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Abstract

With an expected annual doubling in mobile data volumes, wireless operators
are likely to face a major challenge in renewing and scaling their network
infrastructure to support the future demands. Since cellular technologies might
not be able to satisfy this demand single-handedly, local connectivity options
such as Wi-Fi hotspots are seen as a means for relieving the load on the cellular
networks. Smart phones and laptop/netbook computers are typically equipped
with both cellular and Wi-Fi connectivity options, which allows the user or
terminal to connect to Wi-Fi access points when available.

In addition to cellular and Wi-Fi connectivity, smart phones are typically
also equipped with Global Positioning System (GPS) receivers that enable out-
door localization. Further, cooperative network-based localization algorithms
that enable indoor localization are gaining interest in the research commu-
nity. This motivates the main topic of this thesis, which is to combine the
connectivity and localization topics and investigate how useful location based
network optimizations are for improving the user’s last hop connectivity. The
main focus is on analyzing the impact of inaccurate location information, user
mobility, measurement collection delays, and model parameter inaccuracies.

The first contribution in this thesis concerns the impact of realistic commu-
nication constraints on network-based localization. In this joint work, the con-
tribution is the modeling of the message exchanges necessary for centralized,
cooperative network-based localization, as well as imposing realistic network
constraints on these message flows. These constraints introduce additional
delays in the message exchanges, which have a significant impact on track-
ing performance of the localization algorithm compared to the ideal situation
where measurements are assumed to be instantaneously available.

Secondly, two-hop relaying is considered for improving throughput and
outage performance of downlink transmissions from a Wi-Fi hotspot to mo-
bile destination nodes. The main focus is on relay selection, i.e. determining
whether to use direct or relayed transmission and in the latter case, which
mobile relay node to use. Here, two schemes are investigated: the first uses
collected SNR measurements from all links, whereas the second uses collected
position measurements. The performance of the schemes is investigated in



terms of throughput performance in case of inaccurate input parameters, such
as inaccurate position information, missing or crude Non-Line Of Sight (NLOS)
information, and delayed measurements. Simulations have been used to inves-
tigate the performance of the schemes in different cases and the impact of
different sources of inaccuracies.

Thirdly, an extension to the two-hop relaying case is considered. This
extension is a model-based cross-layer optimization, which uses position infor-
mation to predict intra-system interference between different relay-destination
pairs and to adapt relay transmit power levels, which thereby enables simul-
taneous relay-destination transmissions. Simulation results have shown that a
significant throughput improvement is possible using this technique. In order
to estimate the achievable throughput performance of different configuration
choices, a distance dependent throughput model was developed.

Fourthly, location based algorithms for prediction and planning of han-
dovers between cellular and Wi-Fi networks is considered. The thesis focuses
on the single user case, where the mobile user’s device can connect to a cellular
network or one of many available Wi-Fi networks. A priori information regard-
ing the average achievable throughput for the different networks is assumed
to be available. An algorithm for determining the sequence of handovers that
leads to the maximum throughput within a fixed time horizon is proposed.
Also, a more efficient heuristic algorithm is proposed, and the performance of
these algorithms is compared to a simple hysteresis-based algorithm, an upper
bound reference algorithm, and a static algorithm that is always connected
using the cellular network.

In summary, this thesis has investigated the usefulness of location in-
formation for last hop route selection. The results have shown that while
location-based two-hop relaying can help to decrease the signaling overhead
and cope well with mobility, it requires a high-accuracy localization system as
well as approximate environmental knowledge in order to cope with NLOS sit-
uations. It is also shown how location information enables simultaneous relay-
destination transmissions through interference-awareness, which can further
increase throughput performance. Finally, location-based handover prediction
is shown to work well if the user’s movement trajectory is accurately esti-
mated. The proposed heuristic algorithm is feasible in terms of computational
complexity, and its performance is comparable to the optimal solution.



Dansk Resumé

Med en forventet årlig fordobling af datatraffik har mobilnetværksoperatørerne
en stor udfordring i sigte med at forny og opgradere deres netværksinfras-
trukturer for at kunne følge med fremtidige behov. Da mobilnetværkene
ikke nødvendigvis kan opfylde dette behov for datatraffik alene, kan lokale
forbindelser s̊asom Wi-Fi adgangspunkter udnyttes som aflastning af det mo-
bile netværk. Idet smart phones og bærbare computere typisk er udstyret med
forbindelsesteknologier til b̊ade mobilnetværk og Wi-Fi netværk, er det muligt
for brugeren at skifte til en tilgængelig lokal Wi-Fi forbindelse.

Udover forskellige forbindelsesmuligheder, har smart phones typisk ogs̊a
en Global Positioning System (GPS) modtager indbygget, hvilket muliggør
udendørs lokalisering. Desuden er der en stigende interesse for kooperative,
netværksbaserede lokaliseringsalgoritmer i forskningsmiljøet, der muliggør høj-
præcisions lokalisering indendøre. Dette motiverer hovedtemaet i denne afhan-
dling, som g̊ar ud p̊a at kombinere netværksforbindelses- og lokaliseringsemn-
erne, og undersøge hvor brugbare lokationsbaserede netværksoptimeringer er
til at forbedre brugerens sidste-hops netværksforbindelse. Hovedfokus er p̊a
at analysere p̊avirkningen af unøjagtigheder i lokationsinformation, brugerens
bevægelser, indsamling af m̊alinger og modelparameterunøjagtigheder.

Det første bidrag i afhandlingen omhandler betydningen af en realistisk
model af kommunikationen til netværksbaseret lokalisering. I dette samarbejde
best̊ar bidraget af en model af beskedudvekslingen som er nødvendig for cen-
traliseret, kooperativ lokalisering, s̊avel som indførslen af realistiske begræn-
sninger p̊a denne kommunikation. Disse begrænsninger medfører forsinkelser i
beskedudvekslingerne, som derved har en væsentlig betydning for ydelsen af de
betragtede lokaliseringsalgoritmer til sammenligning med den ideelle situation,
hvor det antages at m̊alinger er øjeblikkeligt tilgængelige.

Dernæst betragtes to-hop radio-relæer som en metode til at forbedre over-
førselshastigheden og reducere udfald for datatransmissioner fra et Wi-Fi ad-
gangspunkt til en bevægelig destinationsenhed. Hovedfokus er p̊a udvælgelsen
af relæer, dvs. at afgøre om en transmission skal foreg̊a direkte eller via et
relæ og i s̊a fald hvilket relæ der skal anvendes. Her undersøges to metoder:
den første benytter indsamlede SNR m̊alinger fra alle forbindelser, hvorimod



den anden metode anvender indsamlet lokationsinformation. Ydelsen af de
to metoder er blevet undersøgt i forhold til den opn̊aelige overførselshastig-
hed i tilfælde af unøjagtige input-parametre s̊asom lokationsinformation, util-
strækkelig information om forhindringer og forsinkede m̊alinger. Simuleringer
er blevet anvendt til at undersøge ydelsen af de forskellige metoder i disse
situationer.

Det tredje bidrag best̊ar af en udvidelse af den ovennævnte metode baseret
p̊a radio-relæer. Denne udvidelse er en optimering p̊a tværs af protokol-
lag, som bruger lokationsinformation til at forudsige indbyrdes interferens
mellem forskellige relæ-destinationspar samt til at vælge relæer og at indstille
relæernes transmissionsstyrke. Dette muliggør samtidige relæ til destinations-
transmissioner. Simuleringsresultater har vist at denne teknik giver signifikante
forbedringer af overførselshastigheden. Til at estimere den mulige overførsels-
hastighed af forskellige mulige konfigurationer, blev der udviklet en afstand-
safhængig model af overførselshastigheden.

Fjerde og sidste bidrag er en lokationsbaseret algorithme til forudsigelse
og planlægning af overdragelse af netværksforbindelser i og imellem mobil-
netværk og lokale Wi-Fi netværk. Dette arbejde tager udgangspunkt i en
enkelt bruger, hvor denne mobile brugers netværksenhed er i stand til at
forbinde til mobilnetværket eller ét af mange tilgængelige Wi-Fi netværk.
Forh̊andsinformation om den forventet opn̊aelige overførselshastighed for de
forskellige netværk antages at være tilgængelig. P̊a baggrund af dette er
der blevet udviklet en algoritme til at finde den sekvens af netværksover-
dragelser indenfor en given tidshorisont, som resulterer i den højeste gen-
nemsnitsoverførselshastighed. Derudover foresl̊as ogs̊a en mere effektiv heuris-
tisk algoritme, og ydelsen af disse algoritmer sammenlignes med en simpel
hysterese-baseret algoritme, en reference-algoritme, der giver en øvre grænse
samt en statisk algoritme for tilfældet hvor kun det mobile netværk bruges.

I korte træk viser denne afhandling en undersøgelse af brugbarheden af loka-
tionsinformation for valg af sidste-hops netværksforbindelse. Resultater har
vist at mens lokationsbaserede to-hops relæ-teknikker giver et lavere signale-
rings-overhead og h̊andterer mobilitet godt, kræves der ogs̊a et højpræcisions
lokaliseringssystem samt ansl̊aet viden om det lokale miljø for at kunne h̊and-
tere f.eks. udsynsforhindringer. Det er ogs̊a blevet vist hvordan lokationsinfor-
mation kan muliggøre samtidige relæ-destinationstransmissioner gennem inter-
ferens-bevidsthed, hvilket yderligere forbedrer ydelsen. Endelig er det blevet
vist at lokationsbaseret netværksoverdragelse virker godt s̊afremt brugerens
bevægelser kan forudsiges præcist. Den foresl̊aede heuristiske algoritme er
beregningsmæssig let nok til at kunne afvikles online og dens ydelse er næsten
p̊a højde med den optimal algoritme.
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1
Introduction

Initially, the main research problem of investigating how well location infor-
mation can be used for network optimizations is introduced. This problem is
considered for the example use case of cellular offloading, specifically for han-
dover and relaying techniques, which are motivated from large and small scale
scenarios. Further the specific objectives of this work, which include studying
the impact of user mobility, collection delays, and inaccurate model param-
eters, are defined. Finally a summary of the specific contributions and the
corresponding publications is given.



2 Introduction

1.1 Motivation and Main Problem

Today’s mobile devices such as smart phones, tablets, netbooks and laptop
computers are typically equipped with multiple radio interfaces, which make
them able to connect to cellular 3G/4G networks and local Wi-Fi networks.
Besides having both cellular and Wi-Fi connectivity options, smart phones are
typically also equipped with a GPS receiver, which can provide the location
of the device with only a few meters of inaccuracy in outdoor scenarios where
the GPS receiver has a clear view to the sky.

The availability of location information has led to the emergence of many
location based services. Examples include car navigation, intelligent traffic
systems, store finder, location based advertisement, and augmented reality
applications. Such services and applications have requirements to the position
accuracy in the order of tens of meters down to or even below a few meters in
both outdoor and indoor scenarios. One challenge is however that in indoor
scenarios or urban canyons, where the GPS receiver does not have a clear view
to at least a handful of GPS satellites in the sky, localization via GPS can often
not provide the user with his or her location or the accuracy is insufficient.

This deficiency of traditional GPS-based systems has motivated an interest
in the research community for localization solutions that are able to exploit the
available wireless networks in mobile devices for localization. In the research
community, such localization solutions that exploit other technologies as well
as cooperation between mobile devices to provide high accuracy and cover-
age are being researched, for instance in the scope of the EU-funded research
project WHERE and its continuation WHERE2. In addition to providing ac-
curate location information, an emerging topic is the exploitation of location
information for network optimizations.

Growing Data Volumes

As mentioned above, mobile devices are able to connect to both cellular 3G/4G
networks and local Wi-Fi networks, thereby delivering ubiquitous connec-
tivity to online services such as email, browsing, social networking, down-
load/streaming of music or video, and others, where many of those can be
quite data-consuming. Also, since the market penetration of these mobile
devices increases and more users start taking advantage of the devices’ vari-
ous applications and services, the amount of mobile data being served by the
mobile operators’ networks is expected to grow quickly. According to [Cisco
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Systems, 2010], Cisco forecasts an increase in mobile data of 108% per year in
the period 2009− 2014.

If this future demand for mobile data needs to be satisfied primarily through
the mobile operators’ cellular networks, it is questionable if the mobile opera-
tors are able to scale their infrastructure and renew their technologies quickly
enough to keep up with the constantly rising demand. The biggest bottleneck
is here the last hop wireless link, since it depends on the deployment of base
stations and the capacity of the transmission technologies such as High-Speed
Packet Access (HSPA) and future Long-Term Evolution (LTE) variants. It is
therefore necessary to investigate more advanced network optimizations that
improve the last hop wireless connectivity and thereby help the mobile opera-
tors to satisfy the need for mobile data.

Initial Problem

In wireless networks the location of a user often has a big influence on the net-
work performance, for example in relation to coverage regions. For example
user movements are often the underlying triggers for network reconfigurations.
In traditional network optimizations it is often link quality measurements that
are used to trigger reconfigurations. Since location information relates directly
to the user’s location or movements, which are causing the need for reconfigu-
ration, it may in some cases be beneficial to use location information as input
for network optimizations. On the other hand, since location information does
not accurately describe the actual state of the wireless channel, there may be
cases where the location information does not provide any additional benefits.
One challenge to address in this work is therefore to investigate under which
circumstances location information based network optimizations are useful.

Network optimizations can be classified according to the time scales they
are operating on. On the small time scale, optimizations that work on for
example individual transmission symbols, are not well suited for exploiting lo-
cation information, since location information takes time to gather and process.
On large time scales that cover hours or days, optimizations such as expanding
core network capacity by renting leased lines to meet increased demands is also
not interesting since the dynamics of mobile users work on smaller time scales.
On the medium scale, which covers fractions of seconds to minutes, there is
a potential for location information to be useful for optimizing network func-
tionalities according to the dynamics of mobile users. Furthermore, in order
to exploit the advantage of location information over local link quality mea-
surements, which is the knowledge of the geographical relations of users, the
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considered network optimizations should focus on distributed systems where
this knowledge is exploited.

Seeing this delimitation in the light of the need for improved last hop
wireless connectivity, a promising focus area of this work is last hop route
selection. This targets the problem of determining the best configuration for
connecting a mobile user to the network operator’s infrastructure. Given the
mobile operator’s future challenge of meeting the costumers’ rising demand for
mobile data, this work is considering the example use case of cellular network
offloading for the study of location based network optimizations.

Cellular Network Off-loading

A solution that allows mobile operators to keep up with the demand would be
to extend their networks with Wi-Fi hotspots and allow users to connect to
these high-speed hotspots when in range. This would then move some of the
mobile data traffic to Wi-Fi network and thereby offload the cellular networks.
From the user’s point of view, this solution has several advantages. Since
cellular data plans are typically charged per MB or allow a certain amount
of mobile data each month, connecting to Wi-Fi hotspots when available will
allow the user to save on their mobile data plan.

Another important factor, which has an influence on the user experience,
is the number of users being served within each cell or by a Wi-Fi Access
Point (AP). Typically, the radius of a single cell in a cellular network ranges
from several hundreds of meters up to tens of kilometers. In comparison, the
coverage range of a Wi-Fi hotspot is typically below 100 meters. Since a cell
covers a much larger area than a Wi-Fi hotspot, the number of users sharing
the capacity within a cell is therefore much higher. As a result hereof, a Wi-Fi
connection will likely provide a higher throughput and lower latency for the
user applications than the cellular network.

In summary, off-loading the cellular networks using Wi-Fi networks is ad-
vantageous for both the mobile operators and the mobile users as it relieves the
stress on the operators’ networks and improves the throughput for the users.

The foreseen need for off-loading the cellular networks using Wi-Fi networks
and the ubiquitous availability of location information in mobile devices, has
lead to the main research question addressed in this thesis:

How well suited are location based network optimizations for
wireless last hop route selection in networks with mobile users?
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1.2 Scenarios

In the present work this main problem will be approached from two different
viewpoints: large and small scale.

On a large scale, as exemplified by the scenario in Figure 1.1, the availabil-
ity of different access networks motivates the investigation of location-based
handover algorithms that can determine when and where to use which access
network. The potential of such algorithms is shown in the two experimen-
tal performance comparisons of 3G and Wi-Fi in [Gass and Diot, 2010] and
[Deshpande et al., 2010]. From these it is clear that if a terminal is able to
know which throughput is achievable for each available network at specific lo-
cations, then the terminal could use the knowledge of its own location to decide
which network to handover to. The mapping of specific locations to achiev-
able network throughput, could be done through a central database, which is
populated by the operators, customers’ equipment by using applications such
as cellumap1, or by 3rd parties such as Google. Further, assuming that the
user’s movements can be predicted with high certainty for some time into the
future, network handovers could be planned and prepared in advance. The
user’s expected future movements could be known for example from a navi-
gation system, by learning the user’s usual routes, or by taking into account
road layouts. Since such a location based handover algorithm relies on location
information and movement prediction, the accuracy of the location informa-
tion and the accuracy of the movement prediction algorithms are determining
factors for the performance of the handover scheme.

On the small scale, when mobile users are connected to a single Wi-Fi access
point, e.g., for offloading, as exemplified in Figure 1.2, it is well known that
relaying techniques, where neighboring devices are used as relays can be used
to enhance overall performance as described in [Narayanan and Panwar, 2007].
Relaying is for example helpful in the case where nodes located far away from
the access point may be forced to use a low bit rate to achieve a reliable link,
as indicated in Figure 1.2, where the darkness of the circles around the access
point corresponds to different bit rates. By introducing relaying techniques,
nodes located between a transmitter and receiver pair can be exploited to
provide a multihop path with shorter links. The shorter links between nodes
may form a more reliable path to the destination node, which allows to increase
the bit rate and achieve a higher throughput, see for example [Zhu and Cao,
2006, Liu et al., 2007, Hu and Tham, 2010]. By improving the performance
within Wi-Fi hot spots, the cellular network can be offloaded more than if

1See www.cellumap.com.

www.cellumap.com
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WiFi AP

Cellular BS

Mobile user

Figure 1.1: Large scale scenario with ubiquitous cellular coverage and scat-
tered Wi-Fi access points. The two mobile users may potentially achieve a
higher throughput if they handover to the Wi-Fi networks, when in range.
The dash-dotted lines indicate possible movement trajectories.

relaying was not used. As these existing schemes rely on past measurements

WiFi AP

Mobile user

Figure 1.2: Small scale scenario considering only the users being served by a
single access point. The colored rings around the Wi-Fi access points represent
the coverage area for different bit rates. The dash-dotted lines indicate possible
movement trajectories.
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of link quality for relay selection, they do not work well in mobile settings
where nodes move around and measurements become outdated, as shown in
[Liu et al., 2007]. In such mobile settings, it may therefore be beneficial to
consider a location based approach for relay selection, as location information
can be used to estimate link qualities by accounting for the distance dependent
path loss. The actual quality of a link is also depending on other factors such
as multi-path fading or obstructions. This is not captured by a location based
approach, but it is captured for the measurement based approaches mentioned
above. However, if in mobile settings, the measurements become outdated too
often, it may be better to use up-to-date but less precise location information
instead. In order to determine when a location based scheme is preferable
over a measurement based scheme, a study that accounts for factors such as
collection delay, information inaccuracy, and node mobility is needed.

In two-hop relaying approaches, a relay-to-destination transmission, which
follows the AP-to-relay transmission, will typically take place quite far from
the nodes associated with the AP that are located on the opposite side of
the AP. This has been exploited in the CCMAC protocol described in [Hu
and Tham, 2010], where spatially separated uplink source-to-relay transmis-
sions are performed simultaneously, whereafter the relays finalize the two-hop
transmissions by transmitting to the AP one after another. Since this proto-
col uses past measurements to coordinate the relay selection and to determine
which transmissions can occur simultaneously, it uses a learning algorithm that
learns the best configuration over time. Again, mobility would be problematic
for this protocol, since it takes time for it to identify suitable relays and candi-
dates for simultaneous transmissions. In the same way as location information
can be used to estimate link quality via a path loss model, it can also be used
to predict interference, and would thus be useful for identifying suitable relays
and candidates for simultaneous transmissions. As for the location based relay
selection discussed above, it would be necessary to study how such a location
based scheme for simultaneous transmissions reacts to inaccurate information,
specifically inaccuracy location information.

A general prerequisite for the considered location based protocols, is the
provision of location information. As GPS based localization is not generally
usable, e.g., indoors or in urban canyons, it is assumed that a network based
localization system is responsible for providing location estimates. In order to
judge the performance of the considered protocols, a study of the achievable
localization accuracy for such a system in the considered Wi-Fi based scenarios
is necessary.
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1.3 Network Architecture

The network architecture considered in this thesis is shown in Figure 1.3. This
architecture includes the entities that are required for localization as well as
location based relaying and location based handover.

mobile user 2

Localization

server

GPS/Galileo
mobile user 1

Cellular WiFi

Operator A core network

MIIS
Database

MIP

router

MIP

router

Localization

server

Cellular WiFi

Operator B core network

MIIS
Database

MIP

router

MIP

router

subnet A-1 subnet A-2 subnet B-1 subnet B-2

Figure 1.3: Network architecture overview.

First and foremost, the figure shows that a mobile user is able to connect
to a mobile operator’s core network either via the base stations in the cellular
network or via Wi-Fi access points.

For localization, it is assumed that the network operator has a localiza-
tion server in its core network, which collects measurements that are used for
localization. These measurements could taken be from GPS or Galileo satel-
lites, or from communication links to cellular base stations or Wi-Fi access
points, or from an ad-hoc link to a cooperative mobile user. All these mea-
surements are collected in the localization server, and from the measurements
the localization server estimates the location of the mobile users using a suit-
able localization algorithm. The resulting location estimates can hereafter be
requested by whichever entity that needs them.

For location-based handover it is assumed that the IEEE 802.21 Media
Independent Handover (MIH) framework is used. This framework helps to
realize handovers between heterogeneous networks [Taniuchi et al., 2009]. The
protocol defines tools to exchange information, events, and commands to fa-
cilitate initiation and preparation of handovers, and requires only a device
driver for each type of media (e.g. Wi-Fi, UMTS, or LTE) that implements
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the MIH interface. In practice, the MIH functions are added as a layer 2.5
in the protocol stack, where layer 3 protocols are presented with new MIH
interfaces [Neves et al., 2009]. The IEEE 802.21 framework does not specify
mechanisms for executing handovers, but several have been proposed in the
literature [Neves et al., 2009][Yuliang et al., 2010][Lampropoulos et al., 2010]
and it is foreseen that the handover algorithms proposed in this thesis can be
used within this framework.

The core of MIH is the MIH Functions (MIHF) that is a logical entity
located between the media specific link layers and the MIH user, which rep-
resents layer 3 and above. As described in [Lampropoulos et al., 2010] the
MIHF can be located in both the mobile device and in a network entity, and
supports services for subscription and reception of link-related events through
the Media-Independent Event Service (MIES), execution of commands for con-
trolling link states through the Media-Independent Command Service (MICS),
and retrieval of information regarding available networks through the MIH In-
formation Server (MIIS). According to [Baek et al., 2008] the MIH framework
allows handovers to be triggered both from the mobile device or from the net-
work, depending on how the MIHFs are installed in the network. Regardless of
where the handover is triggered, the MIIS is needed in the core network. This
entity can be queried by other MIH entities to get information about available
networks for a certain geographic area, which allows for sophisticated handover
decisions. For the location based handover it is assumed that the MIIS has
access to a database containing information about the expected throughput
for the available cellular and Wi-Fi networks for any geographic location, as
this is needed for the location based handover algorithms. Such a database
could be made empirically from field-measurements as in [Deshpande et al.,
2010] or synthetically using for example ray tracing techniques.

Further, since a handover to another network will cause the IP address to
change, it is necessary to use Mobile IP (MIP) to ensure service continuity for
user applications [Perkins, 2002]. MIP adds extra functionality to the IP layer
(layer 3) which allows the mobile user to keep its IP address even when visiting
foreign networks. Whenever the mobile user is not in the home network (where
its IP address belongs) a foreign agent in the visiting network will forward the
traffic to and from a home agent in the home network, thereby allowing the
home IP address to be used.

The MIP functionality resides both in the user device and in the network
routers (as shown in Figure 1.3). The foreign agent and home agent roles are
filled by the MIP routers located in each network, depending on which network
the mobile device is associated with.
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The location based relaying functionality that is considered in this thesis,
resides within the Wi-Fi access points, since it only concerns the mobile devices
associated with that access point. For obtaining the location of the mobile
devices, the access point queries the localization server. When considering the
relaying functionality, the direct link between the two mobile users in Figure
1.3 represents a relay link.

1.4 Objectives

Based on the above problem definition and scenario descriptions, the core
problem of this work is to:

Investigate the benefit of using location information for relaying
and handover network optimizations as a means to improve the
last hop wireless connectivity of mobile users by exploiting available
Wi-Fi networks.

Notice that the overall objective is not to propose relaying and handover
protocols that are better than existing state of the art protocols, but rather to
study the benefits and drawbacks of using location information compared to
traditional schemes using link quality measurements.

Based on the core problem definition above, the objectives of this thesis
can be summarized as the following items:

Location based relaying Study the benefits and drawbacks of location based
relaying, compared to measurement based relaying for the small scale
scenario with mobile users around a Wi-Fi hotspot. The study should
especially focus on studying the impact of:

• node movements

• inaccurate location information

• measurement collection (e.g., delay and overhead)

• propagation model simplification, i.e., using path loss model for the
location based scheme

Further, since location information enables simple estimation of inter-
ference, the feasibility of an extended relaying scheme that allows si-
multaneous transmissions should by studied. Also here the impact of
inaccurate location information is essential.
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Location based handover Investigate methods for exploiting the prediction
power of location information in handover optimization, in order to al-
low offloading of cellular network by exploiting available Wi-Fi capac-
ity in hotspots. Prediction power means that a moving node’s future
movements can be predicted, with some level of certainty, from its past
movements. If the locations and transmission power of access networks
are known in advance, the availability of networks can be anticipated
and handovers can be planned in advance. The location based schemes
should be compared to traditional measurement based schemes. Being
dependent on location information and movement prediction, the impact
of inaccuracies in these parts should be studied.

Achievable localization accuracy Investigate the achievable accuracy of
cooperative network based localization systems, in order to realistically
assess the impact on the considered location based relaying and handover
schemes. Since cooperative localization requires the cooperating devices
to exchange measurements, an important aspect to include is the delay
caused by this distribution of measurements.

In summary, the objectives of this thesis can be visualized as in Figure
1.4. Here the four different aspects that are investigated for measurement and
location based network optimizations are depicted. A description of each of
these aspects, shown by the numbered circles, is given below:

Measurement 

collection

Measurement 

collection

Prediction
Network 

optimization

Localization Prediction

Estimation of 

network 

parameters

Network 

optimization

1
2

3
4

Location based:

Measurement based:

Figure 1.4: Overview of the main objectives of the analyses in the thesis.

1. Signaling overhead for measurement collection may be reduced by using
location information. Specifically, only selected link measurements are
needed vs. measurements of all links; or only N node locations are
required vs. N2 link measurements.

2. Better prediction of future connectivity options by exploiting a priori
information such as mobility models or environment knowledge.
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3. Exploitation of geometric relations to estimate outcome of complex situa-
tions may be possible for cases where many nodes/links are involved, and
where measuring is not possible/feasible due to too many combinations.

4. Quality of input information: The main focus of the thesis is to study
under which circumstances the location based approach results in best
input information?

1.5 Methodology

In the parts of this work where simulations are used, considerations are made
to choose an appropriate level of abstraction as well as the evaluating the
required effort of different approaches. Consequently, the simulation results
have been generated through a combination of ns-2 simulations and custom
matlab code. ns-2 has been used in the cases where realistic timing of 802.11 is
needed, whereas custom-built matlab simulations were used in the cases where
the level of detail in ns-2 was considered too high and a less detailed model
would suffice.

In relation to the performed simulations, focus has been on ensuring statis-
tically sound results. This has been achieved by setting the length of simula-
tions and the number of simulation runs so that the 95% confidence intervals
are non-overlapping for results that are concluded to be different.

1.6 Contributions

The overall contribution of this PhD work is the investigation of how suitable
location based network optimizations are for offloading cellular networks by
using Wi-Fi networks. Figure 1.5 gives a detailed overview of the individual
contributions and how they relate to the different thesis chapters.

The figure outlines the central components of this work. The consid-
ered network optimizations rely on obtaining measurements from the network,
which is symbolized by the measurement collection block. For the considered
location based algorithms, a localization system provides location information.
These inputs constitute the observed system state, from which the considered
optimization algorithms determine the most suitable configuration. In order to
evaluate the goodness of different configurations, the optimization algorithms
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Figure 1.5: Abstract system overview of thesis contributions.

rely on performance models to estimate the achieved system performance for
different configurations.

Table 1.1 presents an overview of the types of errors that are considered
for the different contribution chapters in the thesis.

Distance-dependent throughput model for Wi-Fi This throughput
model (TP model in figure) describes the expected achievable throughput be-
tween a transmitter and receiver in a Wi-Fi network, based on the path loss
between the nodes. The contribution consists of a formulation of the expected
link throughput as a function of received power, interference, bit error rate
and frame error rate. The throughput model, which is described in Chapter

Error types Ch3 Ch4 Ch5 Ch6 Ch7

node mobility X X X
measurement collection delay X X
small-scale fading X (BER

calc)
X
(SNR
var,
BER
calc)

X
(BER
calc)

X (TP
var,
BER
calc)

inaccurate prop. model par. X
interference X X
location accuracy X (out-

come)
X X X

movement prediction inaccuracy X

Table 1.1: Overview of which error types are considered in which chapters.
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3, is used as performance model for the location based network optimizations
considered in chapters 5, 6, and 7.

