other predictors. Analogously to
a multiple linear regression, the coefficient of predictor x1, obtained from regressing y on all
xj , measures the effect of x1 accounting for the effects of the other variables. In simple linear
regression where each xj is regressed separately on y the coefficient of x1 ignores the other
predictors (Friedman and Meulman, 2003).

Study 2 will use Partial Dependence Plots for interpreting the effect of selected predictors
on the probability of increasing Facebook usage frequency. The objective is to illustrate that
ensemble methods should not be discredited for having interpretation issues.

1.2.3 Study 3: Hybrid Ensemble

One of the most popular strategies for increasing classification performance is introducing data-
induced diversity (see the top and middle panels in Figure 1.4). As mentioned in Section 1.1.2,

13

EXTENDED ABSTRACT

key examples are Bagging (Breiman, 1996a), Boosting (Freund and Schapire, 1996) and Ran-
dom Subspaces (Ho, 1998). Next to their effectiveness in improving classification, data- strate-
gies thank their popularity to their ease of implementation. For example, Bagging consists
in simply looping over a process of bootstrap sampling and classifier estimation, and aggre-
gating the results. Algorithms that benefit the most from data-driven ensembling are unstable
algorithms such as trees (Breiman, 1996a). Nevertheless, this strategy is also effective when
more stable algorithms such as Neural Networks (Zhou et al., 2002), Logistic Regression (Kim,
2006), or Support Vector Machines (Valentini et al., 2003) are used.

Even when a given (ensemble) learner outperforms other learners on many tasks, as is the
case with Breiman’s (2001) Random Forest (Zhou, 2012, p21), one should still benchmark al-
gorithms on each new task. There is no such thing as a free lunch in that no (homogeneous
ensemble) algorithm performs best on all possible data sets (Wolpert, 1996). The strategy of
evaluating multiple algorithms and selecting the best performing one is called the Single Best.
Study 2 uses this strategy. It is one of the simplest yet most reliable and hence industrially pre-
ferred strategies (Ruta and Gabrys, 2005). It is important to note however, that the Single Best is
considerably more complex than simply picking an algorithm (that one is comfortable with) and
applying a data-driven ensemble technique. It requires a large amount of experience to be able
to correctly apply certain algorithms. King et al. (1995) proclaim that many algorithms need an
expert for parameter tuning. Tuning is of lesser concern in tree algorithms but is problematic in
algorithms such as Neural Networks to the point of ”frustrating” (Ripley, 1993, p102) its users.
It is the fact that expert knowledge is required for all the algorithms in the benchmark that
drives the complexity of the Single Best method. Despite the difficulties inherent to implement-
ing the Single Best method, it is the preferred option for improving classification performance
in industrial applications (Ruta and Gabrys, 2005).

Although the Single Best is an effective method, optimal performance is not guaranteed
(Roli and Giacinto, 2002, p208). There is a possibility that a combination of classifiers in a
multiple classifier system (MCS) outperforms the best classifier (Ruta and Gabrys, 2005). This
discovery came as a surprise to researchers from experiments in the late 1980s and early 1990s
(Ho, 2002, p177). To ensure optimal performance, a MCS should be able to construct an optimal
combination rule, adding an extra layer of complexity.

This study investigates whether introducing algorithm- induced diversity is a viable strategy
over and above introducing data-induced diversity (see the bottom panel in Figure 1.4). It might
well be the case that the latter strategy captures so much diversity that introducing additional
algorithms does not increase predictive performance. If so, it is clear that this would make an
algorithm variation strategy obsolete given the additional computational cost of a MCS in the
estimation (i.e., the combination rule) and deployment phase.

14

CHAPTER 1

Bootstraps

Estimate Logistic
Regressions

Original data

LR LR LR LR

bLR
Bagged Logistic
Regression

LR LR LR LR SV SV SV SV NN NN NN NN

bNN bLR bSV

W" Weight Estimation

Hybrid Ensemble

Original data

LR
Estimate Logistic
Regression

Baseline
situation

+
Data-

induced
diversity

+
Algorithm-

induced
diversity

(SV= Support Vector Machines, NN= Neural Network)

Figure 1.4: Selected components of the proposed Hybrid Ensemble.

15

EXTENDED ABSTRACT

1.3 Main findings, contributions and implications

Table 1.2 contains an overview of the main findings, along with contributions to literature and
practical implications. In the following paragraphs the findings of the three studies are discussed
in more detail.

Study 1. Using five times twofold cross- validation Kernel Factory is benchmarked against
Random Forest and Kernel-Induced Random Forest (KIRF). The findings are fourfold. First,
we found that one column partition works better than many. The training data are randomly
split into a number of mutually exclusive partitions defined by a row and column parameter.
Each partition forms an input space and is transformed by a kernel function into a kernel matrix
K. Subsequently, each K is used as training data for a base binary classifier (Random Forest).
While partitioning the columns is primarily a way of introducing diversity in the ensemble, the
results indicate that one partition works best. Therefore more than one column partition is only
recommended in case of numerical problems when computing the Ks (which is often the case
in data sets with many features). Second, in addition to its superior speed on large data sets,
Kernel Factory is significantly better than Kernel-Induced Random Forest (KIRF) on several
data sets (and performs rarely significantly worse than KIRF). Third, the two methods (random
and burn-in) that automatically select the kernel function perform equally well and using them
is a viable strategy when the right kernel function is unknown in advance. Fourth and final,
when using a kernel is appropriate, and the right kernel is specified, both Kernel Factory and
Kernel-Induced Random Forest outperform Random Forest significantly.

Study 2. The results clearly indicate that usage increase prediction is a viable strategy with
five times twofold cross-validated AUCs up to 0.66 and accuracies up to 0.74. When AUC is
used as performance measure Stochastic Boosting is the best choice to model usage increase,
followed by Random Forest, Logistic Regression, Kernel Factory, Support Vector Machines
and Neural Networks. When using accuracy, the first position also goes to Stochastic Boosting.
Random Forest and Support Vector Machines share the second position, Kernel factory and Lo-
gistic regression share the third place and Neural Network performs worst. The top predictor
is the time ratio. This variable is operationalized to capture the user’s deviation from his or her
regular usage patterns. The Partial Dependence Plot indicates a strong negative relationship.
Greater deviations from regular usage patterns results in lower probability of usage increase.
Other important predictors include frequencies of likes of specific categories and group mem-
berships, average photo album privacy settings, and recency of comments.

The fact that Kernel Factory only obtains an intermediate position in this benchmark has
given rise to the basic idea of MCSs underlying Study 3 (Hybrid Ensemble). In fact, Kernel
Factory is heavily dependent upon the choice of the kernel function (as any kernel-based method
for that matter). The latter is in turn contingent upon the training data. Using a kernel, as
opposed to not using a kernel, is not always the right choice. This makes Kernel Factory not
very versatile. Study 3 therefore aims to create an algorithm that can be effectively employed

16

CHAPTER 1

in a wide spectrum of tasks and applications.
Study 3. In this study a new Hybrid Ensemble is proposed consisting of six sub-ensembles:

Bagged Logistic Regression, Random Forest, Kernel Factory, Bagged Support Vector Ma-
chines, Stochastic Boosting, and Bagged Neural Networks. Using five times twofold cross-
validation, we found that the proposed Hybrid Ensemble yields better performance than the
Single Best on all tested data sets for the authority- based weight estimation method (i.e.,
weighting according to individual performance) and the Self-Organising Migrating Algorithm
(SOMA) weight estimation method. The maximum incremental AUC that those methods bring
over the Single Best is respectively 0.025 and 0.022, which is sizable given the effective data-
strategy the Single Best uses. Since the authority- based method outperforms SOMA, and in
addition is relatively computationally more efficient, we recommend it as the default option in
future research. The sub-ensembles generate diversity through data perturbation. Hence the
difference of the performance of the Hybrid Ensemble and the Single Best sub-ensemble effec-
tively yields the added value of algorithm-induced diversity. It is also found that the added value
of the Hybrid Ensemble over the Single Best increases with increasing classification difficulty
of the task at hand. This study also gives an indication that six sub-ensembles is sufficient to
constitute the Hybrid Ensemble. In addition, there is no clear winning or losing sub-ensemble.
These findings indicate the appropriateness of the selected algorithms. The main implication is
that the industrially preferred Single Best method should be replaced by Hybrid Ensembling.

1.4 Limitations and future research

Study 1. Kernel Factory was designed to improve upon Fan’s (2009) Kernel-Induced Random
Forest. It was not designed to compete with non-kernel based methods such as Random Forest.
This design choice is also clearly reflected in the benchmark results. If the appropriate kernel
cannot be found predictive performance will suffer (Üstün et al., 2006). If found, Kernel Factory
can drastically improve upon Random Forest. In order to find the right kernel a process of
cross-validation has to be undertaken. When evaluating Kernel Factory, Random Forest should
always be benchmarked because there is no guarantee that Kernel Factory will be at least at
good as Random Forest. This is the main disadvantage of the algorithm. For researchers that
want an off-the-shelf algorithm that performs well on a wide array of tasks, Kernel Factory
may not be a good choice. However, Kernel Factory is a good candidate in the Single Best
method. Hence, a burn-in automatic kernel selection has been built into Kernel Factory in an
attempt to increase versatility. However, future research may consider other ways to increase
the versatility of Kernel Factory. An interesting avenue would be to include more generic or
universal kernel functions (Üstün et al., 2006; Zhang and Wang, 2011). These functions are
robust and have stronger mapping ability compared to the standard kernel functions, resulting
in better generalization performance while reducing the amount of required tuning.

Another avenue for improving Kernel Factory is pruning. The main strength of Kernel

17

EXTENDED ABSTRACT

Ta
bl

e
1.

2:
C

on
tr

ib
ut

io
n

to
lit

er
at

ur
e,

m
ai

n
fin

di
ng

s,
an

d
pr

ac
tic

al
im

pl
ic

at
io

ns

Ti
tle

C
on

tr
ib

ut
io

n
to

lit
er

at
ur

e
M

ai
n

fin
di

ng
s

Pr
ac

tic
al

im
pl

ic
at

io
ns

K
er

ne
l

Fa
ct

or
y:

A
n

E
n-

se
m

bl
e

of
K

er
ne

l
M

a-
ch

in
es

(p
ub

lis
he

d
in

E
x-

pe
rt

Sy
st

em
s

w
ith

A
pp

li-
ca

tio
ns

,2
01

3)

A
ss

es
s

ef
fe

ct
iv

en
es

s
of

di
vi

de
-

an
d-

co
nq

ue
rt

ec
hn

iq
ue

w
he

n
co

m
-

pu
tin

g
ke

rn
el

m
at

ri
x

C
om

pu
tin

g
m

an
y

ke
rn

el
m

at
ri

ce
s

on
di

sj
oi

nt
su

bs
et

s
of

th
e

in
pu

t
da

ta
do

es
no

t
in

cu
r

a
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

pe
na

lty

•
Sp

ee
d

im
pr

ov
em

en
ts

an
d

in
cr

ea
se

d
co

m
pu

ta
tio

na
l

ef
-

fic
ie

nc
y

th
an

ks
to

po
ss

ib
ili

ty
of

pa
ra

lle
liz

ed
an

d
di

st
ri

bu
te

d
ex

ec
ut

io
n

•
R

-P
ac

ka
ge

ke
rn

el
Fa

ct
or

y
C

R
M

in
So

ci
al

M
ed

ia
:

Pr
ed

ic
tin

g
In

cr
ea

se
s

in
Fa

ce
bo

ok
U

sa
ge

Fr
e-

qu
en

cy
(u

nd
er

re
vi

ew
)

•
A

ss
es

s
fe

as
ib

ili
ty

of
pr

ed
ic

tio
n

us
in

g
so

ci
al

m
ed

ia
da

ta
(F

ac
e-

bo
ok

)
•

B
en

ch
m

ar
k

K
er

ne
l

Fa
ct

or
y

ag
ai

ns
t

to
p

pe
rf

or
m

in
g

al
go

-
ri

th
m

s
in

lit
er

at
ur

e
•

D
et

er
m

in
e

w
hi

ch
va

ri
ab

le
s

ar
e

im
po

rt
an

t
•

Il
lu

st
ra

te
ho

w
to

in
te

rp
re

t
re

la
-

tio
ns

hi
p

be
tw

ee
n

pr
ed

ic
to

rs
an

d
re

sp
on

se
us

in
g

en
se

m
bl

e

•
U

sa
ge

fr
eq

ue
nc

y
in

cr
ea

se
ca

n
be

pr
ed

ic
te

d
w

ith
A

U
C

=0
.6

6
an

d
ac

cu
ra

cy
=0

.7
4

•
W

in
ne

r:
St

oc
ha

st
ic

A
da

B
oo

st
.

K
er

ne
lF

ac
to

ry
ob

ta
in

s
4t
h

po
si

-
tio

n
ou

to
f6

.
•

Im
po

rt
an

tp
re

di
ct

or
si

nc
lu

de
de

-
vi

at
io

n
fr

om
re

gu
la

r
us

ag
e

pa
t-

te
rn

s,
fr

eq
ue

nc
ie

s
of

lik
es

of
sp

ec
ifi

c
ca

te
go

ri
es

an
d

gr
ou

p
m

em
be

rs
hi

ps
,a

ve
ra

ge
ph

ot
o

al
-

bu
m

pr
iv

ac
y

se
tti

ng
s,

an
d

re
-

ce
nc

y
of

co
m

m
en

ts
.

So
ci

al
M

ed
ia

si
te

s
su

ch
as

Fa
ce

-
bo

ok
ca

n
us

e
pr

ed
ic

tiv
e

m
od

el
in

g
to

pr
o-

ac
tiv

el
y

cu
st

om
iz

e
se

rv
ic

es
su

ch
as

pa
ci

ng
th

e
ra

te
of

ad
ve

r-
tis

em
en

ts
an

d
fr

ie
nd

re
co

m
m

en
da

-
tio

ns
.

H
yb

ri
d

E
ns

em
bl

es
:

M
an

y
E

ns
em

bl
es

is
B

et
te

r
T

ha
n

O
ne

(u
nd

er
re

vi
ew

)

A
ss

es
s

ad
de

d
va

lu
e

of
al

go
ri

th
m

-
in

du
ce

d
di

ve
rs

ity
ov

er
da

ta
-

in
-

du
ce

d
di

ve
rs

ity

•
H

yb
ri

d
E

ns
em

bl
e

si
gn

ifi
ca

nt
ly

an
d

co
ns

is
te

nt
ly

ou
tp

er
fo

rm
s

Si
ng

le
B

es
t

•
G

re
at

er
im

pr
ov

em
en

ts
w

ith
m

or
e

di
ffi

cu
lt

ta
sk

s
•

Si
x

te
am

m
em

be
rs

is
su

ffi
ci

en
t

•
T

he
in

du
st

ri
al

ly
pr

ef
er

re
d

Si
n-

gl
e

B
es

t
m

et
ho

d
sh

ou
ld

be
re

-
pl

ac
ed

by
H

yb
ri

d
E

ns
em

bl
in

g
•

R
-P

ac
ka

ge
hy

br
id

E
ns

em
bl

e

18

CHAPTER 1

Factory is the resulting lower computational footprint. Currently all ensemble members are
used and weighted in the prediction phase. By excluding members with weight close to zero
Kernel Factory can be even less memory demanding and less computationally expensive in the
prediction phase. Zhou et al. (2002) demonstrate that this principle works quite well. Future
research could investigate the effectiveness and implication on generalization performance of
this technique in Kernel Factory.

Study 2. This study focuses on estimating predictive (ensemble) models and shows how
to interpret them using variable importance measures and Partial Dependence Plots. Future
research might consider adding an additional layer in the form of a prescriptive model. The
latter could be used to highlight the importance of interpretation tools in ensemble learning.
For example, consider the task of optimizing Facebook network size. The following steps
would be required: (1) estimate an ensemble model, (2) predict network size, (3) select the
most important variables, (4) find optimal values for these variables, and finally (5) use partial
dependence plots to verify their optimality. Step 3 and 5 would more clearly illustrate the value
and usability of the interpretation tools that can be used with ensemble algorithms.

A second direction for improving this study is to compare Partial Dependence Plots to the
inherent interpretation mechanism in other techiques such as coefficients in logistic regression
or simple decision trees. An especially interesting idea for future research is to compare Partial
Dependence Plots to rule extraction techniques for ensemble models (e.g., Al Iqbal, 2012).

Study 3. The focus of this study is on the ensemble generation phase. An interesting direc-
tion for future research is to assess the added value of algorithm-induced diversity over data-
induced diversity while evaluating more flexible combination rules. This study uses the sim-
plest and most widely used implementation of a weighted average, that is, when a nonnegative
weight is assigned to each member (Tumer and Ghosh, 1996; Verikas et al., 1999; Fumera and
Roli, 2005). This makes our method suitable for applications where the weights are intended
as probabilities that a classifier gives a correct answer or where the final linear combination is
intended to be interpreted as a probability estimate (Fumera and Roli, 2005). However Tumer
and Ghosh (1996) argued that this method might not be sufficiently more flexible than the sim-
ple average. In response more flexible implementations have been proposed such as using a set
of weights with no sign restrictions, using nonlinear weights, and even using different weights
per member and per class (Benediktsson et al., 1997; Ueda, 2000). Nevertheless, there are some
problems that result from the use of these flexible methods. It has been observed that weights
unrestricted in sign can sometimes be difficult to estimate (Breiman, 1996b). Restricting the
weights to be nonnegative has been suggested as a regularization method to avoid this problem
(Breiman, 1996b; LeBlanc and Tibshirani, 1996). Nonlinear weights have the disadvantage that
more parameters need to be estimated which can increase the required computational effort to
an infeasible level. Estimating a weight per member and per class also has a disadvantage in that
a greater quantity of validation data is required (Fumera and Roli, 2005). In sum, in this study
the most widely used implementation of the weighted average was used. Future research might

19

EXTENDED ABSTRACT

investigate whether the results hold when more flexible weighting methods are considered.
The second direction for future research is to extend the experiments to a larger number of

data sets and analyze their characteristics. This may provide insight into which data charac-
teristics dictate the use of which combination method. An especially interesting avenue is to
consider larger and more difficult data sets.

The third direction is to study the optimality of the number of candidate base classifiers. Al-
though this topic is briefly touched upon in this study, further research is needed to identify the
possible gains related to increasing the number of team members. If those gains are sufficiently
large, that may be a reason to increase the ensemble size. However, there are four reasons not to
increase the ensemble size. First, including more team members would increase learning times
and computational effort for both the base classifiers (Margineantu and Dietterich, 1997) and
the combination methods to an impractical level. Second, small ensembles have, in many cases,
near-optimal performance (Margineantu and Dietterich, 1997). Third, diversity has a strong ef-
fect in the ensemble performance when using less than ten classifiers (Kuncheva, 2004; Canuto
et al., 2007). Fourth, we included only the top performing ensembles found in extant litera-
ture, given that the purpose of this paper is to improve upon the industrially preferred Single
Best method. Future research may also consider to decrease the ensemble size and incorporate
some form of classifier selection in addition to the classifier fusion step. This would involve
evaluating ensembles of different sizes. However we do not expect this to yield significant
improvement since zero-weights are allowed in the fusion step.

The fourth and undeniably most important direction for future research is to make an ex-
tensive analysis of diversity. Ideally the diversity of each of the six sub-ensembles and their
combination (at the Hybrid Ensemble level) is compared using several measures of diversity.
Two main obstacles need to be overcome. Some algorithms such as Random Forest produce a
label per tree in the forest and per instance. At the ensemble level, Random Forest produces
a probability (we choose probabilities for all sub-ensembles because it contains more informa-
tion than labels). This means that two different diversity measures are required to compare
the amount of data-induced diversity at the sub-ensemble level and the amount of algorithm-
induced diversity at the meta-ensemble level. Because the outputs are incommensurate, either
the algorithm and software needs to be changed or a diversity measure needs to be found that is
completely unaffected by the nature of the outputs (i.e., labels or probabilities). As to the first
option, some of the sub-ensembles (e.g., Random Forest, Stochastic Boosting) are implemented
in packages (as is custom R). While the interface is in the R- language some parts of the code
are implemented in lower level languages such as Fortran or C++. This makes it challenging
to adapt the algorithm and code. As to the second option, to the best of our knowledge there
exists no such diversity measure. A somewhat less challenging task would be to fit the rela-
tionship between the amount of algorithm-induced diversity and meta-ensemble performance
across data sets. Given that all sub-ensembles produce probabilities the aforementioned prob-
lem is non-existent. However, in the light of extensive experimental evidence (see Ruta and

20

CHAPTER 1

Gabrys (2005) for an overview) showing a very low correlation between diversity measures and
ensemble performance, we do not expect this to be a fruitful undertaking.

A final avenue is to study the optimality of the members. In this study the goal was to
compare the Hybrid Ensemble’s performance with the Single Best. Hence the most popular and
powerful algorithms were employed as base classifiers. Future research might study whether
other, maybe less powerful members, can maybe result in higher meta-ensemble classification
performance. In this light it is also important to investigate the interaction between the degree
of diversity and weighting method. Fumera and Roli (2005) have shown that the performance
improvement achievable by the weighted average, over the simple average, actually decreases
when diversity is higher. Despite the limitation of that study that only unbiased estimation errors
are considered, which is likely to be violated in real cases (Fumera and Roli, 2005), and the fact
that only tests have been conducted with three base classifiers, this is an interesting finding to
investigate further. This would mean that weight estimation can be eliminated in those cases.
Although the current study focuses on the classifier generation phase and not on the classifier
combination phase, an in depth investigation of the interaction of those two phases may provide
valuable insights.

1.5 References

Al-Ani, M., Deriche, M., 2002. A new technique for combining multiple classifiers using the
dempster-shafer theory of evidence. Journal of Artificial Intelligence Research 17, 333–361.

Al Iqbal, M. R., 2012. Rule extraction from ensemble methods using aggregated decision trees.
Neural Information Processing. 19th International Conference (ICONIP 2012). Proceedings,
599–607.

Balcan, M.-F., Blum, A., Srebro, N., Aug. 2008. A theory of learning with similarity functions.
Machine Learning 72 (1-2), 89–112.

Balcan, M.-F., Blum, A., Vempala, S., Oct. 2006. Kernels as features: On kernels, margins, and
low-dimensional mappings. Machine Learning 65 (1), 79–94.

Bauer, E., Kohavi, R., Jul. 1999. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36 (1-2), 105–139.

Ben-Hur, A., Weston, J., 2010. A user’s guide to support vector machines. Methods in Molecu-
lar Biology. Department of Computer Science Colorado State University, pp. 223–239.

Benediktsson, J. A., Sveinsson, J. R., Ersoy, O. K., Swain, P. H., Jan. 1997. Parallel consensual
neural networks. IEEE Transactions on Neural Networks 8 (1), 54–64.

Berk, R. A., 2008. Statistical Learning from a Regression Perspective. Springer Series in Statis-
tics. Springer.

21

EXTENDED ABSTRACT

Boser, B. E., Guyon, I. M., Vapnik, V. N., 1992. A training algorithm for optimal margin clas-
sifiers. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory,
144–52.

Breiman, L., Aug. 1996a. Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L., Jul. 1996b. Stacked regressions. Machine Learning 24 (1), 49–64.

Breiman, L., Oct. 2001. Random forests. Machine Learning 45 (1), 5–32.

Bryll, R., Gutierrez-Osuna, R., Quek, F., Jun. 2003. Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern Recognition 36 (6), 1291–1302.

Canuto, A. M. P., Abreu, M. C. C., Oliveira, L. d. M., Xavier, J. C., Santos, A. d. M., Mar.
2007. Investigating the influence of the choice of the ensemble members in accuracy and
diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition
Letters 28 (4), 472–486.

Cao, J., Fan, G., 2010. Signal classification using random forest with kernels. Proceedings Sixth
Advanced International Conference on Telecommunications (AICT 2010), 191–5.

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Nov. 2007. Random forests
for classification in ecology. Ecology 88 (11), 2783–2792.

De Bock, K. W., Van den Poel, D., Jun. 2012. Reconciling performance and interpretability
in customer churn prediction using ensemble learning based on generalized additive models.
Expert Systems with Applications 39 (8), 6816–6826.

Dietterich, T. G., 2000. Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.),
Multiple Classifier Systems. Vol. 1857. pp. 1–15.

Domingos, P., Oct. 2012. A few useful things to know about machine learning. Communications
of the Acm 55 (10), 78–87.

Duin, R. P. W., 2002. The combining classifier: to train or not to train? In: Kasturi, R., Lau-
rendeau, D., Suen, C. (Eds.), 16th International Conference on Pattern Recognition, Vol Ii,
Proceedings. IEEE Computer Soc, Los Alamitos, pp. 765–770.

Fan, G., 2009. Kernel-induced classification tree and random forest. Technical report, Dept. of
Statistics and Actuarial Science, University of Waterloo.

Fan, G., 2011. personal communication.

Fan, G., Wang, Z., Kim, S. B., Temiyasathit, C., 2010. Classification of high-resolution NMR
spectra based on complex wavelet domain feature selection and kernel-induced random for-
est. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (Eds.), Image
and Signal Processing, Proceedings. Vol. 6134. Springer-Verlag Berlin, Berlin, pp. 593–600.

22

CHAPTER 1

Freund, Y., Sep. 1995. Boosting a weak learning algorithm by majority. Information and Com-
putation 121 (2), 256–285.

Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm. In: Machine Learn-
ing. Proceedings of the Thirteenth International Conference (ICML ’96). Bari, Italy, pp. 148–
156.

Friedman, J. H., Oct. 2001. Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (5), 1189–1232.

Friedman, J. H., Meulman, J. J., May 2003. Multiple additive regression trees with application
in epidemiology. Statistics in Medicine 22 (9), 1365–1381.

Fumera, G., Roli, F., Jun. 2005. A theoretical and experimental analysis of linear combiners for
multiple classifier systems. Ieee Transactions on Pattern Analysis and Machine Intelligence
27 (6), 942–956.

Gareth, J., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning
with application in R. Springer Texts in Statistics. Springer.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning - Data Min-
ing, Inference, and Prediction, second edition Edition. Springer Series in Statistics. Springer.

Ho, T. K., Aug. 1998. The random subspace method for constructing decision forests. Ieee
Transactions on Pattern Analysis and Machine Intelligence 20 (8), 832–844.

Ho, T. K., 2002. Multiple classifier combination: Lessons and next steps. In: Bunke, H., Kandel,
A. (Eds.), Hybrid Methods in Pattern Recognition. Vol. 47 of Series in Machine Perception
and Artificial Intelligence. World Scientific Publishing, pp. 146–198.

Jäkel, F., Schölkopf, B., Wichmann, F. A., Dec. 2007. A tutorial on kernel methods for catego-
rization. Journal of Mathematical Psychology 51 (6), 343–358.

Kim, Y., 2006. Toward a successful CRM: variable selection, sampling, and ensemble. Decision
Support Systems 41 (2), 542–553.

King, R., Feng, C., Sutherland, A., 1995. Statlog - comparison of classification algorithms on
large real-world problems. Applied Artificial Intelligence 9 (3), 289–333.

Kuncheva, L., 2004. Combining Pattern Classifiers. Methods and Algorithms. Wiley.

LeBlanc, M., Tibshirani, R., Dec. 1996. Combining estimates in regression and classification.
Journal of the American Statistical Association 91 (436), 1641–1650.

Liaw, A., 2014. personal communication.

23

EXTENDED ABSTRACT

Margineantu, D. D., Dietterich, T. G., 1997. Pruning adaptive boosting. In: Proc. 14th Int’l
Conf. Machine Learning. pp. 211–218.

Masand, B., Datta, P., Mani, D. R., Li, B., Jun. 1999. CHAMP: a prototype for automated
cellular churn prediction. Data Mining and Knowledge Discovery 3 (2), 219–225.

Neslin, S. A., Gupta, S., Kamakura, W., Junxiang Lu, Mason, C. H., May 2006. Defection
detection: Measuring and understanding the predictive accuracy of customer churn models.
Journal of Marketing Research (JMR) 43 (2), 204–211.

Noble, W. S., Dec. 2006. What is a support vector machine? Nature Biotechnology 24 (12),
1565–1567.

Opitz, D. W., Shavlik, J. W., 1996. Generating accurate and diverse members of a neural-
network ensemble. In: Touretzky, D. S., Mozer, M. C., Hasselmo, M. E. (Eds.), Advances in
Neural Information Processing Systems 8: Proceedings of the 1995 Conference. Vol. 8. M I
T Press, Cambridge, pp. 535–541.

Parikh, D., Polikar, R., Apr. 2007. An ensemble-based incremental learning approach to data
fusion. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 37 (2), 437–
450.

Qi, J., Zhang, L., Liu, Y., Li, L., Zhou, Y., Shen, Y., Liang, L., Li, H., Apr. 2009. ADTreesLogit
model for customer churn prediction. Annals of Operations Research 168 (1), 247–265.

Ripley, B., 1993. Statistical aspects of neural networks. In: Barndorff-Nielsen, O., Jensen, J.,
Kendall, W. (Eds.), Networks and Chaos - Statistical and Probabilistic Aspects. Monographs
on Statistics and Applied Probability 50. Chapman & Hall, London, pp. 40–123.

Roli, F., Fumera, G., Kittler, J., 2002. Fixed and trained combiners for fusion of imbalanced
pattern classifiers. Int Soc Information Fusion, Sunnyvale.

Roli, F., Giacinto, G., 2002. Design of multiple classifier systems. In: Bunke, H., Kandel, A.
(Eds.), Hybrid Methods in Pattern Recognition. Vol. 47 of Series in Machine Perception and
Artificial Intelligence. World Scientific Publishing, pp. 199–226.

Ruta, D., Gabrys, B., Mar. 2005. Classifier selection for majority voting. Information Fusion
6 (1), 63–81.

Schapire, R., Jun. 1990. The strength of weak learnability. Machine Learning 5 (2), 197–227.

Schölkopf, B., Smola, A., 2002. Learning with Kernels, Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge, MA.

Sharkey, A. J. C., Sharkey, N. E., Sep. 1997. Combining diverse neural nets. Knowledge Engi-
neering Review 12 (3), 231–247.

24

CHAPTER 1

Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, Cambridge, UK.

Tsoumakas, G., Angelis, L., Vlahavas, I., 2005. Selective fusion of heterogeneous classifiers.
Intelligent Data Analysis 9 (6), 511–525.

Tumer, K., Ghosh, J., Feb. 1996. Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition 29 (2), 341–348.

Ueda, N., Feb. 2000. Optimal linear combination of neural networks for improving classification
performance. Ieee Transactions on Pattern Analysis and Machine Intelligence 22 (2), 207–
215.

Üstün, B., Melssen, W. J., Buydens, L. M. C., Mar. 2006. Facilitating the application of support
vector regression by using a universal pearson VII function based kernel. Chemometrics and
Intelligent Laboratory Systems 81 (1), 29–40.

Valentini, G., Muselli, M., Ruffino, F., 2003. Bagged ensembles of support vector machines
for gene expression data analysis. In: Proceedings of the International Joint Conference on
Neural Networks 2003, Vols 1-4. Ieee, New York, pp. 1844–1849.

Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A., Apr. 1999. Soft
combination of neural classifiers: A comparative study. Pattern Recognition Letters 20 (4),
429–444.

Vert, J.-P., Tsuda, K., Schölkopf, B., 2004. A primer on kernel methods. In: Schölkopf, B.,
Tsuda, K., Vert, J.-P. (Eds.), Kernel Methods in Computational Biology. Computational
Molecular Biology. MIT Press, pp. 35–70.

