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Abstract- In this paper we present the development of a 

distributive joint probabilistic data association filter (JPDAF) 
for multi-target tracking in wireless sensor networks. We 
adopt sequential Monte Carlo (SMC) method to implement the 
JPDAF, and use Gaussian mixture model (GMM) to develop 
the distributive JPDAF. Simulation results are also provided. 

I. INTRODUCTION 

Multi-target tracking is one of the representative 

applications of wireless sensor networks (Figure 1): a large 

number of sensor nodes collaboratively sense and infer 

multiple targets’ states (e.g., position, velocity and heading). 

For the centralised systems (e.g. radar, sonar…etc.), the 

multi-target tracking techniques are well-established [1], [6]. 

However, for wireless sensor networks, their unique 

characteristics pose significant challenges in developing 

target tracking algorithms: the tracking algorithms need to 

consider the interplay between data and information 

processing and sensor network architecture; and the tracking 

algorithms need to be distributive and consume less 

computation and communication resources [1], [3], [5]. 

In this paper, the sequential Monte Carlo (SMC) method, 

also named as Particle filtering [2] is adopted for the 

algorithmic development. Several SMC based tracking 

algorithms for wireless sensor networks have been proposed 

in literature [3]-[5]. However, these algorithms are normally 

applied to track single target or track multiple targets that 

are sufficiently separated in space and/or time or track 

multiple targets using classification techniques. They might 

not be readily applied to the tracking scenario as depicted in 

Figure 1, in which two targets traverse closely. To address 

this problem, we have developed distributive joint 

probabilistic data association filter (JPDAF). And SMC is 

adopted for the implementation of this JPDAF. 

 
Figure 1. Tracking two close-spaced targets in a wireless sensor network 
           

The remainder of this paper is organized as follows. In 

Section II, we briefly review the SMC method. In Section 

III, we formulate the multi-target tracking problem in 

wireless sensor networks. In Section IV, we detail the 

design of SMC implemented JPDAF. In section V, we 

develop the distributive SMC-JPDAF by adopting Gaussian 

mixture model (GMM). We show the simulation results in 

Section VI and conclude the paper in section VII. 

 

II. SEQUENTIAL MONTE CARLO (SMC) METHOD 

In general, Bayesian estimation recursively calculates the 

posterior probability distribution of the state vector tx  

given the measurement vectors up to time t  (denoted as 

{ }tt zzzz ...,, 10:0 = ) in two steps: 
Prediction step: 

 ( ) ( ) ( ) 11:0111:0 xzxxxzx −−−−− ∫= ttttttt dppp       (1) 

 

Filtering step: 

  ( ) ( ) ( )1:0:0 zxxzzx −∝ tttttt ppp                  (2)  

 

The SMC method represents the posterior distribution 

( )ttp :0zx  as a set  of  weighted random samples, called 

particles { }N
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where ( ).δ is the Dirac delta function. The weights of each 

particle are updated sequentially by:  
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where ( )ttt :01 z,xx −π  is called the proposal distribution 

that is known and easier to sample [2]. As the number of 

samples becomes large, these samples effectively provide an 

equivalent representation of the posterior distribution. SMC 

method could be used in general nonlinear, non-Gaussian 

systems [2]. 

 

III. THE FORMULATION OF MULTI-TARGET 

TRACKING IN WIRELESS SENSOR NETWORKS 

In this paper, we assume the number of targets K  is 

known and fixed. We also make assumption that there are 
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two types of sensor nodes (Figure 1): the leader nodes 

which are responsible for information processing; and the 

sensing nodes which provide leader nodes with 

measurements regarding targets states. At time step t , there 

are tN  sensing nodes which participate in the tracking task.  

 

A. System Model and Measurement Model 

In multi-target tracking, it is generally assumed that each 

individual target evolves independently [6]. Thus, at time 

step t , the joint state vector ( )K
ttt x,...,xx 1=  can be 

decomposed into K partial equations: 

 

                     ( ) Kk
k
t

k
t

k
t

k
t ,...,1v,xfx 1 =∀= −            (5) 

 

The noises k
tv  is assumed to be Gaussian and independent 

of different targets.  

The tracking algorithms developed in this paper are based 

on acoustic energy measurement at individual sensing nodes. 

When the thk target passes the thn  sensing node, the 

measurement obtained at thn  node is [5]: 
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where ( )tSk  is the acoustic intensity generated by the thk  

target, and ( )nnn
N σµε ,~  is the additive Gaussian noise. 

( )tkξ  and nρ  are the position coordinates of the thk  

target and the thn sensing node, respectively. 