Realistic Communication Constraints for Localization This contribu-
tion is a study of how realistic communication constraints affect conventional
and cooperative localization and tracking algorithms. This contribution, which
is described in chapter 4, is a part of a joint work, and serves as a means to
understand the achievable location information accuracy of a realistic network
based localization system. For the cooperative localization, a group mobility
model is used to generate correlated user movements. The personal contribu-
tions consist of: i) developing the framework for how to approach the problem;
ii) an implementation of an ns-2 simulation model of the message exchanges
required to realize conventional and cooperative network-based localization al-
gorithms; and iii) an analysis of the message exchange timing in this simulation
model for various scenario parameters.

Location-based Relaying The contribution concerning relaying schemes
for centralized selection of mobile relays for two-hop relaying is presented in
Chapter 5. Initially, a conventional SNR-measurement based and a location
based relaying scheme are defined and compared. This includes implementa-
tion of ns-2 and matlab based simulation framework for evaluating the impact
of mobility and timing of measurement exchanges on relaying performance.
Further, since the location based scheme uses a path loss model to predict
performance, the impact of inaccurate path loss model parameters is inves-
tigated. In order to deal better with non line of sight situations, a simple
extended scheme which has LOS/NLOS information is evaluated.

Simultaneous Transmissions in Relaying This contribution, which is de-
scribed in Chapter 6, is an interference-aware extension of the location based
relaying scheme that increases the downlink throughput by allowing simultane-
ous relay-to-destination transmissions. The scheme is evaluated with respect
to the impact of inaccurate location information on the throughput gain ob-
tained by allowing simultaneous transmissions.

Handover Optimization This last contribution in Chapter 7 is related to
location based handover optimization in heterogeneous networks. The problem
of deciding when to handover between different available networks within a
fixed time horizon has been formulated as an optimization problem. Secondly,
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the optimal solution of the handover problem is outlined, assuming continuous
differentiability of the functions used to describe the expected throughput.
Also a heuristic algorithm, which is feasible for online use, is proposed. The
location based algorithms are evaluated numerically and compared to some
reference schemes, in order to determine the impact of node mobility, location
information inaccuracy, and movement prediction inaccuracy.

These contributions are presented in the following conference articles:

• Jimmy Jessen Nielsen, Tatiana K. Madsen, Hans-Peter Schwefel, Loca-
tion Assisted Handover Optimization for Heterogeneous Wireless Net-
works, European Wireless conference, Vienna, Austria, 2011

• Jimmy Jessen Nielsen, Tatiana K. Madsen, Hans-Peter Schwefel, Location-
based Relay Selection and Power Adaptation Enabling Simultaneous Trans-
missions, IEEE GLOBECOM, MCECN workshop, Miami, Florida, 2010

• Christian Mensing, Jimmy Jessen Nielsen, Centralized Cooperative Posi-
tioning and Tracking with Realistic Communications Constraints, WPNC,
Dresden, Germany, 2010

• Jimmy Jessen Nielsen, Tatiana K. Madsen, Hans-Peter Schwefel, Location-
based Mobile Relay Selection and Impact of Inaccurate Path Loss Model
Parameters, IEEEWireless Communications and Networking Conference
(WCNC), Sydney, Australia, 2010

• Jimmy Jessen Nielsen, Tatiana K. Madsen, Hans-Peter Schwefel, Mobility
Impact on Centralized Selection of Mobile Relays, IEEE Consumer Com-
munications and Networking Conference (CCNC), Las Vegas, Nevada,
2010

• Christian Mensing, Stephan Sand, Jimmy Jessen Nielsen, Benoit Denis,
Mickael Maman, Jonathan Rodriguez, Senka Hadzic, Joaquim Bastos,
Ziming He, Yi Ma, Santiago Zazo, Vladimir Savic, Igor Arambasic, Mo-
hamed Laaraiedh, Bernard Uguen, Performance Assessment of Cooper-
ative Positioning Techniques, ICT Future Networks and Mobile Summit,
Florence, Italy, 2010

• Stephan Sand, Jimmy Jessen Nielsen, Christian Mensing, Yi Ma, Rahim
Tafazolli, Xuefeng Yin, Joao Figueiras, Bernard H. Fleury, Hybrid data
fusion and cooperative schemes for wireless positioning, IEEE Vehicular
Technology Conference (VTC), 2008

Further, the following articles present work that has contributed indirectly
to this thesis on a methodological level.
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• Kasper Revsbech, Jimmy Jessen Nielsen, Kevin Harritsø, Rainer Steffen,
Analysis of IP-based Real-Time In-Car Networks with Network Calcu-
lus, The 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona,
Spain, 2009

• Jimmy Jessen Nielsen, Lars Jesper Grønbæk, Thibault Renier, Hans-
Peter Schwefel, Thomas Toftegaard, Cross-Layer Optimization of Multi-
point Message Broadcast in MANETs, IEEE Wireless Communications
and Networking Conference (WCNC), Budapest, Hungary, 2009.

• Jimmy Jessen Nielsen, Amen Hamdan, Hans-Peter Schwefel, Markov
Chain-based Performance Evaluation of FlexRay Dynamic Segment, 6th
Intl workshop on Real Time Networks, Pisa, Italy, 2007

• Rasmus Løvenstein Olsen, Anders Nickelsen, Jimmy Jessen Nielsen, Hans-
Peter Schwefel, Martin Bauer, Experimental analysis of the influence of
context awareness on service discovery in PNs, 15th IST Mobile & Wire-
less Communication Summit, Mykonos, Greece, 2006
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2
Background

This chapter gives a brief introduction to some basic concepts that the remain-
ing parts of the thesis are based on. Initially, an overview of the factors that
impact the performance of IEEE 802.11 based Wi-Fi systems is given, as it
plays a central part in both the small and large scale scenarios. Secondly, the
basic concept of relaying is introduced, as it is in focus for the small scale sce-
nario investigations. Next, network based localization is introduced and related
to satellite based localization systems. Finally, an overview of the mobility
models that are used in this thesis is given.
Notice that the individual contribution chapters contain their own specific state
of the art sections.
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2.1 Wi-Fi Performance Aspects

The Wi-Fi networks considered in this work are assumed to be based on the
IEEE 802.11a protocol, which is described in [IEEE, 2007]. This section briefly
introduces the different factors and models that determine the performance of
such a Wi-Fi network system. These are used in the later contribution chapters
of this thesis.

2.1.1 Path loss

In wireless networks, where the receiving node of a transmission is spatially
separated from the transmitting node, as illustrated in Figure 2.1, it is well
known that the energy level at the receiver depends on the transmission dis-
tance.

distance

Figure 2.1: Example of path loss over distance.

This phenomenon is called the path loss and can be modeled using a path
loss model and knowledge about the transmit power, environment character-
istics, and the distance between transmitter and receiver. Some typical path
loss models are the following (see for example [Goldsmith, 2005]):

Free space (Friis) model: As the name implies, this model is built on an as-
sumption of free space between the transmitter and receiver. The model
is useful for situations where the transmitter or the receiver (or both) are
positioned above the ground, and there are no obstacles between them.

Two ray (ground reflection) model: This model is an extension of the
free space model in which it is assumed that the received signal consists
of a direct (Line-of-Sight (LOS)) radio wave and a single other wave
which is reflected on the ground. This model is useful in for example
vehicular scenarios, where the road is the reflector.

Log distance (path loss exponent) model: This model calculates the dis-
tance dependent path loss given a path loss exponent parameter. The
path loss exponent depends on the environment and typically has a value
between 2 and 4.
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As this work focuses on semi-urban and urban scenarios where sometimes
obstructions hinder the direct radio transmission path, neither the free space
model or the two ray model are well suited for this work. The log distance
model is more versatile since it allows different path loss exponents to be used
for different scenarios, and will therefore be used in this work.

The 802.11a Wi-Fi networks considered in this work use the 5 GHz U-
NII band. In [Durgin et al., 1998] the authors have made measurements in
and around homes and trees for this specific frequency band and determined
appropriate path loss exponent values for this type of environment. Since Wi-
Fi access points are typically located inside homes or similar buildings, the
path loss model applied in this work is based on their identified parameters.
The model structure of the log-distance model is:

Prx(d) [dBm] = Ptx − PL(d0)− 10n log10 (d/d0) (2.1)

where Ptx is the transmit power, Prx(d) is the received power at the receiver, d
is the distance between transmitter and receiver, PL(d0) is the path loss at a
reference distance d0 = 1m, and n is the path loss exponent. In [Durgin et al.,
1998] the authors report values ranging from 2.7 to 3.6 for indoor and outdoor
environments around homes.

Figure 2.2 shows an example of the received power relative to a transmit
power Ptx = 20 dBm, which is the typical transmit power of a Wi-Fi access
point, as a function of distance.
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Figure 2.2: Example of received power for Ptx = 20 dBm, PL(d0) = 0, and
n = 2.9.
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2.1.2 Multi Path Fading

In scenarios with objects and obstructions such as buildings, walls, vehicles,
people, or furniture, radio waves do not only travel along the LOS path be-
tween a transmitter and a receiver. The receiver will likely receive a combina-
tion of the direct and reflected waves that may partially cancel out or boost
the received power at the receiver. This phenomena causes quickly changing
variations in the received signal power if the user or other objects are moving.
These variations in received power are superimposed on the path loss.

For a digital transmission, the multi path fading has a significant impact
on the Bit Error Rate (BER) when deep fades occur. Here, the received power
drops to a very low level and the amount of bit errors can be significant. This
means that in average a higher SNR is therefore required for a given BER
compared to the ideal case of an AWGN channel.

In cases where the received power at the receiver comes mainly from scat-
tered waves, such as indoor or dense urban environments, the received signal
can be described using the Rayleigh fading model, see, e.g., [Rappaport, 2002].
This model assumes that the received signal consist of a large number of scat-
tered waves with independent and identically distributed (i.i.d.) inphase and
quadrature amplitudes.

In cases where the received signal consists of some scattered waves but with
one dominant component, e.g., the LOS component, the Ricean (or Rician)
fading model is used to describe the signal, see, e.g., [Rappaport, 2002]. This
model is similar to the Rayleigh model except for the dominant component.
The model has a parameter, typically denoted as K, which specifies the ratio
between the power of the dominant component and local mean of the scattered
components. For K = 0 (−∞ dB), the Rician model corresponds to the
Rayleigh model.

The function berfading from the matlab communications toolbox can be
used to calculate the achieved BER for Rician or Rayleigh fading environment
for different modulation schemes and values of the Rician factor K.

As this work focuses on semi-urban and urban scenarios where only some-
times obstructions hinder the direct radio transmission path, the Ricean fading
model is judged to be more appropriate than the Rayleigh fading model.
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2.1.3 IEEE 802.11 based Wi-Fi

The IEEE 802.11 standard [IEEE, 2007] specifies the functionality of the phys-
ical (PHY) and Medium Access Control (MAC) layers. There are several vari-
ants available.

802.11 Physical Layer Variants

802.11b and 802.11g both operate in the ISM band around 2.4 GHz and they
support bit rates of up to 11 Mbit/s and 54 Mbit/s, respectively. 802.11a is in
many ways similar to 802.11g as it supports bit rates of up to 54 Mbit/s, but it
is operating in the 5 GHz U-NII frequency. Finally, the most recent addition is
802.11n, which can operate in both the 2.4 GHz and 5 GHz frequency bands,
but uses MIMO technology to increase range and throughput. The standard
supports bit rates of up to 600 Mbit/s for certain hardware configurations.

802.11 Medium Access Control

IEEE 802.11 specifies two medium access control protocols, Point Coordination
Function (PCF) and Distributed Coordination Function (DCF). PCF is a
centralized scheme, whereas DCF is a fully distributed scheme. DCF is the
most commonly used scheme. The DCF scheme in IEEE 802.11 is based on a
slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol, as is described briefly in the following. For a more detailed description
see reference [IEEE, 2007].

DCF is a contention based medium access protocol. When a station has
a frame to transmit, it transmits the frame immediately if the channel is idle
for the duration of a Distributed InterFrame Space (DIFS). If the channel
is busy the station waits until the channel remains idle for the duration of a
DIFS. When this happens, the station randomly instantiates its backoff counter
on the interval 0,W − 1, where W is the contention window, which depends
on the number of failed transmission attempts. For each time slot in which
the channel remains idle the station decrements its backoff counter. If the
channel becomes busy, the station freezes its backoff counter and waits until
the channel has been idle for a DIFS time, before it resumes decrementing the
counter. When the counter reaches zero, the station starts its transmission
in the beginning of the following timeslot. Here it may happen that another
station is transmitting in the exact same time slot, and a collision occurs.
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DCF supports two different modes for channel access, the basic mode, in
which the receiving station acknowledges every successful reception of a data
frame by sending an ACK frame after the duration of a Short InterFrame
Space (SIFS), and a four-way handshake mechanism denoted Request to Send
/ Clear to Send (RTS/CTS), in which the source station reserves the channel
before transmitting a data frame. The procedure for the RTS/CTS scheme
is as follows. First the source station transmits an RTS frame and after the
duration of a SIFS and in the case of no collisions, the receiving station sends
out a CTS frame. At this point, all stations that are within hearing range
of either the source or the receiving stations have overheard the RTS or CTS
frame transmissions and will know that a transmission is ongoing. Since the
RTS and CTS frames contain the duration of the data transmission, other
stations even know for how long the channel is busy. After another SIFS time,
the source station starts transmitting the data frame. When the source station
has finished the transmission, the receiving station waits for the duration of a
SIFS, and then sends an ACK frame if the data frame was successfully received.
Compared to the basic scheme, the RTS/CTS scheme has the advantage that
the frames involved in the contention process are much shorter than for the
basic scheme, which results in better performance when large data frames are
used.

During the process described above, errors can occur either from collisions,
where two or more stations within hearing range attempt to use the same time
slot, or if the signal quality is not sufficient for the receiver to successfully
decode the received signal. In either case, whenever a transmission error oc-
curs, the source station doubles the contention window W , up to a maximum
value of CWmax = 2m CWmin. The values of CWmin and CWmax depend on
the physical layer and can be found in [IEEE, 2007]. For 802.11a, they are
CWmin = 15 and CWmax = 1023.

2.2 Relaying

The basic problem that relaying protocols are helping to mitigate is low signal
quality due to fading, including both large scale path loss and small scale
multi path fading. A basic three node relay system is shown in Figure 2.3.
The idea of a relaying is that a transmission from the source node to the
destination node, can also be transmitted from the source S via the relay R
to the destination D, which may lead to better reception at the destination.
In relation to the path loss, it is clear that each of the links S-R and R-D
are shorter than the link S-D and therefore are likely to experience less path
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loss. In cases where the link S-D has very low quality due to path loss, it can
therefore be beneficial to transmit via the relay R. Further, there may be cases
where multi path propagation leads to deep fades on the S-D link even if the
path loss in itself is not critical. As the relay R is spatially separated from the
destination D, it experiences multi path propagation independently from D,
and the relayed path via R may therefore have better link quality.

S

R

D

Figure 2.3: Basic three node relay system consisting of source (S), relay (R)
and destination (D).

The relayed transmission can be realized in different ways. Some funda-
mental relaying schemes are (see for example [Nosratinia et al., 2004, Kramer
et al., 2006]):

Amplify-Forward (AF) is a scheme in which the relay receives a noisy ver-
sion of the signal transmitted by the source, which it then retransmits.
Even though the relayed transmission contains also amplified noise, the
destination has two independently faded copies of the same transmission.
One issue with this scheme however is that sampling, amplifying, and re-
transmitting an analog signal with a sufficient resolution is practically
challenging.

Decode-Forward (DF) assumes that the relay attempts to decode the trans-
mitted signal before re-encoding and retransmitting. Compared to AF,
this scheme has the advantage that the signal that is retransmitted by
the relay does not contain noise. Since the destination may overhear both
the source and relay transmissions, it is able to exploit the cooperative
diversity for error correction.

Compress-Forward (CF) works by having the relay sample and compress
the received signal, whereafter this compressed signal is forwarded to
the destination. Like the AF scheme, the sampling and compression of
a signal is practically challenging.

Classic multi-hop is similar to DF, however in classic multi-hop the destina-
tion does not exploit cooperative diversity and it only decodes the relay
transmission.
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Since the cooperative AF, DF, and CF schemes cannot be used with state-of-
the art wireless network adaptors without modifying the firmware (as described
in [Valentin et al., 2009], the scheme that is considered in this thesis is the
classic multi-hop.

In Figure 2.3 the considered system consists of the source, destination, and
a single relay node. In practical scenarios there are however often multiple
potential relay nodes. A big challenge is therefore to determine the most
suited relay node in a given situation. This challenge is considered in detail in
Chapter 5, where also an overview of existing solutions is given.

2.3 Network-based Localization

Initially motivated by the Federal Communications Commission (FCC) re-
quirement of locating 112/911 emergency calls from mobile phones within tens
of meters as described in [Sun et al., 2005], localization of mobile users has
attracted increasing attention within the research community. Furthermore,
many applications have emerged or are foreseen that exploit position infor-
mation. Examples include car navigation, intelligent traffic systems, location
based advertisement, and indoor guidance systems in airports and warehouses.
Such applications have requirements to the position accuracy in the order of
tens of meters down to a few meters for the indoor systems. Also timing is
an important issue in such applications and requirements in terms of timely
accuracy of a location estimate is in the order of several seconds down to below
a second for car navigation.

In the case with car navigation, currently available Global Positioning Sys-
tem (GPS) receivers are able to fulfill the localization accuracy requirements
whenever sufficient satellites are visible to the GPS receiver. However, in cer-
tain cases where the view to the sky is limited, such as in an urban canyon
where tall buildings block the GPS signal propagation, sufficient accuracy is
not always achieved.

Figure 2.4 shows the Cumulative Distribution Function (cdf) of the num-
ber of visible satellites from the Global Navigation Satellite Systems (GNSSs)
GPS and Galileo. The CDF is based on simulations of an urban canyon from
[Mensing et al., 2008] and exemplifies that the required amount of 4 visible
satellites is seldomly achieved even when considering GPS and Galileo systems
jointly. An example of the typical localization performance in such an urban
scenario is shown in Figure 2.5. Here, it is shown how cellular networks can
be used to improve the localization accuracy by fusing distance measurements



2.3. Network-based Localization 27

Figure 2.4: CDF of number of visible satellites (x ) in urban canyon from
[Mensing et al., 2008].

Figure 2.5: CDF of the positioning error in urban canyon from [Pedersen
et al., 2010].

to cell towers with GNSS estimates. Furthermore, GNSS based localization
rarely works indoor. Therefore, other solutions are needed for location based
applications in indoor and dense urban environments.

Recently, the increasing availability of wireless networks has lead to a grow-
ing interest for localization solutions based on wireless networks. An example
is the Apple iPhone, which uses a hybrid localization solution from the US
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company Skyhook1, in which measurements from both GPS and WiFi access
points are used to calculate the position of the user. This approach exploits the
presence of the ubiquitous wireless networks that anyone who has attempted
to connect his laptop wirelessly in an urban area has most likely noticed, to
enable localization where satellite based localization does not work, i.e. indoor
and in urban canyons.

Notice that in the literature and also in this thesis, the terms localization
or localisation and positioning are used interchangeably to describe the action
of determining the location of an object. In the following subsections different
methods for localization in wireless networks are introduced.

2.3.1 Geometric Localization Methods

Typical approaches for wireless localization are based on simple geometrical
principles. Different types of measurements may be available, depending on
the type of wireless network, and therefore different methods are applied. Some
commonly used localization methods are (see, e.g., [Gustafsson and Gunnars-
son, 2005, Sayed et al., 2005]):

Trilateration uses ranging measurements such as Received Signal Strength
(RSS) or Time of Arrival (TOA). These types of measurements allows
the distance between entities, e.g., between the MD and BS, to be roughly
estimated. The distance can be estimated from RSS measurements by
using a path loss model, if the transmitted signal strength as well as the
path loss exponent is known at the receiver. Since the presence of walls
and obstructions affects the attenuation of radio signals, the receiver also
needs to know or make assumptions of the properties of the surroundings
for accurate results in such environments. TOA measurements allow the
MD to measure the propagation time of the transmitted signal, which
can be used to estimate the distance between a BS and the MD. This
approach however requires the clock of the BSs and MD to be very pre-
cisely synchronized, which may be a limiting factor in some cases. Based
on the estimated distances from ranging measurements, the estimated
location of for example an MD can be determined by using trilatera-
tion. The estimated location is given as the most likely crossing point of
spheres, with radii corresponding to estimated ranges. This is typically
solved as an optimization problem since the inaccuracy of measurements
means that there is rarely a single unique solution.

1www.skyhookwireless.com
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Multilateration uses range difference measurements such as Time Difference
of Arrival (TDOA) measurements. In practice these measurements are
typically easier obtain than TOA measurements, since this approach only
requires clock synchronization between BSs, which are in many cases
interconnected through a wired infrastructure network. The estimated
location of an MD is determined by using the multilateration technique,
where the estimated location is given as the most likely crossing points
of hyperbolas defined from the TDOA measurements. Also here the
solution is typically determined using optimization methods.

Triangulation is as the name implies, based on the use of angle measure-
ments such as Angle of Arrival (AOA). These measurements are ob-
tained by using directional antennas to estimate the angle from which
a signal arrives. The estimated location of an MD is determined from
AOA measurements using the triangulation method. Like for the two
other measurement types, the solution is determined using optimization
methods.

In non-ideal cases such as indoor or urban environments, which cover the
majority of realistic applications, the estimated position of the MD is not
unambiguously given from the measurements due to obstruction or reflection
of the radio signals. Therefore, localization approaches usually include error
minimization algorithms based on for example least squares or maximum like-
lihood approaches, or state estimation filters such as the Kalman filter, as
described by [Gustafsson and Gunnarsson, 2005]. A supplementing means for
decreasing the localization error is to obtain additional measurements from
other BSs where the radio propagation path is less disturbed, but this is not
always possible.

2.3.2 Fingerprinting

Localization by fingerprinting is a technique which differs from the above by
not being based on geometric principles. Instead the fingerprinting technique
exploits that different locations typically have a unique fingerprint with re-
gard to, e.g., the visible APs and their respective RSS. In order to work, the
fingerprinting technique requires that a fingerprinting database is established
that contains an adequate set of fingerprints for the considered area. How
many measurements are necessary depend on many factors such as the re-
quired accuracy, the BS deployment density, the environment properties, and
the measurement grid size. An advantage of this approach compared to the
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geometrical approaches listed above is that it can adapt to challenging en-
vironments such as indoor environments where walls and building geometry
may lead to erroneous ranging or angle measurements. On the other hand this
adaptivity also means that if the environment changes in ways that affect the
fingerprint, a recalibration of the system is necessary.

2.3.3 Cooperative Localization

Commonly for the approaches mentioned above is that they only consider
local measurements, i.e. measurements between the BSs and the MD being
localized. An example is shown in Figure 2.6 (A) where a Mobile Device (MD)
obtains measurements from the three Base Stations (BS) with known locations
to estimate its own location.

Figure 2.6: Principle of basic local (A) and advanced cooperative (B) local-
ization.

However, since the radio propagation characteristics and thereby localiza-
tion accuracy is affected by the walls and obstructions that are natural parts
of indoor and urban environments it is important to exploit as many measure-
ments as possible, as argued in [Sayed et al., 2005]. This has motivated the
step from conventional approaches, where only the links between anchor nodes
and mobile nodes are considered for localization, to cooperative approaches
where also the links between mobile nodes are exploited for localization. This
principle is illustrated in Figure 2.6 (B). In this example, the considered MD,
which has a bold outline in the figure, estimates its distance to 5 other nodes
and not only the 3 BSs as in part (A) of the figure. The true locations of the 2
MDs are however not known, so their estimated positions may be inaccurate to
some degree. But, as shown in the results in Figure 2.7 from [Figueiras, 2008],
the added spatial diversity that additional measurements provides, helps to



2.3. Network-based Localization 31

improve the accuracy of the localization algorithm. This is despite the inac-
curacy resulting from the relative MD position estimates.

Figure 2.7: Accuracy benefit of additional cooperating nodes, from
[Figueiras, 2008].

Basically, cooperative localization can be realized in two ways:

1. Using a centralized approach as in [Mayorga et al., 2007, Frattasi, 2007],
where all measurements are collected in one central localization server,
which is responsible for jointly processing the measurements to com-
pute the needed location estimates. The location estimates are typically
calculated using the geometric methods, depending on the type of mea-
surements. The location estimates can then be exploited in the network
(e.g., for optimization of communication functions) or be sent back to
the mobile devices. This approach is well suited for infrastructure based
systems, where the central localization server can always be reached.

2. The other approach is to use distributed algorithms based on for example
Bayesian inference [Wymeersch et al., 2009], where the individual mo-
bile devices are responsible for computing their own location, based on
information they share only with their surrounding neighbors via Peer-
to-Peer (P2P) links, as in [Wymeersch et al., 2009, Chan and So, 2009].
Since this type of algorithms does not rely on a central entity for pro-
cessing, these algorithms are well suited for ad hoc networks, such as for
example wireless sensor networks.

As this thesis focuses on infrastructure oriented Wi-Fi and cellular networks
with mobile users, the most natural choice of localization algorithm would be a
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centralized algorithm, since it has all measurements available for processing in
the localization server and therefore can achieve higher localization accuracy.
Further, the geometric methods are preferred over fingerprinting methods in
semi-urban and urban scenarios where the environment cannot be assumed
to be static. Chapter 4 presents a study of the achievable accuracy of two
centralized geometric localization schemes, where one is based on only local
measurements and the other is a cooperative scheme that exploits the mea-
surements from P2P links between users.

2.4 Mobility Models

The purpose of a mobility model is to describe the movements of real world
users, in order to study the impact of user movements on system performance.
In this work mobility models are used in for simulations to imitate realistic
user behavior and study the impact of mobility on localization accuracy, relay
node selection, and handover network selection. This section first provides an
overview of different types of mobility models, and hereafter the models that
have been chosen for this work are described.

In the literature there are various surveys on mobility models such as [Bai
and Helmy, 2004, Bettstetter, 2001, Camp et al., 2002, Borrel et al., 2006,
Harri et al., 2009, Musolesi and Mascolo, 2009]. In the following, we use the
categorization of mobility models presented in [Bai and Helmy, 2004]:

Random Models is the group of mobility models that are used to generate
movement patterns, in which the movement parameters are selected ran-
domly, with no dependence on previous selections. This category covers
for example the RandomWaypoint model, the Random Direction model,
and the Random Walk model.

Models with Temporal Dependencies are the models that take into ac-
count for example the physical limitations of acceleration, velocity and
directionality changes that restrict real world user movements. Such
models are especially useful for generating vehicular behavior. Examples
of models that fit within this category are the Gauss-Markov mobility
model, the Smooth Random mobility model, and the Wrap-around mo-
bility model (see [Haas, 1997]).

Models with Spatial Dependencies are the models in which the user move-
ments are spatially correlated. Such mobility models are useful for gen-
erating group-like behavior. Some examples of group mobility models
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are the Reference Point Group mobility model, Column mobility model,
Pursue mobility model, and the Nomadic Community mobility model.

Models with Geographic Restrictions are used for generating user move-
ments that obey restrictions such as street or building layouts. Examples
of mobility models are the Freeway, Manhattan and Pathway mobility
models described in [Bai and Helmy, 2004] as well as the spider and
Voronoi mobility models described in [Harri et al., 2009].

For the small scale scenario considered in this thesis, which is used for the
relaying investigations the Random Waypoint mobility model is used. The
primary reason for choosing this model is that related work such as the Coop-
MAC protocol described in [Liu et al., 2007] presents results where the Random
Waypoint model has been used. In order to allow comparison, the relaying in-
vestigations in Chapter 5 are based on this mobility model. This model is
described in details in section 2.4.1.

For the investigations of cooperative localization in Chapter 4, a group
mobility model in which user movements are spatially correlated is needed to
imitate groups of users that are willing to cooperate. For this purpose it has
been decided to use a Reference Point Group mobility model, which is simply
an extension of the Random Waypoint mobility model for the multi-user case.
This model is presented in section 2.4.2.

One drawback of the RWP model is that user movements are bounded by
the edges of the considered environment, which leads to unnatural behavior of
the users in these regions [Borrel et al., 2006]. A way to overcome this, is to
use a boundless simulation area/wrap around mobility model such as the one
described in [Haas, 1997]. Further this model also has temporal dependencies
on the allowed acceleration and direction changes, which leads to a higher level
of physical realism. Since the considered handover optimizations in Chapter 7
rely on movement prediction, it is relevant to consider a mobility model that
generates realistic movement patterns. This model is therefore used for these
handover investigations. The model is described in details in section 2.4.3.

2.4.1 Random Waypoint Mobility Model

This mobility model generates user movements between different waypoints.
Given an initial position of the user, the following steps are repeated to produce
user movements [Camp et al., 2002]:
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• Pause and stay in the current position for a random time p, where p is
uniformly chosen in pmin ≤ p ≤ pmax.

• Pick the next waypoint (x, y) randomly (uniform) within the considered
area.

• Select a traveling speed v randomly (uniform) in the interval vmin ≤ v ≤
vmax.

• Move in a straight line to the next waypoint at the selected speed v.

The model can be simplified by having no pauses (i.e., p = 0). The result is
a continuously moving user that changes direction and speed at each waypoint.
Another simplification is to set a constant speed, (i.e., vmin = vmax). By not
using pauses and using a constant speed v, the average speed will always be
equal to v.

Figure 2.8 shows an example of a simulation movement trajectory.
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Figure 2.8: Example RWP mobility model outcome for a constant speed of
2m/s and 300s simulation time. The circles show the waypoints.

In [Yoon et al.] the authors have analyzed the RWP model, and shown that
the minimum speed parameter vmin must be set carefully. First and foremost,
it is important to select a non-zero value of vmin. If vmin = 0, the average speed
in a simulation will decay and settle at zero. Further, the authors argue that
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vmin should not be set too close to zero, as this leads to very long convergence
times in simulations.

