
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Ph.D Dissertations Theses and Dissertations 

Fall 9-29-2021 

DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF 

PROTEIN STRUCTURES PROTEIN STRUCTURES 

John Holland 
John.E.Holland.GR@Dartmouth.edu 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations 

 Part of the Bioinformatics Commons 

Recommended Citation Recommended Citation 
Holland, John, "DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF PROTEIN STRUCTURES" 
(2021). Dartmouth College Ph.D Dissertations. 118. 
https://digitalcommons.dartmouth.edu/dissertations/118 

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital 
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/118?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Ph.D Dissertations Theses, Dissertations, and Graduate Essays 

Fall 9-29-2021 

DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS OF 

PROTEIN STRUCTURES PROTEIN STRUCTURES 

John Holland 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations 

 Part of the Bioinformatics Commons 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


DISCRETIZED GEOMETRIC APPROACHES TO THE ANALYSIS 
OF PROTEIN STRUCTURES

A Thesis 
Submitted to the Faculty 

in partial fulfillment of the requirements for the 
degree of 

Doctor of Philosophy 

in 

Computer Science 

by John Holland 

Guarini School of Graduate and Advanced Studies 
Dartmouth College 

Hanover, New Hampshire 

September 2021 

 Examining Committee: 

_____________________________ 
  (chair) Gevorg Grigoryan 

_____________________________ 
  Chris Bailey-Kellogg 

_____________________________ 
  Michael Ragusa 

_____________________________ 
  Roland Dunbrack 

_____________________________ 
F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies



 
 



ii 

Proteins play crucial roles in a variety of biological processes. While we know that their 

amino acid sequence determines their structure, which in turn determines their function, 

we do not know why particular sequences fold into particular structures. My work focuses 

on discretized geometric descriptions of protein structure—conceptualizing native 

structure space as composed of mostly discrete, geometrically defined fragments—to better 

understand the patterns underlying why particular sequence elements correspond to 

particular structure elements. This discretized geometric approach is applied to multiple 

levels of protein structure, from conceptualizing contacts between residues as interactions 

between discrete structural elements to treating protein structures as an assembly of 

discrete fragments. My earlier work focused on better understanding inter-residue contacts 

and estimating their energies statistically. By scoring structures with energies derived from 

a stricter notion of contact, I show that native protein structures can be identified out of a 

set of decoy structures more often than when using energies derived from traditional 

definitions of contact and how this has implications for the evaluation of predictions that 

rely on structurally defined contacts for validation. Demonstrating how useful simple 

geometric descriptors of structure can be, I then show that these energies identify native 

structures on par with well-validated, detailed, atomistic energy functions. Moving to a 

higher level of structure, in my later work I demonstrate that discretized, geometrically 

defined structural fragments make good objects for the interactive assembly of protein 

backbones and present a software application which lets users do so. Finally, I use these 

fragments to generate structure-conditioned statistical energies, generalizing the classic 

idea of contact energies by incorporating specific structural context, enabling these 

energies to reflect the interaction geometries they come from. These structure-conditioned 

energies contain more information about native sequence preferences, correlate more 

highly with experimentally determined energies, and show that pairwise sequence 

preferences are tightly coupled to their structural context. Considered jointly, these projects 

highlight the degree to which protein structures and the interactions they comprise can be 

understood as geometric elements coming together in finely tuned ways. 
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1 Introduction  

Proteins are an essential building block of biological systems and play diverse roles 

throughout them, acting as enzymes, regulating cellular activity, responding to internal 

and external stimuli, and forming functional and morphological structures. Despite their 

critical role in this array of crucial biological processes, many aspects of their behavior 

are poorly understood. In particular, while we know that their amino acid sequence 

determines their structure, which in turn determines their function, we do not have 

models that adequately explain why particular sequences result in particular structures (or 

structural ensembles). Learning the relationship between sequence and structure is key to 

understanding how proteins behave and can be made to behave and underlies a variety of 

long-standing problems—not only the central challenges of structure prediction and 

sequence design but many offshoots of these such as achieving high binding specificity, 

controlling allosteric networks, generating designable backbones, and predicting the 

effects of mutations. 

Given the vast sizes of both sequence and structure space and the complex 

physics driving how proteins fold and interact, finding a definite relationship between 

sequence and structure may at first glance appear daunting or even intractable. However, 

a closer look at the literature reveals decades of work demonstrating that both folding 

sequence space and designable structure space are highly patterned. That is to say, most 

sequences do not fold into a stable structure but those that do collectively exhibit 

patterns, or degeneracy in the space, such that a sequence design method, tasked with 

finding a sequence that folds into the structure of interest, need not consider every 

possible sequence but only those with particular features. Analogously, most structures 

are not designable (i.e., there exist no sequences that fold into them) but those that do 

collectively exhibit patterns such that a structure prediction method, tasked with finding 

the structure that the sequence of interest folds into, need not consider every possible 

structure but only those with particular features. 

Excitingly, the joint space of foldable sequences and designable structures is so 

highly patterned that fundamental statements can be made about how it works. Contact 

potentials have shown that when a pair of residues interacts, particular pairs of amino 

acids are more likely than others, with some pairs so unfavorable they almost never 
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appear1. The Ramachandran plot demonstrates that nearly all backbone dihedral angles 

adhere to a strict distribution, with various parts of the distribution corresponding to 

specific secondary structural elements, and that some amino acids occupy even more 

specific parts of that distribution2,3. Work on contact prediction has revealed that for 

families of sequences, many mutations do not occur independently but are instead 

coupled to mutations at other positions4; these patterns of coupled mutations not only 

suggest which parts of the sequence are folded together in the native structure as contacts 

but, more fundamentally, that these contacts form the way they do because of the intricate 

relationship between sequence and structure. 

Recent work in the Grigoryan Lab5–9 has focused on the patterns that can be found 

in designable structure space. In particular, it has been shown that only a small set of 

structural motifs—termed tertiary motifs because they are in general not contiguous in 

sequence but span contacts and other higher order interactions—is needed to cover, to a 

high degree of accuracy, most native structures (essentially, just several hundred are 

needed to cover half of all experimentally determined structures)7. In other words, despite 

the dazzling diversity of native and designed structures, most parts of most known 

structures can be reduced to a configuration of the same pseudo-discrete tertiary motifs. 

This insight allows us to imagine new strategies for learning the relationship between 

sequence and structure; if designable structures can be understood as comprising an 

arrangement of tertiary motifs, then it might be possible to discover patterns in the 

distribution of these motifs’ sequences that explain why proteins behave the way they do. 

A model that can explain why particular sequence motifs result in particular structure 

motifs would be invaluable for tackling the aforementioned challenges in structural 

biology. 

This work builds on these insights by building discretized geometric models of 

protein structure in a mostly pairwise manner. That is, this work focuses on building an 

understanding of protein structure and sequence-structure relationships by defining 

(pairwise) contacts geometrically and utilizing discretization, both in the definition via 

rotamers and in order to construct discrete fragments of contact-centered structure. By 

using this discretized geometric notion of contacts to estimate pairwise statistical 

energies, it is shown that this definition better identifies native sequence-structure 
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relationships than traditional definitions. By evaluating sequence-based contact 

prediction with this definition, it is shown that these traditional definitions inflate 

performance. By incorporating this notion of contact and other geometric descriptors into 

a more comprehensive statistical potential (which inherently discretizes these values) it is 

shown that these simple, geometric notions can be used to score sequence-structure 

relationships on par with well-validated, atomistic energy functions. Next, pair motifs 

built around these contacts are shown to be good objects for assembling protein 

backbones in a visual, interactive application. Finally, I demonstrate that these pair motifs 

generalize the notion of a contact potential; rather than conditioning amino acid pair 

statistics on a contact binary, these statistics can instead be conditioned on an ensemble 

generated around any pair motif of interest, resulting in energies specific to the contact 

geometry they come from. These structure-conditioned energies contain more 

information about native sequence preferences when compared to a contact potential, 

correlate highly with experimentally determined coupling energies (and more so 

compared to a contact potential), and can be used to show a general relationship between 

structural similarity and energetic similarity on a pairwise level, with similar contact 

fragments resulting in similar energies and, strikingly, vice-versa. 

The focus not just on patterns in folding-sequence-and-designable-structure space, 

but specifically on discretized, geometric, and pairwise analysis has a long history in 

protein science and these kinds of techniques have a broader history in science as well. 

First, discretization, the process of transforming a continuous or otherwise 

complex space into definite regions or categories, has been used to gain insight in myriad 

scenarios. For a historical example in biology, a Punnett square simplifies the complex 

genetic process of hybridization by discretizing phenotypes and categorizing them as 

dominant or recessive, providing reliable predictions while obviating detailed 

biochemical explanations or genetic analysis of the possible alleles involved. Looking at 

the history of protein science, the classic work of Monod, Wyman, and Changeux on 

allostery and oligomerization in proteins10 provides a good model of how some inter-

protein associations can alter the energetic cost of further associations (i.e., an allosteric 

partner reducing the cost of binding to an orthosteric one) by conceptualizing proteins as 

discrete, mostly rigid, geometric objects. The assignment of secondary structural 
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elements to particular regions of the Ramachandran plot is a widely used example of 

discretization which demonstrates that eliding some information (the exact backbone 

dihedral angle of a residue) can elucidate other things (the similarity between one alpha 

helical segment and another, despite slightly different angles, and the hydrogen bonds 

that make this similarity relevant). Rotamer libraries provide yet another example of the 

success of discretization, enumerating the most likely and relevant side chain 

conformations at a given position by exploiting the statistical patterns in native sidechain 

geometries11,12. Another notable instance of this comes from work on docking: the 

discretization of space employed by the fast Fourier transforms widely used in docking 

methods demonstrates that sufficiently small voxels in space can often adequately encode 

information about how a structure occupies the space it is in13. 

Second, geometric techniques have a long history of success as well. For a 

historical example, the study of geometrical optics was used to construct corrective lenses 

centuries before the physical nature of light was understood. Looking to proteins 

specifically, in addition to the work on allostery mentioned above, many models and 

tools of proteins conceptualize their structures geometrically at the residue or even fold 

level, rather than in terms of the atomistic physics driving this geometry. From structural 

classifications like CATH14, to “periodic table” style analysis like that of protein-protein 

interactions15, to geometric fragments being used to assemble larger structures16, the 

geometric analysis of protein structure often detects patterns that lower-level analysis 

struggles to reproduce. A rotamer library constructed based on the statistics in the PDB, 

for instance, does not require a detailed model of the physics responsible for the useful 

degeneracy in sidechain conformation space, only the knowledge of this degeneracy 

needed to encode the most common conformations. 

Finally, pairwise analysis, in particular the use of inter-residue contacts, is a 

widely used framework in the study of protein structure for a number of reasons. A model 

of structure comprising only self terms, without any higher order ones, is generally not 

useful because most features of structure cannot be explained by such simple models, as 

the prevalence of epistasis and non-zero coupling energies across many kinds of protein 

structures, among many other points of evidence, conclusively proves. While higher-

than-pairwise features have certainly been used in a variety of structural models, there are 



5 

good reasons to focus on pairwise analysis in particular. From a practical angle, the 

combinatorics of higher order analysis quickly imposes data sparsity issues on any 

statistical analysis; there are just 400 amino acid pairs but 8,000 triplets and 160,000 

quadruplets. Given the number of high quality, non-redundant structures in the PDB (tens 

of thousands) and the uneven amino acid distribution of pairs, triplets, etc., there are not 

enough data points to collect rich statistics on all 8,000 triplets and the problem grows 

multiplicatively worse as the degree of analysis increases. 

But beyond technical issues like this, which may eventually be alleviated as more 

structural data are generated, more fundamental problems impinge on higher-order 

analysis in a way they do not on lower-order alternatives. A structural biologist familiar 

with contact potentials and other pairwise models can easily leverage the insights they 

contain and apply them to problems of interest. It is far harder to learn, visualize, or even 

examine 8,000 triplet-wise or 160,000 quadruplet-wise interaction preferences than it is 

for the 400 pairwise ones and therefore models that make conclusions in these higher-

order regimes cannot be easily incorporated into intuitive models, which makes it much 

harder to detect faulty assumptions in the model or mistakes in the implementation, both 

essential steps in any scientific project. These psychological limitations become 

increasingly relevant as hyper-complex machine learning models become ingrained in 

research agendas; a black-box model with millions of parameters cannot be efficiently 

debugged if many of the parameters represent high order relationships that researchers 

have no prior knowledge of. Requiring complex models be reducible to pairwise analysis 

ensures that the results can be scrutinized and compared to prior structural knowledge. 

Even if higher-order analysis is unavoidable, building a strong base of self and pairwise 

knowledge that it can be checked against (e.g., by querying to what extent a higher-order 

model differs from the predictions of the pairwise ones and being critical if it differs in 

implausible ways) reduces the likelihood of mistakes or faulty assumptions going 

undetected. 

More broadly, the study of lower order patterns complements that of higher order 

ones. The highest order models, such as a deep learning network whose input is a 

sequence and output is a structure, benefit from being interpretable using lower order 

approximations. For a simple example, if we have a priori knowledge of how pairs of 
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residues interact via a contact potential, we can begin validating a sequence-to-structure 

deep learning network by scoring its interactions with the potential and comparing those 

scores to those of known native structures. If the network’s structures’ scores are 

systematically less favorable than those of natives, then there is no need to perform more 

time consuming and expensive experimental validation; more work is evidently needed 

before the network’s predictions can be considered realistic. For a practical and recent 

example of this, AlphaFold17 leverages pairwise inter-residue distance analysis both to 

improve its structure predictions and to validate intermediate steps in the deep learning 

network. 

Much of the work detailed below can be seen as testing the limits of discretized 

and pairwise geometric models. The replacement of traditional, distance-based 

definitions of contact with contact degree can be seen as an attempt at squeezing as much 

utility out of pairwise structural descriptors as possible by finding a definition that 

incorporates more context than plain distance. The statistical potential built around 

contact degree and conditioned against measures of backbone angles and environment 

effectively answers the question of how much predictive power can be encoded in such a 

simple model. The work on tertiary motif-based backbone design tests how feasible it is 

to interactively design backbones based around contact fragments. Finally, the work 

structure-conditioned amino-acid couplings is explicitly an extension of contact 

potentials that explores the information revealed by conditioning amino-acid statistics on 

particular pair motifs (i.e., the information contained within statistics centered around 

discrete, geometric, pairwise fragments). 

 

2 Evaluating contact prediction with a novel definition 

of inter-residue contact 
 

2.1 Introduction 
Formation of tertiary structure in proteins is dependent on the establishment of close 

through-space interactions, often between amino-acid residues distant in sequence. Inter-

residue contacts should impose constraints on evolutionary dynamics. Thus, mutations at 
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contacting pairs are expected to be coupled in the evolutionary record. Such 

compensatory mutational coupling in evolutionarily related proteins enables statistical 

methods to infer which positions in a multiple sequence alignment (MSA) of structurally 

homologous proteins may be in contact. The idea of using predicted inter-residue 

contacts, discovered by analyzing MSAs, to aid in structure prediction has been around 

for decades18, but has experienced a resurgence recently due to the massively increased 

amount of available sequence data19–22. Several investigators have now shown that the 

large sequence datasets available today enable much more robust contact predictions than 

their smaller counterparts23–26. However, any successful contact prediction model must 

avoid inferring spurious couplings27. Indeed, pairs of mutations can co-occur by chance 

or appear to couple due to phylogenetic biases, unrelated to maintaining structure28. 

Trying to determine which apparent correlations correspond to contacts has been 

approached from a variety of angles, such as enforcing maximum entropy to remove 

spurious indirect couplings4, using probabilistic graphical models to learn correlations 

from sparse statistics19, and estimating evolutionary distance relationships to determine 

the significance of correlations29. Impressive precision rates upwards of 90% have been 

reported for the most confident few predicted contacts19, which can be enough for 

practical structure prediction30–32. 

Several challenges in contact prediction remain to be addressed, however. For 

instance, accuracy drops considerably when more than a few contacts are predicted33. 

Additionally, current methods require large numbers of sequences in the right range of 

homology that are unavailable in many practical scenarios34. But perhaps more 

importantly, the high reported prediction rates are in relation to fairly loose definitions of 

contact between two residues—for instance, any two atoms being within 8 Å of each 

other in any available structure belonging to the family in question4 or any two Cβ atoms 

being within 8 Å35. This aids in achieving a high precision rates, but such loose 

definitions may not be optimal for the purpose of making predictions about structure. 

A reasonable quality measure for a contact definition is the amount of 

information, per contact, contributed towards discriminating correct from incorrect 

structural models. Guided by this idea, we propose a new contact definition, termed 

contact degree (CD), and show that the knowledge of a single CD-based contact 
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eliminates considerably more solution space in structure prediction than does knowledge 

of a contact defined via common distance-based criteria. On the other hand, we find that 

MSA-based contact prediction results in much lower precision for CD-based contacts as 

it does for traditional contact definitions. Thus, the remaining challenges in contact 

prediction are better revealed by adopting stricter definitions of contact that are ultimately 

more informative for structure prediction. 

Motivated by these observations, and the need for both an informative contact 

definition and accurate prediction rates, we consider an additional source of information 

that can be used to supplement co-variation in contact prediction. In particular, we 

consider the fact that different amino-acid pairs have different a priori expectations of 

being in contact, based on observations in native proteins. These differential expectations 

are captured within so-called residue-level statistical contact potentials36. While contact 

potentials cannot encode all of the information required to fold a structure37, they can be 

used to differentiate native structures from many varieties of decoys38. Thus, if a pair of 

MSA positions predicted to co-vary tends to be occupied by amino-acid pairs that do not 

score favorably by a residue-level contact potential, this should weaken our belief that the 

pair represents a true contact. On the other hand, if mutations at this pair of positions 

appear to compensate for each other in such a way as to produce consistently favorable 

contact potentials, this pair may be more likely to be a true contact. Based on this 

intuition, we propose a metric that combines a contact potential with a co-evolution score 

(from DCA or MetaPSICOV) and show it to improve the precision of both DCA and 

MetaPSICOV alone considerably. 

