3,684 research outputs found

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Air Quality Research Using Remote Sensing

    Get PDF
    Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic

    Integration of economic MPC and modifier adaptation in slow dynamic processes with structural model uncertainty

    Get PDF
    Real-Time Optimization, known by its acronym RTO, uses a steady-state nonlinear model of the process to optimize a plant's economic objective subject to process constraints. This is the technology currently used in commercial RTO applications. However, no model is a perfect representation of reality, and structural and parametric model uncertainties make the optimum calculated by RTO do not match those of the actual process. One way to address this problem is to modify the optimization problem so that the Necessary Conditions of Optimality (NCO) of the problem match those of the actual plant. This strategy is known as Modifier Adaptation (MA) methodology. The MA methodology requires the gradient values of the real plant and the model to calculate the modifiers. There are several ways to accurately estimate model gradients, but estimation of the real process gradients are more difficult. In addition, the need to use stationary data is a limitation of RTO with MA, especially for slow dynamic systems. This thesis focuses on ways to mitigate the weaknesses of RTO and MA unification that we consider most critical for its application in industry. To this end, it is proposed to couple the RTO and control layers with the concepts of the Modifier Adaptation (MA) methodology by estimating process gradients or directly the MA modifiers using transient data.La Optimización en Tiempo Real, conocida por la sigla en inglés RTO usa un modelo no lineal estacionario del proceso para optimizar un objetivo económico de la planta frente a restricciones del proceso. Esta es la tecnología usada actualmente por las aplicaciones comerciales de RTO. Sin embargo, ningún modelo es una representación perfecta de la realidad y las incertidumbres estructurales y paramétricas de los modelos hacen que los óptimos calculados por la RTO no coincidan con los del proceso real. Una forma de abordar este problema es modificar el problema de optimización de modo que las condiciones necesarias de optimalidad del problema (NCO) se igualen a los de la planta real. Esa estrategia es conocida como la metodología de adaptación de modificadores (Modifier Adaptation, MA). La metodología MA necesita de los valores de gradiente de la planta real y del modelo para el cálculo de los modificadores. Hay diversas formas de estimar los gradientes del modelo con exactitud, sin embargo, la estimación en proceso real es más difícil. Además, la necesidad de usar datos en estacionario sigue siendo una limitación fundamental de la RTO con MA, principalmente para sistemas dinámicos lentos. Esta tesis se enfoca en formas de mitigar las debilidades de la unificación RTO y MA que consideramos las más críticas para su aplicación en la industria. Para eso se propone que las capas de RTO y control se unan con los conceptos de la metodología de adaptación de modificadores (Modifier Adaptation, MA) estimando los gradientes de proceso o directamente los modificadores de MA usando datos de transitorio.Escuela de DoctoradoDoctorado en Ingeniería Industria

    Development of spectroscopic assays for rapid monitoring of estrogen biodegradation

    Get PDF
    Estrogen hormones are well-established environmental micropollutants which have been linked to endocrine disruption in aquatic organisms in wastewater discharge sites. Biological degradation is the primary wastewater treatment mechanism for estrogen removal. However, treatment efficacy is highly variable and difficult to engineer due to the “black box” nature of biological treatment. Microbial strain selection is a critical impediment towards engineering estrogen biodegradation, since isolating endogenous strains with specific metabolic traits requires lengthy enrichment cultures and is limited to culturable organisms. Furthermore, the highly sensitive and selective chemical trace analysis techniques used to measure estrogen removal are relatively expensive and inefficient. In this thesis, we developed rapid, high-throughput spectroscopic methods designed to monitor estrogen biodegradation. The spectroscopic methods include a fluorometric assay based on the uptake of a fluorescently-labelled estrogen and a colorimetric biosensor using gold nanoparticles (AuNPs) and an aptamer bioreceptor. A synthetic microbial community comprised of characterised estrogen-degrading reference strains was used to evaluate the fitness for purpose of the developed methods. A trace analysis method using conventional chromatography was developed to validate the use of the fluorescent probes with the synthetic microbial community. The biochemical fate and distribution of the BODIPY-estrogen in the estrogen-degrading bacteria – specifically, the biotransformation of BODIPY-estradiol to BODIPY-estrone by Caenibius tardaugens – was used to inform the design of the fluorometric assay. The fluorometric assay utilises a cell impermeable halide quencher to suppress the extracellular fluorescence, and thus, the obtained fluorescence response was attributed to the selective internalisation of BODIPY-estrogen by C. tardaugens. While the fluorometric assay was developed to screen for estrogen-degrading bacteria, the colorimetric aptasensor, which was adapted from published AuNP biosensors and aptamers for this application, was developed to quantify 17β-estradiol (E2) in buffered culture media. The developed aptasensor was evaluated against industry guidelines for ligand-binding assays. While the analytical performance of the aptasensor satisfied the majority of the guidelines’ acceptance criteria, the method suffered from biological interferences by the estrogen-degrading bacteria. The work in this thesis contributes towards expanding the available bioanalytical methods in environmental biotechnology

