40 research outputs found

    Distributed model predictive control of linear systems with coupled constraints based on collective neurodynamic optimization

    Full text link
    © Springer Nature Switzerland AG 2018. Distributed model predictive control explores an array of local predictive controllers that synthesize the control of subsystems independently yet they communicate to efficiently cooperate in achieving the closed-loop control performance. Distributed model predictive control problems naturally result in sequential distributed optimization problems that require real-time solution. This paper presents a collective neurodynamic approach to design and implement the distributed model predictive control of linear systems in the presence of globally coupled constraints. For each subsystem, a neurodynamic model minimizes its cost function using local information only. According to the communication topology of the network, neurodynamic models share information to their neighbours to reach consensus on the optimal control actions to be carried out. The collective neurodynamic models are proven to guarantee the global optimality of the model predictive control system

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Relating Spontaneous Activity and Cognitive States via NeuroDynamic Modeling

    Get PDF
    Stimulus-free brain dynamics form the basis of current knowledge concerning functional integration and segregation within the human brain. These relationships are typically described in terms of resting-state brain networks—regions which spontaneously coactivate. However, despite the interest in the anatomical mechanisms and biobehavioral correlates of stimulus-free brain dynamics, little is known regarding the relation between spontaneous brain dynamics and task-evoked activity. In particular, no computational framework has been previously proposed to unite spontaneous and task dynamics under a single, data-driven model. Model development in this domain will provide new insight regarding the mechanisms by which exogeneous stimuli and intrinsic neural circuitry interact to shape human cognition. The current work bridges this gap by deriving and validating a new technique, termed Mesoscale Individualized NeuroDynamic (MINDy) modeling, to estimate large-scale neural population models for individual human subjects using resting-state fMRI. A combination of ground-truth simulations and test-retest data are used to demonstrate that the approach is robust to various forms of noise, motion, and data processing choices. The MINDy formalism is then extended to simultaneously estimating neural population models and the neurovascular coupling which gives rise to BOLD fMRI. In doing so, I develop and validate a new optimization framework for simultaneously estimating system states and parameters. Lastly, MINDy models derived from resting-state data are used to predict task-based activity and remove the effects of intrinsic dynamics. Removing the MINDy model predictions from task fMRI, enables separation of exogenously-driven components of activity from their indirect consequences (the model predictions). Results demonstrate that removing the predicted intrinsic dynamics improves detection of event-triggered and sustained responses across four cognitive tasks. Together, these findings validate the MINDy framework and demonstrate that MINDy models predict brain dynamics across contexts. These dynamics contribute to the variance of task-evoked brain activity between subjects. Removing the influence of intrinsic dynamics improves the estimation of task effects

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience
    corecore