46 research outputs found

    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (ACCEPTED) 1 An Energy-Efficient Uncoordinated Cooperative Scheme with Uncertain Relay Distribution Intensity

    Get PDF
    Abstract-Due to signal fading and user mobility in wireless networks, quality-of-service (QoS) provisioning for wireless services becomes more challenging. As a promising technique, cooperative communications make use of the broadcasting nature of wireless medium to facilitate data transmission, and thereby reduce energy consumption. However, in many studies on wireless cooperative diversity, it is often assumed that the number of relays or the relay distribution intensity is known a priori. In this paper, we relax such assumption and propose an algorithm to estimate the relay intensity for a backoff-based cooperative scheme, where the relays are distributed as a homogeneous Poisson point process (PPP). It is proved that the algorithm can converge to an optimal solution with the minimum estimation error. Based on the estimated relay intensity, we further investigate a distributed energy saving strategy, which selectively turns off some relays to reduce energy consumption while maintaining the required transmission success probability. The performance of the proposed cooperative scheme is analytically evaluated with respect to the collision probability. The numerical and simulation results demonstrate the high accuracy and efficiency of the intensity estimation algorithm and also validate the theoretical analysis. Moreover, the proposed cooperative scheme exhibits significant energy saving and satisfactory transmission performance, which offers a good match to accommodate green communications in wireless networks. Index Terms-Cooperative wireless networks, distributed relaying, intensity estimation, energy efficiency

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Full-duplex wireless communications: challenges, solutions and future research directions

    No full text
    The family of conventional half-duplex (HD) wireless systems relied on transmitting and receiving in different time-slots or frequency sub-bands. Hence the wireless research community aspires to conceive full-duplex (FD) operation for supporting concurrent transmission and reception in a single time/frequency channel, which would improve the attainable spectral efficiency by a factor of two. The main challenge encountered in implementing an FD wireless device is the large power difference between the self-interference (SI) imposed by the device’s own transmissions and the signal of interest received from a remote source. In this survey, we present a comprehensive list of the potential FD techniques and highlight their pros and cons. We classify the SI cancellation techniques into three categories, namely passive suppression, analog cancellation and digital cancellation, with the advantages and disadvantages of each technique compared. Specifically, we analyse the main impairments (e.g. phase noise, power amplifier nonlinearity as well as in-phase and quadrature-phase (I/Q) imbalance, etc.) that degrading the SI cancellation. We then discuss the FD based Media Access Control (MAC)-layer protocol design for the sake of addressing some of the critical issues, such as the problem of hidden terminals, the resultant end-to-end delay and the high packet loss ratio (PLR) due to network congestion. After elaborating on a variety of physical/MAC-layer techniques, we discuss potential solutions conceived for meeting the challenges imposed by the aforementioned techniques. Furthermore, we also discuss a range of critical issues related to the implementation, performance enhancement and optimization of FD systems, including important topics such as hybrid FD/HD scheme, optimal relay selection and optimal power allocation, etc. Finally, a variety of new directions and open problems associated with FD technology are pointed out. Our hope is that this treatise will stimulate future research efforts in the emerging field of FD communication

