1,145 research outputs found

    A Comprehensive Survey on Networking over TV White Spaces

    Full text link
    The 2008 Federal Communication Commission (FCC) ruling in the United States opened up new opportunities for unlicensed operation in the TV white space spectrum. Networking protocols over the TV white spaces promise to subdue the shortcomings of existing short-range multi-hop wireless architectures and protocols by offering more availability, wider bandwidth, and longer-range communication. The TV white space protocols are the enabling technologies for sensing and monitoring, Internet-of-Things (IoT), wireless broadband access, real-time, smart and connected community, and smart utility applications. In this paper, we perform a retrospective review of the protocols that have been built over the last decade and also the new challenges and the directions for future work. To the best of our knowledge, this is the first comprehensive survey to present and compare existing networking protocols over the TV white spaces.Comment: 19 page

    Multi-objective optimization of cognitive radio networks

    Get PDF
    New generation networks, based on Cognitive Radio technology, allow dynamic allocation of the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for dynamic operation for energy saving. In this paper, we present a novel wireless network optimization algorithm for cognitive radio networks based on a cloud sharing-decision mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, power consumption, and exposure. For a realistic suburban scenario in Ghent city, Belgium, we determine the optimal trade-off between the KPIs. Compared to a traditional Cognitive Radio network design, our optimization algorithm for the cloud-based architecture reduced the network power consumption by 27.5%, the average global exposure by 34.3%, and spectrum usage by 34.5% at the same time. Even for the worst-case optimization (worst achieved result of a single KPI), our solution performs better than the traditional architecture by 4.8% in terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% in terms of global exposure

    Electromagnetic field assessment as a smart city service: The SmartSantander use-case

    Get PDF
    Despite the increasing presence of wireless communications in everyday life, there exist some voices raising concerns about their adverse effects. One particularly relevant example is the potential impact of the electromagnetic field they induce on the population's health. Traditionally, very specialized methods and devices (dosimetry) have been used to assess the strength of the E-field, with the main objective of checking whether it respects the corresponding regulations. In this paper, we propose a complete novel approach, which exploits the functionality leveraged by a smart city platform. We deploy a number of measuring probes, integrated as sensing devices, to carry out a characterization embracing large areas, as well as long periods of time. This unique platform has been active for more than one year, generating a vast amount of information. We process such information, and the obtained results validate the whole methodology. In addition, we discuss the variation of the E-field caused by cellular networks, considering additional information, such as usage statistics. Finally, we establish the exposure that can be attributed to the base stations within the scenario under analysis.This work has been supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the project ADVICE: Dynamic provisioning of connectivity in high density 5G wireless scenarios (TEC2015-71329-C2-1-R)

    Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A

    Get PDF

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Cognitive radio for TVWS usage

    Get PDF
    Spectrum scarcity is an emerging issue in wireless communication systems due to the increasing demand of broadband services like mobile communications, wireless internet access, IoT applications, among others. The migration of analog TV to digital systems (a.k.a. digital TV switchover) has led to the release of a significant spectrum share that can be used to support said additional services. Likewise, TV white spaces emerge as spectral opportunities that can also be explored. Hence, cognitive radio (CR) presents itself as a feasible approach to efficiently use resources and exploit gaps within the spectrum. The goal of this paper is to unveil the state of the art revolving around the usage of TV white spaces, including some of the most important methods developed to exploit such spaces, upcoming opportunities, challenges for future research projects, and suggestions to improve current models
    corecore