21 research outputs found

    A Fast Response Dual Mode Buck Converter with Automatic Mode Transition

    Get PDF
    Dual mode DC-DC converters utilizing PWM and PFM modes of operation have been widely used to improve the efficiency over a wide range of the load current. Due to the highly varying nature of the load, it is beneficial to have the converter switch between the modes without an external mode select signal. This work proposes a new technique for automatic mode switching which maintains very high efficiency at light loads and at the same time, keeps the output well regulated during a load transient from sleep to the active state. The Constant On-time PFM scheme and a zero current detector avoids the use of an accurate current sensing block. The power supply rejection is also improved using feed-forward paths from the supply in both the PWM and PFM modes. A new implementation of the PWM controller with clamped error voltage required to meet the specifications is also shown. The proposed feedback implementation using a programmable current source and resistance provides smooth output programming

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Buck Converters for Low Power Applications

    Get PDF

    Applications of Power Electronics:Volume 2

    Get PDF

    Buck Converters for Low Power Applications

    Get PDF

    Conception d'un réseau de plots configurables multifonctions analogiques et numériques combiné à un réseau de distribution de puissance intégrés à l'échelle de la tranche de silicium

    Get PDF
    RÉSUMÉ De nos jours, les systèmes électroniques sont en constante croissance en taille et en complexité. Cette complexité combinée à la réduction du temps de mise en marché rendant le design de systèmes électroniques un grand défi pour les designers. Une plateforme de prototypage a récemment été introduite afin de s’attaquer toutes ces contraintes à la fois. Cette plateforme s’appuie sur l’implémentation d’un circuit configurable à l’échelle d’une tranche de silicium complète de 200mm de diamètre. Cette surface est recouverte d’une mer de plots conducteurs configurables appelés NanoPads. Ces NanoPads sont suffisamment petits pour supporter des billes d’un diamètre de 250 μm et d’un espacement de 500 μm et sont regroupés en matrices de 4×4 pour former des Cellules, qui sont à leur tour assemblées en Réticules de 32×32. Ces Réticules sont ensuite photo-répétés sur toute la surface d’une tranche de silicium et sont interconnectés entre eux pour former le WaferIC. Cet arrangement particulier de plots conducteurs configurables permet à un usager de déposer sur la surface active du WaferIC les circuits intégrés constituant un système électronique, sans tenir en compte l’orientation spatiale de ces derniers, de créer un schéma d’interconnexions, de distribution la puissance et de débuter le prototypage du système en question. Une version préliminaire a été fabriquées et testées avec succès et permet d’alimenter des circuits -intégrés et de configurer le WaferIC pour les interconnecter. Cette thèse par articles présente une nouvelle version du WaferIC avec une nouvelle proposition de distribution de la puissance avec une approche de maîtres-esclaves qui met en valeur l’utilisation de plusieurs rails d’alimentation afin d’améliorer le rendement énergétique. Il est également mis de l’avant un réseau très dense de convertisseurs analogique-numérique (CAN) et numérique-analogique (CNA) de plus de 300k éléments, tolérant aux défectuosités et aux défauts de fabrication. Ce réseau de CAN-CNA permet d’améliorer le WaferIC avec la transmission de signaux analogiques, en plus des signaux numériques. Ce manuscrit comporte trois articles : un publié chez « Springer Science & Business Media Analog Integrated Circuits and Signal Processing », un publié chez « IEEE Transactions on Circuits and Systems I : Regular Papers » et finalement un soumis chez « IEEE Transactions on Very Large Scale Integration ».----------ABSTRACT Nowadays, electronic systems are in constant growth, size and complexity; combined with time to market it makes a challenge for electronic system designers. A prototyping platform has been recently introduced and addresses all those constraints at once. This platform is based on an active 200 mm in diameter wafer-scale circuit, which is covered with a set of small configurable and conductive pads called NanoPads. These NanoPads are designed to be small enough to support any integrated-circuit μball of a 250 μm diameter and 500 μm of pitch. They are assembled in a 4×4 matrix, forming a Unit-Cell, which are grouped in a Reticle-Image of 32×32. These Reticle-Images are photo-repeated over the entire surface of a 200 mm in diameter wafer and are interconnected together using interreticle stitching. This active wafer-scale circuit is called a WaferIC. This particular topology and distribution of NanoPads allows an electronic system designer to manually deposit any integrated-circuit (IC) on the active alignment insensitive surface of the WaferIC, to build the netlist linking all the ICs, power-up the systems and start the prototyping of the system. In this manuscript-based thesis, we present an improved version of the WaferIC with a novel approach for the power distribution network with a master-slave topology, which makes the use of embedded dual-power-rail voltage regulators in order to improve the power efficiency and decrease thermal dissipation. We also propose a default-tolerant network of analog to digital (ADC) and digital to analog (DAC) converters of more than 300k. This ADC-DAC network allows the WaferIC to not only support digital ICs but also propagate analog signals from one NanoPad to another. This thesis includes 3 papers : one submission to "Springer Science & Business Media Analog Integrated Circuits and Signal Processing", one submission to "IEEE Transactions on Circuits and Systems I : Regular Papers" and finally one submission to "IEEE Transactions on Very Large-Scale Integration". These papers propose novel architectures of dualrail voltage regulators, configurable analog buffers and configurable voltage references, which can be used as a DAC. A novel approach for a power distribution network and the integration of all the presented architectures is also proposed with the fabrication of a testchip in CMOS 0.18 μm technology, which is a small-scale version of the WaferIC