The idea of using contact potentials in contact prediction has been put forth in 

recent work35,39–41. For example, Jones et al. include contact potential values as one of the 

many features in their neural network for predicting contacts35. In the analysis of the 

EPSILON-CP method developed by Stahl et al.41, the mean contact potential energy is 

deemed an important feature in the neural net. However, to our knowledge, the isolated 

benefit of contact potentials towards improving contact prediction has not been studied 

extensively. Furthermore, it has been unclear to what extent the significant degradation in 

performance resulting from the utilization of more informative contact definitions can be 

mitigated by the incorporation of contact potentials. Here we show that the added benefit 
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of incorporating contact potentials can be quite significant, especially in conjunction with 

contact definitions that are difficult to predict but highly informative. Further, we find 

that averaging contact potential values across all sequences of an MSA (for a given pair 

of positions) produces significantly higher improvements in performance. Thus, in 

summary, this work both points out the significant room for improvement that remains 

towards accurately predicting informative inter-residue contacts and proposes a route 

towards attaining such improvement. 

 

2.2 Results 
2.2.1 Contact definition and interpretation 
The best criterion for classifying a pair of residues as being in contact depends on the 

application—i.e., the meaning that a contact is interpreted to have. For many 

applications, including structure prediction and protein design, a reasonable interpretation 

of a contact would be a pair of residues that are capable of participating in a direct 

physical interaction in such a way as to have significant influence on each other’s amino-

acid identities. Such an interpretation would be particularly well aligned with the goal of 

predicting contacts based on mutational co-variation. It follows then that spatial 

proximity should be an important but not the sole determinant of a contact. The 

opportunity to establish an interaction, as determined by the surrounding structural 

environment, should also be a contributor. Traditional distance-based contact definitions 

capture the former but not the latter factors. Fig. 2.1 shows several examples of typical 

structural circumstances where a distance-dependent definition of contact does not agree 

with structural intuition. In particular, we consider three different commonly-used contact 

definitions: the one proposed by Morcos et al. in presenting the DCA method—i.e., two 

residues with at least one pair of non-hydrogen atoms within 8 Å of each other (hereafter 

referred to as the “any-heavy” definition)4, the official CASP definition—i.e., two 

residues with Cβ (or Cα in the case of Glycine) atoms within 8 Å of each other (referred 

to as the “Cβ” definition)35, and a definition based on a metric used in coarse-grained 

modeling—two residues with centroids within 6 Å of each other (referred to as the 

“centroid” definition)42,43. The top row in Fig. 2.1A–C shows situations where each of 

these definitions, respectively, would classify as contacting position pairs that, by 
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structural intuition, should not directly affect each other’s amino-acid identity; even with 

stricter thresholds than stated above. For example, in Fig. 2.1A, the two positions 

involved are on opposite sides of a β-sheet. On the other hand, the bottom row in Fig. 

2.1A–C demonstrates examples where each of the above definitions, respectively, would 

fail to classify as contacting residue pairs that would be expected to affect each other’s 

amino-acid identities and, therefore, would be expected to co-vary even with more 

generous cutoffs that those typically used. 

 

 
Fig. 2.1 Distance-based contact definitions can flag unreasonable contact geometries or 

fail to capture position pairs likely to co-vary. A), B), and C) correspond to any-heavy, Cβ, 

and centroid-based contact definitions, respectively. The top row show examples where 

residue pairs that would be classified as contacting, on the basis of a rather strict distance 

cutoff in each case, do not appear to have immediate influence on each other. Whereas the 

bottom row demonstrates cases where a rather loose distance cutoff, in each case, would 

miss an apparent contact (i.e., a pair of positions likely to co-vary). The value of the 

corresponding distance metric, along with the contact degree value, are shown at the 

bottom of each panel. Residue pairs of interest are highlighted in thick cyan sticks, with 

their Cα atoms shown with spheres. The contacts shown in the top row correspond to 
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position pairs (A126, A141), (A328, A344), and (V120, V128) from PDB structures 3JUM, 

3JU4, and 1LM8 for A)-C), respectively, and those in the bottom row correspond to 

position pairs (A55, A62), (C102, C201), and (B144, B153) from PDB structures 1JUH, 

1JUH, and 4ACF for A)-C), respectively. These illustrative cases were identified by 

manual inspection of a random set of 100 PDB structures. Molecular renderings created 

with PyMOL. 

 

In order to overcome these flaws, we propose a more structurally informative 

definition of a contact, based on the metric of a contact degree, which we have used in 

prior work5,7. Rather than demarcate a contact based purely on distance, a contact degree 

considers all possible amino-acid and rotamer pair combinations for the position pair of 

interest and produces a value between 0 to 1 that represents the fraction of interfering 

rotamer pairs (i.e., those with non-hydrogen atoms within 3 Å of each other). More 

formally, the contact degree between two positions i and j, denoted CDi,j, is defined as 

follows: 

 

 
Eq. 2.1 

 

Here, Ri is the set of every allowed rotamer from every amino acid at position i 

(based on some rotamer library) that does not clash with the backbone. ℙi(ri) is the 

probability of rotamer ri at position i, taken from the rotamer library and normalized to 

unity over all non-clashing rotamers at i. Ci,j(ri, rj) is unity if rotamer ri placed at position 

i interferes with rotamer rj placed at j (i.e., there are non-hydrogen atoms within 3 Å 

between the two rotamer side-chains) and zero otherwise. Thus, if none of the sterically 

possible rotamer pairs at the two positions interfere with each other, then CDi,j = 0. At the 

other extreme, if all sterically possible rotamer pairs placed at i and j interfere, then CDi,j 

= 1. To create a binary definition of contact, a cutoff c can be chosen so that all pairs of 

positions with a contact degree of at least c are considered to be in contact. In this study, 
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we use c = 0.1. This gives an average of 4.1 contacts per residue, which is in line with our 

structural intuition. 

Contact degree addresses the limitations of the distance-based definitions 

discussed above. Obviously, spatial proximity contributes to the criterion because 

position pairs far apart in space cannot host mutually interfering rotamers. However, the 

opportunity to interact is also accounted for by means of assessing contact via allowable 

rotamers (i.e., rotamers that are compatible with the surrounding structural environment). 

For example, all of the cases in Fig. 2.1 are classified appropriately with a contact-degree 

cutoff of 0.1 (i.e., the top row is classified as non-contacting and the bottom row as 

contacting; corresponding contact degree and distance values are shown in each panel of 

Fig. 2.1). As an added benefit, because contact degree does not rely on the sidechain 

coordinates of a structure, it is sequence independent. That is, one can assess the 

possibility of a contact between two positions in a protein structural template, 

independent of the specific sequence associated with it (unlike, for example, with the 

centroid-based definition). This lends itself better to interpreting contacts as implying 

mutational co-dependence, especially within an evolutionary protein family. 

 

2.2.2 Contact potential as a quality measure of contact definition 
Given any geometric definition of inter-residue contact, one can derive a corresponding 

contact potential—a table of statistical pseudo-energies that reflect the relative propensity 

of different amino-acid types to be in contact within native-like protein structures38,44,45. 

We reasoned that a good quality metric for a contact definition would be the predictive 

power of the resulting contact potential. Of course, this is not the only quality metric, 

particularly given the fact that a contact potential alone is not sufficient to solve structure 

prediction37. Still, all else being equal, if the contact potential emergent from one contact 

definition systematically outperforms that emergent from another definition, it would 

seem reasonable to conclude that the former contact definition is better. Indeed, if a 

particular definition often classifies as contacting residue pairs that, in reality, do not 

significantly interact or influence each other, the resulting contact potential should have 

little meaning or predictive power. A similar argument would apply if a particular 

definition fails to classify many of the truly mutually influencing residues as contacting. 



13 

To evaluate the quality of our CD-based contact definition, we set out to compare 

the contact potential emergent from it relative to potentials emergent from several 

commonly used distance-based contact definitions (see Table 2.1). To isolate just the 

effect of the contact definition, we used the same simple reference-state model in all 

cases. This model assumes random redistribution of amino acids among contacts, such 

that the statistical potential associated with the contact between amino acids a and b is: 

 

 
Eq. 2.2 

 

Here Nc(a, b) is the number of observed contacts between a and b, f(a) is the frequency of 

amino acid a in the database, Nc is the total number of observed contacts (for all amino-

acid pairs), and Ia,b is an indicator variable that evaluates to unity if a and b are different 

and to zero otherwise. As the structural database, we used the PISCES set prepared by the 

Dunbrack Lab that included 8,106 structures, each with a maximum resolution of 2.2Å 

culled at 30% sequence identity46. Fig. 2.2 shows the pairwise contact-potential values 

for the CD-based and any-heavy-based potentials, which are generally well correlated (R 

= 0.81), but with non-negligible differences. For example, the mean absolute energy for 

the CD-based definition is 0.39, higher than the corresponding value of 0.23 for the any-

heavy-based definition. This means that the degree of over/under-representations in 

amino-acid identities at contacting positions is generally higher for the CD-based 

definition, suggesting that it captures more of the underlying structural determinants of a 

true interaction. The same is also true when comparing the CD-based definition with Cβ 

and centroid definitions, which have mean absolute energies of 0.17 and 0.35, 

respectively. Hereafter, we will refer to the CD-based, any-heavy-based, Cβ-based, and 

centroid-based contact potentials as ECD, E1, E2, and E3, respectively (see Table 2.1). 
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Fig. 2.2 Statistical contact potential values for the CD-based definition of contact (upper 

right triangle and upper row for hetero- and homo-typic interactions, respectively) and the 

looser any-heavy-based definition (lower left corner and left column for hetero- and homo-

typic interactions, respectively). Cells are colored blue to red in ascending order of 

statistical energies. 

 

 
Table 2.1 Contact definitions Definitions of the four types of considered contacts. 

 

2.2.3 Comparison of contact potentials via decoy discrimination 
To evaluate the predictive performance of each contact potential, we turned to decoy 

discrimination. A common benchmark experiment for structure-prediction scoring 
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functions, it tests whether the correct native (or a native-like) protein structure for a given 

sequence can be identified from a set that additionally includes incorrect/decoy 

structures. Specifically, we used two commonly employed decoy sets: the I-TASSER 

Decoy Set-II generated by the Zhang Lab47 and the Rosetta decoy set by the Baker Lab48. 

These have been broadly used to test a variety of scoring methods49–55. The decoys in 

these two datasets were generated differently, and therefore represent different test cases 

for a scoring function. I-TASSER decoys were generated by refining I-TASSER ab initio 

predictions with the OPLS-AA force field in order to remove clashes and optimize 

torsion angles. The Rosetta decoys were generated by swapping native backbone dihedral 

angles with random ones from other native structures, filtering out structures with overly 

high radii of gyration or those with heavy atom clashes. The I-TASSER set contains 56 

proteins, with 300-500 decoys for each, and the Rosetta set has 59 proteins with 100 

decoys for each. 

For each protein, the native structure and all of its decoys were scored using each 

potential. To evaluate performance, the rank of the native structure based on its score was 

determined for each protein in the sets. A rank of 1 means that the native received the 

most favorable score, whereas higher ranks indicate that some decoy structures scored 

better than the native. Table 2.2 shows the performance on the I-TASSER Decoy Set-II56. 

Among the four contact potentials considered, ECD assigns the lowest rank to the native 

structure (or is tied for the lowest rank) in 37 cases, whereas E1, E2, and E3 do so in 4, 10, 

and 10 cases, respectively. Overall, the ranks assigned by ECD are well below those for all 

other potentials, and these differences in performance are highly statistically significant 

(see Table 2.2). Table 2.3 shows the performance on the Rosetta decoy set48. In this case, 

ECD assigns the lowest rank to the native structure (or is tied for the lowest rank) in 27 

cases, whereas the same is true for E1, E2, and E3 in 7, 17, and 25 cases, respectively. The 

Rosetta decoy set appears to be a significantly simpler set than the I-TASSER one for all 

contact potentials, so differences in performance are less pronounced. Thus, although ECD 

numerically outperforms all other potentials here as well, the difference is statistically 

significant only in comparison with E1, whereas E2 and E3 perform similarly to ECD (see 

Table 2.3). 
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Table 2.2 Decoy discrimination on I-TASSER II Decoy-discrimination performance of 

ECD, E1, E2, and E3 potentials (in columns CD, any-heavy, Cβ, and centroid, respectively) 

on the I-TASSER II decoy set. Shown is the rank of native structure, in each sub-set, by 

the corresponding contact potential. The ranking of natives by ECD is significantly better 

than the rankings using the other potentials, with the p-values from the Friedman test being 

7.9⋅10−10, 1.3⋅10−5, and 4.5⋅10−5 when comparing ECD with E1, E2, and E3, respectively. 
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Table 2.3 Decoy discrimination on Rosetta Decoy-discrimination performance of ECD, 

E1, E2, and E3 potentials (in columns CD, any-heavy, Cβ, and centroid, respectively) on the 

Rosetta decoy set. Shown is the rank of native structure, in each sub-set, by the 

corresponding contact potential. The ranking of natives by ECD is significantly better than 

ranking by the all-heavy potential (E1), and potentials E2 and E3 performing similarly to 

ECD (Friedman test p-values are 10−7, 0.17, and 0.78, respectively). 

 

Because the only difference between these potentials is the definition of contact 

(the reference state is kept the same), the above results strongly suggest that CD is a more 

informative criterion for determining residue interactions. Thus, it would appear to be 

more advantageous for structural modeling to predict contacts defined via CD than the 

looser distance-based criterion. To test this claim more directly, we measured the amount 

of information contributed by each native contact to decoy discrimination. That is, we 

asked what fraction of decoys are eliminated (on average) by the knowledge of a single 
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contact in the native structure. We found that for the CD-based definition, an average 

contact eliminates 64% of the Rosetta decoys whereas this fraction is 48%, 48%, and 

63% for the any-heavy-, Cβ-, and centroid-based definitions, respectively. Similarly, on 

average a CD-based contact eliminates 72% of the I-TASSER decoys compared to 47%, 

44%, and 66%, respectively, for the other three contact definitions. This shows that it 

would be more advantageous, for the purposes of structure prediction, if evolutionary 

MSA-based methods predicted contacts under the CD-based definition. 

 

2.2.4 Contact prediction using different contact definitions 
We next asked how well the more valuable CD-based contacts are predicted from MSAs 

using the principle of co-evolution. As representative methods, we used 1) the Direct 

Coupling Analysis (DCA) approach by Morcos et al.4, which has aided a number of 

structure prediction tasks57–60; and 2) MetaPSICOV by Jones et al., a state-of-the-art 

consensus method that combines three different co-evolution calculations (PSICOV25, 

mean-field DCA61, and CCMpred62) with other features (e.g., predicted secondary 

structure, solvent accessibility, and others) into a neural network. MetaPSICOV has been 

among the best performers in the contact prediction category of recent CASP 

competitions35,63. In the DCA method, the direct information (DI) metric computed for all 

position pairs in an MSA is used to order the likelihood that each corresponds to a true 

contact, with a higher DI indicating a more likely contact. In MetaPSICOV’s case, the 

output of the neural network produces a value between 0 and 1 termed the precision 

score, with a higher value indicating a more likely contact. Fig. 2.3 shows the 

performances of DCA and MetaPSICOV in the context of either the CD-based or the 

looser distance-based definitions of true contact. Shown is the positive predictive value 

(PPV) as a function of either the number of pairs predicted as contacting (N, Fig. 2.3A 

and 2.3C) or the length-normalized number (i.e., fraction) of predicted contacts (f, Fig. 

2.3B and 2.3D), respectively. 
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Fig. 2.3 Average PPV of contact prediction as a function of the number (N) or fraction (f) 

of predictions. Predictions labeled by CD refer to predictions when contacts are defined by 

contact degree and those labeled by C1, C2, and C3 refer to predictions when contacts are 

defined by the other three definitions (see Table 2.1 for details). (A, B) Predictions of DCA 

on the Pfam dataset. (C, D) Predictions of MetaPSICOV on the CASP12 dataset. 

 

Though different datasets are used to evaluate DCA and MetaPSICOV in Fig. 2.3 

(thus, absolute results are not directly comparable between the two; see Methods), in all 

cases, the performance is lowest with the CD-based contact definition. Thus, although 

CDs are more informative, they appear harder to predict correctly. In general, 

unsurprisingly, contacts by looser criteria appear easier to predict. Indeed, ~20%, ~10%, 

and ~6% of position pairs are classified as contacting by the the any-heavy, Cβ, and 

centroid definitions, respectively, whereas only ~4% are in contact by the CD-based 

definition. This is consistent with contact prediction performance monotonically 
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increasing in the order of CD, centroid, Cβ, and any-heavy contact definitions (see Fig. 

2.3). Based on the above contact frequencies, a randomly chosen position pair is, 

respectively, ~5.0, ~2.5, and ~1.5 times more likely to be a true contact by the any-

heavy-, Cβ-, and centroid-based definition than by the CD-based one. On the other hand, 

the PPV for predicting CD-based contacts is reduced relative to that for other definitions 

by significantly lower fractions (see Fig. 2.3A). Thus, it would seem that predicting CD-

based contacts may still provide more information. Notably, the greatest discrepancies in 

performance among the different definitions of contact occur for long-range contacts, 

defined as those with a sequence separation of at least 23. Given that long-range contacts 

tend to constrain the possible structure more than short-range contacts, these performance 

discrepancies are particularly important to address. 

The above results suggest that contact degree captures useful information about 

structure, more so than other contact definitions, but the considerably lower precision of 

predicting it is not desirable, so we next seek ways of improving it. 

 

2.2.5 A statistical contact potential aids in contact prediction 
A statistical contact potential provides a convenient line of additional evidence towards 

predicting contacts, because it quantifies the a priori expectation that any two amino acid 

types would be in contact. Looking at a particular pair of positions (i, j) in an MSA, we 

can ask whether the amino-acid pairs found at these positions tend to correspond to 

favorable or unfavorable contact-potential values. Qualitatively, if the former is the case, 

this should strengthen our belief that (i, j) is a true contact, while the latter case would 

weaken this belief. To capture this quantitatively, one could (for example) look at the 

average value of a contact potential across all amino acid pairs at (i, j) in the MSA, which 

we will denote Êi,j. This metric could then be used in combination with co-evolution 

scores (e.g., DI or precision score for DCA or MetaPSICOV, respectively) to make a call 

about a particular position pair. To test this concept, we propose a simple empirical 

metric: 
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Eq. 2.3 

 

where Si,j is the MSA-based co-evolution score for the position pair (i, j) and Smax is the 

maximal value of the former for any pair of positions in the given alignment. The 

reasoning behind this combination is that contact potential values are on a fixed scale, 

whereas we have empirically found co-evolution scores to vary considerably from case to 

case, depending significantly on the depth and other properties of the MSA. Dividing Êi,j 

by Smax then serves to normalize the two metrics with respect to each other, across 

different MSAs. The negative sign in front of Êi,j reflects the fact that negative potential 

values correspond to favorable cases and the product ensures that Si,j and Êi,j jointly 

contribute towards scoring a potential contact. Note that much more sophisticated 

combinations of Si,j and Ei,j are possible. In fact, MetaPSICOV includes the value of a 

statistical contact potential as one of the features that go into its neural network model35. 