Another point worth noticing is that the stationary node distribution of
the RWP model is non-uniform [Camp et al., 2002]. This means that if the
initial user distribution in a simulation study is uniform, there will be an ini-
tialization/settling phase before the stationary distribution is achieved. Long
simulation runs are therefore needed before this initialization effect is no longer
significantly reflected in the results. Alternatively, the initialization phase can
be discarded from the results.

2.4.2 Random Waypoint Group Mobility Model

Considering the RWP mobility model, it is fairly easy to introduce correlated
movements of multiple users by using the reference point group mobility prin-
ciple, where one user is defined as a reference and the remaining users are
followers, moving in relation to the reference user. Specifically, by selecting
the next waypoint for the followers randomly around the reference user’s next
waypoint, group movements are achieved. That is, each following node’s next
waypoint should be selected as:

xn(i+ 1) = x1(i+ 1) + unif
(

−smax

2
,
smax

2

)

yn(i+ 1) = y1(i+ 1) + unif
(

−smax

2
,
smax

2

)

(2.2)

where xn(i + 1) denotes the waypoint for node n at time index i + 1, smax is
the maximum spread around the reference node.

An example of the outcome of such mobility model is shown in Figure 2.9,
where six groups, each with one reference node and three followers are shown.
Here the followers’ waypoints are chosen randomly around the respective ref-
erence user’s waypoint, according to eq. (2.2) with smax = 10.

2.4.3 Wrap-around Mobility Model

This mobility model is based on the model presented in [Haas, 1997], which
is referenced in the mobility model survey in [Camp et al., 2002]. This model
wraps around, meaning that there are no borders, as shown in [Camp et al.,
2002]. This model is used for the large scale scenario in order to avoid issues
with coverage on the boundary of the scenario. The implemented mobility
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Figure 2.9: Group mobility simulation example, which is used in chapter 4.

model corresponds to [Haas, 1997], however we use the following slightly dif-
ferent formula for calculating the shortest distance between two entities located
at (x1, y1) and (x2, y2):

Dx = min[|x1 − x2|,min(|xm − x1 + x2|, |xm + x1 − x2|)]
Dy = min[|y1 − y2|,min(|ym − y1 + y2|, |ym + y1 − y2|)]

D =
√

Dx
2 +Dy

2 (2.3)

where xm and ym are the horizontal and vertical lengths of the considered area,
respectively.

A mobile node’s movement is described by its velocity vector V = (v, θ),
where v is the speed and θ is the direction. The location X = (x, y) and
velocity V are updated every ∆t time as follows:

v(t+∆t) = min[max(v(t) + ∆v, vmin), vmax], (2.4)

θ(t +∆t) = θ(t) + ∆θ, (2.5)

X(t+∆t) = X(t) + V (t) ·
(

cos(θ(t))
sin(θ(t))

)

, (2.6)

where vmin and vmax are the mobile node’s minimum and maximum speeds.
The velocity change ∆v is a uniformly distributed random variable within



2.4. Mobility Models 37

[−amax ·∆t, amax ·∆t], where amax is the maximum acceleration/deceleration.
The change in direction, ∆θ is uniformly distributed within [−αmax ·∆t, αmax ·
∆t], where αmax is the maximum change in angular speed.
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3
Distance-dependent Throughput Model

for WiFi

This chapter describes the throughput model that is used to calculate the ex-
pected throughput for Wi-Fi networks throughout this thesis. Specifically, it
is being used for a priori estimation of link qualities for optimal configuration
choice in the chapters 5, 6, and 7. The model calculates the saturation through-
put for a single Wi-Fi link between a source and a destination node, given the
nodes’ separation distance, transmit power, and modulation scheme. Further,
the model is able to take into account a single interferer, if present. The
throughput is calculated using a simple analytical model that takes into account
the retransmission scheme of the IEEE 802.11 DCF in basic (acknowledged)
mode, however assuming that no collisions occur.
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3.1 Introduction

As outlined in chapter 1, the theme of this thesis is to investigate location
based network optimizations, and under which circumstances they can help to
improve throughput. Location information in itself does not directly describe
throughput performance. In order to determine which configurations can en-
hance system performance, it is necessary to have a throughput model that
can estimate the achievable performance of different configuration choices.

The network optimizations considered in chapters 5, 6, and 7, all require
a model for judging the achievable performance of different configurations,
thereby allowing to choose the most suited configuration. The requirements of
each optimization are as follows:

• The location based relaying considered in Chapter 5, needs to determine
the most suited relay node, depending on the locations of the destination
node and the candidate relay nodes. The analysis in this chapter focuses
on the impact of mobility, measurement collection delay, and inaccurate
input information and does not consider cross-traffic or interfering nodes.

• The cross-layer optimization considered in Chapter 6 uses location in-
formation to enable simultaneous relay-to-destination transmissions, by
interference aware selection of relay nodes and relay transmit power.
The optimization algorithm needs to be able to make a priori estimation
of the impact of interference and path loss for different choices of relay
nodes and relay transmission power. This analysis also does not consider
cross-traffic or interfering nodes, besides the interference caused by the
simultaneous relay-to-destination transmission.

• The handover optimization considered in Chapter 7 uses location infor-
mation and prediction of node movements to determine which networks
to handover to. Here it is necessary to estimate in advance the achievable
throughput from each network along the predicted movement trajectory,
in order to facilitate planning of future handovers. The analysis consid-
ers only a single user node, and does not take into account cross-traffic
or interfering nodes of any kind.

Since Wi-Fi networks are considered in the scenarios described in chapter
1, the model should take into account the functionality of Wi-Fi networks,
namely the IEEE 802.11 protocol.

The IEEE 802.11 protocol specifies both PHY and MAC layer functionality,
as described in chapter 2. There are different PHY layer standards available
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(a,b,g,n), which have different properties with regard to for example the used
frequency bands and bit rates. The proposed model can be used with any
of these PHY standards, by using the constants defined in appendix A, that
correspond to the considered technology, and by calculating the BER and
FER according to the used modulation and coding scheme. For this thesis the
constants corresponding to the 802.11a mode are used, since this is a widely
used variant.

On the MAC layer, the model should take into account the impact of bit
and frame errors due to low SNR/SINR, as well as the timing aspects of the
IEEE 802.11 DCF. The DCF can use either basic acknowledged scheme for
transmissions or the RTS/CTS scheme, which improves throughput in situa-
tions with much contention and a high risk of collisions. As cross-traffic and
interfering nodes are not considered in the network optimization analyses, it is
assumed that only the basic acknowledged DCF scheme is used. This scheme
copes with transmission errors by retransmitting unacknowledged until the re-
transmission limit is reached. As poor link conditions can cause frame losses
and thereby retransmissions, this feature should be modeled.

Based on the above descriptions, the following required properties have
been identified:

• Degradation of throughput depending on distance, i.e., BER and Frame
Error Rate (FER) impact of decreasing Signal to Noise Ratio (SNR).

• Throughput impact of a single interfering simultaneous transmission, i.e.,
BER and FER impact of decreasing Signal to Interference and Noise
Ratio (SINR).

• BER model according to IEEE 802.11a PHY modulation scheme.

• Retransmission protocol for 802.11 MACDCF basic acknowledged scheme.

The following features were identified as not needed:

• Not necessary to account for collisions and interference, since cross-traffic
from nearby nodes is not considered.

• Not modeling RTS/CTS scheme in 802.11 DCF, since collisions are not
considered.
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3.2 Related Work

An accurate model of the IEEE 802.11 MAC DCF for basic (acknowledged) and
RTS/CTS modes is presented in [Bianchi, 2000]. This widely applied Markov-
chain based model however assumes that transmission errors are caused only
by collisions caused by neighboring nodes. It is intended for cases where all
nodes have similar good signal quality and are within the same collision domain
and it is also based on the assumption that the network is saturated. Since
the model does not model errors caused by low signal quality due to distance,
the model is unsuited for use in the present work.

In several papers, such as [Malone et al., 2007] and [Cantieni et al., 2005]
the authors have extended Bianchi’s model to account for unsaturated network
conditions, which is achieved by adding an extra idle state to the Markov chain.
However, both mentioned papers have the assumption of an error-free channel,
and they are therefore both unsuited for use in the present work.

There are several examples in the literature of work where the impact of
channel induced errors on the throughput are taken into account. For example
in [Dong and Varaiya, 2005] the authors have extended Bianchi’s model to take
into account frame losses due to transmission errors. This is done by introduc-
ing the probability of a backoff due to a transmission error, which is assumed
to be independent of the collision error. The model takes a common BER
as input to characterize channel quality. In [Ni et al., 2005] another exten-
sion of Bianchi’s model is proposed, which allows to investigate the saturation
throughput performance achieved at the MAC layer, in both congested and
error-prone channels. The transmission error probability is however common
for all nodes. This model also takes a common BER as input to characterize
channel quality. Another approach also based on Bianchi’s model, is pre-
sented in [Zheng et al., 2006], where the authors propose a model that takes
into account both the incoming traffic loads and the effect of imperfect wire-
less channels, in which frame losses may occur due to bit transmission errors.
However, control frames and data frame headers are assumed to be error free
and the BER is common for all nodes. Finally in [Daneshgaran et al., 2008] the
authors have extended Bianchi’s model to take into account channel induced
errors and the capture effect. Their results show that their model allows accu-
rate derivation of the achievable throughput based on a multitude of system
parameters for any of the different 802.11 technologies. The model takes a
common SNR as input, which is used to calculate the BER.

Common for these examples of existing work is that they are based on
Bianchi’s model of the DCF. The original purpose of this model was to account
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for the impact of contention and collision among stations in a WLAN and
estimate the saturation throughput. The model required for the present work
does however not need to account for contention and collision. Therefore a
simpler model which only accounts for channel errors due to distance would be
preferable. Even if future work should consider more detailed analyses in which
cross-traffic is taken into account, it would be necessary for the considered
model to account for different link qualities resulting from nodes’ different
locations. Specifically, different link qualities are typically compensated for by
the 802.11 network adapter by adapting the used bit error rate, so that the
best throughput is achieved.

Since a suited throughput model which satisfies the required features was
not identified in existing work, the remaining parts of this chapter describes
the proposed model.

3.3 Throughput Model

The proposed throughput model for Wi-Fi networks satisfies the features listed
in section 3.1. The model corresponds to IEEE 802.11a as described in [IEEE,
2007], with the already discussed exception of no cross-traffic, and the ex-
ception that for simplicity, convolutional coding is not taken into account in
the calculation of the FER. The latter is expected to result in conservative
estimates of the FER.

Figure 3.1: Structure of throughput model. Model parameters are italicized.

The throughput model is used to calculate the expected throughput for
a transmission between network entities, given node positions and transmit
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power levels. For calculating the throughput, the SNR (or SINR if interferers
are present) and in turn average BER are first calculated. Based on the BER,
the FER is calculated given different transmission parameters, and finally the
throughput delivered by the MAC layer is calculated by taking into account
the retransmission feature of the 802.11 MAC layer. In the following these
calculations are given in details.

For the case with no interfering stations, the SNR is calculated as:

γ [dB] = 10 log10

(

Prx(drx-tx) [mW ]

N0 [mW ]

)

(3.1)

where Prx(drx-tx) is the received power from the main transmitter at distance
drx-tx from the receiver and N0 is the assumed noise floor. The received power
is calculated using the path loss model in equation (2.1).

For the case of a single interfering station, the SINR is calculated as:

γ [dB] = 10 log10

(

Prx(drx-tx) [mW ]

Prx(drx-interf) [mW ] +N0 [mW ]

)

(3.2)

where Prx(drx-interf) is the power received from the interfering transmitter at
distance drx-interf from the receiver.

The SNR/SINR is then converted into average BER for the used modu-
lation scheme (BPSK, QPSK, 16-QAM or 64-QAM for IEEE 802.11a) and
fading environment using for example theoretical expressions from reference
[Proakis, 1995]. In this thesis, we have used the matlab function berfading

from the Communications Toolbox, which calculates the average BER for a
specific modulation scheme given a Rayleigh or Ricean fading channel.

In the IEEE 802.11 MAC acknowledged mode, there are three different
outcomes of a frame transmission, assuming that the PHY header was suc-
cessfully transmitted. A successful reception of a frame (s) is possible if no
bit errors occur. If bit errors occur, one of the following two outcomes are
possible: failed during DATA (fd) and failed during ACK (fa).

Assuming a constant and independent BER denoted Pb, the outcomes have
the following probabilities:

Ps = (1− Pb)
Ndata+NACK (3.3)

Pfd = 1− (1− Pb)
Ndata (3.4)

Pfa = (1− Pb)
Ndata · (1− (1− Pb)

NACK) (3.5)

where Ndata and NACK are the number of bits transmitted in data and ACK
frames, respectively, as defined in Appendix A on page 173. Here it is assumed



3.3. Throughput Model 47

that the ACK frame has the same BER as the data frame. This may not be
the case if the source and destination use different transmit power levels or if
there are nearby interferers.

Given the constants in Appendix A on page 173, we calculate the average
time of successful and failed transmissions as:

Ts(r) = TBO(r) + Tdata + TSIFS + TACK + TDIFS (3.6)

Tf(r) =
(

TBO(r) + Tdata + TDIFS

)

· Pfdn+

+ TBO(r) + (Tdata + TSIFS + TACK + TDIFS) · Pfan (3.7)

where, Pfdn =
Pfd

Pfd+Pfa
and Pfan = Pfa

Pfd+Pfa
are normalization factors, and TBO(r)

is the average back-off time, which depends on the number of the current
retry attempt r (where 0 ≤ r ≤ R, and R is the maximum number of retry
attempts). Hence, also Ts(r) and Tf(r) depend on r. According to [IEEE, 2007],
the contention window (CW ) is a uniform Random Variable (RV) between
CWmin = 15 and CWmax = 1023. For each consecutive retry the CW is set
according to:

CW (r) = min(1023, 24+r − 1). (3.8)

We assume the average waiting time due to back-off is:

TBO(r) = Tslot ·
CW (r)

2
(3.9)

where Tslot is the slot time used in IEEE 802.11.

As we have now determined the time and probability of a single successful
or failed transmission, we now derive the expected throughput delivered by the
MAC layer service, when taking MAC layer retransmissions into account. In
IEEE 802.11 the default maximum number of retransmission attempts, here
denoted R is 7. After R attempts the frame transmission fails and an error
will be returned from the MAC layer without delivering the payload. In this
work we only consider the MAC throughput, which may be different from the
throughput achieved by overlying transport protocols and applications, due to
for example time-out mechanisms as used in TCP to judge when a segment
has been lost and needs to be retransmitted [Kesselman and Mansour, 2005].
Let n be the retry number, and Ttx the RV representing the time spent on a
transmission attempt:

Ttx(n) =















Ts(n) for n = 0
∑n

r=0 Tf(r) + Ts(n+ 1) for 0 ≤ n ≤ R− 1
∑n

r=0 Tf(r) + Ts(n+ 1) for n = R, success
∑n+1

r=0 Tf(r) for n = R, failure

(3.10)
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with outcome probabilities:

Ptx(n) =







(1− Ps)
n · Ps for 0 ≤ n ≤ R− 1

(1− Ps)
n · Ps for n = R, success

(1− Ps)
n+1 for n = R, failure .

(3.11)

From this, we can compute the expected value as:

E[Ttx] =

R−1
∑

n=0

(Ttx(n)Ptx(n)) + T s
tx(R)P s

tx(R) + T f
tx(R)P f

tx(R) (3.12)

where T s
tx(R), P s

tx(R), T f
tx(R), and P f

tx(R) are the transmission time per at-
tempt and frame delivery probability for the successful and failed cases in
equations (3.10) and (3.11). The probability of a successful MAC frame deliv-
ery is:

Psuc = 1− (1− Ps)
R+1. (3.13)

Notice however that in practical systems ACK frames may be transmitted
with a different bit rate than the data frame. In this case, it would be nec-
essary to rewrite equations (3.3), (3.4), and (3.5) to allow different bit error
probabilities for the data and ACK frames.

As throughput is given by Delivered data
Transmission time

, the throughput can be calculated
as:

S =
Psuc · BMSDU

E[Ttx]
(3.14)

where BMSDU is the MAC payload size is given in octets.

3.4 Results and Discussion

In this section a few example results of the described throughput model are
shown. Also, for verification of the throughput model, a custom matlab simula-
tion of the IEEE 802.11 back-off mechanism has been created. This is basically
a simulation of the model, where the transmission and reception of the indi-
vidual data and ACK frames over a link are simulated. The outcome of each
frame transmission is stochastically determined based on the data frame size
and the BER, and the BER level depends on the SNR level for the particular
transmission. These simulation results are shown as circles in the following
plots.
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The plot in Figure 3.2 shows the resulting FER for different BER levels.
The simulation results are based on 1 000 000 simulation runs. Some of the
circles are not aligned perfectly with the analytic result in the lower part of
the plot where the FER is low. For these low FER levels a higher number of
simulation runs are needed for perfectly aligned results.

10
−6

10
−5

10
−4

10
−3

10
−4

10
−3

10
−2

10
−1

10
0

E
xp

ec
te

d 
fr

am
e 

de
liv

er
y 

fa
ilu

re
 r

at
e

BER

Frame size = 1024 bytes

 

 

Rmax=0
Rmax=1
Rmax=2
Rmax=3
Rmax=4
Rmax=5
Rmax=6
Rmax=7
Simulation

Figure 3.2: Expected FER (1−Psuc) for 6 Mbit/s and BMSDU = 1024 bytes.

The following results in Figure 3.3 shows the corresponding results of the
expected time of each transmission attempt, at different BER levels.

In Figure 3.4 the previous two results are combined to give the throughput.
The plot includes different curves for each value of Rmax, however in practice
there is not a very big difference between Rmax = 0 and Rmax = 7, which could
suggest that a practical system need not to retransmit. However, in the cases
where Rmax is low, an overlying transport protocol or application is responsible
for handling any frame losses that may occur, which is typically less efficient
than MAC retransmissions.

Finally, in Figure 3.5 the distance throughput relationship is exemplified
for some of the different modulation schemes available in IEEE 802.11a. The
plot is generated using the throughput model for the scenario used in chapter
7, where there are no interferers present. The model results are clearly consis-
tent with the simulation results. An interesting future work item would be to
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Figure 3.3: Expected transmission time (E[Ttx]) for 6 Mbit/s and BMSDU =
1024 bytes.
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validate the model assumptions using measurements or commonly used simu-
lation tools such as ns-2 or OMNET++. Further, this would make it easier to
compare the model to other models in the literature.
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Figure 3.5: Expected average throughput for 6, 12, 36, and 54 Mbit/s trans-
mission modes, generated using the throughput model. Here it is assumed
that Rmax = 7 and BMSDU = 1024 bytes and that the scenario parameters
are similar to the scenario considered in chapter 7, which is specified by the
parameters in Table 7.1 on page 149.

3.5 Conclusion

In this chapter a simple throughput model of IEEE 802.11a based Wi-Fi net-
works has been presented. The model focuses on the impact of distance on the
achieved throughput, and is intended to be used for guiding the choice of re-
laying and handover parameters for the location based network optimizations
considered in chapters 5, 6, and 7.

The model calculates the saturation throughput for a single Wi-Fi link
between a source and a destination node. The model inputs are the nodes’
separation distance, transmit power, and modulation scheme. The model is
able to take into account a single interferer, if present. First, the BER is calcu-
lated according to the 802.11a modulation schemes, however for simplicity, the
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convolutional coding and Viterbi decoding of 802.11a has not been taken into
account, which means that the calculated throughput is lower than what it
would be if these error correction properties were taken into account. In [Qiao
et al., 2002] an upper bound is used to estimate the packet error probability
of 802.11a with Viterbi decoding, however only for the AWGN channel. An
estimate for the Ricean channel could be found using simulations, however this
was not considered in this work.

Hereafter the Frame Error Rate is calculated under the assumption of in-
dependent bit errors. The saturation throughput is then estimated using a
simple analytical model that takes into account the retransmission scheme of
the IEEE 802.11 DCF in basic (acknowledged) mode. The model is intended
for a priori estimation of the link quality, in order to choose the best config-
uration in the network optimization algorithms considered in chapters 5, 6,
and 7. As the analyses of these algorithms do not consider cross-traffic, the
model does not need to model the impact of collisions on the 802.11 DCF.
Therefore the channel is always assumed to be idle when a transmission is
started. The model is much simpler than existing models based in Bianchi’s
model in [Bianchi, 2000], such as [Daneshgaran et al., 2008, Zheng et al., 2006,
Ni et al., 2005, Dong and Varaiya, 2005], as these models account for the im-
pact of both channel errors and cross-traffic. Finally, simulations of the 802.11
DCF retransmission scheme have been used to verify the proposed model. An
interesting future work item would be to validate the model results using mea-
surements or commonly used simulation tools such as ns-2 or OMNET++.
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4
Realistic Communication Constraints

for Localization

The purpose of the contribution presented in this chapter is to investigate
the achievable localization accuracy of a localization system for wireless mobile
networks, as well as to investigate the impact of realistic measurement obtain-
ment and collection. A specific use case system is considered that uses UWB for
ranging, which is modeled using empirical measurements. These ranging mea-
surements are collected through a Wi-Fi infrastructure and processed centrally.
The analysis takes into account delays and frame losses in the measurement
collection process, which allows to study which impact this collection has on the
localization accuracy. The contribution is a part of a joint work with Christian
Mensing from DLR in Germany. This chapter presents selected parts of this
work. See the original paper in [Mensing and Nielsen, 2010] for further details
on the localization aspects.
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4.1 Introduction

When evaluating the performance of localization algorithms, it is common
practice to assume that measurements are sampled periodically and that they
are immediately available for processing. For localization of non-mobile users,
this assumption is fine. However, for tracking of mobile users, the delay from
the time it takes to obtain and collect the necessary measurements could in
principle have an influence on the achieved accuracy. In cooperative local-
ization approaches, where additional measurements need to be collected from
P2P links, the influence of the collection delay could be even more pronounced.
The aim of this chapter is therefore to study the impact of realistic commu-
nication constraints on the localization accuracy, by taking into account the
measurement obtainment and collection delays. Also, from a networking point
of view, it is interesting to study what the collection delays are and how much
overhead is generated in the Wi-Fi network. This is especially interesting for
Cooperative Positioning (CP), where also P2P measurements are taken into
account, in addition to the measurements from links between anchor nodes
and mobile nodes that are considered in conventional positioning.

There are basically two ways to realize CP (as described in section 2.3):

1. Using a centralized approach as in [Mayorga et al., 2007, Frattasi, 2007],
where all measurements are collected in one central localization server,
which is responsible for jointly processing the measurements to com-
pute the needed location estimates. These can then be exploited in the
network (e.g., for optimization of communication functions) or be sent
back to the mobile devices. This approach is well suited for infrastruc-
ture based systems, where the central localization server can always be
reached.

2. The other approach is to use distributed algorithms based on for example
Bayesian inference [Wymeersch et al., 2009], where the individual mo-
bile devices are responsible for computing their own location, based on
information they share only with their surrounding neighbors via P2P
links, as in [Wymeersch et al., 2009, Chan and So, 2009]. Since this type
of algorithms does not rely on a central entity for processing, such algo-
rithms are well suited for ad hoc networks, such as for example wireless
sensor networks.

Since the scenarios considered in this work focus on infrastructure connectiv-
ity, the centralized localization approach with a central localization server is
considered in this chapter.
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Specifically, in this chapter, we investigate the performance of conventional
and cooperative centralized positioning schemes under realistic communica-
tion constraints and measurement models from both the positioning and the
networking perspective. The centralized infrastructure is based on the large
scale scenario presented in Figure 1.1, however with only the Wi-Fi part being
used.

This study is based on the assumption that ultra-wideband (UWB) tech-
nology is used for ranging. UWB is particularly suited for ranging [Gezici
et al., 2005], since the wide frequency range makes it more possibly that at
least some radio waves will go through or around obstacles. Further, the wide
frequency range allows for a high time resolution, which is useful for time-based
ranging as TOA or TDOA.

The ranging is realized by UWB TOA measurements, and it is assumed
that all Anchor Nodes (ANs) and Mobile Stations (MSs) are equipped with
UWB radios dedicated for ranging. The Wi-Fi infrastructure is used for col-
lecting the measurements between the ANs and the MSs as well as the P2P
measurements between MSs. Mobility of the users is exploited by application
of a tracking algorithm based on Extended Kalman Filters (EKFs). Hence,
simulation results will provide a realistic assessment of centralized CP in a
high-mobility environment.

4.2 System Model

There are two kinds of entities in the considered system. The ANs that are
UWB anchor nodes are located at fixed, perfectly known locations. The second
type of entity is the MS, which can move around in two dimensions. Figure 4.1
shows an example of a system with three ANs and two MSs. In this work a Wi-
Fi based network is used for collecting ranging measurements. For simplicity,
it is assumed that all anchor nodes are also acting as Wi-Fi access points.
Notice that in this chapter the ANs are represented by the symbol of a base
stations, while they are in fact acting as UWB anchor nodes as well as Wi-Fi
access points.

The arrows between the entities show the different ranges (r) or distances
that are measurable in the system. The range between MSs, in the example
denoted as rMS1,MS2, is only used by the cooperate positioning algorithm, not
for the conventional positioning algorithm.
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Figure 4.1: Example system with three ANs and two MSs.

For each range between a pair of entities, the following measurement error
model is used to generate measurements:

r̂ = r + b+ n (4.1)

where r̂ is the estimated distance, r is the actual distance, and the terms b
and n are stochastic variables accounting for range estimation bias and noise,
respectively.

For generating the ranging errors, we exploit the UWB device measure-
ments performed within the WHERE project and the derived models from
that. We make use of a preliminary version of the models presented in [Pezzin
and Vazquez, 2010]. In summary, the devices use a 2 GHz bandwidth cen-
tered around 4 GHz, and a peak transmit power of 2 dBm. The full set of
parameters for the UWB devices are available in the mentioned paper. The
applied version of the model includes bias and residual noise conditioned on
distance, orientation, and LOS/NLOS status of the connection. The average
standard deviation of noise and the average bias are depicted in Figure 4.2
over the distance for LOS and NLOS conditions. We assume that the MS-MS
connections are always LOS, whereas the MS-AN connections are NLOS in
50% of the cases.

4.3 Measurement Collection

For both the conventional and the cooperative approaches for localization that
are considered in this work we have defined protocols that are responsible
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Figure 4.2: Average ranging error model parameters vs. distance

for collection of measurements and provision of a location estimate. In the
following we describe these protocols. It is assumed that the location estimate
is needed by an application at the MS, which polls the location every µloc

seconds.

4.3.1 Device-based Conventional Localization Case

In this case, the localization algorithm uses only measurements from the MS-
AN links as sketched in Figure 4.3 which shows an example scenario with 4
ANs. As the MS holds all measurements necessary to compute the location
estimate, we assume the localization/tracking algorithm is run in the MS.

It is assumed that ranging measurements are obtained towards each of the
four ANs periodically, each with interval µMS-AN. Since the ranging measure-
ments are obtained directly in the MS, the only additional factor that con-
tributes to the localization delay is the application location request interval
µloc.
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Figure 4.3: Message flow in device-based conventional positioning.

4.3.2 Centralized Cooperative Localization Case

In addition to MS-AN ranging measurements, the cooperative localization al-
gorithms uses MS-MS ranging measurements and centralized computation of
location estimates. In order to realize the collection of both types of measure-
ments, as well as send back the location estimate to the MS, the message flow
sketched in Figure 4.4 is used.

t0

t3

t2
t1

t4, t5t6

t7

tproc

t8

t9
Loc-server

Figure 4.4: Message flow in centralized cooperative positioning. Ranging
measurements are obtained in the MS by performing ranging towards ANs and
other MSs. The obtained measurements are then collected in the localization
server for processing. Finally, the location estimate is sent back to the MS.

In order to show the message flow more clearly, we consider the subflows
individually in the following.
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Like the conventional algorithms, the cooperative algorithms rely on pe-
riodically obtained ranging measurements (every µMS-AN seconds) for MS-AN
measurements. Figure 4.5 shows how ranging measurements are first obtained
between the MS and AN. Hereafter a measurement packet, which contains
the ranging measurement, is sent to the nearest AN and thereafter to the
localization server, which is assumed to be connected to the AN by a wired
infrastructure. Here it would be possible to bundle measurements from the
ANs and send them in one packet to the localization server. However, here we
have decided to use the flow that is most similar to the conventional case.

range meas. pkt. meas. pkt.

Figure 4.5: Message flow for MS-AN ranging measurements in cooperative
localization.

In addition to MS-AN measurements, the cooperative algorithms rely on
MS-MS measurements, also called P2P measurements. The flow of messages is
shown in Figure 4.6. Whenever an MS senses another MS within Dcoop meters,
a P2P ranging measurement is made and sent to the localization server through
the nearest AN. However, to reduce the amount of measurement packets being
sent, P2P measurements are buffered and sent in a bundle every µcoop seconds.
As with the MS-AN measurements, the AN is assumed to be connected to the
localization server by a wired infrastructure.

P2P ranging

meas. pkt.meas. pkt.

periodic, contains P2P-

meas. from nearby MSs

Figure 4.6: Message flow for P2P measurements in cooperative localization.

Having both MS-AN and MS-MS measurements at the localization server,
we now need to provide the calculated position estimate to the MS. This is
done by periodically unicasting a message with the current location estimate
of an MS to that MS, as sketched in Figure 4.7.
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loc. info

periodic unicast

of MS location

loc. info

processing

Figure 4.7: Message flow for location info message in cooperative localization.

A collected view of the flows in an example scenario is given in Figure 4.8
in the form of a sequence chart.

AN1 MD1 MD2

UWB: ranging

UWB: P2P ranging

Wi-Fi: AN1-MD1 measurement

UWB: ranging

Wi-Fi: AN1-MD2 measurement

Wi-Fi: P2P measurement bulk

Wi-Fi: P2P measurement bulk

AN2

UWB: ranging

Wi-Fi: AN2-MD1 measurement

UWB: ranging

Wi-Fi: AN2-MD2 measurement

..
.

