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Stimulus-free brain dynamics form the basis of current knowledge concerning functional

integration and segregation within the human brain. These relationships are typically

described in terms of resting-state brain networks—regions which spontaneously coactivate.

However, despite the interest in the anatomical mechanisms and biobehavioral correlates

of stimulus-free brain dynamics, little is known regarding the relation between spontaneous

brain dynamics and task-evoked activity. In particular, no computational framework has

been previously proposed to unite spontaneous and task dynamics under a single, data-

driven model. Model development in this domain will provide new insight regarding the

mechanisms by which exogeneous stimuli and intrinsic neural circuitry interact to shape

human cognition. The current work bridges this gap by deriving and validating a new

technique, termed Mesoscale Individualized NeuroDynamic (MINDy) modeling, to estimate

large-scale neural population models for individual human subjects using resting-state fMRI.

A combination of ground-truth simulations and test-retest data are used to demonstrate

that the approach is robust to various forms of noise, motion, and data processing choices.

The MINDy formalism is then extended to simultaneously estimating neural population
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models and the neurovascular coupling which gives rise to BOLD fMRI. In doing so, I develop

and validate a new optimization framework for simultaneously estimating system states

and parameters. Lastly, MINDy models derived from resting-state data are used to predict

task-based activity and remove the effects of intrinsic dynamics. Removing the MINDy

model predictions from task fMRI, enables separation of exogenously-driven components

of activity from their indirect consequences (the model predictions). Results demonstrate

that removing the predicted intrinsic dynamics improves detection of event-triggered and

sustained responses across four cognitive tasks. Together, these findings validate the MINDy

framework and demonstrate that MINDy models predict brain dynamics across contexts.

These dynamics contribute to the variance of task-evoked brain activity between subjects.

Removing the influence of intrinsic dynamics improves the estimation of task effects.
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Chapter 1

Introduction

1.1 Cognitive and Neural Variability

Human behavior and cognition are remarkably variable across both situational (task) contexts

and individuals ([13], [14]). Traditionally, cognitive science paradigms have sought to isolate

features of these complex relationships through experimental control of task contexts, as well

as through comparisons between individuals/groups. Although complex interactions likely

subserve many human behaviors, much of the cognitive science and neuroscience literature has

studied cognition/behavior as interactions among three main variables ([15]): an individual

(e.g. their brain), the individual’s internal state (neural activity) and an external context

(e.g. a task). In neural terms, this relationship may be stated as follows: at any moment in

time, brain activity evolves according to constraints imposed by brain structure, the current

state of endogenous (or intrinsic) brain activity, and modulations due to stimulation arriving

via peripheral (afferent) inputs (Fig. 1.1A). This framework has thus far granted numerous

insights into individual differences, environmental influences and neural correlates of specific
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Figure 1.1: Theoretical framework underlying the proposal. A) Cognition is manifest in
internal states (neural activity) which evolves according to the individual’s brain and afferents
inputs to the brain. B) These relationships are formalized through dynamical systems in
which the state variable (neural activity) evolves according to the brain’s dynamics and
exogeneous inputs.

human behaviors. These interactions can be formalized through the language of dynamical

systems. In this interpretation, the nervous system is treated as a dynamical system with

states (neural activity) that evolve in time according to rules and constraints imposed by

physiology. External forcing (context) modulates this system and is typically modeled as

input from exogenous sources (e.g. [16]; Fig. 1.1B). These inputs alter neural activity as

opposed to modifying the system itself (e.g. changing architecture).

By leveraging generative models, the dynamical systems approach offers concrete predictions

by expressing future neural activity or behavior as a direct function of the system architecture

(brain), its current state (activity), and the input to the system (context). These approaches

have proven highly influential in specific cognitive domains such as perceptual decision making

(e.g. [17]) and may prove vital for personalized neuroscience/brain medicine ([18],[19],[20]).

Given a personalized brain model, dynamical systems analyses predict how various inputs

(treatments) will affect the system state (individual brain activity). Conversely, such models
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can also be used to predict how individual differences in brain structure might lead distinct

brain responses to the same context; as such, this formalism has the potential to provide a

linking proposition between aberrant physiology and psychopathology. Dynamical systems

techniques will also benefit basic cognitive neuroscience by providing a parsimonious, quan-

titative mapping from individual differences in brain architecture to individual differences

in brain activity and functioning (and possibly to observable behavioral correlates) across

different situational or task contexts.

1.2 Current Frameworks for Studying Brain Activity

with fMRI

1.2.1 Functional Connectivity and Resting-State Dynamics

The nervous system has long been studied as a dynamical system (e.g. [21]) and dynamical-

systems principles are increasingly informing high-level theories of brain function( e.g. [22],

[23]). Moreover, dynamical signatures within fMRI data are being increasingly used to

characterize cognitive states and have offered new insight into the intrinsic interactions

between brain networks ([24],[25]). However, fMRI brain dynamics exist at multiple spatial

and temporal scales ([26]) so there remains substantial controversy regarding which dynamics

in the fMRI signal are meaningful. At the simple-end of dynamics, the resting-state func-

tional connectivity (rsFC) describes the coevolution of brain regions through the correlation

coefficient statistic ([27]). Functional connectivity has been well-studied in terms of its

relation to the underlying anatomy ([26],[28]), and this literature has provided new insight

into brain organization (e.g. [29]) and its relation to coordinating function ([30]). Functional
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connectivity has also proved to be a reliable measure ([31],[32]) and has thus become widely

employed within the systems neuroscience community.

In contrast, the study of fMRI dynamics, using approaches that extend basic functional

connectivity approaches, such as dynamic functional connectivity (dFC), has proven to be

quite controversial. Specifically, typical dFC approaches considers the changing nature of the

correlational relationship between brain regions as they evolve in time. Unlike conventional

rsFC, dynamic FC does not consider resting state brain activity to be a stationary process

and instead estimates time-varying functional connectivity: how brain areas become more or

less correlated with each other using a temporally local sliding-window approach ([33],[34],

[35]). Some methods of computing dynamic functional connectivity (dFC) have been found to

be less reliable than conventional functional connectivity ([11]) and the debate continues over

whether the dynamic FC is in fact, an artifact of sampling variability, physiological states

such as sleep, or noise within a stationary process ([36],[37]), rather than the identification

of a phenomenon that is qualitatively distinct from static FC. More recent studies have

integrated these criticisms to build stronger null-models for dFC analyses ([34], [35]) and

studies employing these methods have continued to find some evidence for resting state

non-stationarity ([38],[34]).

Both static and dynamic functional connectivity have been used to investigate the organization

of brain function (e.g. [29],[39], [25]) and a new thrust in systems neuroscience is to study

how dynamic patterns (whether simple correlations or higher-order forms) relate to cognition

([40]). Functional connectivity methods have demonstrated the ability to identify individual

variation ([41],[42]) in brain organization, and the ability to predict patterns of behavior and

neural activation during task ([30], [43], [44]). Thus, statistical approaches to resting-state
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fMRI can identify individual traits and predict static patterns of brain activity across contexts.

However, the mechanisms underlying the transition from resting-state to task-driven activity

remains unknown. Transitions are, by definition, dynamic phenomena and are therefore

ill-suited to static analyses. In this dissertation, I aim to fill this gap, by leveraging dynamic

brain models (as opposed to static descriptions) as a primary investigative tool.

1.2.2 Previous Linkages Between Resting-State, Dynamics and

Task fMRI

Until recently, separate methods were employed to study resting-state and task fMRI. In part,

this separation may reflect the distinct theoretical accounts of their origins. Early task-fMRI

analyses assumed that neural activity was largely context-driven and thus largely modeled

the BOLD signal as the sustained, selective recruitment of functionally-relevant areas ([4])

rather than seeking to describe regional interactions at large-scale (e.g. whole-brain). By

contrast, resting-state BOLD activity ([27]) was thought to reflect spontaneous coactivation

of brain regions due to the underlying propagation and inter-regional interaction of signals

that could not be temporally resolved using fMRI. Thus, traditional resting-state analyses

treated the BOLD signal as structured in space but approximately random in time. Over the

past decade, however, the distinction between spontaneous and task-evoked neural activity

has diminished. Two major findings have illuminated the relationship between task and

resting-state fMRI signals.

First, a finding that was observed across multiple recording modalities, is a reduction in neural

variability following stimulus presentation that correlates with the evoked response magnitude

([45], [46], [16]). Subsequent findings suggested that these effects reflect a reduction in brain
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entropy during task states (i.e. task activity is more structured), and that this constriction

results from the propagation of exogenous inputs through a fixed network structure ([16]).

Secondly, a growing body of work now demonstrates that the spatial structure of spontaneous

brain coactivation is largely preserved during task states ([30],[43]). After task evoked effects

are estimated and removed, the covariance of the residual BOLD signal contains similar

spatial structure as that observed during rest states ([30]). Moreover, the spatial patterns of

task-evoked brain activity in fMRI largely reflect the main components of resting-state BOLD

network connectivity ([43]); likewise, individual variation in resting-state network structure

predicts individual variation in task-evoked activity ([43],[47]). Together, these findings

indicate that during task states, brain activity patterns are more temporally restricted (i.e.,

in dynamical systems terms, they can characterized as inhabiting a smaller region of activity

space; [16]), whereas the spatial patterns of coactivation are highly similar (if not identical)

during task contexts and resting-state. These findings suggest that the coupling strength of

brain regions during task is similar to rest (after removing the evoked-signal) so models based

upon resting-state (e.g. MINDy) may be able to also explain brain function during task.

1.2.3 Trial-to-Trial Variability in Task fMRI

Task-related analyses in fMRI typically involve the use of statistical general linear models

(GLMs), to estimate the mean time-course of evoked-responses after removing nuisance

covariates. These approaches have proven statistically powerful for simple tasks, and as such,

characterize much of the current literature regarding task-induced activation. However, over

the past decade, improvements in the accuracy and speed of fMRI acquisitions has given

birth to a new literature concerning within-subject trial-to-trial variation in brain activity.

These analyses studies have generated two key findings relevant to the current study: 1)

trial-to-trial variation in BOLD responses predict within-subject behavioral variation ([48],
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[49], [50], [46], [51]) and 2) the BOLD signal elicited by a stimulus is dependent upon the

previous pattern of brain activity ([46]). We use the term “brain activity” in the latter

case to indicate that this history dependence is thought to be neural, rather than solely

reflecting potential nonlinearity in the hemodynamic coupling. These results indicate that

trial-to-trial variation in the BOLD response is due, in part, to variation in the underlying

neural activity ([46],[16]). Moreover, this variability is behaviorally relevant and is history

dependent, i.e. reflects underlying dynamics ([46]). Thus, the neural activity associated

with BOLD is increasingly considered as a nonlinear dynamical system—one in which the

spatiotemporal responses to an input depend upon its current state and evolve according to a

fixed set of rules. This framework contrasts with both current statistical (i.e., GLM) models

and dynamical causal modeling (DCM; [52]) approaches. These approaches either treat

the neural activity as a noisy autoregressive signal (most GLMs) or as a linear dynamical

system (popular DCMs). This distinction is critical because, in a linear system. the evolution

of internal states is mathematically separable from the downstream-effects of input to the

system. Thus, it is not possible for a linear dynamical system (i.e. DCM [52]) to explain

trial-to-trial variation in brain activity in response to the same “input” (e.g. trial type).

1.2.4 Previous Dynamic fMRI Models

Dynamical systems modeling for fMRI has historically taken two forms: either individualized

models that only deal with restricted, small networks (e.g. [52]), or instead large whole-

brain models, in which parameters are either assumed or derived from group-averaged

structural data ([53]). For individualized fMRI the dominant technique and current state-

of-the-art is dynamic causal modeling (DCM, [52]), which attempts to model both intrinsic

dynamics and task-evoked changes. Rather than specifying a biophysical form, the DCM

approach to modeling involves the use of a bilinear form, as a first-order approximation for
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an unknown system of equations. Thus, the neural model underlying DCM consists of a

simple approximation (local linearization) rather than a biophysically motivated equation.

However, despite their name (”Dynamic” Causal Modeling) these individualized models are

not intended to be generative or truly dynamic, as they approach a single equilibrium in

the absence of input (or with constant input) and are limited to a relatively small number

of brain regions. The limitation in terms of the number of regions is in part due to the

Bayesian estimation technique used for parameterization, which does not scale well with

dimensionality. Recently, DCM methods have also been applied to fMRI data in the absence

of task (”resting state”) to produce a purely linear model ([54]). Rather than attempting to

model task effects, individualized resting-state DCMs are designed for network discovery ([55],

[56]) and offer improved spatial resolution by modeling up to 36 brain regions ([57]). However,

modern brain-parcellation schemes have demonstrated the importance of including hundreds

of regions (e.g. [58], [10]) so the currently available high-resolution and generative fMRI

models still preclude individual-subject, whole-brain modeling. In contrast, current generic

(non-individualized) models (e.g. [53], [59]) offer high spatial resolution and generative power

([60], [61]). Large-scale brain modeling has already proven useful for studying brain pathology

([62]) and explaining brain activity patterns. However, the vast number of parameters

required for large-scale models has thus-far prevented detailed brain modeling, at the level

of individual subjects. The goal of the current proposal is to remedy this situation, using a

novel framework, termed MINDy (for Mesoscale Individualized NeuroDynamic Models).

1.3 Motivation and Research Aims

Over the past few decades, the ability to develop whole-brain neural models and use these to

predict experimental, stimulation, or treatment effects has steadily matured (e.g. [63],[64][5])

although the role of individualized, functional data is still limited (e.g. [5]). By contrast,
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previous precision medicine initiatives (e.g., Human Connectome Project; HCP [65]) have

generated increasingly sophisticated means to identify and characterize human brain net-

works as well as variation in these networks among individuals (e.g. [47], [66]). These

methods can also predict the spatial structure of mean task activity (e.g. [47]). However, as

static, statistical models, these existing approaches have limited ability to characterize the

within-subject variation in neural/behavioral responses that arises as a function of different

task or contextual states (neural activity preceding task, [49], [50], [67]). Conversely, the

studies that have focused on within-subject variation provide a description of the statistical

interaction of internal states and external context but do not possess a formal, mechanistic

framework from which to characterize this interaction. Thus, although the previous literature

has quantitatively linked pairs of factors in the person-state-context interaction, empirical

models which seek to link all three are currently lacking.

The aim of the current work is to provide the first steps towards the establishment and

validation of such a model. Our approach consists of first developing individualized neural

and neurovascular models to describe the evolution of each subject’s latent brain activity and

its relation to measured BOLD. Using the neurovascular models, we estimate latent neural

states from BOLD data. Lastly, we use task fMRI data from the same subjects, to isolate the

influence of task-contexts (stimuli, trial-type/task-set etc.) on brain activity by filtering-out

the influence of intrinsic dynamics (as identified by resting-state models). Together, these

three components form a generative model which predicts how brain activity will evolve for

each subject × task-condition × initial state (brain activity at trial onset). The current work

is organized around these components with one chapter/aim devoted to the development of

each.
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Aim 1-Develop and validate MINDy models. In this aim, I capitalize on a novel numerical

optimization framework ([8]) to fit large-scale neural models to resting-state fMRI data

in the Human Connectome Project (HCP; [65]). These models are then validated using

ground-truth simulations and evaluated in terms of robustness to physiological confounds.

Critically, the final phase of validation tests MINDy model dynamics in terms of the accu-

racy of cross-validated model predictions over both short and long timescales (predicting

BOLD and predicting dynamic functional connectivity [DFC]; [35], respectively). This

work is currently published as: Singh, Braver, Cole, & Ching (2020). Estimation and valida-

tion of individualized dynamic brain models with resting state fMRI, NeuroImage, 221:117046.

Aim 2-Estimate hemodynamics and latent neural activity from BOLD signals. In this

aim, I extend the MINDy estimation approach by incorporating an additional novel estima-

tion technique (Surrogate Deconvolution), that provides the means to model region-specific

neurovascular coupling underlying resting-state fMRI time-series. Surrogate Deconvolution

enables rapid simultaneous estimation of each region’s hemodynamic response function, latent

neural activity, and neural model. The Surrogate Deconvolution technique is validated via

ground-truth simulations. I demonstrate its relevance in estimating hemodynamic kernels for

each brain region using resting-state data, and then identifying systematic and individual-

specific spatial variation in the neurovascular coupling from resting-state fMRI. Improvements

in model predictions relative to the base MINDy estimations are then demonstrated. This

work is currently published as: Singh, Wang, Braver, & Ching (2020). Scalable surrogate

deconvolution for identification of partially-observable systems and brain modeling. Journal

of Neural Engineering.
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Aim 3-Identify exogeneous and intrinsic dynamics underlying task fMRI. In this aim, I

apply the dual hemodynamic and neural estimation approach to identify, at the individual

subject level, latent neural activity present in the task BOLD signal. Specifically, applying

MINDy models derived from each individual’s resting-state fMRI data, I demonstrate how

exogenously driven activity can be identified in task-related brain dynamics in relation to

its complement (i.e., intrinsic activity dynamics). Through this separation, I quantify how

task events alter neural activity over fast time scales ( 1s) and how these changes modulate

subsequent brain activity for prolonged cognitive states (the extracted “exogenous” and

“intrinsic” dynamics, respectively).
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Chapter 2

Estimation and Validation of

Individualized Dynamic Brain Models

with Resting State fMRI1

2.1 Introduction

To understand human brain function, it is necessary to understand the spatial and temporal

computations that govern how its components interact. This understanding can take multiple

levels, ranging from statistical descriptions of correlations between brain regions to generative

models, which provide a formal mathematical description of how brain activity evolves in time.

However, efforts have taken quite different approaches based upon what data is available

in human vs. nonhuman subjects. Several international neuroscience initiatives have relied

upon nonhuman subjects to collect vast amounts of anatomical and electrophysiological data
1Chapter reprinted verbatim from previously published work: [8]
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at the cellular scale ([53], [68], [69]). Generative models are then formed by integrating these

cellular-level observations with known neuronal biophysics at the spatial scale of individual

neurons or small populations ([53],[68]).

In contrast, another set of large initiatives has instead focused on modeling individual human

brain function using an approach often referred to as “connectomics” (e.g., Human Con-

nectome Project, [65]). This approach relies on descriptive statistics, typically correlation

between fluctuating activity signals in brain regions assessed during the resting state (“resting

state functional connectivity” or rsFC; [27]). As a result, it is sometimes difficult to make

mechanistic inferences based upon functional connectivity correlations ([70]). Moreover,

neural processes are notoriously nonlinear and inherently dynamic, meaning that stationary

descriptions, such as correlation/functional connectivity, may be unable to fully capture brain

mechanisms. Nevertheless, rsFC remains the dominant framework for describing connectivity

patterns in individual human brains.

Despite the promise of human connectomics, there have been only a few attempts to equip

human fMRI studies with the sorts of generative neural population models that have pow-

ered insights into non-human nervous systems. Notable advances have occurred in direct-

parameterization approaches, with methods being developed to identify directed, causal

influences between brain regions (e.g. [57]). Conversely, neural mass modeling approaches

have also been extended to study human brain activity in a generative fashion ([61]), and

these have provided new insights into the computational mechanisms underlying fMRI and

MEG/EEG activity dynamics ([59], [63], [64], [5], [71]). However, unlike (linear) data-driven

approaches (e.g. Dynamic Causal Modeling; [52],[57]), neural mass models have been limited

to replicating higher-level statistical summaries, such as functional connectivity, rather than

13



predicting the actual time-series. This fact may not be relevant for some applications in

which statistical descriptions will suffice. However, there remain many applications in basic

neuroscience, neural medicine, and neural engineering for which more precise descriptions

could be profitably leveraged.

Unfortunately, current approaches of both types have important limitations. In particular,

the existing approaches to directly parameterize models (e.g. DCM) are subject to potential

misinferences due to assumptions of linearity ([72]), and, in some cases, limitation to a rela-

tively small number of brain regions ([73],[74],[75]). This number has increased dramatically

in recent years by assuming a fixed hemodynamic response function ([76]), but remains

well below modern brain parcellations, which feature several hundred regions (e.g. [10], [6],

See Discussion). Likewise, with current neural mass modeling approaches, their ability to

quantitatively recreate key features of individual-level functional connectivity has also been

limited ([28],[5],[71]). This may be because the most common approach is to parameterize

connectivity from estimates of white matter integrity from diffusion imaging, which also

can lead to potential misinference, since these connectivity estimates are constrained to

be symmetric and positive ([77]). Efforts have been made to personalize these models by

using individualized diffusion imaging data rather than group-average and/or tuning a small

number of free-parameters to better approximate each subject’s summary statistics (e.g.

[63],[64][5]). However, again, these models are not directly inferred from the brain activity

time-series, which could limit their ability to accurately simulate the dynamical features of

these time-series. Indeed, up until this point, it has not been shown that individual-level brain

models can be directly parameterized and fit from fMRI while retaining sufficient complexity

to capture – and predict – whole-brain activity. This limitation is critical because in order to

accurately characterize individual variation in humans – which is the goal of personalized
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neuroscience and precision medicine initiatives ([18],[19],[20]) – individualized whole-brain

models are required.

In the current work, we aim to fill this gap, by advancing high-resolution characterization

of the human connectome through the parameterization of nonlinear dynamical systems

models that go beyond statistical correlation matrices. The models consist of hundreds

of interacting neural populations, each of which is modeled as an abstracted neural mass

model evolving over time-scales commensurate with fMRI. Most critically, the models are

optimized to capture brain activity dynamics at the level of individual human subjects. We

present a computationally efficient algorithm to rapidly fit these models directly from human

resting-state fMRI. The algorithm extends data-driven techniques towards the estimation of

biologically interpretable models, and conversely enables the parameterization of dynamical

neural models in a data-driven, individualized fashion with relatively few priors on the

dynamics within and between brain regions. Our approach represents a significant departure

and alternative approach to that of previous modeling efforts, in that every parameter in

our model is individually estimated without consideration of prior anatomical constraints or

long-term summary statistics.

We describe our efforts to develop and validate these models, demonstrating that they

successfully characterize whole-brain activity dynamics at the individual level, and as such

can be used as a powerful alternative to rsFC, and even to more closely related modeling

approaches, such as DCM. Because of this goal, we term our modeling approach MINDy:

Mesoscale Individualized Neural Dynamics. In the sections below, we introduce the MINDy

modeling framework, highlighting its most innovative and powerful features, and presenting
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Figure 2.1: Overview of Methods Employed. A) The MINDy model consists of coupled
1-dimensional neural-mass models (Hopfield form [1]). The shape of the transfer-function for
each brain region is parameterized by a curvature parameter α. B) Model goodness-of-fit
was measured through one-step prediction of the empirical time-series. C) Overview of data
processing and analyses: data was processed according to Siegel and colleagues ([2]) and
parcellated. Reported analyses fall into three categories: validation, sensitivity to nuissance
parameters, and predictions of brain activity patterns. D) In both simulations and empirical
analyses the BOLD signal was Wiener-deconvolved ([3]) with a canonical HRF function (see
Methods; [4]) before being analyzed with either MINDy or rsFC.

results that validate its utility as an analytic tool for investigating the neural mechanisms

and individual differences present in fMRI data.

2.2 Methods

2.2.1 Nature of Interpretations from the Model

The key premise of our approach is an expansion of the architectural description of brain

networks from a simple connectivity matrix, to an interpretable dynamical model:

ẋ = Wψα(xt)−Dxt + εt. (2.1)
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This model, which resembles a neural mass model ([78], [1], [24], [61]) describes the evolu-

tion of brain activity at each anatomical location (each element of the vector xt). Unlike

true neural-mass models, we model abstracted brain activity commensurate with the fMRI

timescale, rather than the evolution of population firing rate over milliseconds. Our model is

similar, however, in that it is described by three components: a weight matrix (W ) which

identifies pathways of causal influence between neural populations, a parameterized sigmoidal

transfer function (ψ) which describes the relation between the local activity of a population

and its output to other brain regions (Eq. 2.3, Fig. 2.1 A, [79]), and a diagonal decay matrix

(D) which describes how quickly a given neural population will return to its baseline state

after being excited (i.e. the time-constant; Fig. 2.1 A). Process noise is denoted εt and is

assumed to be uncorrelated between parcels. The additional parameters (α and D) reflect

regional variation in intrinsic dynamics (D) and efferent signaling (α); critically, as described

below, these parameters also show consistent anatomical distributions. These properties vary

with brain network and are consistent even at the finer within-network scale (Fig. 2.4 A,B).

Thus, our model, like a neural mass model, parameterizes both the interactions between

brain regions and the processes that are local to each brain region that make it distinct.

It is important to recognize that this model is a phenomenological model in the sense that

the state variables are more abstract than encountered in traditional mean-field models

which combine biophysical first-principles and phenomenological approximations (e.g. the

sigmoidal nonlinearity). Thus, inferences gained from the model are bounded by the inherent

limitations of fMRI data (e.g. low temporal resolution and the indirectness of BOLD). The

parametric form that we have chosen leads itself to interpretability. However, we stress that

interpretability should not be confused with biophysical equivalence. As described in SI,
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there are likely many biophysical processes (including non-neuronal) contributing to each

estimated parameter (A.1).

2.2.2 Robust Estimation of Individualized Neural Model Parame-

ters

While theoretical neural mass models operate in continuous-time, fMRI experiments have

limiting temporal sampling rates. Therefore, we approximate the continuous time neural

model by fitting a discrete-time analogue for temporal resolution ∆t (e.g. the sampling TR;

Fig. 2.1 B):

xt+∆t − xt = (Wψα(xt)−Dxt + εt)∆t. (2.2)

Parameter estimation in the MINDy algorithm contains three main ingredients, which ensure

that estimates are robust, reliable, and valid. First, the transfer functions of neural mass

models are allowed to vary by brain region through the scalar parameter α:

ψα(xt) :=
√
α2 + (bxt + .5)2 −

√
α2 + (bxt − .5)2. (2.3)

Each brain region has its own α parameter, fit on a subject-wise basis, while b is a fixed

global hyperparameter (b = 20/3 for the current case). The use of a parameterized sigmoid

allows for additional anatomical heterogeneity in region-wise dynamics. This form of transfer

function is general enough to capture conventional choices (see SI Sec. A.2 for a derivation of

the function and its relation to conventional transfer functions). Secondly, we make use of

recent advances in optimization to ensure that the fitting procedure (SI Fig. A.2 C) is robust.
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By using Nesterov-Accelerated Adaptive Moment Estimation (NADAM, [9]) we achieve the

speed advantage of stochastic gradient descent (SGD) algorithms, while at the same time

preventing both over-fitting and under-fitting (see SI Sec. A.3 for discussion). This approach

leads to a very reasonable time duration for estimation (approximately one minute on a

standard laptop; see SI Sec. A.8 for a comparison with spDCM).

Lastly, we constrain the problem by decomposing the large matrix of connection weights

(W ) into two simultaneously fit components: a sparse component WS and a low-dimensional

component WL := W1W
T
2 in which both W1 and W2 are n× k rectangular matrices with n

being the number of neural masses (brain parcels) and k < n being a global constant that

determines the maximum rank of WL. This decomposition is advantageous for concisely

representing the interactions of structured networks and is the most important element of

the fitting process. Sparseness criteria were achieved through L1 regularization ([80]) with

the resultant fitting objective being to minimize:

J =
1

2
ET [‖(XT+∆t −XT )− [(WS +WL)ψα(XT )−DXT ]‖22]

+ λ1‖WS‖1 + λ2Tr(|WS|) + λ3(‖W1‖1 + ‖W2‖1) +
λ4
2
‖WL‖22 (2.4)

The notation ET denotes the mean over all temporal samples considered (the “minibatch” of

each iteration) so the first term simply corresponds to the mean square error of predictions.

Each of the remaining penalty terms have a global regularization constant (λi) that is shared

across all subjects. This regularization scheme was adopted in order to reduce the dimension-

ality of the parameter estimation problem, while at the same time, attempting to reflect the
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consistently observed community-structure of brain connectivity measures. Under this view,

brain connectivity patterns can be described in terms of communities (sub-networks) linked

together by highly connected hubs. We envision the sparse component of connectivity to

mimic the communication between connectivity hubs. By contrast the low-rank component is

meant to account for the propagation of signals from hubs to their corresponding subnetworks

and vice-versa.

We employ this two-component weight formulation as a heuristic that facilitates high-

dimensional model fitting. In most analyses we only analyze the composite weight matrix

than its components. However, preliminary results indicate that properties of this decomposi-

tion, namely the ratio of sparse vs. low-rank components, may be a marker of individual

differences (see SI Sec. A.6). Interestingly, recent work by Mastrogiuseppe and Ostojic ([81])

has also considered models in which connectivity is the sum of two terms: one low-rank and

one random. The authors found that these structures produced low-dimensional dynamics

which could be predicted based upon network structure and exogeneous (task) input. Such

analyses may be relevent for understanding the role of connectivity in MINDy. Bayesian

and algebraic interpretations of this penalty function are presented in SI Sec. A.5. We also

discuss the well-posedness of this problem (SI Sec. A.5).

Throughout, we use the term “weights” to refer to the matrix W in estimated dynamic

neural models. This is to differentiate the model connectivity parameter from the term

“resting-state functional connectivity” (rsFC), which instead refers to the correlation matrix

of BOLD time-series, rather than the mechanistic concept that it is often assumed to measure

(i.e. direct and indirect interactions between brain regions). We reserve the term “effective

connectivity” to indicate a causal, monotone relationship in activity between brain regions
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that evolves over no more than 2s (the typical fMRI sampling rate). Thus, both the fit model

weights and the rsFC are ways to approximate the effective connectivity, even though rsFC

may not support reverse inferences regarding directedness and causality.

2.2.3 Study Design

The objective of the current study was to rigorously validate a new approach for data-driven

whole-brain modeling (MINDy). The study design consisted of both numerical simulations to

validate the accuracy of models with respect to a known ground-truth, as well as empirical

analyses of HCP resting-state data. The latter analyses were designed to test whether MINDy

adds additional value in-practice and to quantify its performance in the presence of known

experimental confounds (e.g. motion).

2.2.4 Empirical Dataset

HCP Resting-State Scans

Data consisted of resting state scans from 53 subjects in the Human Connectome Project

(HCP) young adult cohort, 900 subject release (for acquisition and minimal preprocessing

details, see [82]; WU-Minn Consortium). Each subject underwent two scanning sessions on

separate days. Each scan session included two 15-minute resting-state runs (two scans ×

two days) for a total resting state scan time of 60 minutes (4800 TRs). The two runs for

each session corresponded to acquisitions that had left-right and right-left phase-encoding

directions (i.e., balanced to account for potential asymmetries in signal loss and distortion).

The TR was 720ms and scanning was performed at 3T. The subjects were selected by start-

ing with an initial pool of the first 150 subjects and then excluding subjects who had at
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least one run in which more than 1/3 of frames were censored (i.e. 400 bad frames out of 1200).

Although this criterion greatly decreased the number of usable subjects from the initial pool

of 150 to 53 (attrition=65%), it should be noted that it is likely to be overly conservative. We

employed such a strongly conservative criterion for this first-stage validation effort to provide

the cleanest data from which to test the model. Likewise, we had the luxury of drawing upon

a very large-sample dataset. In contrast, we believe that the exclusion criteria will not need

to be as conservative in a research setting for which model cross-validation is not performed

on every subject (i.e., it is probably overly stringent to require that all four sessions be clean,

since we only used two sessions at a time). In particular, the use of cross-validation required

that two models be fit for every subject using disjoint data so that the validation required

twice as much data as would normally be required. Moreover, we required that the data be

uniformly clean so that we could parametrically vary the amount of data used (i.e. criteria

were in terms of absolute cleanness for each scanning session rather than number of clean

frames). However, there is no reason why the models could not be fit to clean segments of

scanning sessions.

Preprocessing

Data were preprocessed through the rsFC pipeline proposed by Siegel and colleagues ([2]; SI

Fig. A.2 A). The first stage of this pipeline is the HCP minimal pre-processing pipeline (see

[82]) with FSL’s ICA-FIX correction ([83],[84]). We then applied one of three second-stage

pipelines developed by Siegel and colleagues ([2]; Sec. 2.3.7), to test the effects of including

various additional preprocessing steps. In all three pipelines, drift was mitigated by detrending

data. The pipelines also all included motion scrubbing, using both Framewise Displacement

(FD) and the temporal derivative of variation (DVARS). Frames that exceeded the cutoffs
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for FD (.2mm) or DVARS (5% above median) were replaced via linear interpolation ([85]).

Respiratory artifact was mitigated with a 40th-order .06-.14 Hz band-stop filter applied to

FD and DVARS for all pipelines ([2]).

The three second-stage pipeline variants differed however, in the number of regressors included

to remove nuisance signals. The first variant mainly corrected frame-to-frame motion artifact,

which has been found to induce systematic errors in functional connectivity studies, i.e.

generating spurious short-distance correlations while diminishing long distance ones ([86]).

In addition to data scrubbing, motion correction was performed using the 12 HCP motion

regressors and their temporal derivatives. The second, more extensive pipeline variant, known

as CompCor, also removed cardiac and respiratory signals, by additionally regressing out

principal components of the white matter and cerebrospinal fluid signals ([87]). Lastly, the

third pipeline variant also added global signal regression (GSR; [88]), in which the mean

signals from white matter, cerebrospinal fluid, and grey matter are also included as regres-

sors. As the variables included are cumulative, these three pipelines form a representative

hierarchy of preprocessing approaches, that optionally includes CompCor or CompCor+GSR

in addition to motion scrubbing. For most analyses we used the full (third) pipeline, but we

also compared the effects of pipeline choice (Sec. 2.3.7).

After the second-stage preprocessing pipelines, we deconvolved the parcellated data (see

below) with the generic SPM hemodynamic kernel ([4]) using the Wiener deconvolution ([3]).

For the Weiner deconvolution, we used noise-power to signal-power parameter .02. The value

of this parameter dictates the degree of temporal filtering during the deconvolution with

smaller values being more parsimonious (less additional filtering). We then smoothed by

convolving with the [.5 .5] kernel (2 point moving average) and z-scored the result. To test the
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robustness of the fitting procedure, we compared the effect of the second-stage preprocessing

pipelines for some analyses. Based upon these results, we chose the third variant pipeline

(GSR+CompCor+motion) for all other analyses. For all empirical rsFC analyses we use the

deconvolved data to prevent bias from the deconvolution procedure in comparing MINDy

and rsFC. As described further below, we also tested the effect of mismatches between “true”

and canonical HRF models (Sec. 2.3.7, 2.3.7).

We defined derivatives in terms of finite differences. Since HCP employed unusually fast

scanner TRs, we temporally downsampled the estimated derivatives for calculating goodness-

of-fit in non-simulation analyses to represent the anticipated benefits to typical fMRI protocols

and improve SNR: dX(t) = (X(t+ 2)−X(t))/2.

Parcellation Atlases

In the present framework we define whole-brain models in terms of connected neural popu-

lations. Thus, the approach demands that the neural populations be defined a-priori. For

the present case of fMRI data, we define these populations to be anatomical brain regions

corresponding to subcortical structures and cortical parcels. For subcortical regions, we

follow the HCP protocol in considering 19 subcortical regions as defined by FreeSurfer ([89])).

For cortical parcels, we generally employed the gradient-weighted Markov Random Field

(gwMRF) parcellation with 200 parcels per hemisphere ([6]) and organized according to the 17

cortical networks described in [90]. The gwMRF parcellation is optimized to align with both

resting-state and task fMRI, and has been found to demonstrate improved homogeneity within

parcels relative to alternative parcellation techniques. However, for anatomical analyses we

compared with an additional atlases (SI Fig. A.4 C,G) to ensure generality : the MMP atlas
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([10]) which was also derived from a combination of rest and task-based data. The MMP

(Multi-Modal Parcellation) atlas is symmetric with 180 parcels per hemisphere.