However, our focus here is to establish and quantify the value of using contact potentials 

to augment co-evolution scores, under different contact definitions, so we chose a simple 

functional form for ease of interpretation. 

We consider each of the contact definitions discussed above and derive four 

corresponding augmented S metrics, Si,j
CD and Si,j

1, Si,j
2, and Si,j

3. Fig. 2.4 compares the 

performance of these combined metrics with that of unadjusted S towards predicted the 

corresponding contact types (i.e., how well Si,j
CD predicts CD-based contacts and how 

well each distance metric predicts the corresponding distance-based contacts). 

Encouragingly, the PPV for predicting CD-based contacts increases by as much as ~18% 

and ~12% for the first few predictions using DCA and MetaPSICOV, respectively (Fig. 

2.4A and 2.4B). The performance also increases for the distance-based contact definitions 

(Fig. 2.4C–2.4H). These increases are smaller that with CD-based contacts, with the 

exception of the centroid definition in conjunction with MetaPSICOV improving PPV by 

a comparable amount (~14% for the first few contacts). The PPV using the any-heavy 

definition is close to perfect—over 90% for the first few contacts—but incorporating the 
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any-heavy potential still systematically improves the performance, demonstrating the 

general benefit of incorporating a contact potential. 
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Fig. 2.4 The effects of incorporating a contact potential into contact prediction. In plots A), 

C), E), and G), DI refers to predictions made using direct information alone. In plots B), 

D), F), and H), MPC refers to MetaPSICOV’s predictions alone. DICD and MPCCD 

respectively refer to DI and MPC’s predictions augmented by contact degree (see Eq. 2.3). 

Similarly, for n ∈ {1, 2, 3}, DIn and MPCn respectively refer to DI and MPC’s predictions 

augmented by contact definition n. 

 

We next ask whether there is benefit in averaging the statistical contact potential 

values over all sequences of an MSA. That is, we ask whether comparable performance 

improvements are observed when the contact potential is computed only in the context of 

a single sequence (e.g., the sequence for which contacts are being predicted). To that end, 

Fig. 2.5 shows the performance improvement (averaged over five trials) when contact-

potential energies are calculated in the context of only a single sequence randomly 

selected from the corresponding MSA. For DCA applied to the Pfam dataset (see 

Methods) incorporating these energies systematically improves the PPV (Fig. 2.5A). For 

MetaPSICOV applied to the CASP12 dataset (see Methods) the improvement is marginal 

at best (in fact, the performance drops slightly for larger N; Fig. 2.5B). This suggests that 

averaging contact potential values over the MSA does provide a significant benefit over 

evaluation in the context of a single sequence (compare Figs. 2.4A and 2.5A). On the 

other hand, average contact-potential values on their own do not provide sufficient 

information for effective contact prediction. 
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Fig. 2.5 Contact predictions made using (A) DCA and (B) MetaPSICOV alone are 

compared against predictions that combine co-evolution scores with the CD-based contact 

potential energies from a single randomly-chosen sequence in each alignment. This 

procedure was repeated five times. Each point displayed corresponds to the mean PPV and 

the error bars show the standard deviation. 

 

We further test how the diversity of predicted contacts changes when different 

contact potentials are combined with co-evolution scores. Higher contact diversity is 

desirable because if a method’s predicted contacts cover many regions in the contact 

map, each predicted contact can independently restrain the possible structures the 

sequence might fold into. To assess contact diversity, we adopted the definition used by 

He et al., wherein the contact map of each target was divided into a 10 x 10 grid of equal-

sized regions and the diversity D was quantified as the Shannon entropy of the 

distribution of the top N/2 contacts over these regions (where N is the length of the 

MSA)64: 

 

 
Eq. 2.4 

 

Here, pi is the fraction of contacts that fall within region i. Table 2.4 shows the mean D 

over all targets when contacts are either ranked by co-evolution scores alone or by hybrid 

scores that combine the different contact potentials. Clearly, for both DCA and 

MetaPSICOV, diversity increases upon adding all contact potentials, but it increases the 

most when the CD-based contact potential is added. 

 

 
Table 2.4 Contact diversity The effect of incorporating contact potentials on contact 

diversity. Contact diversity was quantified by applying Eq 2.4 to the top N/2 contacts in 
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each alignment and then averaging over every alignment in the dataset (first row: DCA on 

the Pfam dataset; second row: MetaPSICOV on the CASP12 dataset, see Methods), where 

N is the length of an alignment. The “alone” column contains the diversities when no 

contact potential is applied (that is, when DCA or MetaPSICOV scores alone are used to 

rank contacts). The remaining columns contain the diversities resulting from ranking 

contacts by hybrid scores that combine the corresponding co-evolution score and a contact 

potential (based on the four contact definitions in Table 2.1, respectively). 

 

2.3 Discussion 
In this study we show that contact prediction performance depends critically on the 

underlying geometric definition of a contact. The previously reported high prediction 

rates have relied on relatively loose, distance-based definitions of contact. The definitions 

tested in this study—any heavy atoms within 8 Å, Cβ atoms within 8 Å, and centroid 

pseudo-atoms within 6 Å– respectively classify ~20%, ~10%, and ~6% of the residue 

pairs in a protein as contacting. Though this aids in achieving a high positive predictive 

rates, the looseness comes at the expense of information contributed towards structure 

prediction. This is evident when comparing these contact definitions to a stricter one we 

propose, based on the quantity of contact degree (CD, Eq. 2.1). Indeed, only ~4% of 

position pairs are classified as contacting based on CD (with the cutoff of 0.1 used 

throughout this study) and a single CD-based contact eliminates 5, 2.5, and 1.5 times 

more decoy structures than a contact defined by the any-heavy, Cβ, and centroid 

definitions, respectively. Also, a statistical contact potential corresponding to the CD-

based contact definition exhibits a significantly better performance in decoy 

discrimination than do contact potentials derived from distance-based contact definitions. 

Though more informative, CD-based contacts are also harder to predict (see Fig. 

2.3). Encouragingly, however, we show that combining the co-evolution score of a given 

residue pair with the statistical contact potential energy for the pair, averaged over all 

sequences in the MSA, results in a significantly more predictive metric. The performance 

boost is particularly pronounced in the prediction of CD-based contacts. For example, the 

CD-based potential increases the precision of the DCA method by ~18% for the first few 
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contacts (see Fig. 2.4A). Such a performance increase is highly relevant given that the 

knowledge of only a few of contacts is often sufficient to aid structure prediction65. 

While the performance improvements were largest for CD-based contacts, 

incorporating a contact potential improved performance for every definition of contact 

using both methods, with the exception of the Cβ-based potential not improving the 

performance of MetaPSICOV. Notably, of the three distance-based contact definitions we 

have considered, the centroid-based definition exhibits considerable advantages: 1) it 

performs best (or tied for best) in decoy discrimination (see Tables 2.2 and 2.3), 2) 

contact-prediction improvement resulting from the incorporation of its corresponding 

contact potential is the highest (see Fig. 2.4H), 3) it eliminates the highest fraction of 

decoys based on a single contact, and 4) it leads to the highest contact diversity increase 

when augmenting a co-evolution score (see Table 2.4). It can be argued that these 

advantages, to some extent, are a result of the centroid-based definition using more 

information–i.e., the location of the side-chain. Indeed, side-chains positions must be 

known (or appropriately modeled) to even apply this definition of a contact. On the other 

hand, the CD-based definition achieves better performance in all of the above criteria 

without requiring side-chain information. Possible side-chain positioning is accounted for 

explicitly within the CD calculation procedure itself, in a sequence independent manner, 

resulting in a contact definition that can be applied to full-atom or backbone-only models 

alike. 

 

2.4 Methods 
2.4.1 Contact degree 
CDs were calculated according to Eq. 2.1 using the 2010 backbone-dependent Dunbrack 

rotamer library12. Rotamers were labeled as clashing with the backbone (and removed 

from consideration) if at least one non-hydrogen atom in the rotamer sidechain was 

within 2.0 Å of any non-hydrogen backbone atom of the structure (except its own 

backbone). ConFind, a program that computes CDs, can be found at 

http://www.grigoryanlab.org/confind/. 

 

2.4.2 Decoy discrimination 

http://www.grigoryanlab.org/confind/
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The I-TASSER II decoy set was downloaded from 

https://zhanglab.ccmb.med.umich.edu/decoys/decoy2.html56. The Rosetta decoy set was 

downloaded from https://zenodo.org/record/48780#.WqAU-HWnFhF66. 

 

2.4.3 DCA 
As described by Morcos et al., 131 protein families were selected from Pfam’s 

homologous sequence datasets based on the number of non-redundant sequences, fraction 

of sequences belonging to bacterial organisms, and the availability of high quality PDB 

structures4. This resulted in 856 corresponding PDB structures. DI for all residue pairs 

was calculated using Matlab code obtained from Dr. Morcos. To map the 856 PDB 

structures to their Pfam families, each PDB sequence was compared against all sequences 

in all of the above Pfam families. To account for point mutations introduced in PDB 

structures, a sequence-to-structure match was established if the sequence similarity was at 

least 95%. If no sequence was found to be a match for a particular PDB structure, the 

sequence that gave the highest sequence similarity score was considered as the match. In 

this way, each PDB structure in the list was mapped onto at least one of the 131 Pfam 

families. The MSAs and structures used for this analysis are exactly as those used in the 

original study, so the results in Fig. 2.3A for the loose contact definition reproduce the 

PPVs reported in that work. 

 

2.4.4 MetaPSICOV 
To evaluate MetaPSICOV’s contact prediction, the sequences of each CASP12 target 

listed in Table 1 in Buchan et al. were submitted to the MetaPSICOV server 

(http://bioinf.cs.ucl.ac.uk/MetaPSICOV/) and the precision scores were extracted from 

the Stage 2 results63. Because not all CASP12 target sequences have publicly available 

structures, which are needed to determine which pairs of positions are in contact, only 

those sequences with corresponding PDB entries were considered, resulting in 19 

sequences. Each sequence’s PDB ID was taken from the CASP website 

(http://predictioncenter.org/casp12/targetlist.cgi) and the corresponding PDB file was 

downloaded from the PDB. To acquire the alignments used to produce MetaPSICOV’s 

precision scores, MetaPSICOV was downloaded from 
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http://bioinfadmin.cs.ucl.ac.uk/downloads/MetaPSICOV/ and run locally. Due to 

technical difficulties, the alignment for target T0918 could not be computed, resulting in 

a dataset of 18 sequences: T0859, T0862, T0863, T0864, T0866, T0868, T0869, T0870, 

T0886, T0892, T0896, T0897, T0898, T0900, T0904, T0941, T0943, T0945. 

 

2.4.5 Contact definitions 
Contacts in each structure were identified using either the CD-based metric, with a cutoff 

of 0.1, or one of the three distance-based metrics specified in Table 2.1, C1, C2, and C3. 

For C1—“any-heavy”—a pair of positions was considered in contact if at least one non-

hydrogen atom from the residue at one position was less than 8 Å of one non-hydrogen 

atom from the residue at the other position, backbone atoms included. For C2—“Cβ”—a 

pair of positions was considered in contact if the Cβ atom from one position was less than 

8 Å from the Cβ atom from the other position. For C3—“centroid”—a pair of positions 

was considered in contact if a pseudo-atom located at the mean coordinates of one 

position’s sidechain atoms was less than 6 Å from the corresponding pseudo-atom of the 

other position. For the Pfam dataset, a pair of positions in an MSA of a protein family 

was considered to be a true contact if the corresponding pair of positions was in contact 

within any PDB structure mapped to the family. For the CASP12 dataset, a pair of 

positions in an MSA was considered to be a true contact if the corresponding pair of 

positions was in contact in the PDB structure of the target sequence. To enable direct 

comparison between the results in this paper and those in Morcos et al.4, a contact in the 

Pfam dataset was treated as a contact only if the two positions were separated in sequence 

by at least five positions. On the other hand, a contact in the CASP12 dataset was treated 

as a contact only if the two positions were separated in sequence by at least six positions, 

in accordance with CASP protocol (see 

http://predictioncenter.org/casp12/doc/rr_help.html). 

 

2.4.6 Contact prediction 
To predict contacts, all residue pairs separated by at least the minimum sequence 

separation (see the previous paragraph for details) were ranked in descending order of 

calculated co-evolution scores and top-ranking pairs were predicted as contacting. Top 

http://predictioncenter.org/casp12/doc/rr_help.html
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pairs were selected either based on a fixed rank cutoff (i.e., the first N pairs predicted as 

contacting for each protein, as in Figs. 2.3A, 2.3C, and 2.4) or a length-normalized rank 

cutoff (i.e., for a protein of length N, the first f × N pairs predicted as contacting, with f ∈ 

[0, 1], as in Fig. 2.3B and 2.3D). Positive predictive value (PPV) was assessed as the 

fraction of true contacts out of the predicted contacts. Since the set of true contacts 

depends on the geometric contact definition, PPV was a function of contact definition. 
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3 Predicting native structures with a hierarchical, 

geometric, residue-based statistical potential 
 

3.1 Introduction 
The predictive success of the contact degree-based contact potential relative to other 

distance-based contact potentials (Chapter 2) suggests that with the right geometric 

descriptors, a residue-level statistical potential can encode valuable information about 

sequence-structure relationships. While the contact potential developed in Holland et al.8 

was deliberately simple, designed to highlight the efficacy of its underlying definition of 

contact, it seemed feasible to develop a more intricate version which sought to more fully 

describe the geometry of contacts and how it affects sequence preferences. The most 

successful statistical potentials condition their statistics on many geometric descriptors, 

such as distances and orientations, and such conditioning is essential to differentiate 

between various kinds of interactions and their varying sequence preferences. 

In this project, I sought to construct a hierarchical statistical potential, conditioning the 

contact degree-based pair terms on self terms describing the geometry and environment 

of the residues involved in the contacts. That is, rather than estimate pair preferences 
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solely in the context of a database of contacting residue pairs, this statistical potential was 

based on the idea that to estimate pair preferences, the role of self preferences must be 

addressed first, adjusting the expectations of the pair terms by how often both amino 

acids would be expected based on their self preferences. More specifically, the first term 

in the potential was defined to be the φ- and ψ-dihedral angle preferences of each residue 

in the database of contacts. Having associated each bin of φ/ψ-space with its preferences, 

the ω-dihedral angle preferences were conditioned on these, estimating the favorability of 

each amino acid in each bin of ω-space given the already known φ/ψ preferences. The 

motivation to estimate preferences hierarchically like this was to avoid the data sparsity 

issues inherent in high-dimensional spaces. If dihedral angle space is jointly partitioned 

finely enough to accurately estimate preferences, the number of residues occupying all of 

these particular regions simultaneously falls precipitously. By first estimating the 

statistics of each bin of φ/ψ-space and then estimating the statistics of each bin of ω-space 

given each residue’s φ/ψ preferences, there is no need for every region of this 3-

dimensional space to be adequately populated—if residues with ω-dihedral angles in a 

particular region never have φ/ψ-dihedral angles in another particular region, then there is 

no need to estimate the statistics in this combined φ/ψ/ω region. 

On top of these φ/ψ/ω backbone dihedral angle preferences, the preference for 

each amino acid in varying environments, encoded by a backbone-based, rotamer library-

dependent metric we call “freedom”, were estimated. Thus, this hierarchical potential 

encodes four layers of self preferences. The final layer of the potential is the pair 

preferences, encoded by partitioning contact degree into many bins and estimating the 

amino-acid pair preferences within each. For each contact considered, the self 

preferences of both of its constituent residues were considered using the four self 

preference layers and the expectation of the pair preferences was adjusted based on these. 

Thus, the preferences in each bin of contact degree reflect the extent to which each 

amino-acid pair is preferred given the known preferences of the residues involved in 

contacts in this bin. 

The primary question being asked here was how much information about native 

sequence-structure preferences could be stored in a residue-level potential, and in 

particular, whether this information was sufficient to identify native structures among 
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decoys, a common challenge asked of energy functions that probes the limits of their 

predictions. 

 

3.2 Results 
3.2.1 Database and geometric descriptors 
As with the contact potential developed in Chapter 2, a large database of non-redundant 

structures from the PDB was collected using PISCES46. For each structure in this 

database, the contact degree (Eq. 2.1) between each pair of residues was calculated. In 

addition, for each residue of each contact, the backbone dihedral angles (φ, ψ, and ω) 

were calculated as well as the “freedom” of each residue. 

Just as contact degree measures the potential interaction between a pair of 

residues using only the backbone coordinates of the residues and a rotamer library, 

freedom measures the lack of crowdedness of a residue’s environment using its backbone 

coordinates and a rotamer library. In particular, the freedom of a residue r is computed as: 

 

 
Eq. 3.1 

 

Here, n(r) is the number of rotamers of any amino acid that can be attached to the 

backbone of r (since the rotamer library is backbone-dependent, this number is variable). 

The terms n1(r) and n2(r) are the number of rotamers that pass the first or second collision 

threshold, respectively. Each rotamer is attached to r and then tested for clashes with 

contacting rotamers. If any non-hydrogen atom of the rotamer comes within 3 Å of any 

non-hydrogen atom of a rotamer t attached to a contacting residue, then it is considered 

clashing and the probability of t (according to the rotamer library) is added to the 

collision sum of the rotamer. If the collision sum of a rotamer is under 2.0, then 1 is 

added to n2(r). If the collision sum of a rotamer is under 0.5, then 1 is also added to n1(r). 
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Thus, n1(r) and n2(r) store how many rotamers are sufficiently “free” from other, 

contacting rotamers. This makes freedom a side-chain independent measure of a residue’s 

(lack of) crowdedness, estimating how free or buried it is. 