Windeatt, T., Mar. 2005. Diversity measures for multiple classifier system analysis and design.
Information Fusion 6 (1), 21–36.

Wolpert, D. H., Oct. 1996. The lack of a priori distinctions between learning algorithms. Neural
Computation 8 (7), 1341–1390.

Xu, L., Krzyzak, A., Suen, C., Jun. 1992. Methods of combining multiple classifiers and their
applications to handwriting recognition. Ieee Transactions on Systems Man and Cybernetics
22 (3), 418–435.

Zhang, R., Wang, W., Oct. 2011. Facilitating the applications of support vector machine by
using a new kernel. Expert Systems with Applications 38 (11), 14225–14230.

Zhou, Z.-H., 2012. Ensemble Methods: Foundations and Algorithms. Machine Learning &
Pattern Recognition Series. Chapman & Hall/CRC, Boca Raton FL.

25

Zhou, Z. H., Wu, J. X., Tang, W., May 2002. Ensembling neural networks: Many could be
better than all. Artificial Intelligence 137 (1-2), 239–263.

2
Kernel Factory:

An Ensemble of Kernel Machines

Ballings, M, Van den Poel D. 2013. Kernel Factory: An ensemble of kernel machines. Expert

Systems with Applications, 40(8), 2904-2913.

2.1 Abstract

We propose an ensemble method for kernel machines. The training data are randomly split
into a number of mutually exclusive partitions defined by a row and column parameter. Each
partition forms an input space and is transformed by a kernel function into a kernel matrix K.
Subsequently, each K is used as training data for a binary base classifier (Random Forest). This
results in a number of predictions equal to the number of partitions. A weighted average com-
bines the predictions into one final prediction. To optimize the weights, a genetic algorithm is
used. This approach has the advantage of simultaneously promoting (1) diversity, (2) accuracy,
and (3) computational speed. (1) Diversity is fostered because the individual Ks are based on
a subset of features and observations, (2) accuracy is sought by using strong base classifiers as
opposed to stumps, and (3) computational speed is obtained because the computation of each
K can be parallelized. Using five times two-fold cross- validation we find that Kernel Factory
has significantly better performance than Kernel-Induced Random Forest. When the right ker-
nel is specified Kernel Factory is also significantly better than Random Forest. In addition, we
submitted an open-source R-software package of the algorithm (kernelFactory) to CRAN.

27

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

2.2 Introduction

In the last decade, kernel- based methods have become very popular for classification, regres-
sion and pattern recognition (Üstün et al., 2006). It has been shown that classifiers can be
improved by mapping input space X into feature space F (Jäkel et al., 2007). However, this
mapping can increase the number of dimensions substantially to the point that analysis becomes
problematic. Kernel methods are attractive in that they can create the aforementioned mapping
and temper the dimensionality explosion problem by increasing the number of dimensions only
linearly with the size of the original data (Shawe-Taylor and Cristianini, 2004).

Despite this beneficial property of kernel methods, data can grow very large. Hence, re-
searchers have to resort to machine learning techniques that can handle a large number of pre-
dictors, such as Random Forest. In that context, it is only recently that Kernel- Induced Random
Forest (KIRF) has been introduced (Fan, 2009). The advantage of KIRF over support vector
machines (SVM) is that the former can handle remaining non-linearities in F . Nevertheless,
data can grow so large that classifier accuracy suffers due to the lower probability of selecting
informative features. It can even grow unwieldy making analysis infeasible.

In an attempt to alleviate these computational efficiency problems, we propose an ensemble
of kernel machines: Kernel Factory. In addition, Kernel Factory has the advantages of increased
computational speed and ensemble member diversity. The remainder of this article is organized
as follows. Section 2 reviews Random Forest, the kernel trick, and KIRF. Section 3 describes
the proposed method Kernel Factory in detail. In Section 4 we present the methodology and
results of an empirical study in which we benchmark Kernel Factory against Random Forest
and KIRF. Section 5 provides the discussion and conclusion of the results. Finally, Section 6
offers limitations and avenues for future research.

2.3 Kernels and Random Forest

In this section we first elaborate on Random Forest. Second, we discuss the attractiveness of
kernels. Third, we discuss the combination of both: Kernel-Induced Random Forests.

2.3.1 Random Forest

Binary recursive partitioning (BRP) is a method that grows decision trees, also referred to as
classification and regression trees (CART) (Breiman et al., 1984). The BRP algorithm starts
by predicting a criterion variable by creating a binary partitioning of the data based on one
predictor. The algorithm proceeds recursively by, within a parent partition, creating two child-
partitions of the data. This partioning is based on another predictor or another split value of the
same predictor variable that was used to create the parent partition (Merkle and Shaffer, 2011).
At each partitioning step, the predictor that produces the purest division of data is selected and

28

CHAPTER 2

the algorithm stops when, for example, a minimum partition size, a specific impurity or an
amount of partitions is reached.

BRP is also used in Random Forest (Breiman, 2001). Instead of growing one tree, Random
Forest grows, and averages over, an ensemble of trees. Each tree is grown using an independent
bootstrap sample for which at each partitioning step of a tree a subset of variables is randomly
selected as splitting candidates (Breiman, 2001).

Literature shows that Random Forest is one of the best-performing classification techniques
available (Luo et al., 2004). Moreover, it is very robust and consistent and does not overfit
(Breiman, 2001). Furthermore, the algorithm has reasonable computing times (Buckinx and
Van den Poel, 2005) and the procedure is easy to implement: only two parameters are to be
set (number of trees and number of predictors) (Larivière and Van den Poel, 2005; Duda et al.,
2001).

2.3.2 Kernels and the kernel trick

Consider the binary classification problem in the left pane of Figure 2.1(adapted from Schölkopf
and Smola (2002)). A binary recursive partitioning tree would partition the data in two by using
x1 >= 3 as split rule in the root node and x1 <= 3 in the child node. As such, to obtain a
perfect classification the variable x1 needs to be selected twice (x2 has no discriminatory power
in this case).

By applying feature map φ that transforms the input space (x1, x2), by taking all second-
degree unordered monomials, a dimension can be found that reduces the tree size (see right
pane of Figure 2.1; note that actually z3 =

√
2x1x2 and not x1x2 but this will create a similar

plot with the same decision boundary):

φ : R2 → R3

φ(x1, x2) = (z1, z2, z3) = (x21, x
2
2, x1x2) (2.1)

In feature space, a binary recursive partitioning tree would partition the data by only one
split, as opposed to two splits in input space, using z1 >= 8 as the split rule. Because of
this reduction in tree size, the performance of Random Forest can be improved. In Random
Forests, out of a the total set of predictor variables, at each node a subset of candidate variables
is selected at random and the candidate that produces the best split is used to split the node
(Breiman, 2001). Hence, because the probability is lower that the variable is selected twice as
a candidate split variable, as opposed to once, the individual trees are bound to be stronger in
feature space, as such decreasing the forest error rate (Breiman, 2001).

While working in feature space has its advantages, it clearly has its disadvantages as well.
Although the classification performance is improved thanks to elimination of the need to select
the variable in our example more than once, there are now more predictors, decreasing the

29

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Input space X Feature space F
The feature map φ transforms the input space (x1, x2), by taking all second-degree unordered monomials, to the

feature space (z1, z2, z3) where only one binary split rule is required to obtain the same result.

Figure 2.1: Input space X and Feature space F

probability of selection for the candidate set (it has to be noted that the size of the subset is
dependent on the size of the total set).

Consider Equation 2.2 (Schölkopf and Smola, 2002) that shows that the dimensionality n in
feature space can easily explode given monomials of degree d, making analysis prohibitive.

nF =

(
d+ nX − 1

d

)
=

(d+ nX − 1)!

d!(nX − 1)!
(2.2)

where X denotes input space and F feature space
In our example d = 2 and nX = 2 which results in nF = 3. For d = 2 and nX = 150

dimensionality nF amounts to 11,325. If in the latter case the degree increases by one (d = 3)
then nF = 573, 800. Calculating the inner product offers a solution by limiting the feature
explosion so that the complexity of a classifier increases only linearly with the size of the input
data. For two instances xi and xj (i,j=1,2,3,. . . ,N) defined by two variables (x1, x2) (Jäkel et al.,
2007):

〈φ(xi1, xi2), φ(xj1, xj2)〉 = 〈(x2i1, x2i2,
√

2xi1xi2)(x
2
j1, x

2
j2,
√

2xj1xj2)〉

= x2i1x
2
j1 + x2i2x

2
j2 + 2xi1xj1xi2xj2

= (xi1xj1 + xi2xj2)
2

= 〈(xi1, xi2), (xj1, xj2)〉2 (2.3)

The result in Equation 2.3 shows that the inner product in F equals the inner product to the
power of d in X . This is attractive because whereas the computational effort in F scales with
the number of dimensions (see Equation 2.2), in X it scales with the number of instances (Jäkel

30

CHAPTER 2

et al., 2007). In the case of a monomial feature map φ, it is not required to map the observations
xi and xj to feature space to compute the inner product: it is sufficient to calculate the inner
product in the input space and take it to the power of d (Jäkel et al., 2007). The combination of
an inner product and φ defines a kernel (Equation 2.4), short for kernel function, k(xi, xj). The
fact that kernels enable us to obtain the same superior classification performance as in feature
space, for a much lower computational cost in input space, is called the kernel trick.

k(xi, xj) = 〈φ(xi), φ(xj)〉 (2.4)

The example above uses a polynomial kernel. The polynomial kernel including tuning pa-
rameters and two other widely used kernels are displayed in Table 2.1 (Shawe-Taylor and Cris-
tianini, 2004; Park et al., 2012). The choice of the kernel function is largely dependent upon the
data and can generally be determined by cross-validation (Fan, 2009).

Table 2.1: Some examples of kernels

Linear kernel k(xi, xj) = 〈xi, xj〉
Gaussian kernel k(xi, xj) = exp(−‖xi−xj‖

2

2σ
)

Polynomial kernel k(xi, xj) = (γ〈xi, xj〉+ r)d

d,r ∈ N, γ ∈ R+

In the next section we discuss a combination of kernels and Random Forest: Kernel-Induced
Random Forest (Fan, 2009).

2.3.3 Kernel-Induced Random Forest

Kernel-Induced Random Forest (KIRF) (Fan, 2009) differs from Random Forest in that, during
the training phase, the former selects a random subgroup of observations and uses their kernel
functions as splitting candidates, while the latter selects a random subgroup of variables as
splitting candidates (Fan, 2009).

During the scoring phase, each splitting observation xi (i=1,2,3,. . . ,N) can be used with all
observations that need to be scored xk (k=1,2,3,. . . ,M) in a kernel function k(xi, .) resulting in
what can be conceived of as a novel feature ki(xk) = k(xi, xk). For N splitting observations,
there will be N such novel, kernel-induced features, ki(.), i=1,2,3,. . . ,N (Fan, 2009). These
novel, kernel-induced, features can then be employed by a binary recursive space partitioning
tree in order to get pure divisions of the criterion variable in the terminal node.

Although KIRF has been shown to have excellent performance (Fan, 2009), the algorithm
has the disadvantage that although the size of the kernel matrix K scales only linearly with the
number of observations in the original data, K can quickly grow too large for Random Forest
and subsequently KIRF. Kernel Factory alleviates this problem by randomly splitting the train-
ing data into a number of mutually exclusive partitions. This approach reduces the probability

31

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

of surpassing limitations of software packages by several orders of magnitude (e.g., for R the
maximum size of an object is 231 − 1 elements (R Core Team, 2012) and increases computa-
tional speed by several orders of magnitude (because kernel matrices can now be computed in
parallel more easily).

2.4 Kernel Factory

The training phase (see Algorithm 1) starts by partitioning the data into mutually exclusive
row and column partitions followed by scaling. Each partition forms an input space and is
transformed by a kernel function into a kernel matrix K (categorical features are not used in the
computation of K but are added afterwards). Subsequently, each K is used as training data for
a binary base classifier (Random Forest).

The kernel function (polynomial, linear, or radial basis) can be (1) user specified, (2) ran-
domly chosen per partition, or (3) determined by sequentially applying all kernels to the first
partition, assessing predictive performance on a hold- out validation set, and selecting the best
performing kernel.

This process results in a number of predictions equal to the number of partitions. We use a
weighted average to combine the predictions into one final prediction in which the weights are
optimized using a genetic algorithm (GA) (see Algorithm 2). For the fitness score we employ
the predictive performance (area under the receiver operating characteristic curve) on a hold
out sample. In extant literature, several studies have used a GA to weight the predictions of
ensemble members before combination. To the best of our knowledge Yao and Liu (1998) were
the first to use a GA in this context (for a neural network ensemble). Later, Zhou et al. (2002)
showed that using the evolved weights to make up the neural network ensemble yields superior
performance to normal averaging (see also Kim et al., 2002). Finally, Sylvester and Chawla
(2005) use a GA to combine trees. All studies point to the beneficial effects of GAs in ensemble
formation on predictive performance.

The prediction phase (see Algorithm 3) starts by constructing the same column partitions
and applying scaling as in the training set. Next, the features from the training set are used to
compute the Ks. Finally, the weighted average of all predictions is computed using the weights
obtained from the genetic algorithm.

2.5 Empirical study

2.5.1 Data

Our experiments use 11 data sets from the UCI repository and 3 synthetic data sets. The first
11 data sets were selected because we have used them in past research, because the dependent
variable is binary and because they contain continuous predictor variables (required for kernels).

32

CHAPTER 2

Input:
• cp=Number of column partitions
• rp=Number of row partitions
• Method= polynomial kernel function (pol), linear kernel function (lin), radial basis ker-

nel function (rbf), random choice (ran={pol, lin, rbf}), burn- in choice of best function
(burn={pol, lin, rbf})
• Input space X = (x1, . . . , xn) with class labels (Y ={0,1}) where n is the number of features

and let N be the number of objects

Randomize order of rows and columns of X
Divide X : 80% of r into Xtraining and 20% of r into Xvalidation
Scale both Xtraining and Xvalidation: for every feature Xp

range(Xp,training)

For Xtraining: create rp times cp partitions of equal size (ptraining)
For Xvalidation: create cp partitions of equal size (pvalidation)
for every partition ptraining do

• Apply method:
◦ Let

� lin=〈xi, xj〉
� rbf=exp(−‖xi−xj‖

2

2

� pol=〈xi, xj〉2
◦ If method==lin then select lin
Else if method==pol then select pol
Else if method==rbf then select rbf
Else if method==ran then randomly select one of {pol, lin, rbf}
Else if method==burn then

� If ptraining ==1: for every method in {pol, lin, rbf} do
• Compute kernel matrix Ktraining on numeric features
• Augment Ktraining with raw features
• Build classifier h on Ktraining

• Compute Kvalidation, populated by elements where, for the kernel func-
tion, observations xi come from pvalidation (with same numeric features as in
ptraining ==1) and xj come from numeric features of ptraining ==1
• Augment Kvalidation with the raw features from pvalidation
• Deploy h : Ŷprob = h(Kvalidation)
• Compute AUC
end

� Select one of {pol, lin, rbf} which yielded max AUC
• Compute kernel matrix Ktraining on numeric features
• Augment Ktraining with raw features
• Build classifier h on Ktraining

• Compute Kvalidation, populated by elements where, for the kernel function, observa-
tions xi come from pvalidation (with same numeric features as in current ptraining) and xj
come from numeric features of current ptraining
• Augment Kvalidation with the raw features from pvalidation
• Deploy h : Ŷprob = h(Kvalidation)

end

algorithm 1: Pseudo code for part 1 of the estimation phase of Kernel Factory

33

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Optimize classifier weights for weighted averaging of predicted probabilities with genetic algo-
rithm on validation space
• Choose initial population of sets of weights
• Repeat 100 times
◦ For each set of weights ω = (w1, . . . , wL) compute weighted average for a given
object xi having a set of Ŷprob,i = (Ŷi,1, . . . , Ŷi,L) , with L = (1, . . . , rp times cp) the
number of classifiers (= number of weights):

gi(Ŷprob) =
L∑
l=1

wl(Ŷprob,i,l)

◦ Evaluate fitness (AUC)
◦ Select best-fit set of weights
◦ Apply crossover operator
◦ Apply mutation operator

• Choose set of optimal weights (weights with best fit; highest AUC): ω = (w1, . . . , wL)
with L = rp times cp

algorithm 2: Pseudo code for part 2 of the estimation phase of Kernel Factory

Input:
• Input space Xnew = (x1, . . . , xn) where n is the number of features and let N be the number

of objects

Apply order of rows and columns of Xtraining to Xnew
Scale Xnew: for every feature Xp

range(Xp,training)

For Xnew: create cp partitions (pnew) of equal size
for every classifier h do

• Compute Knew on numeric features populated by elements where, for the kernel func-
tion, observations xi come from pnew (with same numeric features as in current ptraining)
and xj come from numeric features of current ptraining
• Augment the kernel matrix with the raw features from pnew
• Deploy h: Ŷprob = h(Knew)

end
Compute weighted average using optimal weights: for a given object xi having a set of Ŷprob,i =

(Ŷi,1, . . . , Ŷi,L), with L = (1, . . . , rp times cp) the number of classifiers (= number of weights),
use optimal ω:

gi(Ŷprob) =
L∑
l=1

wl(Ŷprob,i,l)

gi is the confidence that object xi has Y = 1

algorithm 3: Pseudo code for the prediction phase of Kernel Factory

34

CHAPTER 2

Moreover, most of them are used in Breiman’s Random Forest paper (Breiman, 2001). The 3
synthetic data sets are constructed using the R package mlbench (Leisch and Dimitriadou,
2012) and are chosen because KIRF improves upon Random Forest (Fan, 2009) on these data
sets. The underlying reason is that, in these specific data sets, the radial basis function (RBF)
helps Random Forest to classify the Gaussian distribution present in these data sets. It is well
documented that using kernel functions only has a positive effect on predictive performance
if the right kernel function is used and even has a harmful effect if the wrong one is used.
Hence, KIRF should only be used with the right kernel and only if this improves upon Random
Forest. Therefore, it makes little sense to compare Random Forest and KIRF blindly (without
testing different kernels) on different data sets and make generalizations about which algorithm
is best (Fan, 2009). Random Forest and KIRF (with different kernels) should always be tested
together and the best algorithm should be selected. Hence, to give KIRF an honest chance
in a comparison with the other algorithms, we use these synthetic data sets because we know
they have Gaussian distributions and that a RBF kernel will add positively to the predictive
performance.

In general, we expect that Kernel Factory will improve on KIRF because of the internal
kernel selection procedure (in case of method=burn or random). In either case, Kernel Factory
will not require manually testing multiple kernels.

Table 2.2 gives a brief summary of the data sets. N is the number of observations, n is the
number of predictor variables

Table 2.2: Properties of the data sets used in the empirical study

Data N n, continuous n categorical
Heart (Cleveland) 303 5 8
Hepatitis 155 6 13
Ionosphere 351 32 1
Pima (Diabetes) 768 8 0
Credit 690 6 9
Sonar 208 59 0
Wdbc (Cancer) 569 30 0
HeartHun (Hungary) 294 5 7
GermanCredit 1000 7 13
AustralianCredit 690 6 8
HorseColic 368 9 13
Ringnorm 1000 10 0
Peak 1000 6 0
Circle 1000 20 0

The last three data sets are the synthetic ones. The criterion variable was initially continuous
in the Peak data set and is transformed to a binary variable by assigning a 1 if the value is greater
than the mean and 0 otherwise.

35

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

2.5.2 Implementations of Algorithms

Random Forest requires two parameters to be set: the number of trees and the number of vari-
ables to try at each split. We follow Breiman’s recommendation (Breiman, 2001) to use a large
number of trees (1000) and the square root of the total number of variables as the number of
predictors.

For KIRF we used the same settings as for Random Forest. For the Gaussian radial basis
function we set the Gaussian kernel parameter σ equal to 1 because a decision tree is invariant
to monotonic transformations of data (Fan, 2009). For the polynomial kernel function we used
a degree of 2, a scale of 1 and an offset of 0. The categorical predictor variables are not involved
in the computation of kernels but are kept as extra attributes during tree construction.

In using Kernel Factory, two parameters to set are the number of row and column partitions.
Because the algorithm is designed to overcome practical limitations of computational resources,
we chose parameter values aimed at accommodating the server we used for our experiments.
We used int(log10(N + 1)) for the number of row partitions and both ceil(log5(n + 1)) and 1
for the number of column partitions. We also wanted to test with one column partition because
column partitions are rather meant to introduce extra diversity in the ensemble members while
it are the row partitions have a much bigger impact on the speed of the algorithm due to their
direct impact on the size of theKs. Setting the number of column partitions to 1 and comparing
it to ceil(log5(n + 1)) allows us to understand the impact of that process. The base algorithm
was Random Forest, using the same settings as above. The kernel parameter settings are also
identical to the ones we used in KIRF. We employed a population size of 100, 200 iterations
and a mutation chance of 0.01 for the Genetic Algorithm.

We have submitted an open-source R-software package of the algorithm (kernelFactory)
to CRAN (Ballings and Van den Poel, 2013). Packages that are used by Kernel Factory, KIRF
and Random Forest are kernlab (Karatzoglou et al., 2004), randomForest (Liaw and Wiener,
2002), genalg (Willighagen, 2012), and ROCR (Sing et al., 2009).

2.5.3 Model Performance Evaluation

To evaluate the performance of a model we use accuracy or percentage correctly classified
(PCC) and, the area under the receiver operating characteristic curve (AUC or AUROC). PCC
is defined as follows:

PCC =
TP + TN

P +N
(2.5)

with TP: True Positives, TN: True Negatives, P: Positives (event), N: Negatives (non-event)
An important disadvantage of PCC is that it is sensitive to the chosen cut-off value of the

posterior probabilities (Baecke and Van den Poel, 2012; Thorleuchter and Van den Poel, 2012)
that decides when an object is predicted to be of class zero or one. While accuracy is the

36

CHAPTER 2

performance of a model at only one cut-off value AUC is the performance of a model across all
threshold values. Several authors (Provost et al., 1998; Langley, 2000; Coussement and Van den
Poel, 2008) argue AUC to be an objective criterion for classifier performance. As such AUC is
a more adequate performance measure than PCC (Baecke and Van den Poel, 2011).

More formally, the receiver operating characteristic (ROC) curve is obtained from plotting
sensitivity and 1-specificity considering all possible cut-off values (Hanley and Mcneil, 1982).
AUC ranges from .5, if the predictions are not better than random, to 1, if the model predicts
the event perfectly (Baecke and Van den Poel, 2011). AUC is defined as follows:

AUC =

∫ 1

0

TP

(TP + FN)
d

FP

(FP + TN)
(2.6)

,with TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Negatives, P:
Positives (event), N: Negatives (non-event)

Reported performance measures are all medians over five times two-fold cross- validation
(5x2cv) (Dietterich, 1998; Alpaydin, 1999). This cross- validation procedure randomly divides
the sample in two equal parts and repeats this process five times. Each part is used both as a
training and validation part. This results in ten performance measures per model (Dietterich,
1998). The same splits are used for all algorithms. We also report the inter quartile range as a
measure of dispersion.

In order to determine whether models are significantly different in terms of AUC or PCC, we
follow Demsar’s recommendation (Demsar, 2006) to use the nonparametric Friedman test with
Nemenyi’s post-hoc test (Nemenyi, 1963) for comparisons of the algorithms. In this context we
report the algorithms’ average ranks per data set. Algorithms are ranked, per fold separately,
with the best algorithm receiving rank 1, the second receiving rank of 2, an so forth. It is
important to note that this approach incorporates the relatedness of the folds (algorithm ranks
are computed per fold and then the average rank is computed per data set). The folds are not
treated as independent as is the case when computing the median. In other words, when ranks
are computed the order of the folds is preserved and comparisons are made per fold, whereas
when the median is computed the order of the folds is not preserved because they are sorted by
predictive performance and the middle one is selected. Hence, computing ranks in this fashion
allows stricter comparison than computing the median.

We opted for testing on the folds per data set, as opposed to testing the median across
the data sets, because the data sets’ predictive performances are not commensurate. Hence,
controlling for the family-wise error, the probability of at least one false positive in any of
the comparisons, is debatable because the costs of these false positives differs across data sets
(also see Webb, 2000): the data sets are not a family. Moreover, there are no tests available for
multiple data sets that can consider the folds for each data set (Demsar, 2006). More concretely,
although we will compare KIRF and Kernel Factory on all data sets it makes no sense to blindly
compare Random Forest with KIRF and Kernel Factory on all data sets. As aforementioned, the

37

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

choice of the kernel depends on the data and can be determined by cross-validation (Fan, 2009).
Hence, it is obvious that KIRF nor Kernel Factory will be used if they perform considerably
worse than Random Forest due to the wrong kernel choice. In sum, because we want to make
declarations per data set, and not merely per algorithm, we opted to test on the folds.

2.5.4 Results

Table 2.3 and Table 2.5 show the median PCC and AUC respectively of the 10 cross-validation
folds. In all tables and the rest of this text, KF stands for Kernel Factory, KIRF stands for Kernel-
Induced Random Forest, RF stands for Random Forest and cp1 stands for column partitions
equal to one. If cp1 is not specified along RF it means that ceil(log5(n+1)) is used to determine
the number of column partitions. Table 2.4 and 2.6 contain the inter quartile ranges for PCC
and AUC respectively. Table 2.7 (PCC) and Table 2.9 (AUC) report the average ranks (lower
is better) and Table 2.8 (PCC) and Table 2.10 (AUC) report selected differences of the average
rankings. As mentioned in the model performance evaluation section, taking the median of the
folds does not respect that performances are related per fold, whereas taking the Friedman test
does (Demsar, 2006). This is also the reason why results can sometimes deviate to a limited
extent. It has to be noted that using the rank as opposed to the median can be considered a
stricter comparison of predictive performance.

The performance of two classifiers differs significantly if their average ranks differ (see
Table 2.8 and 2.10) by at least the critical difference of 6.2748 (which is the critical difference
for a p-value of 0.05, 14 classifiers and 10 folds) (see Demsar (2006) for the formula). The
significant differences in Table 2.8 and Table 2.10 are put in bold.

Comparing (1) KFrbf and KFrbfcp1, (2) KFpol and KFpolcp1, (3) KFlin and KFlincp1,
(4) KFran in KFrancp1, and (5) KFburn and KFburncp1 in both Table 2.3 and Table 2.5 we
observe that increasing the number of column partitions, as such introducing more diversity,
does not have a consistent effect across the data sets. Even more so, on the data sets that
we created with a Gaussian distribution (the bottom three data sets in Table 2.3), setting the
number of column partitions to 1 has a beneficial effect for the KFs with a radial basis function
(KFrbfcp1, KFrancp1, KFburncp1). Most of these benefits are also significant (see column
KFrbf-KFrbfcp1, KFran-KFrancp1, KFburn-KFburncp1 in Table 2.8 and Table 2.10). Note
that method ran will have a probability of one third to select RBF per partition and method
burn will select the best performing kernel function on the first partition and use that kernel for
all partitions. In this case, for the last three data sets, it was always the radial basis function
that has been selected by KFburncp1. In Table 2.3, there are very low PCCs for KFpol, KFlin,
KFran, and KFburn for the German Credit data set. In Table 2.5 the same can be observed for
KFpolcp1 and KFlincp1 for the Circle data set. Moreover Table 2.4 and Table 2.6 also show a
high inter quartile range (IQR) for these algorithms on these data sets. These are strong signs
of overfitting and is likely to be caused by the high dimensionality of the Ks.

38

CHAPTER 2

Ta
bl

e
2.

3:
Th

e
m

ed
ia

n
of

th
e

10
fo

ld
s

fo
r

P
C

C

PC
C

M
e-

di
an

K
F

rb
f

K
F

rb
f

cp
1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

H
ea

0.
75

91
0.

72
28

0.
67

55
0.

72
85

0.
74

92
0.

64
57

0.
73

18
0.

71
85

0.
66

01
0.

72
52

0.
73

60
0.

74
26

0.
73

93
0.

82
12

H
ep

0.
81

29
0.

81
94

0.
81

41
0.

80
64

0.
82

59
0.

82
58

0.
81

29
0.

80
00

0.
81

93
0.

81
93

0.
81

29
0.

78
21

0.
81

29
0.

84
42

Io
n

0.
90

03
0.

90
60

0.
92

59
0.

88
07

0.
91

45
0.

93
71

0.
88

89
0.

90
88

0.
92

88
0.

90
59

0.
92

05
0.

88
92

0.
90

62
0.

93
45

Pi
m

0.
71

74
0.

73
96

0.
74

35
0.

71
35

0.
74

48
0.

73
57

0.
71

09
0.

73
70

0.
73

44
0.

72
92

0.
73

44
0.

72
92

0.
73

83
0.

75
65

C
re

0.
79

13
0.

81
74

0.
73

77
0.

79
57

0.
81

30
0.

70
00

0.
82

17
0.

80
14

0.
70

14
0.

78
70

0.
79

57
0.

80
58

0.
79

71
0.

87
25

So
n

0.
74

52
0.

75
00

0.
79

33
0.

73
08

0.
75

48
0.

70
67

0.
73

08
0.

75
00

0.
71

15
0.

73
56

0.
74

04
0.

73
56

0.
75

00
0.

79
81

w
db

0.
94

19
0.

94
72

0.
94

39
0.

94
55

0.
94

21
0.

94
37

0.
94

37
0.

94
73

0.
94

19
0.

94
38

0.
94

20
0.

95
61

0.
94

38
0.

95
42

H
ea

0.
75

51
0.

78
23

0.
74

49
0.

76
19

0.
75

17
0.

70
41

0.
77

21
0.

75
17

0.
70

07
0.

74
83

0.
75

85
0.

72
79

0.
76

87
0.

80
95

G
er

0.
69

00
0.

70
50

0.
67

00
0.

49
10

0.
70

40
0.

66
60

0.
30

50
0.

71
30

0.
66

40
0.

30
50

0.
70

40
0.

30
40

0.
70

50
0.

75
50

A
us

0.
78

55
0.

79
86

0.
73

91
0.

79
71

0.
80

00
0.

69
42

0.
80

00
0.

79
13

0.
70

14
0.

79
13

0.
80

87
0.

80
00

0.
79

42
0.

86
38

H
or

0.
71

47
0.

72
55

0.
72

01
0.

71
47

0.
70

92
0.

70
11

0.
72

55
0.

71
20

0.
69

84
0.

69
02

0.
73

37
0.

72
28

0.
72

01
0.

77
45

R
in

0.
88

50
0.

92
90

0.
92

70
0.

87
20

0.
89

60
0.

90
20

0.
87

80
0.

89
50

0.
90

20
0.

88
40

0.
89

30
0.

88
00

0.
92

90
0.

89
10

Pe
a

0.
91

00
0.

98
40

0.
98

90
0.

89
30

0.
94

20
0.

94
00

0.
88

60
0.

93
40

0.
94

10
0.

89
20

0.
98

30
0.

89
60

0.
98

70
0.

92
70

C
ir

0.
83

30
0.

88
10

0.
89

90
0.

83
30

0.
83

30
0.

83
30

0.
83

30
0.

83
20

0.
83

30
0.

83
30

0.
85

20
0.

83
30

0.
87

60
0.

83
50

39

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Ta
bl

e
2.

4:
Th

e
in

te
r

qu
ar

til
e

ra
ng

e
of

th
e

10
fo

ld
s

fo
r

P
C

C

PC
C

IQ
R

K
F

rb
f

K
F

rb
f

cp
1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

H
ea

0.
03

42
0.

04
98

0.
01

98
0.

