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ABSTRACT

Nonlinear distributed tracking for a single target is addressed
in this paper. This problem consists of tracking a target of in-
terest while moving the sensors to 'best' positions according
to an critera appropriate for the problem. Both target track-
ing and manoeuvring of sensors are carried out jointly using a
novel Sequential Monte Carlo technique. The proposed tech-
nique is illustrated using a bearing-only problem and simu-
lations are used to compare the performance of the proposed
technique with distributed tracking using fixed sensors.

1. INTRODUCTION

Sensors are valuable resources, making it imperative that they
are deployed in a manner that maximises their effectiveness.
This requires the determination of the optimal location and
motion of the sensor swarm within the environment under
consideration. As explained in [1], ideal sensor placement
is a problem exhibiting non-linear combinatorial properties
since the position of each individual sensor in the set of avail-
able sensors will affect the optimal placement of the other
members of the set. Therefore, for a even a small number of
sensors it is computationally onerous to exhaustively search
all possible solutions for the optimum and the problem be-
comes one of search-based optimisation. Reference [1] re-
ports that Genetic Algorithms (GA) are the most efficient op-
timisation techniques compared with other methods such as
random search, dynamic hill climbing and simulated anneal-
ing. But the target tracking and the sensor location optimisa-
tion are done separately. Karan et al. [2] consider the problem
of tracking with multiple asynchronous drifting sonobuoys
using an Extended Kalman Filter (EKF). Marrs [3] solves the
above problem using a sequential Monte Carlo method.

This paper is organised as follows: Section 2 presents the
system model used in this paper and section 3 reviews briefly
the Sequential Monte Carlo on which the proposed algorithm
is based on. Section 4 introduces the proposed distributed
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tracking algorithm and the performace of the proposed algor-
tihm is illustrated in section 5.

2. SYSTEM MODEL

In this paper, we are concerned with the problem of perform-
ing on-line state estimation for multi-dimensional signals that
can be modelled using Markovian state-space models that are
nonlinear and non-Gaussian. The unobserved global state
{xt; t C N} is modelled as a Markov process with initial
distribution p(xo) and transition probability p(xt xt 1). The
observations {Yt; t C N} are assumed to be conditionally
independent (in time) given the process xt and of marginal
distribution P(Yt xt). We denote by Xt {x0,... xt} and
by Yt {Yo,.... Yt }, respectively, the system state and the
observations up to time t. The measurements Yt are recorded
by K sensors, and we use yk to denote the subset of observa-
tions made by the k-th sensor.

This work jointly estimates the sensor locations while track-
ing. Although the algorithm developed is valid for wider
range of applications, we concentrate our investigation on the
problem of tracking a manoeuvaring target in a 2-D plane.
The manoeuvring target motion is modelled using a Markov
jump system of the following form:

Xt = f (xt 1,Ut,Vt) (1)

Here f (.) is the system function and ut is a discrete time in-
dex indicating different modes of the target. The augmented
state vector of 2-D positions of the target and sensors is xt and
vt is the noise term. The proposed algorithm is illustrated for
the bearing only tracking problem. This problem assumes that
we have nodes which are capable of measuring the angle of
the target's position relative to the sensor node t.

3. PARTICLE FILTER ALGORITHM

Sequential Monte Carlo techniques also known as particle fil-
tering and condensation algorithm have been been described
in length in the literature [4]. In what follows, we give a sum-
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mary of the framework and conceptual ideas behind the se-
quential Monte Carlo techniques.

For tracking the target of interest, the posterior state dis-
tribution p(xt Zt), also known as filtering distribution has to
be calculated at each time step. In Bayesian sequential esti-
mation the filtering distribution can be computed according to
the two step recursion:

prediction step

p(xt Yt_j) = xiPxt_-)p(xt_ 1Yt_ )dxt_1, (2)

and
filtering step

P(Xt IYt) cx P(Yt lXtWP(t IYt- 1), (3)

where the prediction step follows from marginalisation, and
the new filtering distribution is obtained through a direct ap-
plication of the Bayes' rule. This recursion requires the spec-
ification of a dynamic model describing the state evolution,
p(xt xt- 1) and a model that gives the likelihood of any state
in the light of the current observation, P(Yt xt). The recur-
sion is initialised with some distribution for the initial state
p(xo). Once the sequence of filtering distribution is known,
point estimates of the state can be obtained according to any
appropriate function, leading for example to the Maximum a
Posteriori (MAP) estimate, arg maxxt p(xt Yt), and to the
Minimum Mean Square Error (MMSE) estimate,
fxtP(x Yt)dxt.