2.2.5 MINDy Fitting Procedure

MINDy models were fit by applying the iterative NADAM algorithm ([9]) to optimize the

MINDy cost-function (Eq. 2.4; see SI Sec. A.12). This algorithm belongs to the family of

stochastic gradient-descent techniques and we provide further detail/discussion regarding

NADAM in SI Sec. A.3. To ensure algorithmic stability, we used two transformations (one

each for the curvature and decay parameters) which are detailed in SI Sec. A.12. The gradient

equations for each parameter in detailed in SI Tab. A.11.

Compensating for Regularization Bias

In order to retrieve parsimonious weight matrices and reduce overfitting, we employed

regularization to each weight matrix (both the sparse and the low-rank matrices) during

the fitting process. One consequence of regularization, however, is that the fitted weights

may be unnecessarily small as weight magnitudes are penalized. After fitting, we therefore

performed a global rescaling of weight and decay contributions for each model using robust

regression ([91]) as implemented by MATLAB2018a. Specifically, we fit two scalar parameters:

pW , pD in regressing dX(t) = pWWψ(X(t)) − pDDx collapsed across all parcels. Here pW

and pD represent global rescaling coefficients for the weights and decay, respectively. As this

compensating step only used global rescaling for W and D, it had no effect upon the relative

values for each parcel, only the total magnitude of the W and D components. Since only two

values are estimated, this step does not reintroduce overfitting. Although we performed this

step using robust regression, we obtained identical results using conventional linear regression.

The choice of robust regression was made as a safeguard for high leverage points as might
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occur due to motion artifact. However, results indicate that conventional regression may

suffice for sufficiently clean data.

Selecting Hyperparameters and Initialization

The proposed fitting procedure requires two sets of hyperparameters: the four regularization

terms specific to our procedure and the four NADAM parameters ([9]). By “hyperparameters”

we refer to free constants within an algorithm which distinguishes them from the “parameters”

of an individualized model.

Hyperparameters were hand-selected for model goodness-of-fit and reliability, based upon

prior numerical exploration with a subset of 10 subjects who did not belong to the “data

source” subjects. Thus, these subjects were not included in any further analyses so the

hyperparameter selection procedure did not artificially inflate model performance. The

selection criteria were to maximize cross-validated goodness-of-fit under the constraint that

test-retest correlations were greater than .7 for all parameters. Regularization values were

sampled with resolution .005. The chosen set of hyperparameters was then constant for all test

subjects. Hyperparameter values and discussion are included in SI (Tables A.12, A.13). The

initialization distributions for the algorithm were similarly selected using the same subjects

and are included in the SI (Table A.12). We explored the effect of hyperparameter choices on

the sparsity of MINDy relative to rsFC and found that for any choice of regularization hy-

perparameter (even 0), the group-average MINDy weights are sparser than rsFC (SI Sec. A.7).
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2.2.6 Ground-Truth Simulations

Realistic Whole-Brain Simulations

For the analyses of sensitivity and individual differences we generated new, synthetic individ-

uals by randomly sampling neural mass model parameters from the parameter distributions

estimated from the full dataset (i.e. N=53 participants). The decay and curvature parameters

(α,D) were independently sampled for each parcel from that parcel’s population distribu-

tion. The weight matrices, however, were sampled as a whole rather than sampling each

individual connection as we found that the latter approach led to pathological behavior in

simulations. For the robustness analyses, ground truth models were drawn from those fit to

experimental sessions. The ground-truth models were simulated as stochastic differential

equations (dX = f(X)dt + σWdWt) with f(X) the deterministic neural mass model and

units time measured in terms of the fMRI TR. Models were Euler-Maruyama integrated with

dt = 1/4 and σW = .45 in units TR (720ms) to generate simulated neural activity time-series.

Neural-activity was then downsampled to 1 TR resolution (as opposed to the simulation’s

time-step of dt×TR) and convolved with the SPM-style HRF kernel ([4]; SI Fig. A.13 C):

h(t;α{1,2}, β{1,2}, c) :=
tα1−1e−β1tβα1

1

Γ(α1)
− tα2e−β2tβα2

2

cΓ(α2)
(2.5)

Here Γ is the gamma function (equal to factorial for integer values). The parameters

describe two gamma-distributions (one α, β pair per distribution) and a mixing coefficient

(c) to generate a double-gamma distribution. Parameters were set to their default values

(α1 = 6, α2 = 16, β1 = 1, β2 = 1, c = 1/6) except for the simulation featuring HRF variability.

In this case, random perturbations were added to each parameter and were drawn from the
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normal distribution with mean zero and SD as indicated. The final simulated BOLD signal

was then generated by adding white, gaussian noise with the indicated SD (Fig. 2.1 D).

Randomized Network Simulations

Although some ground-truth simulations leveraged the empirical MINDy distributions to

maximize realism (Sec. 2.3.2, 2.3.2,2.3.7,2.3.7), others used randomly generated networks

of Hopfield or neural mass models (Sec. 2.3.7, 2.3.8, SI Sec. A.8). The latter ground-

truth simulations prevent circularity (i.e. using MINDy distributions to test MINDy) by

drawing parameters from random hyperdistributions independent of previous analyses. These

distributions were designed to possess complex network structures by superimposing three

simpler network structures: community-structure (M1), sparse structure (M2), and low rank

structure (M3). These distributions are characterized by standard-deviation parameters

σ1 and σ2. An asymmetry parameter σa characterizes the degree to which the resultant

network is asymmetric. Each standard-deviation parameters was randomly sampled for

each ground-truth model from normal distributions: σ1, σa ∼ N(4, .052) and σ2 ∼ N(3, .052).

Connectivity matrices were then randomly parameterized as follows:

M1 ∼ [N(0, 1/σ2
1) +N(0, 1/σ2

1)
3]n/q×n/q

M2 ∼ [N(0, 1/σ2
2)

3]n×n

M3 ∼ [N(0, 1/σ2
1) +N(0, 1/σ2

1)
3]n×k × [N(0, 1/σ2

1) +N(0, 1/σ2
1)

3]k×n (2.6)

Here, the bracket outside each matrix denotes its size with n = 40 denoting the total number

of nodes, q denoting the number of nodes per community (randomly set to either 1 or 2 with
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equal probability), and k = 5 denoting the rank of the low-rank component. We denote

the Kronecker product ⊗ and use it to copy the community level matrix (M1) among each

node belonging to the community:M̂1 := 1q×q ⊗M1. The three component matrices are then

combined as follows:

Q = M̂1 +M2 +M3, Q̂ = (Q+ (Q−QT )/σa) (2.7)

The final matrix C is formed by censoring elements of Q̂ whose absolute value is below 1/4

the standard deviation of Q̂. This same technique was used to randomly generate networks

of Hopfield models with homogeneous, heterogeneous, or nonlinear hemodynamic effects and

realistically-paramaterized neural mass models with nonlinear hemodynamics.

Hopfield Network Simulations

We employed two cases of non-MINDy ground truths: Hopfield networks and neural-mass

models (Sec. 2.3.7,2.3.8). Continuous, asymmetric Hopfield models are similar in form to the

MINDy model, but use a tanh transfer function:

dx =
(
Wtanh(b0 ◦ x)−Dx

)
dt+ σWdW. (2.8)

Here, the slope vector b0 ∈ Rn ∼ N(6, (.5)2) and diagonal elements of the decay matrix

D drawn from N(.4, (.1)2) (non-diagonal elements are zero). As elsewhere, the symbol ◦

denotes the Hadamard product (element-wise multiplication). Models were simulated via

Euler-Maruyamma integration with dt=.1s, σW=.2, TR=.7s, and total simulation length

t=10,000. We considered the case in which no hemodynamics are present, in which case

MINDy is fed x(t) downsampled according to TR, and the case in which x(t) is convolved

with spatially heterogeneous hemodynamics and deconvolved with the canonical HRF before
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being fit by MINDy. In the latter case, the HRF function was parameterized as before, but

with the ground-truth α1 parameter for each brain region drawn from N(6, (.25)2) and the β1

parameter drawn from N(1, (.25/6)2). The simulated BOLD was produced by convolving the

simulated time-series with the ground-truth HRF before temporal downsampling. In both

cases, initial conditions for each node were independently drawn from N(0, 1) and the first 100

samples were dropped. Since the total number of nodes was approximately one-tenth of those

used in the HCP data, we rescaled the dimension of the low-rank component by one-tenth

(from 150 to 15). Similarly, we rescaled the regularization terms inversely proportionate to

the effect of rescaling W by a factor of 10: (λ1, λ3 by 1/10, λ2 by 1/
√
10 and λ4 by 1/102).

For simulations using the Balloon-Windkessel model of hemodynamics, x(t) was rescaled to

the range of average synaptic gating via 5S(t) = 1 + tanh(x(t)/10). This transformation of

x was then substituted into the nonlinear hemodynamic model (below) to generate simulated

BOLD signal. In all cases, time series were z-scored, smoothed via nearest-neighbor ([.5 .5]

kernel) and run through MINDy for 150,000 iterations (approximately 70 seconds) with the

original batch size of 250.

Neural Mass and Windkessel-Balloon Model Simulations

For our neural mass ground-truth simulations (Sec. 2.3.7, 2.3.8), we largely followed the

approach of Wang and colleagues ([71]) in using single-population neural mass models (20

masses/simulation in Sec. 2.3.7 and 6 to 16 in Sec. A.8) with Windkessel-Balloon model

hemodynamics ([92])). Similar to the MINDy model, the neural mass model ([93]) contains a

monotone nonlinearity (ψ̂) and linear decay 1/τS:
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Ṡi = −Si/τS + r(1− Si)H(xi) + σWdW

H(xi) = ψ̂(−d(axi − b))

xi =
∑
j

Ci,jSj + ISub (2.9)

The variable S describes the average synaptic gating, while H describes the population firing-

rate. We used the default parameter settings: τS = .1s, a = 270n/C, b = 108Hz, d = .154s,

r = .641. Unlike Wang and colleagues ([71]), we used a logistic sigmoid transfer function for
ˆψ(x) = 1/(1 + exp(−x)) instead of the rectified linear transfer function: x/1− exp(−x), as

the former is less prone to pathological behavior in random networks. Subcortical input was

Isub = 5. Connection weight matrices were randomly generated as described in the previous

section, but with 1.5 added to all recurrent connections and the resultant matrix scaled

by a factor of 100. Simulated neural activity is converted into BOLD signal through the

Windkessel-Balloon model ([92]):

żi = Si − κzi − γ(fi − 1)

ḟi = zi

τ v̇i = fi − v
α−1
G

i

τ q̇i =
fi
ρ

[
1− (1− ρ)1/fi

]
− qiv

α−1
G −1

i (2.10)

The variables z,f ,v, and q model vasodilation, inflow, blood volume, and deoxyhemoglobin

content, respectively. Parameters were: ρ = .34, κ = .65s−1, γ = .41s−1, τ = .98s, αG = .32.
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The simulated BOLD signal at each TR is then modeled as:

BOLD(vi, qi) = V0

[
k1(1− qi) + k2

(
1− qi

vi

)
+ k3(1− vi)

]
(2.11)

Resting blood volume fraction is denoted V0 = .02. Scanning parameters k1, k2, k3 were

set to 3T values according to Demirtas and colleagues ([5]): k1 = 3.72, k2 = .53k3 = .53.

Simulations were run with dt=25ms and σW = .005 for total length t = 40, 000. Sampling

was performed every 29 time-steps (TR = 725ms) and the first 10% of samples were dropped.

The resulting time-series were deconvolved with the canonical HRF assumed by MINDy and

z-scored. MINDy hyperparameters were identical to the rate-model case and MINDy was

run for 10,000 iterations (approximately 6 seconds) with batch size 250. Initial conditions

for hemodynamic variables were randomly sampled from |N(0, 1)|. Initial conditions for the

neural variable (S) were generated by first sampling S0 ∼ |N(0, 1)| and then performing the

transformation S0/(1 + S0).

2.2.7 Simulations for DFC analysis

For analyses of dynamic functional connectivity, models were estimated for each subject

(one per session) using the full HCP temporal resolution dX(t) = X(t + 1)−X(t). These

models were then used to generate simulated resting-state fMRI data, but with additional

process noise added as would be expected in observed fMRI timeseries data. We used the

same time-scale for simulation as in the validation models (dt=.5 TR). However, whereas the

validation simulations employed process noise containing constant variance across parcels, we

used a naive estimate of process noise for each parcel, that was based upon the residual error

of model fits over subsequent time-steps. We avoided doing this in the validation stage so

that ground-truth parameters could not be recovered simply by observing noise. The residual

error covaried with the decay parameter across parcels at the group-level, but not at the
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individual level, despite individual differences in both noise and decay being reliable within

parcel. We reintroduced parcel-based variation into the DFC simulations to obtain maximum

realism. We considered both the case in which process noise was allowed to vary by parcel

but not by individual within a test-retest group (e.g. using the mean noise across subjects

for each session separately), as well as the case in which process noise was determined on

a subject-wise basis. Results obtained with either method were near-identical for the DFC

reliability analyses so we present results using the session-wise group-mean process noise (e.g.

the mean process noise for each parcel averaged across all day 1 scans or all day 2 scans).

Initial conditions were drawn from each subject’s observed data for that scanning session.

Simulations were run for 2600 time steps (1300 TRs) using 15 different initial conditions

per session and temporally downsampled back to the scanning TR. After simulation, we

downsampled from the 400 parcel to the 100 cortical parcel variants of gwMRF ([6]) and

removed subcortical ROIs in order to reduce computational complexity of subsequent DFC

analyses.

2.2.8 DFC Analyses

DFC analyses consisted of the standard deviation and excursion ([12]) of the time-varying

correlation between brain regions. To calculate time-varying correlations we used Dynamic

Conditional Correlation (DCC; [94]). To avoid confusion with other references to “standard-

deviation” we refer to this measure as “σ-DFC” as it pertains to time-varying correlations.

Formally, σ-DFC is calculated by first estimating the time-varying covariance using DCC.

Under this approach, the data, (yt) is modeled as a zero-mean stochastic process with

auto-regressive covariance:

yt ∼ N (0,Σt) (2.12)
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with time-varying covariance matrix Σ evolving according to the first-order autoregressive

model:

Σt = Ω+ A ◦ yt−1y
T
t−1 +B ◦ Σt−1. (2.13)

The matrices Ω, A,B are estimated in DCC using maximum-likelihood. We define the σ-DFC

matrix as the standard deviation (over time) of the time-varying correlation matrix Qt:

σ −DFC := SD(Qt) =

√∑
t(Qt − Et[Qt])2

T − 1
(2.14)

with Et[Qt] denoting the sample mean over time. To ensure numerical stability, we repeated

the DCC algorithm 10 times per case (simulation or true data) and used the median estimated

time-series for time-varying correlations. The excursion measure was calculated according to

([12]). Reliability was computed for each pair of region’s DFC statistics using Fisher’s ICC of

group-demeaned DFC metrics between scanning session (ICC(2,1) in the Shrout and Fleiss

convention [95]). Overall reliabilities collapsed across all regions were calculated using Image

Intraclass Correlation ([96]).

2.2.9 Sensitivity Analyses

We conducted sensitivity analyses in Sec. 2.3.2 to test how the different mechanisms of

ground-truth models (e.g. connections vs. decay) influence the estimates of “connectivity”

in MINDy and rsFC. We were particularly interested in how each method responded to

local heterogeneity (i.e. are MINDy/rsFC estimates of connection strength sensitive to local

model parameters: decay and curvature). For each batch of the sensitivity analyses, we first

simulated a resampled individual multiple times to generate a distribution of trial-to-trial

variability (“within-subject”) in elements of MINDy’s weight matrix and the rsFC matrix.

We then held the weights of the ground-truth neural mass model constant while resampling
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either the curvature (α) or decay (D) parameters and calculating MINDy weights and rsFC

from simulations of the new model. Changes in the estimated connectivity (weights or rsFC)

were deemed significant if they occurred with p < .05 for the corresponding “within-subject”

distribution.

2.2.10 Statistical Analyses

Statistical testing was primarily within-subject between method/condition (e.g. paired t-

tests). We used the conservative Bonferroni method for all multiple-comparison corrections.

All reported p-values are calculated for two-tailed tests unless indicated otherwise. We use

p ≈ 0 to denote p-values calculated as less than 10−20 for which precise numerical estimates

may deteriorate.

2.3 Results

2.3.1 Overview of Results/Approach

The Results of the paper are structured as follows. The first section serves to relate MINDy

parameter estimates to resting-state Functional Connectivity (and related partial correla-

tion approaches) in terms of differentiating/identifying sources of individual variation. The

“ground-truth” models for validation in this first set of analyses are drawn from the empirical

distribution of MINDy parameters to ensure that the resultant simulated data is realistic.

The second section directly addresses the potential for overfitting by testing whether MINDy

models cross-validate and whether parameters are reliable. The third section demonstrates

that MINDy parameters have distinct anatomical gradients consistent with previous, theo-

retical results ([5],[71]), and highly conserved individual variation (a feature not present in
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over-fit models). The fourth section demonstrates models’ predictive validity by reproducing

individual differences in resting-state dynamics using the empirical models. In the fifth

section, we demonstrate that the approach is robust to measurement noise, preprocessing

pipelines, and hemodynamic confounds. This section uses three forms of “ground-truth”

models. For initially testing robustness to noise and global hemodynamic variability, we

again use parameters drawn from the empirical distribution to ensure maximum realism.

In subsequent analyses, however, “ground-truth” parameter values are drawn from random

hyper-distributions independent of the data and combined with more nuanced hemodynamics.

This step tests model performance with more exotic “ground-truths” and prevents circularity.

We also consider an additional case in which the simulated fMRI data is generated from

randomly-parameterized neural-mass models (operating at the millisecond-scale) to provide

insight into the relationship/limitations of MINDy parameter estimates from fMRI and the

underlying synaptic connectivity. In the sixth section (Sec. 2.3.8), we summarize comparisons

with Dynamic Causal Modeling which receive fuller treatment in the SI (Sec. A.8). The final

results section directly assesses data-requirements of MINDy and provides a minimum data

quantity (>15 minutes) to prevent over-fitting.

2.3.2 MINDy Retrieves Individual Differences

MINDy Retrieves Individualized Connectivity

A key goal of our investigation was to determine whether MINDy was sufficiently sensitive

to reveal individual differences in connectivity weights that have become the focus of recent

efforts within the rsFC literature ([97], [47]). We tested the model by reconstructing individual

differences in connectivity weights of simulated subjects and comparing them against both
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classical rsFC and the partial correlation matrix. Simulated subjects were generated by

permuting MINDy parameter sets across individuals (see methods). We then simulated the

resultant model with process noise and hemodynamics to generate realistic BOLD fMRI time

series (see methods; Fig. 2.1 C; SI Fig. A.2 B). This provided a ground-truth set of simulated

fMRI data, from which we could compute the rsFC/partial correlation matrices for each

“subject”, and also determine the fidelity of recovered parameters (i.e., compared against true

parameters used to generate the simulated data). To assess the performance of the model

estimation procedure, we considered two metrics: the validity of estimated connectivity weight

differences between subjects (Fig. 2.2 B) and the sensitivity of each procedure to different

model components (SI Fig. A.10 A). These sensitivity analyses reveal whether each approach

(rsFC matrix, partial correlation matrix, or model estimation) misclassifies variation in some

other model component (e.g. decay rates) as being due to a change in weights. To better

assess sensitivity, we generated data after varying only one model component at a time across

the simulated subjects: the weight matrix (W ), transfer functions (α) or decay rates (D).

Results indicated that MINDy was able to accurately recover the ground-truth weight matrix

for each individual (Fig. 2.2 A,B). Thus, the simulated weight changes that differentiated one

individual from another were recovered well by the MINDy parameter estimation approach.

Moreover, MINDy weight estimates were found to significantly outperform rsFC and partial

correlation measures (computed on the simulated timeseries data) in their ability to accurately

recover both the ground-truth connectivity matrix of simulated individual subjects, as well

as the differences between individuals (Fig. 2.2 B; SI Table A.5). This finding suggests that

the modest relation between rsFC and ground-truth connectivity weights is primarily driven

by the group-average connectivity as opposed to individual differences. However, rsFC may

be disadvantaged in this comparison as it does not typically permit sparseness commensurate
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Figure 2.2: Ground-truth validation of MINDy and rsFC at the level of single-subject and
inter-subject variation. A) First column: Example ground-truth weight matrices for two
simulated subjects (top two rows) and the difference between ground-truth weights (bottom-
row). Second column: Recovered weight matrices using MINDy for both subjects and their
difference. Third column: same as second but using the rsFC. Fit weight matrices and
simulated FC matrices are shown in standard-deviation (SD) units with SD computed across
the offdiagonal elements of each individual matrix. The ground-truth matrices are displayed
in units 2/3×SD to aid visual comparison. B) Top row: histogram of performance at the
simulated single-subject level (correlation with ground-truth [GT]) for MINDy (blue) and
rsFC (red). Bottom row: same as top but for for predicting the differences in matched-pairs
of simulation subjects who differed only in ground-truth connectivity. Simulation subjects
were generated by sampling from the distribution of empirical (HCP) MINDy parameters
(see Sec. 2.2.6).

with empirical MINDy weights (Fig. 2.5 A,B). Therefore, we used partial correlations as

an additional benchmark. While partial correlations quantitatively improved upon rsFC

estimates (single-subject: R = .537 ± .032, inter-subject: R = .392 ± .027), performance

remained significantly lower than MINDy (single-subject: paired − t(33) = 40.51, p ≈ 0,

inter-subject: paired− t(33) = 23.62, p ≈ 0).
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The above analyses were designed to illustrate the additional utility of MINDy in empiricial

contexts over the most common current approaches (rsFC and partial correlation). For

this reason, we generated ground-truths from the empirical distributions to ensure maximal

realism. In later analyses (Sec. 2.3.8), we compare MINDy to a much closer modeling

approach (Spectral DCM; [57]). We reserve these comparisons for later as they employ a very

different approach to generating ground-truth models: seeking to minimize bias and sample

over a wide range of potential ground-truth scenarios. The anatomically-detailed models

used in the current section are also too large for Spectral DCM to estimate using available

computational resources (Sec. 2.3.8).

MINDy Disentangles Sources of Individual Differences

After we established that MINDy outperforms rsFC and partial correlations in retrieving true

individual differences in weights, we benchmarked the sensitivity of each approach to other

sources of individual variation. Rather than measuring how well each procedure correctly

retrieves connectivity, these tests quantify how well each approach selectively measures

connectivity as opposed to other sources of variation (see methods). We quantified sensitivity

in terms of how often MINDy and rsFC reported that a connection changed in strength

between simulated models, when in reality only the curvature or decay terms were altered

(SI Fig. A.10 A). Results indicate that MINDy correctly detects the sources of individual

variation when due to local changes such as decay rate and transfer function shape, as these

have no appreciable impact on MINDy’s connectivity estimates (the false positive rate is

near that expected by chance). By contrast, rsFC measurements were highly sensitive to the

decay rate (27.5± 12% of connections changed vs. 7.6± .6% for MINDy, with 5% expected

by chance), indicating that some individual differences in FC may be reflective of purely

local brain differences as opposed to connectivity between brain regions (SI Fig. A.10 A; SI

39



Pairwise across
subject

Split-half
(within subj.)

C
or

r.
 (

R
)

Test/Re-test
(split half within subj.)

Single subject vs. All others Δ
C
or

r.
 (

R
)

(actual)
(fit)

A B C

C
o
rr

. 
(R

)

Predicted Actual

FC W Dα

FC FC

Pairwise across
subject

Split-half
(within subj.)

0.8

0.5

0.9

0.7

0.6

0.56

0.58

0.6

0.62

0.64 0.8

0.5

0.7

0.6

0.4

0.3

Figure 2.3: MINDy parameters and predictions are personalized and reliable. A) Comparison
of the test-retest similarity between subjects (red) and the test-retest reliability (blue) for
rsFC and the MINDy parameters. B) Goodness-of-fit for a single time-step prediction is
uniformly (but minutely) greater for comparing test-retest predictions within a subject vs.
between subjects. Performance is in terms of predicting the difference time series. Red line
indicates group-mean C) This relationship magnifies across time steps as evidenced by far
greater similarity in test-retest predicted FC from model simulations of the same subject vs.
different subject. Performance is in terms of predicting the empirical rsFC on a different
scanning session. For similarity to the same or both scanning sessions see SI Fig. A.9. Blue
line indicates mean.

Table A.6). These results indicate that MINDy promises to improve both the mechanistic

sensitivity and the anatomical accuracy of inferences based upon individual differences in

resting-state fMRI. However, it is still the case that resting-state fMRI exhibits generalized

sensitivity to individual differences in neurobiology, which may suffice for some applications,

such as biomarker discovery (see Sec. 2.3.4).

2.3.3 MINDy Parameters are Reliable

In addition to determining the validity of MINDy parameters, it is also critical to establish

their reliability. We examined this question by analyzing measures of test-retest reliability

of the parameter estimates obtained for human subjects contributing resting-state scans on

two separate days (30 minutes each). Results indicated that MINDy had high test-retest

reliability for all parameter estimates (> .75; Fig. 2.3 A). The reliability of weight estimates
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was significantly higher than rsFC reliability, although the mean difference was modest

(∆R ≈ .045, SI Table A.7, SI Table A.8). By contrast, the variability in reliability was

noticeably smaller for MINDy, meaning that while the mean advantage of MINDy in terms

of reliability was modest, its performance was much more consistent across subjects (less

variable reliability; SI Table A.8).

2.3.4 MINDy Parameters are Personalized

For sake of comparison with FC we have thus far emphasized the ability of MINDy to extract

brain connectivity. However, MINDy fits brain models, with the connectivity weights (Fig.

2.5A,B) comprising just one component. For the approach to faithfully reflect the stable

differences among individual brains, it is important that it not just accurately estimates the

neural parameters that describe human brains, but that these parameters accurately capture

individual differences and predict brain activity. Using the “connectome fingerprinting”

approach ([42]), we compared whether MINDy parameter estimates and the combined model

uniquely identify individuals within a sample. This analysis was conducted in two ways.

First, we computed separate parameter estimates for each individual in each testing day

session. Then we examined whether the parameters estimated from one day showed the

highest similarity to the same individual on the other day (relative to all other individuals in

the dataset; Fig. 2.3 A). Secondly, we used the estimated model from one day to test whether

the estimated parameters provided the best fit to the fMRI data timeseries recorded on the

second day, again relative to the estimated parameters from other subjects. Specifically,

this second analysis provides a strong form of cross-validation testing and we performed

it for both predictions of the empirical timeseries (Fig. 2.3 B) and for predictions of each

subject’s empirical rsFC, both cross-validated across sessions (Fig. 2.3 C). In all analyses, we
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found that the best predicting model for every subject was almost always their previously fit

model (Table A.7). In particular, we achieved 100% accuracy when conducting connectome

fingerprinting based on MINDy weight parameters (SI Fig. A.10 B), and when computing

cross-validated goodness of fit/cross-validated predicted rsFC (Fig. 2.3 B,C). For pairwise

analyses of subjects, see SI Fig. (A.10 F).

Similar patterns emerged but also some important differences, when conducting parallel

analyses using rsFC. Replicating prior findings ([42]), 100% accuracy was also achieved in

connectome fingerprinting (SI Fig. A.10E). However, between-subject similarity was signifi-

cantly lower in the rsFC analysis. Conversely, in rsFC the distinction between across-sessions

within-individual similarity scores (i.e. test-retest similarity) and the average similarity

obtained between subjects was greater than that observed in the MINDy model weights (SI

Table A.7). These results suggest that rsFC may actually generate an exaggerated picture of

the idiosyncratic nature of connectivity, since MINDy individual differences are partitioned

not only into weights, but also into other mechanistic parameters that are attributed locally,

to the node/parcel (i.e., the decay [D] and curvature [α] parameters). In other words, MINDy

may provide a richer and more variegated perspective on the nature of individuality, than

what can be obtained with rsFC which lumps together what may be multiple dimensions

of individual difference, into a simple, undifferentiated measure. For applications such as

biomarker discovery, these properties may not be relevant in that the apparent magnification

of individual differences in rsFC over MINDy weights could prove beneficial despite the

mechanistic ambiguity of rsFC. However, we also note that MINDy provides additional pa-

rameters (curvature and decay) which may also prove useful for biomarker discovery. Lastly,

the relevant dimensions for biomarker discovery are in terms of separating phenotypes, rather

than separating all individuals. Since MINDy can robustly separate individuals, it has the
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potential to influence biomarker discovery, but whether it possesses quantitative advantages

over rsFC will need to be investigated in the context of explicit biomarker questions (and

may be phenotype-specific).

2.3.5 Novel MINDy Parameters show reliable individual and anatomic

variation

Interestingly, we observed important additional functional utility from examining the novel

MINDy parameters that are unavailable in standard rsFC. With regard to individual variation

and fingerprinting analyses, we found that even ignoring the weights completely, the transfer

function curvature parameter (α) associated with each node showed high consistency across

sessions within an individual, and also unique patterns across individuals, such that 100%

accuracy could also be achieved in fingerprinting analyses (Fig. 2.3 ). A slightly lower

accuracy (94.3%) was observed when using the MINDy decay (D) parameters, though even

here performance was still significantly above chance (1.89%) in identifying individuals (Fig.

2.3 A; Table A.7). Pair-wise, between-subject, comparisons of similarity in these parameters

are reported in SI Fig. (A.10 B-E).

We followed-up on the identification of reliable individual differences through MINDy, by

conducting exploratory analyses to examine which brain regions/connections exhibited the

greatest inter-individual variability (SI Sec. A.9). We found that the curvature parameter

had greatest relative variability in prefrontal cortex, particularly inferior frontal gyrus (SI

Fig. A.6A), while the decay parameter had high variability in visual regions, the “hand”

portion of post-central gyrus, and medial prefrontal cortex (SI Fig. A.6B). Connections

within the visual networks had the lowest individual variability while connections to/from
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Figure 2.4: Local MINDy parameters display consistent anatomical distributions. A) The
curvature-parameter displays network structure and is consistent across subjects at the finer
parcel level. Parcels are ordered from least to greatest value for the curvature parameter
(α) averaged across subjects and scanning sessions. Surface plots are for mean value. Two
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transform of the T1/T2 ratio (MMP parcelation). This measure has been theorized to reflect
a hierarchy of cognitive abstraction from sensory to associative cortices.
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the Temporal-Parietal network had the greatest (SI Fig. A.6C, D). Although these initial

findings are intriguing, due to sample size/bias considerations and the exploratory nature

of these analyses, we view them as a launching pad for future insights rather than basic

neuroscientific results per se (see SI Sec. A.9).

Although the above analyses focused on individual differences in the unique MINDy parame-

ters, these parameters also exhibited common patterns across individuals (SI Fig. A.4 B,F)

that revealed interesting anatomical structure and gradients (Fig. 2.4 A-C; SI Fig. A.4

B,F). These may reflect regional variation in intrinsic dynamics (D) and efferent signaling

(α) that vary across brain networks (SI Fig. A.4 A,E), but also exhibit consistency even at

the finer within-network scale (Fig. 2.4 A,B; SI Fig. A.4 B,F). For example, most nodes

within the Temporal-Parietal network showed high curvature, but also low decay parameters;

in contrast, in nodes of the Control (A) network, the curvature parameter tended to be

low, whereas the decay parameter was high. Group-mean values show the same anatomical

gradient across the gwMRF ([6]; SI Fig. A.4 D,H) and MMP ([10]; SI Fig. A.4 C,G) atlases.

It is important to note that the decay parameter only describes temporal integration at

time scales commensurate with fMRI sampling. Thus, the decay parameter should not be

conflated with the time-constant of traditional neural mass models just as the latter is distinct

from the membrane time constant of neuronal models. Interestingly, the decay parameter

in MINDy appears to reflect components of both temporally-extended signal integration

and the time-constant of local sub-second integration. Whereas the mean value of the decay

parameter correlates with absolute global brain connectivity (i.e. the sum of absolute values

along a row of the rsFC matrix; r(377) = .911, p ≈ 0) the principal dimensions of individual

variation (Fig. 2.4 C, SI Fig. A.4 I,J) recreate the hierarchical organization of primate cortex

as derived from the T1/T2 ratio map (r(358) = .583, p ≈ 0; using the MMP Hierarchy map
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by Demirtas and colleagues [5]). As a caveat, it is worth noting that these statistics do not

take into account spatial autocorrelation (which is challenging to model, given the large and

irregular shape of parcels), which could have contributed in part to the anatomical gradients

we observed. This hierarchy has been the subject of recent studies into its relationship

with local excitation/inhibition ([71], [5]) which is one physiological mechanism we suspect

underlies the decay construct (see SI A.1). This hierarchy also predicts the time-scales of local

microcircuits, patterns of gene-expression, mylein density, and function (sensory-processing

hierarchy; see [71], [5]).

In addition to the curvature and decay parameters, MINDy also differentiates from rsFC in

the structure of the weight matrix (W ) / connectivity matrix, both in terms of asymmetry

(Fig. 2.5A,C) and sparseness (Fig. 2.5A,B). The former is a direct consequence of the

dynamical systems model that underlies MINDy, which provides an estimate of effective

connectivity. Although regularization generally favors sparse solutions, we found that, even

without any regularization, the group average Weight matrix was much sparser than rsFC

(SI Sec. A.7). We provide a simple proof-of-concept to illustrate the potential insights that

can be gained from investigating such asymmetries. Specifically, MINDy identified a region

of left Inferior Frontal Gyrus (IFG) as the parcel with the greatest asymmetry in positive

connections. Specifically, this region showed a positive outward-bias in connectivity with the

bias primarily exhibited in its feed-forward positive connections to ipsilateral medial temporal

lobe, inferior parietal lobule (IPL), and dorsal/ventrolateral PFC (Fig. 2.5 C). Excitatory

connections of the left IFG with temporal cortex are essential features of the “language

network” (e.g. [7]). Additional results revealing other brain regions showing directionality

biases in connectivity are reported in SI (Sec. A.10). In a later section, we explicitly test
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the robustness of asymmetry estimates and how they are affected by assumptions regarding

hemodynamics and model mismatch.

2.3.6 MINDy Predicts Individual Brain Dynamics

MINDy Predicts Individual Differences in Dynamic Functional Connectivity

We next focused our analyses on the dynamic patterns observed in brain activity, since this

has been an area of rapidly expanding research interest within the rsFC literature, termed dy-

namic functional connectivity or dFC ([33],[39],[25], [35]). Critically, the question of whether

MINDy models can predict more slowly fluctuating temporal patterns in the recorded brain

data for individual subjects is qualitatively distinct from the ability to predict activity over

very short timescales (i.e., 1-step). This is because small biases in fitting individual time

points can lead to very different long-term dynamics (e.g. compare panels B and C in Fig.

2.3, which reflect short and long-term predictions, respectively). To test model accuracy in

capturing longer-term dynamic patterns, we used fitted model parameters for each subject to

then generate simulated fMRI timeseries, injecting noise at each timestep to create greater

variability (see Methods). We then used this simulated timeseries to identify the temporal

evolution of short-term correlations between brain regions and compared results with those

obtained from the recorded data. Correlation timeseries were estimated using Dynamic

Conditional Correlation (DCC; [94]), a method which has been recently shown to improve

reliability in the HCP data-set as compared to sliding-window estimates ([11]). We then

attempted to recreate DFC measures of individual subjects which have shown the greatest

reliability in the actual data. Recent reliability analyses have indicated that simple statistics

of temporal variation in individual correlation pairs such as standard deviation of the condi-

tional correlation time-series ([11]) and excursion ([12]) are more reliable than state-based
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descriptions for the HCP resting-state data ([11]). Therefore, we used these measures (see

Sec. 2.2.8 for equations) to validate dynamics within the model. To avoid confusion, we use

the term σ-DFC to refer to the temporal standard-deviation of time-varying correlations,

which is used as a measure of DFC. Alternatively, the σ-DFC may be conceptualized as the

signal power of the moving-correlation time series and has proven to be one of the most

reliable measures of DFC ([11]). MINDy performed slightly better on recreating another

reliable DFC statistic, group-average excursion, so we chose to be conservative and display

the results from σ-DFC for main-text figures rather than using excursion DFC. Results using

excursion DFC and the corresponding figures are provided in SI (Fig. A.11).