Figure 4.8: Sequence chart for an example scenario with 2 ANs and 2 MSs.
In this example AN1 is closer to both MSs than AN2, and the MSs therefore
send their obtained measurements through the AP in AN1. The UWB ranging
measurement procedure is depicted with blue arrows.

Having described how measurements are collected at the server, the follow-
ing describes how the localization algorithms use the measurements.
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4.4 Localization Algorithms

For localization and tracking, two different algorithms have been used in this
work. As these algorithms are not a part of the contributions in this work,
please see the original paper [Mensing and Nielsen, 2010] for a detailed pre-
sentation. In the following, the key features are outlined.

The considered algorithms are using the ranging measurements that have
been collected using the collection schemes presented in the previous section.
The localization algorithms are executed periodically, every 1 second, and use
the measurements that have been collected since the last execution of the
algorithms.

Static Solution

The static solution is calculated independently for each time sample as a
weighted non-linear Least Squares (LS) of the available measurements. Gener-
ally, there exists no closed form solution to this non-linear 2 ·NMS-dimensional
optimization problem, where NMS is the number of MSs, which means that
an iterative solution is necessary. The problem is solved using the Gauss-
Newton (GN) algorithm, which however needs a good initial location estimate
for fast convergence and good estimates. The initial solution used by the GN
algorithm in this work is the geometric mean value of the involved ANs.

Notice that this algorithm uses only the available measurements for location
estimation, it does not take advantage of previous location estimates.

Extended Kalman Filter Solution

The Extended Kalman Filter (EKF) solution is different from the static solu-
tion in the sense that it calculates updated position estimates in every time-step
by considering the history of movement and new measurements according to
the Bayesian philosophy. Also the EKF is able to take advantage of the fact
that users move along certain trajectories, where each new position is strongly
correlated to the previous.

The state space used for the EKF is 4 ·NMS-dimensional, since it consists of
two-dimensional positions and two-dimensional velocities for each considered
MS. Further, the EKF takes as input the vector r̂[k], which contains all the
available ranging measurements for the kth time step. Notice that this vector
changes between time steps, since it depends on the available measurements.
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The evolution model used for the EKF includes a priori information about
the MSs movements in order to cope with missing measurements. Even the
situation that no AN or other MS is visible for a certain time can be handled
by this approach. In that situation, the movement model compensates the
missing measurements.

Calculation of the different MSs location estimates are decoupled in the
EKF, i.e., it is assumed that they move independently of each other.

The EKF is initialized (at k = 0) by the result from of static solution at
that time. The used state vectors contain both positions and velocities of the
MSs.

4.5 Evaluation Methodology

The considered localization algorithms have been evaluated with realistic com-
munication constraints in a 4-step process as sketched in Figure 4.9.

Network 

simulation

Mobility 

simulation

Measurement 

generation

Positioning 

simulation

Movement trace

Movement trace

Measurement 

availability

Measurement values, 

timestamps

Positioning metrics: 

positioning/tracking 

accuracy

Network metrics: overhead, delay

Figure 4.9: Simulation overview.

The mobility simulation is run initially, which results in a trace file that
describes the AN positions and MS movements according to the random way-
point group mobility model described in section 4.5.1. This mobility trace is
then used as a basis for simulating the Wi-Fi network that is used for collec-
tion of ranging measurements (both MS-AN and MS-MS) and provisioning of
location estimates from the localization server to the MSs. It is assumed that
the network is based on IEEE 802.11a.
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The network simulation is realized using ns-21 based on the mobility trace
and the scenario specific parameters listed in Table 4.2. We use the 802.11ext
module in ns-2. Custom agents are installed on the simulation nodes so that
the ranging measurement collection flow is simulated as specified in section
4.3. The purpose of the simulation is to get realistic measurements of the time
it takes to collect ranging measurements and provide location estimates, as
well as the MSs ability to reach the localization server through the Wi-Fi in-
frastructure. Therefore we use the ns-2 simulation, which accurately simulates
the MAC behavior of IEEE 802.11, which means that delays and frame losses
caused by factors such as collisions, retransmissions, backoff, and congestion
are taken into account. The ns-2 simulation was parameterized according to
Table 4.2. Further, this ns-2 version includes a Nakagami fading model, which
can approximate a Ricean fading environment, by using the model parameters

Γ = n and m = (K+1)2

2K+1
, where K is the Ricean K-factor.

Table 4.1 shows the sizes of the used messages. We have made the following
assumptions regarding the used messages. The MS-AN ranging measurement
is a 802.11 data frame with a payload consisting of the MAC id (6 bytes) of the
AP and the estimated range (2 bytes). The P2P measurement bulk message
size depends on the number of MS neighbors in range. It is also a data frame
where the payload is a 6 bytes MAC id and 2 bytes ranging value for each
neighbor MS. Finally, the location information message is a data frame with
the node coordinates (x,y) encoded with 8 bytes each. The duration of the
different frames can be calculated using Appendix A.

Message type MSDU size (octets)
MS-AN measurement 8
P2P measurement bulk (6 + 2) ·NMS in range

Location information 16

Table 4.1: Message types

The output of the network simulation is first the network-related perfor-
mance metrics, and secondly this block also delivers a trace file specifying time
stamps for when measurements are obtained and have been collected in the
central localization server, according to the collection protocol.

The measurement generation block uses the network simulation trace file
in combination with the mobility trace, to generate the actual measurement

1The ns-2 simulation is based on [Chen et al., 2007], which has been updated with the
author’s patch from June 5th, 2009.
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values for the MS-AN and MS-MS links. The measurements are generated
using the models described in section 4.2. Notice that the measurement values
are generated so that they correspond to the node positions at the time the
ranging measurements were performed.

The positioning simulation is run as the last step and positioning met-
rics are computed for the considered conventional and cooperative localization
algorithms.

The considered performance metric for the localization and tracking is the
cdf of the absolute two-dimensional position error εerror, i.e.,

CDF (εerror) = Prob (‖x̂− x‖2 ≤ εerror) , (4.2)

where it was averaged over all MSs in the scenario and several noise real-
izations, i.e., multiple independent realizations of the measurement genera-
tion and positioning simulation blocks in Figure 4.9. We further assume that
the MS-MS connections are always LOS, whereas the MS-AN connections are
NLOS in 50% of the cases.

4.5.1 Group Mobility Model

A variation of the random waypoint that mimics group mobility is used in this
work. In each group of nodes, one of the nodes acts as the reference node. For
this node a waypoint and speed is chosen as usual for the random waypoint
model (see [Raspopoulos et al., 2010]). For the remaining nodes in the group
the same speed is used and a their waypoints are chosen, so that they are
randomly placed within Dspread of the reference node’s waypoint. An example
of the resulting mobility tracks is shown in 4.10 in a 100x100m2 scenario. In
this example there are 6 groups with 4 nodes in each group, shown with a
unique color for each group.

4.6 Results and Discussion

The simulation results are presented in this section in two parts: first the
communication related results and secondly the localization/tracking results.
The positioning algorithms are evaluated both with perfect communication,
i.e., error-free and instantaneous exchange of all required information, and
secondly with realistic communication constraint. The baseline simulation
parameters are shown in Table 4.2.
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Figure 4.10: Group mobility simulation example.

4.6.1 Communication Part

Figure 4.11 shows the average localization delays for the conventional mea-
surement collection and for the two types of measurements in the cooperative
measurement collection. The localization delay is the time it takes from a
ranging measurement is produced in an MS, until the polling application on
the MS has an updated location estimate. The delay for the conventional col-
lection protocol does not change, since its delay only depends on the MS-AN
ranging interval µMS-AN and the polling interval of the application µloc. On the
other hand, the delay of the cooperative collection protocol seems to increase
slightly with the increase of the number of ANs.

With a mobile speed of 2 m/s and delays that are in the range between 0.5
to 1.4 seconds on average, the deviation caused by mobility and delay would be
around 1 - 3 meters. However, since the ranging measurements are inaccurate
due to noise and bias, and since the localization algorithms are using many
different measurements for location estimation, the actual localization error is
more complex to estimate.

Having presented the behavior of the network when considering realistic
communications constraints, we now focus our attention on the positioning
algorithms and how the realistic communications constraints affect them.
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Simulation parameters Value
Time 100 s
Size 100x100m2

Number of ANs (NAN) 30

Mobility model parameters Value
Number of MS groups (Ngroups) 6
Number of MSs per group (NMS/group) 4
Max spread relative to ref. MS in group (Dspread) 20 m
Movement speed (|v|) 2 m/s

Protocol parameters Value
AN ranging interval (µMS-AN) 1 s
P2P ranging interval (µcoop) 1 s
P2P ranging distance (Dcoop) 20 m
Location information update interval (µloc-info) 1 s
MS application request interval (µloc) 1 s
Localization processing time (µproc) 0.1 s

ns-2 PHY parameters Value
Path loss exponent (n) 2.9
Rician K-factor (K) 6
Transmit power (Ptx) 5 mW
802.11a PHY mode 6 Mbit/s, BPSK
Bandwidth 20 MHz
Frequency 5.18 GHz
Carrier Sense Threshold −92 dBm
Noise floor −106 dBm

Table 4.2: Simulation parameters

4.6.2 Positioning Part

Figure 4.12 shows the CDF for conventional (non-cooperative) and cooperative
positioning for both static solution and tracking with EKF. We observe that
for the static solution more than 10% of the MSs cannot be localized (e.g., due
to limited access to ANs or bad geometric conditions). This can be reduced
by application of the EKF resulting in an error being smaller than 10m in
90% of the cases. If we allow cooperation between the MSs this can further
be improved to around 3m.

In addition to these results, Figure 4.13 shows also the results with realistic
communications constraints. Here, we observe that the accuracy is decreased
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Figure 4.11: Average localization delay for varying number of ANs.
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Figure 4.12: Conventional vs. cooperative positioning using static solution
and EKF.

by 1m in the conventional schemes, whereas it is reduced by around 2m and
3m for CP using static solution and EKF, respectively. As expected, the
gap between realistic and perfect communications is higher for the CP scheme
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Figure 4.13: Conventional vs. cooperative positioning using static solution
and EKF with realistic communications constraints.

compared to the conventional approach. Nevertheless, assuming CP and an
EKF the 90%-error is still below 5m.

To evaluate the dependency on the MS-MS connectivity, in Figure 4.14 the
number of MSs per group is varied. Note that an increased number of MSs
per group automatically results in an increased overall number of MSs NMS

since the number of groups is kept constant. We observe that with only one
MS per group no noteworthy gains can be achieved by CP compared to the
conventional approach. Reason for that is that the connectivity between the
groups is only limited. If we increase the number of MSs per group, e.g., to 10,
cooperation can be exploited within each group and we achieve an 90%-error
of around 4m in this scenario. If we increase it further to 20, it can be seen that
the performance drops down rapidly, and in average around 12% of the MSs
cannot be localized. This could be explained by an increased communications
overhead for performing CP with the NMS = 120 MSs and the resulting latency
due to congestion.

Figure 4.15 depicts the dependency on the MS-AN connectivity. For a low
number of ANs in the scenario (e.g., 10), several MSs cannot determine their
position. In that situation also the cooperation gain is restricted since overall
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Figure 4.14: CP using EKF with realistic communications constraints and
different numbers of MS per group.

too few ANs are available. On the other hand, if the number of ANs is too
high (e.g., 70), the coverage by the ANs limits additional cooperation gains. In
this case where the AN coverage is so good the cooperation gain is marginal.

In chapters 5, 6, and 7 the localization error is represented as a 2-dimensional
symmetric Gaussian random variable, and it is interesting to see how well this
assumption fits with the present results. The plot in Figure 4.15 therefore
shows two CDF-curves of a 2-dimensional Gaussian position error. The er-
ror distance is calculated as: εerror =

√
X2 + Y 2, where X and Y are two 1-

dimensional zero-mean Gaussian random variables. The Gaussian CDF curves
have been hand-fitted to the results of the cooperative EKF algorithm, for
30 and 70 ANs. The curve for 30 ANs, shows quite good resemblance with
the Gaussian error curve, however the curve for 70 ANs does not fit as well.
Nevertheless, we assume that the value for CDF(εerror) = 0.68 is a good ap-
proximation for the standard deviation, since for a Gaussian distribution this
would correspond to the standard deviation. This result shows that the local-
ization error standard deviation can be as little as 2-3 meters, with a sufficient
deployment of ANs of between 30 and 70 ANs per 100x100 square meters. In
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Figure 4.15: CP using EKF with realistic communications constraints and
different numbers of ANs.

comparison to the results in Figure 2.5 on page 27, where an estimated stan-
dard deviation for a GPS systems approximately 13 meters and the result for
the hybrid localization scheme that is using GPS+Galileo+Cellular is 8 meters,
the considered cooperative EKF scheme with UWB ranging measurements is
clearly more accurate.

For further comparison, it is worth mentioning the survey of different local-
ization systems in [Liu et al., 2007]. Here the mentioned results for Wi-Fi based
systems are in the order of 1-3 meters for static positioning, however for track-
ing a walking user the only mentioned result is 5 meters with 90% probability.
Further, they describe that Bluetooth based localization can be as accurate as
2 meters with 90% probability, however only for static localization.

4.7 Conclusion

In this contribution, we have analyzed cooperative positioning and tracking al-
gorithms under realistic communications constraints. These constraints were
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modeled here based on a Wi-Fi infrastructure and error models based on em-
pirical measurements for UWB devices. It was shown that the introduction
of realistic communications constraints resulted in an added delay, which had
a significant effect on the positioning performance, especially for the coop-
erative algorithms. This is mainly due to the more complex measurement
exchange that is necessary to realize the centralized cooperative positioning
algorithms. We found that the static solution and the EKF algorithms were
similarly affected by the realistic communications constraints. Further, we
observed that increasing the number of cooperating MSs had a positive im-
pact on the positioning performance, as expected due to added cooperation
possibilities. However, this was only until a tipping point was reached and
the performance became worse with additional cooperating MSs. This tipping
point is likely a result of the communication overhead becoming large, which
in turn leads to increased delays. Nevertheless, in most cases the cooperative
approach strongly outperforms the conventional (non-cooperative) approach.
Specifically, the evaluation results showed that the localization error was quite
close to being Gaussian distributed and that a standard deviation of the track-
ing error of 2-3 meters represents the performance of the cooperative EKF
algorithm, if a sufficient number of anchor nodes is deployed in the considered
scenario.
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5
Location based Relay Selection

The contribution of this chapter targets the problem of mobile relay selection in
the small scale scenario presented in Figure 1.2. Specifically, this contribution
focuses on how inaccurate input information affects the performance of location
based and SNR based relay selection schemes. The relaying schemes are used
to enhance the throughput of downlink transmissions from the AP to mobile
destination nodes, by using two-hop relaying in cases where the direct link per-
formance is suboptimal due to bad link conditions. An SNR-measurement based
scheme and a location information based scheme are proposed and compared in
terms of how delayed and inaccurate state information and model parameters
impact the performance of the schemes.
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5.1 Introduction

In wireless networks the performance of data transmissions is depending on the
distance between the transmitter and the receiver as well as on the number of
collocated nodes and their activity patterns. In cases where such phenomena
cause poor link quality between a transmitter and receiver pair it is well known
in the literature that relaying techniques can be used to improve performance,
as described in chapter 2, However, as shown in Figure 5.1, there may be many
relay candidates to choose from.

S

R1

R3

R4

D

R2

Figure 5.1: For any given source and destination pair of a relayed transmis-
sion, there may be multiple candidate relays to consider.

Choosing the best relay node in a given situation requires information that
can be used to judge the quality of the concerned links, for example the links
shown with dashed lines in Figure 5.1. Typically, this information is updated
regularly, which allows to look up the most suitable relay node for a frame
transmission from a table of historic measurements. In general, such a relaying
system can be illustrated as in Figure 5.2.

As indicated in Figure 5.2, there are multiple error sources in such a relaying
system. In addition to inaccuracies due to measurement error and variations,
changes in the environment, such as node movements, can lead to the historic
information becoming outdated and thus inaccurate. Figure 5.3 exemplifies
how node movements can make historic measurements inaccurate.

The consequence of node movements has been investigated for the Coop-
MAC relaying protocol in [Liu et al., 2007] and it is found that as the average
node movement speed increases, the performance of the scheme decreases due
to outdated information on neighboring nodes’ suitability as relays. One way of
improving this situation would be to make sure that measurements are updated
frequently enough to cancel out the effect of node movements, however since
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Figure 5.2: Generalized relaying system where the relay to use for a frame
transmission is determined from historical measurements that may be affected
by the listed error terms.
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Figure 5.3: Node movements and aged measurements introduce errors in the
node position and link distance knowledge. X denotes a node position, d is
a link distance, tmeas is the time of the latest measurement, and tcur is the
current time.

this will increase the signaling overhead related to collecting measurements, it
is not immediately clear how to best trade-off this setting for a relaying system.
The CoopMAC protocol uses information on the achievable bit rate on each
link from past frame transmissions for relay selection, but in principle other
types of information could be used as well. Since location information is often
available on personal devices such as smartphones or tablets, as mentioned in
chapter 1, this type of information may be useful for relay selection. In this
chapter a location-based scheme and a link-quality based scheme are therefore
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compared and evaluated with respect to the impact of node movements. Fur-
ther, since the information used for relay selection is not necessarily completely
accurate, e.g., due to measurement error/variations, analyzing this aspect will
also be a part of the analysis. Finally, since the use of location information
requires a model that can estimate the performance based on node positions
in order to perform relay selection, it is interesting to study how inaccurate
model parameters impacts the relay selection.

5.2 Related Work

Within the field of relaying, much work has been done, first from an informa-
tion theoretic point of view and more recently from a practical network point
of view. In this section an overview of examples of existing work is given.

Initially, some examples of geographic relaying/forwarding protocols are
given. The GeRaF protocol presented in [Zorzi and Rao, 2004] is functionally
very similar to the Harbinger protocol described in [Zhao and Valenti, 2005].
Both protocols assume that nodes have perfect knowledge of their position and
that the position of the final destination is contained in the packet header.
The next hop node is however not known on beforehand. When potential
relays overhear the transmission, they let their contention time depend on
how close they are to the destination node, so that the receiving node closest
to the destination will act as the relay and the packet is forwarded towards
the destination. In practice, this type of protocols does not easily allow for
rate adaptation since the transmission distance for each hop is unknown, and a
transmitting node would not be able to judge which transmission mode is best
on beforehand. Even if the packet is forwarded successfully using the highest
bit rate, it could in some case be beneficial to use a lower bit rate, since the
packet could travel farther for each hop and thus require fewer hops to reach
the final destination.

An often referenced example of an IEEE 802.11 DCF based relaying scheme,
is the rDCF scheme described in [Zhu and Cao, 2006]. The scheme is basically
an extension of IEEE 802.11 DCF to support multi-hop transmissions. If a
node overhears a transmission between two other nodes, and it knows that it
can achieve higher bit rates towards each of these nodes from previous trans-
missions, it will add the sender and receiver to its willing list. The willing list
is periodically updated. Upon transmission, the sender coordinates with the
most suited relay, through a triangular handshake.
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A quite similar example of existing work is the coopMAC protocol [Liu
et al., 2007], which is also targeted at IEEE 802.11 based wireless ad hoc
networks. The protocol monitors and stores the achievable bit rates for trans-
missions between peers in its cooperation table. The information in these
tables are regularly exchanged between neighbor nodes. Upon transmission,
a node looks up potential helper nodes in the table, and uses an extended
but backwards compatible RTS/CTS handshake notify potential helper nodes.
As shown in [Liu et al., 2007], mobility outdates information about potential
helper nodes, which causes performance to decrease to the same level as if re-
laying was not considered. Even with low mobility (max 1 m/s, 60 s pauses),
the gain compared to standard 802.11 without relaying is less than 10%. Com-
pared to the rDCF protocol, CoopMAC is backwards compatible with IEEE
802.11 DCF, and can co-exist with such legacy nodes.

A further extension of rDCF is given in [Lu et al., 2009], where PRO (Pro-
tocol for Retransmitting Opportunistically) is proposed. Like CoopMAC and
rDCF it monitors link quality of overheard packets, stores these observations,
and periodically shares the information to the network. However, PRO uses
the IEEE 802.11e EDCA protocol to let high quality relays retransmit with
higher probability.

Finally, in [Tan et al., 2007] the protocol CODE is proposed. Also this
protocol uses the same principle as rDCF and CoopMAC for collecting infor-
mation about potential relays, but uses relaying to improve poor links using
VAA (virtual antenna arrays. VAA increases the achievable bit rate through
increased power gain. The fine synchronization that VAA requires, is achieved
by a beacon based synchonization scheme. The protocol is also backward com-
patible with IEEE 802.11, and the paper shows throughput improvements of
up to 60 %.

In [Liu and Wong, 2004] the Relay-Based Adaptive Auto Rate protocol
(RAAR) is presented. This protocol targets the performance anomaly in
802.11, in which nodes located far from the AP pull down the performance
of the whole network. By introducing forwarding relays for the nodes close
to the edge of the coverage area, the throughput of the whole network goes
up. Only upstream traffic in the Wide-Area Network (WAN) is considered in
this paper. The authors mention that the relay selection can be done based
on location information and current modulation scheme, which is exchanged
through periodical status reports. They also mentions that the data may be
outdated due to mobility or channel conditions.
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A different approach is taken with the CCMAC protocol presented in [Hu
and Tham, 2010], which aims at improving throughput for uplink transmis-
sions (client to AP) in the region near the AP by allowing simultaneous source
to relay transmissions. With this protocol, the AP is responsible for coordi-
nation and enabling of concurrent transmissions. The applied algorithm uses
reinforcement learning, which means that performance increases over time, as
the algorithm learns which relay configurations are best.

In [Narayanan and Panwar, 2007] the authors analyze two-hop relaying with
regard to throughput, delay, and energy consumption. The authors conclude
that two-hop relaying is not more energy demanding than direct transmission,
even though some nodes need to act as relays and perform extra relaying
transmissions, if the cost vs. benefit is considered on a large time scale.

A general problem for the rDCF and CoopMAC like protocols, is that they
are intended for mostly stationary scenarios. If nodes are moving, the entries
in the cooperation tables become deprecated, as shown clearly in [Liu et al.,
2007]. Another option is to use location information as mentioned in [Liu
and Wong, 2004], however the authors also give a word of caution since this
information can be outdated due to, e.g., mobility. The RAAR and CCMAC
protocols presented in [Liu and Wong, 2004, Hu and Tham, 2010] both focus
on improving the uplink throughput. However, in most cases where people
are downloading or streaming content from the internet, the majority of data
is moving in the downlink direction from the AP to the user node. In the
contribution presented in this chapter, relaying is considered for improving
throughput in the downlink direction and both link measurements and location
information is considered for the relay selection.

5.3 Centralized Relay Selection

In this work we consider the scenario where downlink transmissions are made
towards mobile users, as sketched in Figure 5.4. Audio or video streaming are
examples of applications leading to such traffic patterns. In such downlink sce-
narios we will therefore focus on centralized two-hop relay selection where it is
assumed that the AP is the source of all transmissions. Data transmissions can
be done directly to the destination MD or as a two-hop transmission via any
intermediate relay node, as sketched in Figure 5.4. Whether the transmission
is direct or relayed, is decided by the relaying schemes.
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Downlink transmissions

Figure 5.4: Example of downlink scenario where transmissions are made
from AP to a mobile destination node, either as a direct transmission or via
a mobile relay.

Generally, the relaying scheme should decide to make a transmission via a
relay if this path provides a better transmission quality than a direct trans-
mission. Formally, if Q denotes the transmission quality, this can be expressed
as:

QAP→D < QAP→R→D (5.1)

Further, in order to achieve the best performance, the relay Ropt that provides
the highest quality transmission should be used:

Ropt = argmax
R

QAP→R→D (5.2)

The quality of a transmission can be quantified using the most appropriate
metric for the application, for example low BER, low delay, or high through-
put. In this work two metrics are considered for the relaying condition in
equation (5.1). One is based on the BER, where the BER of the relayed path
is calculated as:

BERrel = 1− (1−BERAP→R) · (1− BERR→D) (5.3)

where the BER of each link is estimated from the SNR, using theoretical
expressions for the specific modulation scheme and Ricean channel from for
example [Proakis, 1995]. For efficiency, it would also be possible to pre-generate
a look-up table with expected BER for different SNR levels and Ricean K-
factors.
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The second selection metric is based on the expected throughput, which is
calculated using the throughput model described in chapter 3. The throughput
of a direct transmission is calculated as:

Sdir =
PAP→D
suc ·BMSDU

E[TAP→D
tx ]

(5.4)

and the throughput of the relayed path is calculated as:

Srel =
PAP→R
suc · PR→D

suc ·BMSDU

E[TAP→R
tx ] + E[TR→D

tx ]
(5.5)

where P x→y
suc is the probability of a successful frame transmission from node x

to node y, E[T x→y
tx ] is the expected time of a frame transmission from node x

to node y, and BMSDU is the frame payload size.

In order to evaluate the quality condition above, it is necessary to col-
lect measurements of the quality of the different paths. In this chapter, two
types of measurements are considered for this purpose. The first is a mea-
surement of the link quality between the mobile nodes in the form of SNR
measurements, whereas the second type constitutes location measurements of
the mobile nodes. In the following, two relay selection schemes are considered
that correspond to the two types of measurements.

5.3.1 SNR based Relay Selection

In order to obtain a view of the link quality of all possible relay paths, the AP
needs to collect SNR measurements for all links involved in the possible relay
paths. This is done by using the following two-step approach for each mobile
node, which is sketched in Figure 5.5. First, the mobile node broadcasts a
hello message, which allows the neighboring nodes to measure the RSS and
hereby estimate the SNR on the link towards that node. It is assumed that
all nodes are using the same fixed transmission power for the hello broadcasts.
This measurement is assumed to represent the link state at this moment in
time. Secondly, the neighboring nodes that overhear the hello broadcast send
measurement messages that contain the observed SNR measurements to the
AP. These hello broadcasts are generated by every mobile node periodically
with cycle time µhello[s].

Hereby N nodes that each send out a hello broadcast result in N · (N − 1)
measurement transmissions to the AP, in the case where all nodes receive all
hello broadcasts. The actual amount of measurement transmissions may vary
due to losses and possible retransmissions. As this approach generates many
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Figure 5.5: Based on a mobile device’s broadcasted hello message, the neigh-
boring nodes are able to measure the link SNR, which they transmit back to
the AP.

individual transmissions that contribute to the overhead, future work could
consider to accumulate a bulk of measurements at each MD before initiating
a transmission to the AP.

Whenever the AP has a frame transmission scheduled, it uses the available
collected measurements to determine the if the transmission should be direct or
relayed and if so, which relay to use. This is done using the equations (5.1) to
(5.5) given above, after calculating the expected BER or expected throughput
from the collected SNR measurements as described in chapter 3. However,
since old measurements may be misleading the AP has an age limit on the
storage time of measurements specified by the αstore parameter. Measurements
older than this threshold are discarded and not used for relay selection.

5.3.2 Location based Relay Selection

The idea behind this scheme is that by knowing the locations of the MDs
in the network, the path-loss, SNR and in turn the BER can be estimated
with propagation models by assuming fixed transmit power and approximating
propagation properties of the environment. Locations are obtained by letting
all MDs transmit location measurements periodically with interval µloc to the
AP using unicast transmissions, as sketched in Figure 5.6.

Whenever the AP has a frame transmission scheduled, the approach is ba-
sically similar to the SNR based relay selection in the previous section 5.3.1.
Also location information is discarded if too old. However, the collected lo-
cation information needs to be converted into link BER or link throughput
estimates to be useful for relay selection. First the path-loss is estimated using
the path-loss model presented in section 2.1.1. As the value of the path loss
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MD1

MD2

MD3

LocMD1

Figure 5.6: Location measurements are collected by sending them from each
mobile device to the AP.

exponent n is scenario dependent and its exact value is typically not known
in advance, we will investigate the sensitivity to inaccurate estimates of this
parameter in section 5.6.2.

Given a specific transmit power level Ptx, the calculated path-loss PL(d)
and assumed noise floor Nfloor, the SNR is calculated as:

SNR = Ptx + PL(d)−Nfloor −X [dB] (5.6)

where X is a random variable representing shadowing due to obstacles in the
environment. Initially we will assume X = 0, however in NLOS situations
that we will investigate later in this section it will be necessary to guess the
attenuation. This is covered in section 5.6.2. Having determined the SNR, the
expected BER or expected throughput can now be calculated as described in
chapter 3, and used for relay selection as described in the equations (5.1) to
(5.5).

5.4 IEEE 802.11 based Evaluation Scenario

In the following, the presented relay selection schemes are evaluated in a spe-
cific IEEE 802.11 based scenario, since the 802.11 technology is the de facto
standard for local wireless networks; typically denoted Wi-Fi. However, the
802.11 technology does currently not support relaying when working in infras-
tructure mode, so the proposed relaying schemes are foreseen as MAC protocol
extensions as described in the following.

In this scenario only a single AP and its associated mobile Wi-Fi devices
are considered, and it is assumed that there is no inter-cell interference from
neighboring cells. Since IEEE 802.11a supports 11 independent channels, this
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assumption is considered reasonable in situations where channels have been
allocated properly.

5.4.1 SNR Measurement Collection

The hello message is a IEEE 802.11 MAC frame without payload, since only
the MAC address is needed for the receiver to identify the broadcast source.
The frame has a total size of 20 octets. Notice that hello broadcasts may
be lost if collisions occur. In this case the state of the corresponding link is
not updated and the last successfully received measurement is used. We can
further define the age of a measurement as the elapsed time since the hello
broadcast of the latest measurement for that link was initiated. The age of
a link measurement is a stochastic process that is influenced mainly by the
hello broadcast generating process. For this evaluation, a random jitter is
added to the inter-event time for hello broadcasts, which ensures that hello
transmissions from different MDs are not in sync.