05
17

0.
03

62
0.

05
21

0.
03

83
0.

08
09

0.
05

60
0.

05
53

0.
06

07
0.

07
56

0.
05

14
0.

02
43

H
ep

0.
03

99
0.

05
36

0.
06

17
0.

03
03

0.
06

11
0.

05
97

0.
05

12
0.

07
18

0.
04

86
0.

03
73

0.
03

04
0.

03
64

0.
05

03
0.

06
62

Io
n

0.
04

09
0.

03
57

0.
02

43
0.

04
06

0.
02

80
0.

02
55

0.
02

87
0.

02
80

0.
03

13
0.

05
95

0.
03

72
0.

04
55

0.
03

46
0.

02
70

Pi
m

0.
02

34
0.

02
86

0.
02

08
0.

02
73

0.
01

24
0.

02
86

0.
04

10
0.

02
80

0.
03

12
0.

02
02

0.
02

28
0.

02
67

0.
03

45
0.

02
34

C
re

0.
03

84
0.

04
28

0.
03

41
0.

01
23

0.
03

19
0.

06
09

0.
05

65
0.

02
32

0.
05

36
0.

03
55

0.
02

32
0.

05
07

0.
01

81
0.

02
32

So
n

0.
05

29
0.

05
29

0.
07

45
0.

06
01

0.
04

57
0.

05
29

0.
04

09
0.

05
05

0.
07

21
0.

03
61

0.
02

64
0.

06
01

0.
07

45
0.

06
25

w
db

0.
01

41
0.

02
04

0.
00

86
0.

01
49

0.
01

83
0.

01
68

0.
01

33
0.

01
32

0.
01

59
0.

01
58

0.
02

62
0.

01
32

0.
00

70
0.

00
96

H
ea

0.
08

33
0.

05
61

0.
03

74
0.

08
33

0.
02

55
0.

06
80

0.
08

16
0.

07
31

0.
06

46
0.

04
76

0.
06

29
0.

06
97

0.
03

74
0.

02
72

G
er

0.
39

95
0.

01
70

0.
02

50
0.

39
65

0.
02

10
0.

01
55

0.
28

90
0.

02
55

0.
02

00
0.

01
60

0.
01

25
0.

01
85

0.
02

20
0.

00
95

A
us

0.
01

59
0.

05
36

0.
05

36
0.

05
29

0.
01

38
0.

03
99

0.
06

01
0.

03
41

0.
03

12
0.

02
54

0.
05

00
0.

03
77

0.
04

86
0.

01
09

H
or

0.
02

04
0.

04
62

0.
03

12
0.

03
12

0.
03

80
0.

01
90

0.
01

77
0.

02
17

0.
02

17
0.

05
57

0.
04

35
0.

03
26

0.
03

53
0.

01
90

R
in

0.
01

40
0.

00
70

0.
01

10
0.

01
30

0.
01

70
0.

00
65

0.
01

25
0.

01
35

0.
00

65
0.

01
15

0.
01

95
0.

01
20

0.
00

55
0.

02
80

Pe
a

0.
01

55
0.

00
90

0.
00

75
0.

01
50

0.
02

45
0.

01
40

0.
02

05
0.

01
80

0.
01

50
0.

01
90

0.
03

30
0.

01
95

0.
01

05
0.

02
35

C
ir

0.
01

50
0.

02
70

0.
02

45
0.

01
50

0.
01

50
0.

01
50

0.
01

50
0.

01
40

0.
01

50
0.

01
50

0.
01

85
0.

01
50

0.
01

50
0.

01
50

40

CHAPTER 2

Ta
bl

e
2.

5:
Th

e
m

ed
ia

n
of

th
e

10
fo

ld
s

fo
r

AU
C

A
U

C
M

e-
di

an

K
F

rb
f

K
F

rb
f

cp
1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

H
ea

0.
82

86
0.

80
81

0.
73

41
0.

82
67

0.
83

45
0.

68
05

0.
79

73
0.

81
67

0.
68

00
0.

79
47

0.
82

51
0.

84
07

0.
82

26
0.

89
93

H
ep

0.
82

76
0.

81
99

0.
81

88
0.

79
18

0.
78

64
0.

79
15

0.
80

06
0.

80
95

0.
79

78
0.

79
61

0.
82

27
0.

79
27

0.
82

13
0.

86
81

Io
n

0.
94

78
0.

95
28

0.
97

01
0.

95
83

0.
95

58
0.

97
46

0.
96

44
0.

95
89

0.
97

47
0.

95
59

0.
96

33
0.

95
83

0.
95

63
0.

97
56

Pi
m

0.
77

12
0.

80
46

0.
80

47
0.

77
95

0.
80

07
0.

79
78

0.
78

51
0.

79
52

0.
80

04
0.

78
55

0.
79

95
0.

79
19

0.
79

96
0.

81
88

C
re

0.
87

68
0.

88
63

0.
80

03
0.

87
14

0.
88

49
0.

76
39

0.
87

67
0.

88
52

0.
76

56
0.

87
60

0.
87

48
0.

87
09

0.
87

81
0.

93
01

So
n

0.
86

09
0.

86
17

0.
88

65
0.

84
81

0.
85

19
0.

82
12

0.
84

56
0.

84
90

0.
82

19
0.

84
54

0.
85

14
0.

85
00

0.
85

86
0.

91
56

w
db

0.
98

86
0.

98
88

0.
98

74
0.

98
72

0.
98

57
0.

98
44

0.
98

80
0.

98
72

0.
98

50
0.

98
53

0.
98

79
0.

98
64

0.
98

53
0.

99
04

H
ea

0.
83

69
0.

82
76

0.
79

69
0.

83
49

0.
82

02
0.

73
05

0.
81

44
0.

82
85

0.
73

31
0.

81
78

0.
82

15
0.

81
27

0.
82

75
0.

88
94

G
er

0.
67

37
0.

65
64

0.
59

76
0.

66
11

0.
67

01
0.

58
17

0.
65

35
0.

65
70

0.
58

38
0.

67
91

0.
66

10
0.

66
77

0.
68

01
0.

78
81

A
us

0.
87

68
0.

87
69

0.
80

74
0.

88
18

0.
87

52
0.

75
91

0.
87

30
0.

87
48

0.
75

68
0.

88
02

0.
88

67
0.

88
63

0.
87

56
0.

93
37

H
or

0.
78

89
0.

76
13

0.
76

21
0.

77
63

0.
75

62
0.

72
62

0.
77

63
0.

76
06

0.
72

47
0.

77
64

0.
78

00
0.

76
53

0.
76

69
0.

83
53

R
in

0.
95

54
0.

97
94

0.
97

88
0.

95
05

0.
96

17
0.

96
53

0.
95

27
0.

96
27

0.
96

54
0.

95
81

0.
96

10
0.

95
65

0.
97

96
0.

95
55

Pe
a

0.
97

49
0.

99
95

0.
99

96
0.

96
20

0.
99

27
0.

99
40

0.
96

00
0.

99
27

0.
99

44
0.

96
75

0.
99

91
0.

96
76

0.
99

96
0.

98
68

C
ir

0.
89

15
0.

98
64

0.
98

67
0.

62
12

0.
42

86
0.

52
45

0.
60

78
0.

42
45

0.
52

39
0.

72
83

0.
73

52
0.

87
89

0.
98

34
0.

77
48

41

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Ta
bl

e
2.

6:
Th

e
in

te
r

qu
ar

til
e

ra
ng

e
of

th
e

10
fo

ld
s

fo
r

AU
C

A
U

C
IQ

R
K

F
rb

f
K

F
rb

f
cp

1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

H
ea

0.
03

79
0.

06
39

0.
02

31
0.

03
65

0.
03

34
0.

07
34

0.
05

47
0.

07
37

0.
05

87
0.

06
14

0.
09

99
0.

09
44

0.
05

56
0.

01
87

H
ep

0.
05

32
0.

04
07

0.
08

97
0.

04
74

0.
07

62
0.

11
33

0.
08

60
0.

03
96

0.
12

10
0.

10
04

0.
09

08
0.

10
45

0.
05

21
0.

06
64

Io
n

0.
01

56
0.

02
61

0.
02

07
0.

02
36

0.
01

96
0.

01
91

0.
01

74
0.

02
13

0.
02

01
0.

00
95

0.
01

98
0.

00
58

0.
01

60
0.

01
13

Pi
m

0.
03

42
0.

03
58

0.
02

25
0.

05
24

0.
01

78
0.

02
07

0.
02

64
0.

03
40

0.
02

38
0.

01
91

0.
01

71
0.

01
95

0.
03

82
0.

01
55

C
re

0.
03

31
0.

03
85

0.
04

35
0.

04
37

0.
02

27
0.

06
16

0.
03

28
0.

02
72

0.
05

50
0.

04
62

0.
02

24
0.

03
76

0.
02

68
0.

02
21

So
n

0.
04

42
0.

03
51

0.
03

14
0.

02
42

0.
05

78
0.

03
17

0.
02

31
0.

03
48

0.
03

00
0.

02
97

0.
02

55
0.

02
38

0.
04

13
0.

03
20

w
db

0.
00

65
0.

00
73

0.
01

08
0.

00
31

0.
00

91
0.

00
70

0.
00

55
0.

00
60

0.
00

73
0.

00
53

0.
00

65
0.

00
85

0.
00

76
0.

00
52

H
ea

0.
03

28
0.

02
57

0.
06

12
0.

03
18

0.
03

30
0.

07
53

0.
09

05
0.

06
33

0.
07

53
0.

07
00

0.
03

48
0.

06
00

0.
03

26
0.

03
62

G
er

0.
04

66
0.

03
48

0.
03

02
0.

05
48

0.
01

89
0.

02
53

0.
04

71
0.

00
94

0.
02

56
0.

03
65

0.
02

49
0.

04
41

0.
03

98
0.

01
04

A
us

0.
03

46
0.

04
92

0.
03

67
0.

02
66

0.
00

93
0.

04
83

0.
02

91
0.

02
84

0.
04

64
0.

01
88

0.
03

77
0.

02
87

0.
03

18
0.

01
77

H
or

0.
03

25
0.

03
03

0.
03

13
0.

04
08

0.
03

81
0.

04
65

0.
01

89
0.

04
71

0.
04

83
0.

06
61

0.
06

10
0.

04
38

0.
04

01
0.

02
08

R
in

0.
00

93
0.

00
29

0.
00

16
0.

00
93

0.
00

64
0.

00
47

0.
00

66
0.

00
45

0.
00

54
0.

00
49

0.
01

13
0.

00
32

0.
00

25
0.

00
64

Pe
a

0.
00

38
0.

00
05

0.
00

04
0.

00
77

0.
00

30
0.

00
26

0.
00

70
0.

00
29

0.
00

25
0.

00
41

0.
00

33
0.

00
68

0.
00

06
0.

00
60

C
ir

0.
02

98
0.

00
80

0.
00

39
0.

09
86

0.
05

53
0.

05
76

0.
06

27
0.

12
75

0.
06

11
0.

08
44

0.
51

41
0.

04
03

0.
00

85
0.

04
99

42

CHAPTER 2

Ta
bl

e
2.

7:
Av

er
ag

e
ra

nk
in

gs
of

th
e

fo
ld

s
(p

er
da

ta
se

t)
fo

r
P

C
C

A
vg

.
ra

nk
-

in
gs

(P
C

C
)

K
F

rb
f

K
F

rb
f

cp
1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

Fr
ie

dm
an

χ
2
(1

3)
,p
<

H
ea

5.
00

6.
75

11
.7

5
6.

25
5.

70
13

.5
5

8.
30

6.
55

12
.5

5
6.

45
7.

65
6.

55
6.

65
1.

30
77

.9
8,

.0
01

H
ep

7.
85

8.
15

8.
15

8.
70

5.
35

5.
95

9.
00

7.
70

5.
95

8.
85

7.
85

10
.3

5
8.

85
2.

30
32

.1
6,

.0
01

Io
n

9.
25

7.
60

5.
15

10
.5

0
7.

60
3.

40
10

.4
0

8.
35

4.
00

9.
00

6.
25

11
.7

5
9.

00
2.

75
59

.6
6,

.0
01

Pi
m

11
.0

5
5.

55
6.

25
11

.1
0

5.
70

5.
65

10
.0

5
7.

15
6.

90
9.

20
6.

40
9.

40
7.

25
3.

35
40

.2
5,

.0
01

C
re

7.
50

5.
70

11
.6

0
7.

30
4.

75
13

.4
5

6.
00

5.
95

13
.1

5
8.

00
7.

45
6.

10
7.

05
1.

00
82

.8
4,

.0
01

So
n

8.
25

6.
20

3.
70

7.
70

7.
65

11
.8

5
9.

50
6.

65
10

.2
0

7.
80

8.
35

8.
20

6.
90

2.
05

46
.1

9,
.0

01
w

db
8.

70
6.

55
6.

70
6.

15
9.

15
8.

50
6.

85
6.

85
8.

05
8.

55
10

.3
5

5.
30

8.
90

4.
40

20
.7

2,
.0

05
H

ea
7.

15
6.

15
8.

20
8.

00
7.

25
11

.7
0

8.
10

6.
50

11
.7

0
7.

80
6.

60
8.

10
5.

35
2.

40
41

.3
3,

.0
01

G
er

8.
75

5.
40

9.
05

9.
05

4.
50

9.
75

10
.8

0
4.

50
10

.0
5

11
.6

5
4.

70
11

.0
0

4.
80

1.
00

80
.0

7,
.0

01
A

us
7.

40
6.

80
11

.4
5

5.
80

6.
20

13
.5

0
6.

05
7.

30
13

.4
5

6.
80

5.
80

7.
30

6.
05

1.
10

80
.7

1,
.0

01
H

or
8.

20
7.

05
6.

35
7.

75
8.

15
10

.2
0

7.
10

7.
25

10
.8

5
9.

60
5.

65
8.

10
7.

50
1.

25
39

.5
8,

.0
01

R
in

9.
70

2.
00

2.
15

11
.9

0
7.

25
5.

60
11

.5
5

7.
65

6.
25

10
.4

5
7.

20
11

.2
5

2.
05

10
.0

0
93

.8
8,

.0
01

Pe
a

10
.3

5
2.

55
1.

60
12

.3
5

6.
90

6.
30

13
.0

0
6.

60
6.

30
12

.3
0

4.
25

11
.6

5
2.

35
8.

50
11

7.
19

,.
00

1
C

ir
9.

20
2.

75
1.

25
9.

65
9.

65
9.

65
9.

65
10

.0
5

9.
65

9.
15

6.
20

9.
15

2.
55

6.
45

10
0.

72
,.

00
1

43

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Ta
bl

e
2.

8:
Se

le
ct

ed
di

ffe
re

nc
es

of
th

e
av

er
ag

e
ra

nk
in

gs
of

th
e

fo
ld

s
(p

er
da

ta
se

t)
fo

r
P

C
C

Se
le

ct
ed

di
ff

er
en

ce
s

of
av

er
ag

e
ra

nk
in

gs

K
F

rb
f-

K
F

rb
f

cp
1

K
IR

F
rb

f
-

K
F

rb
f

cp
1

K
IR

F
rb

f
-

K
F

rb
f

K
F

po
l

-
K

F
po

l
cp

1

K
IR

F
po

l
-

K
F

po
l

cp
1

K
IR

F
po

l
-

K
F

po
l

K
F

lin
-

K
F

lin cp
1

K
IR

F
lin

-
K

F
lin cp

1

K
IR

F
lin

-
K

F
lin

K
F

ra
n

-
K

F
ra

n
cp

1

K
F

bu
rn

-
K

F
bu

rn
cp

1

K
F

ra
n

-
K

F
bu

rn

K
F

ra
n

cp
1

-
K

F
bu

rn
cp

1

R
F

-
K

IR
F

rb
f

R
F

-
K

F
rb

f
cp

1

H
ea

-1
.7

5
5.

00
6.

75
0.

55
7.

85
7.

30
1.

75
6.

00
4.

25
-1

.2
0

-0
.1

0
-0

.1
0

1.
00

-1
0.

45
-5

.4
5

H
ep

-0
.3

0
0.

00
0.

30
3.

35
0.

60
-2

.7
5

1.
30

-1
.7

5
-3

.0
5

1.
00

1.
50

-1
.5

0
-1

.0
0

-5
.8

5
-5

.8
5

Io
n

1.
65

-2
.4

5
-4

.1
0

2.
90

-4
.2

0
-7

.1
0

2.
05

-4
.3

5
-6

.4
0

2.
75

2.
75

-2
.7

5
-2

.7
5

-2
.4

0
-4

.8
5

Pi
m

5.
50

0.
70

-4
.8

0
5.

40
-0

.0
5

-5
.4

5
2.

90
-0

.2
5

-3
.1

5
2.

80
2.

15
-0

.2
0

-0
.8

5
-2

.9
0

-2
.2

0
C

re
1.

80
5.

90
4.

10
2.

55
8.

70
6.

15
0.

05
7.

20
7.

15
0.

55
-0

.9
5

1.
90

0.
40

-1
0.

60
-4

.7
0

So
n

2.
05

-2
.5

0
-4

.5
5

0.
05

4.
20

4.
15

2.
85

3.
55

0.
70

-0
.5

5
1.

30
-0

.4
0

1.
45

-1
.6

5
-4

.1
5

w
db

2.
15

0.
15

-2
.0

0
-3

.0
0

-0
.6

5
2.

35
0.

00
1.

20
1.

20
-1

.8
0

-3
.6

0
3.

25
1.

45
-2

.3
0

-2
.1

5
H

ea
1.

00
2.

05
1.

05
0.

75
4.

45
3.

70
1.

60
5.

20
3.

60
1.

20
2.

75
-0

.3
0

1.
25

-5
.8

0
-3

.7
5

G
er

3.
35

3.
65

0.
30

4.
55

5.
25

0.
70

6.
30

5.
55

-0
.7

5
6.

95
6.

20
0.

65
-0

.1
0

-8
.0

5
-4

.4
0

A
us

0.
60

4.
65

4.
05

-0
.4

0
7.

30
7.

70
-1

.2
5

6.
15

7.
40

1.
00

1.
25

-0
.5

0
-0

.2
5

-1
0.

35
-5

.7
0

H
or

1.
15

-0
.7

0
-1

.8
5

-0
.4

0
2.

05
2.

45
-0

.1
5

3.
60

3.
75

3.
95

0.
60

1.
50

-1
.8

5
-5

.1
0

-5
.8

0
R

in
7.

70
0.

15
-7

.5
5

4.
65

-1
.6

5
-6

.3
0

3.
90

-1
.4

0
-5

.3
0

3.
25

9.
20

-0
.8

0
5.

15
7.

85
8.

00
Pe

a
7.

80
-0

.9
5

-8
.7

5
5.

45
-0

.6
0

-6
.0

5
6.

40
-0

.3
0

-6
.7

0
8.

05
9.

30
0.

65
1.

90
6.

90
5.

95
C

ir
6.

45
-1

.5
0

-7
.9

5
0.

00
0.

00
0.

00
-0

.4
0

-0
.4

0
0.

00
2.

95
6.

60
0.

00
3.

65
5.

20
3.

70

44

CHAPTER 2

Ta
bl

e
2.

9:
Av

er
ag

e
ra

nk
in

gs
of

th
e

fo
ld

s
(p

er
da

ta
se

t)
fo

r
AU

C

A
vg

.
ra

nk
-

in
gs

(A
U

C
)

K
F

rb
f

K
F

rb
f

cp
1

K
IR

F
rb

f
K

F
po

l
K

F
po

l
cp

1

K
IR

F
po

l
K

F
lin

K
F

lin cp
1

K
IR

F
lin

K
F

ra
n

K
F

ra
n

cp
1

K
F

bu
rn

K
F

bu
rn

cp
1

R
F

Fr
ie

dm
an

χ
2
(1

3)
,p
<

H
ea

6.
10

7.
10

12
.0

0
5.

40
5.

90
13

.1
0

8.
30

6.
00

13
.5

0
7.

40
6.

80
6.

20
6.

20
1.

00
83

.2
7,

.0
01

H
ep

4.
90

6.
80

7.
60

8.
40

9.
70

9.
85

7.
20

7.
90

9.
35

7.
20

6.
70

10
.5

0
6.

50
2.

40
33

.6
3,

.0
1

Io
n

10
.4

5
10

.2
5

3.
40

10
.3

0
9.

50
3.

20
6.

95
8.

90
3.

00
9.

90
7.

65
9.

20
10

.1
0

2.
20

73
.9

9,
.0

01
Pi

m
10

.5
0

5.
80

7.
70

8.
80

5.
70

7.
90

10
.4

0
6.

30
8.

00
10

.3
0

6.
80

9.
50

6.
00

1.
30

45
.7

9,
.0

01
C

re
6.

80
5.

60
12

.0
0

8.
20

4.
40

13
.6

0
5.

90
5.

40
13

.4
0

7.
60

6.
70

7.
20

7.
20

1.
00

89
.4

4,
.0

01
So

n
6.

70
6.

20
3.

70
7.

55
8.

75
12

.4
0

8.
30

7.
50

12
.4

0
9.

30
7.

70
6.

70
6.

50
1.

30
63

.0
9,

.0
01

w
db

7.
35

4.
30

6.
70

7.
20

7.
75

10
.6

0
7.

00
7.

80
9.

45
10

.1
5

8.
70

6.
60

7.
40

4.
00

26
.4

9,
0.

05
H

ea
5.

90
6.

00
10

.4
0

5.
80

7.
20

12
.9

0
8.

60
6.

90
12

.5
0

6.
70

6.
80

8.
10

6.
10

1.
10

66
.4

8,
.0

01
G

er
5.

70
7.

80
11

.8
0

7.
70

6.
20

13
.2

0
6.

90
7.

10
13

.2
0

5.
20

7.
00

6.
30

5.
90

1.
00

80
.4

8,
.0

01
A

us
6.

80
6.

50
12

.2
0

6.
50

6.
80

13
.3

0
7.

30
7.

60
13

.5
0

6.
10

5.
30

5.
30

6.
80

1.
00

85
.2

2,
.0

01
H

or
5.

50
8.

60
7.

90
6.

90
9.

00
11

.3
0

5.
85

7.
10

12
.0

0
8.

30
5.

50
7.

85
8.

20
1.

00
53

.1
9,

.0
01

R
in

9.
00

1.
80

2.
10

11
.7

0
8.

20
5.

90
11

.8
0

7.
80

5.
50

9.
60

7.
60

10
.4

0
2.

10
11

.5
0

94
.3

8,
.0

01
Pe

a
10

.4
0

2.
55

1.
75

12
.7

0
7.

30
5.

80
13

.2
0

6.
90

5.
70

11
.8

0
3.

80
11

.9
0

2.
30

8.
90

12
1.

52
,.

00
1

C
ir

4.
90

1.
90

1.
50

8.
80

13
.3

0
11

.3
0

9.
20

12
.6

0
11

.1
0

7.
50

8.
40

5.
10

2.
70

6.
70

11
2,

.0
01

45

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Ta
bl

e
2.

10
:

Se
le

ct
ed

di
ffe

re
nc

es
of

th
e

av
er

ag
e

ra
nk

in
gs

of
th

e
fo

ld
s

(p
er

da
ta

se
t)

fo
r

AU
C

Se
le

ct
ed

di
ff

er
-

en
ce

s
of

av
er

ag
e

ra
nk

in
gs

K
F

rb
f-

K
F

rb
f

cp
1

K
IR

F
rb

f
-

K
F

rb
f

cp
1

K
IR

F
rb

f
-

K
F

rb
f

K
F

po
l

-
K

F
po

l
cp

1

K
IR

F
po

l
-

K
F

po
l

cp
1

K
IR

F
po

l
-

K
F

po
l

K
F

lin
-

K
F

lin cp
1

K
IR

F
lin

-
K

F
lin cp

1

K
IR

F
lin

-
K

F
lin

K
F

ra
n

-
K

F
ra

n
cp

1

K
F

bu
rn

-
K

F
bu

rn
cp

1

K
F

ra
n

-
K

F
bu

rn

K
F

ra
n

cp
1

-
K

F
bu

rn
cp

1

R
F

-
K

IR
F

rb
f

R
F

-
K

F
rb

f
cp

1

H
ea

-1
.0

0
4.

90
5.

90
-0

.5
0

7.
20

7.
70

2.
30

7.
50

5.
20

0.
60

0.
00

1.
20

0.
60

-1
1.

00
-6

.1
0

H
ep

-1
.9

0
0.

80
2.

70
-1

.3
0

0.
15

1.
45

-0
.7

0
1.

45
2.

15
0.

50
4.

00
-3

.3
0

0.
20

-5
.2

0
-4

.4
0

Io
n

0.
20

-6
.8

5
-7

.0
5

0.
80

-6
.3

0
-7

.1
0

-1
.9

5
-5

.9
0

-3
.9

5
2.

25
-0

.9
0

0.
70

-2
.4

5
-1

.2
0

-8
.0

5
Pi

m
4.

70
1.

90
-2

.8
0

3.
10

2.
20

-0
.9

0
4.

10
1.

70
-2

.4
0

3.
50

3.
50

0.
80

0.
80

-6
.4

0
-4

.5
0

C
re

1.
20

6.
40

5.
20

3.
80

9.
20

5.
40

0.
50

8.
00

7.
50

0.
90

0.
00

0.
40

-0
.5

0
-1

1.
00

-4
.6

0
So

n
0.

50
-2

.5
0

-3
.0

0
-1

.2
0

3.
65

4.
85

0.
80

4.
90

4.
10

1.
60

0.
20

2.
60

1.
20

-2
.4

0
-4

.9
0

w
db

3.
05

2.
40

-0
.6

5
-0

.5
5

2.
85

3.
40

-0
.8

0
1.

65
2.

45
1.

45
-0

.8
0

3.
55

1.
30

-2
.7

0
-0

.3
0

H
ea

-0
.1

0
4.

40
4.

50
-1

.4
0

5.
70

7.
10

1.
70

5.
60

3.
90

-0
.1

0
2.

00
-1

.4
0

0.
70

-9
.3

0
-4

.9
0

G
er

-2
.1

0
4.

00
6.

10
1.

50
7.

00
5.

50
-0

.2
0

6.
10

6.
30

-1
.8

0
0.

40
-1

.1
0

1.
10

-1
0.

80
-6

.8
0

A
us

0.
30

5.
70

5.
40

-0
.3

0
6.

50
6.

80
-0

.3
0

5.
90

6.
20

0.
80

-1
.5

0
0.

80
-1

.5
0

-1
1.

20
-5

.5
0

H
or

-3
.1

0
-0

.7
0

2.
40

-2
.1

0
2.

30
4.

40
-1

.2
5

4.
90

6.
15

2.
80

-0
.3

5
0.

45
-2

.7
0

-6
.9

0
-7

.6
0

R
in

7.
20

0.
30

-6
.9

0
3.

50
-2

.3
0

-5
.8

0
4.

00
-2

.3
0

-6
.3

0
2.

00
8.

30
-0

.8
0

5.
50

9.
40

9.
70

Pe
a

7.
85

-0
.8

0
-8

.6
5

5.
40

-1
.5

0
-6

.9
0

6.
30

-1
.2

0
-7

.5
0

8.
00

9.
60

-0
.1

0
1.

50
7.

15
6.

35
C

ir
3.

00
-0

.4
0

-3
.4

0
-4

.5
0

-2
.0

0
2.

50
-3

.4
0

-1
.5

0
1.

90
-0

.9
0

2.
40

2.
40

5.
70

5.
20

4.
80

46

CHAPTER 2

Comparing (1) KFrbfcp1 and KIRFrbf, (2) KFpolcp1 and KIRFpol, and (3) KFlincp1 and
KIRFlin shows that KF performs similarly or considerably higher, and rarely considerably
lower. For example, in Table 2.3 and 2.5 on the Credit and Australian Credit data sets KF
performs around .10 PCC and .10 AUC better than KIRF. This conclusion is confirmed when
looking at the columns KIRFrbf-KFrbfcp1, KIRFpol-KFpolcp1, KIRFlin-KFlincp1 in Table 2.8
and Table 2.10. In Table 2.8 (PCC), all 4 significant differences are in favor of KF. In Table 2.10
(AUC), out of 9 significant differences, 7 are in favor of KF.

KF with method ran and burn are both designed to choose the kernel for the user. Hence a
direct comparison is in order. Interestingly, from Table 2.3 and Table 2.5 we see that KFrancp1
and KFburncp1 are very competitive. None of the differences are significant in Table 2.8 and
2.10 (see columns KFran-KFburn and KFrancp1-KFburncp1).

Finally, a comparison of RF with KF and KIRF fulfills our expectations in that RF is superior
to the other two when the wrong kernel is selected, or a kernel is selected when none is needed.
In contrast, when the right kernel is known (or determined in advance by cross-validation),
KIRF and KF do perform considerably better (see columns KFrbfcp1, KIRFrbf. KFrancp1,
KFburncp1, and RF for the last three data sets in Table 2.3 and 2.5). On the 3 relevant data
sets, KIRFrbf and KFrbfcp1 perform better than RF (significantly in most cases) (see columns
RF-KIRFrbf and RF-KFrbfcp1 in Table 2.8 and 2.10).

2.6 Conclusions

In this study we propose an ensemble method for kernel machines. The training data is ran-
domly split into a number of mutually exclusive partitions defined by a row and column param-
eter. Each partition forms an input space and is transformed by a kernel function into a kernel
matrix K. Subsequently, each K is used as training data for a binary base classifier (Random
Forest). This results in a number of predictions equal to the number of partitions. A weighted
average combines the predictions into one final prediction. To optimize the weights, a Genetic
Algorithm is used.

This approach has the advantage of simultaneously promoting (1) diversity, (2) accuracy,
and (3) computational speed. (1) Diversity is fostered because the individual Ks are based on a
subset of features and observations, (2) accuracy is sought using strong base classifiers, and (3)
computational speed is obtained because the computation of each K can be parallelized.

Using five times two-fold cross- validation we benchmark the classification performance
of Kernel Factory against Random Forest and Kernel-Induced Random Forest (KIRF). Our
findings are fourfold.

First, the number of column partitions matters. While partitioning the columns is primarily
a way of introducing diversity in the ensemble, we found that one partition works better than
many. We recommend using one partition and creating more in case of numerical problems
when computing the Ks (which is often the case in data sets with many features).

47

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Second, Kernel Factory is significantly better than Kernel-Induced Random Forest (KIRF)
on several data sets (and performs rarely significantly worse than KIRF). Along with the supe-
rior speed of Kernel Factory on large data sets, we recommend it over KIRF.

Third, the two methods (random and burn-in) that automatically select the kernel function
perform equally well and using them is a viable strategy when the right kernel function is
unknown in advance.

Fourth and final, when using a kernel is appropriate, and the right kernel is specified, both
Kernel Factory and Kernel-Induced Random Forest outperform Random Forest significantly.

The main practical implication of this study is that problems involving large data sets, that
otherwise would be impossible to analyze using KIRF, can now be analyzed using Kernel Fac-
tory. Hence, Kernel Factory opens a doorway to increases in classification performance by
kernel functions. We have made available an open-source R-software package of the algorithm
(kernelFactory) at CRAN (Ballings and Van den Poel, 2013).

2.7 Future Research and Limitations

We have six avenues for future research, which at the same time can be considered the limita-
tions of this study. The first avenue is to try other base classifiers. In this study we use Random
Forest as a base classifier because it is good at handling a large number of predictors, and be-
cause we wanted to make a direct comparison with KIRF. Other options would be Logistic
Regression with variable selection techniques, or Support Vector Machines. Random Mulitno-
mial Logit (Prinzie and Van den Poel, 2008) is an example of an ensemble method that might
benefit from kernels.