Results indicate that individual differences in the simulated dynamics of models fit to separate

test-retest sessions are at least as reliable as summary dFC measures of individual differences

in the original data (SI Fig. A.11 A,B). The image intraclass correlation (I2C2, [96]) for the

model was .555 for σ-DFC and .481 for excursion. In the original experimental data, I2C2

reliabilities were .527 for σ-DFC and .380 for excursion. Moreover, individual differences

in the DFC of simulated models were highly correlated with those of the original data for

most region-pairs (Fig. 2.6 A). Lastly, we analyzed whether the simulated data recreates

the central tendency of observed data. In general, the group-mean σ-DFC (SI Fig. A.11D)

and excursion (SI Fig. A.11 E) estimates were highly similar between the simulated and

observed data for both the σ-DFC (Fig. 2.6 B; r(4948) = .761) and excursion metrics (SI

Fig. A.11 C; r(4948) = .836). Thus, MINDy models recreate measures of DFC at the level of

both individual differences and the group-level. Moreover, in some cases (e.g. the excursion

metric), MINDy models generate more reliable estimates than those of the original data (SI

Fig. A.11B). A main advantage of the model in this regard is likely due to the ability to
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simulate an arbitrarily large amount of data with the model that is also free from nuisance

signals/motion.

MINDy Models Generate Non-Trivial Dynamics

In the previous section we demonstrated that MINDy predicts individual differences in

nonstationary dynamics. This finding suggests that the nonlinearities in MINDy are able

to account for some features of the data (nonstationarity) that are mathematically absent

from linear models. From a dynamics perspective, non-pathological (Schur-stable) linear

models predict that spontaneous brain activity consists of noise-driven fluctuations about a

single equilibrium. The model parameters for a linear system (e.g. “effective connectivity” in

DCM) shape the spatiotemporal statistics of these fluctuations and in the case of white-noise

excitation result in a unimodal distribution about the equilibrium in question. Although

many nonlinear systems exhibit exotic behavior (e.g. chaos), some systems are dominated

by a single equilibrium and may thus possess dynamics that are similar to a linear system.

Therefore, we tested whether empirical MINDy models exhibit nontrivial dynamics in the

absence of noise (see SI Sec. A.11). We found that all subjects’ models were dominated by

nontrivial dynamics (multistability, homo/heteroclinic cycles, limit cycles, etc.). Example

nonlinear dynamics for two representative subjects are provided (Fig. 2.6C,D), although a

thorough characterization of each model’s full phase space is beyond our current scope (see

SI Sec. A.11). Nonetheless, we were able to formally demonstrate that no subject exhibits

trivial dynamics (SI Fig. A.8A,B; Proposition 2). We conclude that the nonlinearity of

MINDy models is not superficial, but rather generates topologically significant dynamics

which shape model behavior.
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dynamic functional connectivity (DFC) measures. A) Similarity between model and data
for predicting each subject’s σ-DFC for each pair of brain regions (using the 100-parcel
atlas from [6] and collapsing the 17-network grouping down to 8). B) Scatterplot and
Pearson correlation of group-average σ-DFC for data vs. model. C) Evidence of non-trivial
dynamics in MINDy models. Example phase portrait of one subject projected onto the first
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51



2.3.7 MINDy is Robust

MINDy is Robust to Measurement Noise

We addressed the degree to which MINDy fitted parameters are influenced by potential

sources of contamination or artifact in the observed fMRI data. Resting-state fMRI data

is thought to be vulnerable to three main contaminants: noise in the BOLD signal, biases

induced from post-processing pipelines that attempt to remove this noise, and idiosyncratic

variation in the hemodynamic response function that relates the BOLD signal to underlying

brain activity. For the first case, we considered two sources of noise in the BOLD signal:

additive measurement error and motion artifact. The former case can result from random

fluctuations in magnetic susceptibility, blood flow, and responsiveness of radiofrequency coils

among other factors. We examined this issue using the ground-truth simulations described

above, but systematically varying the amount of measurement noise added at each time-step.

This approach allowed us determine how strongly these various sources of noise impacted the

ability of MINDy to recover the ground-truth parameters. Results indicated that although

the performance of MINDy decreased with the amount of noise added (Fig. 2.7 A), similarity

to the ground-truth values generally remained high. Additional levels of noise are plotted

in SI Fig. A.13. At the highest level of noise considered, Weight and Decay parameters

correlated R ≈ 0.7 with ground-truth, while the curvature parameter correlated R ≈ 0.6. We

note that empirical data exhibiting such a high level of noise would (hopefully) fail quality

control.
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MINDy is Robust to Individual Differences in Motion

We next examined the impact of motion on MINDy estimates. In this case, we used three

standard measures of motion that were derived from the observed fMRI timeseries data: 1)

the number of total frames censored due to crossing critical values of frame-wise displacement

or DVARS (see Methods), 2) the median absolute framewise-displacement of the subjects head

across scanning sessions, and 3) the spatial standard deviation of temporal difference images

(DVARS) ([86]). We then examined whether variability in these parameters across individuals

contributed to the quality of MINDy parameter estimation and individuation, using test-retest

reliability (of estimated parameters from each session) as the index of quality. If MINDy

estimated parameters reflected vulnerability to the degree of motion present in an individual,

then we would expect higher test-retest reliability in the parameters for the individuals with

the lowest estimated motion (e.g., highest data quality). Instead, we found that test-retest

reliability was relatively un-impacted by any measure of motion (SI Fig. A.12 B-D, I). A

parallel analysis used cross-validated fit, in which MINDy parameters were estimated from

one session, and then used to predict data in the held-out session, computing goodness-of-fit

of the model to the observed data in this session (in terms of variance explained). In this

case, we examined a subset of participants that had relatively low motion in one session, but

relatively higher motion in the other compared against a second subset that had similar levels

of motion in both sessions. If the increased motion in this latter session was problematic, it

should reduce the goodness-of-fit (either when used for parameter estimation or when used

for cross-validation in the held-out session). In fact, the cross-validated fits were relatively

similar in each group (SI Fig. A.12 E,J). Together, these results suggest that participant

motion (within a reasonable range) may not be strong factor in determining how well MINDy

model parameters can be estimated from observed fMRI data timeseries.
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54



MINDy is Robust to Pre-Processing Pipelines

We next examined whether secondary data pre-processing pipelines, which are typically

applied to rsFC data prior to analysis, produce biases on MINDy parameter estimates, again

examining this issue in terms of test-retest reliability. We considered three variants of a

standard published preprocessing pipeline ([2]), one with motion-correction only, one which

adds to this CompCor (a standard method that removes noise components associated with

white matter and CSF; [87]), and a final, full variant that additionally includes global signal

regression (GSR; [98]). We compared test-retest reliability for data-processed with each

pipeline (SI Fig. A.14 A) and the similarity of parameter estimates obtained when the same

data were processed using different pipelines (SI Fig. A.14 B). Results indicated that MINDy

parameters had high test-retest reliability regardless of preprocessing choices (all R > .7, SI

Fig. A.14 A) and that similar parameter estimates are obtained regardless of preprocessing

choices (all r > .85, SI Fig. A.14 B). By comparison, when a parallel analysis was conducted

on rsFC values, the rsFC parameters showed lower test-retest reliability, particularly when

more pre-processing was performed on the data, and showed a larger impact of a change in

pre-processing on test-test reliability. A direct comparison of the test-retest of MINDy weight

parameters relative to rsFC revealed that these were significantly higher (all p′s < .05), were

more consistent (lower variance of reliability) across pipelines (all p′s < .001; Table A.8; SI

Fig. A.14 A), and were less impacted by changing preprocessing pipelines (all p′s < .001; SI

Fig. A.14 B). Together, this set of analyses indicate that the choice of preprocessing pipeline

will not have a large effect on estimated MINDy parameters.
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MINDy is Robust to Global Hemodynamics

Lastly, we considered the effect of poor estimation of the hemodynamic response function

(HRF). Currently, for simplification, the MINDy estimation procedure assumes a canonical

HRF model that is constant across individuals and parcels ((although we have recently

begun to explore the effect of relaxing this assumption, and estimating a different HRF for

each parcel and individual; [99]). Other fMRI models also assume a canonical HRF (e.g.

regression-DCM; [76]). However, existing literature suggests that this assumption is likely

to be incorrect ([88], [100]). To examine the impact of mis-fitting the HRF, we modeled a

variety of ground-truth scenarios. The first set of ground-truth simulations were randomly

parameterized according to the empirical MINDy distribution and activity timeseries were

convolved with spatially homogeneous, but randomly parameterized HRFs with incrementally

greater variability (SI Fig. A.13 D). We then attempted to recover MINDy parameters while

again assuming the fixed, canonical HRF model ([4]). Results of this analysis suggest that,

on average, the MINDy parameters recovered from this analysis remain consistently similar

to the ground truth parameters (mean similarity of all parameters, R-value≈0.75, Fig. 2.7

B). However, the variability of the fits increased across simulations, as the HRF became more

variable across regions and individuals (SI Fig. A.13 H).

MINDy Parameters are Robust to Model Mismatch

We also considered the effect of violations of the MINDy model in terms of the underlying neu-

ral models (MINDy vs. Hopfield, neural mass) and neurovasculature (spatially heterogeneous

HRFs and nonlinear hemodynamics). These effects are expected to be most pronounced in

estimating asymmetric connections as unaccounted lags can potentially reverse the direction

of inferred causality in many other techniques, such as Granger Causality. For the next set of
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simlations, we generated complex networks from a non-empirical hyperdistribution whose

characteristic parameters were randomly sampled at each run. This approach allowed us

to sample over a wide range of qualitatively different network structures (Sec. 2.2.6) and

these simulations did not depend upon previous empirically-fit MINDy models. We tested

the ability of MINDy to recover the weight parameter (Fig. 2.7 C) from a simple rate model

(tanh transfer function) with four levels of hemodynamic variability: 1) no hemodynamics, 2)

random, spatially-uniform HRF, 3) random, spatially-heterogeneous HRF, and 4) nonlinear

hemodynamics simulated by the Balloon-Windkessel model ([92], [5], Sec. 2.2.6). In the last

case, the nonlinear hemodynamic transformation varies implicitly and systematically in space

due to spatial variation in the firing-rate distribution. Results indicate that MINDy can

recover asymmetric connections of ground-truth networks (Wi,j−Wj,i) for all cases considered,

but performance depends upon the degree of HRF complexity (Fig. 2.7 C; SI Table A.9).

When no hemodynamics were included in the model (MINDy received the downsampled

neural time-series) performance was near-perfect (r = .949 ± .009 overall; r = .971 ± .007

for asymmetries, n = 1700). Performance also was high for random, spatially homogeneous

HRF’s both overall (r = .874± .024) and at estimating asymmetries (r = .910.023, n = 1600).

Spatial heterogeneity of the HRF decreased MINDy performance in recovering overall ground-

truth connectivity (r = .793± .029; t(3071.8) = −86.72, p ≈ 0; unequal-variance), but did

not differentially impair the estimation of asymmetries (r = .832± .028; t(3057.7) = 11.74,

p ≈ 1, 1-tailed, unequal variance).

We also found that MINDy still performed well in recovering asymmetric connectivity when

a nonlinear (Balloon-Windkessel) ground-truth hemodynamic model (r = .865± .022 overall;

r = .927 ± .019 for asymmetries, n = 2020) was used to generate simulated fMRI time-

series data as compared to when a spatially homogeneous, linear HRF model was used
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(t(3073.3) = 23.03, p ≈ 0; unequal variance). Thus, violations of spatial homogeneity in the

hemodynamic response appear more relevant to MINDy than violations of hemodynamic

linearity. However, performance was still strong in all cases considered (median r ≤ .80). We

also conducted preliminary tests of MINDy’s ability to recover synaptic conductances (weights)

from the simulated BOLD signal (Balloon-Windkessel) of a biophysically parameterized neural

mass model ([93]) which evolves at a much faster timescale than the fMRI TR. MINDy was

generally able to recover connection weights (synaptic conductance in the neural-mass model)

for this case as well (r = .684 ± .039 overall). However, unlike in the other simulations,

performance in recovering asymmetries (r = .624± .052) was lower than that of the overall

weight matrix (paired− t(1399) = −109.172, p ≈ 0). This result indicates that the difference

in time-scales between neuronal and BOLD activity is a more relevant constraint on directional

inferences than hemodynamic variability. Although these simulations represent but a small

subset of possible ground-truth models, they indicate that the directionality of MINDy

connectivity estimates remains largely accurate under violations of the assumed spatially

homogeneous hemodynamic response.

2.3.8 Comparing MINDy with Dynamic Causal Modeling

The earlier analyses, in which we compared MINDy and rsFC (Sec. 2.3.2), serve to demon-

strate the potential linkages between methods and how MINDy can resolve some ambiguities

inherent in rsFC (e.g., directionality). However, these analyses should not be interpreted as

stating that MINDy is unambiguously “better” than rsFC as the two approaches represent

fundamentally different constructs. The correlation matrix (rsFC) is a statistical quantifica-

tion whereas MINDy is an approach for estimating a dynamical-systems model and they may

have complementary roles for exploring individual differences/biomarker discovery. In order to

benchmark MINDy as a model-fitting technique we compared performance with spectral DCM
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([57]) in recovering connectivity weights for a variety of simulated ground-truth scenarios.

Spectral DCM (spDCM) is a recently developed Dynamic Causal Modeling (DCM) approach

for simultaneously estimating linear dynamical systems and (region-specific) hemodynamic

kernels from resting-state fMRI ([57]). To be clear, we view the primary contributions of

MINDy relative to modeling approaches such as spDCM in terms of its scalability, biological

interpretability, and the ability to predict nonstationary resting-state dynamics. However, the

question remains whether these advantages come at the expense of accuracy—i.e. whether

MINDy is inferior to DCM within the latter’s scope.

We compared performance of MINDy and spDCM across a variety of ground-truth scenarios

(see SI Sec. A.8) to test whether MINDy performs at least as well as spDCM in the lower-

dimensional scenarios in which the latter is applicable (i.e., estimating parameters for a small

number of nodes or neural masses). These simulations were specifically designed to reduce

bias based upon either model’s assumptions (see SI Tab. A.1) and considered ground-truths

based upon mesoscale Hopfield-style models (SI Fig. A.5A) and biophysical neural mass

models (SI Fig. A.5B). In the former case, we manipulated the degree of spatial variability in

the hemodynamic response (SI Fig. A.5C). When arbitrary choices were necessary, we chose

the option than empirically favored spDCM. Results support that MINDy’s advantages do

not come at a cost to accuracy. In all settings considered, MINDy was at least as accurate, on

average, as spDCM and significantly (orders of magnitude) faster. We observed that spDCM

was more robust than MINDy to spatial variability in the ground-truth HRF (although see

extensions in [99]), but even under the most extreme cases considered, MINDy was at least

as accurate as spDCM (SI Fig. A.5). The empirical examination of run-time overwhelmingly

favored MINDy (SI Fig. A.5D-F). For example, the largest network we tested contained 16

neural masses (SI Fig. A.5D) for which MINDy estimation took 3.5s on average vs. 2.7 hours
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for spDCM. We estimate that fitting spDCM models using our chosen parcellation, involving

419 brain regions/nodes (400 of which are cortical [6]) would take a minimum of 44 years each

(and likely much longer; see SI Sec. A.8). We conclude that MINDy’s advantages (scalability,

dynamics etc.) do not come at the expense of accuracy relative contemporary approaches.

2.3.9 MINDy Requires 15-20 minutes of Data

In most fMRI experiments scanner-time is a precious resource and particularly so with

sensitive populations. While the Human Connectome Project affords a full 60 minutes of

resting-state scan time, this quantity of data may not be a reasonable expectation for other

datasets, so we varied the training data length to determine how much data was necessary for

MINDy to reliably estimate models. We first evaluated reliability in terms of test-retest on

MINDy parameters estimated from separate scanning days using only a subset of the total

data for model fitting. As expected, when the length of data used to estimate parameters

increased, the test-retest reliability of the estimated parameters also increased, up to the

maximum interval considered (30 minutes). Nevertheless, acceptable levels of reliability

(R ≈ .7) were obtained with 15 minutes of data (Fig. 2.7 D). We next examined bias or

overfitting of MINDy parameters by comparing the fit to the trained data, relative to a

cross-validation approach, examining the fit to held-out (testing) data. As would be expected

with over-fitting bias, as the length of the training data increased, the fit to the trained

data decreased. In contrast, the fit to the held-out (test) data increased, and the two values

converged at around 15 minutes of data in training and test sets (Fig. 2.7 E). Thus, we

do believe the current method is too prone to over-fitting biases and unacceptably low

reliability with fewer than 15 minutes of total scan time using the HCP scanning parameters.

However, since the data does not need to be acquired in a single continuous run, we believe

that this requirement is reasonable and in concert with current recommendations for rsFC
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analyses ([97],[47]). Future study with other fMRI acquisition techniques may illuminate how

data-requirements change with sampling rate (e.g. shorter TRs may potentially compensate

for less scan time).

2.4 Discussion

2.4.1 Relationship with Functional Connectivity

There are three primary advantages to using MINDy over rsFC. First, rsFC is limited as a

statistical descriptive model. This means that even though rsFC may be found to be reliable

and powerful as a biomarker that can characterize individuals and effects of experimental

variables, it is unable to predict how the nature of an experimental manipulation relates to

the observed changes in brain activity. By contrast, MINDy is a true mechanistic causal

neural model, which attempts to capture the physical processes underlying resting-state brain

activity in terms of neurobiologically realistic interactions and nonlinear dynamics ([61]).

This feature is powerful, as it enables investigators to perform exploratory analysis in how

altering a physical component of the brain (e.g. the connection between two brain regions)

will affect brain activity ([64]).

Second, MINDy provides a richer description of brain mechanisms than rsFC. While rsFC and

MINDy both attempt to parameterize the connection strength between brain regions, MINDy

also describes the local mechanisms that govern how each brain region behaves. Neural

processes are thought to involve the combination of anatomically local computations and

spatially-extended signal propagation, so it is important that descriptions of brain activity

be able to define the degree to which this activity is generated by local vs. distributed
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mechanisms. Although the elements of the rsFC matrix are often interpreted as reflecting

interregional components of neural processing, we have demonstrated that the rsFC is also

sensitive to purely local characteristics of brain regions, such as their decay rate (SI Fig. A.10

A). Conversely, we have demonstrated that both the transfer function and decay rate of brain

regions can also serve reliable markers of individual differences and anatomical structure.

By using MINDy, researchers can identify which neural mechanisms (i.e. which of MINDy’s

parameters) give rise to individual differences of interest.

Lastly, MINDy greatly improves upon rsFC’s characterizations of effective connectivity be-

tween brain regions. Unlike the elements of a correlation matrix, MINDy’s weight parameters

can describe asymmetric connectivity strengths and thus make inferences regarding the

directional flow of activity between brain regions. We provide tantalizing illustration of

the potential utility of these types of findings (e.g., Fig. 2.5 C, SI Fig. A.7). Further,

we demonstrated that MINDy may prove a more valid measure of brain connectivity and

individual differences in connectivity than rsFC (Fig. 2.2 E).

2.4.2 Relationship with other Models

There are currently two classes of generative models used to study fMRI: proxy-parameterized

neural-mass models (e.g. models using diffusion-imaging data as a proxy for synaptic effi-

cacy [59], [64]) and directly-parameterized linear models (e.g. Dynamic Causal Modeling

[52], [57]). Although nonlinear variants of DCM have been proposed for task-fMRI ([101]),

the techniques used for resting-state fMRI (e.g. [57]) are fundamentally linked with the

statistics of linear systems. These two approaches (proxy-parameterized neural-masses and

linear models) represent opposite ends of a trade-off between realism and tractability for
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mesoscale human brain modeling. The first case (proxy-parameterized neural-mass models)

excels in terms of interpretability of the model framework, since the state-variables can

always be traced back to population firing rates. These models operate at relatively fast

time-scales and can produce predictions with the spatial resolution of MRI and the temporal

resolution of EEG, which make them a parsimonious and general-purpose investigative tool

that can be utilized across temporal scales. Current approaches in this respect are limited,

however, in the manner by which these models are parameterized. Even in state-of-the-art

techniques (e.g. [5],[71]) most parameters are fixed a priori (local neural-mass parameters),

or determined from diffusion imaging data, with only a limited subset taken from fMRI

functional connectivity estimates, typically at the group-average level. Thus, the vast ma-

jority of parameters are not sufficiently constrained by the relevant individual-level data,

and instead are adapted from measurement of proxy variables, which is likely to limit the

accuracy of model predictions. Diffusion imaging data, for instance is inherently unsigned and

undirected, so the resultant models are unable to consider hierarchical connection schemes

or long-distance connections that depress activity in the post-synaptic targets. Moreover, it

remains unknown how to convert units from white matter volume to synaptic conductance

even when these assumptions are met. In practice the conversion is performed by choosing

a single scaling coefficient, which assumes that this relationship is linear with a universal

slope. Due to these sources of uncertainty, proxy-parameterized models do not necessarily

fit/predict raw functional time series. To be fair, however, this limitation may not be rel-

evant for all scientific questions (e.g. studying long-term phenomena such as FC, [28], [5], [71]).

By contrast, the ability of a model to fit the observed time-series implies that its predictions

are valid within the vicinity of observed data. This property holds even when the underlying

model is likely to be inaccurate in its long-term predictions. Evidence of this can be seen in the
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success of dynamic-causal modeling approaches, which can recreate task-driven activity ([102])

despite using a simplified linear model. However, the downside of using a linear modelling

framework is that the long-term predictions of these models are most likely inaccurate, given

that brain activity in a linear model will always converge to a noise-driven stationary distri-

bution. Thus, even though these models may be more accurate than forward-parameterized

neural-mass models in their short-term predictions (by virtue of fitting parameters), the

linear form guarantees that they will be unable to capture the extended pattern of brain

spatio-temporal dynamics. Analytically, it is known that linear dynamical systems cannot

exhibit non-trivial deterministic dynamics and are characterized by a steady-state covariance

when driven by noise (which can be calculated by solving a Lyapunov equation). For this

reason, they are often employed as surrogate models for testing whether proposed measures of

DFC can distinguish between noise-driven trivial (linear) dynamics and those observed in the

data ([36], [103]). Thus, DFC measures which have been shown to be non-spurious through

surrogate methods cannot, by definition, be reproduced by a linear dynamical system with

or without noise . Likewise, these models will also be limited in their ability to identify the

neural mechanisms underlying predictions. Since the model takes a reduced (linear) form,

it remains unknown whether the coefficients fit to the linear models are the same as would

be retrieved by fitting a more realistic model (e.g. neural mass model). That is not to say

that the coefficients are uninterpretable; indeed meaningful predictions have been made by

inferring effective connectivity from the model coefficients (e.g. [57]). On the other hand, the

models’ simplicity may lead to nonlinear components of brain activity being mixed into the

linear model estimates, just as we have shown that intrinsic dynamics influence FC estimates

(SI Fig. A.10 A).
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MINDy attempts to leverage the advantages from both approaches. Like current neural-mass

models, MINDy employs a nonlinear dynamical systems model which is capable of generating

long-term patterns of brain dynamics. However, MINDy is also a data-driven approach,

in that models are fit from the ground-up using functional time-series rather than using

surrogate measures such as diffusion imaging (although in principle, such information could

be used to initialize or constrain MINDy parameter estimates). From the perspective of

biologically-plausible models, MINDy extends parameter fitting from the relatively small

number of local parameters that constitute the current state-of-the-art ([5], [71]) to fitting

every parameter in biologically-plausible individualized whole-brain mesoscale models (i.e.,

increasing the number of fitted parameters by orders of magnitudes). Likewise, MINDy

extends data-driven modeling of resting-state data from linear models containing tens of

nodes ([57],[76]) to nonlinear models containing hundreds. It is also worth noting that the

computational innovations made in the optimization process make MINDy parameterization

many orders of magnitude faster than comparable techniques ([71],[57]; see SI Sec. A.8)

despite fitting many more parameters (e.g.,over 176,000 free parameters can be estimated

in a minute vs. several hours to fit hundreds of parameters). This efficiency has enabled

us to interrogate the method’s validity and sensitivity in ways that would probably not

be computationally feasible for less efficient methods (e.g., building error distributions for

sensitivity analyses in Sec. 2.3.2).

2.4.3 Comparison with Diffusion Imaging Seeded Neural Mass

Models

Although we emphasize the ability to generate individualized brain models, previous studies

using neural-mass models with weights seeded by diffusion imaging have emphasized predicting

group-level data ([28],[5],[71]). Two recent studies fit free parameters with the explicit
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optimization objective of predicting the group-average rsFC matrix ([5],[71]). By contrast,

MINDy seeks to predict the short-term evolution of the neural activity time series for

single subjects, which often results in the simulated individual rsFC correlating highly with

the empirical rsFC (Fig. 2.3 C). Averaging across simulated rsFC’s produces a group-

level simulated rsFC that correlates extremely well with the empirical group-average rsFC

(r(87, 398) = .94; see SI Fig. A.9). As such, the group-average MINDy fit compares very

favorably with the analogous measures for diffusion-parameterized models which typically

don’t surpass r = .6 ([26],[5],[71]).

2.4.4 Limitations

There are two primary limitations of MINDy. The first relates to the properties of fMRI

data: MINDy is limited by the spatial and temporal resolution at which data is gathered.

This means that MINDy is more sensitive to slow interactions that occur over larger spa-

tial scales and is limited to predicting infraslow dynamics (as opposed to higher-frequency

bands). Interactions that are more heterogeneous in time or space may also be missed by

MINDy as the model assumes that the transfer function is monotone. While the strength

of signaling between regions is allowed to vary according to the transfer function, the sign

of signaling (inhibitory vs. excitatory) is not. Thus, MINDy cannot describe relationships

which, depending upon local activity, change sign from net excitatory to net inhibitory. This

feature is inherent in region-based modeling and so this limitation is not unique to MINDy.

A second limitation relates to the model used to specify MINDy. Unlike the conventional

neural mass models ([61]), MINDy employs a single population rather than two or more local

subpopulations of excitatory and inhibitory neurons. The model does contain local competitive

nonlinearities in that the decay term (D) competes with the recurrent connectivity of W
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but the precise mechanisms underlying these dynamics are not explicated. By comparison,

multipopulation neural mass models contain separate terms for the interactions between

subpopulations and the time-constants of firing rate within each subpopulation, both of which

likely influence the local parameters of MINDy. Similarly, while MINDy can specify that

the directed interaction between a pair of regions is positive, it cannot distinguish between

excitatory projections onto an excitatory subpopulation and inhibitory projections onto an

inhibitory subpopulation (both of which could be net excitatory; see SI sec A.1).

2.4.5 Future Applications and Directions

We view MINDy models as providing a rich and fertile platform that can be used both for

computationally-focused explorations, and as a tool to aid interrogation and analyses of

experimental data. The most immediate potential of MINDy is in providing new parameter

estimates for studies of individual differences or biomarkers. There is also immediate

potential for MINDy in model-driven discovery of resting-state dynamics (e.g.[93]), in which

case MINDy simply replaces diffusion imaging as a method to parameterize neural mass

models. The potential benefit of using MINDy over diffusion imaging is that MINDy identifies

signed, directed connections in a data-driven manner which may improve realism. Going

forward, other applications of MINDy may be in bridging the gap between resting-state

characterizations of brain networks and evoked-response models of brain activity during task

contexts. We envision two lines of future work in this domain: one in improving estimates of

task-evoked effects, and the other concerning the effect of task contexts or cognitive states on

brain activity dynamics.

67



Isolating Task-Evoked Signals

One future use of MINDy may be in improving estimates of task-related brain activity.

Current methods of extracting task-related brain signals are based upon comparing BOLD

time courses during windows of interest using generalized linear models. However, the effects

of task conditions are related to both ongoing brain activity ([46]) and intrinsic network

structure ([43]). Viewing the brain as a dynamical system, any input to the brain will have

downstream consequences, so brain activity observed during task contexts likely contains

some mixture of task-evoked activity and its interaction with spontaneous activity. Using

MINDy, it may be possible to isolate task-evoked responses by subtracting out what would

have been predicted to occur via the resting-state MINDy model. The resultant estimate

for task-related activity would be the time-series of MINDy prediction errors (i.e. residuals),

ideally adjusted for the model’s error at rest. In forthcoming work, we have been using MINDy

to estimate task-related activity in this manner, and the initial results strongly indicate that

this approach improves the statistical power and temporal specificity of estimated neural

events ([104]). Thus, MINDy has the potential to improve estimates of task-evoked activity

from fMRI data, although future validation is needed.

Illuminating Dynamics

Present results indicate that MINDy is able to replicate some features of infraslow brain-

dynamics observed in the data (see Sec. 2.3.6). Although these slower frequency bands

have been less studied in task-contexts, growing evidence implicates them in slowly evolving

cognitive states such as states of consciousness ([105],[106]) and daydreaming ([107]). MINDy

may benefit future studies in these domains by providing a formal model by which to

identify the mechanisms underlying dynamical regimes. Moreover, MINDy may illuminate

the behavioral significance of infraslow dynamics. Previous studies have found that timing
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of pre-cue brain activity and infraslow dynamics interact to predict behavioral performance

([49],[50],[67]), so future characterizations of task-activation may benefit from considering

how exogeneous stimuli interact with endogenous neural processes. Generative models of

resting-state brain activity may prove critical in these efforts by predicting how endogenous

brain states modulate the effects of exogeneous perturbations.

Conclusion

We have developed a novel and powerful method for constructing whole-brain mesoscale

models of individualized brain activity dynamics, termed MINDy. We demonstrate that

MINDy models are valid, reliable, and robust, and thus represent an important advance

towards the goal of personalized neuroscience. We provide initial illustrations of the potential

power and promise of using MINDy models for experimental analysis and computational

exploration. It is our hope that other investigators will make use of MINDy models to further

test and explore the utility and validity of this approach. Towards that end, we have made

MATLAB code and documentation for developing and testing MINDy models available via

the primary author’s GitHub: https://github.com/singhmf/MINDy-Beta.
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Chapter 3

Scalable Surrogate Deconvolution for

Identification of Partially-Observable

Systems and Brain Modeling 2

3.1 Introduction

A key challenge in neural engineering pertains to estimating neural model parameters

from indirect observations that are temporally convolved from source measurements. For

example, many imaging modalities reflect convolution of neural activity with temporal kernels

associated with slower physiological processes such as blood flow (Fig. 3.1A), or molecular

concentrations (Tab. 3.1). Often, these kernels are not known, necessitating so-called ‘dual

estimation’ of both the latent neural activity and the neural model (including convolutional

kernels) at the same time. Our paper presents a computational framework for addressing
2Chapter reprinted verbatim from previously published work: [99]
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this problem. Specifically, we assume that the system can be described in the following form

(or its discrete-time equivalent):

ẋ = f(θ, x, ẑ) + ε(t) (3.1)

ẑi(t) = [hi(ηi) ∗ xi](t) (3.2)

zi(t) = ẑi + νi(t) = [hi(ηi) ∗ xi](t) + νi(t) (3.3)

Here, x ∈ Rn are the hidden non-convolutional state variables and ẑ are the physiological

variables generated by convolution. We denote unknown parameters for the non-convolutional

plant as θ ∈ Rq and for the convolutional plant as ηi ∈ Rvi . Each parameterized kernel (hi)

represents the process generating the corresponding measurable variable zi via convolution

(denoted ∗). This formulation requires the assumption that these processes may be well-

approximated by a finite-impulse response function and that structural priors may be placed

on each kernel (i.e. hi is known up to a small number of parameters: ηi; see Sec. 3.5.2

for discussion). We denote process noise in the hidden state variables by ε(t) ∈ Rn) and

denote measurement noise νi(t), both of which we assume to be drawn from stationary

distributions, independently realized at each time step (noise is not auto-correlated). In the

current context, x represents latent neural state-variables. The measurements zi are multi-

dimensional recordings of neural data and ẑ are the corresponding physiological sources. These

sources can either feed back into the latent system (e.g. Ca2+ concentration) or be modeled as

purely downstream (as is typical for BOLD). Formally, we seek to estimate the convolutional

kernel parameters {η} and the neural model parameters θ using the measurements z (i.e., the

‘dual’ estimation). This problem formulation is highly relevant to neuroscience and neural

engineering since it would enable inferences regarding brain activity via indirect and uncertain

dynamical transformations.
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3.1.1 Relevance to Neuroscience and Neural Engineering

Whereas many neural models emphasize membrane potentials, channel conductances, and/or

firing rate as state variables, high-coverage measurements often consist of the extracellular

(“local”) field potential, concentration of signaling molecules (e.g. Ca2+), blood-oxygenation

(and the derived BOLD-fMRI contrast) or radionuclide concentrations (e.g. PET). In all

of these cases, the measurements reflect downstream, temporally extended consequences of

neuronal firing (Tab. 3.1). Thus, in the context of neuroscience, the dual-problem consists

of simultaneously estimating the parameters of neural systems, while inverting measured

signals into their unmeasured neural generators (the state-variables specified by a given model

framework). Often this linkage (from generator to measurement) is assumed to be a linear

time-invariant (LTI) system so that the relationship can be described via convolution with

parameterized kernels. For, example, post-synaptic currents are often modeled via synaptic

“kernels” (e.g. “alpha-synapse”, [108]), kernels for molecular concentrations (e.g. Ca2+,

[109],[110]) are derived from Markovian kinetic-schemes ([111],[109]), and the neurovascular

coupling kernel (linking BOLD-fMRI and neural “activity”) is described by a Hemodynamic-

Response Function (HRF, [4]; Fig. 3.1A,B, ). If these functions are assumed fixed, it

may be possible to estimate the neural state-variables via deconvolution, in which case,

conventional modeling approaches are feasible. However, in many cases only the general form

of the kernel function is known (e.g. up to a small number of unknown parameters). This

underspecification results in1 computationally difficult dual estimation problems (estimating

the neural states and the model parameters). The current work aims to treat such dual

problems in a computationally efficient, and highly scalable manner.
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Table 3.1: Common neuroimaging measures subject to convolution

Modality Physiology Popular Kernels Interpretation
fMRI BOLD Signal Di-Gamma Hemodynamic

[4] Response
PET Radionucleotide Multi-Exponential Exchange,

Concentration [112],[113] Radio decay
Ca2+ Ca2+ Multi-Exponential Diffusion

Imaging Concentration [109],[110] +Kinetics
LFP Membrane Multi-Exponential/ K+ Leak

(low freq.) Potential Alpha [114] +Kinetics
Dendritic Post-Synaptic Multi-Exponential/ K+ Leak
Recording Potential Alpha [21],[108] +Kinetics

3.1.2 Previous Work

Currently, there are several methods to deal with dual-identification for small systems and

these approaches may be grouped into black-box and grey box models. However, whereas

black-box modeling encompasses diverse approaches such as neural networks ([115]), Volterra

Expansion ([116]), and Nonlinear Autoregressive Moving Average (NARMA) models ([117]);

grey-box identification (model parameterization) has largely centered upon the dual/joint

Kalman-Filters (linear, extended, unscented etc. [118, 119, 120, 121]) and related Bayesian

methods. Under these approaches, the convolutional component is converted into the

equivalent linear time-invariant (LTI) system format and free-parameters are modeled as

additional state-variables. Thus, joint state-space techniques re-frame the dual-estimation

problem as conventional state-estimation with a fully-determined model.