In the presence of multiple targets, the measurements 

obtained at the thn sensing node are designated by a 

vector 





=

n

M

nn
nz,...,zz 1 . The total number of 

measurements n
M  comprises the measurements that arise 

from targets n

TM , and the measurements that are due to the 

clutter (false alarm) n

CM . These measurements are assumed 

to be independent of each other and independent of those at 

the other sensing nodes. Here, we also make the 

assumptions that, one target can generate zero or one 

measurement at one time; and one measurement can 

originate from one target or from the clutter.  

 

B. Data Association 

In multi-target tracking, the measurements are normally 

unlabelled and we do not know which measurement is 

generated by which target (or clutter).  Therefore, we need 

to define the target to measurement association 

hypothesis: ( ) ~
...

~~ 1 tNλλλ = , where ( )n
T

n
C

nn
MM ,,r

~~
=λ  is 

for thn sensing node at time step t  . nr~  is the target to 

measurement association vector and its component n
kr

~  (for 

thk  target) is a random variable defined as below:  
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IV. THE SMC IMPLEMENTATION OF JPDAF 

The JPDAF is one of the popular strategies in target 

tracking research community [6], [8]. In [7], the authors 

used SMC method to implement JPDAF. In this paper we 

adopt a similar approach and extend it to distributive multi-

target tracking in wireless sensor networks. In this section, 

we briefly describe both the JPDAF and its SMC 

implementation, the SMC-JPDAF. In the next section, we 

present distributive SMC-JPDAF.  

 

A. General JPDAF Strategy 

For each target, the prediction step in JPDAF is preceded 

independently as below:  

 

( ) ( ) ( ) 1,1:01,1,,1:0, xzxxxzx −−−−− ∫= tkttktktkkttkk dppp  (8) 

 

The filtering step is: 

 

         ( ) ( ) ( )1:0,,:0, zxxzzx −∝ ttkktktkttkk ppp               (9) 

 

However, the filtering step cannot be performed 

independently for each target. This is because the likelihood 

of thk  target ( )tktkp ,xz  could not be calculated 

independently for each target due to the data association. In 

JPDAF, ( )tktkp ,xz  is calculated as follows [6], [7]:  
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where ( )tk
n

tj
n
Tp ,, xz  is the likelihood of  thj  measurement 

with respect to thk target at sensing node n . n
kj,

β  is the 

marginal association probability of the thk target with 

respect to the thj  measurement. n
k,0β  is the undetected 

probability of the thk  target. n
kj,

β  (for the measurements 

from both targets and clutter) can be acquired by summing 

over all valid joint association probabilities n
tη as:  
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where the individual joint association probability ( )t
n
tp :0z

~
λ  

could be further calculated as: 
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where DP  denotes the probability of detection, FP  denotes 

the probability of false alarm. σ  is the number of false 

alarm. ( )1:0, zz −t
n

tjkp  is the predictive likelihood for the 



thj  measurement using the information from the thk target 

at the thn  node and is expressed as: 

 

( ) ( ) ( ) tkttktk
n
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n
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We assume that the predictive likelihood is independent 

over the sensing nodes, as well as over the individual 
measurements at each sensing nodes. 

For more details of the above association probabilities 

calculations, readers may refer to [8]. 

 
B. The SMC Implementation of JPDAF 

For the th−k  target, we assume that there is a set of 

samples { } sN

i

i
tk

i
tk 11,1,

,x
=−− ω approximating the posterior 

distribution ( )1:11, zx −− ttkkp at the previous time step 1−t . 

At the current time step t , the new samples for the target 

state are generated from transition prior: 
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Then the predictive likelihood in (13) can be 

straightforwardly approximated [2], [7], [10]: 
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i
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i
Tp ,, xz  in both Equation (10) and (15) could be 

computed according to Equation (6). 

By substituting Equation (15) into (12), we can get the 
approximations for the valid joint association probabilities. 

Then these joint association probabilities could be fed into 

Equation (11) to compute the marginal association 

probabilities.  And in turn, we can approximate the target 

likelihood by using Equation (10). Finally, this target 

likelihood is used to set the new weights of particles:  
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So finally we get a new sample set { } sN

i

i
tk

i
tk 1,,
,x

=
ω that 

approximates the posterior distribution ( )ttkkp :0, zx at 

current time step. The SMC implementation of JPDAF is 
summarized in Algorithm 1. 
 

V. DISTRIBUTIVE SMC IMPLEMNETED JPDAF 

We partition the whole sensor field into smaller regions 

and in each smaller region, a group of sensor nodes form a 

sensor cluster [10]. When a leader node detects the 
approaching targets, it collects measurements from its 

neighboring sensing nodes and runs JPDAF to estimate the 

target’s states. When the target moves out of current sensor 

node cluster, the leader node propagates its last estimation 

results, e.g. the posterior distribution ( )kkp :0zx  to the next 

leader node.   