As described in section 5.3.1, whenever an MD overhears a hello broadcast
and thereby obtains an SNR measurement, it assembles a measurement frame
and sends it to the AP using a unicast transmission. Due to the small frame
size, RTS/CTS is not applied but standard 802.11 MAC retransmissions are
used if needed. The measurement frame is envisioned as being a MAC control
frame that carries the MAC address of the hello broadcast source (6 octets)
and the SNR measurement (2 octets), which amounts to a frame size of 28
octets when adding this information to the standard 802.11 control frame
layout [IEEE, 2007].

The AP identifies the link from which the measurement has been obtained
from the MAC addresses of the broadcast node and measurement node. Notice
that it is assumed that links are symmetric, meaning that for example the link
between MD1 and MD2 is updated both when MD2 overhears a broadcast
from MD1 and when MD1 overhears a broadcast from MD2.

Having obtained SNR measurements from links between devices in the
network, the AP can now chooses the best path.

5.4.2 Location Measurement Collection

Similarly to the case with hello broadcasts for the SNR measurement based
scheme, the initial transmission time is chosen for each node uniformly random
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in the interval [0, µloc]. Further, the following location measurement transmis-
sions are offset with a uniform random jitter in the interval [−0.1 ·µloc, 0.1 ·µloc]
to avoid transmissions being in sync. The measurement frame is a MAC con-
trol frame that carries the longitude (4 octets) and latitude (4 octets) of the
node. Assuming the longitude and latitude are given as a degree decimal
fraction and the circumference of the earth is 40000km, the precision that is
supported by this format is approximately 40000km

24·8
= 0.01m, which is judged

to be sufficiently precise. The frame size amounts to 28 octets when adding
longitude and latitude information to the standard 802.11 control frame layout
[IEEE, 2007]. This is the same size as the SNR measurement frame.

5.5 Evaluation Methodology

For evaluation we consider simulations of mobility and the wireless network
followed by a combined performance evaluation as sketched in Figure 5.7.

Figure 5.7: Simulation overview.

First a simulation of node mobility is generated based on the random way-
point mobility model, described in chapter 2. The outcome is a trace of the
movements of all nodes.

5.5.1 ns-2 Simulation

Now the ns-2 simulation1 is executed, based on the mobility trace and the
scenario specific parameters listed in Table 5.1. We use the 802.11ext module

1The ns-2 simulation is based on [Chen et al., 2007], which has been updated with the
author’s patch from October 21, 2008.
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to simulate realistic 802.11a behavior. This ns-2 version includes a Nakagami
fading model which has been parametrized according to Table 5.1 with model

parameters Γ = n and m = (K+1)2

2K+1
to approximate a Ricean fading environ-

ment.

For evaluating the SNR and location based algorithms, we use two different
custom ns-2 agents for generating and collecting measurements. For the SNR
based algorithm the agent in each MD periodically generate broadcasts and
forward overheard broadcasts to the AP, as described in section 5.3.1. For the
location-based algorithm, the agent makes each MD transmit a measurement
frame containing its location periodically as described in section 5.3.2. We
assume that MDs are able to obtain their own location coordinate (x, y)+ ǫpos
where ǫpos is a zero mean symmetric two-dimensional Gaussian error with
standard deviation σpos representing the localization inaccuracy.

The outcome of the ns-2 simulation is a trace file that for every node
describes when hello and measurement frames are received.

Scenario size 100m x 100m
No. of mobile devices 10
Mobility model Random Waypoint (speed: 2− 8m/s)
Rice K-value 6
Path loss exponent n 2.9 (based on [Durgin et al., 1998], outdoor meas.)
Modulation scheme BPSK (6 Mbit/s in 802.11a)
Noise floor -86 dBm
Transmission power 100 mW
σpos 0m

Table 5.1: Scenario parameters.

5.5.2 Data Transmission Simulation

In this work the measurement collection and data transmissions are simulated
separately in ns-2 and matlab, to make the implementation simpler and thus
allow for rapid prototyping. The considered solution does therefore not take
into account the mutual influence of the data transmissions and the mea-
surement collection and a future work item is to take this interaction into
account. We believe that even though this gives a slightly optimistic view of
the achieved performance, the analysis will still give valuable insights into the
benefits and drawbacks of measurement based and location based relaying al-
gorithms. With this simplification, this step simply constitutes the creation of
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a list of timestamps and corresponding destination nodes. The timestamp and
destination pairs in the list, specify when and to which mobile node the data
transmissions are done. The list of data transmissions is created with an expo-
nentially distributed inter-transmission time, with the rate being: 1

µtx
s−1. For

each transmission, a destination node is selected randomly among the mobile
nodes. The µtx inter-transmission time means that there is mostly some idle
time between transmissions. The performance results presented later in this
chapter, are based on an average of the BER or throughput achieved for the
transmissions. The idle time between transmissions is not included in these
results.

5.5.3 Generate Measurement Values

The purpose of this step is to generate the measurement values that correspond
to the timestamps of measurement availability, given by the output from the
ns-2 simulation. Here, SNR and location measurements are generated, taking
into account the influence of node movements and localization inaccuracy.
The measurements are generated as described in the following. For each data
transmission, the generated mobility model trace is processed, to determine
exactly where the mobile nodes are located at the time instant where the data
transmission is initiated. These positions are the true positions of the nodes
at the transmission time ttx, and it is denoted as Xn(ttx), where n is the node
id.

As the measurement based schemes are using collected measurements, it is
necessary to generate the measurements so that they correspond to the system
state for when the measurements were actually obtained, tmeas.

Location Measurements

Now, the location measurement for node n at transmission time ttx is given as:

X̂ loc
n (ttx) = Xn(tmeas,loc) + ǫpos (5.7)

where Xn(tmeas,loc) is the true node position at the time the measurement was
collected tmeas,loc, and ǫpos is a zero mean symmetric two-dimensional Gaussian
error with standard deviation σpos representing the localization inaccuracy.
This assumption is in line with the findings in Chapter 4 where the location
error was found to be approximately Gaussian distributed. The true node
position at the time a measurement was collected, Xn(tmeas,loc), is calculated
from the generated mobility trace.
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SNR Measurements

Like for the location based scheme the true node position for when a measure-
ment was obtained Xn(tmeas,loc), is used. However, since SNR measurements
relate to a link between two nodes, the positions of both nodes (n1 and n2) are
needed. The SNR measurement is generated by first determining the distance
between the nodes as:

d(n1,n2) = ||Xn1(tmeas,SNR)−Xn2(tmeas,SNR)|| (5.8)

and secondly to calculate the path loss and SNR using the path loss model
presented in chapter 2 on page 19 and the SNR calculation in section 3.3 on
page 45.

Notice that tmeas,loc and tmeas,SNR depend on the respective update frequen-
cies, used for each of the schemes.

5.5.4 Performance Evaluation

In order to evaluate the performance of the SNR measurement based path se-
lection scheme and the location measurement based path selection scheme, we
compare the performance of these schemes to the following reference schemes:
the case where the direct path is always used and the ideal case where exact
and updated link state information is always available.

The first step in the performance evaluation is that the relaying decisions
for each data transmission are calculated for each of the considered schemes,
given the available measurements. The relaying decisions are determined from
the conditions described in section 5.3 on page 80.

The second step is to apply the relaying decisions of each scheme on the ac-
tual link conditions for each data transmission, and thereby obtain the achieved
performance for each scheme. The actual link conditions are calculated in es-
sentially the same way as the measurements are generated and the relay de-
cisions are made, but for the true node positions and without location error.
First the actual link SNR is determined from the path loss between the nodes’
true positions. The actual SNR values for all link are then used to evaluate
the performance both in terms of average BER and average throughput:

The achieved BER of a link is calculated from the link SNR using the
berfading function in the matlab communications toolbox assuming BPSK
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modulation scheme and the Ricean fading model (K=6). For relayed trans-
missions, the path BER is calculated as specified in equation (5.3).

The achieved throughput is calculated from the link SNR using the through-
put model, with the performance of the direct and relayed transmission being
specified in equation (5.4) and (5.5), respectively. Also here BPSK modulation
scheme and the Ricean fading model (K=6) is assumed, as well as 6 Mbit/s
bit rate.

Another way to evaluate the considered relaying schemes, would be to
implement the relay decision protocol in a network simulator such as ns-2 or
OMNET++. This would allow to evaluate how well the relaying protocols per-
form in situations where both uplink and downlink transmissions are ongoing
and nodes are competing for channel access. This would mean that collisions
could occur, e.g., due to hidden and exposed node situations and this type of
evaluation could give a more realistic view of the achievable throughput im-
provements. However, as the purpose of this work is not to propose relaying
schemes that work better than the already existing schemes described in sec-
tion 5.2, but rather to analyze the difference in impact of mobility, delay and
inaccurate input information on the SNR based and location based schemes,
it was not found to be necessary with a full-blown network simulation.

Besides BER and throughput also the signaling overhead is calculated for
the considered relaying schemes, as described in the following section.

5.5.5 Signaling Channel Utilization

This metric gives the overhead spent on obtaining and collecting measurements
as a fraction of channel capacity, assuming all nodes are in a single collision
domain. First, the transmission time Tdata of hello and measurement frames
is calculated as a function of the number of bytes MAC payload BMSDU, as
specified in Appendix A. Here BMPDU = 20 bytes for hello broadcasts and
BMPDU = 28 bytes for SNR and location measurements.

Now the signaling channel utilization is estimated as in equation (5.9) and
equation (5.10), where N is the number of MDs.

Usnr =
N · (Tdata(BMPDU = 20) + (N − 1) · Tdata(BMPDU = 28))

µhello

(5.9)

Uloc =
N · Tdata(BMPDU = 28)

µloc

(5.10)
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The actual signaling channel utilization may vary slightly due to possible col-
lisions and retransmissions that are not accounted for in these calculations.

5.6 Results and Discussion

5.6.1 Signaling Overhead

Initially, we compare the overhead in terms of the channel utilization used for
signaling for the SNR-based and location-based relaying schemes.

In Figure 5.8(a) the channel utilization spent for obtaining and collecting
SNR measurements for different hello broadcast intervals and node densities is
shown. This has been calculated by inserting different values of N in equation
(5.9). As capacity should be used for data transmission and not spent as over-
head for measurement collection, a utilization of more than 10% is considered
unacceptable. In the plot we see that this limit is exceeded at slightly less than
40 MDs with µhello = 1s. In vehicular scenarios where even faster updates are
needed, we see that for µhello = 0.5s and µhello = 0.2s the utilization exceeds
the 10% limit for just 25 and 18 MDs, respectively. This result emphasizes the
need for a more efficient relay path selection scheme.
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Figure 5.8: Calculated utilization of channel for obtaining and collecting
measurements (Data rate is 6Mbit/s). Notice that the y-axis in Figure 5.8(b)
is only a tenth of the y-axis in Figure 5.8(a).

Turning our attention to the proposed location-based scheme, we see from
the channel utilization plots shown in Figure 5.8(b) that the used overhead
is much lower for this scheme compared the the SNR-based scheme. The
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curves are calculated using equation (5.10). Here, the 2% utilization is never
exceeded in the plot, even when we have 50 MDs with measurement intervals of
just µhello = 0.2s, which lead to a utilization of 90% for the SNR measurement
based scheme. This is mainly due to the fact that the utilization of the location
based scheme grows linearly with the number of MDs whereas the growth is
quadratic for the SNR based scheme.

5.6.2 Performance of the SNR based Algorithm

The results have been created using the parameters and settings listed in Ta-
ble 5.1 and Table 5.2. The default parameters for the ns-2 802.11ext model
have been used if not explicitly specified in the tables. The errorbar in the
results show the overall mean and 95% confidence intervals for the mean values
obtained in each simulation run.

Simulation time 360s
No. of simulation runs 16 - 32
Hello interval µhello 5± uniform(0..0.5)s
Location interval µloc f(N, µhello), see section 5.6.3
Transmission interval µtx 0.5 s (exponentially distributed)
Storage time αstore 20 s

Table 5.2: Simulation parameters in addition to Table 5.1.

Varying number of MDs

The first results in Figure 5.9 show the achieved BER for varying number of
MDs. We see that increasing the number of MDs does not have a practical im-
pact on the relative performance of the ideal and measurement based schemes.
However compared to the always direct scheme, the measurement based and
ideal schemes are gaining better BER performance. This demonstrates that
when the node density increases, further relay transmissions via short links are
possible, which in turn leads to reduced BER.

Varying hello interval

The next set of results shown in Figure 5.10 show the impact on the measure-
ment based scheme of varying the hello interval µhello compared to the ideal
and direct schemes.
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Figure 5.9: Achieved avg. BER for varying no. of MDs.

In Figure 5.10 we see that for µhello < 5s, the achieved BER of the mea-
surement based scheme is very close to the ideal scheme. As µhello increases,
the measurement based scheme tends towards the direct scheme. It is also
noteworthy that the BER never seems to increase above the level of the direct
scheme. This can be explained by the fact that all measurements that are
older than a predefined storage threshold are deleted and thus, they do not
lead to an uncorrect decision. By applying such storage threshold the entries
with the stale information are effectively discarded.
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Figure 5.10: Achieved avg. BER for varying µhello.

Varying node speed

We now analyze how the mobility model impacts the path selection. Figure
5.11 shows the achieved BER when the speed of the mobile devices is increased.
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The speed is varied from pedestrian up to vehicular speeds. The x-axes in both
figures represent the average speed according to Table 5.3. Figure 5.11 clearly

Speed [m/s]
ID min max avg.
1 0.5 2 1.25
2 2 8 5
3 5 15 10
4 10 20 15

Table 5.3: Minimum and maximum speed used for the RWP mobility model
and the corresponding ID and average speed.

shows that increasing the mobility speed leads to a significantly worse BER
peformance than the direct scheme. This is of course highly undesirable, as
the AP would be better off by using only direct transmissions. One obvious
solution would be to increase the hello broadcast rate, as this would reduce
the age of measurements. A downside to this is that the signaling overhead
increases linearly with the hello broadcast rate. Increasing the broadcast rate
is therefore costly in terms of capacity. We therefore investigate if limiting
the storage time with the αstore parameter can improve this situation without
increasing the signaling overhead.
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Figure 5.11: Achieved avg. BER for varying mobility speed.

Varying storage threshold

The results in Figure 5.12 show the achieved avg. BER for the mobility model
with parameters specified by ID 3 in Table 5.3, which has a significantly worse



5.6. Results and Discussion 95

performance than the direct scheme in Figure 5.11. In Figure 5.12 we see
that setting αstore = 2s the resulting avg. BER is slightly lower than the
direct scheme. Hereby we have shown that by proper setting of the αstore

parameter it is possible to enhance performance without additional signaling
overhead for a given scenario. As µhello = 5s in the considered scenario, setting
αstore = 2s entails that the AP does not always have knowledge of a link, but
measurements are only used when they are fresh, i.e. less than 2 seconds
old. Further, as we consider symmetric links, both measurements from the
two MDs of a link contribute to the AP’s knowledge of a link. this means
that the fraction of time where the AP has knowledge of a specific link, lies
in the interval between 2

5
and 4

5
, since hello broadcasts are unsyncronized and

assumed to be i.i.d.
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Figure 5.12: Avg. BER for varying αstore, for mobility model ID 3.

5.6.3 Performance of the Location based Algorithm

In this section now also the location-based relay selection algorithm is consid-
ered and compared to the SNR based scheme. Both results for the BER and
throughput relay selection schemes and for the BER and throughput perfor-
mance metrics are shown, in order to understand more clearly the difference
between the selection schemes.

Varying node speed

Figure 5.13 shows that for the same measurement rate (µhello = µloc) the SNR
and location based schemes perform similarly. However, if we instead use
the µloc that satisfies Usnr = Uloc (see equation (5.9) and equation (5.10)) the
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signaling overhead in terms of channel utilization will be the same for the SNR
and location based schemes. The performance of the location based scheme
will in this case be close to the ideal scheme.
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Figure 5.13: BER impact of varying node speed.

For all following results, the location based scheme uses the µloc that sat-
isfies Usnr = Uloc.

Considering the same scenario, though with different mobility speed, and
the BER based selection algorithm, the achieved performance expressed in
terms of throughput is shown in Figure 5.14(a). If we compare this to the
corresponding result in Figure 5.14(b) where the relay selection is based on
throughput, we can notice some differences between the results. Generally,
the throughput based selection leads to a slightly higher throughput for the
ideal and location based algorithms, as well as for the SNR based algorithm.
The direct scheme is, as expected, unaffected by the choice of selection criteria.

Notice that in the following results, a constant movement speed of 5 m/s
is used.

Varying location accuracy

As the accuracy of location information estimates depends on uncontrollable
factors and therefore may vary, we investigate the achieved performance for
different accuracy levels in Figure 5.15. The path loss model used for the
location based scheme uses the true path loss exponent n = 2.9 in this plot.
Figure 5.15 shows that the location measurement based scheme performs close
to the ideal scheme for σpos < 5m, while it is still better than the SNR based
scheme up to σpos < 10m and becomes worse than the direct scheme when
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(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.14: Throughput impact of varying node speed.
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Figure 5.15: BER impact of the accuracy of location measurements.
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crossing σpos ≃ 13m. Considering that GPS receivers typically achieve an
accuracy of 15m [Garmin, 2009], a GPS-only localization system may not be
accurate enough for location based relaying. A solution would be to consider
a hybrid localization approach using both GPS, Galileo and network based
localization techniques that have been shown to improve location accuracy as
described in chapter 2 and chapter 4.
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(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.16: Throughput impact of varying location error.

Figure 5.16 shows the corresponding results where the performance metric
is throughput, and the relay selection criteria is BER or throughput based.
Both results are quite similar to the BER results in Figure 5.15, in the sense
that the location based scheme is close to the ideal scheme for σpos < 5m.
However in Figure 5.16(a) the location based scheme crosses the direct scheme
at σpos ≃ 7m, and in Figure 5.16(b) it crosses at σpos ≃ 9m.

Varying path loss exponent guess

Since the path loss exponent cannot be assumed to be known, we investigate
the impact of varying the guessed value of n in Figure 5.17. Interestingly, the
performance of the location based scheme is very close to the ideal scheme for
values in a relatively wide range of 2 < n < 4. Correct estimation of the path
loss exponent does not seem to be highly important for achieving a near ideal
performance with the location based scheme.

Considering the corresponding throughput plots in Figure 5.18, we see that
the BER based selection results in a nearly similar performance for wide range
of path loss exponent values. The throughput based selection yields higher per-
formance than the BER based for values close to the true value (approximately
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Figure 5.17: BER impact of the accuracy of the used path loss exponent
compared to the true value of 2.9.

±0.3), but performs worse for values outside this range. The throughput based
selection is clearly more sensitive to inaccurate estimates of the path loss ex-
ponent than the BER based selection.
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(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.18: Throughput impact of the accuracy of the used path loss ex-
ponent compared to the true value of 2.9. Node speed is 5 m/s.

Varying NLOS attenuation

There may be cases where the direct propagation path between two nodes is
blocked by obstacles. This NLOS condition may occur between two MDs or
the AP and an MD. In this work we have introduced a horizontal ”wall” that
attenuates all crossing transmissions, but does not hinder node movements.
In Figure 5.19 we investigate the impact of varying the wall attenuation for a
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wall that is placed 0.25m below the AP. That is, the AP has LOS to all MDs
in the upper half of the scenario and NLOS towards all MDs in approximately
the lower half.
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Figure 5.19: BER impact from NLOS caused by horizontal wall for increas-
ing attenuation.

All schemes achieve worse performance for increasing wall attenuation.
However, it is clear that the ability to sense the wall attenuation is benefi-
cial. This is clear by noticing that the performance of the ideal and SNR
based schemes does not degrade as much as the location based and direct
schemes. When transmitting to an MD in the lower half of the scenario, the
direct scheme will experience the attenuation for all transmissions from the AP
to such nodes, whereas the ideal and SNR based schemes can take the attenua-
tion into account when selecting a relay node. Since the location based schemes
uses only the path loss model for predicting link states, the wall attenuation
is not taken into account and the relay can even be chosen in such unfortu-
nate way that the wall is crossed in both the AP-relay and relay-destination
transmissions. This can be seen in Figure 5.19, where the BER of the location
based scheme even exceeds the direct scheme.

The plots in Figure 5.20 shows how the BER and throughput based schemes
cope with unknown NLOS attenuation. The most notable difference is the
impact on the location based scheme. For this scheme, the throughput based
selection does not suffer so much from the unknown attenuation as the BER
based selection does. Generally, the plots show that even a little unknown
attenuation has a big negative impact on throughput performance.



5.6. Results and Discussion 101

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

A
vg

. T
hr

ou
gh

pu
t [

M
bi

t/s
]

NLOS attenuation [dB]

 

 
SNR
Loc.
Ideal
Direct

(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.20: Throughput impact of increasing NLOS attenuation.

Varying NLOS attenuation guess

Assuming that the AP has access to a spatial map of obstructions that cause
NLOS conditions, the performance of the location based scheme can be im-
proved in NLOS conditions. The map could be used to determine if there is
LOS between two node positions. For LOS situations the attenuation term X
in (5.6) is zero, while for NLOS it will be nonzero. But as the wall attenuation
may very well be unknown, we investigate the performance impact of different
guesses for the attenuation value. We use a wall attenuation of 13.3dB in
our simulations, since according to reference [Durgin et al., 1998] this value is
typical for home walls.

Figure 5.21 shows that as the NLOS attenuation guess gets close to the
true value of 13.3dB, the avg. BER of the location based scheme decreases.
Guesses exceeding the true value do however not cause an increase in the BER.

The throughput plots in Figure 5.22 basically show the same behavior, and
there is no noteworthy difference between the BER and throughput selection
schemes. Notice that the transmit power has been increased to 300 mW, as
the NLOS attenuation resulted in very low throughput.

In addition to the wall position 0.25m below the AP, we also investigate the
situation where the wall is half-way between the AP and the bottom border
of the scenario, which corresponds to 25m below the AP. This result is shown
in Figure 5.23.

Primarily, we can see that the conditions have become difficult for even the
ideal scheme as the BER has shifted a decade up, compared to Figure 5.21.
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Figure 5.21: BER impact for different guesses of the unknown NLOS at-
tenuation with a true value of 13.3dB. Wall is close to AP. Node speed is
5m/s.
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(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.22: Throughput impact for different guesses of the unknown NLOS
attenuation with a true value of 13.3dB. Wall is close to AP. Tx power is 300
mW.
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Figure 5.23: BER impact for different guesses of the unknown NLOS atten-
uation with a true value of 13.3dB. Wall is halfway between AP and bottom.

Further, it can be seen that under- or overestimation of the wall attenuation
has a clearly negative impact on performance. So in this case, a priori knowl-
edge of the wall attenuation is needed to obtain good performance. The wall
attenuation could be obtained by evaluating both SNR and location measure-
ments in the online system, however this is a topic for future work.
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(a) BER based relay selection
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(b) Throughput based relay selection

Figure 5.24: Throughput impact for different guesses of the unknown NLOS
attenuation with a true value of 13.3dB. Wall is halfway between AP and
bottom. Tx power is 300 mW.

Finally, the plots in Figure 5.24 shows the corresponding throughput plots.
Like the BER had increased for this wall position compared to the previous
wall position, the throughput has gone down compared to Figure 5.22. The
BER and throughput based selection schemes are equally affected by inaccu-
rate guesses of the NLOS attenuation. Within a range of ±5dB, the achieved
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throughput is close to the ideal scheme, which means that ±5dB is an accept-
able deviation.

5.6.4 Outlook on Analytic Model

In the results presented above, the location based scheme has been using a high
update frequency for location information. While this was a fair assumption
for the comparison to the SNR based scheme, as they used the same signaling
overhead, in practice it may be useful to have less frequent location updates and
spend only the necessary signaling overhead. The presented evaluation results
and analysis framework are clearly useful for choosing meaningful values of
the system parameters related to measurement update frequency and storage
threshold. However, it can be a cumbersome task to simulate all imaginable
parameter combinations in order to set the system parameters correctly. A very
useful extension of this work would therefore be to consider an analytic model,
which could be used to determine the system parameters more efficiently.

A starting point for constructing such an analytic model could be to focus
on the decision of whether to use a given relay node for a source and destination
node pair or not, as sketched in Figure 5.25. The idea is based on the fact
that for a source and destination node pair, the usefulness of a relay depends
on the position of the relay. The closer the relay node is to the center of the
gradient circle in the figure, the better suited it is. Of course this also depends
on the positions of the source and destination nodes. If they can already use
the highest possible bit rate for direct transmissions, there is no need to use
the relay. Notice that the benefit-gradient may not necessarily be a circle as
sketched in the figure.

In order to decide if a relay is useful, the envisioned analytic model should
be able to give an estimate of the achievable performance gain of using the
relay node. The idea is to have the model take into account the age of measure-
ments, the node movement speeds, and the localization error, when calculating
the estimated gain. These factors are shown in the figure as uncertainty regions
around the mobile relay node and the mobile destination node. The meaning
is that actual positions of these two nodes are outlined by these uncertainty
regions. Assuming that the AP, which uses the model, has a set of measure-
ments of the relay and destination nodes’ positions. Now, given the age of
these measurement and the nodes’ movement speed, the probability distribu-
tion of their current positions could be computed. Further, since the location
measurements are most likely inaccurate to some degree, the probability dis-
tribution of the location error should also be taken into account. In the figure,
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Figure 5.25: Principle of analytic model for relay selection. The gradient
shows the benefit of different relay positions (darker is better), and the dashed
circles are uncertainty regions, due to localization error, measurement age and
node mobility.

these probabilistic uncertainties have been illustrated in a simplified way with
the dashed circles. In the model, the probability distributions should be used.
If the movement directions of the nodes are unknown, an assumption of all
angles being likely possible would probably be useful. On the other hand, if
movement prediction was used, an approximated movement direction could re-
duce the uncertainty of the model. A possible application of the model would
then be to determine if a given relay would be beneficial to use with, e.g., 95%
confidence.

A possibly framework for this analytic model would be the Mismatch Prob-
ability (mmPr) framework described in [Bogsted et al., 2010]. The uncertainty
regions described above, can be formulated as the mismatch probability of lo-
cation information after a probabilistic delay, which can be calculated analyt-
ically using this framework, as it is done in [Olsen et al., 2010]. This work
would then need to be extended to take into account the relaying aspect.
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5.7 Conclusion

The scenario considered in this work concerns downlink data transmissions in
a IEEE 802.11 based wireless network with mobile users, where transmissions
can be either direct or two-hop relayed. The focus of this work has been on
analyzing the impact of mobility, delays and inaccurate information on an SNR
measurement based and a location based relay selection scheme. The schemes
have been evaluated using ns-2 and matlab simulations for the random way-
point mobility model. The results of the two relaying schemes were compared
to a scheme that always uses direct transmissions and an ideal scheme that
has instant and perfect link state knowledge. Also, both a BER based and a
throughput based relay selection criteria were considered.

The results show that for relatively fast moving mobile devices (5−15 m/s)
the achieved avg. BER performance of the SNR measurement based scheme
can get significantly worse than the always direct scheme. Increasing the hello
broadcast rate can mitigate this effect, however, at the cost of a linear increase
in signaling overhead. We show that by limiting the measurement storage
time, i.e. letting the AP use only fresh measurements, we are able to achieve a
performance slightly better than or equal to the always direct scheme without
increasing the signaling overhead. This result underlines the importance of
choosing the storage threshold parameter carefully in scenarios with mobile
devices.

In cases with fast moving users, the measurement collection frequency that
is required for acceptable performance results in a large signaling overhead. In
these cases the location based scheme, which uses a path loss model for relay
selection, creates considerably less signaling overhead than the SNR measure-
ment based scheme. We have shown that due to reduced signaling overhead,
this scheme allows considerably higher movement speeds as compared to the
SNR measurement based scheme. In the considered case, a four fold increase
of the movement speed was possible.

Further we found that the location accuracy required to achieve close to
ideal performance was around 3-4 m standard deviation. With the considered
localization system in Chapter 4 having an approximated standard deviation
of 2-3 m, it can be concluded that location based relaying is feasible with this
kind of system. However, for the GNSS and cellular based localization systems
presented in Figure 2.5 on page 27 the estimated standard deviations of 8-13
meters would not be acceptable.

As the parameters of the environment are not always known in advance, we
have investigated the sensitivity of the location based relaying scheme towards
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inaccurate settings of parameter in the path loss model. With regard to the
path loss exponent, which is typically either unknown and thus guessed from
the environment characteristics or estimated as the average over a larger area,
we found that estimates within a relatively wide range of ±1.5 around the true
value resulted in near-optimal results for the BER relay selection criteria. This
was significantly different for the throughput critera selection, as the acceptable
range here was only in the order of ±0.3. In the case of a NLOS situation,
we found that the relaying performance was severely degraded if the location
based relaying did not have a priori knowledge of the NLOS situation. If on
the other hand knowledge of LOS/NLOS between nodes was made available
by extending the location based scheme with a spatial map of obstructions,
the obtained performance was useful for estimates within ± 3dB of the true
attenuation factor. A hybrid scheme that combines the low overhead from the
location based scheme with the sensing ability from the SNR based scheme
would therefore be an interesting topic for future work. Specifically, location
information could be used for selecting a few of the most promising relay
candidates, for which dedicated link measurements are obtained in order to
detect and adapt to the actual channel state on those links.

Generally, it was noticed that the throughput selection criteria yields slightly
higher throughput than the BER selection criteria, whereas the BER criteria
seems to be more robust, for example towards inaccurate path loss exponent
values.

