research

Dealing with Massive Data with a Distributed Expectation Propagation Particle Filter for Object Tracking

Abstract

Target tracking in distributed networks faces the challenge in coping with large volumes of distributed data which requires efficient methods for real time applications with minimal communication overhead. The complexity considered in this paper is when each sensor in a distributed network observes a large number of measurements which are all required to be processed at each time step. The particle filter has been widely used for localisation and tracking in distributed networks with a small number of measurements [1]. This paper goes beyond the current state-of-the-art and presents a novel particle filter approach, combined with the expectation propagation framework, that is capable of dealing with the challenges presented by a large volume of measurements in a distributed network. In the proposed algorithm, the measurements are processed in parallel at each sensor node in the network and the communication overhead is minimised substantially. We show results with large improvements in communication overhead, with a negligible lossin tracking performance, compared with the standard centralised particle filter

    Similar works