48 research outputs found

    Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors

    Get PDF

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Distributive JPDAF for multi-target tracking in wireless sensor networks

    Get PDF
    Copyright © 2005 IEEEIn this paper we present the development of a distributive joint probabilistic data association filter (JPDAF) for multi-target tracking in wireless sensor networks. We adopt sequential Monte Carlo (SMC) method to implement the JPDAF, and use Gaussian mixture model (GMM) to develop the distributive JPDAF. Simulation results are also provided.Hui Ma, Brian W.-H. N

    Distributed target tracking based on belief propagation consensus

    Full text link
    Distributed target tracking in wireless sensor networks (WSN) is an important problem, in which agreement on the target state can be achieved using conventional consensus methods, which take long to converge. We propose distributed particle filtering based on belief propagation (DPF-BP) consensus, a fast method for target tracking. According to our simulations, DPF-BP provides better performance than DPF based on standard belief consensus (DPF-SBC) in terms of disagreement in the network. However, in terms of root-mean square error, it can outperform DPF-SBC only for a specific number of consensus iterations

    Belief Consensus Algorithms for Fast Distributed Target Tracking in Wireless Sensor Networks

    Full text link
    In distributed target tracking for wireless sensor networks, agreement on the target state can be achieved by the construction and maintenance of a communication path, in order to exchange information regarding local likelihood functions. Such an approach lacks robustness to failures and is not easily applicable to ad-hoc networks. To address this, several methods have been proposed that allow agreement on the global likelihood through fully distributed belief consensus (BC) algorithms, operating on local likelihoods in distributed particle filtering (DPF). However, a unified comparison of the convergence speed and communication cost has not been performed. In this paper, we provide such a comparison and propose a novel BC algorithm based on belief propagation (BP). According to our study, DPF based on metropolis belief consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus is the fastest in tree graphs. Moreover, we found that BC-based DPF methods have lower communication overhead than data flooding when the network is sufficiently sparse

    Decentralized Data Fusion and Active Sensing with Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic Phenomena

    Get PDF
    The problem of modeling and predicting spatiotemporal traffic phenomena over an urban road network is important to many traffic applications such as detecting and forecasting congestion hotspots. This paper presents a decentralized data fusion and active sensing (D2FAS) algorithm for mobile sensors to actively explore the road network to gather and assimilate the most informative data for predicting the traffic phenomenon. We analyze the time and communication complexity of D2FAS and demonstrate that it can scale well with a large number of observations and sensors. We provide a theoretical guarantee on its predictive performance to be equivalent to that of a sophisticated centralized sparse approximation for the Gaussian process (GP) model: The computation of such a sparse approximate GP model can thus be parallelized and distributed among the mobile sensors (in a Google-like MapReduce paradigm), thereby achieving efficient and scalable prediction. We also theoretically guarantee its active sensing performance that improves under various practical environmental conditions. Empirical evaluation on real-world urban road network data shows that our D2FAS algorithm is significantly more time-efficient and scalable than state-of-the-art centralized algorithms while achieving comparable predictive performance.Comment: 28th Conference on Uncertainty in Artificial Intelligence (UAI 2012), Extended version with proofs, 13 page

    Dealing with Massive Data with a Distributed Expectation Propagation Particle Filter for Object Tracking

    Get PDF
    Target tracking in distributed networks faces the challenge in coping with large volumes of distributed data which requires efficient methods for real time applications with minimal communication overhead. The complexity considered in this paper is when each sensor in a distributed network observes a large number of measurements which are all required to be processed at each time step. The particle filter has been widely used for localisation and tracking in distributed networks with a small number of measurements [1]. This paper goes beyond the current state-of-the-art and presents a novel particle filter approach, combined with the expectation propagation framework, that is capable of dealing with the challenges presented by a large volume of measurements in a distributed network. In the proposed algorithm, the measurements are processed in parallel at each sensor node in the network and the communication overhead is minimised substantially. We show results with large improvements in communication overhead, with a negligible lossin tracking performance, compared with the standard centralised particle filter
    corecore