However, none of these methods are well situated to perform dual-identification for large (grey-

box) systems due to the high computational complexity and data-intensive nature of Bayesian

dual-estimation. These features are particularly limiting to neuroscience applications which

typically feature a large number of connectivity parameters and potentially few sampling

times (e.g. fMRI). These approaches also increase in complexity with the number of additional
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Figure 3.1: General Approach. A) The brain is an example of a convolutional system when
viewed through BOLD fMRI. Dynamics among brain regions are highly nonlinear and usually
cannot be directly observed. B) Measurements made using fMRI reflect latent brain activity
passing through a hemodynamic response function (HRF). C) Surrogate Deconvolution
workflow: a deconvolution surface is estimated by sampling the time-series deconvolution
across a variety of kernel parameters (left). A separate surrogate model is formed for
each time-point using basis regression to approximate this surface (middle). The combined
surrogate models then represent the deconvolution process during parameter estimation.
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state variables necessary to represent complex kernels such as the hemodynamic response

function (Fig. 3.1B).

Neural systems present two challenges to the current status quo: the dimensionality of the

neural system/parameters and the complexity of the convolutional kernel. Neurobiological

recordings are often high-dimensional, containing dozens or hundreds of neurons/neural

populations. Moreover, the number of free parameters often scales nonlinearly with the

number of populations (e.g. quadratically for the number of connectivity parameters). Current

dual-estimation approaches such as joint-Kalman-Filtering are computationally limited in

these settings due to their high computational complexity in terms of both the number of

state variables and the number of parameters estimated.

Previous approaches are also limited in terms of kernel complexity. Since joint-Kalman-

Filtering employs a state-space representation, convolutional variables are implicitly generated

via linear time-invariant (LTI) systems. This issue is not inherently problematic, as many

neural models contain simple exponential kernels which are easily converted to an addi-

tional LTI variable (e.g. Tab. 3.1). However, specific domains feature higher-order kernels

such as the Hemodynamic Response Function (HRF) that relates latent neural activity and

observed BOLD signal in fMRI. Approximating the HRF through a linear time-invariant

(LTI) system requires multiple additional layers of state-variables which greatly increases

the difficulty of estimating neural activity and also increases the overall computational burden.

3.2 Approach

We propose to treat this problem by directly performing optimization within the latent

state-space using Surrogate Models to replace the state-estimation step (Fig. 3.1C). Surrogate
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functions comprise a means to approximate computationally intensive functions, typically

through a linear combination of a priori specified nonlinear bases (e.g. polynomial families,

radial-basis functions etc.). In the current case, we propose using surrogate models to explicitly

estimate latent variables by deconvolving the measured time-series by the current estimate

of the convolutional kernel at each iteration. Deconvolution is typically performed either

by iterative algorithms such as the Richardson-Lucy algorithm ([122],[123]), Alternating

Direction Method of Multipliers (e.g. [124]; ADMM) or explicit transformations in the

Fourier domain. The proposed surrogate techniques are compatible with any combination

of deconvolution algorithm and additional signal processing that are smooth with respect

to the kernel parameters. In a later example with empirical fMRI data, we use the Wiener-

deconvolution ([3]) coupled with variance normalization in the time-domain:

xi(t) ≈
w(zi(t), hi(ηi), Ki)

σ(w(zi(t), hi(ηi), Ki))
(3.4)

w(zi(t), hi(ηi), Ki) := F−1

[
F∗[hi(ηi)]F [zi(t)]

|F [hi(ηi)]|2 +Ki

]
(3.5)

with w(zi, hi(ηi), Ki) denoting the Wiener deconvolution of zi with respect to kernel hi(ηi)

and noise-factor Ki equal the mean power-spectral density of the measurement noise νi(t)

divided by the mean power spectral density of zi. We denote standard deviation by σ

and F ,F∗ denote the Fourier transform and its complex conjugate, respectively. Through

deconvolution, we reduce the dual-estimation problem to conventional system identification

with the convolutional kernel as an additional free parameter. Using surrogate models we

reduce deconvolution-algorithms into simple, differentiable functions of the kernel parameters

(Fig. 3.2A). Thus rather than solving the dual estimation problem:

argmin
θ̂,η̂,x̂t

(
J(θ̂, η̂, x̂t, zt)

)
(3.6)
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for some loss function J , we solve the parameter-estimation problem:

argmin
θ̂,η̂

(
J(θ̂, η̂, S(t, η̂), zt)

)
; S(t, η̂) ≈ h(η̂) ∗−1 zt (3.7)

for which S denotes the Surrogate Deconvolution model and ∗−1 is a user-defined deconvolution

algorithm, potentially incorporating priors on the distribution of νi(t) and further signal

processing (e.g. normalization or additional filtering). In later experiments, we set J as the

mean-squared error of 1-step predictions, e.g.

J = Et∈T

[
‖zt+1 − f(θ, St({η}), zt)‖22

]
(3.8)

h(α,β;t)=                         -t(α-1)e-βtβα      t15e-t

        Γ(α)               6(16!)
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Figure 3.2: Surrogate surfaces for performing deconvolution. A) Example fMRI time-series
deconvolved by hemodynamic models with different values for the kernel parameters (α, β).
The inset equation is the hemodynamic response function (kernel). Subplots show the
surrogate surfaces for four sequential time-points (e.g. the deconvolved signal amplitude at
that time as a function of kernel parameters). Note that the surrogate surfaces at a fixed
time-point are smooth, whereas the variation in deconvolved signal across time is much less
regular. B) Performance in reconstructing the iterative Richardson-Lucy deconvolution of the
same signal across an 81x81 grid (same range as A) using third-order bivariate polynomials
(Appendix Sec. B.4). Inset shows a representative stretch of 200 points (144s).

with T denoting the set of initialization times during training. The surrogate model S is

a linear combination of smooth, nonlinear bases and is therefore smooth for both iterative

77



deconvolution algorithms, such as Richardson-Lucy, and for explicit transformations. Thus,

algorithms which are natively nonsmooth due to randomization or stopping criteria (e.g.

Richardson-Lucy) are converted to an accurate, but differentiable form via the Surrogate

representation (e.g. Fig. 3.2B). The remaining, (surrogate-assisted) fitting problem is thus

amenable to highly scalable techniques such as gradient-based optimization.

3.2.1 Contributions

Our contribution in this regard is generating surrogate models to explicitly approximate the

deconvolution process in a computationally-efficient closed form. To our knowledge, previous

approaches have not sought to estimate nonlinear models using parameterized deconvolution.

We do so in a two-step process. First, we build a surrogate model of the deconvolution process

(deconvolving zi(t) by hi(ηi) as a direct function of the kernel parameters ηi). We fit one

surrogate function per measurement in the deconvolved space: the value of a deconvolved

channel evaluated at a specific time. For a fixed basis, this representation may be fit rapidly

at scale. For example, the empirical brain data treated later requires nearly two million

surrogate functions per subject (419 brain regions × 4444 time points), all of which can be

fit in seconds as the only computation of nonlinear complexity is shared across time points

(Eq. 3.9). In the second step, we directly integrate the surrogate model into optimization

algorithms. By doing so, the time-course of each latent state-variable is expressed as a direct,

easily differentiable, function of the kernel parameters (η).

We present these results as follows. First we introduce surrogate methods and the proposed

technique, Surrogate Deconvolution, in which surrogate models of the latent variable are

directly integrated into the optimization procedure. In the next section we consider the
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special case of gradient-based optimization and demonstrate how error-gradients are efficiently

back-propagated through the Surrogate Model. We then test Surrogate Deconvolution in

two sets of experiments. First, we consider a low-dimensional case (a small LFP model)

in which existing techniques for dual-estimation remain tractable. This simplified setting

allows us to benchmark Surrogate Deconvolution’s accuracy in parameter/state estimation

relative the joint-Extended Kalman Filter and the joint-Unscented Kalman Filter. Results

demonstrate that Surrogate Deconvolution is competitive even within the Kalman Filter’s

operating domain. We then consider more complicated fMRI models in which current dual-

estimation techniques are not applicable due to high-dimensionality and kernel complexity.

We demonstrate that Surrogate Deconvolution is robust to spatial variation in the HRF kernel

in contrast to state-of-the-art non-dual approaches. Lastly, we demonstrate the approach’s

feasibility to empirical fMRI data. Thus, Surrogate Deconvolution performs competitively

within the scope of current dual-estimation approaches and enables robust dual-estimation

for a much larger set of problems than previously considered.

3.3 Surrogate Deconvolution

Our procedure contains two parts. First, we construct a surrogate function for each channel

and time-point, a process which can be massively parallelized, if necessary. We use the

surrogate construction to express the estimation of unobserved state variables as a direct

function of η. The surrogate function then replaces unobserved variables in a user-chosen

identification-algorithm for fully observable systems. This process is advantageous as it

enables direct calculation of how changing parameters η influence the final estimate of

unobserved state variables (for the current set of parameters) as opposed to techniques such

as the dual Kalman Filter which do not “look-ahead” to see how changing downstream

parameters will affect state estimates (since ∇ηf = 0 without a surrogate model).
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The key insight underlying surrogate deconvolution regards the effect of varying a kernel

parameter. As demonstrated in Fig. 3.2, changing a kernel parameter produces intricate

effects upon deconvolved estimates when viewed from the time-domain. Even when these

effects can be expressed analytically (as in the Wiener deconvolution) they are not readily

reduced to a temporally-local calculation using first-principles. However, when the kernel is

lower frequency than the signal (as usually happens in biology), the effect of kernel variation

on a single estimate is often quite smooth with respect to the kernel parameter. Thus, the

effect of kernel variation on a single deconvolved estimate is very well-approximated by simple

functions of the kernel parameter. Together, these functions comprise the surrogate model.

3.3.1 Building Surrogate Representations

We efficiently define and evaluate surrogate models by storing coefficients in tensor format.

For a vector of mi stacked basis functions Pi(ηi) : Rvi → Rmi we define the 3-tensor C defined

for each channel (“i”) and a prior distribution on η:

Ci,t,: = Eηi [wi(t)P
T
i ]Eηi [PiP

T
i ]

−1. (3.9)

Thus, C stores the coefficients of regressing the basis functions Pi on the deconvolved time

series wi (one of Pi’s bases should be [Pi]j = 1,∀ηi to provide the intercept). For clarity of

presentation, we have reduced the input arguments of wi to time alone. By Eηi we denote

the expectation taken over some prior distribution on ηi. In practice, the choice of prior is

not usually impactful, as an arbitrarily fine sampling of the response surface can be quickly

computed in parallel and the surrogate goodness-of-fit can be similarly increased by adding

additional (linearly independent) basis functions. In all later examples, we simply assume

a uniform distribution over reasonable bounds. The tensor C holds coefficients of each

time-point’s surrogate model with Ci,t,j denoting the coefficient of basis j in predicting the
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deconvolution of channel i at time t in the deconvolved time-domain (which is shifted from

the measurement times). We evaluate the surrogate functions in parallel by defining the

following product between 3-tensor C and a 2-tensor-valued function [P ({η})]i,j := [Pi(ηi)]j:

[P ({η}) ? C]i,t =
∑
j

[Pi(ηi)]jCi,j,t ≈ xi(t)|ηi (3.10)

with the right-hand side denoting the optimal estimate of xi(t) (e.g. in the least-squares

sense for Wiener deconvolution) given ηi, zi(t) and any fixed priors used to define the chosen

deconvolution. In principle, this technique could be used for system identification objectives

in which errors are defined in terms of predicting xt or zt or both. In practice, however, we

have found that including xt predictions within the objective function leads to a moving-

target problem in which identification algorithms enter periods of attempting to maximize

auto-covariance (by changing η). Therefore, we assume that objectives are given of the form:

J =
∑
k∈k̂

(
Jk
(
[zt+k]Actual, [z̄t+k|θ, zt, {η}]

)
. (3.11)

The final cost function J is a sum of the sub-costs Jk evaluated at the time-steps k ∈ k̂.

Here, k̂ denotes the user-determined time steps at which to evaluate the cost function J

which potentially varies by time-step (e.g. choosing to weight temporally distant predictions

less). The right-hand side denotes the current estimate (z̄) of zt+k given θ, {η}, and zt. Thus,

the new cost function incorporates the actual measurements and their prediction. However,

unlike conventional dual approaches, the predictions are a direct, explicit function of previous

measurements, rather than in terms of both measurements and an iteratively estimated latent

variable.
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3.3.2 Deploying Surrogate Models

To evaluate the cost function, we use make forward predictions in the latent-variable (de-

convolved) domain and then convolve those predictions forward in time to evaluate error in

terms of observations. For k-step predictions and kernel length τ , this corresponds to:

z̄t0+k|t0 := h ∗ [fk(xt0−τ , z|η) fk(xt0−τ+1, z|η)...] (3.12)

=
τ∑
k=1

(
h1+τ−k ◦ f t−t0

(
P ({η}) ? Ct0+k−τ , z

))
(3.13)

We use z̄t0+k|t0 to denote the estimate of zt+k using initial conditions for the convolutional

variable (z) and latent variable (x) prior to t0. The operator ◦ denotes the Hadamard product

(element-wise multiplication). In the latter equation, we have condensed notation for the

effect of z on f as follows:

fk+1(xt, z) := f(fk(xt, z), zt+k) (3.14)

with f(xt, z) := f(xt, zt). Thus, fk is not a proper iterated composition when it accepts both

xt and zt as arguments, since only one variable (xt+1) is output. However, we abuse this

notation for clarity of presentation. For brevity, we also use ∗̂ to indicate convolution over

initial conditions as indicated in the variable indices. Hence the earlier equation (Eq. 3.13)

condenses to:

z̄t|t0 := h∗̂f t−t0(P ({η}) ? C[t0−τ,t0], z) (3.15)

As a general technique for re-representing dual estimation problems, Surrogate Deconvolution

is compatible with most estimation techniques. However, the approach is particularly

advantageous for gradient-based estimation as the deconvolution process is replaced with an
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easily differentiable surrogate form. For single-step prediction, the resulting error gradients

for the nonlinear plant’s parameters (θ) and the convolution kernel parameters ({η}) are as

follows:
∂J

∂θ
=
∂J

∂z̄

(
h({η})∗̂∂f(θ, P ? Ct, zt)

∂θ

)
(3.16)

∂J

∂{η}
=
∂J

∂z̄

[
∂h

∂{η}
∗̂f + h∗̂

(
∂f

∂x

[
∂P

∂{η}
? Ct

])]
. (3.17)

Thus, surrogate deconvolution re-frames dual-estimation problems into conventional parameter-

estimation problems which are amenable to gradient-based approaches. The analogous gradi-

ents for multi-step prediction are derived by augmenting the one-step prediction gradients

with back-propagation through time. We demonstrate the power of surrogate deconvolution by

reconstructing large brain network models from either simulated data or empirical recordings.

3.4 Data-driven Model Identification

We present two applications to brain discovery to illustrate the advantage of surrogate

deconvolution-enhanced methods for both state-estimation (Kalman-Filtering) and grey-box

parameter identification. Both examples are dual-estimation problems (state and parameter),

but we assess their performance in the state and parameter components separately to make

comparisons with existing work which may be particularly designed for either domain. For

instance, dual-estimation using the joint unscented Kalman Filter has been particularly

successful in parameterizing black-box models for filtering (e.g. [120]), but requires further

modification in some more complicated grey-box models for which the conventional Kalman

gain (1-step prediction) is provably rank-deficient. To demonstrate the adaptability of

surrogate deconvolution we consider two different simulated system identification /estimation

problems and one empirical application.
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Figure 3.3: Surrogate deconvolution’s performance in inverting a neural-mass model of
Local Field Potential. A) Model schematic: output signals from each population arrive
at post-synaptic terminals. Electrode measurements primarily reflect the post-synaptic
potentials generated from synaptic activity. B) Bench-marking total error in identifying the
synaptic time-constants and network connectivity. Surrogate deconvolution is compared to
the current gold-standard: joint-Kalman Filters (Unscented and Extended). C) Same as
(B), but displaying performance in terms of correlation rather than mean-square-error. D)
Performance in reconstructing local spiking activity from electrode measurements using the
identified system models for a variety of state-estimation techniques. E) State estimation
performance for a representative case (the simulation with median jUKF+UKF performance).
F) Computational complexity of system identification methods in terms of the number of
brain regions considered. The top inset shows the run-time and least-squares fit on rescaled
x-axes (n4

pop) to demonstrate the O(n4
pop) complexity of Kalman-Filtering in terms of the

number of brain regions (npop). The bottom inset is the same, but for surrogate deconvolution
and O(n2

pop). Calculations were performed single-core on an Intel Xeon E5-2630v3 CPU.
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3.4.1 Modeling and Isolating Local Activity from the LFP

Our first example compares performance across methodologies designed for state-estimation.

This simulated problem consists of identifying the wiring of a neural system and subsequently

reconstructing cellular activity from simulated extracellular recording of the “local” field

potential (LFP). This signal is primarily generated by the combined currents entering into

the local population of nerve cells as opposed to the currents directly generated by neural

firing or the trans-membrane potential. Thus, the measured LFP reflects the temporally

extended effects of input into a brain region rather than the current population activity (Fig.

3.3A). To describe this process, we use a three-level discretized-model combining 10 coupled

neural-mass models (npop = 10) with passive integration of post-synaptic currents:

xt+1 = aζ(byt) +
xt
τ

+ c+ εt (3.18)

yt+1 = S ◦ yt +Wxt + ωt (3.19)

zt = yt + νt (3.20)

Here, x is the synaptic-gating variable which describes neural activity. The sigmoidal transfer-

function is denoted ζ(x) := (1 + exp[−x/5])−1 with scaling coefficient a = 3. The time

constant of x is denoted τ and baseline drive to x is denoted c. The parameters a, τ ∈ R and

c ∈ Rnpop are assumed known as are the covariances of process noise εt, ωt and measurement

noise νt (see Appendix). Thus, the unknown parameters are the connections between neural

populations (W ) and the synaptic time-constants S. We considered two general approaches

to system identification: either using the current gold-standard (joint Kalman estimation) or

using surrogate deconvolution for least-squares optimization. The joint Kalman filter and
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associated variants operate identically to the original Kalman filter, except that the state-space

model is augmented with unknown parameters being treated as additional state-variables

with trivial dynamics (e.g. Wt+1 = Wt + ε̂t and similarly for S). The “noise” terms ε̂t for

parameter state-variables are assumed iid. and with a user-defined variance that determines

the learning rate. Based upon numerical exploration, we found that the best performance for

both EKF and UKF was with an initial prior on parameter variance var[ε̂] = .001. Every 50

time-steps we decreased the variance prior by 5% of its current value.

For comparison with existing techniques we used both the joint-Extended Kalman Filter

(jEKF) which linearizes the nonlinear portion of dynamics and the joint-Unscented Kalman

Filter (jUKF) which directly propagates noise distributions through nonlinearities using

the Unscented Transformation ([119]). We compare these traditional methods with system

identification through surrogate deconvolution. The benefit of surrogate deconvolution is the

ability to apply a wide variety of optimization techniques to partially-observable identification

problems which can decrease computation time over conventional techniques (Fig. 3.3F) and

expand the scope of problems which may be tackled. For this first example, we have chosen

a relatively simple case (low-dimensional, single-exponential kernels) so that conventional

methods (Kalman Filtering). Therefore, the goal of this test is not to demonstrate an

overwhelming advantage of surrogate deconvolution over Kalman Filtering, but to show that

the proposed technique can perform competitively in cases for which Kalman-Filtering is

applicable, but imperfect. Subsequent examples will consider cases in which Kalman Filtering

is not tenable.

To implement Surrogate Deconvolution, we first reformulate this problem as a convolutional

equation through the change of variable rt := Wxt:

rt+1 = aWζ(yt) +
rt
τ
+Wc+Wεt (3.21)
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yt+1 = S ◦ yt + rt + ωt (3.22)

or, equivalently,

rt+1 =
rt
τ
+W [aζ([(r + ω) ∗ P(S)]t) + c+ εt] (3.23)

zt = [(r + ω) ∗ P(S)]t + νt (3.24)

with P(S) denoting the discrete-time kernel formed from polynomials of S to a suitably long

length [0 1 S S2 S3...] analogous to exponential decay for continuous-time systems. In this

form, the parameters can be estimated using traditional least-squares methods, optimizing

over W and S. However, by leveraging the tensor representation of surrogate models, this

equation can be reduced into a single equation in S by representing the optimal choice of W

for a given S as a direct function of S. To do so we define the matrix

Ft := aζ(zt) + c (3.25)

and the associated 3-tensor

Mi,j,p = (Et[(Ct+1,p − Ct,pτ
−1)F T

t ]Et[FtF
T
t ]

−1)i,j. (3.26)

Each n × n page of this tensor (e.g. the matrix formed by holding p constant) stores the

coefficients of the least squares solution for W in predicting Ct+1,p − Ct,pτ
−1 from Ft for the

pth basis function. Since r∗t (S) = Ct ? P (S), for a given synaptic decay term S we use the

notation r∗(S) to denote the estimate of r produced through Surrogate Deconvolution of

measurements z with the kernel P(S). This produces the least-squares estimate for W as a

direct function of S:

argmin
W

||r∗t+1(S)− (WFt + r∗t (S)τ
−1)||2F = P(S) ? M, (3.27)
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zt+2 ≈ Szt+1 + [P(S) ? M ]Ft + [P(S) ? Ct]τ
−1 (3.28)

Thus, in this case, surrogate deconvolution enables the approximation of 2npop difference

equations containing npop(npop + 1) unknown parameters (W and S) to npop difference

equations with npop unknown parameters (only S). The resultant model (from Eq. 3.28) is

also compatible with a wide variety of optimization techniques. For simplicity, we fit the

parameters S through ordinary least-squares optimization in terms of predicting zt+2 as

in Eq. (3.28). Optimization was performed using Nesterov-Accelerated Adaptive Moment

Estimation (NADAM; [9]) with both NADAM memory parameters set equal to .95, and the

NADAM regularization parameter set to .001. Training consisted of 15,000 iterations with

each minibatch containing 1000 time points. The step size (learning rate) of updates was

.0001.

All methods were able to retrieve accurate estimates of the synaptic decay term S (Fig.

3.3B,C). The best-performing method varied by simulation (e.g. for different true values of

W,S), but the mean error was greater for surrogate deconvolution than Kalman Filtering

methods (Unscented and Extended) which performed near-identically. By contrast, surrogate

deconvolution always provided a more accurate estimate of the connectivity weight parameter

(W ) and the advantage relative Kalman-Filtering was substantial (Fig. 3.3B,C). The poor

performance of the Kalman Filter for identification in this case is not surprising as the

Kalman Filter is known to be non-robust for large systems ([125]) and the W parameter

adds 100 additional latent state-variables to the joint Kalman model as opposed to the 10

state-variables added by S.
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3.4.2 Reconstructing Firing-Rate from LFP

We next examined the ability of each method to recover the time series of neural activity

xt using the previously generated state-space models. During this stage, models produced

during the previous identification step were used to estimate the latent state variable xt (Fig.

3.3D,E). It is important to distinguish between state-estimation techniques (e.g. UKF) which

we used to estimate xt from previously-fit models and the techniques used to fit those initial

models (e.g. jUKF) as these steps need not “match” (e.g. UKF-based state-estimation from

a surrogate-identified model). Measurements consisted of simulated extracellular voltages

zt generated by resimulating the same ground-truth model (i.e. the same parameters, but

new initial conditions and noise realizations). As in the identification stage, we considered

two general approaches to recovering the latent variable xt: either through deconvolution

or Kalman Filtering (unscented and extended). Kalman filtering in this setting produces

direct estimates of xt and yt. By contrast, deconvolving zt ≈ yt produces an estimate of rt, so

deconvolution estimates of xt were produced by premultiplying the deconvolved time series

with W−1
est (the inverse estimated connectivity parameter). We considered deconvolution

applied either directly to the raw measurements (zt) or to the estimates of yt produced by

Kalman filtering zt with the estimated models (both unscented and extended Kalman filters

were considered). Noise covariance estimates for Kalman filtering at this stage were the same

as those assumed in the initial stage: a value close to the mean tendency, rather than the

true values which were randomly selected for each simulation.

We found that the type of Kalman Filter used for state-estimation had no appreciable

effect upon accuracy (Fig. 3.3D). Likewise, the technique used for system identification

(surrogate deconvolution vs. EKF/UKF) had little effect, although surrogate deconvolution

was slightly more accurate on average. However, model performance differed greatly for
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deconvolution-based state-estimation (using xt ≈ W−1[P(S) ∗−1 yest]t). Models estimated

using joint-Kalman Filtering (jEKF/jUKF) performed worse using deconvolution-based

estimation of xt than Kalman-based estimation (Fig. 3.3D). This result is unsurprising as

the deconvolution-based estimate additionally requires the inverse weight parameter W−1

and both jUKF and jEKF poorly estimated W . Interestingly, however, estimation accuracy

for surrogate-identified models decreased when using deconvolution of the raw, unfiltered

measurements, but increased for the UKF+decconvolution hybrid. The former result is not

surprising as pure deconvolution is clearly suboptimal in not considering the noise covariance.

This result was unexpected and it suggests the possible benefit of using a two-stage estimation

procedure in which Kalman-Filtering first dampens measurement noise and improves estimates

of measurable state-variables. Then, subsequent deconvolution might improve the estimate

of latent state-variables by considering the impact of estimates across time, rather than just

the directly subsequent measurement. However, these benefits are likely situation-dependent

and therefore require more study. In any case, results indicate that state-estimates from

models produced by surrogate-deconvolution are at least as accurate as those produced by

Kalman-Filtering and potentially more so depending upon the state-estimation procedure

(Fig. 3.3D,E).

3.4.3 Computational Efficiency

Surrogate deconvolution is also computationally efficient as it scales linearly with the number

of measurement channels (O(n)) in both forming and evaluating surrogate functions which is

also parallelizable across channels. However, since Surrogate deconvolution is not a system

identification procedure in and of itself, time-savings depend upon how the technique is used

(e.g. which optimization scheme it is coupled to). The advantage of surrogate deconvolution

is that it can be combined with a wide-variety of optimization techniques which are otherwise
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Figure 3.4: Incorporating HRF surrogate-deconvolution into MINDy. A) Without HRF
modeling, connectivity estimates degrade with spatial variability in the neurovascular coupling.
Fitting the HRF through surrogate deconvolution preserves performance. B) Same as (A)
but for the asymmetric component of connectivity. C) HRF parameter estimates from HCP
data are reliable across scanning days and subject-specific. D) Spatial map of the mean α
parameter estimate across subjects. E) Same as (D), but for the second HRF parameter (β).
F) Spatial map of the mean time-to-peak in the fitted HRF’s.

ill-suited to partially-observable problems. In this first simulation, for instance, the number

of parameters scale with npop(npop + 1) and the number of state variables (in the native

space) scale with 2npop. Thus, the dominant complexity of joint-UKF and joint-EKF is

greater than O(n4
pop) as joint-UKF/EKF are O(n2) in the number of parameters and at least

O(n2) in the number of native (non-parameter) state-variables. By contrast, the gradient

approaches applied with surrogate deconvolution have approximately O(n2
pop) complexity (Fig.

3.3F). However, surrogate deconvolution is not limited to gradient-based approaches. The

main effect is to simplify error functions to a direct equation in the measurable variables so

surrogate deconvolution is compatible with a wide variety of non-gradient techniques, as well

(e.g. heuristic-based or Bayesian). As such, surrogate deconvolution presents the opportunity

to identify significantly larger partially-observable systems than previously considered.
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3.4.4 Reconstructing Connectivity and Hemodynamics in Simu-

lated fMRI

For our second example, we considered the ability to correctly parameterize large-scale brain

models from simulated fMRI data. Brain regions were modeled through the continuous-valued

asymmetric Hopfield model ([1]) and simulated fMRI signals were produced by convolving

the simulated brain activity with randomly parameterized Hemodynamic Response Function

(HRF) kernels ([4]):

xt+∆t = W [tanh(b0 ◦ xt)]∆t+ (1−∆t)Dx+ εt (3.29)

zt = [x ∗ h(α, β)]t (3.30)

hi(α, β, t) =
tαi−1e−βitβαi

i

Γ(αi)
− t15e−t

6(16!)
(3.31)

Parameter distributions for simulation are detailed in the Appendix. Simulations were

integrated at ∆t=100ms and sampled every 700ms (mirroring the Human Connectome

Project’s scanning TR of 720ms [65]). Simulated HRF’s (hi) were independently parameterized

for each brain region according to the distributions αi ∼ N (6, σ2) and βi ∼ N (1, (σ/6)2) in

which the variability term σ was systematically varied. Each HRF can be well approximated

by a finite-length kernel and therefore can be represented as a discrete-time linear plant.

However, doing so, in this case, requires multiple hidden state-variables per region which

impairs Kalman-based dual-estimation procedures. Instead, most current procedures to deal

with fMRI-based systems identification at scale ignore inter-regional variability in hi and

instead seek to retrieve xt by fixing HRF parameters (e.g. [126], [8]) to the so-called “canonical

HRF” (e.g. α = 6, β = 1). In this example, we demonstrate the potential pitfalls of this

assumption and the benefits accrued by efficiently fitting hemodynamics through Surrogate
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Deconvolution. To do so, we attempted to reconstruct W using Mesoscale Individualized

NeuroDynamics (MINDy) in either its base form (which assumes a canonical HRF) or in an

augmented form in which the predictions are calculated as in Eq. 3.13. MINDy model fitting

consists of using NADAM-enhanced gradient updates ([9]) to minimize the following cost

function:

J =
1

2
ET [‖(xT+∆t − xT )− [(WS +WL)ψγ(xt)−DxT ]‖22]

+ λ1‖WS‖1 + λ2Tr(|WS|) + λ3(‖W1‖1 + ‖W2‖1) +
λ4
2
‖WL‖22 (3.32)

in which the estimated weight matrix Ŵ is decomposed into the sum of estimated sparse

(WS) and low-rank (WL) components satisfying:

Ŵ = WS +WL = WS +W1W
T
2 (3.33)

for some WS ∈ Mn×n and W1,W2 ∈ Mn×k. The hyperparameter k < n determines the rank

of the low-rank component WL and the regularization hyperparameters {λi} define statistical

priors on each of the weight matrix components (Laplace prior for WS,W1,W2 and a normal

prior for WL := W1W
T
2 ). This decomposition has been shown useful to estimating large brain

networks ([8]). The nonlinear function ψ is parameterized by the parameter vector γ ∈ Rn

with

ψγ(x) =
√
γ2 + (bxt + .5)2 −

√
γ2 + (bxt − .5)2 (3.34)

For the Surrogate-Deconvolution, however, these analyses are performed in the original space

to prevent the afore-mentioned moving target problem. Hyper-parameter determination and

simulation parameters are detailed in the appendix.
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J =
1

2
ET [‖(zT+∆t − zT )− [h ∗ (WS +WL)ψγ(P ? C)]T +DzT‖22]

+ λ̂1‖WS‖1 + λ̂2Tr(|WS|) + λ̂3(‖W1‖1 + ‖W2‖1) +
λ̂4
2
‖WL‖22 (3.35)

Results demonstrated a clear benefit for additional modeling of the local hemodynamic

response (Fig. 3.4A,B). When hemodynamics differed only slightly between simulated brain

regions both methods produced highly accurate estimates of the connectivity parameter

W . However, past σ = .4 (the SD of spatial variation in one of the HRF parameters), the

accuracy of estimated connectivity rapidly decreased for conventional methods, while only

slightly decreasing for surrogate deconvolution. In addition, the hemodynamic parameter

estimates also became increasingly accurate. Thus, surrogate deconvolution enables accurate

system (brain) identification when the downstream plants (hemodynamics) are variable and

unknown.

3.4.5 Empirical Dual Estimation with the Human Connectome

Lastly, we tested the effects of using Surrogate Deconvolution in fitting MINDy models to

data from the Human Connectome Project ([65]). By using empirical data, this analysis

demonstrates that human hemodynamics are spatially variable and that accounting for this

variability produces more nuanced and reliable brain models. Data consists of one hour of

resting-state fMRI per subject spread across two days (30 minutes each). Data were processed

according to the recommendations of Siegel and colleagues ([2]) and divided into 419 brain

regions ([6]). We then fit MINDy models either with or without surrogate deconvolution

to this data using the same fitting procedure and hyperparameters ([8]) as before. Results

indicated the the parameters which describe the hemodynamic response function are reliable
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across scanning days and reliably differ between individuals (Fig. 3.4C). Each of the two HRF

parameters had a stereotypical spatial distribution (Fig. 3.4D,E) as did the time-to-peak of

the recovered HRF kernels (generated by substituting in the recovered kernel parameters).

Time to peak was slowest for anterior prefrontal cortex, particularly in the right hemisphere

(Fig. 3.4F). Because current knowledge of the “true” hemodynamic response is limited, future

study establishing ground-truths for HRF variation across human cortex is needed to facilitate

more rigorous empirical validation.

3.5 Discussion and Conclusion

3.5.1 Generalizability of the Problem Framework

The methods that we propose are dependent upon the problem satisfying two criteria: 1)

unmeasured variables can be related to measured ones via convolution and 2) the form of

the convolutional kernels are known up to a small number of parameters per kernel. These

assumptions are satisfied in many areas of neuroscience (see Tab. 3.1) in which measurements

have high spatial precision relative to the underlying models. These kernels can also be

derived by analytically reducing large state-space models to a smaller convolutional form

(see Sec.B.5). In state-space formulation, these problems all contain more state-variables

than recording channels, but they all still contain one channel per anatomical unit (region,

population, cell etc. depending upon the model). In other words, the inverse-problem from

these scenarios results from mechanistic undersampling (i.e. only measuring one type of

variable) rather than spatial undersampling.
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The relationship between the measured and unmeasured variables can be either unidirectional

(e.g. neural activity influencing BOLD but not vice-versa) or bidirectional (e.g. neural activity

and synaptic currents influencing each other) and this formulation covers a large number

of empirically relevant scenarios. However, the assumption of full spatial precision (relative

the model) also limits our approach to specific modalities (see Tab. 3.1). As presented, our

technique is not applicable to sensor-level EEG or MEG recordings since each channel’s

signal reflects a (weighted) summation of activity at many anatomical locations. By contrast,

other techniques such as the joint Kalman Filters (with which we compare our method)

are applicable to these scenarios and simultaneously perform spatial-inversion and model

parameterization. Thus, the proposed techniques only cover specific classes of modeling

scenarios which are but a subset of problems in which the joint Kalman Filters are applicable.

However, as we have demonstrated in the results, our approach scales much better with

model size. Thus, our technique is generalizable in terms of model scale, whereas the Kalman

Filter is more general with respect to model type.

3.5.2 The Role of Priors in Deconvolution

A second assumption of our technique is that the convolutional kernels are known up to

a relatively small number of parameters each, thus constituting semi-blind deconvolution.

This assumption holds in a wide variety of scenarios in which prior empirical evidence

suggests an approximate functional form (e.g. the double-gamma HRF [4]). However, there

remain cases in which the general form of the kernel is unknown, or the form contains

many unknown parameters (e.g. an unknown kinetic scheme with many conformations).

Fortunately, several statistical approaches to blind deconvolution exist, many of which

require few assumptions regarding the kernel’s form (e.g. [127], [128]). The Richardson-

Lucy algorithm ([122],[123],[127]) is one popular example for both blind and semi-blind
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deconvolution when the noise statistics are Poisson. These approaches can also be applied

to unknown kernels which span both time and space, whereas our technique only considers

convolution in the temporal domain. For these reasons, blind-deconvolution algorithms have

been previously applied to a variety of neuroscience domains (e.g. [129], [130]). The primary

drawback of statistical blind-deconvolution algorithms, however, is that solutions are at most

unique up to an unknown lag for each channel so it may not be possible to discern the order

of latent events between channels. By contrast, the proposed method considers the dynamical

relationship between channels. As a result, solutions identify the relative timing of latent

neural events across channels.