 

3.2.2 φ/ψ potential 
To measure the preference of each region of φ/ψ space for each amino acid, the 2-

dimensional space was divided into bins of 10° x 10°. For each bin and each amino acid, 

the number of times the amino acid was observed in the bin was calculated and divided 

by the total number of observations (of any amino acid) in that bin. Thus, the energy of 

an amino acid in a given φ/ψ bin measures the relative preference for it compared to other 

amino acids in the bin. Given the heterogeneous density of φ/ψ space, a small 

pseudocount was added to the numerator and denominator to avoid division of or by zero: 

 

 
Eq. 3.2 

 

Here, Nobs(ai, bk) is the number of observations of amino acid ai in bin bk and Nobs(bk) is 

the total number of observations in bin bk. Note that the pseudocount in the numerator is 

multiplied by f(ai), the background frequency of ai in the database as a whole. This 

ensures that in the absence of data in bk, the energy reflects the background frequency. 

Furthermore, if bk has no particular preference for any amino acid, the denominator 

ensures that the energy of each amino acid reflects is background frequency (since 

Nobs(ai, bk) / Nobs(bk) would then approximate f(ai)). This first potential thereby encodes 

the relative frequencies of each amino acid, refined by their relative frequencies in each 

region of φ/ψ space when data are available. Fig. 3.1 shows a few examples of what these 

energies look like. 
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Fig. 3.1 Examples of φ/ψ energies for three amino acids, alanine, tyrosine, and leucine. 

 

3.2.3 ω potential 
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As discussed, the ω potential is conditioned on the φ/ψ potential, adjusting the 

expectation of each amino acid in each bin by the φ/ψ preferences of each residue under 

consideration. Given the extreme sparsity of some regions of ω space (due to strict steric 

constraints), bins were apportioned not by fixed degrees but instead so that each bin had 

approximately the same number of observations. Within each bin, the relative 

favorability of each amino acid ai was calculated given how often it should be expected 

given the φ/ψ preferences of each residue of type ai: 

 

 
Eq. 3.3 

 

Here, bφψ(r) is the φ/ψ bin of residue r and R is the set of residues in ω bin bk. What this 

means is that the expected number of observations, in the absence of sequence-structure 

relationships (i.e., the chosen reference state), is the sum of the φ/ψ energies of each 

residue of type ai in bk compared to the sum of the energies of every residue in bk. For 

instance, if alanine residues in ω bin bk have on average very favorable φ/ψ energies then 

the expected number of observations is increased accordingly. Eω(ai, bk) therefore 

represents how favorable ai is in bk conditioned on how favorable it is based φ/ψ 

energies. The total energy of a residue r of type ar using these two potentials is then the 

sum Eφψ(ar, bφψ(r)) + Eω(ai, bω(r)). Fig. 3.2 shows examples of these energies using the 

same amino acids as in Fig. 3.1. 
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Fig. 3.2 Examples of ω energies for three amino acids, alanine, tyrosine, and leucine. 

 

3.2.4 Freedom potential 
The freedom potential is conditioned on the two previous potentials in the same way the 

ω potential was conditioned on the φ/ψ potential. That is, the expectation is a function of 
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how favorable each residue under consideration is given the previously computed 

energies. Specifically, the expectation is calculated as: 

 

 
Eq. 3.4 

 

Fig. 3.3 shows examples of these energies using the same amino acids as in Figs. 3.1 and 

3.2. 
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Fig. 3.3 Examples of freedom energies for three amino acids, alanine, tyrosine, and leucine. 

 

3.2.5 Contact degree potential 
The pair potential, estimating the preference for each amino acid pair in each bin of 

contact degree, conditions the expectation on all four computed self potentials. This is 

done in the same way as shown above but over each pair of residues in each contact 

degree bin, calculating how many observations should be expected in the reference state 

based on the self preferences. Because this potential is symmetric—ECD(a, b) = ECD(b, a) 

by construction—the expectation for heterotypic pairs must be effectively doubled by 

considering both “directions”, (a, b) and (b, a), since both directions contribute to the 

number of observations: 

 

 
Eq. 3.5 

 

Fig. 3.4 shows examples of pair energies for a few different amino acid pairs. 
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Fig. 3.4 Examples of contact degree energies for three amino acid pairs, alanine-leucine, 

alanine-tyrosine, and leucine-tyrosine. 

 

3.2.6 Decoy discrimination 
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To test how much information is contained in this hierarchical potential, we collected 

several sets of decoy sets and performed decoy discrimination. Each decoy set comprised 

a set of native structures and hundreds of decoys, created to have the same sequence as 

the corresponding native but a different conformation. Each decoy set created decoys in a 

distinct way so that the collection of all of them contained a large diversity of decoy 

structures. If an energy function can accurately relate sequence and structure then it 

should be able to evaluate the compatibility of each structure’s sequence and structure, 

scoring the native the most favorably and the decoys less so because they have, by 

construction, the wrong conformations for their sequences. 

Each structure was scored by computing the contact degree between each pair of 

residues and then scoring the contact using the sum of the potentials. That is, for each 

contact, the amino acid pair was scored based on the bin its contact degree fell in, and 

both amino acids were scored using the four self potentials. The total score of the contact 

was the sum of all of these energies and the total score of the structure was the sum of the 

contact scores. 

To put the performance in a larger context, we evaluated the same decoy sets 

using DFIRE67 and FoldX68, both of which are well-validated atomic-level energy 

functions, and compared the performance of this hierarchical potential to theirs. Table 3.1 

shows a summary of the results, counting how many times each energy function correctly 

identified the native structure as the most favorable compared to its decoys. 

 

Decoy set Hierarchical 

potential 

DFIRE FoldX Max possible 

i-tasser47 43 44 53 56 

moulder69 15 19 19 20 

hg_structal70 24 12 16 29 

ig_structal70 43 0 10 61 

4-state70 7 6 7 7 
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fisa70 1 3 2 4 

lmds70 6 7 8 10 

lattice70 7 8 8 8 

Table 3.1 Decoy discrimination comparison Decoy discrimination results of the 

hierarchical potential compared to DFIRE and FoldX. The first column lists each set of 

decoy sets. The middle three columns list the number of natives correctly identified by 

each method. The final column lists the number of native structures in each decoy set, 

which is the maximum possible number that could have been identified. 

 

As can be seen, the hierarchical potential performs comparably to DFIRE and 

FoldX, sometimes outperforming and sometimes underperforming them. For almost all 

sets of decoy sets (i-tasser, moulder, etc.), the hierarchical potential identified the native 

correctly the majority of the time, suggesting it contains substantial information about 

native sequence-structure relationships. This is particularly striking because it is a 

residue-level potential and uses only information from the backbone, not the side-chains, 

which DFIRE and FoldX both take advantage of. While this project was not published, it 

did provide evidence that residue-level potentials could compete with atomic-level ones 

given the right geometric descriptors. The structure-conditioned contact potential in 

Chapter 5 can be seen as an extension of this, even conditioning pair energies on the 

same self terms (backbone dihedral angles and freedom), albeit in a slightly different 

formulation. 

 

4 An interactive tool for building novel protein 

backbones 
 

4.1 Introduction 
The set of proteins evolved by natural selection offers an extremely large and diverse 

repertoire of functional macromolecules including enzymes, switches, clamps, sensors, 
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small molecule transports, and nanoscale morphological structures such as channels, 

vesicles, and elastic fibers. Yet natural proteins span only a miniscule set of points in the 

space of all designable structures—structures for which there is at least one amino acid 

sequence that folds into them—a space brimming with the possibilities of novel 

structures which lead to novel functions. Protein scientists have designed many novel 

structures over the last several decades71–75, many of which comprise a de novo 

backbone—one which does not have a known counterpart in nature. Such de novo 

structures, while often taking inspiration and even parts from natural proteins, are 

unconstrained by the sequences, structures, and functions nature has happened to 

discover and are instead limited only by what their designers can come up with. 

While many techniques for creating novel backbones have been presented76–

78,71,79–83,73,84,74,85, the problem remains challenging and there are many regions of 

designable structure space that have never been explored. One of the central problems 

underlying the creation of novel structures is the back-and-forth between sequence design 

and backbone creation needed to find a sequence energetically optimal for the backbone 

and a backbone optimal for the sequence. That is, the optimal sequence for a given 

backbone may itself be optimal for a different backbone, which in turn may have a 

different optimal sequence. This means that even if the desired function is known exactly, 

structures that can achieve this function must be discovered dynamically, which creates a 

need for rapid structure generation and modification as part of the design process. This is 

difficult to achieve experimentally, as the biophysical characterization of protein 

structures is time-consuming, expensive, and not guaranteed to work. These experimental 

difficulties have encouraged the development of faster feedback loops via computational 

predictions. While many developments have focused on sequence-dependent predictions, 

such as modeling tools that predict the most likely structure given the sequence and 

energy functions that predict the energetic stability of a structure given its 

sequence67,47,86,87, there have also been many advancements in rapid structure generation 

itself, such as Blueprint Builder81 and TopoBuilder88. 

While the fastest computational feedback loops often sacrifice accuracy for speed, 

their responsiveness can make them invaluable tools for rapidly testing many hypotheses, 

with the most promising hypotheses then subjected to more rigorous but time-consuming 
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tests, ultimately leading to experimental characterizations and tests of function. In the 

case of de novo backbone creation, it would be helpful to have some confidence in the 

designability of a backbone as quickly as possible during creation so that the focus can 

remain on backbones likely to be designable instead of the vast expanse of 

undesignability which comprises most of structure space. Tertiary motifs—structural 

fragments centered around likely inter-residue interactions—provide a promising 

framework for designability, as it has been shown that only a small number of them is 

required to cover a large portion of structure space7. A reflection of the degeneracy of 

structure space, the high coverage these motifs provide means a relatively small library of 

them could provide an expressive selection of structural building blocks. 

Furthermore, given the myriad exciting possibilities for novel structures and 

functions, it would also be helpful to leverage human creativity and visual intuition in the 

process of creation. Considering jointly the desiderata of designability and visual 

intuition, an interactive application that allows a user to create any backbone they can 

imagine, but with their attention focused on only those backbones most likely to be 

designable, would offer protein designers a fruitful and interesting way to propose new 

structures. Motivated by this idea and inspired by other interactive protein structure tools 

such as Foldit89 and Suns90, we present a tool, Protein Builder, that offers its user a way 

to interactively create backbones by assembling native fragments piece-by-piece in ways 

empirically known to occur, fusing each fragment with the rest of the assembly after each 

step. This leads to a design process that ensures native-like interactions locally without 

constraining the user to globally native geometries. The abilities to add and remove 

fragments and undo/redo actions, among other useful features, facilitates rapid testing of 

structural hypotheses and can be used to create entirely new structures whose inter-

residue interactions are often known to occur in native structures. We expect Protein 

Builder to serve as a useful complement to other protein design tools in the creation of 

novel structures. 

 

4.2 Results 
4.2.1 Motivation and overview 
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As outlined in the introduction, Protein Builder is designed to satisfy a number of criteria. 

First, the user should be able to build structures piece-by-piece to create a novel 

backbone. To achieve this, we compiled a database of representative structural fragments 

from the PDB comprising a combination of linear and discontinuous tertiary and 

quaternary motifs. We then created a database of overlaps specifying how each fragment 

in the database is known to spatially and topologically overlap with each other fragment 

(including itself). This enables the user to assemble a backbone one fragment at a time, 

with each added fragment known to be consistent with the fragment it overlaps (the first 

fragment can be chosen arbitrarily). While the backbone can be assembled in a linear 

fashion, adding an overlapping fragment that is discontinuous (i.e., comprises multiple 

disconnected segments) can create multi-segment assembles. Such assemblies can be left 

multi-segment, resulting in a complex with multiple chains, but two or more segments 

can also be bridged, resulting in a single segment, by adding fragments that overlap with 

multiple segments simultaneously. This allows for interaction-centric design strategies 

which involve the addition and bridging of many segments in order to satisfy particular 

contacts or geometries. Second, the user should be able to create a single, coherent 

backbone out of the assembly of fragments. We do this through a process we call fusion, 

which finds a backbone (the “fused structure”) that best satisfies the geometries of the 

underlying fragments. Third, the user should be able to choose where to extend the 

assembly and which (known-to-overlap) fragment should be added. This is achieved 

through the user interface, which allows the user to select one or more residues of the 

fused structure from which to extend the backbone, and the search process, which uses 

the overlap database to filter the possible fragments, only returning to the user candidates 

that are known to spatially and topologically overlap with at least one of the fragments in 

the assembly underlying the selected residue(s). Putting this all together, the user is able 

to assemble a new backbone fragment-by-fragment, choosing where and how the 

fragments are added but constrained by known fragment overlaps, and receive a fused 

backbone structure at each step of the assembly.  

While the above outlines the general design process, there are other features 

included to achieve additional goals. One, while Protein Builder is capable of building 

structures from scratch, it can also start from existing structures by breaking them down 
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into an assembly of fragments from the fragment database, a process we term 

alphabetization. In combination with the ability to remove residues from the fused 

structures (by removing the underlying fragments), users can redesign interfaces or any 

other part of an existing structure. The alphabetization feature can also be used on the 

fused structure itself, which generates a richer underlying fragment assembly from which 

more overlaps can be found during the search process. Two, because of the pseudo-

discrete nature of designable structure space, only a small number of fragments is needed 

to cover most parts of most native structures to a high degree of accuracy, but it takes an 

enormous number of fragments to completely cover every part of every structure. Thus, 

no matter how many representative fragments are included in the database, there will 

always be some structural configurations that are difficult to achieve with only a set of 

discrete components. To address this, we included a bridging feature that, given a gapped 

pair of residues, searches a database of full structures for fragments that bridge the gap. 

These bridging fragments can be chosen just like overlapping fragments and are useful 

for closing loops. Three, in order to aid in the rapid hypothesis testing we believe 

essential to creating new structures, each step of the build process is marked as a distinct 

state, and undo/redo buttons can be used to flip through the states. When the user saves 

their session, all of the states are saved, preserving the entire build process, not just the 

current fused structure. 

It is worth emphasizing that the contact-centric, discontinuous nature of most of 

the fragments greatly impacts the build process. For instance, searching for a fragment to 

extend an alpha helix often brings in candidates that not only extend the current helix, but 

introduce a neighboring one (or two) as well. The spatial information contained in the 

overlaps ensures that new segments interact with existing ones in reasonable ways and 

encourages users to build backbones around interactions rather than in a linear N-

terminus-to-C-terminus fashion. The combination of introducing new segments via 

contact-centric fragments and joining multiple segments into one with linear fragments 

and bridging leads to interesting and unexpected directions of structure extension, with 

intermediate structures often comprising many segments which can ultimately be linked 

into a single structure by “clicking” or “slotting” fragments into any remaining gaps. 

Below, each of the listed features and how they fit into the creation process are 
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described in more depth. For technical details, see Methods. 

 

4.2.2 Fragment database 
To collect the database of fragments, PISCES46 was used to select a non-redundant subset 

of structures from the PDB. This set of structures (StructDB) was then decomposed into 

fragments of varying topologies (Fig. 4.1). Because interactions are central to structure 

design, most of the chosen topologies comprise multiple segments centered around a 

contact, but linear fragments are important for tasks like closing loops and extending 

termini, so linear topologies were also included. In particular, six topologies were used to 

decompose the structures into fragments: 5-mers, 7-mers, 9-mers, 3x3-mers, 5x5-mers, 

and 7x7-mers. For the 5-, 7-, and 9-mers, all contiguous stretches of residues of length 5, 

7, and 9, respectively, were extracted from StructDB. The 3x3-, 5x5-, and 7x7-mers are 

each a topology centered around a contact and comprising the contacting residues and 

their flanking residues. A 3x3-mer comprises a pair of contacting residues and one 

residue on each side of both contacting residues (i.e., two segments of three residues 

each, with the middle residues in contact). A 5x5-mer includes an additional flanking 

residue on each side of both contacting residues, and a 7x7-mer includes two additional 

residues. 

For each topology, the set of fragments found in StructDB was then clustered using 

an in-house greedy method. This method subsamples the set of fragments, marks the 

fragment with the lowest average best-fit root-mean-square deviation (RMSD) to the 

other sampled fragments as the cluster representative, and then forms a cluster by 

including every fragment (not just those subsampled) within a chosen best-fit RMSD 

cutoff to the cluster representative. These fragments are then removed from consideration 

and the remaining fragments are subjected to the same procedure. For 5-mers and 3x3-

mers, this was repeated until 90% of fragments were clustered. For the other topologies, 

this was repeated until 1000 clusters were generated. The fragment database was defined 

as every cluster representative from every topology for a total of around 16,000 

fragments. 

To make it easier to create a structure from scratch, the top 6,000 fragments from 

a previous study (Top6000), which sought to cover as much of native structure space 



47 

using as few fragments as possible, were added to the fragment database, forming the 

final database used (FragDB). These 6,000 fragments are mostly higher order, comprising 

many segments, and often form cores or other complex assemblies. They serve as useful 

starting fragments or bulk extensions. 

 

 
Fig. 4.1 Examples of fragment topologies. From Top-to-bottom, left-to-right: 5-mer, 7-mer, 

9-mer, 3x3-mer, 5x5-mer, 7x7-mer, and three higher order fragments from Top6000. 
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4.2.3 Overlap database 
In order to determine how fragments from FragDB can be put together, we used 

StructDB to empirically discover which fragments are known to overlap. Using a 

structural search tool similar to MASTER6, each fragment in FragDB was used as a query 

and StructDB was used as the database of structures to find matches in. Each match was 

recorded and, for each pair of fragments in FragDB, the respective pairs of matches that 

came from the same structure and shared at least 𝑁 residues were examined. If, for a pair 

of matches, the two fragments, aligned based on their matches, had a sufficiently low in-

place RMSD, they were marked as overlapping. Both the transformation matrix 

describing one match’s translation and rotation relative to the other and the overlapping 

residue indices were stored with the overlap (Fig. 4.2). The overlap database 

(OverlapDB) was defined as the set of all overlaps between all pairs of fragments and 

specifies every allowed way for fragments to be placed on top of each other. 

 

 
Fig. 4.2 How fragment overlaps are determined and stored. A: Fragment M and N from 

FragDB both fit onto structure S from StructDB and thus are considered overlapping. B: 

The transformation matrix encoding the translation and rotation required to optimally align 

the overlapping residues of M to N when fit onto S is stored. C: The topological mapping 
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between M and N when fit onto S is stored. Here, residue i from M corresponds to residue 

k from N and residue j from M corresponds residue l from N. 