A promising future work item would be to develop an analytic model which
is able to judge the usefulness of different relay choices when taking into ac-
count the possible movements, localization inaccuracy, and measurement age.
This could be realized by extending the work in [Olsen et al., 2010] to include
the relaying aspects.
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6
Joint Location based Relay Selection

and Power Adaptation

The contribution of this chapter is an extension of the centralized relay selec-
tion mechanisms presented in the previous chapter. Specifically, a cross-layer
optimization is proposed, which uses location information to jointly choose the
optimal relay and relay transmit powers that allow two concurrent relay-to-
destination transmissions. The outcome of this optimization is an increased
throughput for certain node constellations compared to regular two-hop relay-
ing. As this optimization relies on location information for interference pre-
diction, the impact of inaccurate location information is analyzed.
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6.1 Introduction

In the previous chapter 5, the two-hop relaying technique is used to improve
throughput for nodes located near the edge of the AP coverage zone in the
small-scale scenario. Instead of always using a direct transmission from the
AP to the destination node, an intermediate relay node is used, since this can
improve performance, as the relay node is typically closer to the destination
than the AP.

Just like spatially well-separated Wi-Fi hotspots can work simultaneously it
may therefore be possible to have spatially separated relay-to-destination (r-d)
transmissions ongoing simultaneously, as sketched in Figure 6.1. In such a case
it could be possible to increase the total throughput, if the transmission time
can be lowered. A prerequisite for this is however that the mutual interference
that each r-d transmission creates does not disturb the other r-d transmission
so much that the frame loss leads to a lower throughput.

(a) First AP-r transmission (b) Second AP-r transmission

(c) Simultaneous r-d transmissions

Figure 6.1: Principle of simultaneous relay to destination transmissions.
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The research question being addressed in this chapter is therefore to inves-
tigate if location information can be used to allow simultaneous r-d transmis-
sions, especially how suitable location information is for interference predic-
tion, and how accurate the location information needs to be. Since the level
of mutual interference depends on the positions of the relay nodes, destination
nodes, and the used transmit power, these parameters should be taken into
account. More specifically, this chapter concerns a location based cross-layer
optimization that determines the best relay nodes and relay transmit pow-
ers for a pair of destination nodes, in terms of maximizing throughput when
taking into account the generated mutual interference. In the following, this
scheme will be referred to as SimTX, which is an acronym for simultaneous
transmissions.

Figure 6.2 relates this contribution to the contribution in the previous chap-
ter 5. Here, interference is taken into account for selecting relays and relays’
transmit powers. The greyed out parts in the figure, namely measurement
collection and error terms, are not considered in detail in this chapter but are
accounted for in combination as a general localization error.
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Figure 6.2: Extended version of the general relaying system in Figure 5.2.
The grayed-out parts are not considered in details in this chapter, whereas the
bold text shows the additions.

Since the principle of simultaneous transmissions (sketched in Figure 6.1)
requires two destination nodes, it is necessary to compare the achieved results
to the case of non-simultaneous transmissions to the same two destination
nodes. For evaluation, we compare the achieved performance of the SimTX
scheme to existing transmissions schemes, namely direct transmission and se-
quential two-hop relayed transmission, as described in chapter 5.
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An example of the possible node layout for the considered small-scale sce-
nario is shown in Figure 6.3. Here, the two destination nodes, denoted primary
and secondary, are shown in solid, and the corresponding candidate relays are
shown with plusses and crosses. A detailed description of the applied relay
selection scheme is given later in section 6.3. For simplicity we only consider
downlink transmissions initiated from the AP to mobile nodes, and do therefore
not consider potential influence from mobile nodes in surrounding networks.
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Figure 6.3: Example of the node layout, with primary and secondary desti-
nation nodes and their potential relays.

6.2 Related Work

The idea of interference aware tuning of transmit power, to allow co-existing
users, is well known in the literature. This section presents some relevant
examples of related work.

General DCF-optimizations

In much existing work related to IEEE 802.11, the RTS/CTS scheme is used
to obtain CSI, which is then exploited for transmit power and rate adaptation.
One such example is [Qiao et al., 2003] that presents an energy-effective DCF.



114 Joint Location based Relay Selection and Power Adaptation

Here the RTS/CTS handshake is used to probe the link quality and from this
select the most appropriate PHY mode and transmit power level in terms of
delivered data per joule.

The DCF extension proposed in [Chevillat et al., 2005] does transmit power
and rate adaptation, only from the successful or unsuccessful reception of an
ACK at the source. If an ACK is not received, the source concludes that the
signal quality was insufficient and it increases the transmit power or lowers the
data rate. If several ACKs are received successfully for several transmissions,
the transmit power is lowered or the data rate is increased.

In [Nadeem et al., 2005] a similar extension of the 802.11 DCF is proposed.
However, instead of probing the link quality, location information is included
in the RTS/CTS handshake. By using a propagation model, the nodes are
able to make better interference predictions and blocking assessments, which
increases the achieved throughput.

Ad hoc networks

Another approach, targeted at ad hoc networks is presented in [Kim et al.,
2006]. The authors achieve capacity and performance improvements of up to
22 % by interference-aware tuning of transmit power, bit rate, and carrier sense
threshold.

Further, in [ElBatt and Ephremides, 2004] the authors propose a scheme for
joint scheduling and power control for wireless ad hoc networks. The algorithm
works in two steps, where in the first step the scheduling algorithm coordinates
transmissions of independent users so that strong levels of interference are
avoided, and in the second step the power is allocated to transmissions.

Infrastructure oriented

As the AP in an infrastructure oriented network is the central data exchange
point, it is often a bottleneck and thus an obvious case for optimization. The
following examples of existing work are targeted at such scenarios.

Initially, in [Lim et al., 2006], the authors improve downlink throughput
near Internet gateways by using signal strength measurements to create a vir-
tual interference map, from which different multihop routing paths are planned,
thereby allowing simultaneous transmissions.



6.3. The SimTX Scheme 115

Another scheme, which improves throughput in 802.11 WLANs by means
of simultaneous transmissions, is the CCMAC protocol proposed in [Hu and
Tham, 2010]. The protocol uses a partially observable Markov decision process
model to determine the best transmission rate and relay nodes. Further, it
allows simultaneous source-to-relay transmissions for uplink transmissions to
the AP. For selecting relay nodes and determine usable bit rates, the scheme
uses past link measurements and overheard transmissions, similarly to the
relaying protocol CoopMAC [Liu et al., 2007].

In [Ma et al., 2008] the authors propose a transmit power and carrier sense
threshold adaptation algorithm for high density IEEE 802.11 WLANs (both in-
frastructure and ad hoc). The algorithm detects the type of frame loss as either
interference or collision, and based on that it jointly tunes the corresponding
network parameters (physical carrier sensing threshold, transmit power) ac-
cordingly. They show that in high density WLANs the link throughput is
greatly increased compared to using only carrier sensing threshold adaptation.

Finally, in [Li et al., 2010] the authors propose a differential evolution based
algorithm for power control and scheduling in wireless mesh networks. By
foreseeing possible conflicts based on the traffic patterns across the network,
the algorithm is able to calculate the optimal active time of each traffic pattern
as well as bit rate and power level for the corresponding relay nodes.

In the reviewed literature there are examples of location based power adap-
tation, joint relay selection and power adaptation, and interference aware
power adaptation for allowing simultaneous transmissions. However, to the
best of our knowledge there are no previous examples in the literature of ”cen-
tralized location based joint relay selection and power adaptation for simulta-
neous downlink transmissions”.

6.3 The SimTX Scheme

The sequence of events in the case where two r-d transmissions occur simulta-
neously is sketched in Figure 6.4. Initially, the AP runs the cross-layer opti-
mization algorithm, which determines the relays and relay transmit powers to
be used for the primary and secondary transmissions. This calculation is based
on information regarding the positions of the AP and the mobile nodes, which
is collected periodically as described in the previous chapter 5. Hereafter, the
two AP-r transmissions are done sequentially using the maximum transmit
power level. For the simultaneous r-d transmissions we assume that the relay
nodes can choose a power level from a fixed and discrete set. The aim of the
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adjustments is to limit cross-interference. We assume that the AP is able to
schedule transmissions in a way so that R1 and R2 can transmit simultane-
ously to D1 and D2, respectively, and that the MAC protocol is modified so
that this is possible. These simultaneous transmissions happen immediately
after the ACK for Data2 has been transmitted by R2 to the AP. If R1 does not
overhear the ACK from R2, it should wait the time of an ACK, a DIFS, and
a short back-off period, to allow a possible retransmission of Data2. When R1
overhears the ACK from R2, it means that R2 has successfully received Data2,
and both R1 and R2 are ready to start the simultaneous transmissions. R1 and
R2 should therefore start their transmissions immediately hereafter. This can
be ensured if R1 and R2 initiate the simultaneous transmissions after waiting
for the time of a SIFS, after the ACK from R2 has been transmitted. This
behavior would require a modification to the MAC protocol, so that relays can
be instructed to act in two additional transmission modes: two-hop relayed or
simultaneous transmissions. In practice, the AP would use additional frame
header fields in the data frames to notify the relays of the transmission mode
and transmit power to use for a given pair of transmissions.

APR1 R2 D2D1

Data1

ACK

Data2

ACK

Data1

ACK

Data2

ACK

Choose relays (R1, R2) and transmit power

Figure 6.4: D1 and D2 are the destination nodes, R1 and R2 are the relays
and AP is the source of the transmissions.

The proposed cross-layer algorithm for joint relay selection and power adap-
tation works as a scheduling algorithm for the AP’s transmit queue. In order
for two packets to be suited for simultaneous transmission, their destination
nodes need to be located so that the simultaneous r-d transmissions do not
interfere too severely. Assuming that the AP knows the positions of all relay
and destination nodes, it can evaluate the expected interference for specific
choices of destination pairs. The task of the relaying scheme is therefore first
to schedule the packets in the queue in such a way that pairs of destination
nodes that are suited for simultaneous transmissions are scheduled accordingly,
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and further to select the most suitable relay nodes and transmit power levels.
For this we propose an algorithm which is divided into the following steps:

Form pairs The AP picks the first packet in the transmit queue as the
primary destination node. In order to have simultaneous transmissions a sec-
ondary destination node is also needed. We assume that a scheduled trans-
mission can be upgraded to be the secondary transmission if it seems suited
for simultaneous transmission. This is similar to the approach used in [Lim
et al., 2006]. To limit cross-interference, we select the secondary node as the
node that is closest to the coordinate: (−xpri,−ypri).

Since the choice of secondary destination node is not independent of the
relay positions, another node could be more suited. However, to keep com-
plexity low, we do not consider the destination node selection as a part of the
optimization problem.

Choose potential relays Having determined the two destination nodes,
the best suited relay nodes are sought. Initially, a pre-filtering is performed to
rule out unsuited relays. As potential relays we consider those where both the
AP-r distance and the r-d distance are less than the AP-d distance:

dAP-d > dAP-r ∧ dAP-d > dr-d. (6.1)

Find max-throughput configuration In this step, the algorithm solves
the 4-dimensional optimization problem of finding the best configuration of
relays and transmit power. It does this by computing the expected throughput
of all combinations of primary and secondary candidate relays and available
transmit power levels for these relays. The best configuration is the combina-
tion that has the highest throughput.

Transmit data frames Given the determined best configuration, the AP
now transmits the data frames either directly to the destination nodes or to the
relay nodes. The transmit power level to be used by the relay nodes, should
be specified by the AP as an extra option in the frame header.
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6.4 Throughput Calculation

In order for the SimTX algorithm to evaluate the expected throughput of dif-
ferent relay and transmit power configurations, we apply the throughput model
presented in chapter 3. As we are interested in comparing the performance of
the proposed SimTX relaying scheme to existing transmission schemes, we con-
sider also the expected throughput for direct transmissions as well as two-hop
relaying.

For comparison we calculate the average throughput, which is Delivered data
Transmission time

,
of the primary (pri) and secondary (sec) transmissions of the considered algo-
rithms. For the direct algorithm the throughput1 is:

Sdir =
(P pri

suc + P sec
suc) · BMSDU

E[T pri
tx ] + E[T sec

tx ]
(6.2)

where the MAC payload size BMSDU is given in octets.

In the following, we use the indices 1 and 2 to indicate the AP-r and r-d
transmissions. The throughput for the two-hop relaying algorithm is calculated
as:

Srel =
(P pri,1

suc P pri,2
suc + P sec,1

suc P sec,2
suc ) · BMSDU

E[T pri,1
tx ] + E[T pri,2

tx ] + E[T sec,1
tx ] + E[T sec,2

tx ]
. (6.3)

Finally, we calculate throughput for the SimTX algorithm. In this equa-
tion, the parameters with index 2, i.e. corresponding to the simultaneous r-d
transmissions, are based on the SINR calculation in equation (3.2) where the
mutual interference is taken into account. The resulting throughput is:

Ssim =
(P pri,1

suc P pri,2
suc + P sec,1

suc P sec,2
suc ) · BMSDU

E[T pri,1
tx ] + E[T sec,1

tx ] + E[max(T pri,2
tx , T sec,2

tx )]
. (6.4)

E[max(T pri,2
tx , T sec,2

tx )] is calculated from the cdf of the maximum of two inde-
pendent RVs X and Y :

P (max(X, Y ) ≤ c) = P (X ≤ c and Y ≤ c) (6.5)

= P (X ≤ c)P (Y ≤ c) = FY (c)FX(c).

This is true for independent RVs. However, if one transmission is successful
and the other fails, the single retransmission experiences a better SINR. The

1To get throughput in Mbit/s, multiply the results by 8 · 10−6.
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assumption of independence between T pri,2
tx and T sec,2

tx is therefore expected
to result in slightly pessimistic results. The influence of this assumption is
investigated by simulation in section 6.6. Consequently we get:

F
T

(2)
tx
(t) = P (max(T pri,2

tx , T sec,2
tx ) ≤ t) = F

T
pri,2
tx

(t)FT
sec,2
tx

(t) (6.6)

where F
T

(2)
tx
(t) is the product of the cdfs of the time spent per transmission

attempt on the simultaneous r-d transmissions, which is simply the elementwise
product of two vectors of length R + 1. Since T

(2)
tx > 0, we may compute the

expectation of the maximum as:

E[max(T pri,2
tx , T sec,2

tx )] =

∫

∞

0

(1− F
T

(2)
tx
(t))dt. (6.7)

6.5 Evaluation Methodology

The proposed SimTX scheme is evaluated through extensive simulations. The
simulation framework used for this has been programmed in matlab. The Wi-
Fi protocol considered in this work, is assumed to be based on IEEE 802.11a
PHY and MAC layers described in [IEEE, 2007], however modified so that the
AP can do frame re-scheduling, and instruct relay nodes on which transmission
mode to use and which transmit power to use, through custom frame header
fields. For simplicity it is further assumed that all transmission are of the same
payload length and that all entities use the same fixed modulation and coding
scheme, which is the 6 Mbit/s mode specified for IEEE 802.11a. Also, the
nodes are assumed to be statically positioned (i.e., not moving around) and
their locations are assumed to be known perfectly.

Also in this scenario it is assumed that there is no inter-cell interference
from neighboring cells. Since IEEE 802.11a supports 11 independent channels,
this assumption is considered reasonable in situations where channels have
been allocated properly.

Specifically, for each simulation run, the following is performed:

1. Generate random node layout

2. Randomly select primary destination node

3. Run the algorithm to find secondary destination node and candidate re-
lays, and for each of the considered transmission modes (direct, two-hop,
and SimTX), calculate the best relay and transmit power configuration,
in terms of expected throughput.
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4. Calculate the achieved throughput for the best configuration for each
mode, given the known node locations. These are the evaluation results.

In both the third and fourth step, the throughput is calculated using the for-
mulas in section 6.4. In the third step, the three transmission modes are treated
differently. For the direct scheme, only the two (sequential) direct transmis-
sions are possible. For the two-hop relaying mode, the expected throughput
for all relay candidates for each destination node is calculated, and for each
destination node, the relay, which leads to the highest expected throughput is
selected. These two relays constitute the best configuration. The number of
combinations that are considered is simply: ND1

cand +ND2
cand, where ND

cand is the
number of candidate relays for destination node D. For the SimTX algorithm,
the candidate relays for each destination node cannot be considered indepen-
dently as for the two-hop relaying mode, since they are influencing each other
during the simultaneous transmission phase. Therefore, it is necessary to iter-
ate over all combinations of relays among the two sets of relay candidates and
all combinations of relay transmit power levels. This amounts to the following
number of combinations:

ND1
cand ·ND2

cand · (NPtx)
2 (6.8)

where ND
cand is the number of candidate relays for destination node D and NPtx

is the number of available transmit power levels for each relay node.

In order to validate the independence assumption used to calculate the ex-
pected throughput for the SimTX algorithm in the previous section 6.4 and
the simplifying assumption of the ACK having the same SINR as the forego-
ing data transmission, an embedded simulation of the IEEE 802.11 back-off
mechanism has been created. This embedded simulation simulates the trans-
mission and reception of the individual data and ACK frames for the AP-to-
relay and the simultaneous relay-to-destination transmissions. The outcome
of each frame transmission is stochastically determined based on the frame
size and the BER. Here the BER level depends on the SINR level for the
particular transmission. If for example one of the destination nodes in a si-
multaneous relay-to-destination transmission does not successfully receive the
data frame but the other destination does, the retransmission of the failed
transmission will have a higher SINR, since there is no interference. These
embedded stochastic simulations were repeated 10 000 times.

For all results shown in the following section 6.6 but the last, the locations
of the relay and destination nodes are assumed to be perfectly known. How-
ever, for the results in Figure 6.11, a stochastic zero-mean two-dimensional
Gaussian distributed location error has been added to each of the relay and
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destination nodes’ locations, in order to investigate the impact of inaccurate
location information. In this case, the SimTX algorithm is using the inac-
curate location estimates for determining the best transmission mode (direct,
two-hop, or SimTX) and configuration (relays and transmit power). In order
to evaluate the achieved throughput, the chosen configuration is therefore ap-
plied to the equations in section 6.4 in combination with the actual locations
of the relay and destination nodes.

6.6 Results and Discussion

In this section we use the simulation framework described in the previous
section to evaluate the proposed SimTX algorithm in comparison to direct
transmissions and two-hop relaying. The simulation study considers a small-
scale scenario, specified in details by the parameters in Table 6.1.

Parameter Value
Scenario size 100m x 100m
AP position (0,0)
Number of nodes 30
Path loss exponent (α) 2.9
N0floor −86dBm
Ricean K-factor (K) 15
Bit rate 6 Mbit/s
Modulation scheme BPSK
Max no. of retransmissions (R) 7
BMSDU 1024 bytes
Ptx levels available 0, 5, 10, 20, ... , 90, 100 mW

Table 6.1: Scenario parameters

The following results are calculated using the throughput model in the sce-
nario specified in Table 6.1. The BER-throughput relationship of the through-
put model for this scenario is shown in Figure 6.5.

For the evaluation, the Direct and Relaying schemes use the maximum
transmit power (100mW) for all transmissions, whereas the SimTX uses the
maximum transmit power (100mW) for the AP-r transmissions and variable
transmit power for the r-d transmissions.

Since the SimTX scheme is intended to improve relaying performance, we
are not very interested in the cases where direct transmissions are always
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Figure 6.5: Expected average throughput for Rmax=7 and BMSDU = 1024
bytes.

superior. Therefore we pick the primary destination nodes randomly from
nodes that are at least 30m from the AP. Figure 6.6 shows the throughput for
each algorithm for different simulation runs. For each run, which corresponds
to a different node layout, the throughput is calculated for an attempt to deliver
a pair of packets to a primary and secondary destination node, respectively.
The throughput calculation is done using the equations in section 6.4. We
observe that the algorithms have different maximum throughput levels around
5, 2.6, and 3.5 Mbit/s, respectively. The Direct throughput fluctuates a lot,
since some destination nodes cannot be reached successfully in one hop. The
Relaying throughput is quite steady around half of the Direct, since it uses
two consecutive transmissions. Finally, the SimTX algorithm improves the
relaying performance thanks to the simultaneous transmissions.

Additionally, results of the embedded simulations for the SimTX algorithm
(as described in section 6.5) are shown to evaluate the impact of the assump-
tions in equation (6.5). Specifically, in the simulation, the SINR is different
for data and ACK since the ACK is transmitted the opposite direction, and
dependent on if the other node transmits. The results show that the model
is pessimistic in some cases as expected, especially when the throughput is
between 1 and 2 Mbit/s. As this happens quite rarely, and Relaying performs
better in most of these cases, we can use the model for parameter selection.

Figure 6.7 shows the power level selections by the SimTX algorithm that
lead to the highest throughput, in the cases where the SimTX algorithm per-
formed best. Here we can notice that the algorithm does take advantage of
the possibility to adapt the transmit power.

Considering now the spatial layout of the considered scenario, Figure 6.8
shows us the positions at which each algorithm is preferred. Starting from the
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Figure 6.6: Throughput for the considered algorithms and comparison of
model output and simulation of the 802.11 back-off algorithm in the case of
two simultaneous transmissions.
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Figure 6.7: Transmit power selection by SimTX algorithm when SimTX is
the preferred algorithm. The available power levels are shown in Table 6.1.

positions nearest to the AP, we see that the Direct algorithm is preferred at
the positions that are within approximately 35 meters of the AP, since it is
able to achieve a high throughput. Beyond this distance, both the Relaying
and SimTX algorithms are represented, and they seem to be able to extend
the range of the AP to achieve a reasonable throughput at any position in the
100x100m2 map.

A different view of this picture is given in Figure 6.9, where we see the
density of destination nodes for each of the three algorithms. Here we also
clearly see the how the Direct algorithm is preferred close to the AP in (0, 0),
but in this figure it is easy to see that SimTX is preferred in a ring at a larger
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Figure 6.8: Points show destination node positions, where the color indicates
the preferred algorithm (blue: Direct, green: Relaying, red: SimTX), and the
size of the point is proportional to the throughput. Overlayed results from
250 runs.

distance than the Direct whereas the Relaying algorithm is mainly preferred
in the corners.
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Figure 6.9: Density of destination node positions for each algorithm, based
on 2500 runs.

Figure 6.10 shows a summary of the achieved throughput, when considering
the cases where either Relaying or SimTX are the preferred algorithms. We see
that the SimTX throughput is appr. 14% (2.45 to 2.8 Mbit/s) higher than for
Relaying. If we consider the improvement from using only Relaying to using
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the best of Relaying and SimTX in each case, an increase of approximately
20% (2.45 to 2.95 Mbit/s) is achieved.

0 0.5 1 1.5 2 2.5 3

Two−hop relaying

SimTX

Best of two−hop and SimTX

Average throughput [Mbit/s]

Figure 6.10: Comparison of the average throughput, for cases where relaying
or SimTX is preferred, including 95% confidence interval. Based on 2500
repetitions.

So far, the analysis has assumed perfect knowledge of position information.
Since position information is typically estimated using a localization system,
which is not able to perfectly estimate the position, also the impact of inac-
curate position information has been evaluated. For this, we have assumed
that the position estimate of each mobile user is subject to a zero-mean two-
dimensional Gaussian error. Figure 6.11 shows how the average throughput is
affected when this localization error term is increased.
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Figure 6.11: Performance impact of increasing localization error. Showing
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Interestingly, the impact of the increasing localization error is different for
the SimTX and Relaying algorithms. The SimTX algorithm clearly suffers
more from the increasing error than the Relaying algorithm, as the achieved
throughput decreases below that of the Relaying algorithm. Further, the im-
provement that the SimTX algorithm brings is decreasing, which is seen by
the decreasing difference between the Avg. Relay and Avg. best of Relaying
and SimTX curves in the figure. Considering that the SimTX algorithm de-
pends on position information not only for relay selection like the Relaying
algorithm, but also for the selection of the secondary destination node as well
transmit power level of the relays, it makes sense that the impact of inaccurate
information is bigger.

Finally, since the considered scenario does not include any kinds of cross-
traffic or interference from neighboring WiFi hotspots, we would expect lower
performance in a more realistic setting where this is included. It would be
reasonable to expect that the SimTX algorithm is more sensitive to such cross-
traffic and interference than the Relaying algorithm, since the Relaying algo-
rithm is always transmitting at the highest possible transmit power, whereas
the SimTX reduces the transmit power to limit the mutual interference be-
tween the simultaneous transmissions. But to which degree the performance
is impacted, is hard to foresee and therefore an item for future work.

6.7 Conclusion

In this work we have proposed the SimTX algorithm that jointly optimizes
the choice of relays and relay transmit power for two simultaneous relay-to-
destination transmissions. For relay choice and transmit power selection, we
have applied a model to calculate the expected MAC layer throughput when
taking into account the BER, maximum limit of retransmissions and inter-
ference in case of simultaneous transmissions. The model allows the relaying
scheme to choose the expectedly best relays and transmit power levels online.

Our results show throughput improvements of appr. 20% for the considered
scenario compared to typical two-hop relaying in ideal settings with perfect
location information. That is, we have shown that two simultaneous relay-
to-destination transmissions can be beneficial despite the cross-interference
they induce on each other. Further, we have shown that inaccurate location
information has a bigger impact on the SimTX algorithm than on the two-hop
Relaying algorithm, as the SimTX algorithm also uses the location information
for selection of the secondary destination node as well as power adaptation.



6.7. Conclusion 127

In the previous chapter 5 the impact of mobility, delay, and inaccurate input
information on the location based two-hop relaying scheme was analyzed. To a
large extent, the tendencies of these results also apply to the SimTX algorithm.
However, as the SimTX scheme was shown to suffer more from inaccurate
location information than the two-hop relaying scheme, it is expected that it
would also be more sensitive towards other types of errors than the two-hop
relaying scheme.

In Chapter 4 the localization error standard deviation was found to be 2-3
meters. The results for the scheme showed that location errors in the order of
2-3 meters standard deviation, means that the scheme is still superior or on
par with the two-hop relaying scheme.

During evaluation of the proposed algorithm, it was assumed that all data
transmissions used the same payload size. This assumption may not always
hold in practice, however, in many cases when the transferred data is part
of a large file download or streaming media content, the payload is typically
fragmented according to the Maximum Transmission Unit (MTU) size of the
network. In principle the SimTX scheme could easily handle differently sized
frames, the impact of this would just be a slightly lower throughput gain.

Further, this analysis has assumed that a fixed bit rate of 6 Mbit/s has
been used for all nodes. Since a higher bit rate can be used when the signal
quality is good, an obvious extension to the scheme would be to consider
also bit rate adaptation, as in the related work [Chevillat et al., 2005, Hu
and Tham, 2010, Liu et al., 2007]. Letting the SimTX algorithm consider
also the different available bit rates in the optimization, would add another
dimension to the optimization problem, which corresponds to the number of
bit rates. With an increasing number of states to explore in order to find the
optimal configuration, it would be beneficial to investigate approaches that
are more efficient than the brute force state space search that the algorithm
is currently using. One example would be the Partially Observable Markov
Decision Process (POMDP) formulation that the authors propose in [Hu and
Tham, 2010].

In the mentioned related work, most approaches are using link quality
measurements in order to coordinate transmissions. Therefore, an interesting
thought is whether the proposed scheme could have been realized without the
use of location information. A central part of the SimTX algorithm is to be
able to predict the mutual interference of simultaneous transmissions. This
calculation would not be immediately possible without location information.
The algorithms in [Hu and Tham, 2010, Chevillat et al., 2005, Liu et al., 2007]
use past measurements and overheard transmissions in order to coordinate
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transmissions. As such approaches need to learn the link qualities over time,
they do not cope as well with node mobility, as a location based system.
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7
Location based Handover Optimization

The contribution presented in this chapter concerns handover between WiFi
and cellular networks in large scale heterogeneous scenarios. Specifically, we
investigate how the knowledge of location information can help in the multi-
system handover (HO) decision. The main problem we address is how location
information can be used to guide a mobile device’s selection between the ubiq-
uitous cellular network and any locally available WiFi networks. As stated in
chapter 1, a main assumption in this work is the availability of a database that
contains the average throughput of all available networks at any position for
the considered geographical area.
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7.1 Introduction

As the amount of mobile data is expected to grow appr. 108%/year until
2014 according to [Cisco Systems, 2010], the cellular networks may not be
able to satisfy this demand alone. The motivation for this work is to develop
methods for offloading the network operators cellular networks using Wi-Fi
networks when this can improve the mobile user’s connectivity in terms of
e.g. throughput. In the two experimental performance comparisons of 3G and
Wi-Fi in [Gass and Diot, 2010] and [Deshpande et al., 2010], it is clear that
if a terminal is able to use the network that offers the highest throughput at
any given time, an overall performance increase is possible, while the cellular
network is offloaded when Wi-Fi networks are used. In order to make use of the
Wi-Fi the user terminal needs to make a handover from the cellular network
to the Wi-Fi access points along the user’s movement trajectory, as sketched
in the scenario overview shown in Figure 7.1.

WiFi AP

Cellular BS

Mobile user

Figure 7.1: Large scale scenario with ubiquitous cellular coverage and scat-
tered Wi-Fi access points. The two mobile users may potentially achieve a
higher throughput if they handover to the Wi-Fi networks, when in range.
The dash-dotted lines indicate possible movement trajectories. Notice: copy
of Figure 1.1.

As discussed in section 1.3 on page 8, the work presented in this thesis
assumes that the Media Independent Handover (MIH) framework is used for
coordination and execution of handovers. The MIH framework does however
not specify how handovers are triggered and to which network the terminal
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should connect. The contributions presented in this chapter fill in this gap, by
considering specific location based algorithms for the handover trigger or han-
dover decision. Also, the MIH framework is assumed to be used for enabling
access to a MIH Information Server (MIIS), which is used for storing environ-
ment fingerprints, which can be used to estimate the achievable throughput,
and location information of network entities. Such a database of environment
fingerprints is necessary for performing localization through fingerprinting, and
it may therefore already be available.

Additionally, it is assumed that Mobile IP (MIP) is used to avoid that the
IP address changes when the mobile device associates with a new network,
thus allowing service continuity for applications, meaning that the considered
handover algorithms need only to determine which network(s) to handover to,
and when.