3.5.3 Conclusion

Data-driven modeling remains one of the key challenges to neuroengineering and computa-

tional neuroscience. Although a wealth of theoretical model forms have been produced, the

state-variables of these models (e.g. neuronal firing rate) are often difficult to directly measure

in− vivo which complicates system-identification (model-parameterization). Instead, many

clinical and experimental contexts record proxy variables which reflect the physiologically

downstream effects of neuronal activity (e.g. on blood oxygenation, signaling molecules,

and synaptic currents). In the current work, we aimed to parameterize conventional neural

models using indirect measurements of neural activity. This problem involved simultaneously

estimating the generative neural model as well as the latent neural activity thus comprising a

dual-estimation problem. Through surrogate models, we approximated the state-estimation

step as a parameterized deconvolution„ thus reducing computationally challenging dual-

estimation problems to a closed-form, conventional identification problem. The primary

advantage of this approach is speed/scalability.
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Current approaches to model-based dual-estimation emphasize the joint/dual Kalman Filters

and related Bayesian approaches (e.g. [121]). These approaches suffer, however, in terms of

scalability and data quantity. As demonstrated in numerical simulations, the computational

complexity of Kalman-Filtering limits application to relatively small models (Fig. 3.3F),

whereas Surrogate Deconvolution enables optimization techniques that scale well with the

number of parameters (Fig. 3.3F). However, despite requiring orders of magnitude fewer

computations, Surrogate Deconvolution performs competitively with Kalman Filtering in

estimating system parameters (Fig. 3.3B,C) as well as estimating states (latent neural

activity; Fig. 3.3D,E). Thus, the computational advantages of Surrogate Deconvolution do

not compromise accuracy.

Scalability is particularly salient in empirical neuroimaging, as several recent approaches

have eschewed detailed modeling of physiological measurements (e.g. [8], [126]) in order to

increase the spatial coverage of models. However, ground-truth simulations indicate that these

reductions potentially compromise accuracy (Fig. 3.4 A,B). By contrast, methods augmented

with Surrogate Deconvolution maintained high levels of performance (accuracy) even for

extreme spatial variation in physiological signals. Interestingly, this variation appeared to

be a reliable feature in empirical data with consistent differences across individuals (Fig.

3.4 C) and brain regions (Fig. 3.4 D-F) which can potentially lead to systematic biases (as

opposed to random error) when these features are not modeled. Thus, for neuroimaging

in particular, it may be critical to parameterize both the generative neural model and the

measurement models to account for these biases. Surrogate Deconvolution provides a means

to parameterize such models without compromising the detail of either component.
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Chapter 4

Enhancing Task fMRI Preprocessing

via Individualized Model-Based

Filtering of Intrinsic Activity

Dynamics

4.1 Introduction

Task-related analyses in fMRI typically involve statistical general linear models (GLMs)

which seek to identify the amplitude and/or mean timecourse of (BOLD) evoked-responses

after removing nuisance covariates. These approaches have proven statistically powerful for

simple tasks and characterize much of the current literature regarding task-induced activation.

However, over the past decade, improvements in the accuracy and speed of fMRI acquisitions

has given birth to a new literature concerning within-subject trial-to-trial variation in brain
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activity. These studies have generated two key findings relevant to the current study: 1)

trial-to-trial variation in BOLD responses predict within-subject behavioral variation ([51])

and 2) the BOLD signal elicited by a stimulus is dependent upon the previous pattern of

brain activity ([48], [46]). We use the term “brain activity” in the latter case to indicate

that this history dependence is thought to be neural, rather than solely reflecting potential

nonlinearity in the hemodynamic coupling. These results indicate that trial-to-trial variation

in the BOLD response is due, in part, to variation in the underlying neural activity. Moreover,

this variability is behaviorally relevant ([49]) and is history dependent (i.e. reflects underlying

dynamics). Thus, the neural activity associated with BOLD is increasingly considered as a

nonlinear dynamical system—one in which the spatiotemporal response to an input depends

upon its current state and is determined by a set of rules that dictates its temporal evolution

([16]).

This framework contrasts both with current statistical approaches, which treat the neural

activity as a noisy autoregressive signal (most GLMs), and with Dynamic Causal Modeling

(DCM) approaches which treat the brain as a linear system (although see [101]). In the

current work, we propose a new technique for modeling intrinsic brain dynamics and their

contribution to task-evoked activation patterns. This approach, which we term MINDy-

based Filtering, more accurately identifies individual differences, and enhances the temporal

precision and statistical power in identifying task effects.

4.1.1 Introducing Dynamics to Activity Flow

Brain activity dynamics are thought to consist of two factors: 1) the signaling between brain

regions; and 2) the local dynamics that describe how each brain region integrates afferent

signals over time. Several recent efforts have focused solely upon the former factor to study
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how evoked activity propagates through the brain. The Activity Flow ([43]) framework, for

example, approximates task-evoked activity in each brain area as the FC-weighted sum of

activity in all other areas. Previous studies have indicated that Activity Flow accurately

describes spatial patterns of task-evoked activity. The primary limitation of the Activity

Flow approach, however, has been the lack of dynamics. Since inferences are based only upon

static relationships, these models reduce to mathematical statements about the admissible

spatial patterns of task activity. In particular, the Activity Flow model is mathematically

equivalent to stating that task activity patterns occur along the principal components (or

principal subspaces) of resting-state activity. Thus, the inferences yielded by these approaches

are inherently static and correlative, whereas the target construct (activity propagation) is

inherently dynamic and causal (i.e., often referred to as “effective connectivity”; [131]).

4.1.2 Previous Approaches using DCM

Dynamic Causal Modeling (DCM), by contrast, incorporates the temporal evolution of brain

activity and thus can consider the propagation of neural activity through brain networks.

Each DCM contains an effective connectivity matrix and a set of extrinsic inputs that describe

how task events impinge upon each node of the network ([52]). Many implementations also

contain region-specific hemodynamic models and/or an interaction between task events

and effective connectivity (i.e. the effective connectivity is parameterized by task events).

Although the original DCM models were strongly limited in size, modern implementations

([57], [76]) can consider a much larger number of brain regions (although the computation

cost remains considerable; [57], [8]). However, the DCM methodology also presents several

constraints which limit its application. Estimating a DCM model requires pre-specifying the

time-series of task effects. This assumption precludes analyses which explore the temporal

dynamics of task effects such as Finite Impulse Response (FIR) modeling or nuanced task
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GLMs, such as those featuring nuisance regressors (e.g. motion). In addition, all DCM

implementations that support whole-brain models (i.e. more than a few regions; [57]) are

strongly ([8]) dependent upon the assumption of stationary linear dynamics.

4.1.3 Filtering Instead of Parameterizing

In the current work, we aim to strike a balance between the mechanistic inferences made by

DCM and the flexibility of standard analysis techniques. To do so, we generate dynamical

systems models of the brain and neurovasculature (as is done in DCM). However, our approach

differs substantially from DCM in how we build and utilize these models. Instead of fitting

models of the brain and tasks, we propose to fit dynamic models to independent resting-state

data for each subject. We then use these models to generate a mathematical filter for each

subject that removes, or “partials out”, the effects of intrinsic dynamics from BOLD timeseries.

This approach uses no information regarding task events and thus functions as a preprocessing

step, as opposed to explicitly modeling task events. This feature is advantageous, as the

proposed techniques can be inserted into any data preprocessing pipeline with minimal effort,

provided that sufficient amount of resting state data (e.g. >15 minutes [8]) has been collected

to build MINDy models.

4.2 Approach

4.2.1 Model Derivation

Our approach leverages individualized resting-state models in order to estimate task-evoked

brain effects while making minimal modeling assumptions about the underlying mechanisms.

We model brain activity (xt) as a dynamical system containing two components: an intrinsic
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dynamics component f(x) which is estimated from resting-state models and an exogenous

input component It.

xt+1 = f(xt) + It. (4.1)

The latter component is exogenous with respect to the resting-state model and should not be

interpreted as “exogenous to the brain”. Rather, It represents additional input to each brain

region beyond that which is created through intrinsic (resting state) dynamics embedded in

f(x). In principle, this technique is compatible with any resting-state model (f(xt)). For the

current work, we chose MINDy ([8], [99]) as it is highly scalable, nonlinear, and robust to

many nuisance factors. The aim of the current work is to estimate the input (It) for task

data and to investigate exogenous input as a marker for cognitive states. We do not assume

a specific mechanism underlying this input (e.g. recurrent input, inter-regional signaling,

neuronal “noise”, or sensory afferents) or any spatial/temporal properties of It. Thus, we

treat It as a latent signal to be estimated (i.e. filtering It from BOLD). By contrast, other

methods, such as DCM ([52],[102]) assume a time course of It (the temporal aspects of It)

based upon task design and only estimate its relative contribution to each brain area. For

this reason, we term our objective MINDy-based Filtering. Although the mechanisms of

interest (It) are modeled as neural, fMRI measures the hemodynamic BOLD contrast. For

this reason, we simultaneously model neural dynamics and the hemodynamics which link

neural events to fMRI measurements. We assume that BOLD signal reflects the convolution

(denoted “*”) of latent neural activity (xt) with a region-specific Hemodynamic Response

Function (HRF; denoted hi(t)) and we estimate the HRF kernels from resting state data

([99]). Thus, for each brain region (parcel “i”) our model is:

BOLD
(i)
t = [hi ∗ (x(i)τ + η(i)τ ))]t + νt (4.2)
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We consider noise at the level of the neurovascular coupling ηt and at the level of BOLD

measurements (νt). These terms are modeled as normal random variables which are inde-

pendently and identically distributed (iid) between brain regions and time points. Process

noise (physiological stochasticity) is not explicitly modeled at the neural level Eq. 4.1, as it is

absorbed in the unknown inputs It. Substituting for xt (from Eq. 4.1) and rearranging yields:

BOLD
(i)
t+1 − [hi ∗ f (i)(x)]t = [hi ∗ I(i)τ ]t + [hi ∗ η(i)τ ]t + ν

(i)
t . (4.3)

Thus, the HRF-convolved input [h ∗ I]t is equal to the difference between measured and

predicted BOLD plus additional autocorrelated noise terms. For all current analyses we

consider brain states estimated with HRF-convolved estimates of input ([h ∗ I]t) as opposed

to the estimates of It alone. This step enables the same statistical pipelines (i.e. GLM

structure) to analyze original fMRI BOLD data and the HRF-convolved input. As a result,

the estimation of [h ∗ I]t serves as an additional “preprocessing” (filtering) step that can be

added to any fMRI pipeline with minimal effort. No information regarding task events is

used in estimating It, so the same statistical frameworks are applied to model-filtered and

original data.

4.2.2 MINDy-based Filtering

In the current approach, we do not explicitly model different forms of noise. The only

noise factor we consider is the measurement noise power in inverting BOLD onto neural

activity. Since neurovasculature noise is removed (ηt=0), Wiener deconvolution generates the

least-mean-square estimate for xt. The resultant approximation for BOLD-convolved input

([h ∗ I]t) is:

[h ∗ Iτ ]t ≈ BOLDt+1 − [h ∗ f(h∗̂−1BOLD]τ ]t (4.4)
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With h∗̂−1BOLD denoting the Weiner deconvolution of each region’s BOLD signal with

respect to the corresponding HRF model. Thus, we estimate neural activity by deconvolving

BOLD with the region-specific HRF’s identified at rest. Predictions are made in terms of

neural activity and re-convolved to produce predictions in terms of BOLD. The difference

between measured and predicted BOLD approximates the HRF-convolved input.

4.3 Methods

4.3.1 Subjects

Data consisted of fMRI task and resting-state scans for 50 healthy young-adult subjects

collected as part of the Dual Mechanisms of Cognitive Control (DMCC) study. The DMCC

participant pool contains a large number of monozygotic and dizygotic twin pairs. However,

for these analyses, these characteristics are ignored.

4.3.2 Scanning Protocol

Each participant took part in three separate scanning sessions which occurred on different days,

but all had the same general procedure. Each day, participants provided two resting-state

scans of 5 minutes each as well as two scans each for four cognitive tasks: the AX-Continuous

Performance Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task-Switching (Cued-

TS). The two scans per task were performed sequentially for each task whereas the two

resting-state scans were separated in time (one at the session start and one at end). Each

of the task scans (2 per task per day) contained three task-blocks separated by inter-block

intervals and lasted approximately 12 minutes. For resting state and task, the two scans per
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day were split between anterior-posterior and posterior-anterior phase-encoding directions.

Scans were performed at 3T with 1.2s TR (multi-band ×4).

4.3.3 Task Descriptions

We briefly describe the general structure of each of the four cognitive tasks in the “baseline”

format which was administered on the first scanning day. Subtle changes to task structure

were made on the two following days (subsequent section) but were not relevant to our

analyses. The AX-CPT task ([132]) involves repeated sequences of cue-probe pairs, in which

the response to the probe item is constrained by the preceding contextual cue. Thus, the A-X

cue-probe pairing requires a target response and is frequent, leading to strong associations

between the cue and probe. However, both the B-X pairing (where “B” refers to any non-X

cue) and A-Y pairing (where “Y” refers to any non-X probe) require non target responses. In

the Sternberg task ([133]), participants are sequentially presented with short list of words

to memorize for that trial (called the memory set; appearing across two encoding screens).

After a short retention delay, they are presented with a probe word and must determine if

the probe was present in that trial’s memory set. On some trials, the probe item is termed a

“recent negative”, in that was not present in the current trial memory set but was present in

the memory set from the preceding trial. In the current implementation of the Stroop task,

subjects are asked to verbally report the font color in which probes are displayed ([134]).

Each probe is itself a color-word, and can either be congruent (font color is the same as the

color word, e.g., BLUE in blue font) or incongruent (font color is different from the color-word

name; e.g., BLUE in red font). Lastly, during Cued Task-Switching (Cued-TS, [135])

participants are pre-cued to attend to either the number or letter component of a subsequent

probe (combined letter + digit). In “attend-number” trials, participants indicate whether

the digital component of a probe is even vs. odd. In “attend-letter” trials, participants
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indicate whether the letter component is a consonant vs. vowel. The probe can be either

congruent (both letter and digit are associated with the same response) or incongruent (the

letter and digit are associated with different responses). With the exception of the Stroop

task, participants report responses using button presses.

4.3.4 Cognitive Control Demand

The current set of trial-based analyses center upon the ability to identify neural signatures of

cognitive control. Although cognitive control is a heterogeneous construct, we specifically

studied the conflict resolution aspects of cognitive control, so we use the terms control-demand

and conflict interchangeably when referring to these tasks, and contrasts between trial types.

In particular, we operationally identify cognitive control demand as the difference in neural

activity measures during high and low-conflict trials for each task. In the AX-CPT, we

contrast BX trials (high conflict) vs. BY (low conflict). The BX trials are high conflict

because of the target-association with the X-probe, which require contextual cue information

to override. For the Sternberg task, we contrast trials with recent negative probes (high

conflict) and trials containing novel negative probes (low-conflict). Thus, recent negative

trials are high conflict because the familiarity of the probe, requires information actively

maintained in memory to override. In the Stroop task, we contrast incongruent (high conflict)

and congruent (low conflict) trials. The incongruent trials are high conflict because the

task goals (name the font color) are required to override the dominant tendency to read

the color-name. Lastly, in the Cued-TS we also contrast incongruent (high conflict) and

congruent (low conflict) trials. The incongruent trials are high conflict because it is critical

to process the task cue, in order to know what response to make (for congruent trials, the

same response would be made regardless of the task being performed).
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4.3.5 Task Manipulations

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were chosen to measure/engage

cognitive control. On the first scanning day, participants performed a “baseline” version of

each task. On the subsequent days, however, participants performed modified version of

each task, meant to promote either proactive or reactive cognitive control strategies. On the

two subsequent scans participants performed all the reactive-mode conditions of the tasks

on one day and all the proactive-mode conditions of the tasks on another, with the order

of proactive vs. reactive days counter-balanced across subjects. In the current work we do

not consider the influence of cognitive-control mode and combine data for each task across

scanning sessions, to increase statistical power.

4.3.6 Pre-processing and Parcellation

Raw resting-state and task data were preprocessed using the same pipeline, implemented

with fMRI-prep software ([136],[137]). The whole-brain surface data were then parcellated

into 400 cortical parcels defined by the 400 parcel Schaeffer atlas (Schaefer [6]; 7-network

version). Subcortical volumetric data was divided into 19 regions derived from FreeSurfer

([89]). Motion time-series consisted of the 3-dimensional coordinate changes for rigid-body

(brain) rotation and translation (6 total). Motion and linear drift were regressed out of

pre-processed resting-state data before MINDy model fitting and from task data prior to

filtering. Since motion time-series are also covariates within our task GLMs (as is common),

this step does not bias results as motion is implicitly removed from the unmodeled data

during GLM estimation (see below). However, we also implemented controls (see Sec. 4.3.9)

which used this same data (i.e. motion pre-regressed) with conventional analyses.
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4.3.7 Task GLM Analyses

Statistical models of task fMRI were estimated using general linear models (GLM) as

implemented in AFNI. The same analyses were performed for both the original task data

and the model-subtracted data. The GLM design consisted of a mixed block-task design in

which trial-type effects were modeled using a modified Finite-Impulse-Response (FIR,[138],

[139], [140]) framework (AFNI TENT; [141]), whereas block effects (task vs. inter-block

interval) were modeled using a canonical HRF convolved with the block regressors. The

TENT bases consisted of overlapping linear-interpolation splines spanning two TRs each. The

FIR models were generated by projecting TENT coefficients by the mean TENT basis-set for

each trial-type (within-subject). The GLM design also included block onset/offset (modeled

with a canonical HRF) and the six motion regressors corresponding to rigid body translation

and rotation (3 each). Timepoints containing excessive motion (Framewise Displacement

> 0.9mm) were censored from task GLMs. Estimation was performed using the built-in

AFNI function “3dREMLfit”.

4.3.8 MINDy Modeling

Mesoscale Individualized NeuroDynamic (MINDy, [8][99]) models were generated from each

subject using the parcellated, pre-processed resting-state data for each subject, combined

across scanning sessions. Thus, a single MINDy model was estimated for each subject and

was used in analyzing task-data across scanning sessions. We simultaneously estimated the

neurovascular coupling/HRF and latent brain networks by combining the original MINDy

model with Surrogate Deconvolution as in [99]. This combination simultaneously estimates

HRF kernel parameters for each brain region as well as the connectivity matrix, region-specific

transfer function shape, and local decay parameter (time-constant). Previous work indicates
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that the inclusion of Surrogate Deconvolution renders MINDy estimates robust to spatial

variation in the HRF. Moreover, the spatial distribution of estimated HRF properties such as

time-to-peak are consistent with empirical literature at the group level and are also reliable

at the level of individual differences ([99]). Hyperparameters used in MINDy model fitting

were identical to previous studies ([8]).

4.3.9 Control Pipelines

In addition to comparing the proposed pipeline with conventional analyses, we also repeated

all task analyses for several control pipelines. These control pipelines considered two factors

that might explain results: 1) pre-processing and 2) mechanistic components of the model.

The MINDy modeling framework assumes that nuisance covariates such as motion and drift

have already been removed from time-series prior to model fitting. Therefore, to address #1,

we implemented a control in which standard GLM analyses were computed directly upon

the fMRI BOLD task timeseries, with motion covariates already regressed out first. The

same regressors also appear in the task GLM model (which is shared across all pipelines),

but regressing these factors out first will rescale estimated beta-coefficients due to the input

normalization performed by many fMRI processing packages (e.g. AFNI). This control

ensured that improvements in group-level sensitivity were due to increased similarity of

estimated spatiotemporal patterns rather than theoretically uninteresting factors due to

pre-processing pipelines. We refer to this control as “pre-regressed” (preReg).

To address #2, we considered the influence of anatomically local dynamics vs. interactions

between brain regions. This contrast is significant for three reasons. First, it is theoretically

significant to distinguish between purely local neural dynamics and inter-regional brain

dynamics. Secondly, long distance interactions between brain regions cannot be explained
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solely in terms of neurovasculature since the regions involved may share anatomically dis-

tinct blood supply (i.e. different cerebral arteries). As a result, improvements identified in

whole-brain models, but not purely local models, cannot be explained solely as a benefit

of hemodynamic modeling (although other contaminants such as motion could still be a

factor). Lastly, analyses using the purely local models are equivalent to region-specific

frequency-domain filtering. Although this equivalence does not imply that neural dynamics

are insignificant, the signal-processing interpretation is simpler and could render the proposed

neural modeling framework unnecessary (i.e. less parsimonious). Thus, the local dynamics

control serves to ensure that our guiding neural modeling framework provides additional value

above its (partial) relationship to existing signal-processing techniques. This control was

implemented in two distinct variants: either heterogeneous (region-specific) or homogeneous

(region-invariant) autoregressive models fit to each subject.

The homogeneous model consists of an autoregressive model that is specific to subject, but

not parcel:

BOLDt+1 = βBOLDt + νt (4.5)

We assumed that the noise-component was independent and identically distributed between

parcels and solved for β using linear regression (collapsing BOLD across parcels). The

“input” estimates from this model consist of the residuals (νt). We fit the heterogenous model

analogously to the heterogeneous model, but with region-specific autoregressive terms:

BOLD
(i)
t+1 = βiBOLD

(i)
t + ν

(i)
t (4.6)

for parcel “i”. We use these two cases to determine whether regional heterogeneity is a

significant factor in any improvements due to local modeling. We refer to the homogeneous
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and heterogeneous models as global (“glob”) and local (“loc”) autoregressive (AR) models,

respectively.

4.4 Validation and Comparison Criteria

In order to assess potential advantages of the proposed technique, we considered two types of

comparisons: benchmarking (is method “a” better than “b”?), and sensitivity/robustness

(how does factor “x” influence method “a” vs. “b”?). The first case establishes whether the

proposed method offers additional statistical power in detecting task effects.

4.4.1 Benchmarking Sustained Effects

In the present work, we consider both sustained task-effects (block-related changes) and trial-

type effects across four cognitive tasks commonly used to index cognitive control (AX-CPT

[132], Cued Task Switching [135], Sternberg [133], and Stroop [134] tasks; see Sec. 4.3.3). Sus-

tained effects refer to “background” activity that is present regardless of whether participants

are performing a task. Since we used FIR models to span each trial type, sustained effects in

our analysis only refer to activity during inter-trial periods (non-trial periods of task-blocks)

since effects during other periods are absorbed in the trial vs. rest-block contrasts ([142],

[143]). We compared the group-level effect size of each technique (the proposed method

and several controls) in detecting sustained effects. Methods were compared pairwise, and

analyses were only conducted on parcels which had a significant effect for either method

in a pair. Sustained analyses considered both signal increases and decreases, so the target

metric was absolute t-value (1-sample group test) for the GLM sustained betas (see Sec. 4.3.7).
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4.4.2 Benchmarking Event-Related Effects

Trial-types were defined by high cognitive control demand vs. low cognitive control demand

across the four tasks (see Sec. 4.3.4). Trial-specific activity was modeled using a Finite

Impulse Response (FIR) model with 1TR resolution (1.2s) and task-specific length (see Sec.

4.3.7). Group-level statistics were compared for the peak effect (parcel × method specific)

over a task-specific 2TR interval. This interval was chosen during study piloting using the

peak times in conventional analyses. Thus, the analysis targets are statistically biased against

the proposed technique since they were chosen to maximize conventional analyses. These

times qualitatively correspond with a typical HRF time-to-peak after the probe-events which

define high vs. low control trials (see Sec. 4.3.4). Previous literature and present results

suggest that these effects are primarily one-sided, with activity increased in the high-conflict

(control demand) trials relative to low-conflict (low control demand) in relevant brain regions.

Conversely, task-negative effects (significant decreases) have largely been associated with

sustained signals as opposed to high vs. low control events. For these reasons, we only

considered significant increases in activity for trial-type analyses. Group-level t-tests (within

parcel) were compared for all parcels with significant increases (either method), or for a set

of 34 parcels (pre-defined from independent conventional analyses which showed consistent

control-demand effects across all tasks, [144]). Since these parcels were pre-selected based

upon conventional analyses, they are statistically biased against the proposed method (i.e. in

favor of conventional methods).

4.4.3 Testing Selective vs. Global Improvements

We further analyzed benchmarking results by testing how MINDy-based Filtering changes the

distribution across parcels. The primary question was whether the MINDy-based Filtering: a)
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uniformly changes statistical power across the brain (by shift or scale); b) primarily identifies

previously insignificant regions or c) primarily alters previously significant regions. This

analysis is important for determining whether the technique globally improves statistical

power or differentiates task-relevant regions from the rest of the brain. We test these effects

using multilevel linear models to compare MINDy-based Filtering to the different control

models. These multilevel models (presented in more detail later) contain task main effects

(anatomically global) and additional terms for task-implicated (statistically significant parcels).

We use these models to test the significance of model improvements (increased effect sizes)

after discounting anatomically global changes.

4.4.4 Sensitivity to Cognitive States

Sensitivity analyses were performed to assess the impacts of cognitive states, individual

differences, and motion. In the current case, cognitive states differ between tasks and trials.

Although, each of the four tasks are commonly used to index cognitive control, cognitive

tasks are not construct-pure. For instance, tasks featuring delays (AX-CPT, Cued Task

Switching, and Sternberg) are thought to be more dependent upon working memory than

those without delays (i.e. the Stroop task). However, many task-specific factors are the

same between high and low control trials of the same task (i.e. all events prior to the probe).

Thus, we control for cognitive similarity across tasks by comparing results across increasing

levels of cognitive similarity: low-control trials, high-control trials, and the contrast high

vs. low control trials. These levels increasingly isolate the cognitive control construct by

increasing control demand (high-control trials) and controlling for other task events (high

vs. low contrast). Methods which are sensitive to cognitive states will produce more similar

results between task contexts when the cognitive states measured are more similar. Thus, we

tested whether the proposed technique increased similarity between tasks for the high vs. low
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contrast relative to low-control trials. We measured this using Intraclass Correlation (ICC;

[95]). Tasks differed in effect magnitude and there was no theoretical basis for assuming this

factor should be identical between tasks (i.e. we don’t assume each task equally taxes cognitive

control), so we normalized the group-average data (divided by root-sum-of-squares) for each

task × method before applying ICC. Significance was established using boot-strapping with

new distributions generated for each comparison.

4.4.5 Sensitivity to Individual Differences

We also analyzed the degree to which each method was sensitive to individual differences. This

analysis also used ICC across the different levels/contrasts of control demand. However, the

data of interest consisted of individual differences, which were defined by z-scores relative the

group (i.e. normalized deviations from the group tendency). We computed ICCs separately

for each DMCC34 parcel and determined significance using parametric statistics on the

distribution over parcels.

4.4.6 Robustness to Motion

Lastly, we compared methods in their robustness to motion confound. While previous

work has established that the model-fitting technique (MINDy) is robust to motion ([8])

it remains unknown whether the proposed MINDy-based Filtering technique also exhibits

similar motion robustness. Therefore, we compared methods in terms of sensitivity to motion

artifact. We considered three motion metrics for task data including the number of frames

censored based upon framewise-displacement (FD) criteria (< 0.9mm), the median framewise

displacement, median-absolute-deviation (MAD) of DVARS ([86]). We analyzed sensitivity

by comparing the similarity (ICC) of results between high-motion and low-motion groups of

subjects (median split for each motion measure).
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4.4.7 Significance Testing for Construct Identification

We used permutation statistics to compare the significance of generalizability tests between

methods. When testing the generalizability of group-level patterns, we treated brain regions

as the object of measurement in intraclass correlations (ICC, [95]) over task classes and

estimated confidence intervals with bootstrap sampling over the set of brain parcels. We

defined individual differences in terms of z-scored data relative the group (computed task

× parcel × method). We tested significance via permutation testing z-scored data was

randomly permuted between methods and then z-scored again before ICC computation

(thereby maintaining the within-task distribution). Confidence intervals were computed with

bootstrapped sampling over subjects.

4.5 Results

4.5.1 Structure and Presentation of Results

We designed analyses to answer four questions: 1) do resting-state MINDy models (par-

tially) generalize to task? 2) does the proposed technique improve power in answering

cognitive-neuroscience questions? 3) can these methods test hypotheses which were previously

impractical? and 4) do improvements reflect theoretically interesting concepts (e.g. signal

propagation) or do they stem from signal-processing/filtering side-effects? The first question

resolves whether the intrinsic dynamics modeled at rest meaningfully generalizes to task

(although not perfectly, as we are interested in the task versus rest differences). The second

and third questions identify methodological contributions, whereas the latter determines

whether techniques also offer additional theoretical insight (i.e. their success reflects some

principle of brain function). This question is important for determining whether results reflect

116



Rest Axcpt Cuedts Stern Stroop

0.4

0.6

0.8
R

2
Cross-Task Accuracy with rs MINDy

0.3 0.5 0.7
Rest

0.3

0.5

0.7

A
xc

p
t

Rest vs. Axcpt: R2

0.3 0.5 0.7
Rest

0.3

0.5

0.7

C
u
ed

ts

Rest vs. Cuedts: R2

0.3 0.5 0.7
Rest

0.3

0.5

0.7

S
te

rn

Rest vs. Stern: R2

0.3 0.5 0.7
Rest

0.3

0.5

0.7

S
tr

oo
p

Rest vs. Stroop: R2

r=.75

r=.79 r=.65

r=.70

Fit per subject

A B

Figure 4.1: Resting-state MINDy models generalize to task. A) MINDy models trained on
resting-state data produce similarly accurate predictions for task data. Goodness-of-fit is
quantified in terms of the mean R2 value across all brain parcels ([6]) and scanning runs
(n=6) in predicting the difference time series: Xt+1 −Xt ([8]). B) Individual-differences in
model accuracy are highly correlated between resting-state and task data.

the activity-flow framework or can be more parsimoniously explained in terms of (non-neural)

signal processing effects.

4.5.2 Resting-state Model Predictions Generalize to Task

We first test whether the proposed technique actually serves as a conceptual “filter” in

removing intrinsic-dynamics from task, rather than making this information more salient (as

would occur when there is little overlap between task and rest). Our framework assumes

systematic discrepancies between task and resting-state (i.e. we are interested in the difference

between contexts), but we assume that there is some overlap of task and resting-state

dynamics for us to “remove”. In statistical terms, we first ensure that the approach removes

variation from task data (associated with covariance of task-rest dynamics) rather than

adding additional variation as would occur when subtracting independent factors. To test
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this possibility, we first quantified the goodness of fit for resting-state models (MINDy; [8],

[99]) in predicting both task and resting-state data within subject. Goodness-of-fit was

calculated using both the final model and cross-validated models which are less biased in favor

of resting-state fits. Paired (within-subject) analyses did not indicate greater goodness-of-fit

for resting-state scans (R2 = .55± .06) relative to task scans (mean R2 across tasks=.56± .07,

paired-t(49) = −.50, p = .62; Fig.4.1A). Moreover, individual differences in goodness-of-fit

were consistent across tasks (Fig. 4.1B), which indicates that model accuracy is also highly

preserved within-subject. We conclude that the short-term evolution of brain activity is

similar (but not identical) in resting-state and various task contexts. By leveraging large-scale

resting-state models (MINDy) the proposed technique filters out intrinsic dynamics common

to resting and task state.

4.5.3 MINDy-based Filtering Accounts for intra and inter-subject

Variability

We also tested whether these intrinsic dynamics explain unique variability above the task

GLM. This test is important for determining whether MINDy serves to predict the mean

brain-response for each trial-type or whether it also predicts trial-to-trial variability. We

quantified these properties through sum-of-squares partitioning (ANOVA). Across all tasks,

we found that the proportion of unique variance explained by MINDy was significant (42.3%

on average, Fig. 4.2A). However, MINDy predictions and the task effects do have some overlap

(a non-zero MINDy×task sum-of-squares, Fig. 4.2A), thus MINDy predictions account for

some of the variation in both the trial-to-trial variability (variation unique to MINDy) and the

typical response across trials (MINDy × task interaction). We also tested how MINDy-based

Filtering impacts variability in the evoked-response between subjects. We restricted these

analyses to the pre-defined set of regions (the DMCC34 parcels, [144]) which were previously
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Figure 4.2: MINDy-based Filtering reduces variability within and between subjects. A)
MINDy-based Filtering accounts for a significant portion of unique variability within each
subject’s data. This effect holds across tasks (results averaged over all parcels, subjects).
Variance partitioning was performed after removing variation due to nuisance factors (motion
and drift). B) MINDy-based Filtering reduces the between-subject variability of task-evoked
signals. Example shown is the mean signal over the DMCC34 parcels for the Cued-TS high
control-demand condition (incongruent trials). C) Variability also decreases for contrasts
between conditions. Example shown is for the AX-CPT (BX-BY contrast). D) Spatial-map
for the proportion of variability in cognitive control signals attributable to group (collapsed
across tasks) for MINDy-filtered data. E) Difference in the relative group-explained variability
between MINDy and the original data. Note that MINDy-based filtering actually decreases
the proportion of group variance in some regions, but increases for task-implicated regions
(lPFC, anterior insula, etc.). F) MINDy-based Filtering increases the group-level effect
size for each task. This can be seen in the number of parcels exhibiting higher t-values
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increased effect sizes from MINDy-based Filtering, while blue dots denote significant parcels
whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did
not exhibit a significant control-demand effect for either method.
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identified as having a significant control-demand effect across tasks. Results demonstrated

that MINDy filtering decreased inter-subject variability in both main effects of trial-type (e.g.

Fig. 4.2 B) and the contrast between trial-types (e.g. Fig. 4.2C). In particular, these analyses

and associated event-related timecourse visualizations reveal that the peak task-related effects

become sharper (more well-defined) as well as more temporally-precise after MINDy-based

filtering. We used ANOVA to partition variance in the cognitive control effect into group-level

variance and individual variance over the relevant trial periods.

We then tested whether MINDy increased the proportion of cognitive control effects attributed

to a common group factor (sum-of-squares for the group effect divided by the total effect).

As expected, regions implicated in cognitive control, such as the lateral and medial prefrontal

cortex, anterior insulae, and posterior parietal cortex, had larger proportions of variability

explained by the common group factor (Fig. 4.2D). Interestingly, although MINDy-based

Filtering increased group variability (decreased inter-subject variability) in many of these

same task implicated regions it decreased the common group factor for regions not implicated

in cognitive control (Fig. 4.2E). In particular, the proportion variance explained by a common

group effect increased across the DMCC34 parcels (paired-t(33) = 6.03, p < 9E − 7). Thus,

by removing individual-differences in intrinsic brain dynamics, MINDy-based Filtering reveals

more similar task-effects between subjects. As a result, MINDy increased cognitive control

detection power in all four cognitive tasks considered. Figure 4.2F visualizes this effect for all

parcels across the whole brain.

4.5.4 Improved Group-Level Detection Power

We tested whether MINDy-based Filtering improves statistical power in detecting group-level

neural effects. We considered two effects of interest: an event-related contrast between
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task effects. A) Spatial distribution of high-vs.-low conflict effects averaged across tasks using
conventional analyses and B) the proposed technique. Thresholds correspond to p < .05 for a
single task. C) Paired comparisons of effect size between control methods and the proposed
approach in identifying high-vs.-low conflict effects for significant brain parcels. Values less
than zero indicate that the propose technique improves upon controls. D) Comparisons for
the absolute sustained effect over significant parcels (positive or negative). Parcels were
deemed significant if they passed p < .05 for either method within a pair. Comparison
techniques are denoted:“Orig”=original analysis (no filter), “Pre-Reg”=motion and drift pre-
regressed before GLM fitting, “Loc”=AR model filtering with local/heterogeneous parameters,
“Glob”=AR model filtering with a single (anatomically global/homogeneous) parameter, and
“MINDy”=MINDy-based Filtering.
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trial-types (high vs. low cognitive control demand; see Sec. 4.3.4) and sustained neural

activity during task blocks. In both cases we employed Finite Impulse Response (FIR)

designs to model task effects (trial-type specific for GLMs in event-related analyses but

trial non-specific for sustained analysis GLMs). Additional regressors included motion, drift,

and the start/end of task blocks (see Sec. 4.3.7). By contrast, sustained effects consist

of “background” activity that is present during inter-trial periods (i.e. non-trial periods

of task-blocks) since the effect of task vs. rest-block is already absorbed in the FIR trial-

type regressors ([142], [143]). We compared results (group-level one-sample t-tests) between

methods (MINDy-based Filtering, conventional analyses, and controls) for each task and

an omnibus test across tasks (Fig. 4.3A,B). For each event-related pairwise comparison of

methods, we tested the change in effect-size (group t-value) for parcels demonstrating a

significant increase (p < .05, uncorrected) for either method within a pair. Results indicate

that MINDy-based Filtering significantly increased statistical detection power on all tasks

(four of four) for the event-related contrast relative to all other controls (all p‘s≤E-7; Fig.