The second direction for future research is to use other kernel functions (e.g., Üstün et al.,
2006). Particularly interesting developments are kernels for categorical data (see Li and Racine,
2007). As in KIRF, we exclude the categorical variables when computing the kernel matrix and
add them afterwards. It might prove valuable to use kernel functions that can handle categorical
data.

While parameter values of Kernel Factory are inspired by practical reasons (computational
speed), a third direction is to optimize these parameters. More specifically, there is quite a
large body of research investigating what the optimal values are for selection, mutation, and
crossover in genetic algorithms (e.g., Dejong and Spears, 1991). It may prove valuable to
integrate this research and investigate whether it applies to weight optimization for classifier
ensembles. Moreover, while in this study we determine the number of partitions by taking the
logarithm of the number of rows and columns, these parameters will probably benefit from
optimization too. Although we compare different settings (two values for number of column
partitions), future research should study this more in depth.

A fourth avenue is to investigate larger data sets. The true value of Kernel Factory over
KIRF lies in large data. Hence, future research should take a special interest in data with a high

48

CHAPTER 2

number of observations and predictors.
The fifth direction for future research is ensemble pruning. Currently all ensemble members

are used and weighted in the prediction phase. In order to make Kernel Factory less memory
demanding and less computationally expensive members with weight close to zero could be
excluded from the scoring phase. Zhou et al. (2002) demonstrate that this principle works quite
well.

The sixth and final direction is to further explore the mechanism of Kernel Factory with
a bias-variance decomposition of the classification error (e.g., Zhou et al., 2002). This will
provide insight into to which factors Kernel Factory owes its strengths.

2.8 Acknowledgment

Both authors acknowledge the IAP research network grant No. P6/03 of the Belgian government
(Belgian Science Policy).

2.9 References

Alpaydin, E., 1999. Combined 5 x 2 cv f test for comparing supervised classification learning
algorithms. Neural Computation 11 (8), 1885–1892.

Baecke, P., Van den Poel, D., 2011. Data augmentation by predicting spending pleasure using
commercially available external data. Journal of Intelligent Information Systems 36 (3), 367–
383.

Baecke, P., Van den Poel, D., Nov. 2012. Including spatial interdependence in customer ac-
quisition models: A cross-category comparison. Expert Systems with Applications 39 (15),
12105–12113.

Ballings, M., Van den Poel, D., 2013. R package kernelFactory: an ensemble of kernel ma-
chines.

Breiman, L., Oct. 2001. Random forests. Machine Learning 45 (1), 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., 1984. Classification and regression
trees. Wadsworth, Belmont, C A.

Buckinx, W., Van den Poel, D., 2005. Customer base analysis: partial defection of behaviourally
loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Re-
search 164 (1), 252–268.

Coussement, K., Van den Poel, D., 2008. Churn prediction in subscription services: An applica-
tion of support vector machines while comparing two parameter-selection techniques. Expert
Systems with Applications 34 (1), 313–327.

49

KERNEL FACTORY: AN ENSEMBLE OF KERNEL MACHINES

Dejong, K., Spears, W., 1991. An Analysis of the Interacting Roles of Population-Size and
Crossover in Genetic Algorithms. Vol. 496. Springer-Verlag Berlin, Berlin.

Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7, 1–30.

Dietterich, T. G., 1998. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation 10 (7), 1895–1923.

Duda, R., Hart, P., Stork, D., 2001. Nonmetric methods. In: Pattern Classification. Wiley, NY,
pp. 394–452.

Fan, G., 2009. Kernel-induced classification tree and random forest. Technical report, Dept. of
Statistics and Actuarial Science, University of Waterloo.

Hanley, J., Mcneil, B., 1982. The meaning and use of the area under a receiver operating char-
acteristic (roc) curve. Radiology 143 (1), 29–36.

Jäkel, F., Schölkopf, B., Wichmann, F. A., Dec. 2007. A tutorial on kernel methods for catego-
rization. Journal of Mathematical Psychology 51 (6), 343–358.

Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. kernlab - an s4 package for kernel
methods in r. Journal of Statistical Software 11 (9), 1–20.

Kim, Y., Street, W. N., Menczer, F., 2002. Meta-evolutionary ensembles. In: Proceeding of
the 2002 International Joint Conference on Neural Networks, Vols 1-3. Ieee, New York, pp.
2791–2796.

Langley, P., 2000. Crafting papers on machine learning. In: Langley, P. (Ed.), Proceedings of
17th International Conference on Machine Learning. Morgan Kaufmann, Stanford CA, pp.
1207–1216.

Larivière, B., Van den Poel, D., 2005. Predicting customer retention and profitability by using
random forests and regression forests techniques. Expert Systems with Applications 29 (2),
472–484.

Leisch, F., Dimitriadou, E., 2012. R package mlbench: Machine learning benchmark problems.

Li, Q., Racine, J., 2007. Nonparametric Econometrics: Theory and Practice. Princeton Univer-
sity Press, Princeton.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3),
18–22.

50

CHAPTER 2

Luo, T., Kramer, K., Goldgof, D., Hall, L., Samson, S., Remsen, A., Hopkins, T., 2004. Recog-
nizing plankton images from the shadow image particle profiling evaluation recorder. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34 (4), 1753 –1762.

Merkle, E. C., Shaffer, V. A., Feb. 2011. Binary recursive partitioning: Background, meth-
ods, and application to psychology. British Journal of Mathematical & Statistical Psychology
64 (1), 161–181.

Nemenyi, P., 1963. Distribution-free multiple comparisons. Ph.D. thesis, Princeton University.

Park, J. I., Liu, L., Ye, X. P., Jeong, M. K., Jeong, Y.-S., Jan. 2012. Improved prediction of
biomass composition for switchgrass using reproducing kernel methods with wavelet com-
pressed FT-NIR spectra. Expert Systems with Applications 39 (1), 1555–1564.

Prinzie, A., Van den Poel, D., Apr. 2008. Random forests for multiclass classification: Random
MultiNomial logit. Expert Systems with Applications 34 (3), 1721–1732.

Provost, F., Fawcett, T., Kohavi, R., 1998. The case against accuracy estimation for comparing
induction algorithms. In: Shavlik, J. (Ed.), Machine Learning. Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’98). Morgan Kaufmann Publishers,
Madison, WI, USA, pp. 445–453.

R Core Team, R., 2012. R installation and administration. Manual Version 2.15.1.

Schölkopf, B., Smola, A., 2002. Learning with Kernels, Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge, MA.

Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, Cambridge, UK.

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2009. ROCR: visualizing the performance
of scoring classifiers.

Sylvester, J., Chawla, N., 2005. Evolutionary ensembles: Combining learning agents using
genetic algorithms. In: AAAI Workshop on Multi-agent Learning. pp. 46–51.

Thorleuchter, D., Van den Poel, D., Dec. 2012. Predicting e-commerce company success by
mining the text of its publicly-accessible website. Expert Systems with Applications 39 (17),
13026–13034.

Üstün, B., Melssen, W. J., Buydens, L. M. C., Mar. 2006. Facilitating the application of support
vector regression by using a universal pearson VII function based kernel. Chemometrics and
Intelligent Laboratory Systems 81 (1), 29–40.

Webb, G. I., Aug. 2000. MultiBoosting: a technique for combining boosting and wagging.
Machine Learning 40 (2), 159–196.

51

Willighagen, E., 2012. R package genalg: R based genetic algorithm.

Yao, X., Liu, Y., Jun. 1998. Making use of population information in evolutionary artificial neu-
ral networks. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 28 (3),
417–425.

Zhou, Z. H., Wu, J. X., Tang, W., May 2002. Ensembling neural networks: Many could be
better than all. Artificial Intelligence 137 (1-2), 239–263.

3
CRM in Social Media: Predicting Increases

in Facebook Usage Frequency

Ballings, M, Van den Poel D. CRM in Social Media: Predicting Increases in Facebook Usage

Frequency. Submitted for peer review in 2013 to European Journal of Operational Research.

3.1 Abstract

The purpose of this study is to (1) assess the feasibility of predicting increases in Facebook us-
age frequency, (2) evaluate which algorithms perform best, (3) and determine which predictors
are most important and describe their relationship to the response. We benchmark the perfor-
mance of Logistic Regression, Random Forest, Stochastic Adaptive Boosting, Kernel Factory,
Neural Networks and Support Vector Machines using five times twofold cross-validation. The
results indicate that it is feasible to create models with high predictive performance. The top
performing algorithm was Stochastic Adaptive Boosting with a cross-validated AUC of 0.66
and accuracy of 0.74. The most important predictors include deviation from regular usage pat-
terns, frequencies of likes of specific categories and group memberships, average photo album
privacy settings, and recency of comments. Facebook and other social networks alike could use
predictions of increases in usage frequency to customize its services such as pacing the rate of
advertisements and friend recommendations, or adapting News Feed content altogether. The
main contribution of this study is that it is the first to assess the prediction of increases in usage
frequency in a social network.

53

CHAPTER 3

3.2 Introduction

With 1.23 billion active monthly users the social network site Facebook has grown one of the
world’s largest user bases (Facebook, 2014). Of those monthly users 62% uses the site on a daily
basis (757 million) (Facebook, 2014). While Facebook’s service is free, its business model is
based on advertising. The more time users spend on the platform, the more page impressions
Facebook can sell to advertisers. Revenues are directly determined by the number of active
users and the time that they spend on the network. Hence, increasing user activity and as such
generating ad impressions and clicks is one of Facebook’s primary objectives (Claussen et al.,
2013).

One way of achieving this objective is predicting increases in usage frequency. More specif-
ically, the binary problem of usage increase1 prediction consists in predicting whether a user is
going to increase usage of the product or service. If a user is predicted not to increase usage,
appropriate actions can be taken. One possible action is to propose friendships with unknown
users, in addition to the usual practice of proposing friendships with people the user is likely to
know in real life (e.g., friends of friends). These new friendships will drive new content to the
user’s personalized on-line newspaper called News Feed, and could provide a stimulation for
increased usage.

Together with acquisition, cross-sell and retention modeling, usage increase modeling (up-
sell) shapes the field of predictive modeling in analytical Customer Relationship Management
(aCRM) (Ngai et al., 2009). To the best of our knowledge no aCRM study has been attempted
in the social media industry. This leaves several questions unanswered such as (1) is predicting
usage increases even feasible (i.e., is predictive performance high enough), (2) which algorithms
perform best on these data and, (3) which predictors are most important and how are they related
to the response variable? This study aims to fill this gap in literature by conducting an empirical
study using Facebook data.

The remainder of this article is organized as follows. In the second section of this manuscript,
we highlight our contribution by providing a literature review of aCRM studies per industry.
Third, the data, time window, variables, algorithms, assessment criteria, partial dependence
plots, and cross-validation will be detailed in the methodology section. Fourth, we discuss the
results. The fifth section concludes this paper. The penultimate section discusses the manage-
rial implications. In the seventh and final section we discuss the limitations and directions for
future research.

1Usage frequency increase prediction is equivalent to the more widely known up-sell prediction. Because
Facebook is a free service, the term usage increase is more appropriate than the term up-sell.

54

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

3.3 Literature Review

There are two strategies to usage increase management: untargeted and targeted management
(Burez and Van den Poel, 2007). An untargeted strategy relies on mass advertising to increase
usage such as promoting new features and functionalities. In contrast, a targeted strategy com-
prises (1) identifying which users or customers are (not) going to increase usage and subse-
quently (2) taking appropriate actions to counter or facilitate this process (Hung et al., 2006).
Two targeted strategies exist: reactive and proactive. A reactive approach consists in waiting
until a user decreases usage and subsequently trying to reverse the trend. In a proactive ap-
proach the company tries to predict whether users are going to decrease usage in advance. If
a user is predicted to decrease usage appropriate actions can be taken such as reducing adver-
tisements or recommending new friends. Analogously, if a user is predicted to increase usage,
more advertisements could be directed to the user and friend recommendations could be paced
and saved for later when needed.

As indicated, targeted proactive approaches can have many advantages but they can be very
wasteful if predictions are inaccurate (Burez and Van den Poel, 2007). Hence the goal is to
predict usage increases as accurately as possible. This study focuses on illustrating the feasibil-
ity of usage increase modeling in a major social network, Facebook. Specifically, this research
uses data mining techniques to find the best predictive model and identify top predictors. This
will allow the social network to increase usage of its services.

To highlight our contribution Table 3.1 provides an extensive literature review of predictive
aCRM studies per industry. Popular industries are financial and insurance services, telecommu-
nications and retail. To the best of our knowledge no other study has investigated the feasibility
of usage increase modeling (i.e., up-sell modeling), or any other application for that matter, in
the social media industry. It is important to note that Table 3.1 only contains aCRM studies.
The search strategy for Table 3.1 is based on the requirement that all studies have to have a pre-
diction focus aimed at one-to-one targeting of users or customers (as is the case with aCRM).
While research on social relationships in Facebook has also studied users’ connectedness with
the Facebook platform it focuses on emotional connectedness to Facebook and the degree to
which Facebook is integrated into individuals’ daily lives (Clayton et al., 2013) using surveys.
For this purpose Ellison et al. (2007) developed a survey scale, called the Facebook Intensity
scale. Whereas aCRM focuses on large scale operational deployments of prediction models
for one-to-one targeting, the social relationship research stream focuses mainly on description
models for theory development and creating strategic insights and is therefore out of the scope
of Table 3.1.

55

CHAPTER 3

Table 3.1: Predictive aCRM studies per industry

Industry Studies

Fundraising Verhaert and Van den Poel (2011)
Retail (Supermarket) Migueis et al. (2012b)

Migueis et al. (2012a)
De Bock and Van den Poel (2012)
Burez and Van den Poel (2009)
Buckinx and Van den Poel (2005)

Publishing (Newspaper) Ballings and Van den Poel (2012)
Coussement and Van den Poel (2009)
Burez and Van den Poel (2009)
Coussement and Van den Poel (2008)

Automobiles Baecke and Van den Poel (2013)
Home Appliances Prinzie and Van den Poel (2008)
Financial and insurance services Glady et al. (2009)

De Bock and Van den Poel (2012)
De Bock and Van den Poel (2011)
Burez and Van den Poel (2009)
Prinzie and Van den Poel (2006)
Van den Poel and Lariviere (2004)
Larivière and Van den Poel (2005)
Benoit and Van den Poel (2012)
Xie et al. (2009)
Smith et al. (2000)
Eiben et al. (1998)
Kumar and Ravi (2008)
Prinzie and Van den Poel (2011)

DIY Supplies De Bock and Van den Poel (2012)
De Bock and Van den Poel (2011)
Baesens et al. (2004)

Internet service provider Madden et al. (1999)
Telecommunications Lemmens and Croux (2006)

De Bock and Van den Poel (2011)
Burez and Van den Poel (2009)
Mozer et al. (2000)
Kim (2006)
Bolton (1998)

56

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

De Bock and Van den Poel (2012)
Weerahandi and Moitra (1995)
Datta et al. (2000)
Hung et al. (2006)
Wei and Chiu (2002)
Au et al. (2003)
Hwang et al. (2004)
Neslin et al. (2006)
Lima et al. (2009)
Verbeke et al. (2011)

Mail order De Bock and Van den Poel (2012)
De Bock and Van den Poel (2011)
Thorleuchter et al. (2012)

Pay TV Lemon et al. (2002)
Burez and Van den Poel (2008)
Burez and Van den Poel (2007)
Burez and Van den Poel (2009)

E-commerce Van den Poel and Buckinx (2005)
Social Media This study

The social media industry is different from the industries listed in Table 3.1 in that much
more variables are available. While predictive models are usually based on administrative, op-
erational, or complaints data, profiles on social media contain geographical (e.g., hometown,
current town, check-ins), demographical (e.g., birthday, gender), professional (e.g., job func-
tion, company), social (e.g., friends, family), and personal (e.g., interests, likes, political views,
pictures, videos, albums) information. Hence empirically testing the feasibility of usage in-
crease modeling and assessing which variables are most important in social media is a relevant
undertaking.

Besides evaluating the importance of specific variables and describing their relationship
to the response, it is key to understand which algorithms perform best. This study bench-
marks the predictive performance of six algorithms that have proven to be top performers in
literature: Logistic Regression (Berkson, 1944), Random Forest (Breiman, 2001), Stochastic
Boosting (Friedman, 2001), Support Vector Machines (Cortes and Vapnik, 1995), Kernel Fac-
tory (Ballings and Van den Poel, 2013a), and Artificial Neural Networks (McCulloch and Pitts,
1943).

57

CHAPTER 3

3.4 Methodology

3.4.1 Data and Time Window

To be able to extract data from Facebook user profiles we developed a Facebook application. In
order to stimulate participation we offered a prize. When a user ran the application he or she
was presented with an authorization box, which specified the data that were being collected.
Immediately after giving permission, the application extracted the data. Next, users were pre-
sented with some questions that allowed us to determine the winner of the prize. The data were
collected between May 13, 2012 and January 22, 2013.

Selection effects could occur when a user chooses to run the application. We took steps
to mitigate these effects by targeting a recruitment campaign (i.e., Facebook advertisements)
towards a representative sample of Facebook users. Confirming whether the sample is repre-
sentative of the general Facebook population is challenging in that Facebook does not publish
demographic statistics of its users. However, it is possible to obtain some official gender and
age statistics through the use of Facebook’s advertisement targeting system. The extraction of
these statistics is only possible for 25 countries, hence we chose the top 25 countries in terms
of the absolute number of users. A χ2 test indicates that our sample is not representative of
the top 25 countries on both age and gender with respectively χ2(5) = 237.01, p<0.001 and
χ2(1) = 18.27, p<0.001. To investigate this further Figure 3.1 compares our recruited sample
with the population. In terms of the age variable the sample is somewhat more representative
for populations with a larger group of 20-29 year olds. The difference between men and woman
is also somewhat more pronounced. Despite the significant differences the demographics of
our study sample are to a large degree comparable to the demographic characteristics of the top
25 Facebook countries. Other studies using Facebook data obtained comparable samples (e.g.,
Aral and Walker, 2011). The ranking of the age groups and genders are equivalent for this study
and the Facebook population. One has to keep in mind though that the conclusions that we will
draw about for example the feasibility of predicting usage frequency increases are somewhat
more representative for populations with a larger group of 20-29 year olds and a higher propor-
tion of males than the top 25 countries. It is important to note that ”Facebook is a standardized
research instrument” (Lewis et al., 2008). Results from subsequent data analysis are ”formally
replicable in a way most ’case study’ data are not” (Lewis et al., 2008) and given that our study
is the first to compile and analyze such a rich data set, we believe the results are very valuable.

The main deliverable of this research is an individual-level model to target a user, yes or no.
An unambiguous conclusion for each user needs to be made about his or her future behavior
(Buckinx and Van den Poel, 2005). A natural approach is to build a binary classification model
to classify a user as either a target or not. This methodology is often used in literature on partial
churning (e.g., Buckinx and Van den Poel, 2005; Migueis et al., 2012a,b). The threshold of
change in usage level, to classify a user or customer, is an input parameter given by the com-
pany’s management. The threshold should be rather high in order to target only the users or

58

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

13−19 20−29 30−39 40−49 50−59 60−100 Male Female

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Facebook population top 25 countries
This study

Figure 3.1: Comparison of study sample and demographic characteristics of top 25 Facebook countries

customers most prone to display the target behavior. A common threshold is 40% (see Buckinx
and Van den Poel, 2005; Migueis et al., 2012a,b). Because the sample is relatively small and to
avoid an imbalanced response variable we decided to select 25% as a threshold to classify the
users in our sample. To determine usage increase we needed the users to run the application a
second time at a later stage. If from the independent to the dependent period (see Figure 3.2)
usage increased by 25% we consider a user to increase usage. Usage is defined as the sum of
the following user actions: likes, status updates, videos uploads, photo uploads, albums created,
posted links, check-ins, posted notes and comments made. The final sample contains 921 Face-
book users of which 24.6% were determined to increase usage in the dependent period2. We
used SAS 9.3 and R 3.0.1 (R Core Team, 2013) to perform the necessary data preparations and
statistical modeling.

3.4.2 Predictors

Table 3.2 provides an overview of the 418 predictors used in this study. We mined as much
information as possible from the users’ profiles. The predictors can be classified in the following
categories: demographic and identification variables, geographical variables, professional and
educational variables, social variables, personal variables, general Facebook account variables,
likes, statuses, photos, videos, albums, events, links, check-ins, notes, games, tags, comments
made and comments received. In Table 3.2 IND is short for INDicator and resolves to 1 if
the profile’s field is used, otherwise it resolves to 0. REC is short for RECency and is the
elapsed time since an event. SDIET is short for Standard Deviation Inter- Event Time. MIET
is short for Mean Inter- Event Time. Any reference to ’like’ in this study, unless otherwise

2We assessed the sensitivity of the performance of the benchmarked algorithms to two more cut-offs: 15% and
35%. These cut-offs result in respectively 25.9% and 22.8% of the sample to be classified as having increased
usage.

59

CHAPTER 3

Dependent period Independent period

Extraction of all data in a specific
user’s Facebook profile Predictive Model

May 13, 	

2012	

October 31, 	

2012	

November 1, 	

2012	

January 22, 	

2013	

Figure 3.2: Time window

stated, is not a ’like’ of content generated by another user (e.g., a status update) but of a page,
band, leisure, app, etc. The variable username refers to whether the second part of a user’s
URL is upgraded to a name (created by the user) (the default is a numeric identifier created by
Facebook). The term ’user tags’ refers only to tags of the user himself/herself. In the case of
photos and videos, the word ’created’ refers to uploaded or created, and immediately uploaded,
with the Facebook app. Facebook only allows extraction of the 25 most recent status updates,
photo uploads, link uploads, album uploads, check-ins, video uploads and notes. To handle
this problem we computed frequency by time as to no user in our database reaches these limits.
Frequency (COUNT) of status updates, photo uploads and link uploads is for the last 7 days,
album uploads and check-ins is for the last 4 months, and video uploads and notes is for the last
year.

Table 3.2: Overview of predictors

Variable category Variable

Demographic Age
and IND(gender)
identification IND(gender== female)
variables IND(email)

IND(website)

Geographical IND(hometown)
variables IND(location)

Professional/ COUNT(languages)
Educational COUNT(work)
variables COUNT(educations)

IND(type==High School)

60

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

IND(type==College)
IND(type==Graduate School)

Social COUNT(family)
variables IND(interested in male)

IND(interested in female)
IND(sexual preference heterosexual)
IND(relationship status)
IND(relationship status==Engaged)
IND(relationship status==In a relationship)
IND(relationship status==It’s complicated)
IND(relationship status==Married)
IND(relationship status==Single)
COUNT(OF 23 family relationship types) (e.g., aunt)
COUNT(Friend connections)
COUNT(Groups)

Personal COUNT(favorite teams)
variables COUNT(sports)

COUNT(television)
COUNT(music)
COUNT(movies)
COUNT(books)
COUNT(activities)
COUNT(inspirational people)
COUNT(interests)
COUNT(OF 10 television categories) (e.g., Show)
COUNT(activity category==Interest)
COUNT(activity category==Sport)
COUNT(activity category==Athlete)
COUNT(activity category==Non-profit)
IND(OF 14 interests) (e.g., Design)
IND(OF 23 sports) (e.g., Fitness)
IND(bio)
IND(quotes)
IND(political)
IND(religion)

General Length Facebook membership
Facebook Recency last update=REC(profile update created)
Account MEAN(album privacy==custom)
variables MEAN(album privacy==everyone)

61

CHAPTER 3

MEAN(album privacy==friends)
MEAN(album privacy==friends-of-friends)
MEAN(album privacy==networks)
Profile completeness=SUM(IND(37 profile variables))
IND(username)
Time ratio=SDIET(all actions)/MIET(all actions)

Likes COUNT(OF 188 like categories) (e.g., Musician/band)
COUNT(likes)
COUNT(check-in likes)
REC(like created)
MIET(like created)
SDIET(like created)
COUNT(statuses likes)
COUNT(photos likes)
COUNT(albums likes)
COUNT(check-in likes)

Statuses COUNT(statuses)
REC(status updated)
MIET(status updated)
SDIET(status updated)

Photos COUNT(photos)
REC(photo created)
MIET(photo created)
SDIET(photo created)

Videos COUNT(videos)
REC(video created)
MIET(video created)
SDIET(video created)

Albums COUNT(albums)
REC(album created)
MIET(album created)
SDIET(album created)

Events COUNT(events)
COUNT(event rsvp status==attending)
COUNT(event rsvp status==unsure)
MIET(event created)
SDIET(event created)

Links COUNT(links)
REC(link created)

62

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

MIET(link created)
SDIET(link created)

Check-ins COUNT(check-ins)
REC(check-in created)
MIET(check-in created)
SDIET(check-in created)
IND(check in app==Facebook for iPhone)
IND(check in app==Facebook for Android)
IND(check in app==BlackBerry App)
IND(check-in app==Facebook for iPad)
IND(check-in app==Mobile)

Notes COUNT(notes)
REC(note created)
SDIET(note created)
MIET(note created)

Games COUNT(games)
REC(game created)
MIET(game created)
SDIET(game created)

Tags REC(photo user tags)
COUNT(video user tags)
COUNT(photo user tags)
COUNT(check-in user tags)
MIET(photo user tags)
SDIET(photo user tags)
REC(video user tags)
MIET(video user tags)
SDIET(video user tags)

Comments REC(videos comments)
made REC(photos comments)

REC(albums comments)
REC(statuses comments)
REC(links comments)
REC(check-ins comments)
MIET(videos comments)
SDIET(videos comments)
MIET(photos comments)
SDIET(photos comments)
MIET(albums comments)

63

CHAPTER 3

SDIET(albums comments)
MIET(statuses comments)
SDIET(statuses comments)
MIET(links comments)
SDIET(links comments)
MIET(check-ins comments)
SDIET(check-ins comments)
COUNT(videos comments)
COUNT(photos comments)
COUNT(albums comments)
COUNT(statuses comments)
COUNT(links comments)
COUNT(check-ins comments)

Comments REC(videos comments received)
received REC(photos comments received)

REC(albums comments received)
REC(statuses comments received)
REC(links comments received)
REC(check-ins comments received)
MIET(videos comments received)
SDIET(videos comments received)
MIET(photos comments received)
SDIET(photos comments received)
MIET(albums comments received)
SDIET(albums comments received)
MIET(statuses comments received)
SDIET(statuses comments received)
MIET(links comments received)
SDIET(links comments received)
MIET(check-ins comments received)
SDIET(check-ins comments received)
COUNT(videos comments received)
COUNT(photos comments received)
COUNT(albums comments received)
COUNT(statuses comments received)
COUNT(links comments received)
COUNT(check-ins comments received)

64

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

3.4.3 Algorithms

This section will cover our choices for the parameters of the classification algorithms used in
this study. In the remainder of this study the acronyms LR, RF, AB, KF, NN and SV respectively
denote Logistic Regression, Random Forest, AdaBoost, Kernel Factory, Neural Network, and
Support Vector Machines.

3.4.3.1 Logistic Regression

In order to avoid overfitting we use the lasso approach to regularized Logistic Regression. Lasso
imposes a bound on the sum of the absolute values of the coefficients. As such coefficients are
shrunk towards zero (Guisan et al., 2002). We determine the shrinkage parameter by cross
validation. To fit the model the glmnet R package is used (Friedman et al., 2010, 2013). The α
parameter is set to one to obtain the lasso method and we let the function compute the sequence
of λ by setting nlambda to 100 (the default).

3.4.3.2 Random Forest

Random Forest requires two parameters: the number of variables to try at each split and the
number of trees in the ensemble. We follow Breiman’s recommendation (Breiman, 2001) and
set the number of variables to the square root of the total number of predictors and use a large
number of trees (500). To create the model the randomForest R package (Liaw and Wiener,
2012, 2002) is used.

3.4.3.3 Stochastic AdaBoost

Initial implementations of boosting (Freund and Schapire, 1996) are considered an approxima-
tion to deterministic weighting (Friedman, 2002). One of the most recent boosting variants is
stochastic boosting and improves on the original algorithms by incorporating randomness as an
integral part of the procedure (Friedman, 2002). Two important parameters are the number of
terminal nodes in the base classifiers and the number of iterations. We set the maximum num-
ber of nodes to eight by setting the maximum depth of the trees to three which is in line with
the recommendations of Friedman (2002). In addition we set the number of iterations to 500.
Stochastic boosting is implemented with the ada R package (Culp et al., 2012).

3.4.3.4 Support Vector Machines

An important parameter in Support Vector Machines (SVM) is the kernel function (Martin-
Barragan et al., 2014). The most popular choices are the linear, polynomial, and radial basis
(RBF) kernel (Ballings and Van den Poel, 2013a). In this study we choose the RBF because of
the following reasons: (1) it can model non-linear relationships whereas the linear kernel cannot,
(2) it has less hyperparameters than the polynomial function, and (3) it has less computational

65

CHAPTER 3

problems (such as numeric overflow) because the kernel values are bound by zero and one,
while the polynomial kernel value may go to infinity (Coussement and Van den Poel, 2008).
The RBF kernel requires the choice of only one hyperparameter γ, the width of the Gaussian
(Ben-Hur and Weston, 2010). In addition the SVM penalty parameter C, also called the cost or
soft margin constant, specifies the trade-off between hyperplane violations and the size of the
margin. One can not know in advance which C and γ are best for a given problem. We follow
the recommendation of Hsu et al. (2010) to perform a grid search on C= [2−5, 2−4, ..., 215]

and γ = [2−15, 2−13, ..., 23] to identify the best combination. To map the decision values to
probabilities we used Platt’s method (Platt, 2000). Support Vector Machines are implemented
through the svm function of the e1071 R package (Meyer et al., 2012).

3.4.3.5 Kernel Factory

Ballings and Van den Poel (2013a) recommend the burn method for Kernel Factory. This
method automatically selects the best kernel function. Furthermore, we use the recommended
values for the number of column partition and row partitions (Ballings and Van den Poel,
2013b). Kernel Factory is implemented through the kernelFactory R package (Ballings and
Van den Poel, 2013b).

3.4.3.6 Neural Network

The final base classifier is a feed-forward artificial neural network optimized by BFGS which
is vastly more efficient, reliable and convenient than backpropagation. We use one layer of
hidden neurons which is generally sufficient for classifying most data sets (Dreiseitl and Ohno-
Machado, 2002). Before applying the neural network we rescale the numerical predictors to
[0,1]. The binary variables are left untouched {0,1}. Scaling of the data is necessary to over-
come numerical problems and to obtain training efficiency. The algorithm is implemented using
the nnet R package (Ripley, 2013; Venables and Ripley, 2002). The network weights at the start
of the iterative procedure are chosen at random (Ripley, 1996, pg. 154), hence results of sub-
sequent runs of nnet can differ. This mimics a newborn’s brain: developed but without any
real knowledge (Venkatesh et al., 2014). The entropy parameter is set to use the maximum
conditional likelihood as recommended by Spackman (1991) and Ripley (1996, pg. 149). The
rang parameter, controlling the range of the initial random weights parameter was left at the
default of 0.5. We left the parameters abstol and reltol to respectively 1.0e-4 and 1.0e-8. We
used weight decay to avoid overfitting (Dreiseitl and Ohno-Machado, 2002) and hence the max-
imum number of weights (MaxNWts) and the number of iterations (maxit) were set to very large
values (5000) in order not to run into a situation of early stopping. Finally, the weight decay
factor and the number of nodes in the hidden layer were determined by performing a grid search
(Dreiseitl and Ohno-Machado, 2002). We tried all combinations of decay={0.001, 0.01, 0.1}
(Ripley, 1996, pg. 163), and size=[1, 2, ..., 20] (Ripley, 1996, pg. 170) and selected the optimal

66

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

combination.