However, rather than propagating particles or weights (up 

to 1000 particles per target in the simulation), the posterior 

distribution can be propagated through the transmission of 

lower dimensional Gaussian mixture model (GMM): 
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where G  is the number of mixing components, and gα  are 

the mixing weights and ( )gg
N P,µ are Gaussian density. 

With GMM approximation, for each target we only need to 
transmit 15 parameters. The distributive SMC-JPDAF is 

summarized in Algorithm 2. 

                       
                           Algorithm 1 SMC-JPDAF 
      

     A.  At 0=t , for Kk ,...,2,1=  and sNi ,...,1=  draw particles 

         ( )0,x~x
0, kk

i p
k

. 

     B.  For Tt ...,1= , do the following: 

1. Sample ( )i
tk

i
tk

i
tk

p
1,,,

xx~x −   

2. For Kk ,...,2,1= , sNi ,...,1= ,
n

Mj ,...,2,1= , 

         compute the predictive weights – Equation (15).        

3. For sNi ,...,2,1= , enumerate all the valid joint 

         target to measurement association hypotheses at the     

         thn sensing node. 

4. For sNi ,...,2,1= , compute all the joint association 

posterior probability – Equation (12). 

5. For Kk ,...,2,1= , sNi ,...,2,1= ,
n

Mj ,...,2,1= ,               

compute the marginal association probability – Equation (11). 

6. For Kk ,...,2,1= and sNi ,...,1=  compute the 

         target likelihood – Equation (10).        

7. For Kk ,...,2,1= and sNi ,...,1=  compute and 

         normalize the particle weights – Equation (16). 

 

       
 

Algorithm 2 Distributive SMC-JPDAF 

         

         1.  The initial leader node a  does the following: 

            1.1 for Kk ,...,2,1= and sNi ,...,1=  draw particle 

                  ( )0,x~x
0, kk

i p
k

. 

            1.2. Select sensing nodes and get their measurements. 

            1.3. Calculate the posterior  ( )kkp :0zx  by Algorithm 1. 

            1.4. Check if the targets have moved to the next region. If “yes”,  

                   do 1.5 and 1.6; else repeat 1.2. and 1.3.    

            1.5. Compute the GMM of posterior ( )kkp :0zx  . 

            1.6. Forward GMM parameters ( )ggg
P,, µα to leader  

                   node b .             

        2.  The leader node b does the following: 

            2.1. Redraw posterior PDF by sampling the  

                  GMM ( )ggg
P,, µα . 

            2.2. ~ 2.5. Same as 1.2. ~ 1.5 

            2.6. Forward GMM parameters ( )ggg P,, µα to leader  

                   node c . 

        3.  The leader node c  repeats the steps as above. 

             …  

 



VI. SIMULATION 

Figure 2 shows the simulation set-up, including the sensor 

field, ground truth (two vehicles travel from north-east to 

south-west), and the locations of 20 sensor nodes which are 

organized in two cliques (clusters). 

       Figure 2. Simulation set-up for two targets tracking in a WSN 

 

The target state vector at time t  is tx  which is 

composed of includes the target positions x and y , and the 

target velocities xv and yv . We use a nearly constant velocity 

model to model the dynamics of the targets [6], [10]. At 

each time step, the acoustic energy measurements at the 

sensor node n  are obtained by Equation (6) in which the 

measurement noise nε  is Gaussian with zero mean and 

variance 5.0R = , and S is set to 5000. We use 1000 particles 

per target in simulation. In the simulation, we assume there 

is no clutter and the detection rate is set to 95% for all 

sensing nodes. 

We repeated 50 runs for the developed algorithms with 

the same ground truth. The root mean square error (RMSE) 

is used to compare the tracking accuracy of the different 

algorithm.  Figure 3 shows the tracking results that are 

averaged over 50 runs. Figure 4 shows the RMSE values of 

50 runs for target 1 and target 2 respectively. From Figures 

3 and 4, it can be seen that the distributive SMC-JPDAF 

tracking algorithm can attain very promising tracking 

accuracy.  It also significantly conserves communication 

bandwidth by adopting GMM approximation. Furthermore, 

the computation cost of the distributive SMC-JPDAF is 

moderate. 

 

Figure 3. Estimation results of two targets 

 

 

 

                              Figure 4 RMSE of target 1 and target 2 

 

 

VII. CONCLUSION 

 

In this paper, we report the development of the 

distributive SMC implemented JPDAF for multi- target 

tracking in wireless sensor networks. The simulation results 

show that the developed algorithm could attain accurate 

tracking accuracy at lower communication cost. 
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