4.2F, Fig. 4.3 C). Sustained effects were also magnified for each task relative the two auto-

regressive controls (all p‘s<E-10; Fig. 4.3 D). However, sustained effects during Cued-TS

did not significantly improve relative conventional analyses (paired-t(147) = .32, p = .75)

or the pre-regressed control (paired-t(141) = .60, p = .55). Sustained effects for all other

tasks did significantly increase (all p‘s < .004). Thus, the proposed technique increased

statistical power in 4 of 4 event-related analyses and 3 of 4 sustained analyses relative to

conventional approaches. These increases were due, in part, to considering inter-regional

signaling as reflected in the improvements over models which did not consider connectivity

(the auto-regressive models). Statistical power increased in 4 of 4 event-related analyses and 4

of 4 sustained analyses relative to both homogeneous and heterogeneous autoregressive models.
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Figure 4.4: Improved detection power over a set of 34 parcels with consistent event-related
effects A) 34 parcels were identified as exhibiting a consistent cognitive control effect across
tasks during study piloting. B) Paired comparisons of the cognitive control effect over the
DMC34 parcels: MINDy-based Filtering minus control. C) Comparisons for the absolute
sustained effect the DMCC34 parcels: MINDy-based Filtering minus control. Values greater
than zero indicate improvement. Comparison techniques are denoted:“Orig”=original analysis
(no filter), “Pre-Reg”=motion and drift pre-regressed before GLM fitting, “Loc”=AR model
filtering with local/heterogeneous parameters, “Glob”=AR model filtering with a single
(anatomically global/homogeneous) parameter, and “MINDy”=MINDy-based Filtering.

For omnibus analyses, we collapsed observations across tasks (Fig. 4.3A,B). Results indicated

that the proposed technique generally increases detection power for event-related analyses

relative to all controls (vs. original: paired-t(635) = 35.9, vs. pre-regressed:p ≈ 0, t(638) =

36.8, p ≈ 0, vs. local AR: t(662) = 12.8, p ≈ 0, global AR: t(654) = 14.9, p ≈ 0). Detection

power for sustained effects also increased relative to controls (paired − t(680) = 9.7, p ≈

0; t(672) = 10.4, p ≈ 0; t(623) = 21.5, p ≈ 0; t(630) = 18.5, p ≈ 0). We conclude that the

proposed techniques improve group-level detection of event-related and sustained task effects

and these improvements are due, in part, to modeling the interactions between brain regions

(i.e. results are not accounted for by univariate auto-regressive models).

One limitation of the previous tests, however, concerns the determination of which parcels are

included in analysis: we compared effect sizes in parcels that were statistically significant (i.e.
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large effect sizes). This approach is anatomically parsimonious in that the comparison regions

are informed by data rather than prior assumptions. However, this dependency could produce

biases due to differences in higher-order features (e.g. overdispersion) between methods.

Therefore, we repeated the previous analyses over a fixed set of 34 pre-specified brain parcels

(Fig. 4.4A) that demonstrated significant increases due to cognitive conflict (event-related

contrast) across all four tasks during independent and pre-specified analyses (see Methods,

[144]). The implicated parcels agree with previous studies mapping the neuroanatomy of

cognitive control and are largely located along lateral prefrontal cortex and anterior insula

(Salience/Ventral Attention and Control networks; [90][6]). Analyses over this restricted, pre-

specified group of parcels agreed with the previous results: the omnibus (all task) statistical

detection power improved relative controls for events (maximum p = 4.1E−5; Fig. 4.4B) and

sustained effects (maximum p = .0015; Fig. 4.4C). Thus, results indicated that MINDy-based

Filtering improved statistical detection even when analyses were restricted to this group of

34 pre-specified parcels.

4.5.5 Identifying Individual Differences in a Latent Cognitive Con-

struct

The previous analyses indicate that the proposed techniques enhance the identification of

neural activity associated with a set of contrasts between trial-types (theoretical high control-

demand trials minus low control-demand trials). However, many cognitive neuroscience

studies seek to understand cognitive constructs, as opposed to unitary tasks. In the current

section, we explore how well each method identifies the neural correlates of one such construct:

cognitive control. The four tasks we studied have all been previously used to index cognitive

control (typically via the difference between high-conflict and low-conflict trials). However,
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Cross-task generalizability (ICC) for group means in the low-conflict condition (low construct
purity across tasks) and the high vs. low conflict contrast (high purity) by method. B)
Generalizability of individual differences (z-scores) for the “DMCC34” parcels. Boxplots
display distributions across parcels. C) Anatomical distribution of generalizability for the
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The difference in cross-task generalizability between MINDy-based Filtering and conventional
analyses. Comparison techniques are denoted:“Orig”=original analysis (no filter), “Pre-
Reg”=motion and drift pre-regressed before GLM fitting, “Loc”=AR model filtering with
local/heterogeneous parameters, “Glob”=AR model filtering with a single (anatomically
global/homogeneous) parameter, and “MINDy”=MINDy-based Filtering.

because the tasks themselves are not construct-pure (i.e. they tap multiple cognitive con-

structs) the neural activity associated with tasks is also expected to be non-identical. To

control for this fact, we used the different trial types to generate levels of “construct-purity”

in terms of cognitive control: low conflict trials (low purity) and the high-vs.-low contrast

(high purity). We consider the high-vs.-low contrast to be more “construct-pure” in terms of

cognitive control since it controls for many of the other cognitive processes that differentiate

tasks. For instance, speech production (unique to the Stroop task), is identical between high

and low-conflict trials (the same set of words are produced). Likewise, working memory

maintenance during delays (Sternberg, AX-CPT, and Cued-Task Switching) does not differ

between high and low control-demand trials since these trial-types are identical through the

delay period (up until the probe).
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We tested how sensitive each approach was to the cognitive control construct via the rela-

tionship between “construct-purity” and cross-task similarity of neural effects. For this test,

we indicate that a measure is “sensitive” to a factor (cognitive constructs) if the similarity in

measurements reflects the similarity in that factor. We therefore consider a measure “sensitive”

to cognitive constructs if it reports higher similarity between tasks for the high “construct-

purity” condition (high-vs.-low control demand contrast) than for the low “construct-purity”

condition (low demand trials).

We quantified “similarity” across the four tasks using Intra Class Correlation (ICC, [95])

and performed analyses in terms of both the group-average and individual-differences. For

group-average analyses, ICC “units of observation” consisted of the mean beta for each

brain parcel (all 419 brain regions) and “classes” consisted of the different tasks. Results

indicated that the proposed technique was sensitive to the cognitive control construct at

group level (Fig. 4.5A). In the “low-purity” condition, the proposed technique identified

significantly lower similarity between tasks (ICC = .50± .012) than conventional approaches

(both p‘s < .002, 5,000 bootstraps), although more than the autoregressive models (both

p‘s < .002, 5000 paired bootstraps). Thus, the proposed technique does not generically

increase the similarity of task results irrespective of cognitive construct. By contrast, for the

“high-purity” condition, the proposed technique generated significantly more similar results

across tasks (ICC = .555 ± .013) than either conventional analyses or local modeling (all

p‘s < .002, 5000 paired bootstraps). We conclude that the proposed technique improves

sensitivity to the cognitive control construct at group-level. Based on the nature of how these

ICCs were calculated, the finding can also be interpreted as indicating that the anatomical

profile of effects (i.e. the gradient of effect sizes across the brain) becomes more similar or

consistent across tasks after MINDy-based filtering, relative to conventional analyses, and
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the controls.

We next tested the consistency of individual differences. For these analyses we normalized

data between subjects for each method × task × parcel before computing ICC separately

for each parcel (using subjects as the “units of observation”). In general, ICC values were

highest for task-implicated regions (e.g. lateral prefrontal cortex and anterior insulae; Fig.

4.5C,D) and the proposed technique demonstrated particularly high generalizability at these

locations relative methodological controls (FIg. 4.5E). We compared methods in terms of ICC

for the DMCC34 set of parcels (Fig. 4.5B). Results indicated that the proposed technique

improves identification of individual differences over conventional techniques for the high

vs. low control contrast (vs. original: paired− t(33) = 5.5, p = 4.4E − 6; vs. pre-regressed:

t = 10.0, p = 1.8E − 11) but did not significantly differ from filtering with autoregressive

models (vs. local AR: paired− t(33) = 1.4, p = .18; vs. global AR: t = 1.0, p = .32). As with

the group-level analysis, generalizability did not increase over conventional analysis for the low

construct-purity (low demand) condition: (vs. original: paired− t(33) = .220, p = .828, vs.

pre-regressed: t = −2.17, p = .037). Thus, the proposed technique improves the estimation

of neural individual differences related to a cognitive construct, but do not artificial increase

generalizability across cognitively dissimilar task conditions. MINDy-based filtering increased

the generalizability of the group-level activity profile across tasks relative to both conventional

techniques and the reduced, autoregressive models. Individual differences also became more

generalizable after model-based filtering but did not depend upon the choice of model (MINDy

vs. autoregressive).

These results also offer theoretical (exploratory) interpretations. The inter-task variability

of conventional techniques and MINDy-based Filtering are linked since “input” is defined
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as the difference between the observed brain activity and the propagation along intrinsic

dynamics (xt+1 = f(xt)+It). Consequently, this section’s results suggest that cognitive control

signatures are most similar between tasks when they first impact the brain (as “inputs”) but

lead to more task-specific patterns of activity (xt) as they evolve according to intrinsic brain

dynamics. Group-average signatures of cognitive-control generalized better for the full MINDy

model than for models without connectivity, indicating that this evolution occurs, in part, due

to signaling between brain regions (i.e. the ‘post-synaptic’ activity is more task-specific than

the ‘pre-synaptic’ component). By contrast, individual differences are similarly generalizable

regardless of model-choice. This pattern of results suggest that individual differences become

task-specific as they propagate through local dynamics (i.e. are integrated over time) as

opposed to propagating through connectivity. Of course, these interpretations are post-hoc

and mainly serve to demonstrate the potentially utility of MINDy-based Filtering. Future

studies should explore these possibilities in more detail.

4.5.6 MINDy-based Filtering Selectively Enhances Task-Related

Neural Signals

The previous analyses indicate that the proposed technique can potentially increase the spatial

power and temporal resolution of neural-cognitive linkages. These properties demonstrate

that the approach may improve neuroscientific analyses (i.e. the approach is useful as a

tool). However, a method’s success does not require that the motivating framework be useful

(or even correct). For instance, the homogeneous autoregressive control is a special case

of the MINDy model which neglects regional heterogeneity, nonlinearity, and interregional

signaling. The proposed technique, when applied as a homogeneous autoregressive model

(instead of MINDy) reduces to a spatially-univariate frequency-domain filter. Although the

general approach is motivated by a neural framework (activity propagation), results for this
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Figure 4.6: MINDy-based Filtering magnifies task-related signals relative to all controls. A)
Scatter plots compare methods in terms of group-level T-values for the cognitive control effect
collapsed across tasks (all tasks plotted together). Unlike Fig. 4.2F, each plot corresponds
to one of the four control methods combined across tasks (instead of one plot per task). In
particular, the upper left corner plots all of the points from Fig. 4.2F combined. Improvements
can be seen in the number of parcels exhibiting higher t-values after MINDy-based Filtering
relative to conventional analyses (i.e., above the identity line). Yellow dots indicate significant
parcels (in terms of the control-demand effect) which also had increased effect sizes from
MINDy-based Filtering, while blue dots denote significant parcels whose effect sizes were
larger with conventional analyses. Teal dots denote parcels which did not exhibit a significant
control-demand effect for either method. B) Same as (A) but for sustained effects.
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reduced model are more parsimoniously explained in terms of signal-processing effects. We

tested whether the proposed technique can be similarly reduced by comparing results using

a full brain model (MINDy; [8][99]) compared with the result of applying our technique to

local, linear brain models. We considered local models that were either homogeneous (one

autoregressive coefficient per subject) or heterogeneous (one per region). The improvement

of using a full neural model over these controls indicates the benefit of using a detailed

dynamical systems model (i.e. including connectivity).

Earlier results also indicate that the proposed technique increases the statistical detection

power of task effects (Fig. 4.2F). Statistical power and effect sizes are useful benchmarking

criteria as they are easy to interpret and relate to potential applications. However, these

markers are also limited in that they indicate the ability to reject a generic null hypothesis

of no task effects, but do not generate scientific insight as to the source of the effects. For

instance, approaches which magnify anatomically global effects may provide little benefit

to functional “brain-mapping” studies which derive insight from the differentiation between

brain regions. Therefore, we tested whether improvements under the proposed technique are

anatomically global or serve to further differentiate regions.

We consider two sorts of global effects: additive “shifts” in the global signal and global

“scaling” of task effects. In statistical modeling terminology, the former reflects a main-effect

(intercept) of method, whereas the latter reflects the method-specific slope. We modeled

the differentiation between brain regions as either a main effect of regional significance (i.e.

whether a region has a significant effect) or as an interaction with regional significance

reflecting either a shift or rescaling of effect sizes of significant regions due to MINDy-based

filtering, relative to the control models. We use the logical-valued variable Sigtask,Parc to
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denote whether a parcel exhibits a significant effect for either method in a given second-level

task analysis.

Xtask,Parc = βtask + β0Ytask,Parc + Sigtask,Parc(β1 + β2Ytask,Parc) + εtask,Parc (4.7)

We assume that ε is identically distributed across tasks and parcels. The coefficient β1

represents the main effect of parcel significance as a binary factor, while β2 represents the

interaction with parcel effect size in control methods. Conceptually, these two components

represent the degree to which the proposed technique further separates task-implicated

and non-implicated parcels and the degree to which task-implicated are further magnified,

respectively.

Results indicate that the proposed technique demonstrates differential sensitivity, in that

improvements are greater in task-implicated regions (Fig. fig:VarPart F, 4.6A, B). The main

effect of event-related regional significance was significant in all cases but larger for the original

and pre-regressed models (t(1669)=12.73, p ≈0, t=12.94, p ≈0, respectively) than for the

local and global AR models (t=2.16, p=.03, t=2.45, p=.014; Fig. 4.2 F, 4.6A, B). This result

indicates that the proposed technique further separates event-implicated and non-implicated

regions rather than simply increasing global statistical features. Moreover, the proposed

technique also differentially magnified effect sizes relative to the original and pre-regressed

cases (t(1669)=6.25, p=5.2E-10, t=4.87, p=1.2E-6, respectively). However, the proposed

method did not significantly magnify effect sizes over AR control models (t = .42, 1.47 for

local and global, respectively). Thus, differences among significant regions are magnified

by filtering out local-dynamics (MINDy and AR models), while filtering-out connectivity

driven dynamics (MINDy but not AR) further differentiates task-implicated regions from
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insignificant ones.

Similar results held for analyses of sustained effects. As before, we considered bidirectional

effects for sustained analyses (i.e. parcels with significant increases or decreases in sustained

activity). For this reason, we slightly modified Eq. 4.7 to model improvements in terms of

magnitude rather than a linear main effect:

Xtask,Parc = βtask+β0Ytask,Parc+Sigtask,Parc(β1sign(Ytask,Parc)+β2Ytask,Parc)+εtask,Parc. (4.8)

Note that the coefficient β1 is now multiplied sign(Ytask,Parc). Results for sustained anal-

ysis mirrored those of the event-related analysis. The proposed technique differentially

increased effect sizes over task-implicated parcels when compared to both conventional

controls (t(1669)=5.48, p=5.0E-8 vs. original and t=6.24, p=4.8E-10 vs. pre-regressed)

and these increases were even greater relative AR controls (t(1669)=10.87, p ≈0 vs. local

and t=12.93, p ≈0 vs. global). Sustained effects were also differentially magnified effect

sizes relative to conventional analysis (t=7.60, p=5.1E-14), pre-regressed controls (t=6.00,

p=2.46E-9), and local AR models (t=2.26, p=.023), but not global AR models. Together,

this pattern of results suggest that the proposed technique significantly differentiates between

task-implicated and non-implicated regions for both sustained and event-related effects. The

proposed technique distinguishes between task-implicated and non-implicated regions (the

main effect of significance) and further differentiates among highly implicated and weakly

implicated regions (the interaction-term). However, the latter effects do not improve above

auto-regressive filters. Improvements over conventional techniques were greatest in the iden-

tification of event-related effects, whereas improvements over autoregressive controls were

greatest for identifying sustained effects.
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4.5.7 Sensitivity to Motion

Lastly, we compared the sensitivity of approaches to motion artifact. For each task and

scanning session we computed three motion statistics: the number of frames censored due to

passing a critical value of framewise displacement, the median framewise displacement and

the median DVARS statistic ([86]) for each task run and averaged over runs. We then used

resampling to test the relationship between each motion variable and the group effect-size of

the high-vs.-low conflict contrast and sustained effect for each task. In brief, we randomly

drew 5,000 samples of 30 subjects each without replacement. We computed group-level

statistics for motion and the cognitive control contrast and then tested whether the average

motion or variability of motion (inter-subject) of a sample predicted the sample’s group-effect

(one-sample t-scores averaged over the 34 parcels). We also used the same technique for

predicting the difference between methods (i.e. do improvements under our approach require

low motion?). Results did not indicate a significant effect of motion for the current dataset

and subject pool. The relationship between motion and the difference between methods

(MINDy versus original averaged over tasks) was insignificant for event-related analyses and

did not display a consistent sign (proportion of frames censored: r = .112, FD: r = .056,

DVARS: r = −.028). Likewise, we did not observe differential sensitivity to motion in the

sustained effects (frames censored: r = .0168, FD: r = .016, DVARS: r = .013). Thus, the

degree to which MINDy-based Filtering improves upon conventional methods is not influenced

by motion within reasonable bounds.

4.6 Discussion

We demonstrated that MINDy-based Filtering increases the ability to detect both event-

related (cognitive control-demand) and sustained brain responses in task fMRI (Sec. 4.5.4).
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These effects are strongest in task-implicated brain regions (Sec. 4.5.6) and generate higher

temporal precision than the original BOLD timeseries. By accounting for intrinsic dynamics,

MINDy-based Filtering accounts for trial-to-trial variability within subject and variability

between subjects (Sec. 4.5.3). However, while the absolute magnitude of subject-to-subject

variability decreased, individual differences (and group—level activity) in a latent cognitive

construct (control-demand) generalized better between tasks after MINDy-based Filtering

(Sec. 4.5.5). These results suggest that MINDy-based Filtering can enhance the detection of

task-evoked brain activity.

4.6.1 Relationship with Frequency-Based Filtering

Frequency-based (spectral) filtering has been applied to fMRI signals in many previous studies.

High-pass filtering is commonly applied to both resting-state and task data to remove signal

drift which is thought to largely reflect changes in non-neuronal variables. Low-pass filtering

is also sometimes applied, primarily for resting-state data. Although these approaches were

common in early fMRI experiments ([145],[146]), the changing nature of fMRI acquisitions

(e.g. TR length) and analyses (e.g. functional connectivity) has led to renewed debate

over these techniques ([147]) and the development of more sophisticated methodologies (e.g.

[148],[149]). In the current work, we did not perform spectral filtering (instead using AFNI’s

“polort” function for polynomial basis de-drifting) and the proposed technique is not a direct

replacement for spectral filtering which can be applied before our technique, afterwards or not

at all. However, as previously mentioned, when the connectivity parameter of our model is

zero, the proposed technique reduces to a form of spectral filtering based upon autoregressive

models. Empirically we have demonstrated that MINDy-based filtering outperforms filters

based upon autoregressive models (Sec. 4.5.4, Fig. 4.3 C,D) so effects cannot be attributed
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solely to removal of particular frequency components within each region.

Notably, the proposed technique improves detection in both sustained and event-related

analyses over both conventional methods and autoregressive filters. By contrast, filters

based upon autoregressive models are expected to underperform in the identification of

(low-frequency) sustained effects as we confirmed in our analyses (Sec. 4.5.4, Fig. 4.3D). At

a statistical-level, dynamical systems models (including MINDy) capture the multivariate

partial autocovariance between successive time-points (i.e. how xt+1 is related to xt). As a

result, removing these predictions from the training data (Rest) inherently yields a timeseries

with lower autocovariance. The improved detection of sustained effects is therefore significant

as it indicates that the proposed technique reveals systematic differences between the resting-

state and task dynamics rather than simply acting as a high-pass filter. These effects are

also more pronounced in task-implicated parcels (Sec. 4.5.6, Fig. 4.6A,B) indicating that

these features are also context-related.

4.6.2 Relationship with other approaches

The current approach is conceptually related to several current initiatives for linking resting-

state and task-state brain activity. Our approach uses resting-state brain dynamics to

extrapolate patterns of intrinsic dynamics that also factor into brain activity during task

states. Frameworks such as Activity Flow ([43]) have demonstrated similarity between the

spatial aspects of evoked responses and resting-state network structure. Likewise, functional

connectivity patterns have been found to be roughly similar between resting-state and task

([30]). However, whereas these frameworks are largely employed to discover similarities

between spontaneous and evoked activity, we analyze the manner in which task-state deviates
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from resting-state activity over short time-scales.

Other approaches have also investigated the difference between brain dynamics in task-state

and resting-state. Previous work ([48], [46]) has demonstrated that intrinsic dynamics shape

task-evoked activity on a trial-by-trial basis and modeling studies have reproduced the statis-

tical differences between task and resting-state activity ([16]). Our approach furthers these

efforts by leveraging these underlying concepts into an empirical modeling/analysis framework.

Dynamic Causal Modeling (DCM, [52]) frameworks have also used empirical dynamical

systems models to improve estimates of task effects. As previously mentioned (Sec. 4.1.2),

DCM techniques allow task effects to manifest changes in the exogeneous drive to brain

regions and (for small-scale DCMs) the effective coupling between brain regions. By contrast,

the current technique only models a single factor: changes in the input to each brain region

which collapses both of these mechanisms into a single term as is common in larger-scale

DCM models (e.g. [76]). Our approach differs from all DCMs, however, in two fundamental

ways.

First, whereas DCMs fit all data simultaneously, we parameterize our dynamic (MINDy)

models solely from resting-state data. As a result, our model parameters are not impacted

by any preconceived models of task effects (i.e., that they follow a certain temporal pattern).

Secondly, we do not explicitly model task effects. Whereas DCMs directly fit parameters to

task conditions, MINDy-based Filtering produces a full timeseries of estimated effects based

solely upon fMRI scans (i.e. no task information is used). Thus, our approach estimates

the evolution of latent variables (task-related “input” to each region) rather than estimating
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coefficients for a pre-specified temporal model of task effects. As such the proposed technique

is much more flexible than DCM as it functions as a processing step rather than a full

analysis pipeline in and of itself. In the current work, we used statistical GLMs to analyze

the MINDy-filtered data with Finite Impulse Response models fit for each trial type and

additional components to model task blocks (mixed block-event design). However, the end-

product of our technique (a timeseries) could, in principle, be analyzed with a wide variety of

methods including parcel-level multivariate techniques (e.g., multivariate pattern analysis;

MVPA). Thus, although DMCC and the current technique both use empirical dynamical

systems models with similar assumptions, the approaches differ radically in how these models

are leveraged.

4.6.3 Limitations

The proposed work rests upon two related claims: 1) that by subtracting intrinsic dynamics

we identify changes in “input” to each brain area and 2) that the signal generated by this

calculation is a better marker of task effects (ostensibly task-related cognition).

Methodological Considerations

The bulk of our results concern the latter claim (improved detection power) and demon-

strating that these statistical improvements are related to task-specific neural processes. We

performed these tests using several controlled comparisons and lines of inquiry. However, our

efforts in this domain are limited by using a specific subset of cognitive tasks: those used to

index cognitive control. As the set of potential cognitive constructs remains vast, further

testing in other cognitive domains may be useful.
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Another limitation concerns how MINDy models are parameterized. Since we parameterize

models based upon resting-state data, we require the collection of both resting-state and task

data for each subject which increases data requirements. Moreover, this dependency could

prove problematic for low-quality resting-state data as mis-specified resting-state models could

corrupt task estimates. We found that individual differences in goodness-of-fit were consistent

across tasks (Fig. 4.1B) so this possibility cannot be ruled out. However, analyses with

MINDy modeling indicated that the goodness-of-fit is not related to individual differences

in motion ([8]). Results also do not support model overfitting as goodness-of-fit did not

uniformly decrease when applied to novel (task) data relative to training (rest) data (Fig.

4.1A). Further study may therefore be beneficial in determining which factors (neural or

nuisance) influence individual differences in goodness of fit as these factors could influence

estimated individual differences in task variables.

Mechanistic Considerations

Future study is necessary is necessary to disambiguate which biological mechanisms contribute

to the calculated “input” signal. For decades, computational neuroscience models have largely

formalized task context as an exogeneous forcing (“input” or “bias”) term in neural networks

and connectionist models (e.g. [150], [151], [152], [153], [154]). This formulation is appealing

for its simplicity, however external contexts are known to only act as “inputs” during sensory

transduction since brain activity is known to modulate sensory neurons (e.g. [155], [156]).

Even when these effects are neglected, many modeling studies consider task “inputs” to

regions that are not directly enervated by sensory nerves (e.g. [152]). As a result, these

“inputs” should not be interpreted as literal inputs to the brain (i.e. signals from sensory

nerves). Rather, these “inputs” include the initial propagation of such signals over the fMRI
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sampling rate (1 TR), so our approach is limited by the temporal resolution of fMRI BOLD.

The nature of these “inputs” is also somewhat underspecified. In the current approach,

we use MINDy to model the propagation of brain signals during resting-state. The model

predicts task-fMRI activation based upon the effective connectivity parameters estimated

from resting-state. However, these parameters are limited to describing the relationship of

bulk activity between brain regions. Many brain regions contain diffuse sets of neurons with

heterogeneous axonal connectivity profiles. Several lines of evidence suggest that task-contexts

can modulate the effective connectivity between brain regions via selective recruitment of

neurons in synchronous ensembles ([157], [158], [159]). Our approach is therefore limited in

that it does not explicate how changes in “input” relate to changes in the effective coupling

between brain regions. Future studies may improve upon the current approach by further

modeling how task events modulate effective connectivity between brain regions. Such studies

could either directly parameterize connectivity × task interactions (as in DCM) or extend

the filtering approach to estimate time-varying connectivity.

4.6.4 Task Dynamics Could Potentially Influence Statistical Im-

provements

The current approach serves to estimate latent changes in input to each brain area. In

the present study we found that MINDy-based Filtering consistently improved statistical

detection power across tasks. However, there may be contexts in which brain activity (x(t))

is a more consistent marker of task context than input (I(t)). Such cases occur when different

input patterns (i.e. inter-trial variability in input) lead to the similar outcomes in terms of

activity. In these cases, MINDy-based Filtering might actually decrease detection power,
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since the “input” on each trial is less consistent than its long-term consequences. Future

studies might identify such cases using a wider variety of tasks.

4.6.5 Conclusion

In the current work, we proposed a new technique to estimate the influence of external

contexts (task conditions) on brain activity (in our case fMRI). This technique forms a

mathematical filter and therefore functions as a preprocessing step rather than as a direct

tool for hypothesis testing. This property is advantageous as it allows this approach to be

used in conjunction with a variety of existing methods. We have demonstrated that using this

technique improves statistical power (Fig. 4.3,4.4), increases sensitivity to task-implicated

regions (Sec. 4.5.6), and better identifies the neural signatures of a latent cognitive construct

(cognitive conflict) in both individuals and group-level (Fig. 4.5A,B). These improvements

are not sensitive to motion within a reasonable range (Fig. 4.5C). Our technique can be

easily inserted into most fMRI processing pipelines and we have made code available via the

primary author’s GitHub to facilitate this process.
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Chapter 5

Conclusion

5.1 Relationship to Existing Literature

Brain activity varies remarkably across contexts and individuals. This variability is reflected

across time scales that range from trial-to-trial variability present within-individuals all

the way to life-outcomes varying between-individuals. For this reason, significant literature

concerns the neural substrates of individual differences in behavior and, to a lesser extent,

brain activity. Recent studies in this domain have found that the intrinsic correlation of

activity between brain regions at rest (e.g. resting-state Functional Connectivity; rsFC)

is a powerful way to characterize individuals’ brain activity across contexts. For instance,

previous studies ([43], [47]) have found that individual differences in patterns of task-free

brain activity (rsFC networks) map onto anatomically-isomorphic patterns of task-evoked

activity.
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This literature has been constrained, however, by a reliance on static statistical descriptions.

Although previous approaches can predict which sets of regions (i.e. a network) coactivate

across contexts, they do not predict the temporal dynamics of how networks will be activated

or under which contexts this activation will occur. These properties are significant for forming

mechanistically explanatory rather than descriptive theories of neural processes. For these

reasons, dynamical systems frameworks have been sought to model the generative mechanisms

that describe the spatiotemporal evolution of brain activity ([57]). However, these approaches

have been limited by a different set of constraints. In contrast, to the previously mentioned

resting-state approaches, task dynamic models (“Dynamic Causal Modeling”; DCM [52]),

have had limited scope as they do not scale well to whole-brain analyses or to a large number

of task conditions due to a reliance on Bayesian estimation/model comparison. Moreover, it

remains unknown whether these dynamic models generalize across contexts (i.e. whether a

resting-state brain model can predict task-related activity).

5.2 Resting-State MINDy Modeling

In the current work, we aimed to bridge the methodological gaps present in previous modeling

approaches by directly testing whether dynamic brain models generated from resting-state

brain data predict individualized evoked activity. To do so, we developed a new technique for

generating individualized brain and neurovascular models using fMRI data. These Mesoscale

Individualized NeuroDynamic (MINDy) models take the form of nonlinear dynamical systems

in which activity is nonlinearly propagated through a network of interconnected brain regions,

where each region integrates this activity at different rates (time-constants). We hypothesized

that dynamic brain models would be more tightly linked to underlying brain processes and
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(effective) connectivity than statistical methods. We approached this question through a

combination of empirical and simulation tests.

5.2.1 Validation of the MINDy Framework

Empirical tests established that the “connectivity” parameter of MINDy models is a more

stable measure of individualized connectivity as it is less sensitive to non-neural variables such

as sampling variability (indexed via test-retest reliability). Simulation tests also indicated that

our modeling approach provides a more veridical estimate of effective brain connectivity and

connectivity-related individual differences than either statistical methods or other dynamical

modeling methods (Sec. 2.3.2, 2.3.8). Of course, simulation analyses are only valid to the

extent that the underlying models reflect neurophysiology, so we repeated analyses over a

variety of ground-truth modeling scenarios. Results held over all ground-truth models of

hemodynamics (e.g. nonlinear, spatially heterogeneous, etc.), neural dynamics (different

functional forms and timescales), and means of generating simulation parameters (random or

empirical).

We also demonstrated that our dynamic models form a more fundamental description of

neural processes. We first demonstrated that MINDy models strongly predict rsFC at both

the group and individual (Sec. 2.3.4) levels. Thus, MINDy contains sufficient information

to reconstruct statistical properties, but the converse does not hold; it is impossible to

reconstruct the directed connectivity of MINDy from the undirected rsFC matrix. For this

reason, we say that MINDy is a more fundamental descriptor. Moreover, we demonstrated

that MINDy models predict nonstationarity in statistical descriptors (rsFC) at both the

individual and group level. This finding suggests that MINDy models may also be able to

explain patterns of brain activity that vary in time.
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5.2.2 Disentangling Neural Dynamics and Hemodynamics

One of the primary limitations to neuroimaging-based modeling of brain network dynamics,

however, has been the indirectness of fMRI measurements. Current human fMRI techniques

largely utilize the BOLD contrast which presents several ambiguities. One of these is

the influence of non-neural variables, such as breathing rate (which can covary with task

conditions), along with vascular tone and cerebral blood flow. Latent-variable effects such as

these, present a general limitation of fMRI data for neural modeling, that also impacts the

current work. However, methodologies introduced in the current work could potentially reduce

ambiguities in the temporal linkage between neural events and BOLD. In particular, we

demonstrated that the novel Surrogate Deconvolution approach enables accurate estimates of

Hemodynamic Response Functions (HRF) from resting-state data (Sec. 3.4.4). In simulations,

we demonstrated that the same technique improved estimation of latent neural state-variables

(Sec. 3.4.2). Since our HRF estimates are independent of task effects (due to the use of

resting-state data), these approaches may eventually be used to estimate the time-courses of

(low frequency) neural events from fMRI

5.3 Implications for Individual Differences in Sponta-

neous Brain Activity

During the validation of MINDy, we examined the sensitivity of MINDy and rsFC to in-

dividual differences by comparing the similarity of repeated measures within-individuals

to those computed between individualis (Sec. 2.3.4). Interestingly, we found that while

MINDy parameters reliably separated indiivduals, they were actually more similar to each

other in terms of the MINDy connectivity parameter, relative to rsFC parameters. Likewise,
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although MINDy models predicted left-out (cross-validated) data from the same individual

better than for any other individual, the absolute difference in accuracy was relatively small

for short-time predictions (predicting the change in activity over two time-steps [1.44s])

However, when MINDy models were simulated over large periods of time, we found that

the rsFC statistics of these simulations matched those of the data including strong, reliable

differences between individuals. This pattern of results suggests that individual differences in

the effective connectivity between regions may be significantly smaller than estimates based

upon rsFC. Rather, results suggest that the iterated accumulation of these small differences

leads to markedly different patterns of rsFC.

We also demonstrated that rsFC was very sensitive to the time-constant (decay parameter) of

brain regions. The decay parameter varied systematically between brain regions (correlated

with the “global connectivity” statistic) and individual differences (identified via PCA) were

organized along the so-called cortical hierarchy. When we permuted the decay parameters of

a model between subjects, the model’s simulated rsFC changed significantly. This finding

suggests that the timescales of local brain integration are a significant factor mediating

individual differences in rsFC. Future studies should test whether individual differences in the

estimated time-constants reflect corresponding variation in other variables organized along

the cortical hierarchy, such as white matter density.

5.4 Implications for The Origin and Analysis of Task-

Evoked Activity

This work also suggests several implications for the study of task-evoked brain activity. As

referenced earlier, previous literature (e.g. [30], [66]) indicates that Functional Connectivity
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is roughly preserved between resting-state fMRI and task fMRI (after removing the task

main effects). Our work suggests that a similar continuity holds over small timescales since

we found that MINDy models fit to spontaneous brain activity were similarly accurate

in predicting brain activity during task contexts. This result suggests that the combined

variance associated with task effects and ‘noise’ during task have similar variance to the

‘noise’ component during resting-state. This implication agrees with other contemporary

studies, which have suggested a decrease in ‘noise’ variability during task-state (e,g, [45], [16])

We also found that removing resting-state model predictions (MINDy-based filtering) de-

creased inter-individual variability of estimated task-effects. However, individual differences

in these estimates generalized better between cognitive-control tasks after MINDy-based

filtering. This finding suggests that the observed post-MINDy homogenization does not reflect

insensitivity to individual factors. Instead, these results suggest that individual differences

are small for direct task effects (“input”) but are magnified as “inputs” propagate along

individualized networks and local dynamics.

