471,814 research outputs found

    Path Recognition with DTW in a Distributed Environment

    Get PDF
    The Internet of Things is a concept, where various devices are connected in a network and data is exchanged between them. With the help of Internet of Things applications, it is possible to access sensors remotely to collect data from the physical world. The collected data contains potential knowledge, which could be revealed by applying machine learning techniques. Due to the rapid development of Internet of Things applications, the amount of collected data increases enormously. In order to perform computations on large datasets, distributed computing technologies are used. Recognizing people’s movements is a popular topic in the context of the Internet of Things. Movement patterns are usually sequential and continuous, and can therefore be encoded in the form of time series. Since the Dynamic-Time-Warping (DTW) is an established algorithm for processing time series data, it is chosen as a similarity measure for different movement patterns. Moreover, based on the DTW results, the movements are classified. In this thesis, we provide an implementation for the recognition of movement patterns. The prototype is built on Apache Spark and Apache Hadoop and uses their distributed computation possibilities. In an experiment, data from probands is collected and evaluated. Finally, the algorithm performance and accuracy is measured

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Human activity recognition for static and dynamic activity using convolutional neural network

    Get PDF
    Evaluated activity as a detail of the human physical movement has become a leading subject for researchers. Activity recognition application is utilized in several areas, such as living, health, game, medical, rehabilitation, and other smart home system applications. An accelerometer was popular sensors to recognize the activity, as well as a gyroscope, which can be embedded in a smartphone. Signal was generated from the accelerometer as a time-series data is an actual approach like a human actifvity pattern. Motion data have acquired in 30 volunteers. Dynamic actives (walking, walking upstairs, walking downstairs) as DA and static actives (laying, standing, sitting) as SA were collected from volunteers. SA and DA it's a challenging problem with the different signal patterns, SA signals coincide between activities but with a clear threshold, otherwise the DA signal is clearly distributed but with an adjacent upper threshold. The proposed network structure achieves a significant performance with the best overall accuracy of 97%. The result indicated the ability of the model for human activity recognition purposes

    Towards model evaluation and identification using Self-Organizing Maps

    Get PDF
    The reduction of information contained in model time series through the use of aggregating statistical performance measures is very high compared to the amount of information that one would like to draw from it for model identification and calibration purposes. It has been readily shown that this loss imposes important limitations on model identification and -diagnostics and thus constitutes an element of the overall model uncertainty. In this contribution we present an approach using a Self-Organizing Map (SOM) to circumvent the identifiability problem induced by the low discriminatory power of aggregating performance measures. Instead, a Self-Organizing Map is used to differentiate the spectrum of model realizations, obtained from Monte-Carlo simulations with a distributed conceptual watershed model, based on the recognition of different patterns in time series. Further, the SOM is used instead of a classical optimization algorithm to identify those model realizations among the Monte-Carlo simulation results that most closely approximate the pattern of the measured discharge time series. The results are analyzed and compared with the manually calibrated model as well as with the results of the Shuffled Complex Evolution algorithm (SCE-UA). In our study the latter slightly outperformed the SOM results. The SOM method, however, yields a set of equivalent model parameterizations and therefore also allows for confining the parameter space to a region that closely represents a measured data set. This particular feature renders the SOM potentially useful for future model identification applications

    Human activity recognition for static and dynamic activity using convolutional neural network

    Get PDF
    Evaluated activity as a detail of the human physical movement has become a leading subject for researchers. Activity recognition application is utilized in several areas, such as living, health, game, medical, rehabilitation, and other smart home system applications. An accelerometer was popular sensors to recognize the activity, as well as a gyroscope, which can be embedded in a smartphone. Signal was generated from the accelerometer as a time-series data is an actual approach like a human actifvity pattern. Motion data have acquired in 30 volunteers. Dynamic actives (walking, walking upstairs, walking downstairs) as DA and static actives (laying, standing, sitting) as SA were collected from volunteers. SA and DA it's a challenging problem with the different signal patterns, SA signals coincide between activities but with a clear threshold, otherwise the DA signal is clearly distributed but with an adjacent upper threshold. The proposed network structure achieves a significant performance with the best overall accuracy of 97%. The result indicated the ability of the model for human activity recognition purposes
    • …
    corecore