3.4.4 Assessment Criteria

To assess the performance of the models we use accuracy and area under the receiver operator
characteristic curve (AUC or AUROC). Accuracy is defined as follows:

Accuracy =
TP + TN

P +N
(3.1)

with TP: True Positives, TN: True Negatives, P: Positives, N: Negatives
All classifiers were set to probabilistic output because a ranking is needed of which users

are most likely to increase usage. To calculate accuracy a threshold then needs to be chosen
to determine whether a user is classified as having increased usage or not. This cutoff should
be chosen to correspond to the proportion of users that will be targeted (Hand, 2005) and is
dictated by the marketing budget. Marketing analysts are often interested in the top 10% of
users most likely to display the target behavior (Coussement et al., 2010). Hence, in this study
we will use the threshold value that corresponds to a proportion of 10%.

In contrast to accuracy, AUC is insensitive to the cutoff value of the posterior probabilities
(Hanley and Mcneil, 1982; Thorleuchter and Van den Poel, 2012) that classifies a Facebook user
as either increasing usage or not. More specifically, while accuracy measures the performance
of the model at one specific cutoff value, AUC assesses performance across all possible cutoff
values. AUC is considered an objective performance metric for classification models (Provost
et al., 1998) and is defined as follows (Ballings and Van den Poel, 2013a):

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
=

∫ 1

0

TP

P
d
FP

N
(3.2)

with TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Negatives, P: Pos-
itives, N: Negatives

AUC is bound by 0.5 and 1, where the former value denotes that predictions are not better
than random, and the latter indicates perfect prediction. In some cases AUC can be lower than
0.5 on the test sample. This is almost always due to overfitting leading the model to generalize
poorly.

3.4.5 Variable importance evaluation

To assess the importance of the predictors in usage increase prediction we use a permutation-
based measure. This type of measure is often used in Random Forest and other ensembles
but its usefulness is not limited to these algorithms. The decrease in accuracy if variables
are permuted is a popular implementation but has the limitation that accuracy is not a good
performance measure in imbalanced settings. Janitza et al. (2013) have compared permutation-
based decrease in accuracy and AUC and conclude that the AUC- based importance measure

67

CHAPTER 3

is preferred to the standard accuracy- based measure whenever the two response classes have
different class sizes. As this is the case in our study (see subsection 3.4.1), we will follow their
recommendation and use the decrease in AUC as the variable importance measure in this study.

Janitza et al. (2013) work with out-of-bag data, which is different for all trees. Hence they
average the AUC over all trees per ensemble. Since we work with test data we compute the
measure for the ensemble. This is essentially the same approach. The importance measures are
averaged across the ten folds obtained through five times twofold cross-validation by taking the
median.

3.4.6 Partial Dependence Plots

Partial Dependence Plots (Friedman, 2001; Hastie et al., 2009, Section 10.13.2) offer a way to
describe the relationship between a predictor and the response variable. The method can be used
with any algorithm, including ensemble algorithms which are often discredited for having low
interpretability (Friedman and Meulman, 2003, p24). Partial Dependence Plots can be created
as follows. For each value in the range of a given variable iteratively impute that given variable
for all the users and compute the mean value of the predicted probability. A plot of each of these
values and the mean of half the logit of the predicted probabilities then reveals the relationship
between the predictor variable and the response variable (Berk, 2008, p222).

3.4.7 Cross Validation

All reported AUCs and accuracies are medians over five replications of twofold cross-validation
(5x2f cv) (Dietterich, 1998; Alpaydin, 1999). In each replication all data instances are randomly
assigned to one of two parts that are equal in size. Each part is employed as both a training and
test set. The entire process results in ten AUCs and accuracies. The same splits are used for all
models. As a measure of dispersion we use the inter quartile range.

In order to test for significant differences we follow the suggestions of Demsar (2006) to use
Friedman’s test with Nemenyi’s post hoc test (Nemenyi, 1963) for comparing the classifiers.
Classifiers are ranked, within folds, with the top performing classifier receiving rank 1 and the
worst performing classifier receiving a rank equal to the number of classifiers (if no ties are
observed). Ties are handled by taking the average ranks. By using this approach the relatedness
of the folds is incorporated (classifier ranks are calculated per fold and then the average rank
is calculated per classifier). In contrast to when the median is computed, they are not treated
as independent (Demsar, 2006). In summary, the average ranks of the AUCs preserve the order
of the folds while the median of the AUCs does not. This is also the reason why results can
sometimes differ to a limited extent (Ballings and Van den Poel, 2013a). Hence average ranks
allow a stricter comparison than the median. We report both the average ranks per classifier and
the median.

68

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

Two classifiers perform significantly different if their average ranks differ by at least the
critical difference. The critical difference (CD) is defined as follows (Demsar, 2006):

CD = qα

√
k(k + 1)

6N
(3.3)

with qα the critical value (which can be found in any statistical statistical book) for a given
p-value and number of classifiers, k the number of classifiers, and N the number of folds. In
this study the critical difference for a p-value of 0.05, 6 classifiers, 10 folds and critical value of
2.850 equals 2.384.

3.5 Results

3.5.1 Models

The results clearly indicate that predicting increases in usage frequency in the social media
industry is a viable strategy with a best median AUC of 0.66 and best median accuracy of
0.74. Figure 3.3 and 3.4 respectively display the median AUC and median accuracy of the
cross validation folds. Based on AUC AdaBoost comes out on top followed by Random Forest,
Logistic Regression, Kernel Factory, Support Vector Machines and Neural Networks. The same
pattern can be observed for accuracy except that Random Forest shares its second place with
Support Vector Machines and that Logistic Regression shares its third place with Kernel Factory.
In sum, AdaBoost is the optimal choice for our data set3.

These results are substantiated by the median ROC curves (Figure 3.5) and the median ac-
curacy curves (Figure 3.6). There are no important ROC curve crossings except for Kernel
Factory performing somewhat worse for lower false positive rates and Random Forest perform-
ing somewhat better on high false positive rates. In a similar fashion the accuracy curves show
no important crossings. However, the performance gap between the leading classifier AdaBoost
and the rest of the classifiers is more pronounced at higher proportions.

Table 3.3 displays the average ranks and the results of the Friedman significance test. The
classifiers are divided into two groups: (1) classifiers that perform statistically worse to the top

3The results for the two alternative thresholds largely coincide. For a threshold of 15% and performance
measure AUC (5x2f CV) the results are as follows (in decreasing order): AB=0.6452, RF=0.6091, LR=0.5985,
SV=0.5748, KF=0.5738, and NN=0.5379. For the performance measure accuracy (5x2f CV) the results are as
follows (in decreasing order): AB=0.7348, RF=0.722, LR & KF =0.7137, NN=0.7109, and SV=0.7065. Both
AdaBoost and Random Forest are again the top performers.

For a threshold of 35% and performance measure AUC (5x2f CV) the results are as follows (in decreasing
order): AB=0.6408, RF=0.6040, LR=0.6009, KF=0.5797, SV=0.5711, and NN=0.5147. For the performance
measure accuracy (5x2f CV) the results are as follows (in decreasing order): AB=0.7570, LR=0.7375, SV=0.7354,
RF=0.7307, KF=0.7242, and NN=0.7166. The results based on AUC are identical to when a cut-off of 25% is
used. When accuracy is used as a performance measure, Random Forest has to give way to Logistic Regression
and Support Vector Machines.

In sum, the sensitivity analysis clearly indicates that the results are not very sensitive to the chosen cut-off. The
results and conclusions are very similar when other thresholds are used. For all tested cut-offs the top performer is
AdaBoost.

69

CHAPTER 3

0.
55

0.
60

0.
65

5x2f CV

M
ed

ia
n

A
U

C

LR RF AB KF NN SV

0.626
0.6374

0.6589

0.6063

0.5473

0.5998

Figure 3.3: Cross validated AUC. LR=Logistic Regression, RF=Random Forest, AB=AdaBoost,
KF=Kernel Factory, NN=Neural Network, SV=Support Vector Machines

0.
69

0.
71

0.
73

0.
75

5x2f CV

M
ed

ia
n

A
C

C

LR RF AB KF NN SV

0.7188

0.7296

0.737

0.7188

0.7061

0.7296

Figure 3.4: Cross validated Accuracy for a cutoff corresponding to the top 10%. LR=Logistic
Regression, RF=Random Forest, AB=AdaBoost, KF=Kernel Factory, NN=Neural Network,

SV=Support Vector Machines

70

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

False Positive Rate

M
ed

ia
n

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LR
RF
AB
KF
NN
SV

Figure 3.5: Cross validated ROC. LR=Logistic Regression, RF=Random Forest, AB=AdaBoost,
KF=Kernel Factory, NN=Neural Network, SV=Support Vector Machines

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

Proportion

M
ed

ia
n

A
cc

ur
ac

y

LR
RF
AB
KF
NN
SV

LR
RF
AB
KF
NN
SV

LR
RF
AB
KF
NN
SV

LR
RF
AB
KF
NN
SV

LR
RF
AB
KF
NN
SV

LR
RF
AB
KF
NN
SV

Figure 3.6: Cross validated Accuracy Curve. LR=Logistic Regression, RF=Random Forest,
AB=AdaBoost, KF=Kernel Factory, NN=Neural Network, SV=Support Vector Machines

71

CHAPTER 3

performer (AdaBoost) and (2) classifiers that perform statistically equal to AdaBoost (displayed
in boldface in Table 3.3).

Table 3.3: Average ranks

LR RF AB KF NN SV Friedman chi2(5)

AUC 3.20 2.50 1.50 4.30 5.50 4.00 28.51, p < 0.001
Accuracy 3.75 2.75 1.70 4.25 5.65 2.90 27.51, p < 0.001

Based on AUC, Logistic Regression and Random Forest perform statistically equally well
as AdaBoost. Based on accuracy Support Vector Machines does also perform equally well as
AdaBoost. Kernel Factory and Neural Networks perform significantly worse than AdaBoost.
These results indicate that Random Forest may be a good option whenever speed is an issue. The
underlying reason is that Random Forest can be executed in parallel and AdaBoost is inherently
sequential.

The feasibility of usage increase prediction is also confirmed when we look at the stability
of the results. The inter quartile ranges (IQRs) are displayed in Table 3.4. The IQRs are low for
all classifiers, meaning that all classifiers produce stable results.

Table 3.4: Inter Quartile Ranges of the AUCs and accuracies obtained through 5x2f cv

LR RF AB KF NN SV
AUC 0.085 0.016 0.030 0.040 0.026 0.006
Accuracy 0.013 0.012 0.022 0.017 0.011 0.015

There are several possible reasons as to why AdaBoost and Random Forest are so strong in
this case. First of all, both methods use decision trees. Trees outperform Logistic Regression if
data are not normally distributed (which is often the case in real life data sets) (King et al., 1995)
and if data are non-linear. Trees even perform very well on data with extreme distributions (King
et al., 1995). Similarly, Neural Networks will only result in the best possible linear combination
of weight estimates if at least normality assumptions are met (Bishop, 2002; Matignon, 2005,
p.8). Our analyses suggest that indeed normality assumptions are not met (as is the case in many
real life data sets). Kernel- based methods then, such as Support Vector Machines and Kernel
Factory, are very sensitive to the choice of the kernel function and will either work very well,
or very poorly depending on the data (and hence the right kernel) (Ballings and Van den Poel,
2013b). Given the large variety of variables (counts, standard deviations, means, indicators;
see Table 3.2) it is highly likely that not all variables conform to one single kernel function.
Kernels force the data to a novel data representation in that data are not represented individually
anymore (per variable), but through a set of pairwise comparisons or similarities (Vert et al.,
2004). This could be a possible reason why trees outperform kernel-based methods in this
case. Moreover, the high performance of AdaBoost and Random Forest is not only due to their
tree base- classifiers. Random Forest further improves upon the performance of single trees by

72

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

reducing the variance of the predictions (Bauer and Kohavi, 1999). Boosting improves trees by
reducing both bias and variance (Bauer and Kohavi, 1999). This makes AdaBoost and Random
Forest all-round high performers. An extensive analysis of why AdaBoost and Random Forest
outperform the other methods is out of the scope of this study. However, this paragraph offers
plausible possible explanations of why AdaBoost and Random Forest outperform the other
methods.

3.5.2 Predictors

To investigate which predictors are driving predictive performance we made a scree plot (Figure
3.7). In the scree plot the variables are sorted in descending order by the five times twofold
cross-validated median decrease in AUC of the AdaBoost model when predictors are permuted.
Predictors ranked lower than 50 add little to the predictive performance. To demonstrate this
we included the top 200 variables in the plot (Figure 3.7). The top 50 predictors are listed in
Table 3.5.

0 50 100 150 200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Ranked predictors

M
ed

ia
n

D
ec

re
as

e
in

 A
U

C

Figure 3.7: Scree plot of importance of 200 top predictors

73

CHAPTER 3

Table 3.5: Variable importance of top 50 predictors

No. Variable name Median Decrease AUC

1 Time ratio 0.01152
2 COUNT(likes from category==Retail and consumer merchandise) 0.00284
3 MEAN(album privacy==custom) 0.00270
4 COUNT(photos) 0.00246
5 SDIET(album created) 0.00204
6 COUNT(Groups) 0.00202
7 COUNT(likes from category==Food/beverages) 0.00201
8 COUNT(likes from category==Public figure) 0.00187
9 REC(links comments received) 0.00179
10 Age 0.00179
11 MIET(video user tags) 0.00165
12 MIET(link created) 0.00163
13 REC(like created) 0.00151
14 SDIET(videos comments) 0.00150
15 COUNT(likes from category==Computers/internet) 0.00146
16 COUNT(likes from category==Shopping/retail) 0.00146
17 COUNT(television category==Tv show) 0.00145
18 COUNT(likes from category==Actor/director) 0.00145
19 COUNT(likes from category==Entertainment) 0.00144
20 COUNT(likes) 0.00140
21 COUNT(music) 0.00139
22 SDIET(event created) 0.00133
23 REC(album created) 0.00132
24 SDIET(status updated) 0.00129
25 COUNT(family relationship==son) 0.00127
26 COUNT(likes from category==Sport) 0.00124
27 Recency last update 0.00122
28 COUNT(likes from category==Cars) 0.00120
29 REC(albums comments received) 0.00120
30 REC(link created) 0.00116
31 COUNT(family relationship==sister) 0.00112
32 SDIET(videos comments received) 0.00107
33 COUNT(likes from category==Movie) 0.00107
34 MIET(links comments received) 0.00106
35 SDIET(links comments received) 0.00105

74

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

36 Profile completeness 0.00104
37 SDIET(photos comments) 0.00101
38 SDIET(photo created) 0.00100
39 REC(photo created) 0.00099
40 COUNT(family) 0.00099
41 COUNT(family relationship==nephew) 0.00099
42 REC(note created) 0.00089
43 COUNT(likes from category==Magazine) 0.00088
44 MIET(album created) 0.00086
45 COUNT(activities) 0.00084
46 REC(videos comments) 0.00080
47 COUNT(likes from category==Clothing) 0.00077
48 MIET(photo created) 0.00076
49 COUNT(check-in user tags) 0.00074
50 COUNT(likes from category==Media/news/publishing) 0.00071

The top predictor is the time ratio. Time ratio is the standard deviation of the inter-event time
(all events) relative to the mean inter-event time. Hence whether the user’s behavior deviates is
a strong predictor of usage increase. The frequencies of liking behavior in the categories retail
and consumer merchandise, food and beverage and public figures are also in the top 10 predic-
tors. Next to that, photo album privacy settings play an important role. If users invest the time to
create custom privacy settings this is predictive of usage increase. In addition, the frequency of
photo uploads and the deviation in the creation of albums are important. Other important vari-
ables are the number of group memberships, the recency since the user has received comments
on his or her content and the user’s age. Despite the importance of age, socio-demographics
clearly do not play a significant role in the prediction of usage increase. This is in line with
other studies in the field of aCRM (Rossi et al., 1996).

Figure 3.8 contains Partial Dependence Plots for a selection of predictors4 based on the
best performing model in our benchmark (AdaBoost). Consider the trend of age. The older
a user is, the higher the probability of usage increase. This is not true for users younger than
20: older means lower probability of usage increase. The other relationships are less complex.
The number of group memberships has an overall positive relationship with the probability to
increase usage. The time ratio (deviation of regular usage in terms of inter event time) has an
overall negative relationship with the probability to increase usage. This means that users that
have more stable behavioral patterns have a higher probability to increase usage.

4The count and time ratio variables do have higher maximum values but these are equal to the value of the
maximum predictor value displayed in the plots.

75

CHAPTER 3

20 30 40 50 60 70 80

−
0.

53
−

0.
52

−
0.

51
−

0.
50

Age

m
ea

n(
0.

5
lo

gi
t(

P
1(

X
))

)

0 20 40 60 80

−
0.

53
−

0.
51

−
0.

49

COUNT(Groups)

m
ea

n(
0.

5
lo

gi
t(

P
1(

X
))

)

0.5 1.0 1.5 2.0 2.5

−
0.

56
−

0.
52

−
0.

48

Time ratio

m
ea

n(
0.

5
lo

gi
t(

P
1(

X
))

)

Figure 3.8: Partial Dependence Plots for a selection of predictor variables

76

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

3.6 Conclusions

In this study we set out to (1) study the feasibility of usage increase prediction in social media,
(2) evaluate which algorithms perform best, (3) and determine the top predictors and describe
their relationship with the response.

The results clearly indicate that usage increase prediction is a viable strategy with AUCs up
to 0.66 and accuracies up to 0.74. Based on AUC, AdaBoost is the best choice to model usage
increase, followed by (in this order) Random Forest, Logistic Regression, Kernel Factory, Sup-
port Vector Machines and Neural Networks. A similar pattern can be observed when accuracy
is used as a performance measure. AdaBoost is the top performer, with Random Forest and
Support Vector Machines sharing a second place, Logistic Regression and Kernel Factory shar-
ing the third place, and Neural Networks on the fourth place. Overall it is clear that AdaBoost
is the best choice, closely followed by Random Forest.

The top predictor is the time ratio. This variable is operationalized to capture the user’s
deviation from his or her regular usage patterns and has been shown to be negatively related to
the probability to increase usage. This seems a plausible finding and is consistent with Buckinx
and Van den Poel (2005) in that customers (or users) with higher time ratios (i.e., deviations
from established behavioral patterns) are less loyal. This can in turn be translated to a lower
probability to increase usage. Other important predictors are frequencies of specific liking
behaviors, privacy settings of albums, frequencies of photo uploads and deviations in album
creations. Groups memberships, recency since receiving comments, and a users’ age are also
very important. A list of the top fifty predictors is provided in Table 3.5 and serves as a first
direction for Facebook Inc. as to which predictors to include in their models. These findings are
important for Facebook Inc. and other social media companies for that matter. The following
section will discuss the managerial implications.

3.7 Managerial Implications

Facebook’s business plan is based on advertising. Therefore, one of Facebook’s primary goals
is to increase the time users spend on the platform, increase user activity, and generate ad im-
pressions (Claussen et al., 2013). The social network draws users to its platform by delivering
social content to users’ customized on-line newspapers, called News Feeds. This process is
governed by an algorithm with the absolute goal to deliver the right content to the right user at
the right time (Facebook, 2013a). Every time someone visits Facebook the News Feed algo-
rithm tries to filter out the posts that are important out of an average of 1500 potential stories
from connections and pages (Facebook, 2013a).

The goal with the advertisements that are shown is identical: the right advertisement has
to be delivered to the right user at the right time (Facebook, 2013b). Every time a user visits
Facebook, the same algorithm chooses between thousands of advertisements to show the most

77

CHAPTER 3

relevant ones (Facebook, 2013b). However, sometimes users might not want to see any ad-
vertisements at all. Showing advertisements at that point might alienate users, decrease usage
frequency, and decrease time spent on the platform for long periods of time. Once defective be-
havior has been observed, Facebook could react and turn off advertisements for that particular
user. However it may take a while before the user returns to the platform and it even might be
too late to recapture the user. Instead of a reactive strategy, we propose a proactive strategy.

More concretely we propose to improve the News Feed algorithm by introducing a predic-
tive component. This will allow Facebook to proactively change tactics and increase revenues.
An illustration may clarify our point. Users are attracted if more, new or better social content
is delivered to their News Feeds and in contrast they are alienated if more advertisements are
delivered. Facebook could employ usage increase prediction as part of the decision process
regarding the balance of social content and advertisements. If a user is predicted to increase us-
age he or she is satisfied with the service (or at least uses the service more than other users) and
hence more advertisements can be shown. Friend and page recommendations could be saved for
later. In contrast, if a user is predicted not to increase usage, advertisements can be turned off,
and new friends and content can be recommended in an attempt to attract and engage the user.
Once engaged, advertisements can be turned on again. By proactively adapting its tactics, Face-
book can avoid alienating potential unhappy users even further and prevent future defection. At
the same time it can count on its satisfied users to create ad impressions and fuel revenue.

The predictive models that we have developed in this paper are viable and could be deployed
on a large scale for such a proactive strategy. The News Feed algorithm could be adapted by in-
troducing a switch that (1) turns on advertisements and saves friend and page recommendations
for later if the user is predicted to increase usage and (2) turns off advertisements and activates
friend and page recommendations if the user is predicted not to increase usage.

3.8 Limitations and directions for Future Research

The first limitation is that we do not have access to full network data (i.e., data about all the con-
nections of the recruited sample). Therefore network effects cannot be included in the analysis.
There is a large body of research on social networks (Hellmann and Staudigl, 2014) reporting
the influence of network effects on a wide range of behaviors (e.g., Bakshy et al., 2012). These
effects are in part driven by homophily, also called endogenous group formation (Hartmann
et al., 2008), and (social) influence (Aral et al., 2009). Failure to include network effects in
the analysis could bias variable importances. Unfortunately, data of a user’s friends are very
hard to obtain and we currently do not have these data. However, as Benoit and Van den Poel
(2012) note, network- based predictors (e.g., Gómez et al., 2013) may only improve predictions
and hence our conclusions about the feasibility of usage increase prediction in social media are
substantiated. Future research could try to obtain such data and improve on this study.

The second limitation is selection effects. It might well be possible that the users that are

78

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

unwilling to share their data (i.e., use our application) may be different from the users in our
recruited sample. Web crawling, another method of obtaining Facebook data, also suffers from
the limitation that private profiles cannot be crawled (Lewis et al., 2008). Although our ap-
proach (using an application with an authorization box) does extract data from users with a
private profile, it suffers from the limitation that some of the privacy sensitive users will not be
willing to share their data with an application. It can be argued that both groups, users with
private profiles and users that don’t want to give their data to applications, largely coincide. Al-
though we recognize that this may impact the generalizability of our results we firmly believe
that our approach is able to extract data from profiles that cannot be extracted using web crawl-
ing and consequently suffers less from generalizability issues than web crawling because of the
following reasons. First, setting a profile to private is in part a mechanism for forcing candidate
viewers of a user’s profile to identify themselves and state their purpose. Candidate viewers
that are not deemed trustworthy are not allowed to see a user’s profile and become a connec-
tion. Hence, we identified ourselves by providing our contact information, and the university’s,
for questions regarding privacy and stated the purpose of our research. We also informed the
user that we encode usernames and that we do not extract personal messages. It can be argued
that users may be more inclined to share their data to one application for academic research pur-
poses than to the general, unidentified public. Second, given the massive adoption of Facebook
applications that all ask the permission to access a user’s profile data, we believe that privacy is
of lesser concern in sharing data to applications than it is in sharing data with the general public.
Third, we offered an incentive in the form of a prize to share their data. In addition to these
arguments, it is important to note that while previous research used a web-crawling approach
to extract data from university students (e.g. Lampe et al., 2007; Lewis et al., 2008), with per-
mission of the university in question and Facebook, it is important to note that our approach is
more privacy aware, because we ask permission directly from the user. Moreover, Facebook is a
standardized research instrument (Lewis et al., 2008) and results from subsequent data analysis
are formally replicable in a way most case study data are not (Lewis et al., 2008).

The third limitation of this study is that some of the variables are limited in the number of
values. Facebook limits the number of entries per variable that an application can extract to the
25 most recent entries. This limitation has mostly an impact on the frequency variables. To cope
with this, we computed the frequency within a specific period of time. We determined the length
of this time window per variable as no user in our database reaches the maximum number of 25
entries. The frequency of status updates, photo uploads and link uploads was computed for the
last 7 days, album uploads and check- ins for the last 4 months, and video uploads and notes
for the last year. An interesting avenue for future work would be to find ways to alleviate this
problem. A possible strategy might be to motivate people to revisit the application at different
times and to stack the 25 last entries.

The fourth limitation is that private communication data are not included in the analysis.
Some work has been done to analyze social relationships in Facebook. Arnaboldi et al. (2013)

79

CHAPTER 3

study 28 Facebook users and all their relationships and determine the drivers of tie strength.
Future research could integrate these insights. Fluctuations in tie strength with specific users
may be a valuable predictor in usage increase models. Unfortunately our data do not allow us
to incorporate individual communication- based variables. We also expect that these data are
very difficult to obtain for a large sample in that users have to authorize data collection (the 28
users in Arnaboldi et al. (2013) are members of the authors’ research department).

The fifth limitation is that there might be some bias by not taking seasonality into account
(e.g., if part of the users are celebrating Christmas and New year and part are not). It is however,
very difficult to automatically detect which user is celebrating New Year and which user is not.
This bias does not inflate our results: taking seasonality into account would only increase the
predictive performance of our models meaning that we have a conservative result. Our finding
that it is feasible to predict usage increase is hence valid but including seasonality would be an
interesting avenue for future research.

The sixth limitation is that we do not model website visits or login events. As such we dis-
regard passive users who visit the social network leaving valuable opportunities for advertising
untapped. Unfortunately Facebook does not allow to extract visits or login events. If Facebook
decides to share these data, an interesting avenue for future research would be to model passive
usage and compare it with active usage. We do want to note that the advantage of active usage
is that each activity on Facebook instills a user’s friends to also visit the website. Therefore it
might have a greater impact to target active usage increase.

As a final remark we want to say that although this study has these data-related shortcom-
ings, it is the first aCRM study using such a variety of data. Other published studies in top
journals using Facebook data (for other purposes than this study) have similar limitations (e.g.,
Aral and Walker, 2011). Large investments have been made to create the extractor app and to the
best of our knowledge this study is the first to provide insight into the feasibility of predicting
usage increases. In sum, we feel that this is a valuable contribution to literature.

3.9 Acknowledgements

We would like to thank Matthias Lelie for his help in this study. Funding for this research was
provided by the Special Research Fund (BOF, Bijzonder Onderzoeksfonds), Ghent University,
Belgium.

3.10 References

Alpaydin, E., 1999. Combined 5 x 2 cv f test for comparing supervised classification learning
algorithms. Neural Computation 11 (8), 1885–1892.

Aral, S., Muchnik, L., Sundararajan, A., Dec. 2009. Distinguishing influence-based conta-

80

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

gion from homophily-driven diffusion in dynamic networks. Proceedings of the National
Academy of Sciences, 21544 –21549.

Aral, S., Walker, D., Sep. 2011. Creating social contagion through viral product design: A
randomized trial of peer influence in networks. Management Science 57 (9), 1623–1639.

Arnaboldi, V., Guazzini, A., Passarella, A., Jun. 2013. Egocentric online social networks: Anal-
ysis of key features and prediction of tie strength in facebook. Computer Communications
36 (10-11), 1130–1144.

Au, W. H., Chan, K. C. C., Yao, X., Dec. 2003. A novel evolutionary data mining algorithm
with applications to churn prediction. Ieee Transactions on Evolutionary Computation 7 (6),
532–545.

Baecke, P., Van den Poel, D., Aug. 2013. Improving customer acquisition models by incorporat-
ing spatial autocorrelation at different levels of granularity. Journal of Intelligent Information
Systems 41 (1), 73–90.

Baesens, B., Verstraeten, G., Van den Poel, D., Egmont-Petersen, M., Van Kenhove, P., Van-
thienen, J., Jul. 2004. Bayesian network classifiers for identifying the slope of the customer
lifecycle of long-life customers. European Journal of Operational Research 156 (2), 508–523.

Bakshy, E., Eckles, D., Yan, R., Rosenn, I., 2012. Social influence in social advertising: Ev-
idence from field experiments. In: Proceedings of the 13th ACM Conference on Electronic
Commerce. New York, pp. 146–161.

Ballings, M., Van den Poel, D., 2012. Customer event history for churn prediction: How long
is long enough? Expert Systems with Applications 39 (18), 13517–13522.

Ballings, M., Van den Poel, D., 2013a. Kernel factory: An ensemble of kernel machines. Expert
Systems with Applications 40 (8), 2904–2913.

Ballings, M., Van den Poel, D., 2013b. R package kernelFactory: an ensemble of kernel ma-
chines.

Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algorithms: Bag-
ging, boosting, and variants. Machine Learning 36 (1-2), 105–139.

Ben-Hur, A., Weston, J., 2010. A user’s guide to support vector machines. Methods in Molecu-
lar Biology. Department of Computer Science Colorado State University, pp. 223–239.

Benoit, D. F., Van den Poel, D., Oct. 2012. Improving customer retention in financial services
using kinship network information. Expert Systems with Applications 39 (13), 11435–11442.

Berk, R. A., 2008. Statistical Learning from a Regression Perspective. Springer Series in Statis-
tics. Springer.

81

CHAPTER 3

Berkson, J., Sep. 1944. Application of the logistic function to bio-assay. Journal of the American
Statistical Association 39 (227), 357–365.

Bishop, C., 2002. Neural Networks for Pattern Recognition. Oxford University Press.

Bolton, R. N., 1998. A dynamic model of the duration of the customer’s relationship with a
continuous service provider: The role of satisfaction. Marketing Science 17 (1), 45.

Breiman, L., Oct. 2001. Random forests. Machine Learning 45 (1), 5–32.

Buckinx, W., Van den Poel, D., 2005. Customer base analysis: partial defection of behaviourally
loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Re-
search 164 (1), 252–268.

Burez, J., Van den Poel, D., 2007. CRM at a pay-TV company: Using analytical models to
reduce customer attrition by targeted marketing for subscription services. Expert Systems
with Applications 32 (2), 277–288.

Burez, J., Van den Poel, D., 2008. Separating financial from commercial customer churn: A
modeling step towards resolving the conflict between the sales and credit department. Expert
Systems with Applications 35 (1–2), 497–514.

Burez, J., Van den Poel, D., 2009. Handling class imbalance in customer churn prediction.
Expert Systems with Applications 36 (3), 4626–4636.

Claussen, J., Kretschmer, T., Mayrhofer, P., Mar. 2013. The effects of rewarding user engage-
ment: The case of facebook apps. Information Systems Research 24 (1), 186–200.

Clayton, R. B., Osborne, R. E., Miller, B. K., Oberle, C. D., May 2013. Loneliness, anxiousness,
and substance use as predictors of facebook use. Computers in Human Behavior 29 (3), 687–
693.

Cortes, C., Vapnik, V., Sep. 1995. Support-vector networks. Machine Learning 20 (3), 273–297.

Coussement, K., Benoit, D. F., Van den Poel, D., Mar. 2010. Improved marketing decision
making in a customer churn prediction context using generalized additive models. Expert
Systems with Applications 37 (3), 2132–2143.