In general, handovers are usually referred to as horizontal handover (HHO)
or vertical handover (VHO). The HHO refers to a handover between access
points or base stations using the same access technology, whereas the VHO
refers to handovers between networks using two different access technologies,
e.g., from IEEE 802.11a to a 3G cellular network. The VHO always changes
the IP configuration, since the VHO requires that the data link and physical
layers of the protocol stack are switched to the new access technology. The
HHO does not always cause the IP configuration to be changed, for example in
the case where a user is moving between two APs belonging to the same Basic
Service Set (BSS) or Extended Service Set (ESS), the handover is handled
transparently on the data link layer. However, when moving between BSSs or
ESSs, the IP configuration cannot be kept.

As this chapter focuses on exploiting available Wi-Fi networks, the analysis
focuses on VHOs between the cellular network and Wi-Fi networks as well as
HHOs between individual Wi-Fi networks, which are assumed not to belong
to the same BSS or ESS. In both cases the IP configuration of the mobile
station changes, but this can be handled through network layer functions such
as for example MIP as described in chapter 1. For simplicity, both types of
handovers are in the following referred to commonly as handovers.

Handovers are typically categorized as either hard (also called break-before-
make) or soft (also called make-before-break). The hard handover is needed in
cases where a mobile terminal only has a single radio, which it uses to establish
connections. When switching between networks, the terminal therefore must
break the connection to a network before it can establish a connection to the
new network. The soft handover can be used by terminals that have more than
one radio, and are therefore able to configure the second interface for a seamless
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handover using MIP. For handovers between cellular and Wi-Fi networks, the
soft make-before-break handover can be used for mobile devices that have
a dedicated radio for cellular connectivity and a dedicated radio for Wi-Fi
connectivity. However, in the cases where a handover is performed between two
Wi-Fi networks, it is necessary to use the hard break-before-make approach,
since typically, only one Wi-Fi capable radio is available, and the Wi-Fi device
can only associate with one network at a time. In [Ramachandran et al.,
2006] the authors propose different handover algorithms that use either one or
two Wi-Fi adapters and different strategies for probing available networks. A
seamless handover is possible with some modifications to the protocol stack,
but only in a two-card setup. The authors aurgue the handover time of a
hard handover with an off the shelf IEEE 802.11 adapter, can be in the order
of a second, when the terminal needs to probe all channels to find a suitable
network.

Every handover that a mobile device performs from one network to an-
other has a cost associated to it. This cost may be mainly in the form of
”lost” throughput while the handover is executed if it is a hard handover or in
the form of signaling overhead for the AP association, DHCP look-up, IP con-
figuration, as well as reconfiguration of the MIH and MIP functionalities if it
is a soft handover. In either case, it is preferable that the amount of handovers
is limited. In the present contribution, for simplicity, all considered handovers
(cellular to Wi-Fi, Wi-Fi to cellular, and Wi-Fi to Wi-Fi) have been assumed
to be of the break-before-make type. Thereby, the cost of a soft handover
will also be measured in lost throughput, however this simplification of the
handover cost is justified since it will help to keep the number of handovers
low.

Given the cost of each handover and the possibility of having many can-
didate networks in dense urban environments, the timing and choice of target
network for each handover is crucial for mobile users. An important func-
tionality for mobile devices intended for use in heterogenous network scenarios
is therefore the HO algorithm, which should make the best selection of target
network and handover time. The goodness of a handover can be given in terms
of different metrics such as: application throughput, application jitter/delay,
or signaling overhead. Some users may be more interested in maximizing the
throughput (e.g., for downloading or streaming), while others may value low
delay and jitter (e.g., for VoIP calls). From the operator’s viewpoint a low
number of handovers (to keep signaling overhead low) may be preferred.
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7.2 Related Work

In the literature many HO decision algorithms already exist. The references
[Yan et al., 2010] and [Kassar et al., 2008] present two recent surveys on vertical
HO decision algorithms for heterogeneous wireless networks. In the following,
an overview is given over some of the works found herein in addition to a few
more examples of recent works.

HO decision algorithms can be categorized in many different ways, with
some examples of categories being:

Input data such as RSS values, location information, and bandwidth.

HO criteria such as RSS threshold, connection time, and power consump-
tion.

HO algorithm type such as threshold/hysteresis, optimization, and cost func-
tion.

Decision type such as reactive or predictive.

In the following overview, the existing work is categorized according to the
HO criteria, similar to the categorization in [Yan et al., 2010], however with a
special emphasis on the use of location information in the algorithms.

RSS based algorithms include the algorithms that use measured RSS in-
formation as the main HO decision parameter. Because of the widespread
availability of RSS information in most wireless equipment, a comparison of
RSS levels has traditionally been used as the handover trigger. The survey
[Yan et al., 2010] mentions a number of such basic schemes.

The two RSS based schemes proposed in [Zahran et al., 2006] and [Yan
et al., 2008] both use only RSS information of cellular and WLAN networks
to predict the time within coverage of candidate networks. By estimating the
rate of change of the measured RSS values, the remaining time within coverage
can be estimated. This predicted time is used to decide when to handover to a
given network and in which cases a handover is not beneficial. In both papers
the prediction of RSS values is only used for timing the handover. The network
to handover to is selected based on instantaneous RSS levels only.

In [Mohanty and Akyildiz, 2006] a related RSS based algorithm for next
generation wireless systems is presented, in which a dynamic RSS threshold is
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calculated based on different scenario parameters such as path loss exponent,
cell size, user movement speed, and handover latency. This threshold is used
to ensure that the handover is executed before the user has moved out of
coverage.

Bandwidth based algorithms are using the available bandwidth for dif-
ferent networks as the handover criteria. Compared to RSS based algorithms,
the choice of bandwidth based algorithms can more easily be conditioned on
certain Quality of Service (QoS) requirements, which makes it easier to accept
or reject candidate networks.

An example of a bandwidth based scheme is described in [Yang et al., 2007]
and is targeting handover between WLAN and Wideband Code Division Mul-
tiple Access (WCDMA) systems. The algorithm will handover and stay at the
network that has the highest SINR, which directly determines the achievable
bit rate. The SINR of the WLAN is converted so that it is directly compa-
rable to the WCDMA SINR. Obviously, there is a risk of many unnecessary
handovers of such a reactive scheme if the SINR levels of two or more networks
are close and varying. This could lead to frequent handovers, resulting in only
a marginal (if at all) overall gain in achieved performance.

The handover decision scheme in [Lee et al., 2005] is intended for WLAN
and Wide-Area Access Network (WAAN) scenarios. The scheme estimates the
available bandwidth in WLAN via the QBSS field in IEEE 802.11e beacons
([IEEE, 2007]), which gives the number of stations, channel utilization, and
packet loss rate. Per default, the scheme connects to the WAAN, but it con-
tinuously monitors RSS of beacons from nearby WLANs and makes handover
if RSS has been sufficient for a certain time and if the QoS bandwidth require-
ments can be fulfilled by the considered WLAN. The analysis only considers a
single WLAN and a single WAAN network, which makes it difficult to judge
how the algorithm would cope with multiple possible WLANs.

Cost function based algorithms are combining different input parameters
into a single cost function, and the result of this cost function is then used as
handover criteria.

One example of a cost function based algorithm is given in [Chen and Shu,
2005], where a Location Server Entity provides information such as coverage
area, bandwidth and latency of nearby wireless networks, which is combined
to express the QoS of the current and available networks. The mobile terminal
uses this QoS criteria for HO network selection.
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The authors of both papers [Sun et al., 2008] and [Zhang et al., 2006] have
formulated the HO decision as Markov decision processes, taking into account
different parameters such as: connection duration, QoS parameters, location
information and predicted movements, network access cost, and the signaling
load incurred on the network. The proposed algorithms are shown to work well
compared to state of the art algorithms. However, in both papers the authors
assume that the achievable throughput of the available networks are constant
within the coverage region, which is not the case in practice as shown in [Gass
and Diot, 2010].

A context-aware vertical HO approach that can integrate a variety of wired
and wireless technologies (2.5G, 3G, 4G, WLAN, and Bluetooth) is proposed
in [Balasubramaniam and Indulska, 2004]. The first step in the HO process is
to select a subset of candidate networks by using location information. In the
second step an Analytic Hierarchy Process method is employed to maximize
user device preferences and application bandwidth, while minimizing jitter,
delay, and loss as well as bandwidth fluctuations, to optimize the user perceived
QoS. Evaluation results are presented from a prototype implementation but
are not compared to state of the art approaches.

Combination algorithms use a rich combination of input information,
which is difficult to handle analytically. Instead, algorithms such as fuzzy
logic or neural networks are applied.

In [Pahlavan et al., 2000] the authors propose a HO algorithm based on
neural networks. The method is shown to be superior compared to simple
RSS threshold and hysteresis-based schemes, however the algorithm requires
substantial training beforehand in form of RSS traces and desired outputs for
the different situations that may occur. In practice, it may be difficult to
foresee all possible situations that can arise.

In [Xia et al., 2007] the authors present a fuzzy logic based HO decision
algorithm, which uses current RSS, predicted RSS, and available bandwidth
as input parameters. The fuzzy algorithm uses five quality levels for the RSS
parameters and three quality levels for the bandwidth parameter. For each
candidate network a performance evaluation value (PEV), which is a fuzzy
combination of the three parameters’ quality levels, is calculated, and the
target network is the network with the highest PEV. The performance of the
approach is however not shown or compared to state of the art approaches.



138 Location based Handover Optimization

Based on the reviewed literature, it is clear that a handover decision algo-
rithm should seek to limit the number of unnecessary handovers while satisfy-
ing the user’s QoS. In the present contribution, we propose two HO decision
algorithms that work proactively by using movement prediction to predict the
expected future connection quality of available networks and plan the HO so
that QoS in terms of throughput is maximized and the number of handovers
is kept at a minimum. The algorithms use a distance dependent throughput
model to predict the achievable throughput of each network. This is quite
similar to the work of [Sun et al., 2008] and [Zhang et al., 2006], but in both
papers the authors assume constant throughput within the coverage region
for the MDP problem formulations, whereas our optimization algorithm uses
differentiable functions that represent the predicted throughput to determine
the optimal handover decisions.

Initially, only a single user is considered, and thus the load of other users
is not taken into account. An obvious extension would be to consider the
available resources using the 802.11e based approach described in [Lee et al.,
2005].

7.3 System Model

We consider a single user terminal that can connect to either a cellular network
work or a Wi-Fi network. As discussed in section 7.1, it is assumed in the
following that handovers are of the break-before-make type. The terminal
has the location X(t) = [x(t), y(t)]T at time t. This location is however not
known, but it is estimated as X̂ using a localization system, which can be
GPS or network-based as described in chapter 4. The mobile terminal’s past
movement trajectory given by X̂(t ≤ tc), where tc is the current time, is
based on interpolation of previous location estimates. The mobile terminal’s
predicted future movement trajectory X̂∗(tc ≤ t ≤ tc+W ), where W is a time
window specifying the prediction horizon, is based on an extrapolation of the
past trajectory, th seconds back in time. In the following we denote W as the
look-ahead window. See Figure 7.2 for an illustration.

By connecting to an access point or a base station with index a, whose
coordinates are known a priori, the mobile terminal at location X̂ , at time t,
achieves a throughput Ω:

Ωa(t) = Sa(X(t)) + V (7.1)

where the random variable V accounts for variations in the actual throughput,
caused by non-deterministic factors such as small and medium-scale fading.
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Figure 7.2: The predicted future movement trajectory within the time win-
dow W is created as an extrapolation of previous location estimates.

We assume that V is a zero-mean gaussian stochastic variable, characterized
by the standard deviation σTP.

The expected throughput for a network a is achieved from the database as
the approximation:

Ω∗

a(t) = Sa(X̂
∗(t)) (7.2)

where Sa(X̂
∗(t)) is the expected throughput at the predicted location X̂∗(t)

at time t, given the path-loss of the link between the terminal and the AP or
BS.

The mobile terminal can choose to connect to a different AP/BS by per-
forming a handover (HO). Within the time window [tc; tc +W ], the terminal
may perform a sequence of HOs H, defined as:

HK ={(ai, ti), i = 1 . . .K}, (7.3)

ai−1 6= ai,

tc < t1 < t2 < . . . < tK < tc +W

which describes a HO to network ai at time ti, where index K denotes the
number of HOs in the sequence. Notice that the target network in a handover
is never the same as the source network.

Figure 7.3 shows an example scenario and a corresponding handover se-
quence H for K = 2.

Each performed HO in the sequence H, may incur a cost due to lost connec-
tivity while switching from one network to another or signaling overhead, since
this switch requires steps such as AP association, Dynamic Host Configuration
Protocol (DHCP) look-up, and Internet Protocol (IP) address configuration.
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Figure 7.3: Example scenario and handover sequence. Since the mobile user
barely comes within reach of network 1, the networks 2 and 3 are probably
the preferable networks in this example. The dotted regions indicate the likely
places of the two handovers at time t1 and t2.

In this work we assume that this cost denoted Ca is a downtime or handover
delay, where the throughput is zero. Ca depends only on the target network.
The actual handover cost will in practice also include a certain signaling over-
head, which motivates to keep the number of handovers low. As the achieved
throughput is zero for the duration of each handover, optimizing for the high-
est throughput should also result in a low number of handovers for not too
small values of Ca.

In order to experience the best performance in terms of throughput, the
mobile terminal needs to determine when is the best time to perform HO(s)
and which network(s) to connect to, taking into account the handover cost Ca.
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Figure 7.4: Look-ahead prediction algorithm principle. Mreg is the order of
regression, W is the look-ahead window length, Wh is the look-back window
length.
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7.4 Look-ahead Prediction Algorithms

In the following, we will describe the considered HO decision algorithms. The
first two algorithms are so-called look-ahead prediction algorithms that deter-
mine a HO sequence H, as depicted in Fig. 7.4. The main assumption for
these algorithms is that a fingerprinting database that contains the average
throughput of all available networks for the considered geographical area is
available.

7.4.1 Optimal K-Handover Look-ahead Algorithm

The optimal sequence of HOs that maximizes the throughput within the time
window W , with exactly K HOs, may be defined as:

HK
opt = argmax

HK

(f(HK)) (7.4)

f(HK) =

t1
∫

t0

Ωa0(t)dt+
K
∑

i=1







ti+1
∫

ti+Cai

Ωai(t)dt






(7.5)

where tK+1 = t0 + W . The integration of Ωa(t) over time corresponds to
the throughput experienced when connected to network a along the predicted
movement trajectory, so f(·) is the total throughput achieved within W for
a given HO sequence. Notice that we determine the optimal HK

opt for each of
the cases K = {1, 2, . . .Kmax} separately, and then select the best number of
HOs:

Kopt = argmax
K

(f(HK
opt)), K = 1 . . .Kmax. (7.6)

This is solved by iterating over all considered values of K and selecting Kopt

as the K that leads to the highest throughput.

In order to determine the optimal HO sequence for a value ofK, we consider
all possible combinations of networks to handover from and to, as well as the
candidate HO times, which will be defined subsequently.

The N possible network combinations are:

An ={an0 an1 · · · ani · · · anK}, n = 1 . . . N, (7.7)

ani−1 6= ani ,

an0 = aj0, j = 1 . . .N.
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For every HO i between two consecutive networks in An, there is a set of
M time instants that are candidates for optimal HO points between these two
networks. This set is defined as:

T i
n = {tn,1i tn,2i · · · tn,mi · · · tn,Mi }. (7.8)

Each unique combination of networks and time instants from An and Tn,m

constitute a unique sequence:

HK
n,m = {(ani , tn,mi ), i = 1 . . .K}. (7.9)

Now, given the n’th combination of networks An we can determine the set
of candidates for optimal handover points T i

n, as the ti’s that satisfy:

df(HK
n )

dti
= 0 (7.10)

since these points result in either maxima or minima for f(HK
n ), which ex-

presses the total throughput in W .

If we define Oa(t) as the primitive function of Ωa(t), that is Ωa(t) =
dOa(t)

dt
,

we can rewrite f(HK
n ) as:

f(HK
n ) = Oan0

(t)
∣

∣

∣

t1

t0

+

K
∑

i=1

(

Oani
(t)

∣

∣

∣

ti+1

ti+Cai

)

(7.11)

= Oan0
(t1)− Oan0

(t0)

+

K
∑

i=1

(

Oani
(ti+1)−Oani

(ti + Cai)
)

. (7.12)

Such optimization by differentiation of course requires that the primitive
function of Oa(t) is continuously differentiable.

Differentiation of f(HK
n ) with respect to ti, reduces to:

df(HK
n )

dti
=Ωai−1

(ti)− Ωai(ti + Cai). (7.13)

Setting this expression equal to zero and finding all solutions for every ti
gives the candidate handover points Tn for the n’th combination of networks.
In cases with multiple solutions for each ti, the algorithm tries out all found
solutions.
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In short, the complete algorithm can be described as shown in Algorithm
1, where the function generate combinations(Na, K, a0) generates all possi-
ble combinations of networks as specified in eq. (7.7). Na is the number of
networks available within W , and K is the number of allowed HOs with W .
Further, N is the number of network combinations in A.

for K = 1 . . .Kmax do
A = generate combinations(Na, K, a0)
for n = 1 . . . N , N = |A| do

HK
n = An

for i = 1 . . .K do

Solve df(t,HK
n )

dti
= 0 → T i

n

end
for m = 1 . . .M do

HK
n = {An, Tn,m}

s(K, n,m) = f(t,HK
n,m)

end

end

end
(K, n,m) = max{s(K, n,m)}
Hopt = HK

n,m

Algorithm 1: Optimal K-HO algorithm.

The HO algorithm is run periodically, looking a time W ahead and looping
over the Kmax possible handovers to determine the optimal number of han-
dovers as described in eq. (7.6). The HOs are done as planned, and after time
W has passed since last run, the algorithm is run again. However, due to un-
certainties caused by localization inaccuracy and unknown future movements,
the predicted behaviour, which is used to calculate a HO sequence, is expected
to become less trustworthy with increasing lengths of the look-ahead window.

Algorithm complexity The determining factor for the complexity of the
algorithm is the number of different network combinations that the algorithm
is trying out.

Considering the constraint in eq. (7.7): that a HO is always to a different
network than the current, the number of entries in An becomes:

N = (Na − 1)K+1. (7.14)

From this it is clear, that for a large number of available networks, trying out
all combinations can become infeasible as the number of HOs K increases.
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In order to keep the complexity low, we consider only the networks whose
expected throughput exceeds that of the cellular network within the window
W . Hereby, the number of networks that the algorithm considers, Na, is
reduced.

7.4.2 Heuristic Look-ahead Algorithm

In addition to the previous algorithm that determines the optimal K-HO solu-
tion within the window W , we also consider a less complex heuristic look-ahead
algorithm.

This algorithm always tries to handover to and stay on the network with
the highest expected troughput at any given time. However, only if the gain
of performing the handover exceeds the cellular network throughput by more
than a fixed threshold ρ.

Assume that {t1 t2 · · · tj · · · tJ} where tj < tj+1 is a list of timestamps
for when the network with the highest expected throughput, amax, changes.
This can be determined by calculating the crossing points of all correspond-
ing throughput functions. Then the preferred network for the j’th timespan
(tj ; tj+1] is:

aprefj =

{

amax
j if

∫ tj+1

tj
(Ωamax

j
(t)− Ω1(t))dt− ρ > 0

1 otherwise
(7.15)

where Ω1(t) is the throughput function of the cellular network and ρ is a
threshold, used to filter out unhelpful HOs, which is set as defined in Table
7.2.

Finally, the heuristic sequence is:

Hheu = {(aprefj , tj), t = 1 . . . J} (7.16)

Notice that for simplicity, this heuristic algorithm does not take the HO delay
into account when calculating the timestamps in the HO sequence.

7.5 Reference Algorithms

For comparison, we include the following two reference algorithms:
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7.5.1 Maximum Throughput Algorithm (C=0)

This algorithm outputs the maximum instantaneous throughput of all available
network. This corresponds to always performing a handover to the network
with the highest throughput, under the assumption of no handover delay, i.e.,
C = 0. This algorithm should not be seen as a practical algorithm, but it only
serves as an upper bound on performance. Notice that for practical systems
where C > 0, the bound is not tight.

7.5.2 Hysteresis based HO Algorithm

This algorithm triggers a HO to another network, if the instantaneous through-
put of another network exceeds the instantaneous throughput of the currently
connected network by more than a threshold βhyst. In a practical system the
instantaneous throughput would be calculated from the instantaneous SNR,
or the threshold would be given as an SNR-threshold. If more than one other
network exceeds the threshold, the network offering the maximum throughput
is chosen. That is, a HO is initiated if the set of candidate networks Ahyst is
not empty. Ahyst consists of the networks a that fulfill:

Ωa(t) > Ωa0(t) + βhyst (7.17)

where a0 is the currently connected network.

The network to handover to is selected as:

amax = argmax
a∈Ahyst

(Ωa(t)). (7.18)

Contrary to the look-ahead prediction algorithms, this algorithm is a greedy
algorithm that does not plan ahead, but decides when to handover based on
the instantaneous throughput.

7.6 Evaluation Methodology

The proposed location based prediction algorithms have been evaluated and
compared to the reference algorithms through an extensive simulation study,
which has been implemented in matlab. The simulation results are based on an
average of multiple simulation runs, where each of the simulation runs consists
of the following steps:
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1. Generate a random AP layout, where the nmber of APs specified in Table
7.2 are distributed randomly according to a uniform distribution, over
the considered scenario area.

2. Generate a random movement trajectory from a randomly selected start-
ing point (uniformly over whole area), with a step size of 1 second using
the wrap around mobility model described in section 2.4.3, with the pa-
rameters and duration listed in Table 7.2.

3. Generate a vector for each network, which contains the instantaneous
throughput for each step along the movement trajectory. The instanta-
neous throughput is calculated as the path loss dependent throughput
given by the throughput model in Chapter 3 with an added zero-mean
Gaussian random variable, defined by the standard deviation σTP.

4. For each point defining the movement trajectory, generate a correspond-
ing set of location estimates, mimicking the output of a localization sys-
tem. These location estimates are generated by adding a zero-mean
Gaussian random variable, defined by its standard deviation σpos.

5. For each of the considered algorithms, step through the generated move-
ment trajectory and run the handover decision algorithms at fixed inter-
vals. The location based and non-location based algorithms are working
slightly differently, as explained in the following paragraphs:

The optimal K-HO and heuristic algorithms are executed with
W seconds intervals. For each execution, first the movement prediction
algorithm described in section 7.6.1 is executed. The inputs to the move-
ment prediction algorithm are the location estimates for the previous Wh

seconds. Now, along the predicted trajectory, the path loss dependent
throughput in relation to each network, is calculated and fitted to poly-
nomial functions as described in section 7.6.2. A separate throughput
function is calculated for each network. These throughput functions are
given as inputs to the handover decision algorithms in section 7.4, which
each give as output a handover sequence H. These handover sequences
describe the handovers that each algorithm has decided upon for the W
seconds time window. The simulation now jumps W seconds forward
and executes the optimal K-HO and heuristic algorithms again. This is
repeated until the specified duration of the simulation runs has elapsed.
After the simulation run finishes, the handover sequences H for each pre-
diction window are concatenated in order to obtain a complete handover
sequence for the whole simulation run.
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The reference algorithms defined in section 7.5 are both greedy al-
gorithms that only consider the instantaneous throughput of the available
networks for the handover decision. This means that the algorithms are
executed at every time step. The output from each of these algorithms
is also a handover sequence for the whole simulation run.

6. The final step of the simulation is the actual evaluation of the achieved
throughput for each of the algorithms. This is done separately for each
algorithm by summing up the instantaneous throughput along the move-
ment trajectory for the selected networks specified by the handover se-
quence H. Every time a handover is made, the achieved throughput is
zero for C seconds, due to the handover delay. Notice that the Maxi-
mum Throughput reference algorithm is assumed to always have C = 0
and is therefore not subject to the handover delay when calculating the
achieved throughput.

Finally, the average throughput and 95% confidence interval over all simulation
runs are determined for each algorithm.

In the following two sections, the used movement prediction algorithm and
the throughput functions are described in details.

7.6.1 Movement Prediction

For the look-ahead HO algorithms we use a linear movement prediction algo-
rithm that uses historical location measurements within a time window Wh to
predict a direction and constant speed of the mobile user, W seconds ahead.
This prediction algorithm is based on Total Least Squares (TLS) regression
and is described in details in the following. The movement prediction could
also be done using a Kalman Filter, such as the one used for localization in
Chapter 4. In the present contribution the localization is however not included,
but represented abstractly through a localization error term.

First, the direction of movement is determined using a 1st order TLS re-
gression. TLS is used, since it minimizes the perpendicular distance to the
regression line and not only the vertical distance as ordinary LS does. The
TLS is in this work realized using the Principal Component Analysis (PCA)
method [Jolliffe, 2002], however the TLS solution can also be found using
singular value decomposition or eigen vector decomposition, as discussed in
[Simoncelli, 2003].
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The PCA method gives a vector of unit length along which, the variance of
the data is the highest. But the PCA does not tell if the movement direction
is along or opposite the resulting vector, denoted ŵ. Therefore we use the first
and last historic data points to determine the sign of the direction vector as:

û =

{

ŵ if sign((aT ŵ)ŵ) = sign(ŵ)

−ŵ otherwise
(7.19)

where a is the last and first historic data points subtracted:

a = X̂(tc)− X̂(tc −Wh) (7.20)

where X̂(tc) is the estimated current location and X̂(tc − Wh) is the oldest
location estimate in the look-back window.

The average speed v̄ is determined from the average distance between the
projections of the historical data points in matrix B onto the direction vector:

b = Bŵ (7.21)

v̄ =

∑Nh

i=2 b(i)− b(i− 1)

Nh − 1
(7.22)

where, in B, each row contains an x, y coordinate pair, and Nh is the number
of historical data points.

Some example results of the movement prediction are shown in section 7.7.

7.6.2 Throughput Functions

Based on the known locations of the BS and APs and a predicted movement
trajectory, the mobile device can create a throughput function for each avail-
able network.

The throughput functions for the WiFi networks are constructed using
the throughput model described in chapter 3. Using this model, we have
calculated the maximum throughput of all IEEE 802.11a modulation schemes
for different distances as depicted in Fig. 7.5. This curve is used to characterize
the achievable WiFi throughput for different distances. Table 7.1 shows the
model parameters used in this work.

As mentioned in section 7.4, the proposed look-ahead prediction algorithms
rely on continuously differentiable formulations of the throughput function
Ω̂(t), which represents the expected throughput along the predicted future
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Figure 7.5: Distance-throughput relationship for WiFi networks, generated
using the model in chapter 3 and the parameters in Table 7.1.

Parameter name Values
Bit rates 6, 9, 12, 18, 24, 36, 48, 56 Mbit/s
Max. retransmissions (Rmax) 7
Payload size (BMSDU) 1024 bytes
Transmit power (Ptx) 100 mW
Ricean K 15
Path loss exponent 2.9

Table 7.1: WiFi throughput model parameters for model described in chapter
3.

movement trajectory. As this function is dependent on the predicted trajec-
tory relative to the APs’ placements, and is therefore changing for every time
the algorithms are executed, it is necessary to estimate this function efficiently
for algorithm execution. For this, we have decided to use polynomial approxi-
mations for the throughput function Ω̂(t). This both enables us to differentiate
and find roots for the throughput functions as described in eq. (7.10) as well
as estimating the throughput functions quite efficiently given a set of points
along the predicted trajectory and the APs placements. The matlab function
polyfit has been used to calculate the polynomial approximations. Since the
goodness of the polynomial approximation depends on the amount of source
data, which depends on W in our case, we define the order of the polynomial
as:

Mpoly = min(8 + 2 ·
⌊

W

10

⌋

, 18) (7.23)
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which has been determined empirically through experiments. An example
of approximated throughput functions compared to the actual throughput is
shown in Figure 7.7 on page 152.

For the cellular network, we assume an urban scenario where the mobile
device is able to connect using High-Speed Downlink Packet Access (HSDPA)
with a bit rate of Ω1 = 3.6 Mbit/s everywhere. Of course, other cellular
technologies, such as higher-rate 3rd Generation Partnership Project (3GPP)
HSPA or 3GPP LTE could be used with this HO prediction scheme, as well
as faster Wi-Fi technologies such as IEEE 802.11n. The proposed algorithm is
not tied to specific technologies, it simply tries to exploit the situations where a
local area wireless network offers higher throughput than the cellular network.

A variable throughput for the cellular network could be included in the
analysis in the same way as for Wi-Fi networks. This would result in the
cellular network being more often preferred at the locations where its through-
put is high, and less often at the locations where its throughput is low. The
constant throughput assumption is however not expected to affect the overall
performance of the considered algorithms significantly.

7.7 Results and Discussion

Initially, we present two examples of how the movement prediction works for
a non linear movement trajectory. This is displayed in Figure 7.6(a) and
Figure 7.6(b). These results are related to the proposed handover prediction
algorithms. In the shown examples the mobility prediction is performed with
20 seconds intervals and for each execution, the trajectory of the following
20 seconds is predicted. Since the user’s movement trajectory is not linear,
the prediction is in some cases deviating from the actual trajectory. The
figures also show the impact of speed variations by the different lengths of the
predicted trajectories in Figure 7.6(b).

The scenarios that are considered for evaluation of the proposed look-ahead
HO prediction algorithm are specific instances of the large scale scenario pre-
sented in Figure 1.1 in chapter 1. Two different scenarios, labeled ideal and
realistic have been considered as shown in Table 7.2. The ideal scenario as-
sumes perfect location estimation and a constant speed linear mobility model.
This scenario is used to see how well the algorithm itself performs, and how it
reacts to different scenario parameter variations. Additionally, we consider a
realistic scenario with localization errors and a random mobility model. The
mobility model that is considered in this analysis is the wrap-around mobility
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Figure 7.6: Examples of linear movement prediction. The green line is the
user’s movement trajectory and the predicted trajectory 20 seconds ahead
in time is indicated by the red lines, which grow in thickness (creating a
cone shape) along the direction of movement. The blue circles represent the
deployed Wi-Fi networks.

model described in section 2.4.3 on page 35. Table 7.2 lists the parameters
that have been used in this model.