5.5 Limitations and Directions for Future Work

There are two primary limitations to the current work: low temporal resolution and limited

mechanistic inferences. Both constraints are due, in part, to the use of fMRI data. We

chose fMRI for our analyses due to its high spatial coverage and the spatially local nature

of measurements (relative the scale of cortical gradients and areal differentiation). Since

the current approach assumes that all brain areas in a model are measured simultaneously,

high coverage measurements are necessary. Other neuroimaging methods such as EEG and

MEG also have relatively high coverage over superficial cortex, but are limited in their ability
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to spatially localize neural events due to the spatial mixing and orientation-dependence of

electromagnetic fields (mostly MEG) and the volume conduction of signals (mostly EEG).

Much of the current work emphasized validating our new technique (MINDy), so the ability

to compare estimated model with known neuroanatomy proved critical. For this reason, we

chose fMRI for the current work.

5.5.1 Developing Multimodal MINDy

However, the low temporal resolution of fMRI is one limitation of this work. Current knowledge

concerning neural dynamics emphasizes much faster timescales than can be observed with

fMRI. As a result, we expect that the current models, while accurate for fMRI data, will

fail to capture many neural processes which cannot be measured in fMRI data. Future

implementations of MINDy may benefit from developing multimodal modeling approaches

which leverage the high spatial resolution of fMRI with the temporal resolution of MEG/EEG.

Such advances will provide further insight by modeling the propagation of neural activity over

time-scales commensurate with neuronal computation. This, in turn, may provide insight

into the sequential aspects of neural computations (e.g., perceptual) which are thought to

occur faster than the fMRI sampling rate which defines the model time scale in our current

work.

5.5.2 Explicating Task Mechanisms

The current work is also limited, in part, by our model formulation for task-evoked brain

activity. Rather than estimating changes (relative to the resting-state) in the effective-coupling

between brain-regions during task, we estimate changes in the net input to each brain region,

without specifying its source. Such descriptions may be limited in their ability to identify

the neural circuitry underlying task computations. By determining the circuitry underlying
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task “inputs”, future work will further explicate the neural mechanisms underlying cognitive

operations as manifest in task-evoked brain activity. One way to model these mechanisms

is via an interaction between effective connectivity and task conditions ([52]). Current

approaches for modeling such effects in DCM require first specifying the time-course of task

events and then incorporating these assumptions to estimate effective connectivity. Such

approaches run counter to the “Filtering” approached that we present in the current work.

Instead, an alternative path may be treating effective connectivity as a latent, time-varying

state variable rather than a fixed parameter using the joint Kalman filters (Sec. 3.1.2, e.g.

[121]). This approach would maintain all the advantages of MINDy-based Filtering while

enabling parallel analyses for effective connectivity (i.e. the timeseries of effective connectivity

estimates would be analyzed using conventional GLM techniques). However, current iterations

of joint Kalman filtering do not generally scale-well (e.g. 3.4.1) so progress may depend upon

future development in joint estimation.

5.5.3 Linking MINDy and Behavior

Lastly, the current study has been limited in scope by only interrogating our models in their

prediction of neural data. Using MINDy, we predicted individual differences in spontaneous

neural activity (Dynamic Functional Connectivity; Sec. 2.3.6) and identified individual

differences in activity related to cognitive control (Sec. 4.5.5). Ostensibly, individual

differences in behavior possess some neural substrate. However, just because the current work

identified robust individual differences in neural activity does not guarantee that such effects

are behaviorally-relevant. For instance, such effects can result anatomical variability in the

location (coordinates) of functional brain areas. Future studies which attempt to demonstrate

that model predictions can be directly linked to individuals’ behavior will provide further
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validation of the MINDy approach and may generate new insight into the neural mechanisms

of individualized behavior.

5.6 Conclusion

In conclusion, the present work provides a framework for individualized brain modeling and

state-estimation across contexts. These models take the form of large nonlinear dynamical

systems (hundreds of brain regions) which we fit to individualized fMRI data. The present

work serves to validate this approach within the resting-state domain and demonstrates its

utility in identifying exogenous (task) influences upon neural activity. These advances will

support new insight into the relationship between intrinsic brain relationships (at rest) and

goal-oriented neural computations (during task) at both the individual and group level.
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Appendix A

Supplemental Information for

Resting-State MINDy Modeling3

A.1 Interpreting Model Parameters

As discussed in the main text, the neural modeling framework of MINDy is inherently

phenomenological in that it is not directly derived from biophysical first-principals. The

weight parameter (W ), for instance, serves to measure effective connectivity and should not

be confused with synaptic efficacy (or any other directly measurable anatomical metric, such

as white matter integrity). The phenomenological nature of these equations gives tractability

to the fitting problem. However, this fact does not preclude the model’s interpretable and

predictive nature. The parametric form that we have chosen leads itself to interpretability by

separating the dynamics into three distinct components, interregional-signaling, local decay,

and a nonlinear mapping between local excitation and output, which parallel the components
3Appendix chapter reprinted verbatim from previously published work: [8] SI
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used in conventional neural mass models. In the following subsections, we present fuller

descriptions of the potential relations between model parameters and underlying biological

processes.

A.1.1 Interpreting Model Weights

In our model, the connectivity matrix defines the causal ability of mean regional activity

in the sender region to monotonically change mean regional activity levels in the receiving

region within a specific time window. This causal influence has standardly been termed

effective connectivity within the fMRI (and EEG) literature. More precisely, however, in

the model the effects must begin within the duration of one TR (720ms in our case), and

last long enough to invoke a metabolic response. As such, our definition is slightly more

specific than the notion of effective connectivity, as we specify that these relations must be

weakly monotone: all else being equal, increasing (decreasing) the activity of region A will

never decrease (increase) the activity of region B (Fig. A.1 A, B). We use the term weakly

monotone as regions may exhibit saturated activity within our model and thus have little

room to increase/decrease. In contrast with our definition, effective connectivity does not

specify the nature of the relationship between regions. In this case, model-free methods such

as transfer entropy ([160]) can be employed to study non-monotone relationships within a

very small number of dimensions. We also define our temporal range of interactions to be

between 500ms and 2s. We do not use a tighter temporal range such as 500ms-1s as temporal

variations inherent in BOLD imaging, such as physiological changes in the hemodynamic

response (e.g. under anesthesia; [161],[162]) lead to some uncertainty in timing. In addition,

there are methodological limitations inherent in rapid acquisition methods such as multiband

imaging ([163]), which have led some investigators to prefer TR’s closer to 2s. In either case,
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our definition limits the duration of interest to the order of a typical fMRI trial.

The monotone and temporal constraints can also differentiate our W matrix from structural

connectivity, the latter of which does not necessarily reflect how regions interact. If two

regions communicate in a very heterogeneous manner and/or these interactions only result

in very transient changes, these regions would not be connected in our W matrix, even if

a direct white matter tract linked them (Fig. A.1B). Of course, this scenario also suggests

that those portions of brain would also not meet the definition of a cortical parcel due to

their heterogeneity. Finer parcellation schemes lead to correspondingly more homogeneous

“regions”, so, with a sufficiently high resolution parcellation, we expect that most forms

of structural connectivity would meet the monotone requirement, with a single cell as the

theoretical limiting case. In summary, our form of connectivity in the W matrix describes not

just the ability of regions to causally influence each other but to do so with easily predictable

(monotone) consequences in a specific time scale. For ease of presentation, however, we

use the term “effective connectivity” to refer to this matrix and also make connection with

existing terminology.

A.1.2 Interpreting Model Curvature

In the original theory of neural mass models ([78], [164]), the decay-term and transfer function

were meant to capture phenomenological components of the individual population without

corresponding to a singular biological feature. For instance, the transfer function of neural

mass models is usually derived from the probability of neuronal spiking as a function of

excitation. If cells within each population are assumed homogeneous, the population level

activity is proportional to the individual spiking probability when refractory periods are

negligible. Under this homogeneity assumption, inter-parcel variation in the transfer function
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Figure A.1: Interpreting Phenomenological Model Parameters. A) The weight matrix
largely captures monotone causal relationships. However, the sign of the causal relationship
depends upon the sign of the actual inter-regional connection and which neurons are involved.
Excitatory connections/cells are depicted with green arrows and inhibitory in red dots. B)
When the sign of connections between regions is mixed, it is possible for indirect relationships
to appear stronger than direct connections. Local network structure could influence transfer
function and decay parameters. C) Networks with greater reciprocal inhibition (red lines)
have a faster time-scale, hence greater decay than those with reciprocal excitation (green). D)
A toy example of a network with near binary output due to reciprocal excitation in the output
cells (triangles). E) A toy example with a more graded output rule due to inhomogeneities in
the excitation of output cells.
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slope would directly reflect variation in the cellular spiking probability between parcels. For

cortical neurons with low-firing rates at rest, the spiking threshold is essentially constant

(unlike bursting cells for instance), so a high slope might be interpreted as low noise. Since

the ground-truth relation with excitation is binary for each cell at a given time (“all or none”

spiking), all deviations from that relation must be due to variations in how much of the

population-level excitation each neuron receives.

However, if we instead allow parcels to be internally heterogeneous, the transfer function

slope parameter may indicate heterogeneities in either the spiking threshold or how excitation

is distributed within the parcel (Fig. A.1 D, E). For a simple leaky integrate-and-fire model

of neurons the individual transfer functions are binary (infinite slope). However, as the

variation in firing thresholds between cells increases, the cumulative probability of population

spike count becomes more graded corresponding to the sum of binary functions with different

thresholds. Other sources of variation such as noise or inhomogeneities in projections to

cells within the population would have a similar effect (Fig. A.1 E). Thus, although the

exact source of variation (i.e., between regions or individuals) in the transfer function slope

is unknown, a likely contributor is the degree of within-parcel variation, which may be due to

inhomogeneities in internal/external inputs or neuronal dynamics.

However, there are at least three other potential physiological influences in transfer function

slope. The first is the relationship between neuronal activity and the BOLD response. The

neural components of the BOLD signal are more closely related to synaptic activity than

neuronal spiking, so the likelihood of synaptic activity achieving a spike may also be a

factor. For instance, for a given number of excitatory synaptic events, the likelihood of the

post-synaptic cell firing generally increases with the synchrony of these events. Thus, the
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degree of synchronization could be another factor in the transfer function slope with parcels

having greater synchronization of excitatory inputs having a higher slope. Alternatively,

variation in neurovascular coupling between regions may affect the relationship. Regions with

less predictable or less uniform hemodynamics would likely receive a lower transfer function

slope similar to the case of neuronal variation. In this case, however, the lower slope results

from uncertainty in observations rather than variation (“noise”) within the generative system.

A final factor may be the intrinsic dynamics of each population. As the BOLD-based

observations are temporally coarse (i.e., low resolution), the activity level of each population

is more reflective of the average level of synaptic activity over hundreds of milliseconds. Thus,

the transfer function seeks to relate the sum of parcel output over hundreds of milliseconds

to the sum of parcel input (internal and external) over hundreds of milliseconds. Populations

with more temporal integration (better “memory”) are less sensitive to variation in input

timing so transfer function slope might also increase with parcel memory. However, results

actually indicated the opposite: parcels with greater slopes consistently had parameters

reflecting less temporal integration (larger decay; see Results). Temporal integration within

our model is reflected by the decay parameter, with high decay indicating less temporal

integration.

A.1.3 Interpreting Model Decay

For neural mass models, the decay term describes how quickly a homogeneous population

returns to its baseline level of activity. It is assumed that, in the absence of external inputs,

the time course will be exponential, leading to the linear term −Dx. Many cellular models

also contain a linear decay term corresponding to the leak current, with D equal to the

membrane time constant. At the population level, however, the decay term cannot be easily
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Figure A.2: Schematics of data-processing and data-generation pipelines. A) Secondary
preprocessing consisted of the pipeline proposed by Siegel and colleagues ([2]) followed by
Weiner deconvolution ([3]) with a canonical HRF function. B) Simulated BOLD signals were
generated by integrating MINDy models as stochastic differential equations, downsampling
results to the scanner TR, convolving with a (potentially random) HRF and adding measure-
ment noise. The resultant signal was then deconvolved with the canonical HRF. C) MINDy
parameter estimation consists of iteratively updating estimates using current and past error
gradients according to NADAM ([9]).

related to any biophysically comparable parameter, e.g., leak potassium conductance. Instead,

the decay parameter should be considered as a phenomenological fit to the general pattern

of homogeneous populations returning to some baseline rest level. In the current model,

however, we relax the assumption of linear decay by also allowing “self-connections” in the

connectivity matrix. That is not to say that the individual population members (neurons)

contain autoconnections, but that by allowing both a nonlinear term and a linear term we

allow a greater range of possible intrinsic dynamics including self-excitation at the population

level (Fig. A.1 C). When the model is fit to the HCP data, all individuals were found to

display nonnegative values for the nonlinear self-interaction. The resultant intrinsic dynamics

for each isolated parcel consist of a nonlinear self-excitation and a linear self-inhibition which

can lead to either a single stable equilibrium (near the mean BOLD signal) or bistability

wherein initial conditions sufficiently above the mean will all converge to one equilibria and

those sufficiently below the mean converge to another. The bistable case generally results

when the maximal slope of the self-excitatory component is larger than the decay term (see
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Supp. for precise conditions). In general, we expect that the decay parameter is related to

the relative proportions of local excitation/inhibition within each parcel (Fig. A.1 C). The

anatomical distribution of decay terms across parcels was largely consistent across subjects

(Fig. 2.4B).

A.2 Derivation of the MINDy Transfer Function

The use of a new transfer function is motivated by the desire to unify the three main classes

of transfer function employed in both artificial neural networks and biological neural models:

the rectified linear unit (ReLu), softplus, and the logistic sigmoidal function. These functions

differ in their curvature (ReLu is piecewise linear, while the others are smooth) and their

boundedness (ReLu and softplus are unbounded, linear in the positive limit). Rather than

specifying one of these functions explicitly, as is usually done, we chose to create a more

general functional form and let the data select the function’s shape on a person x region

basis. This form consists of a generalized class of sigmoidal functions which can be varied

from smooth to piecewise-linear. We’ll later show that this property enables approximation

of the other two classes (ReLu/softplus) over bounded domains. Our function is generated

by integrating the difference of two shifted sigmoidal functions (denoted σ(y)).

ψ̂α(x) :=

∫ x

−∞
σ(α(y + .5))− σ(α(y − .5))dy (A.1)

By Proposition 1 (below), the shift by ±.5 guarantees that ψ̂ will have the same limits as

the original function σ(x) and also retain any of the original function’s reflection symmetries

about x = 0. Moreover, ψ̂ reduces to the definite integral (Proposition 1):

ψ̂α(x) =

∫ x+.5

x−.5
σ(αy)dy (A.2)
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When α is small, this formulation generates smooth sigmoidal functions with curvature

dependent upon the choice of σ. However, in the limiting case of large α, the function

approaches a shifted ReLu function for sigmoids (σ) that have a lower-limit of zero and

appropriate rescaling (b):

x ≤ b =⇒ lim
α→∞

bψ̂α(b
−1x− .5) = ReLu(x) := max(0, x). (A.3)

For finite values of α, b the function is smoothed and can be rescaled/shifted to behave like a

soft-plus function over desired intervals. An analogous means of generating functions was

previously used for modeling dendritic saturation ([165]) starting from the logistic sigmoid

function:

σ(x) :=
1

1 + e−x
=⇒ ψ̂α(x) = ln

(
1 + eαx+.5

1 + eαx−.5

)
(A.4)

We chose to use the sigmoidal function:

σ(x) :=
x√

1 + x2
=⇒ ψα =

√
α−2 + (x+ .5)2 −

√
α−2 + (x− .5)2 (A.5)

which takes values on (−1, 1) similar to the hyperbolic-tangent (tanh). We favored the chosen

sigmoidal basis over tanh/logstic (as was used in [165]), because the resultant transfer function

ψ involved slightly faster and more stable operations (i.e. avoided using log). Additional terms

to further customize the slope/intercept of the transfer function were initially considered,

e.g.:

f̂(x) = Wψα(b ◦ (x+ s))−Dx+ c (A.6)

However, we observed in early tests that the scaling term could be reduced to a scalar constant

(b = 20/3) and fitted values for s were effectively zero (for z-scored data). We also observed

that when transfer functions were bounded over [−1, 1] the c term became effectively zero

which was not the case when we tested transfer functions bounded over [0, 1]. Thus, we
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chose to use functions bounded over [−1, 1] so that the s and c terms could be removed. Of

course, MINDy models can always be rewritten in an equivalent form featuring a non-negative

transfer function and constant drive

ci := −
∑
j

Wi,j, (A.7)

since ψ(x) + 1 is non-negative and

f(x) = Wψ(x)−Dx = W (ψ(x) + 1)−Dx+ c. (A.8)

Proposition 1. Define the operator Φ : C0 → C1:

[Φ ◦ σ](x) :=
∫ x

−∞
σ(y + .5)− σ(y − .5)dy. (A.9)

Suppose that σ is non-decreasing and bounded. Then lim inf[σ] = lim inf[Φ◦σ] and lim sup[σ] =

lim sup[Φ ◦ σ]. Moreover,

[Φ ◦ σ](x) =
∫ x+.5

x−.5
σ(y)dy. (A.10)

Proof. By Lebesgue’s Theorem for Monotone Functions, σ is differentiable almost everywhere

and we can write a function Dσ equal to the derivative of σ at differentiable points and zero

otherwise which satisfies:

σ(x+ .5)− σ(x− .5) =

∫ x+.5

x−.5
Dσ(y)dy. (A.11)

By rearranging limits of integration we produce:

[Φ ◦ σ](x) =
∫ x+.5

x−.5

∫ z

−∞
Dσ(y)dydz =

∫ x+.5

x−.5
σ(y)dy. (A.12)
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By monotonicity we have:

σ(x− .5) ≤
∫ x+.5

x−.5
σ(y)dy ≤ σ(x+ .5). (A.13)

By the monotone convergence theorem, σ converges to its infimum/supremum. Taking the

negative limits for x:

lim inf[σ] ≤ lim inf[Φ ◦ σ] ≤ lim inf[σ], (A.14)

and similarly for the positive limit (lim sup). Applying the squeeze theorem completes the

proof.

A.3 Accelerated Stochastic Gradients through NADAM

To fit the models, we use a variant of the stochastic-gradient descent (SGD) method: NADAM

(Nesterov-accelerated adaptive moment estimation [9]) which builds upon the earlier ADAM

algorithm ([166]). Gradient descent methods are algorithms that attempt to minimize a cost

function, by updating parameters based upon the cost function’s current slope (gradient).

For an error function E and a parameter θ, the original gradient descent algorithm updates

the estimate of the parameter (denoted θk) at each iteration (k) of the algorithm according

to:

θk+1 = θk − η
∂E

∂θk
(A.15)

In which η is the user-chosen learning rate parameter. Although highly efficient, gradient

descent algorithms are not guaranteed to reach a global minimum for non-convex problems;

further, the original gradient-descent method is prone to getting ”trapped” in local minima.

Additionally, global-minima of highly non-convex problems may not be desirable as they

sometimes poorly generalize (A.3). Since the development of first-generation gradient-descent
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algorithms, substantial progress has been made in generalizing the method to handle non-

convex surfaces, often by adding a “momentum” term. Momentum in SGD makes the system’s

evolution a function of not only the current gradient, but also past gradients. Like physical

momentum, this memory allows the algorithm to “roll past” small dips in the error surface.

The NADAM algorithm is one of the most recent advances in momentum-based SGD ([9]).

Rather than just updating the parameter estimate (θk) at each time step, NADAM also

updates a moving average of the gradient (mk) and the squared gradient (nk). The moving

average of the gradient adds momentum, while the moving average of the squared gradient is

used to adaptively scale updates according to the mean square error. The memory of the

moving average gradients and squared gradients are controlled by the hyperparameters µ

and ν, respectively. A “regularization” hyperparameter (ε) stabilizes the learning rate and

prevents division by zero. The NADAM algorithm thus updates as follows:

mk+1 = µ mk + (1− µ)
∂E

∂θk
(A.16)

nk+1 = ν nk + (1− ν)
∂E

∂θk

2

(A.17)

θk+1 = θk − η

1−µ
1−µk+1

∂E
∂θk

+ µ
1−µk+2mk+1√

nk+1

1−νk+1 + ε
(A.18)

Like its predecessor, the ADAM algorithm ([166]), NADAM makes use of momentum to avoid

converging to shallow minima and also incorporates estimates of the error surface curvature

([9]). However, like all SGD methods, the NADAM algorithm is still only guaranteed to

converge to a local minimum. The advantage, however, is that the NADAM algorithm

improves the depth and breadth of that local minimum (A.3). Due to the limited amount of

data per subject we prioritize robustness over goodness-of-fit so the global-minimum is not

necessarily desirable and might actually correspond to over-fitting. There are thus two main
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Session 1 Session 2

Parameter (e.g. W) Parameter (e.g. W)

Error Error
Poor Local Minima

Poor Local Minima

Overfit Minimum Overfit Minimum

Robust Minimum
Robust Minimum

Figure A.3: Schematic of NADAM benefits with illustrative error surfaces (y-axis) for fitting
a parameter (x-axis values) on the first scanning session (left) and the second (right). The
NADAM algorithm uses momentum to avoid shallow local minima (green). This feature also
prevents convergence to overly sharp minima (even if they are global) because such error
surfaces can often correspond to overfitting (blue) and hence do not generalize across sessions.
Rather, NADAM emphasizes solutions to deep basins (purple) which may prove the most
robust.
.

advantages to using modified SGD over a global-optimizer: 1) computational efficiency, which

enables us to fit very large networks, and 2) emphasis on robust solutions, which improves

cross-validation and prevents over-fitting.

A.4 Hyperparameters in Model Fitting

In deconstructing the connectivity matrix, we produce three terms: one n×n sparse component

(WS) and one n ×m rectangular matrix for each of the two diffuse components (W1,W
T
2 )

in which n denotes the number of parcels and m < n denotes the chosen dimensionality of

the diffuse matrix. Hence, WFull := WS +W1W
T
2 . The sparsity of WS is achieved with L1

regularization with penalty λ1 and both of the diffuse components are also L1 penalized with

the same coefficient (λ2) for both halves. The full diffuse matrix W1W
T
2 also receives L2

regularization.

The full integrated cost function which includes the regularization penalty is thus:
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J =
1

2
ET [‖(XT+1 −XT )− [(WS +WL)ψA(XT )−DXT ]‖22]

+ λ1‖WS‖1 + λ2Tr(|WS|) + λ3(‖W1‖1 + ‖W2‖1) +
λ4
2
‖WL‖22 (A.19)

with the notation ET denoting the expected value over all time points within the minibatch.

The NADAM algorithm itself involves four parameters: an update rate parameter, two decay

parameters for computing moving averages, and one “regularization” parameter ([9]). Unlike

the regularization parameters for the weight matrices, which factor into the error and steer

the model towards sparse solutions, the NADAM regularization parameter simply serves to

stabilize the speed of updates and prevent division by zero. We chose parameters for each

variable: WS,WL, α,D. As with the regularization terms, we used the same parameters for

the two halves of the diffuse component: W1 and W2. We found that the least impactful

hyperparameters are the NADAM decay rate hyperparameters, which only need to be slightly

less than one. The most impactful hyperparameters are the L1 regularization penalties for

the weight matrices which control the balance between over-fitting and under-fitting.

A.5 Interpretations of the Weight-Decomposition and

Well-Posedness of the Problem

From a Bayesian perspective, this penalty function is equivalent to maximum a posteriori

(MAP) estimation with fixed Laplace distribution (symmetric exponential) priors for each

of the individual weight matrices and a normal prior on the combined low-rank component.

The Laplace (distribution) prior is unrelated to Laplace approximation as used in Bayesian

estimation. Since we assume that process noise is iid. between parcels, its influence (scaling

[175]



the prediction error term) gets absorbed in the regularization coefficients (by multiplying

all terms of the log-likelihood by the noise variance). From a linear-algebra perspective, the

regularization prioritizes matrices which can be minimally perturbed to produce a skewed

eigenvalue spectrum with sparse eigenvectors. It is important to note that the sum of sparse

and low-rank matrices (e.g. W ) need not be sparse nor low-rank so this decomposition is

quite flexible. The values of each λi and their determination is detailed in SI Table A.13 and

SI Sec. A.4.

The primary function of this decomposition is to prevent over-fitting. In all contexts, the

potential for over-fitting is related to the difference of model and data degrees of freedom

(parameters vs. measurements). While the scale of the current MINDy model might induce

initial skepticism, the current problem is similarly well-posed as several recent attempts at fit-

ting a smaller number of parameters. For instance, a recent approach by Wang and colleagues

([71]) to fit just local parameters (2 per node) in modeling the functional connectivity matrix

results in 138 parameters estimated from 2,278 data points collapsed across the whole brain

(approximately 16.5 measurements per parameter). Although the current approach estimates

far more parameters (n+2 per node) it also utilizes many more data points: the whole

multivariate time series is used for estimation rather than just the functional connectivity

matrix. This results in a ratio of roughly 12 measurements per parameter using the full HCP

resting-state data for subjects with MMP cortical and Freesurfer subcortical parcellation (11

for the gwMRF-400). The HCP dataset also contains double this quantity for a subset of

subjects who also participated in a later retest session. Of course, these “back-of-the-envelope”

calculations assume the worst-case scenario of no parameter covariation. In reality, we expect

the set of underlying effective connectivity matrices to be much more constrained—a fact

that we exploit via our weight decomposition. Moreover, the sparse regularization priors

[176]



result in many weights becoming negligible (i.e. very near zero), so even fewer non-trivial

estimates are made (Fig. 2.5A,B). The fitting process is also tractable due to the use of the

NADAM algorithm ([9]) which is optimized for simultaneously fitting very large numbers of

parameters in a highly efficient manner (approximately one minute per model on a latop).

A.6 Reliability and Individual Differences in the Weight

Decomposition

In the main text (Sec. 2.2.2), we introduced a linear decomposition of the weight matrix into

sparse and low rank components:

W := WS +WL = WS +W1W
T
2 . (A.20)

This decomposition was motivated by the dual influences of sparse, long-distance connections

between “hub” regions (which motivates WS) and the propagation of these signals along

subnetworks (which motivates WL). This formulation was developed as a fitting heuristic

by which we could approach the high-dimensional model-estimation inherent in MINDy

(Eq. 2.4). All previous analyses have focused upon the final weight matrix W , since the

dynamical systems models in MINDy do not require explicit consideration of the components

(WS and WL). In this section, we present preliminary analyses which suggests reliable indi-

vidual differences in this decomposition. We do not separately analyze the two rectangular

matrices W1 and W2 which define WL since they are not unique (e.g. their column indices

are arbitrary). As with the full weight-matrix, we measured the degree to which estimates

were similar within-subject (different sessions) vs. between-subject. We only consider non-

diagonal elements of the matrices since the recurrent elements (diagonals) are distinguished
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by a separate regularization term in the cost function (Eq. 2.4). The results for recurrent

connections in isolation were: within-subject: r = .56± .06, between-subject: r = .42± .07.

We found that both components had greater similarity within-subject (WS : r = .53± .06

and WL : r = .67± .04) than between-subjects (WS : r = .35± .03 and WL : r = .39± .04).

Thus, the component matrices had significant reliability and exhibited individual differences

although the reliabilities were lower than that of the full weight matrix (see Sec. 2.3.3).

We also considered the degree to which sparsity vs. low-dimensionality of a subject’s weight

matrix was a reliable trait. We quantified this value by comparing the (log) relative magnitude

of the sparse and low-rank matrices (U):

U := ln

(
‖WS‖2F
‖WL‖2F

)
(A.21)

With ‖W‖2F denoting the squared Frobenius-norm (sum of squared matrix elements). Each

model produces a single (scalar) value for U . We tested whether individual differences in

this quantity were reliable either with or without including recurrent connections. We found

that results were reliable in either case (with: ICC = .763, without: ICC = .710) and that

individual subject’s values were highly correlated for the two cases (r(51) = .919 for the

mean across sessions). When recurrent connections are included, the sparse component is

larger (i.e. U > 0) on average: U = .265 ± .261 while the low-rank component otherwise

dominates: U = −.528± .215. Thus, results indicate that the relative magnitude of sparse

vs. low-rank components is a reliable marker of individual differences in MINDy models.

However, the degree to which the overall weight matrix is dominated by either component will

depend upon whether the recurrent (sparse) connections are considered. Moreover, we expect

that the average value of this ratio will depend upon the particular choice of regularization

parameters which will favor either component. Therefore, while results are promising in
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Figure A.4: Local MINDy parameters (curvature and decay) exhibit consist anatomical
structure within and between networks. A) Distribution of curvature parameter values for
each brain parcel grouped according to network (17-network [6]). B) Curvature parameters
reordered according to mean demonstrate that within-network variability is also consistent.
C) Anatomical profile of group-mean curvature for the MMP atlas ([10]). D) Profile for the
gwMRF ([6]) parcellation. E-H) same as A-D but for the decay parameter. I) Hierarchical
Heterogeneity map by Demirtas and colleagues ([5]) using group T1/T2 ratio. J,K) same as
G,H but for the first principal component of decay across subjects.

terms of individual differences, we do not recommend using the weight decomposition to

quantify the general sparseness/dimensionality of brain networks without considering the

influence of regularization hyperparameters.

A.7 The Influence of Hyperparameter Choices on Spar-

sity

The relative value of the hyperparameters λ1 vs. λ2 can influence the sparsity of the MINDy

connection matrix. Overly small values of λ1 will not generate sparsity in the “sparse”

matrix (WS) while overly large values of λ1 relative λ2 will also decrease sparsity by biasing
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solution coefficients toward the low-rank component (WL). However, in practice, even

the low-rank matrix is substantially sparser than the rsFC which generates overdispersion

(“heavy-tailedness”). We quantify this property via kurtosis:

Kurt[X] := E

[(
X − E[X]

σ[X]

)4]
(A.22)

which, for a normal distribution, is 3. The kurtosis for each subject’s low-rank component

(35.6 ± 8.1) substantially exceeds that of the rsFC matrix (7.2 ± 0.9) although both are

dwarfed by the sparse component (188.7 ± 27.8). Thus, both components of the weight

matrix are more sparse than rsFC so hyperparameter choices which bias towards either

term will still result in sparser solutions than rsFC. Lastly we considered the case in which

all regularization terms are equal zero which forms a lower-bound case for sparsity (i.e.

all other regularization values should produce more sparse estimates). Individual model

estimates without regularization are extremely noisy (hence the need for regularization) and

less sparse (Kurt = 5.9± 0.7) than rsFC. However, the group-mean of these noisy estimates

(Kurt = 24.4) is also more sparse than the group-mean for rsFC (Kurt = 9.0). Moreover,

the group-mean without regularization was highly correlated (r(175559) = .917) with the

group-mean for the full MINDy model. We conclude that individual weight estimates are

sparse for a range of hyperparameter values and the group mean of estimated weights for our

dataset is more sparse than rsFC, irrespective of hyperparameter choices.
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Figure A.5: Comparison of accuracy and run-time for MINDy and spDCM. A) Accuracy
in estimating ground-truth connectivity from Hopfield-network simulations by network size.
“Reduced MINDy” indicates that all regularization terms were removed from MINDy to avoid
bias (analogous results for the full MINDy model are in Sec. 2.3.7). Lines indicate mean
and bars indicate first/third. quartiles. B) Accuracy in estimating ground-truth connectivity
from Neural Mass simulations by network size. Results for the full MINDy model are in Sec.
2.3.7. C) Model performance as a function of HRF spatial variability for two network sizes: 6
and 8 nodes. Note that MINDy performance decreases with HRF spatial variability, whereas
the effect for spDCM is minor. D) Full run times for MINDy and spDCM for each simulation
as a function of simulation type/size. E) Run time per EM iteration (spDCM) and for 10,000
mini-batches in MINDy. We chose to compare with 10,000 mini-batches so that the run-times
would be comparable for the smallest network size (nPop=6). F) Model performance as a
function of HRF spatial variability for two network sizes: 6 and 8 nodes. Note that MINDy
performance decreases with HRF spatial variability, whereas the effect for spDCM is minor.
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A.8 Comparing MINDy and Spectral Dynamic Causal

Modeling

We view the primary contributions of MINDy in its scalability, biological interpretability,

and the ability to predict nonstationary resting-state dynamics. However, one non-unique

benefit of MINDy is the data-driven characterization of effective connectivity via the weight

parameter. Other methods, such as stochastic DCM and spectral DCM have also used

(linear) dynamical systems models to estimate effective connectivity. By converting problems

into the frequency domain, spectral DCM (spDCM; [57]) has been applied to brain models

consisting of 36 regions, but still has significantly higher computational cost than MINDy.

One question, therefore, is whether the scalability of MINDy comes at the cost of accuracy.

We tested this question in a series of ground-truth simulations. To be clear, we are not

seeking to demonstrate that MINDy is necessarily a better estimator of low-dimensional

effective connectivity, but rather that the scalability of MINDy does not significantly impair

accuracy (i.e. MINDy is at least as good as DCM). One inherent advantage of spectral

DCM is the ability to estimate region-specific hemodynamic kernels which is not part of

the currently proposed MINDy model (although extensions for HRF estimation are being

developed [99]). Thus, we consider two features when comparing MINDy and spectral DCM

(spDCM): scalability and robustness to spatial variation in the HRF.

A.8.1 Benchmarking with Unbiased Ground-truths

The main difficulty in comparing MINDy and DCM is the different underlying assump-

tions—spDCM, for instance, has only been validated using a linear ground-truth ([57]). We

took a number of steps to prevent bias based upon differing assumptions (SI Tab.A.1) and

[182]



when bias was inevitable, we made choices that favored spDCM. First, we used two ground-

truths which were not based upon either technique: a neural mass + balloon-Windkessel

ground-truth and a continuous asymmetric Hopfield-model ground truth with either a random

global HRF or spatially variable hemodynamics (the same models as for model-mismatch

analyses in Sec. 2.3.7). Random HRFs were generated by sampling α1 ∼ N (6, σ2) and

β1 ∼ N (1, (σ/6)2) in Eq. 2.5. For the global HRF simulations, σ = .5 and the same values

of α1 and β1 were used for each node (for a given simulation). In the spatially-variable HRF

simulations, values were independently drawn for each node. We implemented spectral-DCM

using the MATLAB code provided with SPM-12 (function name: “spm_dcm_fmri_csd”) to

compute the expected value for each connection weight based upon cross-spectral density

(spectral DCM). Simulations and model-fitting were performed single-core on Intel Xeon

E5-2630v3 CPUs. Since linear models like DCM do not separate recurrent connections and

decay, we only compared accuracy for non-recurrent (off-diagonal) elements of the connectivity

matrix for each technique. Both ground-truth simulations were integrated at time-scales

faster than the sampling rate (dt=.025 vs. 725ms TR for the neural mass and dt=100ms vs.

700ms TR for Hopfield to mirror HCP acquisitions). This feature ensures that results are not

biased against spDCM due to simulation time-scale, since MINDy discretizes the model in

terms of TR, while spDCM maintains a continuous-time estimation framework.

We used the same hyper-distributions to parameterize neural-mass simulations and Hopfield

networks as in Section 2.3.7, but for smaller network sizes. We made three further adjustments

to reduce bias: first, we set all regularization terms from MINDy equal to zero, so there would

be no inherent advantage to MINDy based upon the hyper-distributions of network structure.

The regularization-based calculations were still performed (preserved run time), but they had

no effect on the solution (were always zero). We also increased the simulation length of the
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neural-mass simulation from 3000 to 5000 TRs and removed the nearest-neighbor smoothing

from the Hopfield Network simulations which had been included to mirror the empirical

processing-pipeline. These adjustments did not affect MINDy but were found to increase the

performance of spDCM.