 

4.2.4 Creation process and operations 
With StructDB, FragDB, and OverlapDB in hand, Protein Builder can perform all of its 

operations. The creation process can start from scratch, in which case the user begins by 

selecting a starting fragment from FragDB. This fragment is the initial fused structure. 

The process can also start with an existing structure, which gets alphabetized into an 

assembly of fragments from FragDB, and then fused using this assembly. 

Search: Whether starting from an initial fragment or an alphabetized structure, the 

user advances by selecting one or more residues to extend the backbone structure from. 

The overlaps of fragments in the assembly underlying the selected residue(s), taken from 

OverlapDB, are examined and those that match the criteria are returned to the user to 

select from. The exact criteria depend on the settings chosen by the user, but in the 

general case, an overlapping fragment must overlap a fragment underlying each of the 

selected residues (the selected residues can be satisfied by a single overlap or multiple 

consistent ones), be geometrically consistent with each of the overlaps involved, and be 

free of clashes with neighboring backbone atoms. All possible overlaps are found at once, 

but the user receives only the specified number at a time, with paging buttons available to 

see the rest. 

Fragment placement: When the user selects an overlapping fragment to add, the 

fragment is added to the assembly and then the entire assembly is fused (Fig. 4.3). The 

new fused structure is then sent to the user, replacing the old one. The user can then 

select residues of this fused structure to add additional overlaps to, repeating the process. 

Finding bridging fragments works similarly to finding overlapping ones, with the user 

selecting at least two gapped residues to bridge. The fragment comprising these selected 

residues is searched for in StructDB but with the gaps required to be filled so that the 

returned fragments are each a single segment overlapping the selected residues 

(geometrically via an RMSD cutoff, not via OverlapDB) and bridging the gap. 

Bridges: Just as with overlapping fragments, all bridging fragments are found at 

once, but the user receives only a specified number at a time. When the user selects a 
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bridging fragment to add, it is added to the assembly, the assembly is fused, and the new 

fused structure is returned. 

Residue removal: When the user selects one or more residues to remove, any 

fragment underlying the residue(s) is removed from the assembly, the assembly is then 

fused, and the new fused structure is returned. 

Realphabetization: When the user realphabetizes the fused structure, each 

fragment from FragDB is used as the query and the fused structure is searched for all 

matches. Each time a fragment can be mapped to the fused structure with a sufficiently 

low RMSD, it is added to the assembly. After all fragments have been added, the 

assembly is fused, and the new fused structure is returned. 

 

 
Fig. 4.3 How a fragment is chosen and incorporated into the fused structure. A: The current 

fused structure. B: The user selects two residues (red) to find overlaps with. C: After 

choosing from the search results, the user selects an overlapping fragment to add to the 

assembly (blue). D: The new fused structure after fusing the blue fragment with the rest of 

the assembly. 
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4.2.5 User interface 
The user interface for Protein Builder is a PyMOL91 plugin (Fig. 4.4). PyMOL’s built-in 

selection ability is used to select the fused structure’s residues and a window provides 

buttons for each feature (search, bridge, undo/redo, etc.), widgets to configure the 

settings, and a panel that displays matches (starting, overlapping, or bridging fragments). 

When the user hovers over a match, a transparent version of the fragment is shown where 

it will be placed, helping the user predict the effect of adding the fragment. Clicking the 

match places a solid version of the fragment color-coded to indicate its topology, and 

double clicking the match adds it to the assembly. The plugin serves as the client; the 

server is a separate program, implemented as a Flask server92, which can be run locally or 

over the internet. It contains the databases and performs the needed calculations (search, 

fusion, etc.), allowing the client to be a lightweight plugin with no dependencies outside 

of what PyMOL already requires. 

 

 
Fig. 4.4 The user interface of Protein Builder. 

 

4.2.6 Examples of de novo backbones built with Protein Builder 
As a simple proof of principle, Fig. 4.5 shows a collection of novel backbones 
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created with Protein Builder. As can be seen, the structures are diverse and encompass a 

range of shapes, secondary structure elements, and topologies. The question at this point 

is what else can be imagined and created. 

 

 
Fig. 4.5 Examples of novel backbones created with Protein Builder. 

 

4.3 Methods 
4.3.1 Clustering 
The RMSD cutoff chosen for cluster membership was 0.5 Å for linear fragments (5-mer, 

7-mer, 9-mer) and 1.3 Å for tertiary fragments (3x3-mer, 5x5-mer, 7x7-mer). In all cases, 

the number of fragments subsampled per round was 1,000. 

 

4.3.2 Overlap database 
Each fragment in FragDB was used as a query in a FASST search using StructDB as the 

database. A match was accepted if the RMSD was within the cutoff specified by the 
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formula used by dTERMen (see Eqs. 25 and 26 in the supplementary information of 

Zhou9) using a maximum RMSD of 1.1 Å and a persistence length of 15. The structure 

and residues involved in the match were then stored. 

For each pair of fragments (f, g) in FragDB, the two sets of matches (Mf, Mg) 

were compared. Each instance in which a match mf ∊ Mf and a match mg ∊ Mg came from 

the same structure s in StructDB and shared at least one residue, and in which mf or mg 

included at least one residue not included in the other’s match (i.e., one extended the 

other), was considered an overlap. The transformation matrix encoding the translation 

and rotation required for g to structurally align onto s (i.e., the transformation associated 

with the best-fit RMSD of g onto the backbone of s) was recorded so that when the user 

searches for overlaps with f (i.e., searches for overlaps with residues in the fused structure 

which involve an instance of f in the underlying assembly), g can be optimally aligned 

with respect to it when added to the assembly. The shared residues between f and g were 

also stored so that when the user searches for overlaps with f, g is only returned if its 

overlap involves the residues of f selected by the user. For each overlap found, the 

overlap of g with respect to f and of f with respect to g are stored in the database since the 

overlaps are bidirectional. Since f and g can overlap in multiple structures and/or using 

distinct sets of shared residues, there can be many overlaps between f and g. 

 

4.3.3 Searching for overlaps 
In any given state of creation, there is a fused structure s and an assembly A 

comprising a set of fragments which the fused structure derives from. For each fragment f 

∊ A, each of its residues corresponds to some residue in s (“covers” some residues in s), 

and for each residue in s, there is at least one fragment in A which covers it. When the 

user selects one or more residues and clicks the “search” button, each of the fragments in 

A which cover the selected residues are collected in a set C. For each fragment f ∊ C, each 

of its overlaps is considered. For an overlap to be accepted as a match, it must pass five 

filters. 

First: It must have an appropriate number of segments given the minimum and 

maximum specified by the user (via the graphical user interface). 

Second: Its topology must be consistent with s. Linear fragments are always 



54 

consistent, but a multi-segment fragment may overlap in a way that would require a 

residue in s to play the role of two residues in the overlap, which is not allowed (e.g., if 

an overlap extends a pair of helices, but in s the helices are already joined together by a 

loop). For a match comprising multiple overlaps (see “Fifth” below), the topology of all 

of the overlaps must be consistent (e.g., if one overlap’s topology specifies that residue i 

in the fragment maps to residue j in s, then any other overlap of the fragment involving i 

must also map to residue j). 

Third: The RMSD between the residues in f that overlap with the residues in s 

must be within the cutoff determined by the maximum configured RMSD, m. The RMSD 

cutoff is determined by the same empirical formula used in the creation of the overlap 

database (see the “Overlap database” section above), with the maximum RMSD set to m, 

and is defined in Eqs. 25 and 26 in the supplementary information of Zhou et al.9. 

Fourth: The residues in f that do not overlap with s must not clash with nearby 

residues. A clash is defined as a non-hydrogen backbone atom in f coming within 2 Å of 

any non-hydrogen backbone atom in s, excluding residues in s that overlap with f or are 

sequential neighbors of a residue that does. 

Fifth: If some of the residues selected by the user are covered by an overlap of f 

with g and other residues are covered by an overlap of f’ with g (where f may be the same 

as f’), then g is accepted as a match if each overlap satisfies the first four filters. Any 

number of overlaps can be combined in this manner, allowing large selections to come 

from overlaps with any number of fragments in the assembly. If a match involves 

multiple overlaps with g, each overlap contributes an instance of g to the assembly, with 

each transformation matrix coming from the respective overlap. 

 

4.3.4 Fragment assembly and backbone topology 
When a new fragment f is placed into the assembly by the user (by selecting a match 

upon searching or bridging), the topology of the fused backbone s must be updated so 

that each residue in each fragment of the assembly is given the appropriate index based 

on its position in s. As discussed in the “Overlap database” section above, for each 

overlap in the database between fragments g and h, there is a mapping between the 

overlapping residues of g and h, specifying for each overlapping residue in g the 
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corresponding residue in h. Additionally, the residues of the fragment(s) that f overlaps 

with in the assembly have already been given an index in the topology since the topology 

is updated after each fragment is placed. Therefore, updating the topology upon the 

placement of f is a matter of assigning its overlapping residues the same indices as the 

residues they overlap with and determining whether its non-overlapping residues 

correspond to existing residues in s or new ones, in which case new indices must be 

assigned. If every residue of f overlaps with a residue in s, then f is simply added to the 

assembly, mapping each of its residues to its corresponding residues in s. If a residue r in 

f is not part of its overlap(s), there are two possibilities. One possible case is that based on 

the topology of f, r corresponds to an existing residue in s. For instance, if f is a single 

segment of four residues, three of which are known overlap with three non-terminal 

residues in a segment of s, then the fourth residue in f must correspond to an existing 

residue in s (the residue just before/after the overlapping ones). In this case, r is given the 

same topological index as the residue in s that it corresponds to. The other possible case 

is that r does not correspond to an existing residue in s. For instance, if f is again a single 

segment of four residues, but this time its three most N-terminal residues overlaps with 

the three most C-terminal residues in a segment of s, then the fourth residue in f (the C-

terminal one) does not correspond to any residue in s—in fact, this residue extends s. In 

this case, a new topological index is created to accommodate it, which means adding a 

residue to the C-terminal end of the overlapping segment of s. Note that f may extend one 

or more existing segments in s and/or add new segments. If f overlaps with two segments 

and joins them together (e.g., by closing a loop), the two segments will be merged into 

one before fusion. 

 

4.3.5 Fusing the fragment assembly 
Fusion seeks to find a backbone that minimizes the average in-place RMSD to each 

fragment in the assembly while obeying known bond lengths, angles, and dihedral angles. 

It does so by local optimization, using gradient descent to minimize the following 

function: 
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Eq. 4.1 

 

Here, s is the fused structure and A is the set of fragments in the assembly. sf is the 

set of residues of s that overlap with f so that RMSD(sf, f) is the best-fit RMSD between f 

and the part of the fused structure it corresponds to. The force constants cl=10, ca=0.02, 

and cd=0.001 weight the bond length, angle, and dihedral angle penalties, respectively. 

All penalties—distPen, anglePen, and dihedPen—are harmonic, penalizing bond lengths, 

angles, and dihedral angles, respectively, by the square of the deviation if they lie outside 

of the accepted ranges. These penalties are applied to all backbone atoms except oxygen. 

distPen is applied to all pairs of sequentially neighboring atoms (i.e., N-Cα of residue 1, 

Cα-C of residue 1, C-N of residues 1 and 2, etc.), anglePen is applied to all triples of 

sequentially neighboring atoms, and dihedPen is applied to all quadruplets of sequentially 

neighboring atoms. The acceptable ranges are determined by examining the distances, 

angles, and dihedral angles of the input fragments so that, e.g., the minimum N-Cα 

distance considered acceptable for the (N, Cα) atom pair in residue r of s is set to the 

minimum N-Cα distance found in the (N, Cα) atom pairs of the fragments that overlap r. 

Formally, the penalty terms are defined as follows: 

 

 

 

 
Eq. 4.2 
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Above, dist(a1, a2) is the Euclidean distance in Ångstroms between atoms a1 and a2, 

angle(a1, a2, a3) is the angle in radians between atoms a1, a2, and a3, and d is short for 

dihed(a1, a2, a3, a4), the dihedral angle in radians between atoms a1, a2, a3, and a4. The 

constants bmin and bmax are the minimum and maximum observed bond lengths across all 

input fragments, nmin and nmax are the minimum and maximum observed bond angles, and 

dmin and dmax are the minimum and maximum observed bond dihedral angles. ccwDiff(d1, 

d2) is the counter-clockwise difference between dihedral angles d1 and d2, which can be 

computed as follows (with % representing the modulo operation): 

 

 
Eq. 4.3 

 

Thus, if a given bond length is beyond the observed range of lengths, its deviation from 

this range is harmonically penalized. Similarly, if a given bond angle is beyond the 

observed range of angles, its deviation from this range is harmonically penalized. 

Because dihedral angles lie in a circular space, calculating the deviation a given dihedral 

angle may have from the observed range of dihedral angles requires considering the 

counterclockwise difference from the minimum (via ccwDiff(dmin, d)) and the clockwise 

difference from the maximum (via 2π‑ccwDiff(dmax, d)); if there is a deviation, it is 

harmonically penalized. 

The optimization is over the Cartesian coordinates of the fused backbone atoms, 

halting after either 100 iterations or when the difference in RMSD between the previous 

iteration and the current one is less than 10-4 Å. 

 

4.3.6 Alphabetization 
Alphabetization transforms an arbitrary input structure into an assembly of 

fragments from FragDB and then fuses this assembly as it would any other, enabling the 

user to start from any structure they prefer while still taking advantage of the database of 

fragments and overlaps. The assembly is created by using each fragment f in FragDB as a 

query in a FASST search whose database comprises only the input structure. Each match 
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for the query f thus corresponds to a site on the input structure onto which f can be 

placed. Whether the fragment fits well enough is determined by the configured RMSD 

cutoff. The configuration file enables each fragment topology (5-mer, 3x3-mer, etc.) to 

have its own cutoff, with the defaults being 0.5 Å for linear fragments and 1.3 Å for 

tertiary fragments, identical to the cutoffs used to cluster them. Topologies not specified 

in the configuration are given cutoffs of 1.3 Å. The resulting assembly is the set of all 

instances of all fragments in FragDB which can be placed onto the input structure 

according to the specified RMSD cutoffs. This assembly is then fused to become the new 

fused structure. 

Realphabetization works identically to alphabetization, using the fused structure 

as the input. Note that after realphabetization, an entirely new set of fragments comprise 

the assembly, not necessarily the ones the user originally selected (because other 

fragments may have shifted the fused structure so that a previously valid overlap no 

longer falls within the RMSD cutoff, or because the configured RMSD cutoff for 

alphabetization is chosen to be stricter than that for overlaps). 

 

4.3.7 Session state management 
A user’s session is stored as a sequence of states, allowing the “undo” and “redo” buttons 

to flip between them. A new state is created upon each of the following operations: when 

the user starts a session; when the user requests starting fragments; upon searching for 

overlapping or bridging fragments; upon shuffling the suggested starting, overlapping, or 

bridging fragments upon alphabetizing a new structure; upon realphabetizing the fused 

structure; upon placing a new fragment in the assembly; and upon removing a residue 

from the fused structure. When the user clicks the “save” button, the information needed 

to reproduce all of the states is saved (i.e., the entire session is saved). When the user 

clicks the “open” button and selects a previously saved session, the file is uploaded to the 

server and a new session is created with all of the same state information, which obviates 

requiring the server to save sessions indefinitely. The maximum number of states can be 

set with the “num_save_states” option in the configuration. When the maximum number 

of states has been exceeded, the earliest are overwritten. 
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4.3.8 Implementing the client as a PyMOL plugin 
The client application is a set of python files which can be loaded as a plugin for PyMOL 

2.0+. The window containing search results, operation buttons, and configurations was 

designed with PyQt5 and communication with the server was performed with the 

Requests library. Both PyQt5 and Requests come pre-installed with PyMOL so the plugin 

does not require any additional dependencies. Two parameters must be defined by the 

user: the host URL and port number. If the server is running locally, these can be set to 

127.0.0.1 and 5000, respectively. Otherwise, the host should point to the address running 

the server application and whichever port it is listening on. On a Unix machine, these 

options can be set by running the interactive “configure” script. On a non-Unix machine, 

these options can be manually set by settings the contents of the “config” file to the 

following two lines: “host = X” and “port = Y”. 

 

4.3.9 Implementing the server as a Flask application 
The server application uses Flask 1.1.2 to receive communications from clients, with 

additional Python 3.9 code to manage sessions, and Boost.Python 1.75 to interface with 

C++11 code, which does the actual computations (search, fusion, etc.). The server is 

designed to run on Unix machines and can be configured by running the interactive 

“configure” script. After configuration, running “make libs” will use gcc (tested with 

version 11.2.1) to make the shared object containing the required C++ code. After 

compilation, running the “scripts/startServer” script will start the flask server, which can 

be run as a background process. 

 

4.4 Acknowledgements 
This chapter is adapted from a paper that will soon be uploaded to bioRxiv. 

 

5 Structure-conditioned amino-acid couplings: how 

contact geometry affects pairwise sequence preferences 
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5.1 Introduction 
For many decades now, the wealth of structural information in the Protein Data Bank 

(PDB) has enabled protein scientists to infer relationships between the amino-acid 

sequence of a protein and its native structure based on statistical patterns. A classic 

example of how even simple structural statistics can provide useful information is the 

contact potential, which encodes the relative interaction preferences for each amino-acid 

pair based on simple log-odds ratios of observed versus expected occurrences in a large 

set of contacts, sometimes partitioning the set of contacts into bins according to distance 

or other geometric parameters1,42,50,67,93–99. Contact potentials in varying forms have 

provided insight into sequence-structure relationships since the 1970s and have been 

incorporated into numerous effective predictive models over the years (e.g., Rosetta48,86, 

RaptorX100, PoPMuSiC101,102, and many others9,103–106). The continued efficacy of contact 

potentials, despite their apparent simplicity, suggests that elaborations or extensions to 

the core concept may also serve as useful bridges between native sequence and structure 

elements. Multiple extensions have already been proposed, seeking to condition amino-

acid pair preferences on more detailed structural circumstances107,67,50. For example, there 

are potentials that incorporate the relative orientation between residue pairs108–113, 

condition on residue depth to capture the effects of polarity and hydrophobicity114,115, 

include additional terms from pseudo-physical force fields116, alter the definition of 

contact117,118, and optimize parameters by contrasting the statistics of native structures 

and decoys110,119. 