The basic idea behind the particle filters is very simple.
Starting with a weighted set of samples {x(i), w(i)J} l ap-
proximately distributed according to p(xt- 1 Yt- 1), new sam-
ples are generated from a suitably chosen proposal distribu-
tion, which may depend on the previous state and the new

measurements, i.e., x ( - qp (xt x i Yt), 1,. . ., N.
To maintain a consistent sample the new importance weights
are set to

() ( )p( lti) p((i) It(i))
Wtc1(i qp(xt t (4)

Up (,;Vt XMt ,Y

t N i = 1. The new particle set {X Wi)}IN 1 iswith z7=1 tt t
then approximately distributed according to p(Xt Yk). The
performance of the particle filter depends on the quality of the
proposal distribution. In this paper, we use the state evolution
model p(xt xt- 1) as proposal distribution and this makes the
new importance weights in (4) become proportional to the
corresponding particle likelihoods. This implementation of
the sequential Monte Carlo method corresponds to the boot-
strap filter as proposed in [5]. This leads to a very simple
algorithm, requiring only the ability to simulate from the evo-
lution model and to evaluate the likelihood.

4. DISTRIBUTED TRACKING ALGORITHM FOR
MANEOUVARABLE SENSORS

In this section, we introduce a distributed tracking algorithm
for maneovrable sensors. Specifically, this algorithm provides
the Bayesian optimal target locations while maneouvring the
sensors to 'best' positions. The cost involved in manevouring
is based on physical constraints as well as constraints on cost
and resource consumption. This cost can computed using in-
formation theoretic measures such statistical entropy or using
simpler measures such as Mahalanobis or Eulidean measures.
The entropy-based definition, while mathematically precise,
is difficult to compute in practice since we need to have the
measurement before deciding how useful the measurement is.
A more practical alternative is to estimate the usefulness of a
measurement based only on characteristics of a sensor such as
its location or sensing modality. Such a distance measure can
be obtained using the Mahalnobis distance, a distance mea-
sure normalised by the uncertainty covariance. This gives a
statistical distance measure between a sensor node and the tar-
get being tracked. In [6], similar distance measures are used
to solve the selecting the useful set of sensors out of all avail-
able sensors.

The algorithm developed in this paper assumes a semi-
distributed architecture with feedback. For simplicity, in this
paper we assume that the number of sensors is fixed (equal
to K) and the distributed processing is performed according
to known order. Communication is required only between
neighbouring sensors and between the last and the first sen-
sors. Processing at any arbitrary time t starts from sensor
1 and then sequentially repeated for each subsequent sensors.
The sensor K contains the final results of distributed tracking.
But as shown in the simulation section, due to the feedback of
sensor estimates, the variation in the accuracy of target posi-
tion estimates is quite small (except between first and remain-
ing sensors). Therefore, final estimates can be obtained from
any sensor other than the first one. The posterior distriubtion
at sensor K at time t -1 serves as the prior for the sensor 1
at time t.

Let the state vector at time t is defined as Xt [(tx) gt']
where gt and xo are the sensor locations and the target po-
sition respectively. It is assumed that the initial locations of
sensors are distributed according to AV(go, or2). Here, go is
the initial sensor locations and o2 is the associated variance.
Then the algorithm is started with particle filtering in the node
1. The particles representing the predictive distribution at the
node 1 is given by (Tilde is used to denote the predictive sam-
ples):

t f t-1 ,U)
gl(i) = gl(i) + V(i);9t gt-i + V

1...,N

(5)

where X K(i)O are the posterior target samples of sensor K
at previoustime step, used as prior1for this node and vti)at previous time step, used as prior for this node and v(i
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U[-ms, ims]. The ms is the maximum speed of sensor (or a
constant proportional to the maximum speed).

Next, the update step of the particle filtering is perfor-
mated at the node. The update step is performed in two steps:
one for the target state vector and the second one for the
state vector representing the sensor location. In the first up-
date step, the posterior samples at time t is obtained from
resampling from particles (Kl(i0) i =1, , N. The re-
sult of the resampling is the set of particles approximating
the distribution of target trajectory at sensor 1 (denoted as

(Xt t°)i=l... N):

The following table explains the complete algorithm for
the sensor k:

Table 1. PROPOSED DISTRIBUTED PARTICLE FILTER

- Draw Rk [(xik(i)°)' gk(i)]' from the equation (5)
if k = 1 or else from the equation (8) for i = 1: N.

- Assign the particle, (xVi)°) a weight according to the
section 3 and resample for i = 1: N.

- Assign the particle, g(i) a weight according to the (7)
and obtain the resampled particles for i = 1: N.

- Transmit the resampled particles to the sensor 1 if
k = K or else transmit to the sensor k + 1.