Coussement, K., Van den Poel, D., 2008. Churn prediction in subscription services: An applica-
tion of support vector machines while comparing two parameter-selection techniques. Expert
Systems with Applications 34 (1), 313–327.

Coussement, K., Van den Poel, D., 2009. Improving customer attrition prediction by integrating
emotions from client/company interaction emails and evaluating multiple classifiers. Expert
Systems with Applications 36 (3), 6127–6134.

82

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

Culp, M., Johnson, K., Michailidis, G., 2012. R package ada: an r package for stochastic boost-
ing.

Datta, P., Masand, B., Mani, D. R., Li, B., Dec. 2000. Automated cellular modeling and predic-
tion on a large scale. Artificial Intelligence Review 14 (6), 485–502.

De Bock, K. W., Van den Poel, D., 2011. An empirical evaluation of rotation-based ensemble
classifiers for customer churn prediction. Expert Systems with Applications 38 (10), 12293–
12301.

De Bock, K. W., Van den Poel, D., Jun. 2012. Reconciling performance and interpretability
in customer churn prediction using ensemble learning based on generalized additive models.
Expert Systems with Applications 39 (8), 6816–6826.

Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7, 1–30.

Dietterich, T. G., 1998. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation 10 (7), 1895–1923.

Dreiseitl, S., Ohno-Machado, L., Dec. 2002. Logistic regression and artificial neural network
classification models: a methodology review. Journal of Biomedical Informatics 35 (5-6),
352–359.

Eiben, A. E., Koudijs, A. E., Slisser, F., 1998. Genetic modelling of customer retention. Genetic
Programming. First European Workshop, EuroGP’98. Proceedings, 178–86.

Ellison, N. B., Steinfield, C., Lampe, C., Jul. 2007. The benefits of facebook ”friends”: So-
cial capital and college students’ use of online social network sites. Journal of Computer-
Mediated Communication 12 (4), 1.

Facebook, Sep. 2013a. News feed FYI: a window into news feed.
URL https://www.facebook.com/business/news/

News-Feed-FYI-A-Window-Into-News-Feed/

Facebook, Sep. 2013b. News feed FYI: more relevant ads in news feed | facebook newsroom.
URL http://newsroom.fb.com/news/2013/09/

news-feed-fyi-more-relevant-ads-in-news-feed/

Facebook, 2014. Newsroom - key facts.
URL http://newsroom.fb.com/Key-Facts

Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm. In: Machine Learn-
ing. Proceedings of the Thirteenth International Conference (ICML ’96). Bari, Italy, pp. 148–
156.

83

CHAPTER 3

Friedman, J., Hastie, T., Tibshirani, R., Feb. 2010. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33 (1), 1–22.

Friedman, J., Hastie, T., Tibshirani, R., 2013. R package glmnet: Lasso and elastic-net regular-
ized generalized linear models.

Friedman, J. H., Oct. 2001. Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (5), 1189–1232.

Friedman, J. H., Feb. 2002. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis 38 (4), 367–378.

Friedman, J. H., Meulman, J. J., May 2003. Multiple additive regression trees with application
in epidemiology. Statistics in Medicine 22 (9), 1365–1381.

Glady, N., Baesens, B., Croux, C., 2009. Modeling churn using customer lifetime value. Euro-
pean Journal of Operational Research 197 (1), 402–411.

Gómez, D., Figueira, J. R., Eusébio, A., Apr. 2013. Modeling centrality measures in social
network analysis using bi-criteria network flow optimization problems. European Journal of
Operational Research 226 (2), 354–365.

Guisan, A., Edwards, T. C., Hastie, T., Nov. 2002. Generalized linear and generalized additive
models in studies of species distributions: setting the scene. Ecological Modelling 157 (2-3),
89–100.

Hand, D. J., Sep. 2005. Good practice in retail credit scorecard assessment. Journal of the
Operational Research Society 56 (9), 1109–1117.

Hanley, J., Mcneil, B., 1982. The meaning and use of the area under a receiver operating char-
acteristic (roc) curve. Radiology 143 (1), 29–36.

Hartmann, W. R., Manchanda, P., Nair, H., Bothner, M., Dodds, P., Godes, D., Hosanagar, K.,
Tucker, C. E., Dec. 2008. Modeling social interactions: Identification, empirical methods and
policy implications. Marketing Letters 19 (3-4), 287–304.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning - Data Min-
ing, Inference, and Prediction, second edition Edition. Springer Series in Statistics. Springer.

Hellmann, T., Staudigl, M., May 2014. Evolution of social networks. European Journal of Op-
erational Research 234 (3), 583–596.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2010. A practical guide to support vector classification.
Technical report, Department of Computer Science and Information Engineering, National
Taiwan University, Taipei 106, Taiwan.

84

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

Hung, S.-Y., Yen, D. C., Wang, H.-Y., Oct. 2006. Applying data mining to telecom churn man-
agement. Expert Systems with Applications 31 (3), 515–524.

Hwang, H., Jung, T., Suh, E., Feb. 2004. An LTV model and customer segmentation based on
customer value: a case study on the wireless telecommunication industry. Expert Systems
with Applications 26 (2), 181–188.

Janitza, S., Strobl, C., Boulesteix, A.-L., Apr. 2013. An AUC-based permutation variable im-
portance measure for random forests. BMC Bioinformatics 14 (1), 119.

Kim, Y., 2006. Toward a successful CRM: variable selection, sampling, and ensemble. Decision
Support Systems 41 (2), 542–553.

King, R., Feng, C., Sutherland, A., 1995. Statlog - comparison of classification algorithms on
large real-world problems. Applied Artificial Intelligence 9 (3), 289–333.

Kumar, D. A., Ravi, V., 2008. Predicting credit card customer churn in banks using data mining.
International Journal of Data Analysis Techniques and Strategies 1 (1), 4–28.

Lampe, C., Ellison, N., Steinfield, C., 2007. A Familiar Face(book): Profile Elements as Signals
in an Online Social Network.

Larivière, B., Van den Poel, D., 2005. Predicting customer retention and profitability by using
random forests and regression forests techniques. Expert Systems with Applications 29 (2),
472–484.

Lemmens, A., Croux, C., May 2006. Bagging and boosting classification trees to predict churn.
Journal of Marketing Research (JMR) 43 (2), 276–286.

Lemon, K. N., White, T. B., Winer, R. S., Jan. 2002. Dynamic customer relationship man-
agement: Incorporating future considerations into the service retention decision. Journal of
Marketing 66 (1), 1–14.

Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., Christakis, N., Oct. 2008. Tastes, ties, and
time: A new social network dataset using facebook.com. Social Networks 30 (4), 330–342.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3),
18–22.

Liaw, A., Wiener, M., 2012. R package randomForest: breiman and cutler’s random forests for
classification and regression.

Lima, E., Mues, C., Baesens, B., Aug. 2009. Domain knowledge integration in data mining
using decision tables: case studies in churn prediction. Journal of the Operational Research
Society 60 (8), 1096–1106.

85

CHAPTER 3

Madden, G., Savage, S. J., Coble-Neal, G., Jul. 1999. Subscriber churn in the australian ISP
market. Information Economics and Policy 11 (2), 195–207.

Martin-Barragan, B., Lillo, R., Romo, J., Jan. 2014. Interpretable support vector machines for
functional data. European Journal of Operational Research 232 (1), 146–155.

Matignon, R., Aug. 2005. Neural Network Modeling Using Sas Enterprise Miner. AuthorHouse.

McCulloch, W., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2012. R package e1071:
Misc functions of the department of statistics (e1071),.

Migueis, V., Van den Poel, D., Camanho, A., Falcao e Cunha, J., 2012a. Modeling partial
customer churn: On the value of first product-category purchase sequences. Expert Systems
with Applications 39 (12), 11250–11256.

Migueis, V. L., Van den Poel, D., Camanho, A. S., Cunha, J. F. e., Dec. 2012b. Predicting par-
tial customer churn using markov for discrimination for modeling first purchase sequences.
Advances in Data Analysis and Classification 6 (4), 337–353.

Mozer, M., Wolniewicz, R., Grimes, D., Johnson, E., Kaushansky, H., 2000. Predicting sub-
scriber dissatisfaction and improving retention in the wireless telecommunications industry.
IEEE Transactions on Neural Networks 11 (3), 690 –696.

Nemenyi, P., 1963. Distribution-free multiple comparisons. Ph.D. thesis, Princeton University.

Neslin, S. A., Gupta, S., Kamakura, W., Junxiang Lu, Mason, C. H., May 2006. Defection
detection: Measuring and understanding the predictive accuracy of customer churn models.
Journal of Marketing Research (JMR) 43 (2), 204–211.

Ngai, E., Xiu, L., Chau, D., 2009. Application of data mining techniques in customer relation-
ship management: A literature review and classification. Expert Systems with Applications
36 (2), 2592–2602.

Platt, J., 2000. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. Advances in Large Margin Classifiers. MIT Press, Cambridge, MA.

Prinzie, A., Van den Poel, D., 2006. Incorporating sequential information into traditional clas-
sification models by using an element/position-sensitive SAM. Decision Support Systems
42 (2), 508–526.

Prinzie, A., Van den Poel, D., Apr. 2008. Random forests for multiclass classification: Random
MultiNomial logit. Expert Systems with Applications 34 (3), 1721–1732.

86

CRM IN SOCIAL MEDIA: PREDICTING INCREASES IN FACEBOOK USAGE FREQUENCY

Prinzie, A., Van den Poel, D., Jun. 2011. Modeling complex longitudinal consumer behavior
with dynamic bayesian networks: an acquisition pattern analysis application. Journal of In-
telligent Information Systems 36 (3), 283–304.

Provost, F., Fawcett, T., Kohavi, R., 1998. The case against accuracy estimation for comparing
induction algorithms. In: Shavlik, J. (Ed.), Machine Learning. Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’98). Morgan Kaufmann Publishers,
Madison, WI, USA, pp. 445–453.

R Core Team, R., 2013. R package stats: R statistical functions.

Ripley, B., 1996. Pattern Recognition and Neural Networks. Cambridge University Press.

Ripley, B., 2013. R package nnet: Feed-forward neural networks and multinomial log-linear
models.

Rossi, P. E., McCulloch, R. E., Allenby, G. M., 1996. The value of purchase history data in
target marketing. Marketing Science 15 (4), 321–340.

Smith, K. A., Willis, R. J., Brooks, M., 2000. An analysis of customer retention and insurance
claim patterns using data mining: a case study. Journal of the Operational Research Society
51 (5), 532–541.

Spackman, K. A., 1991. Maximum likelihood training of connectionist models: comparison
with least squares back-propagation and logistic regression. In: Proceedings of the Annual
Symposium on Computer Application in Medical Care. pp. 285–289.

Thorleuchter, D., Van den Poel, D., Dec. 2012. Predicting e-commerce company success by
mining the text of its publicly-accessible website. Expert Systems with Applications 39 (17),
13026–13034.

Thorleuchter, D., Van den Poel, D., Prinzie, A., Feb. 2012. Analyzing existing customers’ web-
sites to improve the customer acquisition process as well as the profitability prediction in
b-to-b marketing. Expert Systems with Applications 39 (3), 2597–2605.

Van den Poel, D., Buckinx, W., Oct. 2005. Predicting online-purchasing behaviour. European
Journal of Operational Research 166 (2), 557–575.

Van den Poel, D., Lariviere, B., 2004. Customer attrition analysis for financial services using
proportional hazard models. European Journal of Operational Research 157 (1), 196–217.

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics with S, 4th Edition. Springer,
New York.

87

Venkatesh, K., Ravi, V., Prinzie, A., Poel, D. V. d., Jan. 2014. Cash demand forecasting in
ATMs by clustering and neural networks. European Journal of Operational Research 232 (2),
383–392.

Verbeke, W., Martens, D., Mues, C., Baesens, B., Mar. 2011. Building comprehensible cus-
tomer churn prediction models with advanced rule induction techniques. Expert Systems with
Applications 38 (3), 2354–2364.

Verhaert, G. A., Van den Poel, D., Feb. 2011. Improving campaign success rate by tailoring
donation requests along the donor lifecycle. Journal of Interactive Marketing 25 (1), 51–63.

Vert, J.-P., Tsuda, K., Schölkopf, B., 2004. A primer on kernel methods. In: Schölkopf, B.,
Tsuda, K., Vert, J.-P. (Eds.), Kernel Methods in Computational Biology. Computational
Molecular Biology. MIT Press, pp. 35–70.

Weerahandi, S., Moitra, S., 1995. Using survey data to predict adoption and switching for ser-
vices. Journal of Marketing Research 32 (1), 85–96.

Wei, C.-P., Chiu, I.-T., 2002. Turning telecommunications call details to churn prediction: a
data mining approach. Expert Systems with Applications 23 (2), 103–112.

Xie, Y., Li, X., Ngai, E., Ying, W., 2009. Customer churn prediction using improved balanced
random forests. Expert Systems with Applications 36 (3), 5445–5449.

4
Hybrid Ensembles:

Many Ensembles is Better Than One

Ballings, M, Vercamer, D., Van den Poel, D. Hybrid Ensembles: Many Ensembles is Better Than

One. Submitted for peer review in 2013 to Pattern Recognition.

4.1 Abstract

The purpose of this paper is to assess the added value of algorithm- induced diversity over and
above data- induced diversity in ensemble design. We develop a Hybrid Ensemble consisting
of six sub-ensembles: Bagged Logistic Regression, Random Forest, Kernel Factory, Bagged
Support Vector Machines, Stochastic Boosting, and Bagged Neural Networks. We test the
algorithm on eleven data sets using five times twofold cross-validation. The Hybrid Ensemble
significantly and consistently outperforms the Single Best sub-ensemble on all data sets when
the authority method or Self Organizing Migrating Algorithm is used for weight estimation.
Analyses also indicate that the Hybrid Ensemble yields increasingly important classification
improvements with increasingly difficult tasks. To the best of our knowledge this study is
the first to assess the added value of algorithm-induced diversity over and above data-induced
diversity in ensemble design. To make our results replicable we submitted an open- source R-
software package called hybridEnsemble to CRAN.

89

CHAPTER 4

4.2 Introduction

Theoretical and experimental research has shown that diversity is of chief importance in clas-
sifier ensemble design (Krogh and Vedelsby, 1995; Kuncheva and Whitaker, 2003; Kuncheva,
2004; Brown et al., 2005). Given an adequate combination rule and sufficient diversity, even
poorly performing team members (i.e., base classifiers) can engender a highly accurate en-
semble (Kuncheva and Whitaker, 2003). Although accurate base classifiers are still favorable
(Krogh and Vedelsby, 1995), it is especially important that their errors are uncorrelated (i.e.,
diverse). Research has proven that higher diversity results in a lower generalization error (Opitz
and Shavlik, 1996). The result is that ensembles typically outperform the Single Best classifier.
While in theory, one could optimize explicitly for diversity (Kuncheva and Whitaker, 2003), no
successful attempts have been made up to this point (Tang et al., 2006; Gal-Or et al., 2005).
Therefore literature has identified two main strategies to implicitly create diversity: (1) data
perturbation and (2) algorithm variety. The most followed designs adhere to the data- strategy.
Bootstrap aggregating (Bagging) (Breiman, 1996) was the first method to effectively employ
the data perturbation strategy. Similarly, Boosting (Freund and Schapire, 1996) and Random
Subspaces (Ho, 1998) also showed the merits of applying this approach. Random Forest, intro-
duced by Breiman (2001), has been the most influential work in this area as it combined both
Bagging and Random Subspaces to further increase accuracy.

While data perturbation has evolved to become the most popular diversity generation strat-
egy, algorithm variation strategies have been lingering in the background. Examples of algo-
rithm variation strategies are varying parameters and combining different algorithms. One of
the reasons may be that researchers do not want to invest time into the intricacies of tuning a
large number of different classification algorithms (King et al., 1995) while the data- strategy
is much simpler to implement. Another reason might be that scholars want to focus on weak
base classifiers (stumps) in order to more easily find significant benefits through ensembling
(Ko et al., 2008). Ensembles of Neural Networks have often relied on differences in parameter
initialization (Partridge and Yates, 1996; Yates and Partridge, 1996) but several experiments
revealed that this is the least effective way to create diversity (Brown et al., 2005). Still, com-
petitive results can also be achieved through the variation of algorithms. Michalski et al. (1994);
Woods et al. (1997); Mitchell (1997) already showed that the difference in inductive bias could
be beneficial toward increasing accuracy. In more recent work, Menahem et al. (2009) com-
bined C4.5 Decision Tree, Naive Bayes, KNN, VFI and OneR for improving malware detection
and Zhang (2011) used Random forest, Neural Networks and Support Vector Machines to create
an ensemble that worked well on biomedicine data. Another study by van der Laan et al. (2007)
used seven different base classifiers to create a Super Learner for regression. However, both
data- and algorithm- strategies have mostly been studied in isolation and no study has explicitly
attempted to combine them. As more diversity should be beneficial to the combined predictive
performance, a combination of the two strategies could lead to higher ensemble accuracy.

90

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

In response to this gap we will assess the added value of algorithm-driven diversity to en-
semble performance over and above data-driven diversity while automatically tuning the clas-
sifier parameters. More specifically, we will investigate whether including different algorithms
in an ensemble can outperform top performing ensembles such as Random Forest and Boosting
that make use of data- strategies. To assess this strategy, we employ a select number of popu-
lar and high performing learning methods as base classifiers: Random Forest (Breiman, 2001),
Stochastic Boosting (Friedman, 2002), Artificial Neural Networks (McCulloch and Pitts, 1943),
Logistic Regression (Berkson, 1944), Support Vector Machines (Cortes and Vapnik, 1995) and
Kernel Factory (Ballings and Van den Poel, 2013a).

The rest of this paper is organized as follows: in Section 4.3 we will give an overview of
related literature. Section 4.4 describes our Hybrid Ensemble. The design of experiments is
provided in Section 4.5 with results in Section 4.6. Finally in Section 4.7 we conclude this
paper and discuss limitations and directions for future research.

4.3 Related Work

The concept of diversity is one of the most popular explanations for the success of ensem-
ble methods (Kuncheva and Whitaker, 2003). As a decrease in the ensemble error relates to
some form of diversity, understanding it is essential (Zhou, 2012). In a regression setting, bias-
variance-covariance (BVC) decomposition (Geman et al., 1992) and ambiguity decomposition
(Krogh and Vedelsby, 1995) have been used as an effective framework for understanding di-
versity. Despite this widespread attention, in classification a clear framework and definition are
yet to be formulated (Tang et al., 2006; Kuncheva, 2003). A promising attempt by Didaci et al.
(2013) includes an ambiguity-like and BVC-like decomposition for classification that requires
further investigation. Moreover, techniques such as Bagging effectively show the merits of us-
ing a diverse set of classifiers but the underlying objective function that is implicitly optimized
by these techniques is still under investigation (Didaci et al., 2013). Still it is widely believed
that diversity is a quantifiable property of ensembles that can be used in their design. Theo-
retical analysis (Kittler et al., 1998; Brown et al., 2005) supports this hypothesis as well as the
numerous experiments with diverse classifiers that have been undertaken.

Diversity creation, part of what is often called coverage optimization (Ho, 2002), has been
categorized in different ways throughout the years. Typically at a higher level the distinction
is made between explicit and implicit diversity creation (Brown et al., 2005; Tang et al., 2006).
In explicit diversity creation a specific measure is used and optimized to increase the error di-
versity among the base classifiers. However, most measures that were proposed by Kuncheva
and Whitaker (2003) have been proven to be ineffective (Tang et al., 2006) as the relationship
between an improved diversity measure and the ensemble accuracy is ambiguous. It also raised
the question whether ensemble accuracy itself should be preferred to using an estimate of di-
versity (Ruta and Gabrys, 2005; Didaci et al., 2013). Brown and Kuncheva (2010) argued that

91

CHAPTER 4

there may be such a thing as ”good” and ”bad” diversity. The ultimate goal should be to in-
crease the amount of ”good” diversity and reduce ”bad” diversity. In this case, ”good” diversity
is defined as the disagreement among the base classifiers where the ensemble is right. ”Bad”
diversity is the disagreement among the base classifiers where the ensemble is wrong. Still,
no explicit measure has been found that can be used for ensemble design (Didaci et al., 2013).
While explicit diversity creation has mostly failed to consistently obtain high accuracies, im-
plicit diversity has done much better. As mentioned in the introduction, implicit diversity relies
on some form of randomness (initial weights, data perturbation, used algorithms) (Brown et al.,
2005) to create different regions in the search space.

Diving deeper into the realm of implicit diversity generation, the most effective ways to cre-
ate diverse and accurate classifiers is by means of implicit heuristic techniques. There are two
broad methods that encompass extant literature: data-induced and algorithm-induced diversity
creation. Data-induced diversity has been called different things by different authors. Sharkey
(1999), Brown et al. (2005) and Rokach (2010) called it the manipulation or use of training
data. Baumgartner and Serpen (2012) and Zhang and Zhou (2011) called it ensembles with
data perturbation. Rokach (2010) also included the change of the target attribute representa-
tion and the partitioning of the search space. Popular examples of data-driven methods include
Bagging (Breiman, 1996) which creates diversity through the instances, Random Subspaces
(Ho, 1998; Bryll et al., 2003) that focuses on the features and Random Forest (Breiman, 2001)
which combines both. Analogously, algorithm-induced diversity also exists in multiple forms.
For Sharkey (1999) this would be the architecture of the networks, the parameter settings of
the inducer and the inducer itself. In the taxonomy of Brown et al. (2005) this is the starting
point in the hypothesis space and its traversal as well as the manipulation of the architecture
part of the set of accessible hypotheses. Rokach (2010) covers it with the manipulation of the
inducer and hybridized methods. Lastly, Baumgartner and Serpen (2012) and Zhang and Zhou
(2011) called it homogeneous ensembles with different parameters and heterogeneous ensem-
bles. In algorithm-driven diversity, most attention has been on designs with different weights
or parameters (Ueda, 2000; Windeatt, 2005). Unfortunately authors recognized it is the least
effective way to create diversity (Brown et al., 2005). Michalski et al. (1994) and Tsoumakas
et al. (2005) found that multi-strategy ensembles are more effective. In this paper, data-induced
diversity focuses on the data perturbation methods while algorithm-induced diversity relies on
multiple types of inducers, also known as multi-strategy or Hybrid Ensembles. Both diversity
generation schemes have been effectively used to obtain high ensemble accuracy.

While data perturbation techniques have flourished in recent years, the use of algorithm
variation has remained largely unexplored. Although several papers recognized that combining
multiple inductive biases is an effective way to create diversity, only few scholars have used this
strategy so far. Furthermore, even less authors recognized that the integration of both schemes
could be beneficial in improving the ensemble accuracy. Table 4.1 summarizes the literature by
including a set of ground-breaking, pivotal papers that use data variation and algorithm variation

92

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

in classification.

Table 4.1: Hybrid Diversity Generation Strategies

Data set Data Algorithm Algorithm
→ Data

Data → Al-
gorithm

Breiman (1996) x
Freund and Schapire (1996) x
Ho (1998) x
Breiman (2001) x
Michalski et al. (1994) x
Woods et al. (1997) x
Wang et al. (2000) x
Tsoumakas et al. (2005) x
Canuto et al. (2007) x
Menahem et al. (2009) x
Nascimento and Coelho
(2009)

x x x

This study x x x

One example of integration of both strategies can be found in Nascimento and Coelho (2009)
where multiple inducers are integrated into a Bosting scheme. However, as Table 4.1 shows,
hybrid forms of ensembles where data-induced ensembles are combined have not yet been ex-
plored. In regression, a first attempt was made by Yu et al. (2007) but only three base classi-
fiers were used and no extension was made toward classification. As the effectiveness of both
strategies in ensemble classification has only been proven in isolation, this study could deliver
insightful results. This paper aims to investigate whether algorithm-induced diversity signifi-
cantly adds value over and above data-induced diversity in a classification setting.

4.4 Hybrid Ensemble

In this study we include different sub-ensembles that employ a data- strategy into a Hybrid
Ensemble. By comparing the Hybrid Ensemble’s classification performance with the Single
Best sub-ensemble we are able to assess the added value of algorithm-induced diversity over
data-induced diversity. In the following subsection we will justify our choice of those sub-
ensembles.

4.4.1 Base classifiers

The industrially preferred (Ruta and Gabrys, 2005) classifier selection method is called Single
Best: ensembles that have performed well in the past are evaluated, and the best performing
one is selected. Our proposed Hybrid Ensemble will only be relevant if it outperforms the
industrially preferred method. In this light, we have searched extant literature and selected

93

CHAPTER 4

six algorithms, new and old, that perform well on a multitude of data sets: Logistic Regres-
sion (Berkson, 1944), Artificial Neural Networks (McCulloch and Pitts, 1943), Support Vector
Machines (Cortes and Vapnik, 1995), Random Forest (Breiman, 2001), Stochastic Boosting
(Friedman, 2001), and Kernel Factory (Ballings and Van den Poel, 2013a).

As mentioned above, to be able to assess the added value of algorithm variation over data
variation, we need to ensure that all ensemble members are ensembles themselves employing a
data- strategy. Random Forest, Stochastic Boosting and Kernel Factory inherently use a data-
strategy. For the other three algorithms (Logistic Regression, Neural Networks and Support
Vector Machines) we use Bagging to make the ensembles. We choose Bagging because it is
one of the most effective data- strategies, easy to implement, and inherently parallel. Bagging
consistently outperforms single classifiers in case of Neural Networks (Zhou et al., 2002), Lo-
gistic Regression (Kim, 2006), and Support Vector Machines (Valentini et al., 2003). The next
step in the process will be to combine these members in a Hybrid Ensemble (see Section 4.4.2).

The selection of these six algorithms is based on a number of studies that rigorously com-
pare multiple algorithms (up to thirty-three learning methods on up to thirty-six data sets). King
et al. (1995) compare seventeen methods on twelve real-life data sets ranging from image anal-
ysis, medicine, and engineering to finance. Cooper et al. (1997) evaluate eight models on a
medical data set. Bauer and Kohavi (1999) investigate multiple methods on fourteen data sets
including credit scoring, image analysis, and letter recognition. Lim et al. (2000) benchmark
thirty-three old and new classification algorithms on a diverse set of sixteen data sets (and the
sixteen same data sets but with added noise). Breiman (2001) compares two algorithms on 19
data sets including problems of credit scoring, medical and engineering problems. Perlich et al.
(2004) uses two algorithms to analyze thirty-six different data sets about a multitude of prob-
lems (e.g., pricing, bacteria detection, product evaluation, game outcomes, and credit scoring).
Caruana and Niculescu-Mizil (2006) provide an empirical comparison of ten learning methods
on eleven data sets. Neslin et al. (2006) discuss results of a benchmark considering seven meth-
ods in a marketing context. Coussement and Van den Poel (2008) evaluate three methods in an
operational marketing context. Burez and Van den Poel (2009) compare four algorithms on six
marketing data sets. Finally, Ballings and Van den Poel (2013a) assess three learning methods
on fourteen data sets including, among others, medical and financial data.

All these benchmarks denote that the selected classifiers in this study are top performers.
One could argue that including more methods could benefit ensemble performance. There are
four reasons not to increase the ensemble size. First, including more team members would
increase learning times and computational effort for both the base classifiers (Margineantu and
Dietterich, 1997) and the combination methods to an impractical level. Second, small ensembles
have, in many cases, near-optimal performance (Margineantu and Dietterich, 1997). Third,
diversity has a strong effect in the ensemble performance when using less than ten classifiers
(Kuncheva, 2004; Canuto et al., 2007). Fourth, we included only the top performing ensembles
found in extant literature, given that the purpose of this paper is to improve upon the industrially

94

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

preferred Single Best method.
Whether an ensemble of the aforementioned classifiers can outperform the Single Best de-

pends on the diversity of the classifiers’ predictions (Ruta and Gabrys, 2005). Some of the
above studies distill which data characteristics will lead those classifiers to perform differently
(result in different predictions). Logistic Regression performs worse than classification trees if
data are not normally distributed and if there are many categorical predictors (King et al., 1995),
but performs better on smaller data sets (Perlich et al., 2004). Trees perform better than Logis-
tic Regression on data with extreme distributions (King et al., 1995) and data sets with a higher
signal to noise (Perlich et al., 2004). While Logistic Regression captures the covariates linearly
(Dreiseitl and Ohno-Machado, 2002), decision trees are inherently non-linear. Random Forest
(trees) can handle high variance situations (Bauer and Kohavi, 1999) and Boosting reduces both
bias and variance (Bauer and Kohavi, 1999). Support Vector Machines are very sensitive to the
choice of the kernel function and will either work very well, or very poorly depending on the
data (and consequently the right kernel) (Ballings and Van den Poel, 2013a). This limitation
is similar for Kernel Factory, however, it is capable of capturing remaining non-linearities in
the kernel matrix (Ballings and Van den Poel, 2013a). Neural Networks are universal approx-
imators. While the functional forms of Logistic Regression and Neural Networks differ, both
algorithms would be identical if Neural Networks would not have a hidden layer and if the lo-
gistic activation function is used (Dreiseitl and Ohno-Machado, 2002). The hidden layer allows
Neural Networks to model non-linear functions of the inputs. Nevertheless, this extra flexibility
requires more parameter tuning, hence depending on the data it is well possible that the simpler
Logistic Regression outperforms a Neural Network. One could also argue that these techniques
will most likely result in diverse predictions by investigating their inner workings. As displayed
in Table 4.2 there is a large diversity in the main features, objective functions and optimization
methods of the six base classifiers used in this study.

We hypothesize that algorithm-induced diversity will most likely lead to diverse outputs
and subsequently to increased predictive performance of the Hybrid Ensemble over the Single
Best. However we do not expect to find very big differences because all the base classifiers are
homogeneous ensembles that already employ a diversity strategy (through data) and hence are
considerably strong. Whether the ensemble of ensembles that we propose in this study will be
able to outperform the Single Best ensemble depends on how much diversity can be induced.

To summarize, our Hybrid Ensemble consists of data-driven inducers that each use a dif-
ferent learning method. By combining these base classifiers into one ensemble, we create a
meta-ensemble that is also algorithm-driven.

4.4.2 Classifier combination

While the focus of this paper is on diversity generation mechanisms, an essential part of ensem-
ble design is also its combination rule. In literature, different fusion methods exist depending

95

CHAPTER 4

Ta
bl

e
4.

2:
C

ha
ra

ct
er

is
tic

s
of

th
e

ba
se

cl
as

si
fie

rs

A
lg

or
ith

m
M

ai
n

fe
at

ur
es

O
bj

ec
tiv

e
fu

nc
tio

n
O

pt
im

iz
at

io
n

m
et

ho
d

E
ns

em
bl

e
of

N
eu

ra
l

N
et

w
or

ks
Id

en
tic

al
to

L
og

is
tic

R
eg

re
ss

io
n

if
no

hi
dd

en
la

ye
r

an
d

if
lo

gi
st

ic
ac

-
tiv

at
io

n
fu

nc
tio

n
is

us
ed

.
Se

m
i/n

on
pa

ra
m

et
ri

c.
H

id
de

n
la

ye
r(

s)
.

B
ag

-
gi

ng
.

C
on

di
tio

na
ll

og
lo

ss
Q

ua
si

N
ew

to
n

M
et

ho
d

E
ns

em
bl

e
of

Su
pp

or
t

V
ec

to
rM

ac
hi

ne
s

M
ax

im
um

m
ar

gi
n

se
pe

ra
tin

g
hy

-
pe

rp
la

ne
an

d
so

ft
m

ar
gi

n.
K

er
ne

ls
.