Given the complex geometry of an inter-residue contact and its surrounding 

structural context (e.g., a pair of contacting residues and their flanking residues comprises 

24 backbone atoms and thus 72 spatial coordinates), there is a potentially large and high 

dimensional interaction space throughout which amino-acid pair preferences might vary. 

In order to explore how pairwise sequence preferences might depend on interaction 

geometry, a more general formulation of structure conditioning is required. Such a 

formulation should be able to quantify the pairwise sequence preferences of any type of 

interaction. Just as a contact potential quantifies which amino-acid pairs prefer to interact 

over a set of contacts in general, a structure-conditioned potential (SCP) could quantify 

which amino-acid pairs prefer to interact over a particular set of structurally similar 
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contacts. Here, we define such a potential as one that takes an additional argument, an 

input fragment centered around a pair of contacting residues, which determines the 

contact geometry that the resulting statistics are conditioned on. In particular, a given 

input fragment is used as the query motif of a structural search which returns an ensemble 

of structurally similar motifs whose amino-acid pair statistics are then used to compute 

the statistical energies. By conditioning on an ensemble of similar interaction motifs, 

there is no need to determine which geometric parameters (distances, orientations, etc.) 

are best suited for capturing interaction preferences, instead letting the statistics of the 

PDB inform the preferences via an ensemble of motifs. This process is made feasible not 

just by the growing size of the PDB but by the recent availability of structural search 

tools6, which enable us to specify a query motif (i.e., a structural fragment) and 

efficiently search for all structurally similar fragments in a database of structures. 

The primary purpose of this work is to establish a framework for understanding 

modular sequence-structure relationships on a pairwise level. First, we show that 

structure-conditioned coupling energies (SCEs, 20x20 per motif) converge to similar 

energies as those encoded in a traditional contact potential when many interaction 

instances are averaged. Having established this link, we then show that SCE matrices 

encode more information linking the structures of pair motifs to their associated amino-

acid pairs and better reflect experimentally determined inter-residue coupling values. 

Looking more deeply into the link these SCE matrices provide between structure and 

sequence, we show that structurally similar pair motifs are more likely to be energetically 

similar and the reverse, that energetically similar pair motifs are also more likely to be 

structurally similar. This link reveals the modular and context sensitive link between 

sequence and structure elements and we demonstrate a general relationship between the 

two. Turning to structure modeling, we compare how well SCEs can evaluate the 

structural quality of CASP models to how well contact potentials do so, highlighting how 

much additional information is encoded by conditioning on structure. As simple, 

interpretable objects that still offer valuable information on second-order contributions to 

sequence-structure relationships, we find the SCP to be a convenient tool for dissecting 

the sequential and energetic effects of interaction geometry. 
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Recent breakthrough successes in structure prediction, with end-to-end deep 

learning models now able to give accurate predictions of a sequence’s native contacts120 

and structure17,121, suggest that the PDB contains many generalizable patterns that relate 

sequence and structure. The SCP is an example of a PDB-derived generalization, being 

simple to describe and understand while capturing important aspects of pairwise 

contributions to sequence-structure relationships in a context-sensitive way. Better 

understanding these and other generalizations will be helpful for guiding novel prediction 

and design methods, especially in areas where improved performance is much needed, 

such as the prediction of protein-protein interfaces122. 

 

5.2 Results 
5.2.1 Definitions of the contact potential and structure-conditioned 

potential 
A contact potential infers pseudo-energies associated with amino-acid pair interactions 

from observations of amino-acid contacts in a structural database. In its simplest form, a 

contact potential measures the extent each amino-acid pair is over- or under-observed 

relative to the number of observations expected if there were no pair preferences1 (e.g., 

the number expected based on the product of the marginal distributions of both amino 

acids comprising the pair). If the database from which the amino-acid pair statistics arise 

includes a large diversity of contacts, the resulting pseudo-energies reflect how 

disproportionately each amino-acid pair interacts in native structural contexts. For 

example, cysteine-cysteine contacts are observed much more frequently than expected 

based on the low background frequency of cysteine residues in native structures and 

therefore cysteine-cysteine contacts have a strongly negative (favorable) energy 

according to a traditionally derived contact potential. There are alternative formulations 

of the reference state—the framework for computing the expected number of 

observations67,97,110—but most assume an independence between sequence and structure 

elements and therefore estimate cysteine-cysteine interactions favorably. Eq. 5.1 

describes the traditional formulation of a contact potential, where Nobs(a) is the number of 

observations in the database of pairs of amino acid type a, Nobs(a, b) is the number of 



63 

observations of amino acid types a and b in contact in either order, and N is the total 

number of amino acids in the database of pairs. The term H(a, b) adjusts the expectation 

for heterotypic pairs (i.e., amino-acid pairs for which a is not b) as the potential is 

directionless. The pseudocount ε ensures sparse statistics do not result in a division of or 

by zero. Taking the negative log of the ratio transforms the values into an additive 

pseudo-energies metric. See the “Contact Potential” section of Methods for details. 

 

 
Eq. 5.1 

 

The SCP computes a contact potential for a given interaction motif (e.g., a 

specific pair of residues together with their surrounding backbone fragments). The 

resulting interaction matrix encodes the pseudo-energetic preferences for each amino-

acid pair in this given structural context. Like a contact potential, these pseudo-energetic 

preferences are calculated from amino-acid pair statistics, encoding to what extent each 

amino-acid pair is over- or under-observed relative to the number expected if the two 

positions in question did not influence each other. Unlike a contact potential, the amino-

acid statistics do not come from a generic database of contacts, but instead from a 

structural ensemble of fragments that share a similar geometry with the interaction motif 

in question (i.e., constrained by a maximum RMSD over backbone atoms to the input 

motif). The resulting SCEs reflect the extent to which each amino-acid pair 

disproportionately interacts in the specific structural context of the interaction motif. The 

formulation of SCEs is therefore similar to Eq. 5.1 but computed over a constrained set of 

statistics: 

 

 
Eq. 5.2 



64 

 

Here, (a, b) is the amino-acid pair, Nobs(a, b) is the number of occurrences of pair (a, b) in 

the interaction motif’s ensemble of matching fragments, Nexp(a, b) is the number of 

occurrences of pair (a, b) that would be expected if there were no pair preferences, and ε 

is a pseudocount. See section “Structure-conditioned potentials” in Methods for details. 

In order to measure the impact of incorporating additional structural context, here we 

consider three types of interaction motifs that incorporate an increasing number of 

flanking residues around a pair of interacting positions. Specifically, 1x1, 3x3, and 5x5 

motifs comprise a pair of contacting residues with no flanking residues, one flanking 

residue on each side, or two flanking residues on each side, respectively (Fig. 5.1). Larger 

motifs may carry important contextual information, which can offer certain advantages, 

but may also be associated with decreased statistics in a limited database. Comparing the 

results with these different motif types measures the impact of increased structural 

context and potentially decreased database statistics. 

 

 
Fig. 5.1 Visualization of an interaction motif. A-C: The same pair of interacting residues 

is shown with increasing structural context: 1x1 (A), 3x3 (B), and 5x5 (C). In each case, 

the pair of interacting residues is colored in cyan. The pair of interacting residues is (A108, 

A188) from the structure with PDB ID 4G1Q and was visualized in PyMOL91. 

 

5.2.2 Averaging SCEs over many structural contexts converges to a 

traditional contact potential 
If each SCE matrix encodes the amino-acid pair energies in a particular context, then the 

average of each energy over many contexts should encode similar information to a 

generic contact potential. To test this, a database of 200,000 contacts from a 

nonredundant subset of the PDB (DB200K, see “Contact database creation” in Methods) 
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was used to compute a contact potential and, for each of their corresponding 3x3 

interaction motifs, a 20x20 matrix of SCEs. For each amino-acid pair, the average SCE 

over all contacts involving the pair in the database was computed. Fig. 2 plots contact 

potential energies (CEs) against corresponding mean SCEs, showing a linear correlation 

coefficient of R=0.88. In contrast, SCEs at a particular pair of sites generally correlate 

quite poorly with contact potential energies (R=0.20 on average, see Fig. 5.3A). This 

suggests that while SCEs and CEs capture similar effects, and converge on average, 

SCEs are much more context sensitive and thus have the potential to capture many details 

that CEs may miss. 
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Fig. 5.2 Correlation between each SCE from 3x3 motifs, averaged over many contexts, and 
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the corresponding energy according to a contact potential. A: Mean SCEs plotted against 

corresponding contact-potential energies. Pair Cys-Cys is not shown as it occupies a point 

far to the bottom-left (contact potential of -1.78 and mean SCE of –1.10), though its 

inclusion increases the correlation to R=0.88. The dotted line indicates the best linear fit of 

the data. B: Heatmap of the mean SCEs. C: Heatmap of contact-potential energies. For (B) 

and (C), the energy scale was capped at the most favorable energy except for Cys-Cys for 

easier visualization. 

 

Interestingly, the strong correlation between mean SCEs and CEs also holds for 

1x1 and 5x5 motifs, but does show a decline with increased context length (i.e., R=0.91 

and R=0.84 for 1x1 and 5x5, respectively; Fig. 5.3B,C). This decline is expected as more 

averaging would be needed to integrate out the influence of more detailed structural 

context. Overall, these results show that this SCP can be thought of as a more elaborate 

and context-sensitive counterpart of the traditional contact potential. 
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Fig. 5.3 Additional information about correlations between SCEs and CEs. Top: 

Distribution of correlation coefficients between each set of SCEs in DB200K and the CEs. 

The dotted line indicates the mean correlation of R=0.20. Middle, Bottom: Plot of the 

averaged, symmetrized SCEs from 1x1- (Middle) or 5x5-motifs (Bottom) vs those from a 

contact potential. As with Fig. 2A, Cys-Cys is not shown as it occupies points to the far 

bottom-left (mean SCE of -1.70 (1x1) or -0.88 (5x5)), though its inclusion increases the 

correlation to R=0.91 (1x1) or R=0.84 (5x5). 

 

5.2.3 Conditioning on structure encodes more accurate sequence 

information 
A simple test of the information gained by conditioning on structural context is to 

measure how reliably the SCP favors the native amino-acid pair of an interaction motif it 

corresponds to, compared to how reliably the contact potential favors it. Note that one 

may not expect very high performance in such a test, as the native choice of amino-acid 
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pairs is guided not only by second-order effects, but also (and perhaps more importantly) 

by first-order effects. Nevertheless, as a vehicle for discerning the effects of structure 

conditioning and context, the test is still fair—i.e., a more accurate second-order potential 

should more frequently pick out the native pair. 

With the same set of contacts used to create the statistical potential and averaged 

energies in Fig. 2, the SCP of each contact’s interaction motif was used to predict the 

residue type pair of that contact. Success was measured both by identification (whether 

the amino-acid pair with the most favorable pair energy is the native residue pair) and 

score (by how much the energy of the native residue pair differs from the energy of the 

most favorable pair, as measured by a modified Z-score; see Eq. 5.3 in the “AA pair 

identification” section of Methods), both of which are shown in Fig. 5.4. For comparison, 

CEs, as encoded in the aforementioned contact potential, were used to compute the same 

metrics. To further understand the role that structural context plays in encoding sequence 

preferences, the predictive performance of SCEs was computed for 1x1, 3x3, and 5x5 

interaction motifs. 

As shown in Fig. 5.4, conditioning energies on structural context substantially 

improves the information they contain about native sequence preferences, with energies 

from 3x3 interaction motifs about four times as likely to identify the native residue pair 

as by chance (1/400), compared to the below-chance performance of general amino-acid 

pair preferences (contact potential). The poor sequence-identification performance of the 

contact potential occurs because it predicts every native pair to be the most favorable one, 

cysteine-cysteine (Cys-Cys), while in actuality Cys-Cys pairs make up less than 1/400th 

of the total pairs (~0.17%). Cystines are rare but very frequently occur in pairs (as either 

disulfide bonds or in functional sites), and for this reason the Cys‑Cys pair gets an 

anomalously favorable contact potential as the most over-represented pair over 

expectation. In so far as statistical potentials represent interaction strength, this is not 

entirely wrong—Cys‑Cys pairs can form covalent bonds, which are much stronger than 

non-covalent interactions of other amino-acid pairs. However, it is not the case that 

disulfide bonds can be made across any proximal residue pair, and in fact strict geometric 

requirements have been identified for Cys‑Cys bond formation123. The traditional contact 

potential has no choice but average out the effect of Cys‑Cys contacts across all 
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geometric circumstances, yielding still a very strong effective contact energy. On the 

other hand, the SCP is able to discern where disulfides are likely and better apportion the 

high favorability of Cys‑Cys pairs to just the relevant geometric contexts. In fact, for 1x1, 

3x3, and 5x5 motifs, Cys‑Cys is predicted as the most favorable contact in 36.9%, 4.3%, 

and 2.6% of pairs, respectively, a progressive narrowing of the geometries considered 

permissible for Cys‑Cys as additional structural context is incorporated. 

The contrast in performance between 1x1 and 3x3 motifs (Fig. 5.4) highlights the 

effect of incorporating structural context further. Because 1x1 motifs lack flanking 

residues, the structural similarity of the ensembles used to calculate their energies lacks 

information about and therefore conflates a variety of structural contexts; a 1x1 ensemble 

implicitly constrains simple features like overall inter-residue and relative orientation but 

not how the surrounding structure frames the contact. In contrast, the extensive context of 

5x5 motifs leads to a distribution of native energies that is reliably more favorable than 

the median energy for each pair, likely because the choice of amino acid types in such 

specific contexts is even more constrained than for 3x3 motifs. 

 

 
Fig. 5.4 Sequence information contained in SCEs. A: Enrichment over random choice of 

native amino-acid pair identification for DB200K comparing energies for each native 

residue pair using a contact potential (CP), a contact potential without cysteine-cysteine 
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(CP-CC), and SCEs from three types of interaction motifs, 1x1, 3x3, and 5x5. B: Negative 

modified z-score of the energies used in (A). Modified z-scores were computed using 

medians and median absolute deviations rather than means and standard deviations. Error 

bars indicate the standard error of the mean. 

 

As shown in Fig. 5.4, conditioning energies on structural context substantially 

improves the information they contain about native sequence preferences, with energies 

from 3x3 interaction motifs about four times as likely to identify the native residue pair 

as by chance (1/400), compared to the below-chance performance of general amino-acid 

pair preferences (contact potential). The poor sequence-identification performance of the 

contact potential occurs because it predicts every native pair to be the most favorable one, 

cysteine-cysteine (Cys-Cys), while in actuality Cys-Cys pairs make up less than 1/400th 

of the total pairs (~0.17%). Cystines are rare but very frequently occur in pairs (as either 

disulfide bonds or in functional sites), and for this reason the Cys‑Cys pair gets an 

anomalously favorable contact potential as the most over-represented pair over 

expectation. In so far as statistical potentials represent interaction strength, this is not 

entirely wrong—Cys‑Cys pairs can form covalent bonds, which are much stronger than 

non-covalent interactions of other amino-acid pairs. However, it is not the case that 

disulfide bonds can be made across any proximal residue pair, and in fact strict geometric 

requirements have been identified for Cys‑Cys bond formation123. The traditional contact 

potential has no choice but average out the effect of Cys‑Cys contacts across all 

geometric circumstances, yielding still a very strong effective contact energy. On the 

other hand, the SCP is able to discern where disulfides are likely and better apportion the 

high favorability of Cys‑Cys pairs to just the relevant geometric contexts. In fact, for 1x1, 

3x3, and 5x5 motifs, Cys‑Cys is predicted as the most favorable contact in 36.9%, 4.3%, 

and 2.6% of pairs, respectively, a progressive narrowing of the geometries considered 

permissible for Cys‑Cys as additional structural context is incorporated. 

The contrast in performance between 1x1 and 3x3 motifs (Fig. 5.4) highlights the 

effect of incorporating structural context further. Because 1x1 motifs lack flanking 

residues, the structural similarity of the ensembles used to calculate their energies lacks 

information about and therefore conflates a variety of structural contexts; a 1x1 ensemble 
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implicitly constrains simple features like overall inter-residue and relative orientation but 

not how the surrounding structure frames the contact. In contrast, the extensive context of 

5x5 motifs leads to a distribution of native energies that is reliably more favorable than 

the median energy for each pair, likely because the choice of amino acid types in such 

specific contexts is even more constrained than for 3x3 motifs. 

 

5.2.4 Energies conditioned on structure correlate more highly to 

experimental coupling energies 
Another way to test the SCP is to evaluate how well its pair energies correspond to 

experimentally determined preferences. Most useful would be experimental 

measurements that focus on pair interaction strength (i.e., the second-order effect). 

Detailed thermodynamic measurements or high-throughput deep mutational scans usually 

focus on point mutations124. For instance, while ProThermDB125 contains measurements 

of how point or double mutations change the stability of their structure, there are no 

position pairs with measurements for more than a few residue pair combinations. 

However, some systems have been well studied using the double-mutant coupling energy 

approach126, which attempts to isolate solely the second-order effect on stability. For 

example, Vinson and co-workers have produced high-quality coupling energy 

measurements for ~100 amino-acid pairs at two inter-chain site pairs for the dimeric 

parallel coiled coil system (a set of 81 for a-a' core interactions127 and 16 for interfacial g-

e' interactions76). These coupling energies measure the change in the free energy of 

folding when a pair of interacting residues is simultaneously mutated to alanine, relative 

to when each is individually mutated to alanine76. Because folding and dimerization are 

concomitant in this system, these coupling energies cleanly isolate just the contribution of 

the residues interacting in the folded state (as these interactions are absent in the 

unfolded/dissociated state). This an ideal scenario for comparing to SCEs, which report 

on the relative second-order preferences for different amino-acid pairs in a specific 

structural context. 