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Novel 129Xe Magnetic Resonance Imaging and Spectroscopy Measurements of Pulmonary Gas-Exchange

    Get PDF
    Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy. In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it has different MR spectral properties as a gas, as it diffuses through the alveolar membrane and as it binds to red-blood-cells. 129Xe MR spectroscopy and imaging provides a way to tease out the different anatomic components of gas-exchange simultaneously and provides spatial information about where abnormalities may occur. In this thesis, I developed and applied 129Xe MR spectroscopy and imaging to measure gas-exchange in the lungs alongside other clinical and imaging measurements. I measured 129Xe gas-exchange in asymptomatic congenital heart disease and in prospective, controlled studies of long-COVID. I also developed mathematical tools to model 129Xe MR signals during acquisition and reconstruction. The insights gained from my work underscore the potential for 129Xe gas-exchange MRI biomarkers towards a better understanding of cardiopulmonary disease. My work also provides a way to generate a deeper imaging and physiologic understanding of gas-exchange in vivo in healthy participants and patients with chronic lung and heart disease

    The Center of Excellence in Atmospheric Science (2002–2019) — from molecular and biological processes to the global climate

    Get PDF
    The study of atmospheric processes related to climate requires a multidisciplinary approach, encompassing physics, chemistry, meteorology, forest science, and environmental science. The Academy of Finland Centre of Excellence in atmospheric sciences (CoE ATM) responded to that need for 18 years and produced extensive research and eloquent results, which are summarized in this review. The work in the CoE ATM enhanced our understanding in biogeochemical cycles, ecosystem processes, dynamics of aerosols, ions and neutral clusters in the lower atmosphere, and cloud formation and their interactions and feedbacks. The CoE ATM combined continuous and comprehensive long-term in-situ observations in various environments, ecosystems and platforms, ground- and satellitebased remote sensing, targeted laboratory and field experiments, and advanced multi-scale modeling. This has enabled improved conceptual understanding and quantifications across relevant spatial and temporal scales. Overall, the CoE ATM served as a platform for the multidisciplinary research community to explore the interactions between the biosphere and atmosphere under a common and adaptive framework

    Erfassung und Evaluierung von Teilentladungen in Leistungstransformatoren mit speziellen Sensoren und Diagnoseverfahren

    Get PDF
    Transformers are key elements of the power grid. Due to their importance and high initial cost, asset managers utilize monitoring and diagnostic tools to optimize their operation and extend their service life. The main objective of this thesis is to develop new methods in the field of monitoring and diagnosis of transformers in order to reduce maintenance costs and decrease the frequency of forced outages. For this purpose, two concepts are proposed. Small generator step-up transformers are essential in wind and photovoltaic parks. The first presented concept entails an online fault gas monitoring system for these transformers, specially hermetically-sealed transformers. The developed compact, maintenance-free and cost-effective monitoring system continuously tracks the level of the key leading indicators of transformer faults in the gas cushion. The second presented concept revolves around partial discharge (PD) assessment by the UHF measurement technique, which is based on capturing the electromagnetic (EM) waves emitted in case of PD in the insulation of a transformer. In this context, the complex EM system established when probes are introduced into the tank of a transformer and with PD as the excitation source is analyzed. Drawing on this foundation, a practical approach to the detection and classification of PD with the focus on the selection of the optimal frequency range for performing UHF measurements depending on the device under test is presented. The UHF measurement technique also offers the possibility of PD localization. Here, the determined arrival time (AT) of the captured signals is critical. A PD localization algorithm, based on a multi-data-set approach with a novel AT determination method, is proposed. The methods and algorithms proposed for the detection, classification and localization of PD are validated by means of practical experiments
    corecore