B
ag

gi
ng

.

H
in

ge
lo

ss
C

on
st

ra
in

ed
qu

ad
ra

tic
pr

og
ra

m
m

in
g

E
ns

em
bl

e
of

L
og

is
tic

R
eg

re
ss

io
ns

w
ith

L
as

so
L

in
ea

rc
om

bi
na

tio
n

of
fe

at
ur

es
.L

o-
gi

st
ic

lin
k

fu
nc

tio
n.

B
ag

gi
ng

.
Pe

na
liz

ed
lo

g
lo

ss
N

ew
to

n
m

et
ho

d

R
an

do
m

Fo
re

st
Pa

ra
lle

l-
in

de
pe

nd
en

tly
bu

ilt
tr

ee
s.

R
an

do
m

fe
at

ur
e

se
le

ct
io

n.
B

ag
-

gi
ng

.

N
o

ex
pl

ic
it

gl
ob

al
lo

ss
fu

nc
tio

n.
L

oc
al

ly
:

en
-

tr
op

y=
lo

g
lo

ss

G
re

ed
y

se
ar

ch

K
er

ne
lF

ac
to

ry
K

er
ne

ls
.

B
as

e
cl

as
si

fie
rs

ar
e

R
an

-
do

m
Fo

re
st

s.
R

an
do

m
Fo

re
st

ha
n-

dl
es

re
m

ai
ni

ng
no

n-
lin

ea
ri

tie
s

fr
om

ke
rn

el
s.

N
o

ex
pl

ic
it

gl
ob

al
lo

ss
fu

nc
tio

n.
L

oc
al

ly
:

en
-

tr
op

y=
lo

g
lo

ss

G
re

ed
y

se
ar

ch

St
oc

ha
st

ic
A

da
B

oo
st

It
er

at
iv

e-
de

pe
nd

en
tly

bu
ilt

tr
ee

s.
Fo

cu
s

on
po

or
ly

cl
as

si
fie

d
in

-
st

an
ce

s.
H

yb
ri

d
ba

gg
in

g
an

d
bo

os
t-

in
g.

E
xp

on
en

tia
ll

os
s

G
ra

di
en

td
es

ce
nt

96

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

on the output that is received from the base classifiers. While some form of (weighted) voting
has become the most frequently used method in classifier fusion, it is not necessarily the best
option. A lot of information is lost as it only uses class label output. Confidences or a posteriori

probabilities contain the highest amount of information (Xu et al., 1992) and are able to reduce
the generalization error (Bauer and Kohavi, 1999). Therefore in our hybrid design we calibrate
all of our models to ensure we have measurement level output for every base classifier. As a
result, we can fuse our classifiers using weighted averaging. In this study we restrict ourselves
to linear combinations because we want to limit the number of parameters that needs to be
estimated in order to keep the analysis tractable.

To calculate the weights, one can make use of fixed rules or trained weights (Roli et al.,
2002). While fixed rules have a very small time complexity and provide simplicity, their result
is expected to be worse than that of the trained ones. The easiest way to combine the different
measures is to take the simple average. The performance of this simple method is often close
to that of the weighted average but in most cases, a weighted average is able to outperform the
simple average (Fumera and Roli, 2005). In performance- or authority- based weighting the
weight of each classifier is set proportional to its performance on a validation set (Opitz and
Shavlik, 1996). This method typically performs better albeit at the cost of more computational
effort.

Weights can be trained by either a statistical method or a general purpose solver. The latter
category has the advantage that the objective function can be chosen freely to fit the application
(in this case AUC) (Elkan, 2013) and that it is more likely to find global optima for the param-
eters (Myung, 2003). Although not the primary focus of this study, we tried to benchmark as
many methods as possible in each category.

For the statistical methods we use Non-Negative Binomial Likelihood (Sra et al., 2008),
Goldfarb-Idnani Non-Negative Least Squares (Goldfarb and Idnani, 1983), and Lawson-Hanson
Non-Negative Least Squares (Lawson and Hanson, 1987). These methods have the advantage
that they enforce the non-negativity constraint, as such preserving the inherent characteristics
of the weighted solution that we seek (a weighting value between zero and one) (Chen and
Plemmons, 2007).

In the category of general purpose solvers we included all the following population- based
methods and single solution based methods. Within the population- based methods, Genetic Al-
gorithms (Holland, 1975) are the most popular. They have already been extensively applied in
ensemble fusion and selection (Kim et al., 2003; Cho, 1999; Wu et al., 2001). Recently, Differ-
ential Evolution (Storn and Price, 1997) has shown promising results for simultaneous selection
and fusion (de Lima et al., 2012) as well. A last population- based method that has shown good
results is Particle Swarm Optimization (PSO). It is a popular form of Swarm Intelligence. It is
based on the coordinated way that flocks of birds and schools of fish look for food.

In the single solution based methods, Generalized Simulated Annealing seems to be the
most popular method. Introduced by Tsallis and Stariolo (1996), it is a form of stochastic

97

CHAPTER 4

gradient descent. In recent years, other methods such as Memetic Algorithm (Molina et al.,
2010), Self-Organizing Migrating Algorithm (Molina et al., 2010) and Tabu Search Algorithm
(Glover, 1977, 1986, 1989, 1990b,a) have also been used for continuous parameter optimization.
Although they present very good results on other classes of problems, they have not been applied
to weight estimation for classifier fusion.

In sum, we use three statistical methods, three population- based general purpose methods,
four single solution based methods, the authority- based weighting method, and the simple
mean. We benchmark these methods with the Single Best.

4.4.3 Pseudo code

Algorithm 4 and 5 are respectively the pseudo-code of the Hybrid Ensemble’s training and
prediction phase. Let LR be Bagged Logistic Regression, let RF be Random Forest, let AB be
AdaBoost, let KF be Kernel Factory, let NN be Bagged Neural Networks and, let SV be Bagged
Support Vector Machines. Furthermore, let GA be Genetic Algorithm, let DEA be Differential
Evolutionary Algorithm, let GSA be Generalized Simulated Annealing, let MALSC be Memetic
Algorithm with Local Search Chains, let PSO be Particle Swarm Optimization, let SOMA be
Self-Organising Migrating Algorithm, let TSA be Tabu Search Algorithm, let NNBL be Non-
negative binomial likelihood, let GINNLS be Goldfarb-Idnani Non-negative least squares, let
LHNNLS be Lawson-Hanson Non-negative least squares, let AUTH be authority- based weight-
ing and let MEAN be the simple mean.

An important step in the algorithm is calibration of the members’ classifier outputs. This
step is required for a meaningful combination of the probabilistic outputs of the base classifiers.
Calibration consists in transforming the raw output scores to probabilities. A classifier is well
calibrated when the empirical class membership P (c|p(x) = t), with c the observed class, p(x)

the predicted probability, and t the threshold value, converges to p(x) = t when the number
of classified instances goes to infinity (Murphy and Winkler, 1977). More intuitively, if we
consider the instances to which a classifier assigns a probability p(x) = 0.8, then 80% of these
instances should be members of the observed class c (Zadrozny and Elkan, 2002).

For each classifier, the calibration algorithm first bins the classifier scores (Coussement and
Buckinx, 2011). The number of bins is determined by cross- validation and the bins are of equal
size. Next, for all bins two quantities are computed: the mean score Praw and the proportion of
events in the response vector Pcal. The latter can be conceived of as an approximation of the
real probability. The final step consists in learning Pcal = f(Praw). The function f is learned
by a regression forest (Breiman, 2001) and is applied to unseen data in the prediction phase.

Base classifier parameter tuning is performed by cross-validation using xtrain, ytrain, xvalidate,
and yvalidate. The combiners that are tuned use ŷvalidate and yvalidate. Details about tuning are
provided in Sections 4.5.1.1 and 4.5.1.2.

98

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Input:
• x=predictor variables
• y=response variable with class labels {0,1}
• combine= one of the following combination methods {GA, DEA,

GSA, MALSC, PSO, SOMA, TSA, NNBL, GINNLS, LHNNLS,
AUTH, MEAN }
• member parameters=parameters of base classifiers (see 4.5.1.1)
• combination parameters=parameters of combiners (see 4.5.1.2)

Classifier Generation:

Randomly divide x into xtrain (50% of instances) and xvalidate (50%)
Make the same split for y: ytrain and yvalidate
Algorithms← (LR, RF, AB, KF, NN, SV)
for Algorithms do

Tuned Parameters← tune(xtrain, ytrain, xvalidate, yvalidate)
Classifiers← train(xtrain, ytrain, Tuned Parameters)
ŷvalidate← predict(Classifiers, xvalidate)
Calibrators← train calibrator(ŷvalidate, yvalidate)
ŷvalidate← calibrate(Calibrators, ŷvalidate)
Evaluations← evaluate(ŷvalidate, yvalidate)

Classifiers← train(x,y, Tuned Parameters)
end

Classifier combination:

if combine one of {GA, DEA, GSA, MALSC, PSO, SOMA, TSA, NNBL, GONNLS, LHNNLS}
then

weights← optimize classifier weights (ŷvalidate, yvalidate)
else if combine == AUTH then

weights← evaluations/sum(evaluations)
else if combine == MEAN then

weights← (1/6,1/6,1/6,1/6,1/6,1/6)

Result: Calibrators, Classifiers, Weights

algorithm 4: Pseudo code training phase of Hybrid Ensemble

99

CHAPTER 4

Input:
• object=trained Hybrid Ensemble (Calibrators, Classifiers, Weights)
• x=new predictor variables

Predict using all Classifiers:

for all Classifiers do
ŷ← predict(Classifiers, x)
ŷ← calibrate(Calibrators, ŷ)

end

Compute weighted average: Ŷ ← 〈weights, ŷ〉

Result: Ŷ

algorithm 5: Pseudo code prediction phase of Hybrid Ensemble

4.5 Experimental Design

4.5.1 Implementation details

All analyses are performed using R (R Core Team, 2013) version 3.0.2. We developed an open-
source package of our algorithm called hybridEnsemble and submitted it to CRAN.

4.5.1.1 Base algorithm parameters

This section covers our choices for the base classifiers’ parameters. Because not all algorithms
can handle categorical variables, all categorical predictors are first transformed to dummy vari-
ables {0,1} before any modeling takes place. For Bagged Logistic Regression, Bagged Support
Vector Machines and Bagged Neural Networks we opt for ten members to keep learning times
and computational effort (Margineantu and Dietterich, 1997) in a feasible range. Small ensem-
bles have been proven to have near-optimal performance (Margineantu and Dietterich, 1997)
and diversity only has a strong effect when using up to ten classifiers (Kuncheva, 2004; Canuto
et al., 2007). We build the members on bootstrap samples with size equal to the original sample
and we aggregate the predictions with the simple mean.

To avoid overfitting, we use the lasso approach to Regularized Logistic Regression. Lasso
imposes a bound on the sum of the absolute values of the coefficients. Coefficients are shrunk
towards zero (Guisan et al., 2002). The shrinkage parameter is determined by cross-validation.
We use the glmnet R package (Friedman et al., 2010, 2013) to fit the model. The α parameter
is set to one to obtain the lasso method and we compute the sequence of 100 λ’s by setting
nlambda.

Random Forest requires only to set the number of variables to evaluate at each split and the
number of trees in the ensemble. We follow Breiman’s recommendation (Breiman, 2001) and
set the number of variables to the square root of the total number of variables and use a large

100

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

number of trees (500). We use the randomForest R package (Liaw and Wiener, 2012, 2002).
Stochastic Boosting improves on the original deterministic Boosting algorithms (Freund and

Schapire, 1996) by incorporating randomness as an integral part of the procedure (Friedman,
2002). The number of terminal nodes in the base classifiers and the number of iterations are two
important parameters. We set the maximum number of nodes to eight by setting the maximum
depth of the trees to three which is in line with the Friedman’s (2002) advice. We use 500
iterations and implement Stochastic Boosting with the ada R- package (Culp et al., 2012).

An important parameter in Support Vector Machines is the kernel function. We used the
most popular kernels: the linear, polynomial, radial basis (RBF), and sigmoid kernel (Ballings
and Van den Poel, 2013a). The RBF and sigmoid kernels require the choice of only one hyper-
parameter γ, the width of the Gaussian (Ben-Hur and Weston, 2010). Furthermore, the penalty
hyperparameter C, also called the cost or soft margin constant, specifies the trade-off between
hyperplane violations and the size of the margin. In addition to these parameters the polynomial
kernel requires a choice of degree d. The linear kernel function only requires setting C. One can-
not know in advance which settings are best for a given problem. We follow Hsu et al.’s (2010)
recommendation to perform a grid search on C= [2−5, 2−4, ..., 215], γ = [2−15, 2−13, ..., 23] and
d = 2, 3 to identify the best combination. Support Vector Machines are implemented through
Meyer et al.’s (2012) e1071 R-package using the svm function.

Ballings and Van den Poel (2013a) recommend the burn method for Kernel Factory which
automatically selects the best kernel function. Furthermore, we use the recommended values
of one column partition and int(log10(N + 1)) row partitions. Kernel Factory is implemented
using Ballings and Van den Poel’s (2013b) kernelFactory R-package.

For the feed-forward Artificial Neural Network we use one layer of hidden neurons as it is
generally sufficient for classifying most data sets (Dreiseitl and Ohno-Machado, 2002). Before
applying the neural network we rescale the numerical predictors to [0,1]. The binary predic-
tors are left untransformed {0,1}. Scaling the data is necessary to obtain training efficiency
and overcome numerical problems. The algorithm is implemented using the nnet R- package
(Ripley, 2013; Venables and Ripley, 2002). The network weights at the start of the iterative
procedure are chosen at random (Ripley, 1996, pg. 154). The entropy parameter is set to use
the maximum conditional likelihood as recommended by Spackman (1991) and Ripley (1996,
pg. 149). The rang parameter, controlling the range of the initial random weights parameter
was left at the default of 0.5. We used weight decay to avoid overfitting (Dreiseitl and Ohno-
Machado, 2002). Therefore the maximum number of weights (MaxNWts) and the number of
iterations (maxit) were set to very large values (5000) in order to avoid early stopping. The
weight decay factor and the number of nodes in the hidden layer were determined by perform-
ing a grid search (Dreiseitl and Ohno-Machado, 2002). We cross-validated all combinations of
decay={0.001, 0.01, 0.1} (Ripley, 1996, pg. 163), and size=[1, 2, ..., 20] (Ripley, 1996, pg.
170) and selected the optimal combination.

101

CHAPTER 4

4.5.1.2 Combination Algorithms

For comparison purposes we set the number of generations (iterations) to 500 for all general
purpose optimization methods. This number is sufficient for all methods to converge. All
solutions were repaired by dividing by the sum of all weights.

A Genetic Algorithm has six important parameters: the selection method, population size,
mutation chance, cross-over rate, elitism and the number of generations. We implemented the
algorithm using the rbga function of the genalg R package (Willighagen, 2012). The function
implements the binary tournament selection method which is efficient and not likely to converge
prematurely (Goldberg and Deb, 1991). Harik and Goldberg (1999) developed a population
sizing equation for Genetic Algorithms. The disadvantage is that several parameters in the
equation cannot be determined directly but need to be estimated (also see Reed et al., 2000).
Cormier et al. (2001) use the rule of thumb that a good population size is about seven times
the number of variables. As there are six variables this amounts to a population size (popSize)
of 42. As mentioned above we set the number of required generations to achieve convergence
(maxiter) to 500. The probability of cross-over is determined by the R-function to be 71%.
De Jong (1975) recommends to set the probability of mutation (pmutation) to 1/N , where N
is the population size, namely 0.024. We use the default rbga setting of 2 for elitism, which is
5% of the population size with a minimum of 1. We limited the search space by a maximum
individual weight of one and a minimum of zero and constrained the sum of the genes to one.
In addition we suggested eight chromosomes. Six of these chromosomes each had a maximum
value for one of the six genes. One chromosome had the value of 1/6 for all genes. We also
included a chromosome equal to the authority- based weights. All the other chromosomes were
determined at random.

To implement the Differential Evolution Algorithm we use the DEopt function of the NMOF

R- package (Schumann, 2012). Storn and Price (1997) make practical recommendations for
the parameters of the Differential Evolutionary Algorithm and Pedersen (2010) refined those
recommendations. For our case the optimal parameters for 500 generations are a population
size (nP) of 20, a probability for cross-over (CR) of 0.6938, and a step size (F) of 0.9314.
Finally, we used the same minimum values, maximum values and suggestions as for the Genetic
Algorithm.

Generalized Simulated Annealing is implemented with the GenSA R- package (Xiang et al.,
2013, 2012). Initial temperature is an important control parameter. Kirkpatrick et al. (1983)
recommends to set temperature = ∆Emax where ∆Emax is the maximum difference of the
value of the objective function between solutions (also see Ben-Ameur, 2004). Since we use
the AUC as performance criterion this amounts to 0.5. We use the optimal values of Tsallis and
Stariolo (1996) for the visiting (visiting.param) and acceptance (acceptance.param) parame-
ters: respectively 2.7 and -5. We leave the maximum number of calls of the objective function
(max.call) to the default of 1e7. The maximum number of iterations of the algorithm (maxit) is
set to 500.

102

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

We implemented the Particle Swarm Optimization Algorithm using the psoptim function of
the pso R- package by Bendtsen (2012). We chose the 2011 variant to take into account the
latests theoretical advances (Clerc, 2012). The type parameter was set to ”SPSO2011”. We
follow all recommended values by Clerc (2012). The maximum number of iterations (maxit)
is set to 500. The maximum number of function evaluations maxf is set to Inf. The absolute
convergence tolerance abstol is set to -Inf and the tolerance for restarting is zero. The swarm
size s is 40 and the exponent for calculating the number of informants is set to three. The average
percentage of informants for each particle p is set to 1 − (1 − 1/s)k. Finally, the exploitation
constant is 1/(2 ∗ log(2)), and the local and global exploration (c.p and c.g) constants are set to
0.5 + log(2). The maximum and minimum bounds are identical to the other algorithms.

The Memetic Algorithm with Local Search Chains is implemented by the malschains func-
tion of the Rmalschains R- package (Bergmeir et al., 2013). We follow all recommendations
by Molina et al. (2010) for the parameter values. The local search method (ls) is set to cmaes

with the number of iterations of the local search istep=300. The effort or the ratio between the
amount of local and global evaluations is set to 0.5. The cross-over alpha parameter BLX-alpha
(alpha) is set to 0.5 and the threshold which defines how much improvement is considered in the
local search as no improvement is set to 10−8. Population size (popsize) is 60 individuals. The
maximum number of fitness function evaluations maxEvals is 500. Finally minimum bounds,
maximum bounds and suggestions for the initial population are chosen to be identical to the
other algorithms.

We implemented the Self-Organising Migrating Algorithm using the somaR-package (Clay-
den, 2011). We follow the recommendations by Zelinka (2004) for all the parameter values. The
distance towards the leader that individuals may migrate to (pathLength) is set to 3, the gran-
ularity at which potential steps are evaluated (stepLength) is set to 0.11, and the probability
that individual parameters are changed at any given step (perturbationChance) is set to 0.1.
We used a value of 0 for the smallest absolute difference between the maximum and minimum
cost function values (minAbsoluteSep) and a value of 0.001 for the smallest relative difference
between the maximum and minimum cost function values (minRelativeSep). The maximum
number of migrations to complete (nMigrations) is set to 500 and the population size (popu-

lationSize) is evaluated to 10. Finally, the minimum and maximum bounds are identical to the
other algorithms.

The Tabu Search Algorithm is implemented using the tabuSearch R- package. A crucial
parameter is the tabu list size. Values that are too small lead to cycling and values that are too
large lead to declaring appealing moves as forbidden (Fouskakis and Draper, 2002). The latter
forces the algorithm to explore lower quality solutions and requires a larger number of iterations.
In general, larger problems require larger list sizes, but there is no single rule that gives good
results for all problems (Fouskakis and Draper, 2002). We follow the recommendations by
Glover (1986) to cross-validate the listSize from 5 to 12. Analogously to the other algorithms
we used 500 iterations (iters). Because the package is designed to optimize binary strings we

103

CHAPTER 4

had to convert the solutions to real vectors.
Finally, it is important to note that the three statistical methods Goldfarb-Idnani Non-Negative

Least Squares (Goldfarb and Idnani, 1983), Lawson-Hanson Non-Negative Least Squares (Law-
son and Hanson, 1987), and Non-Negative Binomial Likelihood (Sra et al., 2008) require no
parameters.

4.5.2 Data

To benchmark the Hybrid Ensemble we use eleven data sets from the UCI Machine Learning
Repository (Frank and Asuncion, 2010). We selected those data sets because (1) the response
variable is binary, (2) there is a good mix of categorical and continuous predictors, (3) most
of them are used in key studies such as Breiman’s (2001) Random Forest and, (4) they vary in
classification difficulty. Table 4.3 gives a summary of the data sets. N denotes the number of
observations and n is the number of predictors.

Table 4.3: Characteristics of the data sets used in the empirical study

Data N n, continuous n, categorical
Ionosphere 351 33 0
Credit 690 6 9
Sonar 208 59 0
Wdbc (Cancer) 569 30 0
HeartHun (Hungary) 294 5 7
GermanCredit 1000 7 13
AustralianCredit 690 6 8
HorseColic 368 9 13
Breast-cancer 286 4 5
Liver 345 6 0
Heart-statlog 270 7 6

4.5.3 Model performance evaluation

To assess the performance of the models we use the area under the receiver operator charac-
teristic curve (AUC or AUROC). AUC is an objective performance metric for classification
models (Provost et al., 1998) and is superior to accuracy (percentage correctly classified) in
that it is insensitive to the cut-off value applied to the posterior probabilities (Thorleuchter and
Van den Poel, 2012, 2013) to classify observations. More specifically, while accuracy measures
the performance of the model at one specific cut-off value, AUC assesses performance across
all possible cut-off values. AUC is defined as follows:

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
=

∫ 1

0

TP

P
d
FP

N
(4.1)

104

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

with TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Negatives, P: Pos-
itives, N: Negatives

AUC is is bounded by 0.5 and 1, where the former value denotes that predictions are not
better than random, and the latter indicates perfect prediction. In some cases AUC can be
lower than 0.5 on the test sample. This is almost always due to overfitting leading the model to
generalize poorly.

All reported AUCs are medians over five replications of twofold cross-validation (5x2 cv)
(Dietterich, 1998; Alpaydin, 1999). In each replication all data instances are randomly assigned
to one of two parts that are equal in size. Each part is employed as both a training and test set.
The entire process results in ten AUCs. The same splits are used for all models. As a measure
of dispersion we use the inter quartile range.

In order to test for significant differences we follow the suggestions of Demsar (2006) to
use the Friedman test (Friedman, 1937, 1940) along with the Bonferroni-Dunn (Dunn, 1961)
post-hoc test. The Friedman test controls the family-wise error, the probability of at least one
false positive in any of the comparisons. It is a non-parametric equivalent of the repeated-
measures ANOVA and consists in ranking the classifiers to be compared within each data set.
We follow the recommendation by Demsar (2006) to start from the median AUCs over 5x2
cv. Next, the best classifier receives rank 1, and the worst classifier receives rank equal to the
number of compared classifiers when there are no ties. In case of ties average ranks are assigned
(Demsar, 2006). Subsequently, median ranks are computed across the data sets resulting in a
final rank per classifier. The Friedman test then checks if these median ranks are significantly
different from the average rank expected under the null-hypothesis (Demsar, 2006). Since the
primary objective of this paper is to investigate whether the main ensemble is better than the
Single Best sub-ensemble (i.e., the control) we use the Bonferroni-Dunn test. Salzberg (1997)
notes that this test is very conservative since it assumes the independence of hypotheses. This
will allow us to draw stringent conclusions. Classifiers perform significantly different if their
median ranks differ by at least the critical difference. The critical difference (CD) is defined as
follows (Demsar, 2006):

CD = qα

√
k(k + 1)

6N
(4.2)

with qα the critical value for a given p-value and number of classifiers, k the number of classi-
fiers, and N the number of data sets. In this study the critical difference for a p-value of 0.05,
13 classifiers, 11 data sets and a critical value of 2.865 equals 4.758.

105

CHAPTER 4

4.6 Discussion of results

4.6.1 Performance of the Hybrid Ensemble compared to the Single Best

Table 4.4 contains the median AUC of five times twofold cross-validation. The letters in the SB
column are the Single Best classifiers per fold. Results in boldface denote the top performing
method per data set. It is immediately clear that there is no method that consistently dominates
all the others. However, the primary objective of this paper is to find a method that consistently
outperforms the Single Best. To this end Figure 4.1 and 4.2 give a graphical overview of the
results in Table 4.4. The horizontal axis is the Single Best while the vertical axis is the AUC of
the respective competing methods. The points in the plots denote the data sets. If the competing
method is consistently (i.e., for all the data sets) better than the Single Best then all points would
lie above the dashed diagonal line. Two such methods exist: SOMA and AUTH. The maximum
incremental AUC that those methods bring over the Single Best is respectively 0.022 and 0.025,
which is sizable given the effective data- strategy the Single Best uses.

The final ranks (lower is better) of the classifiers confirm these findings (see Table 4.5).
Both AUTH and SOMA hold the lowest and second lowest ranks (SOMA shares its second
position with MEAN, but MEAN does not consistently outperform the SB on all data sets).
The Friedman χ2(12) is 46.92, with p < 0.001. The methods that are significantly better (have
ranks lower by an amount equal or larger than the critical difference) than the Single Best are
AUTH, SOMA, MEAN, GSA, PSO and NNBL. The stability of the results, measured by the
inter quartile range of the AUCs (see Table 4.6), does not differ from method to method. There
is no method that consistently has less stable results.

4.6.2 Performance improvement by classification difficulty

One can expect that the higher the performance of the Single Best sub-ensemble, the more
difficult it is for the Hybrid Ensemble to increase performance. For example, if a sub-ensemble
has an AUC of 0.98 and hence captures most of the diversity through data perturbation, it is
very difficult to capture the remaining diversity through algorithm variation. This hypothesis
is supported by the data. Admittedly, a sample of 11 data sets does not allow to apply any
statistical analyses but there is a clear pattern when the Single Best performance is plotted
against the incremental performance by the Hybrid Ensemble. Figure 4.3 clearly shows that
higher performances of the Single Best go hand in hand with lower incremental performance
by the Hybrid Ensemble (in this case the AUTH method was plotted).

4.6.3 Analysis of the ensemble size

In Section 4.4.1 we have established that the sub-ensembles included in the Hybrid Ensemble
are diverse and top performing. However, one might raise questions about the optimality of the

106

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Ta
bl

e
4.

4:
M

ed
ia

n
AU

C
of

fiv
e

tim
es

tw
of

ol
d

cr
os

s-
va

lid
at

io
n

D
at

a
G

A
D

E
A

G
SA

M
A

L
SC

PS
O

SO
M

A
T

SA
L

H
N

N
L

S
G

IN
N

L
S

N
N

B
L

M
E

A
N

A
U

T
H

SB
Io

n
0.

97
43

0.
97

2
0.

97
65

0.
97

79
0.

97
48

0.
97

4
0.

97
72

0.
95

63
0.

97
6

0.
97

71
0.

97
13

0.
97

65
0.

97
22

R
N

R
R

R
R

R
K

K
R

C
re

0.
91

81
0.

91
91

0.
92

04
0.

91
86

0.
91

93
0.

91
96

0.
91

54
0.

91
32

0.
91

81
0.

91
87

0.
92

07
0.

92
22

0.
91

62
A

R
A

L
A

R
R

A
SL

So
n

0.
89

56
0.

89
3

0.
89

04
0.

89
29

0.
89

21
0.

90
25

0.
89

83
0.

88
39

0.
89

97
0.

89
95

0.
90

05
0.

90
25

0.
89

84
R

K
K

R
N

R
R

N
R

R
W

db
0.

99
55

0.
99

49
0.

99
57

0.
99

58
0.

99
48

0.
99

51
0.

99
51

0.
98

99
0.

99
36

0.
99

43
0.

99
52

0.
99

52
0.

99
26

L
N

SL
N

N
L

N
SL

H
ea

0.
90

42
0.

90
04

0.
90

5
0.

90
3

0.
90

43
0.

89
94

0.
89

4
0.

88
3

0.
89

64
0.

90
24

0.
89

24
0.

89
5

0.
89

36
L

A
R

L
N

L
L

N
L

N
G

er
0.

76
28

0.
76

42
0.

76
3

0.
76

29
0.

76
3

0.
76

37
0.

76
22

0.
74

47
0.

76
46

0.
75

78
0.

76
11

0.
76

31
0.

74
75

L
R

SL
A

SL
R

SL
A

us
0.

91
44

0.
91

77
0.

91
36

0.
91

96
0.

91
98

0.
92

11
0.

91
82

0.
90

67
0.

92
35

0.
92

66
0.

92
17

0.
92

23
0.

92
09

N
R

A
R

R
N

R
L

R
A

H
or

0.
80

14
0.

79
92

0.
80

24
0.

80
04

0.
80

69
0.

80
23

0.
79

79
0.

78
05

0.
79

53
0.

80
25

0.
80

39
0.

80
45

0.
79

52
R

K
R

R
L

R
L

A
R

R
B

re
0.

65
88

0.
66

82
0.

66
9

0.
66

48
0.

67
33

0.
67

13
0.

66
19

0.
66

85
0.

66
11

0.
66

79
0.

66
68

0.
66

77
0.

65
38

A
K

R
K

R
L

R
L

L
R

L
iv

0.
75

2
0.

74
83

0.
76

03
0.

75
81

0.
76

12
0.

76
85

0.
73

85
0.

74
82

0.
75

99
0.

75
55

0.
77

39
0.

77
31

0.
76

19
R

N
R

N
L

A
A

L
A

N
H

ea
0.

89
2

0.
89

26
0.

89
6

0.
89

37
0.

89
33

0.
89

39
0.

89
24

0.
88

68
0.

89
18

0.
88

93
0.

89
4

0.
89

69
0.

87
21

N
L

L
SR

L
L

SR
S

B
as

e
C

la
ss

ifi
er

s:
S:

SV
M

,R
:R

an
do

m
Fo

re
st

,K
:K

er
ne

lF
ac

to
ry

,L
:L

og
it,

A
:A

da
B

oo
st

,N
:N

eu
ra

lN
et

w
or

k.
B

es
tp

er
fo

rm
er

s
pe

rd
at

a
se

ta
re

in
bo

ld
fa

ce
.