7.7.1 Ideal Scenario

In this scenario we use a linear constant speed (pedestrian) mobility model
and have set the localization error std. dev. to zero.

The plot in Fig. 7.7 shows an example of a prediction window and where
HOs are triggered. Further, Fig. 7.8 shows an example of the achieved through-
put during a simulation run. Notice how the throughput drops to zero during
the duration of each HO and how the throughput bursts when in WiFi cover-
age.

In the following, aggregated results for multiple independent simulation
runs are presented. In the plots we show the mean including the 95% confidence
interval. The first result in Fig. 7.9 shows the impact on throughput of varying
the window size. For small and medium length windows the optimal K-HO
algorithm is best, but for the long look-ahead windows, the heuristic algorithm
performs best. The reason for this is indicated in Fig. 7.10, which shows that
as the window W becomes longer, the more HOs are required within W by the
optimal algorithm for the best sequence. In these simulations we have limited
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Parameter name Default Values
Scenario Ideal Realistic

Simulation time 2000 s
Independent simulation runs (seeds) 32
Scenario size 1 km x 1 km
No. of APs 250
Hand-over delay (C) 2 s
Max. number of HOs for opt. alg. (Kmax) 3
Prediction window size (W ) 20 s
Historical window size (Wh) 10 s
Hysteresis threshold (βhyst) 1 Mbit/s
Heuristic handover threshold (ρ) 2 · C · Ω1 = 14.4 Mbit
Throughput variation std. dev. (σTP) 2 Mbit/s
Localization error std. dev. (σpos) 0 m 2 m
Max. angular acceleration αmax 0 rad/s 0.1725 rad/s
Max. acceleration (amax) 0 m/s2 0.9 m/s2

Min. speed (vmin) 2 m/s 0.5 m/s
Max. speed (vmax) 2 m/s 3.5 m/s
Cellular throughput function (Ω1) 3.6 Mbit/s

Table 7.2: Evaluation parameters.
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Figure 7.7: Example of 60 s prediction window for optimal algorithm. Solid
curves are the approximated throughput functions of the different networks,
dotted lines are actual throughput curves, and vertical lines show where HOs
are performed. This view maps to the 130− 190 s span in Fig. 7.8.
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Figure 7.8: Example of the achieved throughput for a simulation run for the
optimal algorithm.
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Figure 7.9: Performance impact of increasing window size (W). The legend
presented in this figure applies to the following figures in this section.



154 Location based Handover Optimization

the maximum allowed no. of HOs to 3 to make the simulations computationally
feasible. However, since 3 HOs are highly preferred for window lengths of 120s
and 180s we expect that 4 or more HOs would actually yield better results in
these cases, hence the limit of maximum 3 HOs within W causes the drop in
Fig. 7.9. This is supported by Fig. 7.11, which shows the average number of
HOs made by the heuristic algorithm. Here it is clearly shown that the avg.
number of required HOs grows asymptotically linearly with the window length,
approximately for W > 30 seconds. However, Figure 7.9 further reveals that
using a prediction window length longer than 20 s does not give any significant
throughput benefit. Therefore, the limit on the number of HOs has no practical
impact in this scenario.
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Figure 7.10: Distribution of no. of HOs for optimal algorithm for different
window sizes.

In Fig. 7.12 we show how performance is improved when the density of
WiFi networks increases. Notice how the optimal algorithm gains more Mbit/s
than both the heuristic algorithm and the hysteresis-based algorithm when
increasing the number of access points from 50 to 500. The optimal algorithm
is clearly better at choosing the networks to handover to, when many options
are available, even though it is significantly below the maximum throughput
algorithm.

Fig. 7.13 shows the effect of increasing cost of a HO, expressed as the HO
delay C. As expected the increase of C leads to a decrease in throughput.
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Figure 7.11: Avg. no. of HOs for heuristic algorithm for different window
sizes.
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Figure 7.12: Performance impact of increasing the number of access points.
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Contrary to the look-ahead algorithms, the greedy hysteresis-based algorithm
suffers greatly for even small values (0.5 − 1 s) of C. The heuristic algorithm
is gradually becoming worse than the optimal algorithm as the HO cost is
increasing. This is due the heuristic algorithm not taking into account the
handover delay C when determining the handover decision, as the optimal
algorithm does. The maximum throughput algorithm is of course not affected
by the increasing C, since it assumes that C is always zero.
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Figure 7.13: Performance impact of increasing handover delay C.

The effect of increasing the localization error is shown in Fig. 7.14. The
plot clearly shows, that performance deteriorates with higher localization in-
accuracy, since it leads to erroneous movement prediction and in turn bad
handovers.

Fig. 7.15 shows how the hysteresis-based algorithm performs worse the
more the instantaneous throughput varies. Since the look-ahead algorithm
uses a priori knowledge of average throughput levels and the actual throughput
varies around the mean, it is not affected similarly.

Finally, Fig. 7.16 shows the effect of varying the maximum angular ac-
celeration αmax. Larger values of αmax reduces the accuracy of the movement
prediction, thus the achieved throughput drops for the prediction algorithms.
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Figure 7.14: Performance impact of increasing localization error.
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Figure 7.15: Performance impact of increasing throughput variation.
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Figure 7.16: Performance impact of increasing αmax.

7.7.2 Realistic Scenario

Considering now the scenario with more realistic mobility model parameters
and location error, given by the parameters in the right-most column in Table
7.2, we show in Fig. 7.17 how the algorithms are affected by different look-
ahead window sizes. Now, as the window size increases, the localization errors
and the random mobility model that are considered in the realistic scenario
result in a more rapid decrease in throughput. This means, that while a long
look-ahead window where several HOs are planned looked usable in an ideal
system, then in practical systems with imperfect movement prediction, shorter
prediction windows are necessary. Only in cases where the movement predic-
tion is good, longer look-ahead windows are useful. These observations further
motivate an improved prediction scheme, where instead of planning W seconds
ahead and then waiting until the prediction window has elapsed before run-
ning the prediction algorithm again, it would make sense to run the prediction
algorithm more often and then update the planned handover sequence corre-
spondingly. Also, weights could be introduced in the cost function to make
handovers far ahead in time less significant, as a reflection of the movement
prediction uncertainty.
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Figure 7.17: Performance impact of increasing window size (W), in realistic
scenario.

7.8 Implementation Considerations

The nature of the K-HO optimal and heuristic look-ahead prediction algo-
rithms do not dictate that they need to be implemented in the mobile device
or in the network. Also, the MIH framework in principle supports both device
and network triggered handovers, as described in [Baek et al., 2008]. However,
the algorithms have some dependencies that make the network-based approach
most attractive:

Processing power First and foremost we have noticed in our simulation
prototype that the processing power required to determine the best HO se-
quence with the optimal algorithm is quite substantial for 4 or more HOs
within W. A battery-driven device may therefore experience a significant re-
duction in battery life-time if these calculations are performed locally. How-
ever, the heuristic algorithm requires less processing power and could therefore
be implemented in the mobile device.

Database look-up Secondly, the algorithms need to look up the average
throughput of networks along the mobile device’s expected future trajectory.
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Doing these regular database look-ups over a wireless link, could incur a sig-
nificant increase in the signaling overhead. A solution could be for the mobile
device to maintain a cache of this information.

Resource sharing In practical networks it may be necessary to account for
the number of collocated users and their instantaneous load on the different
APs and BSs, as users need to share resources. This advocates for a network-
based approach, since the information about other users is available on the
network side.

Location updates Finally, the algorithms rely on a prediction of the mobile
device’s future movement trajectory. In cases where this is based on only
GPS location estimates or a distributed localization algorithm the device-based
solution could be attractive. However, if a centralized network-based approach
where fusion of measurements from e.g. GPS and cellular and WiFi networks
is considered, as in chapter 4, then the network-based HO prediction algorithm
would allow the functions to be implemented in the same physical entity and
thus reduce inter-process communication latency.

7.9 Conclusion and Outlook

In this work we have considered the problem of determining when to handover
and which network(s) to handover to, within a fixed look-ahead window for a
multi-network scenario, in order to maximize the achieved throughput of a mo-
bile multi-radio terminal. Based on an analytical formulation of the handover
problem, we have proposed an optimal and a heuristic algorithm for this and
compared them to a simple hysteresis-based algorithm and the case where the
cellular network is always used. The optimal algorithm finds the optimal han-
dover sequence for up to K handovers within the look-ahead window. In this
work we have found that the optimal algorithm is computationally feasible for
up to 3-4 handovers, whereas the proposed heuristic algorithm works with any
practical number of handovers. The algorithms have been implemented and
evaluated using simulations in matlab for a scenario with ubiquitous cellular
coverage and randomly scattered high-speed WiFi hotspots.

Our results for the ideal scenario where the movement prediction is assumed
to be perfect, have shown that the optimal algorithm achieves the highest
throughput for cases where less than 4 handovers are required. For longer
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look-ahead windows where more handovers are needed, the heuristic algorithm
achieves the highest throughput.

The two look-ahead algorithms are equally affected by localization errors,
where errors of up to appr. 4 m std. dev. result in only a minor drop in
performance. Comparing this to the results from Chapter 4 where the stan-
dard deviation is in the order of 2-3 m, these results show that the achievable
localization accuracy is sufficient for location based handover optimization.
However, for the GNSS and cellular based localization systems presented in
Figure 2.5 on page 27 the estimated standard deviations of 8-13 meters would
mean that the hysteresis based algorithm would be superior to both of the
prediction algorithm.

A general prerequisite for the look-ahead prediction algorithms is an ac-
curate movement prediction. Our results for a realistic scenario shows that
inaccurate movement prediction strongly limits the look-ahead window length.
However, in cases where the movement of the user is constrained physically by
e.g. roads, sidewalks or walls, this can be exploited for improved movement
prediction.

For this work, all handovers have been assumed to be hard, ”break-before-
make” handovers. For handovers between cellular and Wi-Fi networks, the use
of Media Independent Handover (MIH) and Mobile IP (MIP) technologies can
deliver seamless handovers if the user terminal has a dedicated radio for each
technology. However, for handovers between two Wi-Fi networks that are not
part of the same Basic Service Set (BSS) or Extended Service Set (ESS), the
terminal would need two radios for Wi-Fi in order to associate and prepare
the handover to another network while still having an ongoing connection
at the first network. As two Wi-Fi radios are uncommon in user terminals,
it is assumed that a break-before-make handover is necessary. Even though
handovers between Wi-Fi and cellular are seamless, the handover still incurs
a signaling overhead, which has a cost for the operator. For simplicity in the
analysis, the cost of any handover was represented as a handover delay, since
this would keep the number of handovers low. This representation has however
most likely exaggerated the cost of seamless handovers between cellular and
Wi-Fi in the analysis, which means that the achieved throughput is lower than
it should be. Considering that the goodness of the handover algorithms has
been measured only in terms of throughput and not signaling overhead, it is
however useful that seamless handovers are not cost-free but are punished in
terms of throughput instead. A possibly extension of this work would be to
consider a cost function based approach which takes into account both delay
and signaling overhead for different types of handovers.
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An obvious future work item is to reconsider how the look-ahead predictions
are used. In this work, the handover decisions made within one prediction win-
dow is not re-evaluated as time passes. However, a better handover sequence
may be achievable if for example a new prediction window is made after each
performed handover, or with regular intervals shorter than the prediction win-
dow. In this way the impact of inaccuracies in movement prediction is kept
low. Also, weights could be introduced in the cost function to reflect the move-
ment prediction uncertainty and thereby give less significance to decisions far
ahead in time.

In this work a fingerprinting/throughput database has been assumed to
be available for a priori estimation of achievable throughput for the available
networks. For a practical system it would be necessary to investigate the
accuracy of the predictions coming from such a database, as this is a crucial
factor for good system performance. The database could be populated either
from ray-tracing simulations, from dedicated measurement campaigns, or by
letting users’ mobile terminals submit information of observed networks and
channel characteristics to a central database.

In this work the handover decision has not taken into account the available
resources at APs and BSs. However, in actual networks, the available resources
are typically shared between users and it would therefore make sense to take
this aspect into account. For the case of a single mobile user, where the load
imposed by other users is relatively constant, the proposed selection algorithms
can be used as long as the expected throughput along the predicted movement
trajectory can be retrieved from the database. In the case where multiple
users are performing handovers - potentially to and from the same networks,
it is necessary to extend the optimization problem to consider multiple users
jointly, since the decision taken by one user will affect the decisions of the
remaining users. Given the computational effort required to find the optimal
solution for the single user case, it does not seem immediately feasible to
consider the optimal solution for the multi-user case with the proposed method.
Here, it would be necessary to consider more efficient algorithms, such as
cost function based algorithms, e.g., [Sun et al., 2008, Zhang et al., 2006] or
combination/heuristic algorithms, e.g., [Xia et al., 2007].



REFERENCES 163

References

J.Y. Baek, D.J. Kim, Y.J. Suh, E.S. Hwang, and Y.D. Chung. Network-
initiated handover based on IEEE 802.21 framework for QoS service con-
tinuity in UMTS/802.16 e networks. In Vehicular Technology Conference,
2008. VTC Spring 2008. IEEE, pages 2157–2161. IEEE, 2008.

S. Balasubramaniam and J. Indulska. Vertical handover supporting pervasive
computing in future wireless networks. Computer Communications, 27(8):
708–719, 2004.

W.T. Chen and Y.Y. Shu. Active application oriented vertical handoff in next-
generation wireless networks. In 2005 IEEE Wireless Communications and
Networking Conference, pages 1383–1388, 2005.

Cisco Systems. Global Mobile Data Traffic Forecast Update, 2009-2014. Cisco
Systems Feb 9th, 2010.

P. Deshpande, X. Hou, and S.R. Das. Performance Comparison of 3G and
Metro-Scale WiFi for Vehicular Network Access. 10th ACM Internet Mea-
surement Conference (IMC 2010), November 1-3, 2010.

Richard Gass and Christophe Diot. An experimental performance comparison
of 3g and wi-fi. In Passive and Active Measurement, volume 6032 of Lecture
Notes in Computer Science, pages 71–80. Springer, 2010.

IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-
1999), pages C1–1184, 12 2007.

I.T. Jolliffe. Principal component analysis. Springer series in statistics.
Springer, 2002. ISBN 9780387954424.

M. Kassar, B. Kervella, and G. Pujolle. An overview of vertical handover
decision strategies in heterogeneous wireless networks. Computer Commu-
nications, 31(10):2607–2620, 2008.

C.W. Lee, L.M. Chen, M.C. Chen, and Y.S. Sun. A framework of handoffs in
wireless overlay networks based on mobile IPV6. Selected Areas in Commu-
nications, IEEE Journal on, 23(11):2118–2128, 2005. ISSN 0733-8716.

S. Mohanty and I.F. Akyildiz. A cross-layer (layer 2+ 3) handoff management
protocol for next-generation wireless systems. IEEE Transactions on Mobile
Computing, pages 1347–1360, 2006. ISSN 1536-1233.



164 Location based Handover Optimization

K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J.P. Makela,
R. Pichna, and J. Vallstron. Handoff in hybrid mobile data networks. IEEE
Personal Communications, 7(2):34–47, 2000.

K. Ramachandran, S. Rangarajan, and J.C. Lin. Make-before-break mac layer
handoff in 802.11 wireless networks. In Communications, 2006. ICC’06.
IEEE International Conference on, volume 10, pages 4818–4823. IEEE,
2006. ISBN 1424403553.

E. Simoncelli. Least squares optimization. Lecture Notes, http://www. cns.
nyu. edu/eero/teaching. html, 2003.

C. Sun, E. Stevens-Navarro, and V. Wong. A Constrained MDP-based Vertical
Handoff Decision Algorithm for 4G Wireless Networks. In Conference on
Communications, pages 2169–2174. Citeseer, 2008.

L. Xia, L. Jiang, and C. He. A novel fuzzy logic vertical handoff algorithm with
aid of differential prediction and pre-decision method. In Communications,
2007. ICC’07. IEEE International Conference on, pages 5665–5670. IEEE,
2007. ISBN 1424403537.

X. Yan, N. Mani, and YA Cekercioglu. A traveling distance prediction
based method to minimize unnecessary handovers from cellular networks
to WLANs. Communications Letters, IEEE, 12(1):14–16, 2008. ISSN 1089-
7798.

X. Yan, Y. Ahmet Sekercioglu, and S. Narayanan. A survey of vertical han-
dover decision algorithms in Fourth Generation heterogeneous wireless net-
works. Computer Networks, 54(11):1848–1863, 2010. ISSN 1389-1286.

K. Yang, I. Gondal, B. Qiu, and L.S. Dooley. Combined SINR based verti-
cal handoff algorithm for next generation heterogeneous wireless networks.
In Global Telecommunications Conference, 2007. GLOBECOM’07. IEEE,
pages 4483–4487. IEEE, 2007.

A.H. Zahran, B. Liang, and A. Saleh. Signal threshold adaptation for vertical
handoff in heterogeneous wireless networks. Mobile Networks and Applica-
tions, 11(4):625–640, 2006. ISSN 1383-469X.

J. Zhang, HC Chan, and V. Leung. A location-based vertical handoff decision
algorithm for heterogeneous mobile networks. Proc. of IEEE GLOBECOM,
2006.



8
Conclusions and Outlook

The increasing popularity of mobile computing platforms such as smartphones
and tablets, challenges mobile operators’ cellular networks with an expected
annual doubling of mobile data amounts. This motivates the use of techniques
that can offload the cellular networks using locally available networks, such
as Wi-Fi. Further, as location information is becoming ubiquitously avail-
able through network based localization techniques and cooperation, the main
problem of this thesis has been:

How well suited are location based network optimizations for
wireless last hop route selection in networks with mobile users?

In this thesis, location based network optimizations were considered for the
following two scenarios:

• The large scale scenario has ubiquitous cellular coverage and scattered
Wi-Fi hotspots. Here, the focus was on location based handover algo-
rithms that allows a mobile user to use Wi-Fi networks when available.
Further, a large scale scenario was used for the investigation of the achiev-
able location accuracy.

• The small scale scenario concentrated on a single Wi-Fi access point, and
the users associated to it. Specifically, location based relaying techniques
were considered for this scenario.
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The central focus area in this work was to compare traditional measurement
based approaches to location based approaches, taking into account the errors
resulting from provisioning if input information and the errors that relates to
the different properties of these approaches. Notice that the overall objective
of this work has not been to propose relaying and handover protocols that are
better than existing state of the art protocols, but rather to study the benefits
and drawbacks of using location information compared to traditional schemes
using link quality measurements. Table 8.1 presents an overview of the types
of errors that were considered for the five different contribution chapters in the
thesis.

Distance-dependent Throughput Model for Wi-Fi This throughput
model describes the expected achievable throughput between a transmitter
and receiver in a Wi-Fi network, based on the path loss between the nodes.
The contribution consists of a formulation of the expected link throughput
as a function of received power, interference, bit error rate and frame error
rate. The model accounts for the impact of frame errors on throughput, by
modeling the backoff mechanism in IEEE 802.11 DCF. The model does not
take into account that neighboring users may cause collisions, since the model
was developed for a priori estimation of link performance for the location
based network optimizations considered in chapters 5, 6, and 7. In addition
to using the model for a priori link estimation, the model has also been used
for evaluation of throughput performance in those chapters. The throughput
model has been considered sufficient for evalution, as the important aspects
of these analyses are to gain first insights on the impact of different error
terms and to establish basic relations between measurement and location based
network optimizations.

Error types Ch3 Ch4 Ch5 Ch6 Ch7

node mobility X X X
measurement collection delay X X
small-scale fading X X

(SNR
var,
BER
calc)

X
(BER
calc)

X (TP
var,
BER
calc)

inaccurate prop. model par. X
interference X X
location accuracy outcome X X X
movement prediction inaccuracy X

Table 8.1: Overview of which error types were considered in which chapters.
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Realistic Communication Constraints for Localization The next con-
tribution of this thesis was a study of how realistic communication constraints
affect conventional and cooperative localization and tracking algorithms. The
contribution, which is described in chapter 4, served as a means to understand
the achievable location information accuracy of a realistic network based lo-
calization system. The specific contribution in this thesis for this joint work
was the accurate modeling and evaluation of the message exchanges required
to realize conventional and cooperative network-based localization algorithms.
For the cooperative localization, a group mobility model was used to generate
correlated user movements. Localization was enabled through UWB based
ranging measurements between mobile user and anchor nodes as well as be-
tween mobile users for the cooperative algorithm.

The results showed that the difference between not considering the mea-
surement collection and using a realistic model of the measurement collection
was significant. For the cooperative tracking algorithm the 90%-error went
from 3 m to 4.5 m. The results also indicated that a large number of co-
operating users lead to decreasing performance due to network congestion.
The evaluation results showed that the tracking error distribution was close to
Gaussian in some cases, and that tracking errors of just 2-3 meters standard
deviation can be achieved for the cooperative EKF algorithm, if a sufficient
number of anchor nodes is deployed in the considered scenario. Compared
to the accuracy requirements of maximum 3-4 meters standard deviation for
the relaying and handover network optimizations considered in Chapter 5 and
Chapter 7, the performance of the considered cooperative localization system
is considered sufficient. For the SimTX scheme the use of location information
for both relay selection and power adaptation has proven to be more sensitive
to location error than pure relay selection. With location errors in the order of
2-3 meters standard deviation the scheme is still superior or on par with the
two-hop relaying scheme.

Location-based Relaying The contribution concerning two-hop relaying in
Chapter 5, was focused on comparing the benefits and drawbacks of location
based and measurement based relaying schemes, when considering the impact
of node mobility, measurement collection delay, small-scale fading, inaccurate
propagation model parameters, and inaccurate location information.

The study has shown that the amount of signaling overhead required to
collect location measurements is linearly dependent on the number of mobile
nodes, whereas the overhead for the link SNR measurement based scheme has
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a quadratic relationship. This means that in practice, a higher update fre-
quency is possible with the location based scheme, thereby letting this scheme
cope better with mobility. As the location based scheme relies only on a
path loss model for performance prediction, the performance of the scheme
is likely dependent on the accuracy of the model parameters. Results from
the study showed that inaccuracies of the path loss exponent within ±1.5 of
the true value lead to near optimal results for a BER relay selection criteria,
whereas a throughput criteria had an acceptable range of only ±0.3. Identify-
ing NLOS cases was found to be critical for the location based scheme. Here,
binary LOS/NLOS knowledge was found to yield close to optimal results, if the
NLOS attenuation parameter was within ±5 dB of the true value. The provi-
sion of such information however requires detailed knowledge of the scenario
geometry as for example where walls are located. In summary, relaying based
on location information is more efficient, but requires infrastructure support
and environment knowledge. It would be useful to combine with environment
self-learning approaches such as SLAM. Another future work item would be
to develop an analytic model which is able to judge the usefulness of different
relay choices when taking into account the possible movements, localization
inaccuracy, and measurement age. This could be realized by extending the
work in [Olsen et al., 2010] to include the relaying aspects.

Simultaneous Transmissions in Relaying The contribution described in
Chapter 6, focused on an extension of the location based relaying scheme that
allows simultaneous relay-to-destination transmissions through interference-
aware power adaptation called SimTX. By allowing simultaneous transmis-
sions the SimTX scheme was shown to increase the overall downlink through-
put. The efficiency of the scheme depends on the availability of suited pair
destination nodes, which is more likely in dense scenarios. In such cases the
utilization of the AP may already be high, and here the SimTX scheme helps
to further increase the capacity. The impact of inaccurate location information
was studied, and the results of the study showed that the SimTX scheme was
more sensitive to location inaccuracies than the sequential two-hop relaying
scheme. This means that while the SimTX scheme brings a significant perfor-
mance improvement under ideal conditions, its higher sensitivity to location
inaccuracy means that it should be used carefully in less ideal conditions.

The SimTX scheme has been considered for the case of having two simulta-
neous transmissions. In [Hu and Tham, 2010] the authors have calculated the
maximum number simultaneous transmissions to be 5 for the CCMAC scheme.
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Since this scheme is quite similar to the SimTX scheme, except that it consid-
ers the uplink case with simultaneous source to destination transmissions, and
that it is measurement based.

In this thesis the proposed scheme has been evaluated for the example use
case of IEEE 802.11a networks, however it would be similar applicable for the
other common 802.11 variants b and g. The only required change would be a
change of the model parameters in the throughput model, as well as the models
used for estimating the BER for different modulation schemes and SINR levels.

Handover Optimization The last contribution in Chapter 7 dealt with
exploiting the prediction power of location information, through movement
prediction, for handover optimization in heterogeneous networks. The prob-
lem of deciding when to handover between different available networks within
a fixed time horizon has been formulated as an optimization problem. The
optimal solution of the handover problem is outlined, assuming continuous dif-
ferentiability of the functions used to describe the expected throughput. This
solution was however not useful for an online decision algorithm, if more than
3-4 handovers within the prediction window were considered. As an alterna-
tive, a heuristic algorithm, which is feasible for online use, was proposed. The
location based algorithms were evaluated numerically and compared to some
selected reference schemes, in order to determine the impact of node mobility,
location information inaccuracy, and movement prediction inaccuracy.

The proposed optimal algorithm, which was only allowed up to four han-
dovers within the prediction window for feasibility reasons, was found to out-
perform the heuristic algorithm, especially for scenarios with high densities
of Wi-Fi networks. However, for longer prediction windows the heuristic al-
gorithm, which was not limited in the number of handovers, achieved better
throughput than the limited optimal algorithm. In practice, long prediction
windows may have limited use, since very accurate movement prediction is
required for good performance.

Like the location based relaying algorithm, the proposed location based
handover algorithms rely on a priori environment knowledge in the form of
estimates of achievable throughput along the predicted movement trajectory
for the different available networks. For accurate movement prediction, the
handover prediction algorithm were found to work well. However, in cases
with imperfect movement prediction, the handovers that were planned in the
end of the prediction window were not good choices in practice. A possible
way to overcome this, is to have a sliding prediction window, which frequently
reevaluates the choices made previously.
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Furthermore, for the approach to work in actual networks where multiple
users are sharing resources, an important extension would be to consider the
load imposed by other users, as a throughput estimate that is based solely
on path loss, does not represent the achievable throughput of a highly loaded
access point very well.

Benefits of Location Information Finally, a summary is given over the
key benefits of using location based network optimizations for wireless last hop
route selection in networks with mobile users.

• Collection of location information requires less signaling overhead than
link measurements.

• Exploitation of geometrical relations was found to be useful for perfor-
mance prediction of different network configurations for relay selection,
by accounting for path loss between nodes. In cases where obstructions,
such as walls, cause shadow fading, accurate predictions require a priori
knowledge of the environment in order to estimate the link qualities.

• Geometrical relations given by location information was also exploited
for a priori interference prediction, thus allowing coordination of simulta-
neous transmissions in mobile networks. This however required slightly
higher location accuracy than the location based relay selection. Tradi-
tional measurement based approaches for interference adaptation, adapt
to interference over time, and are therefore not suited for mobile net-
works.

• Tracking the location of nodes over time allows for movement prediction,
which can be exploited to predict future link conditions and connectivity
options. This was found to be useful for handover optimization. For cases
where movement prediction is inaccurate, a sliding prediction window
and the introduction of cost function weights has been identified as useful
extensions.

The contributions in this thesis have clearly shown that location information
is useful for network optimizations. Especially the knowledge of geographical
relations between network entities given from the location information and the
possibilities for proactivity that movement prediction gives, are believed to
be essential features in future network optimizations. These features make it
possible for network optimizations to work efficiently in complex and highly
mobile scenarios. A promising exploitation of location information would be
to consider hybrid approaches, e.g., for relaying, where location information
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is used for providing initial guesses of the optimal configuration, whereafter
a set of selected measurements are obtained for fine tuning. In a prediction
context, e.g., for handover optimization, location information could be used
for planning ahead and again selected measurements could be used to precisely
trigger the network reconfiguration.
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A
Timing Specifications of IEEE 802.11a

This appendix describes the constants and the calculation of the different vari-
ables used for the throughput model described in Chapter 3. The given num-
bers and equations relate to IEEE 802.11a DCF in basic (acknowledged) mode
and are based on the protocol specifications in [IEEE, 2007].

Parameter Value
TSIFS 9 µs
TDIFS 34 µs
NACK 112 bits

Table A.1: Constants for 802.11a MAC DCF, Basic mode.
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The following variables are used in the calculations for the throughput
model in chapter 3.

TBO(r) =
min(1023, 2(4+r) − 1)

2
µs (A.1)

Tdata = 16 + 4 + 4

⌈

8 · (BMPDU) + 1 + 6
Rcode

NDBPS

⌉

µs (A.2)

TACK = 16 + 4 + 4

⌈

8 · 14 + 1 + 6
Rcode

NDBPS

⌉

µs (A.3)

Ndata = (BMPDU) · 8 bits (A.4)

NACK = (2 + 2 + 6 + 4) · 8 bits (A.5)

where r is the retry count, BMPDU is the MAC frame size in octets, NDBPS

is the number of data bits per OFDM symbol, and Rcode is the coding rate.
NDBPS and Rcode depend on the used modulation scheme and are specified in
Table A.2.

Scheme Rcode NDBPS

6 Mbit/s 1/2 24
9 Mbit/s 3/4 36
12 Mbit/s 1/2 48
18 Mbit/s 3/4 72
24 Mbit/s 1/2 96
36 Mbit/s 3/4 144
48 Mbit/s 2/3 192
54 Mbit/s 3/4 216

Table A.2: Code rate and number of bits per OFDM symbol for the different
802.11a PHY modes.

For the throughput model, which is used in Chapter 3, 5, 6, and 7, we
use BMPDU = 36 + BMSDU, which accounts for MAC data frame header (28
octets) and LLC+SNAP headers (3+5 octets). In Chapter 4, the measurement
frames are MAC data frames, meaning that BMPDU = 28 + BMSDU. Finally,
the measurement frames in Chapter 5 are assumed to be MAC control frames,
meaning that BMPDU = 20 +BMSDU.
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