In addition to MINDy and spDCM, we tested the accuracy of functional connectivity and

one-step prediction by multiple-regression (solving ∆x = Mxt). The latter case provides

an additional control by providing an alternative method to parameterize linear dynamical

systems. This control is important because it can indicate that cases in which spDCM

underperforms are due to the estimation technique rather than linearity per se. (i.e. cases

in which multiple-regression is accurate but spDCM is not). When all regularization terms

are set equal to zero and the transfer function is linear, the MINDy and multiple-regression

models are equivalent. The regression approach differs from spDCM, however, in the strength

of the linearity assumption. Whereas spDCM seeks a linear model that best explains statistics

drawn from the full time-course (i.e. assumes global linear dynamics), the regression approach

(like MINDy) considers the changes at each TR (i.e. the collection of local dynamics).

A.8.2 MINDy Performs Competitively with DCM

Results indicated that MINDy scaled-well in terms of performance and run-time. Moreover,

this scalability did not generally come at a cost to performance relative contemporary higher-

complexity techniques (i.e. spectral DCM). In all situations tested (model x size x HRF), the

reduced MINDy model (no regularization) performed at least as well as all competitors in

retrieving ground-truth connection weights (SI Fig. A.5 A-C). All methods performed poorer

for the neural-mass ground-truth (SI Fig. A.5B; SI Tab. A.2) than for the Hopfield network

(SI Fig. A.5A; SI Tab. A.3; SI Tab. A.4) which was expected due to the greater difficulty of
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the problem (much faster time-scales and more complicated models). We note that the full

MINDy model performs substantially better in neural mass simulations than the reduced

version (see Sec. 2.3.7). However, even when regularization was removed to prevent bias due

to assumptions on network structure (“reduced” MINDy), performance remained competitive

with spDCM. We also observed that spDCM performance decreased with network size for

the Hopfield simulation (SI Fig. A.5B; SI Tab. A.3), but the regression-based model did not.

Thus, this feature cannot be explained solely in terms of functional form (linearity) although

the reduced MINDy did consistently outperform regression.

Moreover, the computational complexity of MINDy is substantially lower than that of spDCM.

The theoretical limiting computational complexity of MINDy is a second-degree polynomial

in the number of nodes since the highest-complexity operation in terms of nPop is analyti-

cally calculating the error-gradient with respect to the weight-matrix (O(n2
Pop)) although

the empirical complexity was substantially lower for these simulations (the quadratic term

only dominates for much larger nPop; SI Fig. A.5D). By contrast, the spectral-DCM code

packaged with SPM has at least fourth-order complexity in terms of the population size for

a fully-connected model (SI Fig. A.5D). Each Expectation-Maximization (EM) iteration is

dominated by O(n4
Pop) (SI Fig. A.5E), but the total complexity can be even greater if the

number of iterations until convergence also increases with nPop (SI Fig. A.5F). For instance,

the median total runtime for the neural mass and Hopfield network simulations scaled with

O(n5.66±.44) and O(n5.85±.38), respectively (95% confidence estimated using the “fit” function

in MATLAB 2020a for linear power functions: “power1”). The empirical complexity of each

EM iteration was roughly the theoretical limit of 4: O(n3.84±.20) and O(n3.97±.16) for the

neural mass and Hopfield simulations, respectively.
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However, even the minimal case of fourth-order complexity can severely limit scalability. For

context, a recent “large-scale” spectral DCM paper ([57]) employed 36 brain ROIs with a

run-time of between 1,280 and 2,560 minutes per model (between 64 and 128 iterations at 20

minutes each). Increasing resolution from 36 ROIs to the 419-node parcellation we employed

(19 subcortical + 400 cortical [6]) would increase CPU time by a factor of over 18,000 (roughly

44 to 89 years per model for the same data and hardware as [57]). By contrast, the current

MINDy models for HCP data were locally fit on a laptop in less than one minute each (Intel

i7-8750H CPU, 2.2GHz, 6 cores).

One area in which spectral DCM proved advantageous, however, was in robustness to spatial

variability in the hemodynamic response (SI Fig. A.5.C; SI Tab. A.4). As with the analogous

simulations in Section 2.3.7, MINDy performance decreased with the underlying HRF’s

spatial variability (see also [99]). This pattern is expected since the currently proposed

MINDy assumes a fixed HRF which these simulations violate. The performance benefit

of MINDy over spDCM, likewise decreased with HRF spatial variability. For the smallest

network (6 nodes) and highest level of HRF variability considered, the difference between

models’ accuracy was negligible (although statistically significant; SI Tab. A.4). Thus, there

may be cases of extreme HRF spatial variability in which spectral DCM outperforms MINDy

for sufficiently small networks. Although MINDy scales significantly better than competing

approaches like spectral DCM, the current version is less robust to spatial variability in the

HRF (although see [99] for upcoming extensions). Nonetheless, for all simulations considered,

MINDy performed competitively with spDCM within the latter’s scope. We conclude that

MINDy performs at least as well as spDCM, while scaling far better.
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Table A.1: Types of assumptions (“Difference”) made by MINDy vs. spDCM and our controls
to mitigate these differences in simulated comparisons (SI Sec.A.8).

Difference MINDy spDCM Adjustment/Control
Model Form Nonlinear Linear Model Mismatch;

Network Time-Invariant Regression Control
Regularization Yes No Set MINDy

regularization equal 0
Time-Scale Discrete (TR) Continuous Simulation dt<<TR
Local Recurrent + Decay Only tested non-
Components Decay recurrent connections
HRF Fixed Local Estimates Parametrically varied

spatial HRF

Table A.2: Accuracy (r) for each method (Regr.=regression) for the neural-mass simulation
(SI Sec. A.8) with variable population sizes (left side). Test-statistics (paired t-test; 2-tailed)
for MINDy-spDCM are provided on the right side. The number of nodes per simulation
is listed under “nodes” whereas the number of simulation instances is listed under “N”.
The paired difference in accuracy between MINDy and spDCM is denoted ∆r. We denote
∗ = p < .01 and ∗∗ = p < .001.

Nodes rsFC Regr. MINDy spDCM N ∆r t
6 .46(.14) .34(.20) .52(.15) .28(.24) 240 .25(.26) 14.8**
8 .44(.10) .35(.16) .52(.11) .27(.20) 320 .24(.21) 20.4**
10 .45(.08) .35(.12) .52(.09) .38(.10) 130 .15(.10) 17.3**
12 .43(.07) .35(.11) .50(.09) .36(.09) 80 .15(.08) 16.6**
14 .45(.06) .35(.09) .53(.07) .38(.07) 40 .15(.06) 14.5**
16 .43(.05) .32(.09) .50(.08) .36(.06) 20 .14(.03) 22.8**
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Table A.3: Accuracy (r) for each method (Regr.=regression) for the Hopfield-network
simulation (SI Sec. A.8) with variable population sizes (left side) and a random global HRF
(σ = .5). For this simulation we added a new population size (9 Nodes) post-hoc to see
whether the unexpected decrease in spDCM accuracy between 8 and 10 nodes was continuous
(it was). Since this special case contained an odd number of nodes the hyperdistribution
parameter q in Sec. 2.2.6 was always equal to one (instead of one and two with equal
probability). Test-statistics (paired t-test; 2-tailed) for MINDy-spDCM are provided on the
right side. The number of nodes per simulation is listed under “nodes” whereas the number
of simulation instances is listed under “N”. The paired difference in accuracy between MINDy
and spDCM is denoted ∆r. We denote ∗ = p < .01 and ∗∗ = p < .001.

Nodes rsFC Regr. MINDy spDCM N ∆r t
6 .49(.11) .83(.08) .86(.07) .76(.20) 200 .10(.19) 7.0**
8 .46(.08) .83(.06) .86(.05) .65(.23) 200 .22(.22) 14.3**
9 .44(.06) .83(.06) .85(.05) .38(.19) 105 .48(.19) 25.5**
10 .43(.06) .84(.05) .87(.04) .26(.12) 80 .60(.12) 45.1**
12 .40(.06) .83(.05) .86(.04) .24(.10) 50 .62(.11) 39.7**
14 .39(.05) .82(.04) .86(.03) .20(.07) 38 .67(.08) 48.9**
16 .37(.04) .83(.04) .86(.03) .17(.08) 13 .69(.08) 30.0**

Table A.4: Accuracy (r) for each method (Regr.=regression) for the Hopfield-network
simulation (SI Sec. A.8) with spatially variable HRF and 6 nodes (left side). Test-statistics
(paired t-test; 2-tailed) for MINDy-spDCM are provided on the right side. The standard-
deviation of the HRF parameters is listed under “σ” whereas the number of simulation
instances is listed under “N”. The paired difference in accuracy between MINDy and spDCM
is denoted ∆r. We denote ∗ = p < .01 and ∗∗ = p < .001.

σ-HRF rsFC Regr. MINDy spDCM N ∆r t
.1 .48(.10) .87(.06) .89(.04) .77(.18) 280 .12(.17) 11.8**
.2 .48(.11) .86(.06) .89(.05) .77(.19) 280 .12(.18) 11.1**
.5 .49(.12) .83(.08) .86(.07) .76(.18) 280 .10(.18) 9.3**
.75 .47(.12) .80(.10) .82(.10) .74(.20) 280 .08(.21) 6.5**
1.0 .47(.11) .72(.16) .75(.15) .71(.21) 280 .03(.21) 2.7*
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Figure A.6: Anatomical distribution of inter-individual variation in MINDy. A) QCD of the
curvature parameter with top-20% threshold. B) Same as A) but for the decay parameter.
C) QCD for MINDy connection weights. Weights in which the sign was inconsistent across
subjects (<75% agreement) or low reliability (Fisher ICC<.5) were censored (grey). D) Mean
weight QCD within each network combinations. If over 95% of parcel-wise connections were
censored, the network-level connection was also censored (white).
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A.9 Anatomical Distribution of Individual Differences

In concert with the previous analyses of individual differences (Sec. 2.3.5) across parameter-

types (weights, curvature, decay) we also investigated the anatomical distribution of individual

differences within each parameter-type. These analyses are post-hoc (exploratory) so we report

results as a potential launching pad for future investigations and as a means to understand

how MINDy models encode individual differences. We do not perform hypothesis-testing and

we caution against interpreting these analyses as stand-alone findings due to their exploratory

nature and relatively low sample-size. We also note that these analyses are performed upon

a biased sample of subjects—those that had no high-motion scans (>1/3 frames censored)

so these results may also fail to describe variability in the full HCP subject pool (see [2] for

cognitive covariates of motion) and its target population (American young adults). These

caveats aside, we considered the degree of individual variation for each parcel/connection. We

used the quartile coefficient of dispersion (QCD) to quantify the degree of variability within

parcels/connections. Conceptually, the QCD is a robust analogue of the more commonly

used Coefficient of Variation and is defined in terms of the first (Q1) and third (Q3) data

quartiles as:

QCD :=
Q3 −Q1

Q3 +Q1

(A.23)

The reason that we apply QCD instead of Coefficient of Variation is that, while both assume

the true population follows a ratio-scale (e.g. are one-sided) the QCD is robust to extreme

values which, due to measurement error violate the ratio-scale assumption. We censored

connections which were unreliable (Fisher’s ICC≤.5) or incompatible with QCD (Q1 and

Q3 differed in sign). We then transformed the other variables onto admissible distributions

(non-negative ratio scales) by shifting the curvature and decay parameters so that they had a

minimum value of zero. Interestingly, the anatomical distribution of QCD appeared to differ
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between the curvature and decay parameters. The curvature had the highest QCD in parcels

of inferior frontal gyrus, early visual cortex, and a large posterior section of frontal cortex (SI

Fig. A.6A). For the decay parameter, QCD was highest in visual regions and the bilateral

portion of somatosensory cortex traditionally associated with hands (SI Fig. A.6B). By

contrast, connection weights had the lowest QCD for connections within the visual networks

(especially peripheral visual; SI Fig. A.6C,D). Some of the highest QCD connections involved

the temporal-parietal network (inter and intra-network) and connections to the limbic system.

Of course, as previously mentioned, these analyses are purely exploratory and should only

be interpreted as an example of how MINDy separates the sources of individual differences

(weights, curvature, decay) rather than as a basic neuroscientific result.
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Figure A.7: Connection asymmetries identified by MINDy A) Difference of total input weights
minus output weights for positive connections only (normalized units). B) Same as (A) but
for negative connections only (using difference in magnitude of input/output weights). C)
Difference of output and input weights for positive output-biased connections in the parcel
with the greatest positive output-bias. D) Same as C), but for the parcel with greatest
negative output bias. E) The parcel with the second-greatest negative output bias is the
contralateral analogue to the parcel in (D). Parcel numbers are labeled for the 17-network
gwMRF parcellation ([6])
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A.10 Directed Connectivity Identified by MINDy

The simplest way to characterize connection asymmetries is in terms of regions being sinks

(input weights greater than output weights in absolute value) vs. sources (output weights

greater than input weights in absolute value). For now we focus upon sources and do so

separately for positive (SI Fig. A.7 A) and negative connections (SI Fig. A.7 B). For positive

sources MINDy most strongly identifies inferior frontal gyrus (IFG), bilateral parieto-occipetal

sulcus, and dorsal prefrontal cortex (SI Fig. A.7 A). MINDy identifies the strongest excitatory

source as a region of left IFG (see main text; SI Fig. A.7 C) and identified bilateral IFG as the

strongest negative sources with negative outward-biased connections primarily to components

of the Default Mode Network (IPL and medial PFC) with a general contralateral bias (SI

Fig. A.7 D,E). The role of right IFG in inhibition is well-documented within neuroimaging

(e.g. [167]) and lesion studies suggest an inhibitory role for left IFG as well ([168]). These

results indicate that the asymmetries within MINDy weights are functionally interpretable.

However, these initial findings only scratched the surface of possible analyses.

A.11 Nonlinear Dynamics in MINDy

As discussed in the main-text (Sec. 2.3.6), the fact that MINDy is nonlinear does not

inherently imply that the model behaves qualitatively different from models relying upon a

linear approximation (e.g. DCM). This distinction is critical to understanding how MINDy

models resting-state dynamics: as random fluctuations about a single equilibrium (like

DCM) or as topologically significant (nontrivial) dynamics. In general, proving the existence

of global behavior in MINDy models constitutes a nontrivial endeavor given their high-

dimensionality. However, we can easily rule out trivial dynamics (a Lyapunov-stable global

attractor) by examining eigenvalues of the Jacobian at zero. Since all subjects contain at
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least one positive (real part) eigenvalue (SI Fig. A.8), we conclude (by Proposition 2) that

no empirically-parameterized MINDy model is globally Lyapunov-stable.

Proposition 2. Consider a continuous-time dynamical system evolving according to ẋ = f(x),

with f : Rn → Rn = Wψ(x) − Dx with ψ : Rn → Rn an odd function (ψ(−x) = −ψ(x))

and n× n matrices W,D. Suppose that the Jacobian at the origin (F (0)) has at least one

eigenvalue with positive real part and none with zero real part. Then for any fixed point

xs : f(xs) = 0, at least one of the following hold:

1. There exists a set U of non-zero measure, whose positive limit-set ω+(U) does not

contain xs.

2. xs is not Lyapunov stable—i.e. there exists ε > 0 for which there is no δ > 0 satisfying

‖x(0)− xs‖ < δ =⇒ ∀t > 0, ‖x(t)− xs‖ < ε.

Proof. We consider two cases depending upon whether xs = 0. If xs 6= 0 is a fixed point then

so is its reflection −xs 6= xs since f(−x) = −f(x). Suppose that xs is locally Lyapunov stable

(violating implication 2) and thus possesses an attractive basin V of non-zero measure. Then

−V is an attractive basin of −xs hence xs /∈ ω+(−V ) which confirms the first implication.

Thus, consider the alternative case: xs = 0. By the hypothesis, xs is a hyperbolic fixed-point

so there exists an open neighborhood N containing xs for which the dynamics on N are

topologically conjugate those of the linearization ẋ ≈ F ′(0)x (Hartman-Grobman Theorem).

The linearization F ′(0) is unstable (at least one eigenvalue with positive real part) which

implies that any sufficiently small ball about xs = 0 will also be an unstable set. This

contradicts Lyapunov stability (confirming implication 2).
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Figure A.8: Eigenvalue analyses indicate that empirical MINDy models do not possess a global,
Lyapunov stable attractor. A) Distribution of eigenvalues (real-part) for local-linearization
about the origin. Shading indicates ±SD and black lines give the data’s maximum/minimum.
Note the presence of positive eigenvalues which indicate nontrivial dynamics (Proposition
2). B) Scatterplot of these eigenvalues (all subjects) in the complex plane suggests that the
greatest “spin” (complex components) occurs along the unstable subspaces (corresponding to
eigenvalues of positive real-part).

Table A.5: Ground-truth validation performance of MINDy and rsFC in recovering the weight
matrix of a single subject and the arithmetic difference of weight matrices between subjects.
We denote significance with ∗∗ = p < .001, 2-tailed for the contrast Weights minus rsFC.

Weights FC paired-t (df=33)
Single Subject .800 (.025) .436 (.065) 45.629**

Indiv. Differences .544 (.049) .293 (.046) 58.618**
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Figure A.9: MINDy strongly predicts individual and group FC. A) Correlation between
empirical FC and simulated FC from the same scanning day for either the same subject or a
different subject (mean across other subjects). Blue line indicates group mean. Correlations
are averaged across scanning sessions. B) Same as A) but for with all data combined across
sessions (simulations from each session’s model were combined) C) Group-mean of empirical
FC vs. group-mean of simulated FC (both combined across sessions). Notice that while the
correlation is high, the magnitude of simulated FC is smaller than empirical. D) Slightly
decreasing noise produces a predict group-mean FC that is nearly indistinguishable from
that observed empirically. E) Group-average empirical FC combined across sessions. F)
Group-average FC of simulated data combined across sessions. The identity line (perfect
match) is indicated in red G) Same as F) but with a slightly decreased noise term (85% of
original).

Table A.6: Sensitivity of MINDy weights and rsFC to changes in non-connectivity parameters
in a ground-truth simulation Performance is measured in terms of false positives=the percent-
age of connections that change (thresholded by p < .05) due to a change in the ground truth
model’s curvature/decay. Thus, lower values indicate less false positives (less sensitivity) due
to non-connectivity variables. We denote significance with ∗∗ = p < .001, 2-tailed for the
contrast Weights minus rsFC.

Weights FC paired-t (df=339)
Changing Curvature .063 (.002) .079 (.027) -10.639**
Changing Decay .076 (.006) .2749 (.120) -31.753**
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Figure A.10: MINDy differentiates model parameters between individuals and identifies
the source of individual differences. A) Changing only the curvature (left) or decay (right)
parameters of a simulated subject has more impact on the simulated rsFC (blue) then on
MINDy weight estimates refit to the new simulated data (red). B) Weight matrices are
individualized: weight matrices derived from different scans of the same subject are universally
more similar than weights fit to another subject. C,D) same as B) but for the curvature and
decay parameters, respectively. E) The rsFC matrix is more similar for different scans of the
same subject than between subjects. F) Individualized models better generalize to new data
from the same subject than to a new subject.

Table A.7: Test-retest correlation across scanning sessions for MINDy parameters when
sessions were drawn from the same subject or from different subjects. Group-level statistics
are present in mean correlation (SD) form. Group level permutation testing (100,000 each)
produced p′s ≈ 0 for all parameters vs. chance. Accuracy is in correct assignment for
subjects based upon maximal similarity between sessions (e.g. how often is the subject most
similar to themselves?). Statistical tests are for the contrast weight vs. FC. W/in=within
subject, Btwn=between subject, Diff=w/in subject minus between, Acc.=accuracy. We
denote significance with ∗ = p < .05 and ∗∗ = p < .001, 2-tailed and Bonferroni corrected

FC Weight(W ) t(mean) Curv(α) Decay(D)
W/in. .757(.052) .802(.018) 7.883** .772(.029) .798(.062)
Btwn. .511(.044) .635(.021) 38.143** .637(.041) .600(.069)
Diff. .246(.038) .167(.019) -23.076** .135(.023) .198(.052)
Acc. 100 100 0 100 94.3
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Figure A.11: MINDy reproduces reliable, accurate estimates of dynamic functional con-
nectivity (DFC). We use σ-DFC to disambiguate the standard-deviation measure for DFC
(e.g. [11],[12]) from other uses of standard-deviation. A) Data simulated from test-retest
models (models fit to separate sessions) has at least as high reliability on average as the
original data for σ-DFC. B) Same as A) but for the excursion metric of DFC. C) Correlation
between observed and simulated excursion across subjects by region-pair (combining across
scanning sessions). D) Predicted group average σ-DFC for the model simulations (left) and
recorded data (right) combining across scanning sessions. E) Same as D) but for excursion.
F) Correlation between observed and predicted group-average excursion across region-pairs.
The σ-DFC analogues of C and F are reported in the main text (Fig. 2.6)
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Table A.8: Comparing the test-retest reliability and pre-processing sensitivity of the MINDy
connectivity parameter and the resting state functional connectivity. The pipelines correspond
to using motion without CompCor or GSR correction, using motion + CompCor or using
motion + CompCor + GSR (default). Results are presented in mean(SD) form for the group
distribution of individual test-retest correlations or correlations between different levels of
preprocessing applied to the same session. Statistical tests consisted of paired t-tests for
the mean correlation, and F-tests for testing heterogeneity of variance. Results generally
favored the MINDy connectivity matrix over the FC matrix (greater mean reliability and
less variation) but the absolute differences, although highly statistically significant, are not
profound. We denote significance with ∗ = p < .05 and ∗∗ = p < .001, 2-tailed and Bonferroni
corrected.

Weights FC t (mean) F (var)
Motion .8096 (.0268) .7909 (.0619) 3.1507* 5.3219**

CompCor .8039 (.0185) .7481 (.0504) 10.5096** 7.378**
GSR .8021 (.0180) .7571 (.0523) 7.8834** 8.4200**

M vs. C .9323 (.0178) .8512 (.0582) 13.6332** 10.7247**
M vs. G .9116 (.0191) .7910 (.0776) 14.1496** 16.4823**
C vs. G .9736 (.0037) .9669 (.0143) 4.2162** 14.6271**

Table A.9: MINDy performance in inverting the weight matrix and its asymmetries in cases
of model mismatch. Ground truth models were either a tanh rate-model downsampled to the
fMRI TR, a rate model with spatially heterogeneous hemodynamic response functions, or a
neural mass model using the nonlinear Balloon-Windkessel model of hemodynamics.

Model Full W W −W T N
Rate-Model 0.949 (0.009) 0.971 (0.007) 1700

Rate+spatial HRF 0.754 (0.026) 0.770 (0.027) 1680
Neural Mass + B-W 0.642 (0.032) 0.567 (0.036) 1480
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Figure A.12: After pre-processing, MINDy fits are robust to motion. Fitting performance was
measured by the cross-validated goodness of fit (A,E) and the reliability for each parameter
(B-D,F-H). Individual differences in motion were quantified by either membership in median-
split high vs. low motion groups (first two rows) or as a continuous variable (bottom row).
Groups were assigned for each combination of motion measurement (number of TRs censored,
median Framewise Displacement, or Median Absolute Deviation (MAD) of DVARS) and
motion type: either the total motion of a subject averaged across scanning sessions (A-D,
I,K) or the absolute difference in motion artifact between sessions (E-H,J,L). There was no
significant relationship with motion as a discrete characteristic (e.g. high vs. low: A-H) or as
a continuous characteristic: group level correlations between motion measures and fitting
performance in (I,J) and the associated (uncorrected) inverse p-values in (K,L).
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Figure A.13: Sensitivity to various forms of noise in data (Same as Fig. 2.7 A,B, but with 17
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of hemodynamic parameters changes the shape of randomly drawn hemodynamic response
functions (HRF). E-G) Hemodynamic variability does not alter the mean performance
of MINDy estimates. H) Hemodynamic variability decreases the consistency of MINDy
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A.12 MINDy Optimization: Under the Hood

To stabilize MINDy’s fitting procedure we use two changes of variable during the fitting

process. Instead of directly fitting the term D we fit D2 satisfying the relation D := Dmin+D
2
2.

This change keeps the estimated parameters away from the pathological conditions in which

D is either negative or very small which can cause models to explode in the long term. The

term Dmin is a constant, positive hyperparameter. This step does not significantly alter

computational complexity and we found that it did not alter results for our current initial-

ization setting of D as our estimates never approached the pathological regions. However,

we included this change of variable in the code as a safeguard should it become relevant for

future users.

The second change of variable served to linearize the effects of the nonlinear curvature

parameter α. Rather than explicitly fitting α we fit the variable ξ := b/(
√
α2 + .25) which

satisfies ξ = maxx(ψα(x)). This transformation smooths the relation between the nonlinear

parameter (ξ instead of α) and its effects on the model’s vector field. The new parameter ξ is

constrained to be smaller than or equal to 2b so that α2 ≥ 0. Efficient gradient calculations

were performed by first calculating the variables in Table A.10 and then calculating gradients

as in Table A.11. In all cases MINDy was run for 5000 iterations with batch size 300 (300

time-points used in each iteration).
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Table A.10: Definition of variables (“Name”) used in MINDy gradient calculations and their
interpretation (“Meaning”). The term nBatch denotes the number of samples (time-points)
included in each minibatch (the training data for a given NADAM iteration).

Name Equation Meaning
W WS +WL Full weights
P1(x)

√
ξ−2 + x ◦ (x+ b−1) Part of ψ

P2(x)
√
ξ−2 + x ◦ (x− b−1) Part of ψ

ψ(x, ε) b(P1 − P2) Transfer Function (ψ)
D D2

2 +Dmin Full Decay
R dX −WKψ(x) +Dx Residual Error
Q W T

KR 2∂R
∂ψ

Z Rψ(x)T/nBatch ET [
∂R
∂W

]

Y Z − λ4WL
∂J
∂WL

Table A.11: Equations used to efficiently calculate MINDy parameter gradients. These
equations leverage the additional variables defined in SI Tab. A.10. Note that the decay
parameter is updated in terms of its square-root (D2) and the curvature parameter is updated
in terms of the linearized form ξ.

Parameter Negative Error Gradient (−∂J
∂ω
)

WS Z − λ1sgn(WS)− λ4diag(sgn(WS))
W1 YW T

2 − λ3sgn(W1)
W2 W1Y − λ3sgn(W2)
ξ −ξ−3bET [Q ◦ (1/P1 − 1/P2)]
D2 −2D2 ◦ ET [R ◦X]

Table A.12: NADAM hyperparametes for each MINDy parameter and the distributions used
to initialize each parameter. NADAM hyperparameters consist of the update rate (“Rate”),
decay rate of gradients (µ), decay rate of squared-gradients (ν), and regularization term ε.

Rate (η × 105) µ ν ε Initialization
WS 2.5 .9 .95 .15 N(0, .01)
W1,2 6.25 .9 .95 .15 N(0, .01)
α 12.5 .9 .95 .2 .1 +

√
.25 + |N(0, .25)|+ b2/4

D2 1750 .9 .95 200 1.75 +
√
|N(0, .25)|
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Table A.13: Chosen values for other hyperparameters used in MINDy. These (non-NADAM)
hyperparameters consist of the four regularization terms (λi) in the cost function (Eq. 2.4),
the minimum allowable value for D (Dmin), and the scaling factor of the transfer-function (b)

Variable Value
λ1 .075
λ2 .2
λ3 .05
λ4 .05
Dmin .1
b 20/3
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Appendix B

Supplemental Information for

Surrogate Deconvolution 4

B.1 “Local” Field Potential Simulations

The “local” field potential recordings from Sec. 3.4.1 were simulated using the discrete-time

neural mass model:

xt+1 = aζ(byt) +
xt
τ

+ c+ εt (B.1)

yt+1 = S ◦ yt +Wxt + ωt (B.2)

zt = yt + νt (B.3)

The paramaters a = 3, b = 1/5, and τ = 2 were fixed. For each simulation, the remaining

neural-mass model parameters were redrawn from fixed, independent distributions: c ∈

Rnpop ∼ N (−1, .252) and S ∼ N (.5, .22) ∩ [.2, .8]. The connectivity parameter W was
4Appendix chapter reprinted verbatim from previously published work: [99]
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sampled using a two-step procedure:

W0 ∼ N (0, .12) W = W0 + 2(W0 −W T
0 ). (B.4)

This exaggerated asymmetry serves to ensure solutions have nontrivial dynamics in the absence

of noise. The noise processes εt, ωt, and νt were all independent, white Gaussian processes

with the same variance for each population. For each simulation the standard deviations

of εt, ωt, and νt were drawn from .25 + .5|N (0, 1)|, .05 + .1|N (0, 1)|, and .1 + .2|N (0, 1)|,

respectively. The variances assumed by Kalman Filtering were .5, .1, and .2 for εt, ωt, and νt,

respectively.

B.2 Randomized Networks and MINDy Hyperparam-

eters for simulated fMRI

Ground-truth simulations for BOLD fMRI (Sec. 3.4.4) were produced by a 40 node Hopfield-

type ([1]) recurrent neural network with asymmetric connectivity:

xt+∆t = W [tanh(b0 ◦ xt)]∆t+ (1−∆t)Dx+ εt. (B.5)

Here, the timescale of integration was ∆t=.1s and measurement occurred every 700ms.

The process noise εt was Gaussian (σ2 = .625) and independent between channels. The

simulation parameters and generic MINDy fitting hyperparameters were generally identical

to those in the original 40-network MINDy simulations ([8]). Ground-truth connectivity

parameters (W ) for the simulations were generated by a hyperdistribution characterized by

four hyperparameters which scale the reduced-rank magnitude (σ1), sparseness (σ2), degree

of asymmetry (σa), and degree of population clustering (p̂). These hyperparameters are
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distributed σ1, σa ∼ N (4, .12) and σ2 ∼ N (3, .12). The hyperparameter p̂ is either 1 or 2

with equal probability. These parameters were used to generate three matrices (M1,M2,M3)

distributed as follows:

M1 ∼ [N (0, 1/σ2
1) +N (0, 1/σ2

1)
3]40/p̂ × 40/p̂ (B.6)

M2 ∼ [N (0, 1/σ2
2)

3]40×40 (B.7)

M3 ∼ [N (0, 1/σ2
1) +N (0, 1/σ2

1)
3]40×5 × ...

[N (0, 1/σ2
1) +N (0, 1/σ2

1)
3]40×5 (B.8)

To generate population clustering we use the ones matrix 1p̂×p̂ and define M̂1 := 1p̂×p̂ ⊗M1

in which ⊗ denotes the Kronecker product. The final connectivity matrix (W ) for each

simulation is formed as follows:

Q := M̂1 +M2 +M3 W = Q+ (Q−QT )/σ1. (B.9)

The slope vector b0 ∈ R40 is distributed b0 ∼ N (6, (.5)2) and the diagonal decay matrix D has

(diagonal) elements iid. distributed Di,i ∼ N (.4, .12) ∩ [.2,∞]. Deconvolved time series were

z-scored. Base MINDy regularization parameters for the 40-node simulation were generated by

rescaling the empirical fMRI regularization parameters (λ̂1 = .075, λ̂2 = .2, λ̂3 = .05, λ̂4 = .05)

by 1/rn, 1/rn, 1/
√
rn, and 1/r2n, respectively with rn = 10 is the approximate ratio between

the number of empirical brain regions (419) and those used in the simulation (40) ([8]) which

used the method described below (Sec. B.3). The maximum-rank of the low rank component

WL was 15. Initial values for MINDy parameters were distributed as in ([8]). The NADAM

update rates for the HRF parameters α and β were 5×10−4 and 2.5×10−4, respectively for the
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40-node simulation. Surrogate deconvolution used the third-order bivariate polynomial basis

{1, α, β, α2, αβ, β2, α3, α2β, αβ2, β3} which was fit to the z-scored deconvolution surfaces.

B.3 Empirical Selection of MINDy Hyperparameters

The MINDy hyperparameters we used were previously determined ([8]) by pseudo-optimization

of empirical Human Connectome Project ([65]) fMRI data. In the former study, values were

chosen to maximize cross-validated goodness of fit while retaining a test-retest correlation

(reliability) of at least .7 for each type of estimated parameter (W,α,D). In brief, values were

sampled from a grid over the 4-dimensional space and used to fit models to a set of 10 left-out

subjects with test-retest data (none of these subjects were reused in our analyses). The

gridded fits determined the likely vicinity of local minima and the final values were chosen

based upon iterated coordinate-descent with a fixed resolution (.005). More sophisticated

approaches for hyperparameter selection also exist ([169]) and may be more efficient in future

applications.

B.4 HCP Data for Surrogate-HRF MINDy

For the empirical data, MINDy used the original regularization parameters (λ̂i). NADAM

update rates were 2.5× 10−4 for α and 2.5× 10−5 for β. Resting-state fMRI from the Human

Connectome Project (HCP; [65]) was preprocessed according to Siegel and colleagues ([2])

and smoothed via nearest-neighbor. Deconvolution was performed using Wiener’s method

with noise-signal-ratio =.002. On each minibatch, next-step predictions were made for 250

sequential frames using an HRF kernel length of 30 TRs (21.6s) and parameter updates were

performed using NADAM for 6000 minibatches. As before, surrogate deconvolution used the

third-order bivariate polynomial basis {1, α, β, α2, αβ, β2, α3, α2β, αβ2, β3} to approximate
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the z-scored deconvolved time-series. For fitting surrogate coefficients, α was assumed uniform

on [5, 7] and β was assumed uniform on [.5, 1.5]. Expected values were taken by sampling

this two-dimensional space along an evenly-spaced 10× 10 rectangular grid.

B.5 Derivation of Kernels from Partially-Observable

State-Space Models

Convolutional representation can reduce differential/difference equation models of large, hier-

archical systems into much smaller (integro-differential) forms. These systems are hierarchical

in the sense that they contain a small set of nonlocal (potentially nonlinear) state-variables

(xt ∈ Rn) with an equal number of recording channels (zt ∈ Rn). Each of these interconnected

state-variables (x(i)t ∈ R), however, can have several coupled local state-variables which

produce linear intrinsic dynamics (y(i) ∈ Rki). In neuroscience applications, this scenario

typically corresponds to one channel per brain area with each area defined by multiple

state-variables (e.g. physiological mechanisms):

xt+1 = f(xt, yt) + ηt, (B.10)

y
(i)
t+1 = Aiy

(i)
t+1 + bix

(i)
t . (B.11)

Thus, the state-variables y(i) evolve according to the matrix Aki×ki . We assume that the

A matrix is stable in the discrete-time sense (eigenvalues have absolute values strictly less

than one) which prevents “exploding” solutions and guarantees the existence of an equivalent

convolutional form. We note that the local state-variables (y(i)) do not need to be the same

size for each x(i) (e.g. brain area) and they are only defined to be local in terms of input: y(i)

can directly influence x(j 6=i), but not vice-versa. The measurement from each channel z(i)t is a
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noisy linear summation of ki + 1 state-variables: x(i)t ∈ R and y(i)t ∈ Rki+1. Thus, at each

instance n channels measure a system with n+
∑
ki (partially) coupled state-variables.

z
(i)
t+1 = cTi y

(i)
t+1 + aix

(i)
t + νt+1. (B.12)

Due to the linear intrinsic dynamics of y(i)t , measurements can be re-written in convolutional

form:

z
(i)
t = [hi ∗ x(i)]t + νt (B.13)

hi = [ai cTi bi cTi Aibi cTi A
2
i bi...]. (B.14)

The unknown kernel parameters can factor into any of the local terms (bi, Ai, ci, or ai). When

little is known regarding these parameters a-priori, the mapping from state-space parameters

onto the kernel (hi) is not always invertible, so there are cases in which the parameterization

problem is well-posed in convolutional form but not in state-space form (e.g. if Ai is symmetric

and both ci, bi are unknown). Analogous results hold for the continuous-time case:

ẏi(t) = Ayi(t) + bixi(t) (B.15)

hi(τ) = aiδ(τ) + cTi e
Aiτbi (B.16)

with A now required to be Hurwitz-stable (all eigenvalues have negative real-part), δ denoting

the Dirac function, and eAiτ denoting the matrix-exponential of Ai multiplied by the lag τ .
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