These posteriori particles representing the target trajec-
tory is used to calculate the likelihood weights in the second
update step for the sensor state vector. For example, if the
sensors are to be positioned such that the distance between a
sensor and the target and the distance between two sensors in
the transmission link (This reduces the required transmission
power and thereby providing a longer battery life) are simulta-
neously to be minimised, then the corresponding cost function
can be evaluted as follows. If S1 = E[x1(K)1 is taken as the
target postion (calculated from the first resampling step) and
g2 is the mean position of the sensor 2 (Sensor 1 only trans-
mits to sensor 2), then the instantaneous cost corresponding
to particle i at sensor 1 is given by,

@( 1X(°) x) _(g (i) _Siy':-l(gi(i) _Si)
- _21g1(i)(gl(i) _2).

where E is the estimated covariance of the target position and
a is a weight which gives importance to individual costs. This
instantaneous cost is used as the likelihood weight (after suit-
able normalisation) in the resampling step for the particles
corresponding to the sensor location. This provides the pos-
terior particles, g1(i) according to the likelihood weight given
by (7). This completes the processing in the sensor 1.

In the subsequent sensors (i.e., k = 2,... , K), the priors
for the state vector is obtained from the previous sensors (k
1,... K -1) as shown below:

Rk(i)O
Xt

k (i)
gt

(x -l(i)O)
k(i) + V(i);

gt- 1 Vt

These particles are used in the update step and it is is similar
to the one in the sensor 1 for both target and sensor compo-

nents of the state vector. It is to be noted that the ordering of
sensors is arbitrary and the communication links are required
only between the adjacent sensors and betwen the last one and
the first one. As the communications of samples representing
any distribution is bandwidth-intensive, any low-cost imple-
mentation of distributed fusion as proposed in [7], can be used
to reduce the huge communciaton overhead.

5. SIMULATION RESULTS

The proposed algorithm is illustrated with simulations for the
bearing-only tracking problem. Sensor manoeuvring is based
on the cost criteria (7). Simulations are also conducted for
Sequential Monte Carlo based tracking for fixed sensor sys-
tems. The manoeuvaring system is simulated as explained
in [8]. All simulations assume the use of four sensors (K).
Initially, these four sensors are located at positions, (20,20),
(20,-20), (-20,-20) and (-20, 20). For the fixed sensor case, the
sensors are permanently at these locations, denoted as node 1,
2, 3 and 4 respectively. Simulations are repeated for ten dif-
ferent target trajectories for a time duration of 1500 units. The
performance criterion used is the average RMSE (Root Mean
Square Error). This is calculated at each sensor by averaging
the RMSE for the ten target trajectories.

Figure 1 shows the simulation results for the average RMSE
at four sensors (a = 0.9). As seen here, because of feedback
of information from previous sensors, the RMSE performace
improves in the second node. But the improvements in subse-
quent nodes are minimal (Note that RMSE curves for sensors
2, 3 and 4 are closely spaced). Figure 2 shows the simula-
tion results for the average RMSE for both fixed and manoeu-
vrable cases (a = 1). As seen here, in the fixed case, the
tracking is lost after the initial period while in the manoeu-
vrable case, the distributed tracker closely follows the trajec-
tory of the target. The superior performance of the proposed
algorithm is further illustrated by considering the value of the
RMSE which is very small (less than 2m). It should be noted
that the RMSE study explained above is for ten trajectories.
Figure 3 shows the tracking performance for one such tra-
jectory. This figure shows the estimated trajectories from ma-
noeuvrable and fixed distributed trackers and the actual trajec-
tories. As seen here, the manoeuvrable tracker closely follows
the path of the target while the tracker with the fixed nodes
lose the track after the target makes a sudden turn. One rea-
son for the superior estimation performance of the proposed
tracker is that as the sensor is very close to the target, the

N

1: 6(xl(o) xi(i)o)
t t

i=l
P(xlmo 1 y -1) --

t .yt . t

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on January 23, 2009 at 05:44 from IEEE Xplore.  Restrictions apply.



250

Actual Trajectory
* Estimated - Proposed

200 Estimated - Fixed sensors

150
E

o AlC: 100

- 50

0 ,

-50_
-50

Time (x 30)

Fig. 1. Average RMSE at four sensor nodes

bearing-only measurements have less uncertainty. The more
accurate measurements thus improve the estimation accuracy.
Sensor trajectories shown in figure 4 shows that four sensors
closely follow the target trajectory as constrained by the cost
function.

Node 4 (manoeuvrable)
Node 4 (fixed)

0 50 100 150 200 250 300 350 400
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Fig. 3. Actual trajectory and estimated trajectories
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Fig. 4. Sensor trajectories
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Fig. 2. RMSE at the sensor node 4 for both manoeuvrable and
fixed cases
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