C
om

bi
na

tio
n

m
et

ho
ds

:
G

A
:G

en
et

ic
A

lg
or

ith
m

,D
E

A
:D

iff
er

en
tia

lE
vo

lu
tio

na
ry

A
lg

or
ith

m
,G

SA
:G

en
ar

al
iz

ed
Si

m
ul

at
ed

A
nn

ea
lin

g,
M

A
LS

C
:M

em
et

ic
A

lg
or

ith
m

w
ith

Lo
ca

lS
ea

rc
h

C
ha

in
s,

P
SO

:
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n,
SO

M
A

:
Se

lf-
O

rg
an

iz
in

g
M

ig
ra

tin
g

A
lg

or
ith

m
,T

SA
:

Ta
bu

Se
ar

ch
A

lg
or

ith
m

,L
H

N
N

LS
:

La
w

so
n-

H
an

so
n

N
on

-N
eg

at
iv

e
Le

as
tS

qu
ar

es
,G

IN
N

LS
:G

ol
df

ar
b-

Id
na

ni
N

on
-N

eg
at

iv
e

Le
as

tS
qu

ar
es

,N
N

B
L:

N
on

-N
eg

at
iv

e
B

in
om

ia
lL

ik
el

ih
oo

d,
M

E
A

N
:S

im
pl

e
m

ea
n,

AU
TH

:A
ut

ho
ri

ty
-b

as
ed

m
et

ho
d,

SB
:S

in
gl

e
B

es
t

107

CHAPTER 4

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

G
A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

D
E

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

G
S

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

M
A

LS
C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

P
S

O

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

S
O

M
A

●

●

●

●

●

●

●

●

●

●

●

Figure 4.1: Plots comparing the AUC of the Hybrid Ensemble given a specific combiner and the Single
Best

108

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

T
S

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

LH
N

N
LS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

G
IN

N
LS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

N
N

B
L

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

M
E

A
N

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single Best

A
U

T
H

●

●

●

●

●

●

●

●

●

●

●

Figure 4.2: Cont’d: Plots comparing the AUC of the Hybrid Ensemble given a specific combiner and
the Single Best

109

CHAPTER 4

Table 4.5: Median ranks across data sets

GA DEA GSA MALSC PSO SOMA TSA LHNNLS GINNLS NNBL MEAN AUTH SB

8.0 8.0 4.5 8.0 5.5 4.0 9.0 13.0 8.0 6.0 4.0 3.0 11.0

Significant differences with SB are in bold face. Combination methods: GA: Genetic Algorithm, DEA:
Differential Evolutionary Algorithm, GSA: Genaralized Simulated Annealing, MALSC: Memetic
Algorithm with Local Search Chains, PSO: Particle Swarm Optimization, SOMA: Self-Organizing
Migrating Algorithm, TSA: Tabu Search Algorithm, LHNNLS: Lawson-Hanson Non-Negative Least
Squares, GINNLS: Goldfarb-Idnani Non-Negative Least Squares, NNBL: Non-Negative Binomial
Likelihood, MEAN: Simple mean, AUTH: Authority- based method, SB: Single Best

●

●

●

●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

AUC(Single Best)

A
U

C
(A

U
T

H
)

−
 A

U
C

(S
in

gl
e

B
es

t)

●

●

●

●

●

●

●

●

●

●

●

Figure 4.3: Performance improvement through Hybrid Ensemble by difficulty

ensemble size. Why do we include only six sub-ensembles? First of all, six base classifiers
already pose a heavy workload for commodity computer hardware, both in the member gener-
ation and fusion phase and we do not recommend adding any more at the risk of rendering the
analysis intractable (also see Margineantu and Dietterich (1997) for a similar recommendation).
Second, near-optimal performance has been observed for small ensembles in extant literature
(Margineantu and Dietterich, 1997). Third, diversity plays a key role in ensemble performance
when using less than ten classifiers (Kuncheva, 2004; Canuto et al., 2007). Fourth, the purpose
of this paper is to improve upon industry’s best practice (the Single Best method), hence we
included only the top performing ensembles in extant literature.

We have performed a small analysis to confirm the above arguments from extant litera-
ture. Figure 4.4 and 4.5 provide an overview of the weights of the top performing combination
method that trains weights (SOMA). When a sub-ensemble does not add any value to the total

110

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Ta
bl

e
4.

6:
IQ

R
AU

C
of

fiv
e

tim
es

tw
of

ol
d

cr
os

s-
va

lid
at

io
n

D
at

a
G

A
D

E
A

G
SA

M
A

L
SC

PS
O

SO
M

A
T

SA
L

H
N

N
L

S
G

IN
N

L
S

N
N

B
L

M
E

A
N

A
U

T
H

SB
Io

n
0.

01
33

0.
01

54
0.

01
62

0.
01

04
0.

00
93

0.
01

48
0.

01
08

0.
05

83
0.

01
01

0.
01

14
0.

01
21

0.
01

01
0.

01
17

C
re

0.
01

78
0.

01
18

0.
02

51
0.

00
79

0.
02

44
0.

01
48

0.
01

57
0.

05
81

0.
01

24
0.

02
36

0.
02

12
0.

02
11

0.
01

61
So

n
0.

03
96

0.
02

79
0.

03
09

0.
02

84
0.

02
53

0.
04

41
0.

03
19

0.
03

05
0.

04
37

0.
03

07
0.

03
51

0.
03

36
0.

02
52

W
db

0.
00

6
0.

00
62

0.
00

62
0.

00
53

0.
00

51
0.

00
71

0.
00

61
0.

00
84

0.
00

55
0.

00
66

0.
00

66
0.

00
65

0.
00

77
H

ea
0.

02
04

0.
03

11
0.

02
21

0.
02

35
0.

03
02

0.
01

52
0.

02
56

0.
04

07
0.

02
12

0.
03

17
0.

01
9

0.
02

07
0.

04
05

G
er

0.
03

74
0.

03
92

0.
03

16
0.

03
54

0.
03

68
0.

03
43

0.
04

23
0.

04
03

0.
03

46
0.

01
49

0.
02

73
0.

02
8

0.
03

86
A

us
0.

02
5

0.
02

74
0.

03
01

0.
02

35
0.

02
56

0.
02

05
0.

02
27

0.
04

29
0.

02
58

0.
02

0.
02

0.
01

95
0.

01
71

H
or

0.
01

79
0.

02
05

0.
01

58
0.

01
71

0.
02

03
0.

01
45

0.
02

62
0.

07
9

0.
01

5
0.

02
2

0.
03

08
0.

02
65

0.
01

67
B

re
0.

05
08

0.
04

3
0.

05
41

0.
04

38
0.

05
68

0.
05

23
0.

05
77

0.
02

64
0.

02
91

0.
04

43
0.

03
6

0.
04

24
0.

05
16

L
iv

0.
05

79
0.

06
53

0.
03

2
0.

02
64

0.
03

33
0.

02
12

0.
05

21
0.

03
43

0.
03

59
0.

06
82

0.
02

83
0.

02
98

0.
05

25
H

ea
0.

03
75

0.
02

99
0.

02
88

0.
03

36
0.

03
17

0.
03

87
0.

03
39

0.
05

48
0.

03
25

0.
03

52
0.

02
68

0.
02

79
0.

03
74

B
as

e
C

la
ss

ifi
er

s:
S:

SV
M

,R
:R

an
do

m
Fo

re
st

,K
:K

er
ne

lF
ac

to
ry

,L
:L

og
it,

A
:A

da
B

oo
st

,N
:N

eu
ra

lN
et

w
or

k
C

om
bi

na
tio

n
m

et
ho

ds
:

G
A

:G
en

et
ic

A
lg

or
ith

m
,D

E
A

:D
iff

er
en

tia
lE

vo
lu

tio
na

ry
A

lg
or

ith
m

,G
SA

:G
en

ar
al

iz
ed

Si
m

ul
at

ed
A

nn
ea

lin
g,

M
A

LS
C

:M
em

et
ic

A
lg

or
ith

m
w

ith
Lo

ca
lS

ea
rc

h
C

ha
in

s,
P

SO
:

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n,

SO
M

A
:

Se
lf-

O
rg

an
iz

in
g

M
ig

ra
tin

g
A

lg
or

ith
m

,T
SA

:
Ta

bu
Se

ar
ch

A
lg

or
ith

m
,L

H
N

N
LS

:
La

w
so

n-
H

an
so

n
N

on
-N

eg
at

iv
e

Le
as

tS
qu

ar
es

,G
IN

N
LS

:G
ol

df
ar

b-
Id

na
ni

N
on

-N
eg

at
iv

e
Le

as
tS

qu
ar

es
,N

N
B

L:
N

on
-N

eg
at

iv
e

B
in

om
ia

lL
ik

el
ih

oo
d,

M
E

A
N

:S
im

pl
e

m
ea

n,
AU

TH
:A

ut
ho

ri
ty

ba
se

d
m

et
ho

d,
SB

:S
in

gl
e

B
es

t

111

CHAPTER 4

prediction its weight is set to zero. Hence investigating how many of the six weights is zero (or
close to zero) gives us an idea about how many sub-ensembles is sufficient. Figure 4.4 plots
the weight of each sub-ensemble per data set. In nine out of the eleven data sets at least one
weight is lower than 5%. In two data sets even two weights are lower than 5%. Figure 4.5 is
an alternative display of the same idea. The weights are sorted from high to low. From the
fifth weight on we see weights dropping below the 5% line. The sixth sub-ensemble does only
deliver a contribution that is higher than 5% in two data sets. Ultimately, the choice to add more
ensemble members is a trade-off between computational efficiency and performance. Given
these arguments, we feel that six is a good ensemble size. The question remains open though
which other algorithms that are top performing and diverse, could be added to, or replace a
member in, the proposed Hybrid Ensemble. Figure 4.4 shows that none of the sub-ensembles
consistently performs either well or poorly. This could also be observed from the Single Best
column in Table 4.4. Whether an algorithm performs well depends on the data and hence there
is no clear indication as to whether an algorithm should be replaced. Nevertheless, that research
question is beyond the scope of this paper.

0.
0

0.
1

0.
2

0.
3

0.
4

W
ei

gh
t

LR

Ion Cre Son Wdb Hea Ger Aus Hor Bre Liv Hea

RF

AB

KF

NN

SV

Figure 4.4: Weights per data set

4.7 Conclusions

In this paper we propose a new Hybrid Ensemble consisting of six sub-ensembles. The sub-
ensembles generate diversity through data perturbation. Hence the difference of the perfor-
mance of the Hybrid Ensemble and the Single Best sub-ensemble effectively yields the added
value of algorithm-induced diversity. We find that the proposed Hybrid Ensemble gives better
performance than the Single Best on all tested data sets for the authority- based weight estima-
tion method and the Self-Organising Migrating Algorithm (SOMA) based weight estimation.

112

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

0.
0

0.
1

0.
2

0.
3

0.
4

Sorted weights

W
ei

gh
t v

al
ue

1st 2nd 3rd 4th 5th 6th

Figure 4.5: Sorted weights

Since the authority- based method outperforms SOMA and in addition is relatively computa-
tionally more efficient we recommend it as the default option in future research.

We also found that the added value of the Hybrid Ensemble over the Single Best increases
with increasing classification difficulty of the task at hand. An interesting avenue for future
research may be to test the proposed method on more difficult tasks and analyze the relationship
between difficulty and increased performance in more detail.

Our study gives an indication that six sub-ensembles is sufficient to constitute the Hybrid
Ensemble. In addition there is no clear winning or losing sub-ensemble. These findings indicate
the appropriateness of the selected algorithms. Future research should provide a decisive answer
to these questions, since they are beyond the scope of this paper.

To limit the computational effort, we chose to restrict ourselves to linear combination rules.
An interesting path for future research is to evaluate other combination rules including non-
linear ones. We submitted the R- software package hybridEnsemble to CRAN. The software is
open- source and well-documented.

4.8 Acknowledgments

Funding for this research was partially provided by the Special Research Fund (BOF, Bijzonder
Onderzoeksfonds), Ghent University, Belgium.

4.9 References

Alpaydin, E., 1999. Combined 5 x 2 cv f test for comparing supervised classification learning
algorithms. Neural Computation 11 (8), 1885–1892.

113

CHAPTER 4

Ballings, M., Van den Poel, D., 2013a. Kernel factory: An ensemble of kernel machines. Expert
Systems with Applications 40 (8), 2904–2913.

Ballings, M., Van den Poel, D., 2013b. R package kernelFactory: an ensemble of kernel ma-
chines.

Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algorithms: Bag-
ging, boosting, and variants. Machine Learning 36 (1-2), 105–139.

Baumgartner, D., Serpen, G., 2012. A design heuristic for hybrid classification ensembles in
machine learning. Intelligent Data Analysis 16 (2), 233–246.

Ben-Ameur, W., 2004. Computing the initial temperature of simulated annealing. Computa-
tional Optimization and Applications 29, 369–385.

Ben-Hur, A., Weston, J., 2010. A user’s guide to support vector machines. Methods in Molecu-
lar Biology. Department of Computer Science Colorado State University, pp. 223–239.

Bendtsen, C., 2012. R package pso: Particle swarm optimization.

Bergmeir, C., Molina, D., Benı́tez, J., 2013. R package rmalschains: Continuous optimization
using memetic algorithms with local search chains (MA-LS-Chains) in r.

Berkson, J., Sep. 1944. Application of the logistic function to bio-assay. Journal of the American
Statistical Association 39 (227), 357–365.

Breiman, L., Aug. 1996. Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L., Oct. 2001. Random forests. Machine Learning 45 (1), 5–32.

Brown, G., Kuncheva, L., 2010. Good and Bad diversity in majority vote ensembles. In: El Ga-
yar, N., Kittler, J., Roli, F. (Eds.), Proceedings 9th International Workshop, Multiple Clas-
sifier Systems, MCS 2010. Springer Verlag, Berlin, Germany, pp. 124–33, 7-9 April 2010,
Cairo, Egypt.

Brown, G., Wyatt, J., Harris, R., Yao, X., Mar. 2005. Diversity creation methods: a survey and
categorisation. Information Fusion 6 (1), 5–20.

Bryll, R., Gutierrez-Osuna, R., Quek, F., Jun. 2003. Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern Recognition 36 (6), 1291–1302.

Burez, J., Van den Poel, D., 2009. Handling class imbalance in customer churn prediction.
Expert Systems with Applications 36 (3), 4626–4636.

114

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Canuto, A. M. P., Abreu, M. C. C., Oliveira, L. d. M., Xavier, J. C., Santos, A. d. M., Mar.
2007. Investigating the influence of the choice of the ensemble members in accuracy and
diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition
Letters 28 (4), 472–486.

Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algo-
rithms. In: Proceedings of the 23rd international conference on Machine learning. ICML ’06.
ACM, New York, NY, USA, p. 161–168.

Chen, D., Plemmons, R. J., 2007. Nonnegativity constraints in numerical analysis. In: Bultheel,
A., Cools, R. (Eds.), Proc. Symposium on the Birth of Numerical Analysis. World Scientific
Press, Leuven, Belgium.

Cho, S. B., Apr. 1999. Pattern recognition with neural networks combined by genetic algorithm.
Fuzzy Sets and Systems 103 (2), 339–347.

Clayden, J., 2011. R package soma: General-purpose optimisation with the self-organising
migrating algorithm.

Clerc, M., 2012. Standard particle swarm optimisation, from 2006 to 2011. Technical Report
2012-09-23 version.

Cooper, G. F., Aliferis, C. F., Ambrosino, R., Aronis, J., Buchanan, B. G., Caruana, R., Fine,
M. J., Glymour, C., Gordon, G., Hanusa, B. H., Janosky, J. E., Meek, C., Mitchell, T.,
Richardson, T., Spirtes, P., 1997. An evaluation of machine-learning methods for predict-
ing pneumonia mortality. Artificial Intelligence in Medicine 9 (2), 107–138.

Cormier, G., Boudreau, R., Theriault, S., Dec. 2001. Real-coded genetic algorithm for bragg
grating parameter synthesis. Journal of the Optical Society of America B-Optical Physics
18 (12), 1771–1776.

Cortes, C., Vapnik, V., Sep. 1995. Support-vector networks. Machine Learning 20 (3), 273–297.

Coussement, K., Buckinx, W., Nov. 2011. A probability-mapping algorithm for calibrating the
posterior probabilities: A direct marketing application. European Journal of Operational Re-
search 214 (3), 732–738.

Coussement, K., Van den Poel, D., 2008. Churn prediction in subscription services: An applica-
tion of support vector machines while comparing two parameter-selection techniques. Expert
Systems with Applications 34 (1), 313–327.

Culp, M., Johnson, K., Michailidis, G., 2012. R package ada: an r package for stochastic boost-
ing.

115

CHAPTER 4

De Jong, K., 1975. An analysis of the behavior of a class of genetic adaptive systems. doctoral
dissertation, University of Michigan, Ann Arbor.

de Lima, T. P. F., da Silva, A. J., Ludermir, T. B., 2012. Selection and fusion of neural net-
works via differential evolution. In: Pavon, J., DuqueMendez, N. D., FuentesFernandez, R.
(Eds.), Advances in Artificial Intelligence - Iberamia 2012. Vol. 7637. Springer-Verlag Berlin,
Berlin, pp. 149–158.

Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7, 1–30.

Didaci, L., Fumera, G., Roli, F., 2013. Diversity in classifier ensembles: Fertile concept or dead
end? Multiple Classifier Systems. 11th International Workshop, MCS 2013. Proceedings,
37–48.

Dietterich, T. G., 1998. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation 10 (7), 1895–1923.

Dreiseitl, S., Ohno-Machado, L., Dec. 2002. Logistic regression and artificial neural network
classification models: a methodology review. Journal of Biomedical Informatics 35 (5-6),
352–359.

Dunn, O. J., Mar. 1961. Multiple comparisons among means. Journal of the American Statistical
Association 56 (293), 52–64.

Elkan, C., 2013. Maximum likelihood, logistic regression, and stochastic gradient training.
Tech. rep., University of California at Davis, Davis, CA.

Fouskakis, D., Draper, D., Dec. 2002. Stochastic optimization: a review. International Statistical
Review 70 (3), 315–349.

Frank, A., Asuncion, A., 2010. UCI machine learning repository. University of California,
Irvine, School of Information and Computer Sciences.
URL http://archive.ics.uci.edu/ml

Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm. In: Machine Learn-
ing. Proceedings of the Thirteenth International Conference (ICML ’96). Bari, Italy, pp. 148–
156.

Friedman, J., Hastie, T., Tibshirani, R., Feb. 2010. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33 (1), 1–22.

Friedman, J., Hastie, T., Tibshirani, R., 2013. R package glmnet: Lasso and elastic-net regular-
ized generalized linear models.

116

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Friedman, J. H., Oct. 2001. Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (5), 1189–1232.

Friedman, J. H., Feb. 2002. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis 38 (4), 367–378.

Friedman, M., Dec. 1937. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association 32 (200), 675–701.

Friedman, M., Mar. 1940. A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics 11 (1), 86–92.

Fumera, G., Roli, F., Jun. 2005. A theoretical and experimental analysis of linear combiners for
multiple classifier systems. Ieee Transactions on Pattern Analysis and Machine Intelligence
27 (6), 942–956.

Gal-Or, M., May, J. H., Spangler, W. E., 2005. Using decision tree models and diversity mea-
sures in the selection of ensemble classification models. In: Oza, N. C., Polikar, R., Kittler,
J., Roli, F. (Eds.), Multiple Classifier Systems. Vol. 3541. Springer-Verlag Berlin, Berlin, pp.
186–195.

Geman, S., Bienenstock, E., Doursat, R., Jan. 1992. Neural networks and the bias variance
dilemma. Neural Computation 4 (1), 1–58.

Glover, F., 1977. Heuristics for integer programming using surrogate constraints. Decision Sci-
ences 8, 156–166.

Glover, F., 1986. Future paths for integer programming and links to artificial-intelligence. Com-
puters & Operations Research 13 (5), 533–549.

Glover, F., 1989. Tabu search. 1. ORSA Journal on Computing 1 (3), 190–206.

Glover, F., Aug. 1990a. Tabu search - a tutorial. Interfaces 20 (4), 74–94.

Glover, F., 1990b. Tabu search. II. ORSA Journal on Computing 2 (1), 4–32.

Goldberg, D. E., Deb, K., 1991. A comparative analysis of selection schemes used in genetic
algorithms. In: Foundations of Genetic Algorithms. Morgan Kaufmann, San Francisco, pp.
69–93.

Goldfarb, D., Idnani, A., 1983. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming 27 (1), 1–33.

Guisan, A., Edwards, T. C., Hastie, T., Nov. 2002. Generalized linear and generalized additive
models in studies of species distributions: setting the scene. Ecological Modelling 157 (2-3),
89–100.

117

CHAPTER 4

Harik, G., Goldberg, D. E., 1999. The gambler’s ruin problem, genetic algorithms, and the
sizing of populations. Evolutionary Computation 7 (3), 231.

Ho, T. K., Aug. 1998. The random subspace method for constructing decision forests. Ieee
Transactions on Pattern Analysis and Machine Intelligence 20 (8), 832–844.

Ho, T. K., May 2002. Multiple classifier combination: Lessons and next steps. In: Hybrid
Methods In Pattern Recognition. Vol. 47. World Scientific, pp. 171–198.

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems. The University of Michigan
Press.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2010. A practical guide to support vector classification.
Technical report, Department of Computer Science and Information Engineering, National
Taiwan University, Taipei 106, Taiwan.

Kim, E., Kim, W., Lee, Y., Jan. 2003. Combination of multiple classifiers for the customer’s
purchase behavior prediction. Decision Support Systems 34 (2), 167–175.

Kim, Y. S., Jan. 2006. Toward a successful CRM: variable selection, sampling, and ensemble.
Decision Support Systems 41 (2), 542–553.

King, R., Feng, C., Sutherland, A., 1995. Statlog - comparison of classification algorithms on
large real-world problems. Applied Artificial Intelligence 9 (3), 289–333.

Kirkpatrick, S., Gelatt, C., Vecchi, M., 1983. Optimization by simulated annealing. Science
220 (4598), 671–680.

Kittler, J., Hatef, M., Duin, R. P. W., Matas, J., Mar. 1998. On combining classifiers. Ieee
Transactions on Pattern Analysis and Machine Intelligence 20 (3), 226–239.

Ko, A. H. R., Sabourin, R., Britto, A. S., May 2008. From dynamic classifier selection to
dynamic ensemble selection. Pattern Recognition 41 (5), 1718–1731.

Krogh, A., Vedelsby, J., 1995. Neural network ensembles, cross validation, and active learning.
Advances in Neural Information Processing Systems 7, 231–238.

Kuncheva, L., 2004. Combining Pattern Classifiers. Methods and Algorithms. Wiley.

Kuncheva, L. I., 2003. That elusive diversity in classifier ensembles. In: Perales, F. J. (Ed.),
Pattern Recognition and Image Analysis, Proceedings. Vol. 2652. Springer-Verlag Berlin,
Berlin, pp. 1126–1138.

Kuncheva, L. I., Whitaker, C. J., May 2003. Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Machine Learning 51 (2), 181–207.

118

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Lawson, C. L., Hanson, R. J., 1987. Solving Least Squares Problems. Prentice-Hall, Englewood
Cliffs, NJ.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3),
18–22.

Liaw, A., Wiener, M., 2012. R package randomForest: breiman and cutler’s random forests for
classification and regression.

Lim, T. S., Loh, W. Y., Shih, Y. S., 2000. A comparison of prediction accuracy, complexity, and
training time of thirty-three old and new classification algorithms. Machine Learning 40 (3),
203–228.

Margineantu, D. D., Dietterich, T. G., 1997. Pruning adaptive boosting. In: Proc. 14th Int’l
Conf. Machine Learning. pp. 211–218.

McCulloch, W., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133.

Menahem, E., Shabtai, A., Rokach, L., Elovici, Y., Feb. 2009. Improving malware detection by
applying multi-inducer ensemble. Computational Statistics & Data Analysis 53 (4), 1483–
1494.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2012. R package e1071:
Misc functions of the department of statistics (e1071),.

Michalski, R. S., Michalski, R. S., Tecuci, G., Carbonell, J. G., Mitchell, T. M., 1994. Machine
Learning: A Multistrategy Approach. Morgan Kaufmann.

Mitchell, T. M., 1997. Machine Learning, 1st Edition. McGraw-Hill, Inc., New York, NY, USA.

Molina, D., Lozano, M., Garcia-Martinez, C., Herrera, F., 2010. Memetic algorithms for con-
tinuous optimisation based on local search chains. Evolutionary Computation 18 (1), 27–63.

Murphy, A. H., Winkler, R. L., 1977. Reliability of subjective probability forecasts of precipi-
tation and temperature. Journal of the Royal Statistical Society 26 (1), 41–47.

Myung, I. J., Feb. 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical
Psychology 47 (1), 90–100.

Nascimento, D. S. C., Coelho, A. L. V., 2009. Ensembling heterogeneous learning models with
boosting. In: Leung, C. S., Lee, M., Chan, J. H. (Eds.), Neural Information Processing, Pt 1,
Proceedings. Vol. 5863. Springer-Verlag Berlin, Berlin, pp. 512–519.

119

CHAPTER 4

Neslin, S. A., Gupta, S., Kamakura, W., Junxiang Lu, Mason, C. H., May 2006. Defection
detection: Measuring and understanding the predictive accuracy of customer churn models.
Journal of Marketing Research (JMR) 43 (2), 204–211.

Opitz, D. W., Shavlik, J. W., 1996. Generating accurate and diverse members of a neural-
network ensemble. In: Touretzky, D. S., Mozer, M. C., Hasselmo, M. E. (Eds.), Advances in
Neural Information Processing Systems 8: Proceedings of the 1995 Conference. Vol. 8. M I
T Press, Cambridge, pp. 535–541.

Partridge, D., Yates, W. B., May 1996. Engineering multiversion neural-net systems. Neural
Computation 8 (4), 869–893.

Pedersen, M., 2010. Good parameters for differential evolution. Technical Report HL1002,
Hvass Laboratories.

Perlich, C., Provost, F., Simonoff, J. S., Feb. 2004. Tree induction vs. logistic regression: A
learning-curve analysis. Journal of Machine Learning Research 4 (2), 211–255.

Provost, F., Fawcett, T., Kohavi, R., 1998. The case against accuracy estimation for comparing
induction algorithms. In: Shavlik, J. (Ed.), Machine Learning. Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’98). Morgan Kaufmann Publishers,
Madison, WI, USA, pp. 445–453.

R Core Team, R., 2013. R package stats: R statistical functions.

Reed, P., Minsker, B., Goldberg, D. E., 2000. Designing a competent simple genetic algorithm
for search and optimization. Water Resources Research 36 (12), 3757–3761.

Ripley, B., 1996. Pattern Recognition and Neural Networks. Cambridge University Press.

Ripley, B., 2013. R package nnet: Feed-forward neural networks and multinomial log-linear
models.

Rokach, L., Feb. 2010. Ensemble-based classifiers. Artificial Intelligence Review 33 (1-2), 1–
39.

Roli, F., Fumera, G., Kittler, J., 2002. Fixed and trained combiners for fusion of imbalanced
pattern classifiers. Int Soc Information Fusion, Sunnyvale.

Ruta, D., Gabrys, B., Mar. 2005. Classifier selection for majority voting. Information Fusion
6 (1), 63–81.

Salzberg, S. L., Nov. 1997. On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery 1 (3), 317–328.

Schumann, E., 2012. R package NMOF: numerical methods and optimization in finance.

120

HYBRID ENSEMBLES: MANY ENSEMBLES IS BETTER THAN ONE

Sharkey, A. J. (Ed.), 1999. Combining Artificial Neural Nets: Ensemble and Modular Multi-Net
Systems, 1st Edition. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Spackman, K. A., 1991. Maximum likelihood training of connectionist models: comparison
with least squares back-propagation and logistic regression. In: Proceedings of the Annual
Symposium on Computer Application in Medical Care. pp. 285–289.

Sra, S., Kim, D., Scholkopf, B., 2008. Non-monotonic poisson likelihood maximization. Tech-
nical Report 170, Max Planck Institute for Biological Cybernetics.

Storn, R., Price, K., Dec. 1997. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11 (4), 341–359.

Tang, E. K., Suganthan, P. N., Yao, X., Oct. 2006. An analysis of diversity measures. Machine
Learning 65 (1), 247–271.

Thorleuchter, D., Van den Poel, D., Dec. 2012. Predicting e-commerce company success by
mining the text of its publicly-accessible website. Expert Systems with Applications 39 (17),
13026–13034.

Thorleuchter, D., Van den Poel, D., Apr. 2013. Technology classification with latent semantic
indexing. Expert Systems with Applications 40 (5), 1786–1795.

Tsallis, C., Stariolo, D. A., Nov. 1996. Generalized simulated annealing. Physica A 233 (1-2),
395–406.

Tsoumakas, G., Angelis, L., Vlahavas, I., 2005. Selective fusion of heterogeneous classifiers.
Intelligent Data Analysis 9 (6), 511–525.

Ueda, N., Feb. 2000. Optimal linear combination of neural networks for improving classification
performance. Ieee Transactions on Pattern Analysis and Machine Intelligence 22 (2), 207–
215.

Valentini, G., Muselli, M., Ruffino, F., 2003. Bagged ensembles of support vector machines
for gene expression data analysis. In: Proceedings of the International Joint Conference on
Neural Networks 2003, Vols 1-4. Ieee, New York, pp. 1844–1849.

van der Laan, M. J., Polley, E. C., Hubbard, A. E., Oct. 2007. Super learner. Statistical Appli-
cations in Genetics and Molecular Biology 6.

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics with S, 4th Edition. Springer,
New York.

Wang, W. J., Jones, P., Partridge, D., 2000. Diversity between neural networks and decision
trees for building multiple classifier systems. In: Kittler, J., Roli, F. (Eds.), Multiple Classifier
Systems. Vol. 1857. Springer-Verlag Berlin, Berlin, pp. 240–249.

121

CHAPTER 4

Willighagen, E., 2012. R package genalg: R based genetic algorithm.

Windeatt, T., Mar. 2005. Diversity measures for multiple classifier system analysis and design.
Information Fusion 6 (1), 21–36.

Woods, K., Kegelmeyer, W. P., Bowyer, K., Apr. 1997. Combination of multiple classifiers using
local accuracy estimates. Ieee Transactions on Pattern Analysis and Machine Intelligence
19 (4), 405–410.

Wu, J. X., Zhou, Z. H., Chen, Z. Q., 2001. Ensemble of GA based selective neural network
ensembles. Fudan Univ Press, Shanghai.

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J., 2012. Generalized simulated annealing for effi-
cient global optimization: the GenSA package for r. The R Journal Forthcoming.

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J., 2013. R package GenSA: r functions for gener-
alized simulated annealing.

Xu, L., Krzyzak, A., Suen, C., Jun. 1992. Methods of combining multiple classifiers and their
applications to handwriting recognition. Ieee Transactions on Systems Man and Cybernetics
22 (3), 418–435.

Yates, W. B., Partridge, D., 1996. Use of methodological diversity to improve neural network
generalisation. Neural Computing & Applications 4 (2), 114–128.

Yu, Y., Zhou, Z.-H., Ting, K. M., 2007. Cocktail ensemble for regression. In: Ramakrishnan,
N., Zaiane, O. R., Shi, Y., Clifton, C. W., Wu, X. D. (Eds.), Icdm 2007: Proceedings of the
Seventh Ieee International Conference on Data Mining. Ieee Computer Soc, Los Alamitos,
pp. 721–726.

Zadrozny, B., Elkan, C., 2002. Transforming classifier scores into accurate multiclass probabil-
ity estimates. In: Proceedings of the 8th International Conference on Knowledge Discovery
and Data Mining. ACM Press, Edmonton, pp. 694–699.

Zelinka, I., 2004. SOMA — self-organizing migrating algorithm. In: New Optimization Tech-
niques in Engineering. Vol. 141 of Studies in Fuzziness and Soft Computing. Springer, pp.
167–217.

Zhang, B., 2011. Two-stage hybrid classifier ensembles for subcellular phenotype images clas-
sification. Procedia Environmental Sciences 8, 554–562.

Zhang, L., Zhou, W.-D., Jan. 2011. Sparse ensembles using weighted combination methods
based on linear programming. Pattern Recognition 44 (1), 97–106.

Zhou, Z.-H., 2012. Ensemble Methods: Foundations and Algorithms, 1st Edition. Chapman &
Hall/CRC.

122

Zhou, Z. H., Wu, J. X., Tang, W., May 2002. Ensembling neural networks: Many could be
better than all. Artificial Intelligence 137 (1-2), 239–263.