    Novel design techniques and control schemes for higher efficiency switched-mode power converters

    Get PDF
    This thesis details novel control schemes and design techniques with the aim of improving the performance of several switched-mode power converter topologies. These improvements include higher steady-state and transient efficiencies for hard-switching converters and the automatic current limiting provision for LLC resonant converters. The thesis initially attempts to use linear closed-loop controllers to improve the transient response of synchronous buck converters, enabling them to be designed with a lower open-loop bandwidth so that the system can achieve higher efficiency. Three types of controllers were investigated viz: the PID, the state-feedback and the predictive controller. All three controllers exhibit similar step responses, which are the maximum transient responses achievable by the linear controllers with the given requirements. The thesis then examines the parallel converter (i.e. a converter with two parallel connected power modules (PMs)) in detail with a view to improve the efficiency and to minimise the current ripple experienced by the output capacitor. Two control schemes and a design technique for the parallel converter are proposed, to simultaneously improve its efficiency and power density. The parallel converter in this research consists of two non-identical rated PMs (termed main PM and auxiliary PM), with the transient response requirement allocated to the auxiliary PM, thereby allowing the main PM to operate at a lower frequency for higher steady-state efficiency. The first control scheme activates the auxiliary PM only when a pre-determined deviation in load/output voltage is exceeded under a load step. Thus, eliminating the losses contributed by the low efficiency auxiliary PM for small load step changes. The second control scheme shapes the auxiliary PM inductor current to be equal and opposite to the main PM current ripple, which when combined reduce the current ripple as experienced by the output filter capacitor, thereby allowing a lower value (and hence physically smaller) capacitor to be selected for higher power density. In order to improve the converter's steady-state efficiency further, the minimum load condition is allocated to the auxiliary PM in the new design technique. These allow both the main PM inductance and its switching frequency to be lower for higher efficiency. In recent years, the LLC has received much attention owing to its favourable operating characteristics including high efficiency and high power density. Usually one chooses to operate at or very close to the load independent point (LIP) since very little control effort is required to regulate the converter's output voltage in response to changes in the load. However under fault conditions where the load tends towards a short circuit, excessive currents can flow and thus control action need to be taken to protect both the converter and the load. The final topic of the thesis hence studies the characteristics of an LLC resonant converter with current-limiting capacitor-diode clamp and develops a new equivalent circuit model to predict the behaviour under overload conditions. A detailed analysis of the converter is presented using the proposed model, from which a design methodology is derived allowing the optimum circuit components to be selected to achieve the required current limiting/protection characteristics

    Dithering skip modulator with a novel load sensor for ultra-wide-load high-efficiency DC-DC converters

    No full text
    corecore