The advantage of SCEs for capturing coupling energies is that their underlying 

statistics come from an ensemble of similar interaction motifs. In fact, the specific 

ensemble represented by the native structure would be most appropriate to use when 
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trying to estimate true coupling energies. Of course, we do not know the native ensemble 

or even what RMSD neighborhood around the native interaction motif would be most 

appropriate to represent it. For this reason, we chose to consider multiple ensemble sizes 

(corresponding to a range of RMSD cutoffs) to investigate the impact on the 

correspondence between SCEs and experimentally determined coupling energies. Results 

are shown in Fig. 5.5A and 5.5B for a-a' and g-e' interactions, respectively, with the 

performance of CEs shown with a dashed line. Interestingly, the correlation for both the 

a-a' and g-e’ interactions is maximized when the ensemble is very tight (maximum 

RMSDs of 0.24 and 0.38, respectively), suggesting that the coiled-coil system used to 

measure these coupling energies may occupy a relatively narrow native ensemble at 

equilibrium. But while the maximum correlations occur at low RMSDs, the correlation 

remains high over a broad range. For the a-a' interactions, the correlation exceeds that of 

the contact potential no matter the size of the ensemble. For the g-e' interactions, while 

the correlation is about equal to the contact potential’s for larger ensembles, it is much 

higher for small ensembles except when the statistics are sparse enough that the number 

of matches from which SCEs are derived becomes considerably lower than the number of 

amino-acid pairs (left-most point in Fig. 5.5B). Note that our “default” setting for 

computing SCEs in this work is to require a minimum ensemble of 1000 matches to 

ensure that data sparsity does not come into play (see the “Structure-conditioned 

potentials” section in Methods). The correlations for the energies computed with these 

default settings are shown with asterisks in Figs. 5.5A and 5.5B and in both cases, the 

correlation using SCEs is higher than when using CEs. 

Figs. 5.5C and 5.5D compare experimental coupling energies to SCEs whose 

ensembles achieved maximal correlation for the a-a' and g-e' interactions, respectively. 

This is a striking contrast to the correlations produced by using contact potential energies 

(R=0.65 versus R=0.31 for a-a’ energies and R=0.85 versus R=0.66 for g-e’ energies; see 

Fig. 5.6A,B for plots of CEs vs experimental energies). It is clear that amino-acid 

statistics from structural ensembles resembling native interaction geometries give better 

insights into the thermodynamic coupling between positions than the more generic 

preferences of a contact potential do. 
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Fig. 5.5 SCEs vs experimentally determined coupling energies. A, B: Correlation between 

experimentally determined energies vs SCEs over a range of ensembles for a-a' (A) and g-

e' (B) interactions. The dotted line in each plot indicates the correlation achieved by contact 

potential energies. The right-most points of each plot, labeled with an asterisk (*), 

correspond to the energies using the default parameters. The curve in between points was 

computed using the ‘pchip’ function of MATLAB and is for visualization purposes only. 

C, D: Correlation between experimentally determined energies vs optimal SCEs for a-a' 

(C) and g-e' (D) interactions. The dotted line indicates the best linear fit of the data. 
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Fig. 5.6 CEs vs experimentally determined coupling energies. Top, Bottom: Correlation 

between experimentally determined energies vs CEs for a-a' (Top) and g-e' (Bottom) 

interactions. The dotted line indicates the best linear fit of the data. 

 

5.2.5 Similar SCE patterns correspond to similar structural motifs and 

vice versa 
Given that the amino-acid pair statistics the SCP uses to compute its energies come from 

an ensemble of motifs structurally similar to the input motif, we expect pairs of 

structurally similar input motifs to generate similar energies. We next ask if the reverse is 

true, whether pairs of motifs with similar SCE matrices are structurally similar as well. 

The additional information about native sequence preferences contained in these energies 

relative to those of the contact potential (see Fig. 5.4) suggests this may be the case, as 

this information gain is likely driven by the distinct amino-acid pair statistics imposed by 

particular contact geometries. This potential relationship—the mutual information 
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between contact geometry and SCEs—can be examined by clustering a large set of 

interaction motifs by both their structures and SCE matrices and examining the structural 

and energetic similarities within the resulting clusters. Taking a random subset of 50,000 

motifs from DB200K, motifs were clustered by both structure (via RMSD) and energy 

(via rE, a function of the linear correlation of the energies as 400-vectors; see the 

“Clustering” section in Methods). Clustering was done greedily, with clusters defined by 

their radius (in RMSD space for structures, and in correlation space for energies; see the 

“Clustering” section in Methods). 

Fig. 5.7 shows a summary of these clustering results. Fig. 5.7A shows 

visualizations of the structures of three representative clusters in each case, Fig. 5.7B 

shows the corresponding mean SCE matrices, and Figs. 5.7D and 5.7E display the 

distributions of RMSDs and energetic distances (rE) over each case's first 100 clusters. 

Remarkably, the structural similarity of motifs clustered by energy is nearly as high as 

when clustered by structure; similarly, the energetic similarity of motifs clustered by 

structure is nearly as high as when clustered by energy. More quantitatively, the mean 

RMSD to the medoid (cluster representative) for the first 100 clusters is 0.36 Å when 

clustering by structure and 0.55 Å when clustering by energy, compared to 3.70 Å when 

clusters were assigned randomly (with the sizes of the random clusters chosen to match 

the sizes when clustering by structure). Moreover, the mean energetic distance to the 

medoid for the first 100 clusters is 0.16 when clustering by structure and 0.18 when 

clustering by energy, compared to 0.93 when clusters were assigned randomly (with the 

sizes of the random clusters chosen to match the sizes when clustering by energy), which 

is close to the rE=1.0 value corresponding to uncorrelated matrices. Note that in all three 

cases, the number of motifs being clustered is approximately the same in order to ensure 

the comparison is fair. As can be seen, SCE matrices contain sufficient information about 

the structures they were derived from that similar SCE matrices usually correspond to 

similar structures. Even in the cases in which the structures of SCE-based clusters are not 

as mutually similar as in structure-based clusters, the clusters are far more similar than 

expected by chance, with higher RMSDs usually indicative of multiple sub clusters rather 

than unrelated motifs, and consistent with the idea that distinct interaction geometries can 

induce similar energetic preferences. An example of this is shown in Fig. 5.7C, which 
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splits the energy-based cluster marked by the asterisk into eight subclusters (by visual 

analysis in PyMOL), revealing a set of particular beta-sheet geometries which evidently 

all share similar energetic preferences (see Fig. 5.9 for additional visualizations of 

clusters). 

 

 
Fig. 5.7 Structurally similar motifs have similar SCEs and vice versa. A: Fragment 

ensembles of the top three clusters by RMSD when clustering by structure (top row), by 

energy (middle row), and randomly (bottom row). B: Mean SCE matrices for the clusters 

shown in (A). C: The subclusters of the cluster marked by the asterisk (*). The subclusters 

are sorted by size, descending, starting with the top left and going clockwise. D, E: 

Distributions of RMSD and energetic similarity (rE) over the first 100 greedily obtained 

clusters when clustering by structure, clustering by energy, and by random assignment. For 
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each distribution shown, the vertical dotted line indicates the mean value. Fragments were 

visualized with PyMOL. 

 

To look in more detail at how the similarity between structure and energy behaves 

and where it diverges, we considered a large number of pairs of interaction motifs and 

computed both their structural similarity (via RMSD) and energetic similarity (via rE). 

Specifically, the RMSD and rE between each pair in a set of 20,000 motifs was computed, 

the pairs were partitioned into bins based on RMSD, and the average rE for each bin was 

calculated (Fig. 5.8). While there is some noise in the relationship, there is a clear pattern 

of structural similarity implying energetic similarity, with pairs of 3x3 motifs with an 

RMSD in the range [0, 0.2) having an average rE of 0.14, in contrast to pairs with an 

RMSD in the range [1.8, 4) having an average rE of 0.94, which is about what would be 

expected for unrelated motifs. Furthermore, an inter-motif RMSD value of ~1.0 Å 

appears to be roughly where structural and energetic similarity diverge. That is, motif 

pairs that are closer to each other than 1.0 Å RMSD tend to exhibit various degrees of 

similarity in their energetic preferences in a way that strongly correlates with structural 

similarity, while beyond 1.0 Å energetic preferences tend to be mostly unrelated and in a 

way that does not strongly depend on the specific structural distance. 

 

 
Fig. 5.8 Relationship between structural similarity and energetic similarity. A-C: 1x1, 3x3, 

and 5x5 motifs, resp. Circles represent the mean, squares the median, and error bars the 

standard error. 
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Fig. 5.9 Additional clustering visualizations. The first three figures show the fragment 

ensembles of the top 100 clusters when clustering by structure, energy, or randomly, 

respectively. The bottom three figures show the mean SCE matrices for these respective 

clusterings. The color scale is the same as shown in Fig. 5.7. 

 

5.2.6 SCEs outperform traditional contact energies in native structure 

discrimination 
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If SCE matrices reflect how much each interaction motif prefers each possible amino-

acid pair, then scoring a structural model by the SCEs of its interacting residues should 

reflect how compatible the structure is with its sequence. While additional terms would 

be needed to fully measure sequence-structure compatibility (e.g., self energies as well as 

the pairwise SCEs), the pair energies should be informative enough to identify native-like 

interactions. To test this hypothesis, data from previous Critical Assessment of protein 

Structure Prediction (CASP) competitions, in particular from the refinement 

challenges128–133, were collected, resulting in a large set of structures, both native and 

submitted models—134 targets and ~2500 structures. For each of the 134 refinement 

targets from CASP9-14, the native structure and 20 models submitted under the 

refinement category were scored by calculating the mean SCE of the native amino-acid 

pair over all contacts (using 1x1, 3x3, and 5x5 motifs). As a control, each of these 

contacts was also scored using CEs and averaged. Following the convention of CASP, 

GDT_TS134 was used to measure the quality of each model, and this structure quality was 

compared to the mean SCE or CE per structure, plotting ROC curves for several 

GDT_TS thresholds. These curves plot the false positive rate vs. the true positive rate and 

indicate how well each scoring function can differentiate between models higher vs. 

lower quality models. Fig. 5.10 shows the curve for differentiating models with a 

GDT_TS of at least 50 vs. those with a GDT_TS less than 50. Predictive success can be 

measured with the area under the curve (AUC), which quantifies how likely a scoring 

function is to correctly rank models and ranges from 0.5 (the expected AUC for a random 

classifier) to 1.0 (achieved by perfectly ranking the models). The AUCs when models are 

scored with the mean SCE using 1x1, 3x3, and 5x5 motifs is 0.64, 0.80, and 0.69, 

respectively. In contrast, the AUC when models are scored with the mean CE is 0.54, 

indicating the mean CE essentially ranks models randomly with respect to GDT_TS. The 

increased AUCs achieved by SCE-based scores holds when using other thresholds of 

GDT_TS (60, 70, 80, 90; see Fig. 5.11). 
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Fig. 5.10 The performance of SCE-based and CE-based scoring functions when 

differentiating between low- and high-quality CASP models. Each scoring function’s ROC 

curve plots the false positive rate vs. the true positive rate achieved when predicting 

whether or not each structure in the set of CASP models has a GDT_TS of at least 50. 1x1, 

3x3, and 5x5 refer to the SCE-based scoring functions using the respective motif sizes and 

CP refers to the CE-based scoring function. 

 

The substantially larger AUCs achieved by the SCE-based scores, in particular the 

0.8 achieved using 3x3 motifs, is another piece of evidence for the SCP encoding 
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additional information about native sequence preferences compared to the CP and shows 

this information can be exploited to evaluate the structural quality of predicted models. 

The improved predictions using the 3x3-based scores over the 1x1-based scores is 

expected, but the lack of systematic improvement by the 5x5-based scores may result 

from limitations associated with the sparser and less robust statistics of larger structural 

motifs. To see whether the relationship between SCE-based scores and GDT_TS 

generalizes to other measures of structural quality, the same experiment was performed 

using TM-score135 (Fig. 5.12), another common measure of structure quality, and RMSD 

(Fig. 5.13). In both cases, the same pattern was observed, with SCEs predicting structural 

quality more effectively than CEs across all tested thresholds of TM-score and RMSD. 

 



91 

 
Fig. 5.11 Relationship between GDT_TS and statistical energies over a set of predicted 

CASP models and their corresponding native structures via ROC curves. A-C: SCEs vs 

GDT_TS. (A), (B), and (C) correspond to 1x1, 3x3, and 5x5 SCEs. D: CEs vs GDT_TS. 
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Fig. 5.12 Relationship between TM-score and statistical energies over a set of predicted 

CASP models and their corresponding native structures via ROC curves. A-C: SCEs vs 

TM-score. (A), (B), and (C) correspond to 1x1, 3x3, and 5x5 SCEs. D: CEs vs TM-score. 
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Fig. 5.13 Relationship between RMSD and statistical energies over a set of predicted CASP 

models and their corresponding native structures via ROC curves. A-C: SCEs vs RMSD. 

(A), (B), and (C) correspond to 1x1, 3x3, and 5x5 SCEs. D: CEs vs RMSD. 

 

5.3 Discussion 
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The long history and widespread use of contact potentials suggests that extensions to the 

concept may also prove fruitful. Here, we demonstrated such an extension and showed 

that conditioning the contact potential’s amino-acid pair statistics on the backbone 

conformation of the interacting fragment is a promising way to increase the relevance of 

the resultant statistical energies. Moreover, examining these structure-conditioned 

energies and the fragment geometries they are conditioned on has revealed a general 

relationship between structural similarity and energetic similarity. 

The results summarized in Fig. 5.4 provide a good example of this increase in 

relevance, highlighting how the energies of the SCP contain more native sequence 

information than those of a traditional CP. Indeed, while the CP effectively encodes 

common patterns of amino-acid pair interactions—the most favorable energies after Cys-

Cys being Glu-Lys, Asp-Lys, Arg-Asp, and Arg-Glu (all complementarily-charged 

amino-acid pairs which frequently interact)—it has no mechanism to recognize any 

detailed structural context in which these interactions occur. This can be seen as a 

limitation of CPs that is accepted in exchange for speed. Thus, a CP serves as a fast but 

very approximate measure of a structure’s inter-residue interactions. 

In contrast, the SCP described here performs much better. Importantly, one would 

not expect a contact potential of any kind, which inherently captures second-order 

sequence preferences only, to have a high sequence recovery. In fact, the most significant 

explanatory effect of sequence is expected to reside in the first-order contribution (e.g., 

preference for degree of burial, backbone dihedral angles, etc.). Further, when it comes to 

second-order effects, it is the sum of pair interactions involving a given residue that most 

matters for amino-acid choice at the position, while each pair contribution may play only 

a minor role. Despite this, the SCP stills exhibits considerable predictive performance in 

picking out native amino-acid pairs, with a rate of four times over that expected by 

chance. In terms of speed, the general relationship between structural similarity and 

energetic similarity shown in Fig. 5.8 implies that SCE matrices do not need to be 

computed for every fragment of interest. Instead, a database of energies can be pre-

computed and the interaction motifs of interest can be evaluated on the fly by looking up 

the energies of the most similar motifs in the database. This would make the speed of 
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SCPs comparable to that of CPs, while providing a considerably more accurate sequence-

structure linkage. 

Additional evidence of the relevance of SCP-based energies is shown in Fig. 5.5, 

which demonstrates that SCE matrices are more closely related to thermodynamic 

coupling energies in coiled coils. While SCEs correlate more highly with experimental 

coupling values than CEs do using the “default” parameters, the highest correlations 

occur when the ensemble of motifs used to condition the amino-acid pair statistics were 

constrained to include only those fragments with very high structural similarity to the 

query motifs (i.e., the motifs centered on the a-a' and g-e' interaction pairs). This 

sensitivity to the chosen ensemble reinforces the point that structural context matters 

when estimating pairwise energies and suggests that using statistical energies as proxies 

for coupling energies requires knowledge of the native ensemble, not just knowledge of 

the crystallized conformation. While such knowledge would be rarely available, the SCP 

at least provides a means of tuning the statistics based on the predicted or assumed 

ensemble, which cannot be done with a CP. Moreover, in some cases such as sequence 

design, it may be useful to impose a desired ensemble, making this tuning capability of 

SCP convenient. Considering the results in Fig. 5.5 more broadly, it is interesting that the 

statistics in the PDB, when conditioned on an appropriate set of fragments, correspond 

even approximately with coupling energies, which are derived from measurements of 

thermodynamic equilibria in specific systems. This correspondence suggests that 

thermodynamic preferences contribute to the distribution of amino-acid pair statistics in 

the PDB. 

Results in Figs. 5.10-13 corroborate those in Figs. 5.4 and 5.5 by directly 

evaluating how effective each energy function is at predicting the sequence-structure 

compatibility in structural models. The increase in AUCs (which quantify how well high-

quality structures can be differentiated from low-quality ones) achieved by SCEs shows 

that incorporation of structural context helps in the evaluation of pairwise interactions in 

structural models. Importantly, the dataset involved in this analysis is expansive, 

comprising thousands of structural models submitted by CASP participants, and includes 

models derived from a variety of techniques tried over many years. The consistent 

increase in AUCs, whether using GDT_TS, TM-score, or RMSD, and regardless of the 
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threshold chosen to split high-quality and low-quality models, allows us to conclude that 

an SCP-based scoring function is reliably better than an equivalent CP-based one. This 

holds even when the SCEs are computed with the minimally-contextual 1x1 motifs, but 

the further increase when using 3x3 motifs confirms that the increase in performance is 

driven by incorporating additional structural context. 

Perhaps the most striking observation about the SCP is the bidirectional 

relationship it reveals between contact geometry and pairwise sequence preferences, 

which is shown via clustering in Fig. 5.7 and more generally in Fig. 5.8. It may be 

expected that structurally similar pairs of interaction motifs induce similar SCE matrices. 

After all, these matrices are computed by collecting ensembles of structurally similar 

fragments and pooling their amino-acid pair statistics. However, it is interesting that the 

relationship holds in the other direction—that energetically similar pairs of motifs tend to 

be structurally similar as well. It could have been the case that most contact geometries 

would induce similar SCE matrices, which would have precluded using energetic 

similarity to predict structural similarity. This is not the case, however, and Fig. 5.7D 

makes it clear that structurally unrelated motifs are very unlikely to have similar SCE 

matrices. This coupling between structural and energetic similarity, the limits of which 

are quantified in Fig. 5.8, implies that not only does a particular contact geometry impose 

constraints on sequence preferences, but that particular sequence preferences impose 

constraints on the contact geometry. In effect, there appears to (usually) be at most only 

one way, in local structural space, to achieve a specific set of pair amino-acid 

preferences. 

At a high level, our results show that local geometry-to-sequence mappings are 

inherently learnable, generalizable, and with a tight coupling between local structure and 

the pattern of amino-acid preferences. This fact may well be a part of the reason behind 

recent results having been able to achieve excellent generalization capabilities in going 

from multiple-sequence alignments to accurately predicted structures17,121. These results 

once again suggest that the amount of protein structural data amassed to date is sufficient 

to establish robust generalizations about sequence-structure relationships. Thus, 

continued exploitation of these data is likely to produce additional insights and 
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generalizations and may enable novel techniques for the design and modeling protein 

structure and properties. 