    무선랜 비디오 멀티캐스트의 문제 발견 및 성능 향상 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 최성현.Video multicast, streaming real-time videos via multicast, over wireless local area network (WLAN) has been considered a promising solution to share common venue-specific videos. By virtue of the nature of the wireless broadcast medium, video multicast basically enables scale-free video delivery, i.e., it can deliver a common video with the fixed amount of wireless resource regardless of the number of receivers. However, video multicast has not been widely enjoyed in our lives due to three major challenges: (1) power saving-related problem, (2) low reliability and efficiency, and (3) limited coverage. In this dissertation, we consider three research topics, i.e., (1) identification of practical issues with multicast power saving, (2) physical (PHY) rate and forward erasure correction code (FEC) rate adaptation over a single-hop network, and (3) multi-hop multicast, which deal with the three major challenges, respectively. Firstly, video multicast needs to be reliably delivered to power-saving stations, given that many portable devices are battery-powered. Accordingly, we investigate the impact of multicast power saving, and address two practical issues related with the multicast power saving. From the measurement with several commercial WLAN devices, we observe that many devices are not standard compliant, thus making video multicast performance severely degraded. We categorize such standard incompliant malfunctions that can result in significant packet losses. We also figure out a coexistence problem between video multicast and voice over Internet protocol (VoIP) when video receivers runs in power saving mode (PSM). The standard-compliant power save delivery of multicast deteriorates the VoIP performance in the same WLAN. We analyze the VoIP packet losses due to the coexistence problem, and propose a new power save delivery scheme to resolve the problem. We further implement the proposed scheme with an open source device driver, and our measurement results demonstrate that the proposed scheme significantly enhances the VoIP performance without sacrificing the video multicast performance. Second, multi-PHY rate FEC-applied wireless multicast enables reliable and efficient video multicast with intelligent selection of PHY rate and FEC rate. The optimal PHY/FEC rates depend on the cause of the packet losses. However, previous approaches select the PHY/FEC rates by considering only channel errors even when interference is also a major source of packet losses.We propose InFRA, an interference-aware PHY/FEC rate adaptation framework that (1) infers the cause of the packet losses based on received signal strength indicator (RSSI) and cyclic redundancy check (CRC) error notifications, and (2) determines the PHY/FEC rates based on the cause of packet losses. Our prototype implementation with off-the-shelf chipsets demonstrates that InFRA enhances the multicast delivery under various network scenarios. InFRA enables 2.3x and 1.8x more nodes to achieve a target video packet loss rate with a contention interferer and a hidden interferer, respectively, compared with the state-of-theart PHY/FEC rate adaptation scheme. To the best of our knowledge, InFRA is the first work to take the impact of interference into account for the PHY/FEC rate adaptation. Finally, collaborative relaying that enables selected receiver nodes to relay the received packets from source node to other nodes enhances service coverage, reliability, and efficiency of video multicast. The intelligent selection of sender nodes (source and relays) and their transmission parameters (PHY rate and the number of packets to send) is the key to optimize the performance. We propose EV-CAST, an interference and energy-aware video multicast system using collaborative relays, which entails online network management based on interference-aware link characterization, an algorithm for joint determination of sender nodes and transmission parameters, and polling-based relay protocol. In order to select most appropriate set of the relay nodes, EV-CAST considers interference, battery status, and spatial reuse, as well as other factors accumulated over last decades. Our prototype-based measurement results demonstrate that EV-CAST outperforms the state-of-the-art video multicast schemes. In summary, from Chapter 2 to Chapter 4, the aforementioned three pieces of the research work, i.e., identification of power saving-related practical issues, InFRA for interference-resilient single-hop multicast, and EV-CAST for efficient multi-hop multicast, will be presented, respectively.1 Introduction 1 1.1 Video Multicast over WLAN 1 1.2 Overview of Existing Approaches 4 1.2.1 Multicast Power Saving 4 1.2.2 Reliability and Efficiency Enhancement 4 1.2.3 Coverage Extension 5 1.3 Main Contributions 7 1.3.1 Practical Issues with Multicast Power Saving 7 1.3.2 Interference-aware PHY/FEC Rate Adaptation 8 1.3.3 Energy-aware Multi-hop Multicast 9 1.4 Organization of the Dissertation 10 2 Practical Issues with Multicast Power Saving 12 2.1 Introduction 12 2.2 Multicast & Power Management Operation in IEEE 802.11 14 2.3 Inter-operability Issue 15 2.3.1 Malfunctions of Commercial WLAN Devices 17 2.3.2 Performance Evaluation 20 2.4 Coexistence Problem of Video Multicast and VoIP 21 2.4.1 Problem Statement 21 2.4.2 Problem Identification: A Measurement Study 23 2.4.3 Packet Loss Analysis 27 2.4.4 Proposed Scheme 32 2.4.5 Performance Evaluation 33 2.5 Summary 37 3 InFRA: Interference-Aware PHY/FEC Rate Adaptation for Video Multicast over WLAN 39 3.1 Introduction 39 3.2 Related Work 42 3.2.1 Reliable Multicast Protocol 42 3.2.2 PHY/FEC rate adaptation for multicast service 44 3.2.3 Wireless Video Transmission 45 3.2.4 Wireless Loss Differentiation 46 3.3 Impact of Interference on Multi-rate FEC-applied Multicast 46 3.3.1 Measurement Setup 47 3.3.2 Measurement Results 47 3.4 InFRA: Interference-aware PHY/FEC Rate Adaptation Framework 49 3.4.1 Network Model and Objective 49 3.4.2 Overall Architecture 50 3.4.3 FEC Scheme 52 3.4.4 STA-side Operation 53 3.4.5 AP-side Operation 61 3.4.6 Practical Issues 62 3.5 Performance Evaluation 65 3.5.1 Measurement Setup 66 3.5.2 Small Scale Evaluation 67 3.5.3 Large Scale Evaluation 70 3.6 Summary 74 4 EV-CAST: Interference and Energy-aware Video Multicast Exploiting Collaborative Relays 75 4.1 Introduction 75 4.2 Factors for Sender Node and Transmission Parameter Selection 78 4.3 EV-CAST: Interference and Energy-aware Multicast Exploiting Collaborative Relays 80 4.3.1 Network Model and Objective 80 4.3.2 Overview 81 4.3.3 Network Management 81 4.3.4 Interference and Energy-aware Sender Nodes and Transmission Parameter Selection (INFER) Algorithm 87 4.3.5 Assignment, Polling, and Re-selection of Relays 93 4.3.6 Discussion 95 4.4 Evaluation 96 4.4.1 Measurement Setup 96 4.4.2 Micro-benchmark 98 4.4.3 Macro-benchmark 103 4.5 Related Work 105 4.5.1 Multicast Opportunistic Routing 105 4.5.2 Multicast over WLAN 106 4.6 Summary 106 5 Conclusion 108 5.1 Research Contributions 108 5.2 Future Research Directions 109 Abstract (In Korean) 121Docto