 

5.4 Methods 
5.4.1 Contact degree 
Contacts in this study were defined using our previously described contact degree (CD) 

metric7–9. CD quantifies the extent to which a pair of positions is poised to host a contact 

by placing all possible rotamers (of all natural amino acids) at both positions and 

calculating the probability-weighted fraction of mutually exclusive rotamer pairs (i.e., 

those with clashing heavy atoms; see Holland et al.8). 

 

5.4.2 Contact database creation 
In order to sample a diverse distribution of native contacts, a high quality, non-redundant 

subset of the PDB was collected and around 200,000 contacts were sampled from it. In 

more detail, the PISCES server46 was used to collect a non-redundant subset of the PDB. 

Only structures solved by X-ray crystallography were included, with the maximum 

resolution capped at 2.3 Å and the maximum R-value at 0.3. Structures were filtered by 

chain, keeping only those with between 40 and 10,000 residues, and with the maximum 

sequence identity of any pair restricted to 25%. The list of chains meeting these criteria 

was collected on January 1st, 2020 and resulted in 12,148 entries. Contacts were 

computed between every pair of residues in every chain. In order to sample inter-protein 

contacts, contacts were also computed between every pair of residues between each chain 

and every other chain in its PDB file. This resulted in 61,510,642 contacts in total. 

Contacts were then filtered to include only those for which both contacting residues had 

canonical amino acid names (with MSE being considered equivalent to MET), and 

enough sequence separation (at least 5 residues in between the two contacting ones) to 

ensure the largest considered interaction motifs (5x5-mers) were composed of two non-

contiguous segments. Furthermore, a contact was included only if each residue involved 

in the 5x5-mer motif had all four backbone atoms. Because most contacts are weak, and 

we wanted to sample many strong contacts in addition to weak ones, the contact database 
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was created by sampling an equal number of contacts from 11 bins of contact degree: [0, 

2-10), [2-10, 2-9), [2-9, 2-8), ..., [2-1, 1]. DB200K was created by sampling 18,182 contacts 

per bin, resulting in 200,002 contacts spanning 10,839 structures/complexes. The set of 

contacts comprising DB200K can be found in the “DB200K.tar.gz” file hosted on 

Zenodo136. 

 

5.4.3 Structure-conditioned potentials 
An interaction motif is a structural fragment centered around a pair of contacting 

residues. The fragment may contain just the pair of interacting residues (1x1) or one or 

more flanking residues on each side of the pair (3x3, 5x5, etc.). Corresponding to the pair 

component of the dTERMen energy function, the structure-conditioned energy (SCE) 

matrix for an interaction motif is a 20x20 matrix containing log-transformed ratios of 

amino-acid pair observations over expectations, computed using the amino-acid statistics 

from an ensemble of fragments structurally similar to the interaction motif. Only the 

statistics of the two contacting residues are considered; the flanking residues control how 

much structural context is considered when collecting the ensemble of similar fragments, 

but their amino-acid identities do not contribute directly to the energies. The ensemble is 

collected by using the interaction motif to query into a structural database, finding all 

fragments (matches) of the same size as the query in the order of their backbone-atom 

root-mean-square deviation (RMSD) from the query motif. The search is limited by both 

the number of fragments returned (max count) and the maximal RMSD to the query 

(RMSD cutoff). Except for the SCEs used to compare with experimental coupling 

energies, which were recomputed using a wide variety of match counts (see Fig. 5.5 and 

the “Coupling Energies” section below), the max count was fixed at 50,000 for all SCEs 

computed here. The RMSD cutoff was set in a size-based manner according to our 

previously derived cutoff function (Eqs. 25 and 26 in the supplementary information of 

Zhou et al.9). This resulted in cutoffs of 1.0 Å, ~0.79 Å, and ~0.77 Å for 1x1, 3x3, and 

5x5 motifs, respectively. 

The equation below details how the 400 structure-conditioned energies (SCEs) of 

an SCP are computed for an interaction motif f centered around a pair of interacting 

positions (i, j): 
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Eq. 5.3 

 

Here, (ai, aj) is the amino-acid pair whose SCE is being computed at these positions (with 

ai being the amino acid at position i and aj the amino acid at position j), Nobs(ai, aj) is the 

number of occurrences of pair (ai, aj) in f’s ensemble of matching fragments, and Nexp(ai, 

aj) is the number of occurrences of pair (ai, aj) that would be expected if there were no 

pair preferences. The pseudocount ε is set to . Note 

the above equation is equivalent to Eq. 5.2 but with a replaced by ai and b replaced by aj 

for clarity about how i and j play a role. Nexp(ai, aj) is defined as follows: 

 

 
Eq. 5.4 

 

Here, m is a match in f’s ensemble of matching fragments M, E1(ai | mi) is the pseudo-

energy associated with amino acid ai at position i in match m, AA is the set of the 20 

natural amino acids, and Δi(ai, M) is a residual energy associated with amino acid ai that 

is set (for each motif) to ensure that the expected marginal counts of each amino acid at 

each position coincide with observed counts. See the “Pair contributions” section of the 

supplementary information of Zhou et al.9 for more details. The pseudo-energy in E1 is a 

first-order energy model that takes into account the backbone dihedral angles φ, ψ, and ω 

and environment to estimate how favorable each amino acid is at a given position. See 

the “Pre-computed contributions” section of the supplementary information of Zhou et 

al.9 for more information about how these pseudo-energies are computed. The first term 

under the outer sum is thus a ratio between how likely (according to E1) amino acid ai is 

to occur at position i and the sum of the likelihoods over all possible amino acids at this 
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position. The second term under the outer sum computes the same ratio but for aj at 

position j. Multiplied together, these two terms capture the probability of observing pair 

(ai, aj) in match m under a model that knows about first-order amino-acid preferences but 

assumes no second-order dependencies. This means the sum over each match in the 

ensemble M is the expected number of observations in M of the amino acid pair (ai, aj) if 

there were no second-order (or other higher-order) dependencies. Thus, the ratio between 

Nobs(ai, aj) and Nexp(ai, aj) estimates to what extent true observations exhibit apparent 

correlations. 

 

5.4.4 Contact potential 
The contact potential was computed for every canonical amino-acid pair using Eq. 5.1, 

with DB200K used as the set of contacts. Since by construction, the energy is invariant to 

the order of the amino-acid pairs, with E(a, b) = E(b, a), the number of observed pairs 

Nobs(a, b) must take this into account by summing (a, b) and (b, a) contacts together: 

 

 
Eq. 5.5 

 

Here, N(a, b) is the number of contacts in the database between a and b in the order (a, b), 

and 𝕀(a, b) is 1 if a=b and 0 otherwise, ensuring homotypic contacts are not counted twice. 

To compute the number of expected pairs Nexp(a, b), the expectation for heterotypic pairs 

must be doubled so that, in accordance with the chosen reference state, in the absence of 

amino-acid pair preferences between a and b, Nobs(a, b) = Nexp(a, b), thereby making E(a, 

b) = 0: 

 

 
Eq. 5.6 
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The empirically derived amino acid-dependent pseudocount ε was structured 

identically to the one used for the SCP (see the “Structure-conditioned potentials” section 

above and Zhou et al.9 for details), although in the case of the contact potential, the large 

set of contacts used to compute the statistics ensured there was no data sparsity and thus 

the values were negligible. 

 

5.4.4 AA pair identification 
The modified Z-score used in Fig. 5.4B is computed by analogy to a traditional Z-score, 

but with the mean replaced by the median and the standard deviation replaced by the 

median absolute deviation (MAD). Below, E is the set of 400 energies in an SCP and Ei 

is the one of these energies whose modified Z-score is being computed: 

 

 
Eq. 5.7 

 

5.4.5 Coupling energies 
Experimentally determined coupling energies for the a-a' and g-e' interhelical interactions 

were taken from Table 4 and Table III from Acharya et al.127 and Krylov et al.76, 

respectively. Since experimentally solved structures for the coiled coils were not 

available, they were modeled using CCFold137 based on the sequences specified in the 

papers, trimming off N- and C-terminal residues distal to the interaction. In particular, for 

the system used for measuring the a-a' interactions, the sequences used were 

RAAFLEKENTALRTRLAELRKRVGRCRNIVSKYETRYG (chain A) and 

RAAFLEKENTALRTELAELEKEVGRCENIVSKYETRYG (chain B), with the residue 

pair (A16, B16) used to compute the energies (note that these residues, both labeled as X 

in the sequence in Acharya et al.127, were replaced with leucine when modeled with 

CCFold). For the system used for measuring the g-e' interactions, the sequence used for 

both chains was 

KVFVPDEQKDEKYWTRRKKNNVAAKRSRDARRLKENQITIRAAFLEK 
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ENTALRTEVAELRKEVGRCKNIVSKYETRYGPL, with the residue pair (A41, B46) 

used to compute the energies. 

 

5.4.6 Clustering 
Each clustering was performed by randomly sampling without replacement a set S of 

50,000 motifs from DB200K and running 100 rounds of an in-house greedy clustering 

method which accepts two parameters, a distance cutoff d and a sampling count n, and 

returns one cluster per round. In any round i, n motifs are randomly sampled without 

replacement from S. The distance between each pair of n motifs is computed and the 

motif with the largest number of distances of at most d to the other sampled motifs is 

chosen as the cluster representative r. The distance between r and each motif in S is 

computed and every motif with a distance of at most d is included in the returned cluster 

C. For round i+1, S = S \ C (i.e., the elements assigned to the ith cluster are not available 

for rounds i+1, i+2, …). When clustering by structure, the distance metric used was best-

fit RMSD and d was chosen to be 0.5. When clustering by SCE, the distance metric used 

was rE = 1 – r, where r is the linear correlation coefficient between the pair of SCE 

matrices, and d was chosen to be 0.3. Note that the chosen values of d, 0.5 when 

clustering by structure and 0.3 when clustering by energy, result in the top 100 clusters 

including a similar number of motifs, making the comparisons of distributions in Fig. 

5.7D and 5.7E fair. To make the sets of random clusters a similarly fair control, the 

clusters were chosen to have the same number of elements as the structure clusters (in 

Fig. 5.7D) and the energy clusters (in Fig. 5.7E) as well. 

 

5.4.7 CASP model evaluation 
All publicly available refinement targets from CASP9-14 were considered, with the 

solved structure and up to 20 models included per target. To sample a set of structures 

with a wide range of structure quality, the 20 models included for each target were 

selected by sorting the models best-to-worst (by GDT_TS) and alternately adding the 

next-best and next-worst models remaining until either 20 were added or no more models 

were available. The set of targets and their included models is listed in the “CASP-

models.xlsx” file hosted on Zenodo136. Structures and GDT_TS scores were taken from 
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the CASP website (https://predictioncenter.org/). TM-scores and RMSDs were computed 

using the TMscore program135 with the default settings. SCEs were computed over every 

contact with a CD of at least 0.1. 
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6 Conclusions 
 

6.1 Residue-level statistical potentials 
Much of my work has focused on residue-level statistical potentials, whether in the form 

of a simple, binary contact potential (Chapter 2), a more intricate, hierarchical statistical 

potential (Chapter 3), or a contact potential conditioned on structural context (Chapter 5). 

There are distinct advantages to sticking to residue-level potentials, such as simplicity 

and interpretability. Describing how pairs of amino acid types interact with each other is 

of fundamental interest to protein science and the conclusions are easy to understand. In 

fact, it is remarkable how much about protein structure can be understood at just the level 

of residues and residue pairs given how many diverse conformations most types of side-

chain can occupy. 

Discovering that a simple residue-level contact potential could boost the 

performance of contact prediction methods (Fig. 2.4) was surprising, and conditioning 

such a potential on structural context revealed interesting relationships between sequence 

and structure (Figs. 5.3-5.5). However, residue-level statistical potentials of all kinds 

have significant limitations. The particular conformations of a protein’s side-chains 

clearly do matter, and so not all interactions can be understood in the framework of these 

potentials. Atomic-level potentials such as DFIRE67 and GOAP50 approach this problem 

by delving into the atomic-level details of protein structure and have had many successes 

doing so, although they lose some of the simplicity and interpretability in the process. 

Taking a very different tack, many recent methods instead focus on relating sequence to 

https://predictioncenter.org/
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structure through machine learning, in particular neural networks. It will be interesting to 

see whether neural networks can address the limitations of residue-level potentials by 

putting them into the right context. Can the predictions of residue-level potentials be 

made more accurate by considering the larger context? In other words, can the energies 

of particular interactions be refined by examining the interactions and structure around it, 

as neural networks are poised to do? It is not clear that atomic-level energies are 

necessary if sufficient context is incorporated into residue-level energies. The structure-

conditioned potential discussed in Chapter 5 is an exciting foray into this idea, and it is 

clear that conditioning on structural context opens up new possibilities for residue-level 

potentials, but the concept can be taken further, especially in light of these recent 

developments in neural networks. 

Taking a broader view, it is interesting to note how dependent the structure-

conditioned potential is on recently developments. Without the extraordinary growth of 

the PDB and structural search tools, it would not have been feasible to investigate the 

effect of structural context on amino acid pair preferences. Even now, the time it takes to 

search for relevant fragments hinders the applicability of structural searches; imagine 

what could be done if, say, a neural network could be trained to accurately predict the 

pair energies of any given interaction motif in a matter of moments. It would then be 

trivial to construct much larger databases of statistical energies and perhaps draw deeper 

conclusions about the relationship between sequence and structure from them. While I do 

not know which yet-to-be-developed tools will most significantly impact our 

understanding of pairwise sequence-structure relationships, it is clear that the growth of 

the PDB and the development of tools to mine its information will continue to limit what 

kinds of statistical potentials are feasible to construct and study. While there are certainly 

many fruitful ways to better understand pairwise sequence-structure relationships, with 

the creation of more detailed and intricate statistical potentials among them, one of the 

most impactful may be to develop structural tools to aid those studying such 

relationships. The Protein Builder could be seen as one of these tools, and I expect users 

other than myself to find ways of using it that I have not anticipated. 

 

6.2 Tertiary fragments 
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The other primary focus of my work has been the study of tertiary fragments and how 

they relate sequence to structure. The Protein Builder (Chapter 4) started as a simple 

demo of how tertiary fragments could be pieced together by exploiting empirically 

known overlaps. The richness of the overlap space encouraged further work on the 

project, and the final result showcases not only how many ways tertiary fragments can be 

pieced together into an assembly but how this assembly, through the fairly simple 

optimization process of fusion, can be turned into a novel backbone. While the creation 

of novel backbones is certainly not new, and there are many techniques to do so, the 

interactivity and intuition-based style of the tool is a distinct twist on the process and will 

hopefully encourage the creation of exotic (or even baroque) topologies and interaction 

networks. One of the major limitations of the original conception—the insistence that 

every fragment come from a representative database, which no matter how representative 

could never cover all of structure space—turned out to have a fairly simple solution, 

bridging. Enabling loop closure via bridging allow the database to focus on interaction 

motifs without needing an exorbitant number of linear fragments to close every possible 

loop geometry. This fits nicely with the overarching thesis of the project, which is to 

center backbone creation around interaction geometry, and acknowledges that loop 

closure is already a well-studied and successful subfield of backbone creation which does 

not need tertiary fragments to solve. Overall, the Protein Builder is an appealing 

demonstration of the discretized and geometric approach to structure I have been arguing 

for in this thesis. 

While the Protein Builder utilized tertiary fragments in a primarily geometric 

way, slotting them together to create novel structures, the structure-conditioned potential 

(Chapter 5) conceptualized them as a means of probing sequence-structure relationships. 

The most fascinating finding of the study was the tight, bidirectional relationship between 

interaction geometry and sequence preferences (encoded as statistical energies). While 

the structure to sequence direction was expected (being the basis for, e.g., dTERMen), the 

sequence to structure connection was a surprise, in particular the results shown in Fig. 

5.4G. This is an instance of where the simplicity of the approach—structure-conditioned 

potentials are fundamentally just counting occurrences of sequence pairs in the context of 

particular geometries—benefits it greatly. If the energies were derived in a more intricate, 



106 

elaborate way, then it would be plausible that the energies were directly encoding 

information about structure without encoding fundamental sequence-structure 

relationships (e.g., an overtrained neural network encoding the coordinates in a 

convoluted way that does not generalize to unseen interaction motifs), but the fact that 

these energies come from a fairly simple counting procedure effectively precludes this. 

One of the more intriguing observations structure-conditioned potentials revealed 

was that coiled-coil coupling energies are best reflected in very low-RMSD ensembles 

(Fig. 5.3A,C), in contrast to the much larger ensembles used in the rest of the project, 

which more reliably recover native sequence statistics. This is another area plagued by 

technical limitations, which the continued growth of the PDB should alleviate. The low-

RMSD ensembles do not appear to have rich enough statistics to use in general, with the 

very common alpha-helical pair motifs being an exception to this. If low-RMSD 

ensembles were more densely populated, it could be feasible to study more particular 

interaction geometries, perhaps elucidating how the exact backbone coordinates affect the 

permissible side-chain conformations and their interactions. 

 

6.3 Outlook 
While the physics of proteins is exceedingly complex, the ability to conceptualize them 

as geometric objects whose patterns can be understood without explicitly engaging with 

the underlying physics continues to be a promising approach to predicting their behavior. 

Discretizing this geometry into an alphabet of motifs is a more recent endeavor, but it 

also seems to be bearing fruit, with my work adding to a number of projects which seek 

to elucidate sequence-structure relationships using these motifs. While this approach has 

answered questions, it has also raised even more. What is the best way to discretize 

structure space, if even the fairly straightforward method of extracting motifs around 

contacts works as well as it does? To what extent are higher order motifs which 

encompass many interactions necessary to understand fundamental sequence-structure 

relationships? How much context is needed to reliably predict sequence from structure 

and structure from sequence? There is a combinatorial explosion of possibilities in this 

space which we have only begun to explore. Recent advances in machine learning make 

this space even more exciting, as the ability to synthesize many disparate pieces of 
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information (such as tertiary fragments and their statistics) into accurate predictions 

should extend the reach of these geometric objects and their residue-level statistics. It is 

an exciting time for protein science and I expect a discretized and geometric approach to 

structure to play an integral role. 
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