    Transparent Spectrum Co-Access in Cognitive Radio Networks

    Get PDF
    The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary user transmissions. This work exploits dirty paper coding to precode the cognitive radio channel utilizing the redundant information found in primary user relay networks. Subsequently, the secondary user is able to provide incentive to the primary user through increased SINR to encourage licensed spectrum sharing. Then a region of co-accessis formulated within which any secondary user can co-access the licensed channel transparently to the primary user. In addition, a Spectrum Co-Access Protocol (SCAP) is developed to provide secondary users with guaranteed channel capacity and while minimizing channel access times. The numerical results show that the SCAP protocol build on the DSCA architecture is able to reduce secondary user channel access times compared with opportunistic spectrum access and increased secondary user network throughput. Finally, we present a novel method for increasing the secondary user channel capacity through sequential dirty paper coding. By exploiting similar redundancy in secondary user multi-hop networks as in primary user relay networks, the secondary user channel capacity can be increased. As a result of our work in overlay spectrum sharing through secondary user channel precoding, we provide a compelling argument that the current trend towards opportunistic spectrum sharing needs to be reconsidered. This work asserts that limitations of opportunistic spectrum access to transparently provide primary users incentive and its detrimental effect on secondary user performance due to primary user activity are enough to motivate further study into utilizing channel precoding schemes. The success of cognitive radios and its adoption into federal regulator policy will rely on providing just this type of incentive

    Cross-Layer design and analysis of cooperative wireless networks relying on efficient coding techniques

    Get PDF
    2011/2012This thesis work aims at analysing the performance of efficient cooperative techniques and of smart antenna aided solutions in the context of wireless networks. Particularly, original contributions include a performance analysis of distributed coding techniques for the physical layer of communication systems, the design of practical efficient coding schemes that approach the analytic limiting bound, the cross-layer design of cooperative medium access control systems that incorporate and benefit from advanced physical layer techniques, the study of the performance of such solutions under realistic network assumptions, and, finally the design of access protocols where nodes are equipped with smart antenna systems.XXV Ciclo198
    corecore